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Abstract

Previous research has established that numeric estimates are based not just on perceptual data

but also past experience, and so may be influenced by the form of this stored information. It

remains unclear, however, how such experience is represented: numerical data can be processed by

either a continuous analogue number system or a discrete symbolic number system, with each

predicting different generalisation effects. The present paper therefore contrasts discrete and

continuous prior formats within the domain of numerical estimation using both direct comparisons

of computational models of this process using these representations, as well as empirical contrasts

exploiting different predicted reactions of these formats to uncertainty via Occam’s razor. Both

computational and empirical results indicate that numeric estimates commonly rely on a continuous

prior format, mirroring the analogue approximate number system, or ‘number sense’. This implies a

general preference for the use of continuous numerical representations even where both stimuli and

responses are discrete, with learners seemingly relying on innate number systems rather than the

symbolic forms acquired in later life. There is however remaining uncertainty in these results

regarding individual differences in the use of these systems, which we address in recommendations

for future work.

Keywords: Numerosity; Estimation; Rational Modelling
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Using Occam’s razor and Bayesian modelling to compare discrete and

continuous representations in numerosity judgements

1 Introduction

In many everyday tasks, we are required to make quick estimates of discrete stimuli based on noisy

perceptual data: the number of people in a crowded room, or cars in a lane of traffic, for example.

These decisions are not solely reliant on perceptual information, but also use past experiences with such

stimuli to guide responses: if estimating the number of people in a room, the actor may consider similar

occasions where that number was later provided and use this information to inform their decision. Such

guidance in fact becomes increasingly valuable at higher values as people’s ability to discriminate

between figures decreases (Krueger, 1984; Izard & Dehaene, 2008). Accurate estimates are therefore

reliant on the learning of the distribution of such figures, building representations that reflect the

prevalence of these values in the real world.

The influence of such previous experience is in turn however dependent on its representation,

reflecting the different forms in which numerical information could be stored. Existing research has

offered two potential forms for such information in two contrasting number systems, each suggesting

distinct impacts on new decisions: the approximate number system and the symbolic number system.

The approximate number system refers to the innate understanding of numerosity displayed by both

humans and animals in which numbers are conceptualised in a continuous analogue form (Dehaene,

2011). Storing prior experiences in this format should therefore lead future estimates to focus on values

similar to those previously seen; if the previous room contained 50 people, then nearby figures such as

49 or 51 would also become more likely (e.g. Gershman & Niv, 2013). In contrast, the symbolic number

system is the discrete verbal format learned in later life which allows for more complex mathematical

operations (Izard & Dehaene, 2008); in this case, only the experienced value would increase in

expectancy, making that response alone more likely in subsequent estimates. Such a representation

would allow the learner to acquire reasonably complex distributions through experience, tracking the

individual appearance rate of each potential value (e.g. Sanborn & Beierholm, 2016). This would,

however, also be possible using a sufficiently complex continuous format: narrow similarity functions

could emulate discrete formats, making it difficult to distinguish between these forms.

This then raises the question of which of these systems underlies discrete estimates: symbolic

representations could be used to suit the discrete nature of responses and feedback, while continuous

forms may be used in spite of these elements to suit the more analogue perceptual data and translated

into discrete figures as required. Despite the impact of this distinction on both the representation

formed and the resulting behaviour, this has received little attention in previous research. What is
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more, what work has been done has found conflicting results, with studies finding evidence for both

continuous (Gershman & Niv, 2013) and discrete (Sanborn & Beierholm, 2016) underlying systems.

The current study therefore attempts to separate these forms using two complementary

methodologies: first, an empirical contrast taking advantage of a difference in the definition of

simplicity within continuous and discrete representations, and second, a quantitative contrast between

computational models of behaviour in this task. In the following sections, we introduce potential

models of estimation following such discrete and continuous formats, examine the principles of these

models to derive methods of distinction, and use both empirical and computational comparisons to

provide insight into the representations used in numeric estimates.

1.1 Using Prior Experience

We begin by examining the process by which past estimates could be used to inform new judgements.

While this has not been studied extensively in estimation, one existing theory which touches on this

process is calibration; in this theory, past trials are suggested to be used as anchoring points to map a

discrete response scale onto continuous numerical representations to make subsequent estimates more

accurate (Krueger, 1984; Izard & Dehaene, 2008). In this case, numerical data is automatically encoded

in a continuous format and translated into discrete figures as required; for example, Izard and Dehaene

(2008) suggest an affine transformation between continuous and discrete formats, using parameters to

adjust both the shape and position of the discrete response scale. Calibration therefore increases the

accuracy of this translation by tuning these parameters to suit the observed data, better mapping these

two scales against one another to improve all future estimates. Such a transformation is, however,

limited in the probability distributions it is able to represent; while this may be sufficient for reasonably

simple structures, more complex distributions such as those with multiple modes cannot be accurately

represented by this process alone. This stands in contrast to empirical data showing that learners can in

fact acquire such multimodal distributions (Sanborn & Beierholm, 2016; Gershman & Niv, 2013). What

is more, these studies also provide evidence against the use of a more complex translation function

(Sanborn & Beierholm, 2016), thereby suggesting the learning of these forms is reliant on other

mechanisms besides calibration. More flexible systems are therefore required to accurately represent

these more complex forms, with calibration possibly offering a supporting process.

An alternative framework for the use of past experience is provided by Bayesian Decision Theory

(BDT), in which prior assumptions regarding the distribution of the target stimuli are combined with

direct observational data to form a posterior distribution from which a response can be selected;

feedback from this response can then be used to update the representation for use in subsequent

estimates. Previous observations are therefore used to inform new responses by constructing a mental

representation of the true distribution, noting the prevalence of particular values. This provides BDT
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with an advantage over calibration as it can capture more complex learning structures such as the

multimodal distributions noted above, with estimates reflecting both current perceptual data as well as

the history of past observations. BDT may then provide a clear and established method well suited to

the modelling of numerical estimation, better capturing the underlying process. In fact, BDT has been

previously used as a description of the estimation process within continuous motor responses (Kording

& Wolpert, 2004; Acerbi, Vijayakumar, & Wolpert, 2014; Chalk, Seitz, & Series, 2010), further

supporting its use in the present study.

The use of BDT also facilitates the current comparison between discrete and continuous

representations: while the general principles of BDT may remain fixed, the definitions of individual

elements can vary, allowing for contrasts between alternate Bayesian models with different

representational formats. Here, this applies primarily to the structure of the prior distribution, as this

provides the assumed model of the environment, and so the representation of numerical information.

The current study therefore focuses on contrasts between differing definitions of the prior, while other

model elements remain identical. What is more, BDT also allows for such a distinction without

specifying the algorithm used by real learners, instead only providing useful computational descriptions

of behaviour (Tauber, Navarro, Perfors, & Steyvers, 2017). This places the focus on the contrast

between the uses of discrete and continuous numerical formats rather than the optimality of behaviour;

while such descriptions would be optimal if these priors were accurate, without certainty of the specific

priors used by actual learners, or indeed the suitability of these priors to the environment, we avoid

making such claims in this paper.

Continuous prior formats are provided by a number of systems, though the present study focuses on

mixtures of Gaussian components due to the flexibility of such a representation, allowing for emulation

of other continuous distributions. In a Gaussian mixture, observations are grouped together based on

similarity to form a set of subgroups, each described by a Gaussian distribution, which can then be

combined into a single prior (Rosseel, 2002; Vanpaemel & Storms, 2008; Anderson, 1991); these have

been previously used within Bayesian models of continuous estimation (e.g. Acerbi et al., 2014),

providing some basis for their use as a continuous candidate in the present contrast. Such a prior holds

the advantage of flexibility, being able to adjust the number of components used in the representation

to best suit observed data patterns rather than using a predefined component structure; the mixture

therefore offers a richer representation than parametric prior formats, able to capture more complex

structures that would not be possible with a single Gaussian distribution. This flexibility has led to the

application of Gaussian mixture priors to discrete estimates in spite of their continuous format; one

demonstration of this is provided by Gershman and Niv (2013), in which a Gaussian mixture prior was

used to model the merging of distinct categories of discrete stimuli where these categories shared similar

statistical features. In this case, the Gaussian mixture is suggested to allow for simplifications of the
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final representation due to a prior preference for fewer components in the distribution; this could then

indicate that discrete estimates may benefit from the use of a Gaussian mixture prior in terms of

cognitive economy or greater generalisability. Both continuous and discrete estimates could then make

use of a common underlying estimation system which is able to adapt to the needs of the task to provide

the most valuable representation, considering both the accuracy and simplicity of the resulting form.

Discrete prior formats, conversely, are provided by distributions such as the categorical prior, which

can be used to record the appearance rate of each observed value, relying more on memory for past

observations than an inferred statistical distribution. As with the Gaussian mixture above, such a prior

offers substantial flexibility, being able to discover structure in the data instead of relying on a

predefined component format. Such a prior may though be better suited to numeric estimates given its

greater correspondence to the discrete nature of stimuli and responses; learners could then use this prior

under the assumption that this structure is more appropriate to the nature of the task. This would,

however, potentially lead to differences in behaviour according to the differing world models implicitly

assumed by these prior structures. To illustrate, consider the above application of simplicity according

to component count from Gershman and Niv (2013) to both the Gaussian mixture and categorical

priors: in the case of the Gaussian mixture prior, a preference for fewer components is assumed to lead

to the merging of subgroups where possible, leading to a smaller number of broader, more varied

components. Categorical components, conversely, are discrete tallies of identical value observations and

cannot be broadened in this way, meaning a reduction in the number of components would instead

reduce the number of values considered in the distribution. The same fundamental principle therefore

leads to widely different outcomes for these two structures, with the Gaussian mixture prior considering

more values in its final posterior and the categorical prior considering fewer, demonstrating the impact

of this representational format on actual estimations. To return to the previous example of counting

people in a room, simplicity in the discrete case means restricting responses to a limited set of answers

(e.g. low/medium/high or nearest 10), while in the continuous case, responses could focus on a single

mean value, but with what could be substantial departures.

It is therefore necessary to examine the prior structures used in numerical estimation to determine

whether this process relies on specialised discrete formats suiting the discrete nature of this task or

more general continuous forms that can be shared with other stimuli. This has in fact been previously

investigated in a study by Sanborn and Beierholm (2016) in which participants performed a dot

numeration task using an underlying bimodal distribution (illustrated in Figure 1a). In this task,

participants were asked to estimate the number of dots appearing on-screen, with responses being

followed by direct feedback noting the true dot count, making both participant responses and task

feedback discrete and definitive, so providing clear evidence of a discrete task structure. Behaviour in

the experiment was then compared with Bayesian models of estimation using differing definitions of
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individual model elements, including a contrast between continuous and discrete prior formats using a

categorical prior and a kernel density estimate. Results from this study found behaviour was better

described by the categorical prior than the kernel density estimate, suggesting that participants were

using a discrete prior structure in line with the discrete nature of the task.

The findings of Sanborn and Beierholm (2016) therefore indicate that discrete estimation makes use

of similarly discrete elements in order to assist in constructing more precise mental representations.

There is one caveat to this finding, however: while model comparisons did suggest participant behaviour

was most likely to be based on the use of discrete structures, this result could also be produced by a

mixture of continuous components under certain circumstances. This is due to the previously noted

flexibility of the Gaussian mixture prior: by grouping similar values together, the Gaussian mixture is

able to adjust the variance of its components to suit the observed data, allowing for both broad, highly

varied clusters and narrow, focussed clusters. Such narrow clusters could then essentially emulate the

components of a categorical prior in which all members are identical, making the component variance

zero. This concern is in fact raised in the third experiment of Sanborn and Beierholm (2016), noting

that such a complex Gaussian mixture could capture the true categorical structures: a mixture prior

using narrow components at the modes of the distribution and a broader component across the

midrange offers a reasonable approximation of the true bimodal form (illustrated in Figure 1b). While

that experiment did attempt to control for this possibility by using a quadrimodal distribution where

such emulation is less precise, this only excluded a narrow set of mixture forms, while more complex

structures are still possible. As such, the results of Sanborn and Beierholm (2016) can be explained in

two different ways, with different implications: participants may have been using a more precise discrete

prior in accordance with the discrete nature of the task, or a more flexible Gaussian mixture prior in

line with that used for continuous estimates.

It is therefore necessary to distinguish between these explanations in order to determine whether

discrete estimations do indeed rely on discrete structures, or whether this was simply emulated by an

otherwise continuous representation. As such, the present study aimed to perform a comparison

between Bayesian estimation models using either a categorical or Gaussian mixture prior in a

comparable estimation task; this builds on the results of Sanborn and Beierholm (2016) by examining a

full continuous mixture model rather than one possible form of this prior for a more complete contrast

of these formats.

While such a comparison provides a quantitative indication as to the underlying processes of

numerical estimation, we also sought to supplement this contrast with a more qualitative investigation;

this was intended to provide both a second method of distinction between prior formats as well as a

demonstration of their opposing implications for actual behaviour. This distinction therefore drew on

the previously noted differences between prior formats when applying principles of simplicity: while
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Figure 1: Comparison of the categorical (a) and Gaussian mixture (b) priors applied to the bimodal
distribution of Sanborn and Beierholm (2016). Here, the categorical matches the true distribution, and the
Gaussian mixture provides an approximation, with the black lines reflecting the individual distributions
of each cluster. The lower figures demonstrate the proposed simplifications of these representations via
reduced component count, leading to fewer potential response values in the categorical (c), but greater
bleed-over in the Gaussian mixture (d).

both priors are likely to prefer a lower number of components to simplify the final distribution, this

takes two different forms according to the structure of these components, with the Gaussian mixture

prior preferring to group more observations together to produce broader components, and the

categorical prior limiting the number of values considered in the distribution to only a few key values.

It should then be possible to reveal which of these priors is used in this task by encouraging a reduction

in components and observing which of these two reactions is displayed: the Gaussian mixture prior

should move towards broader components, thereby covering more potential values and so allowing for

more varied responses, while the categorical prior should focus on fewer potential responses, most likely
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limiting a bimodal such as that used in Sanborn and Beierholm (2016) to only the modes of the

distribution, essentially turning the task into a high/low classification problem (illustrated in Figure 1c

and d). This could be achieved by introducing uncertainty to the existing design of Sanborn and

Beierholm (2016); if the true value of an observation is uncertain, both structures are likely to rely more

on their current priors than this new data, encouraging the assignment of that observation to an

existing component rather than assuming the presence of a new component.

It should then be possible to identify whether learners are using a truly discrete categorical prior or

a continuous Gaussian mixture prior in this case by introducing uncertainty to the dot numeration task

of Sanborn and Beierholm (2016) and observing its effect on behaviour. The best method to achieve

this is to cause doubt in the feedback given during the task whilst still providing the true value of the

observation: if participants were made to distrust the feedback, for example by stating that this

information was accurate in only a subset of trials, participants would no longer be able to rely on the

definitive values offered in the original design even where this information was in fact accurate, likely

leading to more confusion between actual values based on perceptual data. This allows for the addition

of uncertainty to the task without changing any of the specific elements of the stimuli or feedback,

instead manipulating uncertainty through instruction alone. What is more, such a manipulation

represents a fairly valid scenario; real-world feedback is not always as reliable as that used in laboratory

studies, potentially being noisy or vague, or originating from an untrustworthy source. In addition, this

design also provides a simple method of manipulating the degree of uncertainty according to the

apparent accuracy rate of feedback, allowing for an easy comparison between high and low levels of

uncertainty.

The following experiment therefore sought to investigate the processes underlying numerical

estimation by adding such an instructional feedback uncertainty manipulation to a numerical judgement

task in which participants were trained on a complex distribution through experience. This then

provides a contrast of the competing hypotheses of the two potential formats introduced above: if

participants are using a categorical prior, responses should be more polarised where feedback is less

reliable, focussing mainly on the modes of the distribution. In contrast, if participants are using a

Gaussian mixture prior, responses should be more spread out in this case, leading to more midrange

and out-of-range responses. This also provided behavioural data for comparison with computational

models of the task following these formats for a quantitative suggestion of the underlying process.
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2 Experiment 1

2.1 Method

2.1.1 Participants

Forty University of Warwick students were recruited as participants in the experiment from the

university’s online SONA system in return for £8 in payment. The sample included twenty-five females

and fifteen males, while age ranged between 18 and 39 years, with a mean of 22.4.

2.1.2 Design

The experiment used an edited form of the dot estimation task of Sanborn and Beierholm (2016) in

which participants were trained on an underlying distribution of dot values through an extensive series

of estimation trials: in each trial, a number of dots appeared on the screen for 400 milliseconds, and

participants were asked how many they believed had appeared. Dot counts were sampled from a

bimodal distribution, ranging between 23 and 32 dots, with modes at the extremes of the range

(illustrated in Figure 1a).

After giving each estimate, a feedback slide appeared noting both the participant’s response as well

as the true dot count from that trial. In order to induce uncertainty in the feedback, a cover story was

used in which the true dot count was given to participants, but presented as a response given by a

previous participant for that trial, with the level of uncertainty being manipulated according to the

previous participant’s reported accuracy rate across all estimation trials. The experiment therefore

made use of a between-subjects uncertainty manipulation, using two uncertainty conditions: a

high-uncertainty condition, in which the previous participant was stated to be accurate in 70% of trials,

and a low-uncertainty condition, in which the accuracy rate was stated to be 95%. This rate was noted

on every feedback slide to ensure participants were aware of uncertainty information. Note that while

feedback was framed as a response from a previous participant, the stated value was always the true dot

count from that trial, providing equivalent information across both conditions.

A discrimination task was also used in the experiment to assess the participant’s discrimination

ability for use as a parameter in later analysis. In the discrimination task, two sets of dots appeared

sequentially on screen, and participants were asked which set (1 or 2) they believed to contain more

dots. This was then followed by a feedback slide noting whether the response was correct or incorrect;

this was not however affected by the uncertainty manipulation applied to feedback in the estimation

task, being definitively accurate in all trials.

9



2.1.3 Procedure

Upon arriving at the lab, participants were first randomly assigned to one of the two uncertainty

conditions, determining the reported rate of accuracy in feedback values. This was balanced to provide

equal numbers of participants in each condition, meaning 20 participants were assigned to the

high-uncertainty (70%) condition and 20 participants were assigned to the low-uncertainty (95%)

condition.

Participants were told the experiment examined how decisions were made under uncertainty, and

would involve estimating the number of dots appearing on screen. Participants first performed a set of

128 discrimination trials to assess their initial discrimination ability; this began with a series of 4

practice trials at low dot counts (1-4) to introduce the task.

After this first discrimination block was completed, participants then moved to the estimation task,

again beginning with a set of 3 practice trials at low dot counts to introduce the task. Participants

performed 500 total estimation trials, with breaks every 50 trials.

Once all estimation trials were completed, participants then performed another round of 128

discrimination trials to track any improvement in discrimination ability. Finally, participants were

debriefed as to the aims and expectations of the study.

2.2 Results

Data from one participant was removed from analysis for failing to provide any responses within the

presented dot range, leaving 39 subjects for comparison, with 19 in the 70% condition and 20 in the

95% condition. Responses further than 10 points outside of the displayed range were classified as

response errors and removed from analysis; this eliminated an average of 1.81% ([1.40%, 2.27%] 95%

confidence interval) of responses across participants.

Figure 2 shows average response rates for each presented dot value from the two uncertainty

conditions; both groups demonstrated reasonable acquisition of the bimodal structure, showing greater

preference for the modes of the distribution in their responses. Unshown values were however also used

as responses in both conditions, in keeping with the bleed-over predicted by the use of a continuous

prior.

The key empirical contrasts from Experiment 1 are summarised in Table 1. Analysis began by

contrasting the count of unique responses from the two conditions: this was found to be significantly

higher in the 70% group, t(37) = 2.06, p = .047, d = 0.69, with these participants using a wider range

of values in their answers. No significant difference was found between the 70% and 95% groups

however in either the number of responses from outside the dot range, t(37) = 1.51, p = .140, d = 0.51,

or the number of mid-range (non-mode) responses, t(37) = 0.54, p = .590, d = 0.18, though both were

found to be higher in the 70% condition.

10



Figure 2: Conditional response distributions from the 70% and 95% uncertainty conditions of Experiment
1, where square size is proportional to the percentage of responses made to each displayed value.

The data therefore provides some support for the predictions of the continuous mixture prior: while

participants in the high-uncertainty condition did not reliably offer a higher number of non-modal

responses compared to the low-uncertainty condition, these participants did use a wider range of values

in their responses, suggesting the use of a broader set of components when feedback was unreliable.

This then provides limited evidence that numeric estimates rely on continuous numerical formats

despite the discrete nature of stimuli and responses, utilising the inherent flexibility of such a system to

adapt the representation to best capture external data patterns. The lack of reliable differences in all

behavioural comparisons does however weaken this conclusion, meaning more substantial evidence is

required before this suggestion can be accepted.

In order to address this concern and provide more confidence in the above conclusion, we decided to

run a second experiment to further investigate this distinction using the same design but an alternate

underlying distribution intended to provide a clearer separation between the two models. This followed

the design of the third experiment of Sanborn and Beierholm (2016) in which a more complicated

quadrimodal distribution (illustrated in Figure 3) was used in place of the initial bimodal as a method

of further distinguishing between categorical and Gaussian mixture formats: such a distribution is more

difficult to emulate using a mixture of continuous components, making the two prior formats more

distinct. The use of such a distribution in the present study also provides a clearer separation in

empirical measures: the quadrimodal provides a set of values in the middle of the displayed range that

Condition 70% 95%
Unique response count 17.4 (15.8, 18.9) 15.3 (14.1, 16.5)

Out-of-range responses 54.1 (34.7, 75.4) 30.5 (13.4, 55.0)

Mid-range responses 268 (217, 316) 250 (207, 291)

Table 1: Mean measures with bootstrapped 95% confidence intervals from the two uncertainty conditions
of Experiment 1.
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are not used in feedback, but may benefit from bleed-over from the two nearby modes under a

continuous format. As such, if estimates in this task are in fact based on continuous prior structures,

the use of a quadrimodal distribution should offer a clearer demonstration of these effects in both

empirical and computational results.

3 Experiment 2

Experiment 2 replicated the dot counting design of Experiment 1 using a more complicated

quadrimodal distribution with the aim of providing a stronger contrast between the operation of the

discrete and continuous priors. As such, the hypotheses of this experiment were identical to the first,

expecting a greater range of responses in the more uncertain condition under a continuous system and a

smaller number of responses under a discrete system, though the design was expected to be more

diagnostic in separating these hypotheses in this case. In addition, this task also used a larger sample

size to provide more statistical power given the reasonably weak findings of the first experiment.

3.1 Method

3.1.1 Participants

Sixty University of Warwick students were recruited as participants in the experiment from the

university’s online SONA system in return for £6 in payment. The sample included 36 females and 24

males, while age ranged between 18 and 39 years, with a mean of 22.5.

Figure 3: The quadrimodal distribution used in Experiment 2.
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3.1.2 Design

The design of Experiment 2 was identical to that of Experiment 1 with the exception of the underlying

distribution: in place of the bimodal distribution, a quadrimodal distribution was used (illustrated in

Figure 3).

3.1.3 Procedure

Experiment 2 used the same procedure as Experiment 1. Assignment to uncertainty conditions was

again randomised and controlled to provide equal numbers in each group, meaning 30 participants were

assigned to the 70% condition and 30 to the 95% condition.

3.2 Results

Data from Experiment 2 was analysed using the same procedure as Experiment 1, including the same

exclusion criteria; while no participants were entirely removed from analysis in this task, an average of

2.33% ([1.71%, 3.10%] 95% confidence interval) of responses across participants fell more than 10 points

outside of the displayed range, and so were classified as response errors and eliminated from subsequent

comparisons.

Figure 4 shows average response rates for each displayed dot value from the two uncertainty

conditions in Experiment 2; as with the previous experiment, both groups demonstrated reasonable

acquisition of the true quadrimodal structure, again showing greater preferences for the modes of the

distribution. As in Experiment 1, however, participants in both conditions did also use unseen values in

their responses, in this case including the unused values from the midrange of the distribution, again

suggesting bleed-over in both groups.

Figure 4: Conditional response distributions from the 70% and 95% uncertainty conditions of Experiment
2, where square size is proportional to the percentage of responses made to each displayed value.
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Condition 70% 95%
Unique response count 17.0 (15.6, 18.5) 14.7 (13.2, 16.1)

Out-of-range responses 66.3 (44.9, 90.4) 56.2 (31.4, 87.7)

Mid-range responses 69.2 (47.4, 92.7) 55.6 (32.7, 81.1)

Table 2: Mean measures with bootstrapped 95% confidence intervals from the two uncertainty conditions
of Experiment 2.

Comparisons from the second experiment are summarised in Table 2. As in Experiment 1, the

count of unique responses was found to be significantly higher in the 70% condition, t(58) = 2.21, p =

.031, d = 0.59, showing a greater range in the more uncertain condition. Once again, however, no

significant difference was found between the 70% and 95% groups in either the number of out-of-range

responses, t(58) = 0.53, p = .600, d = 0.14, or the number of mid-range (zero-probability) responses,

t(58) = 0.80, p = .425, d = 0.21, though these were again both higher in the 70% group.

These results therefore correspond with the findings of the first experiment: participants in the

high-uncertainty condition used a wider range of values in their responses, but did not demonstrate a

reliable increase in the use of unshown values over those in the low-uncertainty condition. This again

provides limited evidence for the use of a continuous mixture prior, with components seemingly

becoming broader under uncertainty, thereby covering more potential values. However, while both

experiments may offer weak demonstrations of continuous effects in isolation, these results combine to

provide more substantial evidence, suggesting behaviour in these tasks was in fact based on the use of a

continuous numerical system.

The collected empirical data then provides a reasonable qualitative indication of the numeric format

underlying estimation based on a theoretical contrast of the behaviour of the two considered priors:

reactions to uncertainty better match the predictions of a continuous system than a discrete system. To

supplement these findings, however, behavioural data was next directly compared with computational

models of estimation for a quantitative assessment of the fit of both the continuous and discrete priors

to the collected data. This also allowed for an examination of general behavioural trends across all

participants beyond the distinction between the two uncertainty conditions of these empirical contrasts,

offering an alternate exploration of the processes underlying behaviour in these experiments.

4 The Uncertain Estimation Model

In order to investigate the underlying processes used in the experimental tasks, we developed a

perceptual estimation model which was able to use either a continuous or discrete prior format while

other model elements remained identical. This drew on existing clustering models in which observations

are assigned to subgroups based on similarities in features as well as subgroup size, most notably the

Rational Model of Categorisation (RMC) by Anderson (1991) which uses Bayes’ rule to approximate
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the ideal partition of items. As noted in the introduction above, these methods are valuable for their

substantial level of flexibility: clustering methods are able to discover patterns in observed data rather

than beginning with a pre-set component structure, allowing for much richer representations than

parametric alternatives. This is particularly relevant to the present study as pre-defined component

structures are unlikely to be able to capture the complexity of distributions such as those trained in

these experiments: individual Gaussians cannot adequately match such multimodal structures, while

discrete formats require pre-defined ranges that may not be appropriate to all tasks. This flexibility has

allowed the application of such systems in previous studies of numerosity (Gershman & Niv, 2013), as

well as other topics such as language comprehension (Goldwater, Griffiths, & Johnson, 2009) and causal

reasoning (Buchsbaum, Griffiths, Plunkett, Gopnik, & Baldwin, 2015).

The present model therefore considers potential assignments of observations to subgroups based on

perceptual data, trial feedback and prior experience in the task, creating a set of clusters which can be

aggregated to provide a representation of the true external distribution. The format of these clusters

however is dependent on the utilised prior, here limited to the previously noted categorical and

Gaussian mixture priors to contrast discrete and continuous numerical structures. The model is

therefore nearly identical to the definitions of the RMC given by Anderson (1991) for discrete and

continuous dimensions, here adapted to infer a physical feature for a set of cluster members rather than

a category label. It is also notable that the present discrete mixture construction is equivalent to a

Dirichlet distribution, as detailed further in Appendix A.6. This model was named the ‘Uncertain

Estimation Model’, or UEM; the following section provides a non-technical description of the operation

of this model, while full definitions are available in Appendix A.1.

With each observation, the UEM must determine how to partition the observed items into clusters,

calculating the probability of both which cluster each observation will be placed in, and what value that

observation will hold. This breaks down into four parts, the combination of which determines this

probability: 1. the fit of the perceptual stimulus to each considered value; 2. the fit of the feedback

data to each value; 3. the fit of each value to each potential cluster; and 4. the probability of each

cluster given its size.

The first of these elements reflects the probability of each potential value producing the observed

perceptual stimulus, providing a measure of support for that value from external data; for this purpose,

the model uses a lognormal distribution around the displayed value, with variance based on the

perceptual precision of the observer.

Similarly, the second element reflects the probability of each potential value producing the given

feedback figure, treating feedback information as a perceptual feature of the trial rather than a

definitive label. This then allows the model to account for unreliable feedback, assessing the fit of this

information to the considered value rather than accepting it as definitive information; for this purpose,
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the model uses a parameter to reflect the assumed accuracy of the observed feedback figure, with other

values dividing the remaining probability. This then means that when feedback is thought to be less

reliable, this distribution becomes more uniform, leading to greater reliance on the current prior; as

such, observations are more likely to be added to existing clusters than creating new clusters, leading to

fewer components overall. Given the supposed social origin of this information, however, this

distribution also includes a lognormal noise function around the feedback figure to provide greater

support to nearby values; this represents the separate perceptual distribution of the ‘past participant’

from which feedback is reportedly taken.

The third element then measures the probability of each potential value appearing in each cluster

given its membership at that point, as well as a potential new cluster without any members,

independent of perceptual or feedback information from that trial. This then introduces the distinction

between the previously noted continuous and discrete prior formats: clusters in the categorical prior

may contain only one value, meaning any future members must hold the same value as its present

members. In contrast, clusters in the Gaussian mixture prior may hold differing values if sufficiently

similar, allowing for more variation in future members. The UEM is therefore divided into two subforms

according to this difference in cluster format: the discrete UEM (dUEM) and the continuous UEM

(cUEM). This also means that the two formats hold distinct hyperpriors, with the continuous cluster

format using additional parameters to allow for variation in component width; full detail on the

definition of these hyperpriors is given in Appendix A.2.

Finally, the fourth element weights each potential cluster by the size of its membership using a

Chinese Restaurant Process (Aldous, 1985; Pitman, 2002) with the inclusion of an additional free

parameter to bias the partition towards either large or small clusters.

The combination of these four elements then provides a distribution which defines the probability of

both the value and cluster assignment for each observation. These potential partitions can then be

aggregated to give a representation of the true external distribution, allowing for predictions of the

likelihood of similar values in future trials. The distributions shown in Figure 1 show an idealised form

of this process: in the discrete case, each potential value has a separate component, with the resulting

distribution reflecting the proportion of trials assigned to that component as any future members must

hold the same value. In the continuous case, future component members may vary in accordance with

the variation seen in current members, leading to a wider spread in the centre of the range, but

narrower spreads at the modes. Alternatively, by removing the feedback element from this aggregate,

the UEM is able to produce a distribution which describes the probability of a response to a particular

perceptual stimulus before receiving feedback, matching with the above experimental procedure and so

allowing for direct comparison between model predictions and observed behaviour.

To illustrate the predictions of the models, Figure 5 shows the conditional response distributions of

16



Figure 5: Simulated conditional response distributions from the dUEM and cUEM where all parameters
are fixed except for assumed feedback accuracy; the top figures assume accuracy is absolutely correct,
while the lower figures assume accuracy is 70% correct.

the two models changing only the assumed accuracy of feedback, each averaged across 10 simulations of

the task from Experiment 11. These distributions were used to calculate similar measures to those used

in the above experimental comparisons: the probabilities of mid-range and out-of-range responses were

summed to provide a predicted non-modal response probability, while the response distributions for

each trial were used to sample simulated responses to estimate likely unique response counts. In keeping

with the hypotheses presented above, non-modal responses become less likely for the dUEM (p = 0.09

vs. 0.18) but more likely for the cUEM (p = 0.50 vs. 0.41) where feedback is less reliable; the cUEM

therefore predicts a higher count of unique responses (18.2 vs. 17.5), whereas the dUEM predicts a

lower count (11.2 vs. 11.8), being more likely to rely on the modes of the distribution.

1Parameters for this simulation were: c = 0.7, e = 1, wb = 0.01.
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4.1 Model Comparison

The discrete and continuous forms of the UEM were compared with the experimental data from both

Experiments 1 and 2 using a grid point search across the four parameters shared by the two models.

Parameters unique to the cUEM were fixed at predetermined values to make the search

computationally tractable, though due to limited manual adjustments to decide these values on a subset

of the data, these were treated as manipulated. As such, the dUEM was defined as having four free

parameters, and the cUEM was defined as having six. In addition, due to stochasticity in the clustering

process of both models, each grid point was repeated 10 times to produce an average likelihood estimate

for that set of parameters. Full details of this procedure are given in Appendix A.2.

Both models were fit to each participant individually to provide maximum likelihood values for each

model for each participant, which were then converted to Akaike information criterion (AIC, Akaike,

1974) and Bayesian information criterion (BIC, Schwarz, 1978) values for further comparison due to the

differing number of parameters between the models. These measures both provide an adjusted measure

of model fit controlling for model complexity, with lower values indicating a better fit. For ease of

presentation, the following analysis focuses primarily on BIC scores as the more conservative measure,

with AIC results being noted where these scores suggest a qualitative difference in outcome, while full

AIC results are listed in Appendix A.3. Both measures were also used to calculate weights for the given

comparison between the cUEM and dUEM, providing an estimate of the posterior probability of each

model assuming equal priors (Wagenmakers & Farrell, 2004). To provide a measure of the variation in

likelihood estimates arising from model stochasticity, bootstrapped 95% confidence intervals were

calculated for the key model measures by resampling the obtained likelihoods at each grid point to

provide new average likelihood estimates and recalculating maximum likelihood, AIC and BIC values

for each participant; this was repeated for 10000 iterations, with intervals being taken from the

quantiles of these distributions. This also allows for confidence intervals on the number of participants

best fit by each model, as reported below.

The grid point structure allows for both global and individual fitting, either aggregating likelihoods

across participants at each grid point assuming a common set of parameters within each experiment, or

calculating a maximum likelihood score for each participant assuming differences in parameters and

then aggregating the resulting BIC scores. Both AIC and BIC measures from both experiments do

however show fits are substantially better when using individual parameters; as such, the remainder of

the comparison uses aggregates of individual best fits, with global fits being listed in Appendix A.3.

Figure 6 shows the aggregated conditional distributions from the best fitting parameters for

Experiment 1, while full quantitative results are given in Table 3. Across all participants, the cUEM

had a better fit to the data by summed BIC scores than the dUEM. On an individual basis, a large

majority of participants were better fit individually by the cUEM (33 [30-36 95% CI]), with a small
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Figure 6: Averaged conditional response distributions from the maximum likelihood estimates of the
discrete and continuous models in Experiment 1, separated by uncertainty condition, including empirical
data for comparison.

proportion being better fit by the dUEM (6 [3-9]). When separated by uncertainty condition, the cUEM

provided a better fit to both groups, accounting for 15 (14-18) of the 19 participants in the 70% group

and 18 (16-19) of the 20 participants in the 95% group. To investigate the suggestion that behaviour

appears more discrete where feedback is more reliable as this is where continuous components are best

able to emulate discrete structures, a chi-squared test compared the ratio of participants best fit by the

Experiment Comparison Best Model ∆MLL ∆AIC w(AIC) ∆BIC w(BIC)

Experiment 1
Individual cUEM 1855

(2161, 1691)
-3554

(-3225, -4166)
1 -3225

(-2897, -3837)
1

70% cUEM 1109
(1352, 953)

-2358
(-1830, -2627)

1 -1980
(-1669, -2467)

1

95% cUEM 746
(906, 658)

-1413
(-1235, -1731)

1 -1244
(-1067, -1562)

1

Experiment 2

Individual cUEM 2677
(3085, 2480)

-5115
(-4720, -5930)

1 -4609
(-4214, -5425)

1

70% cUEM 1389
(1670, 1254)

-2658
(-2388, -3220)

1 -2405
(-2135, -2967)

1

95% cUEM 1289
(1537, 1102)

-2457
(-2085, -2953)

1 -2205
(-1832, -2700)

1

Table 3: Modelling results from Experiments 1 and 2, reporting the best fitting model for each comparison
between the discrete and continuous models and the margin of this advantage in summed maximum log
likelihood across participants for that model (MLL), AIC and BIC scores. w(AIC) and w(BIC) are
the weight of the AIC and BIC scores respectively for the given comparison, while brackets provide
bootstrapped 95% CIs, omitted for weight measures as these are 1 in all cases.
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Figure 7: Averaged conditional response distributions from the maximum likelihood estimates of the
discrete and continuous models in Experiment 2, separated by uncertainty condition, including empirical
data for comparison.

two models between uncertainty conditions, finding no significant difference, χ2(1) = 0.26, p = .608.

AIC scores offer almost identical qualitative results, both in the fit of the models across participants

and the proportions best fit by each model, though margins between AIC scores demonstrate a stronger

support for the cUEM, showing greater differences across all comparisons. Such results are attributable

to the reduced cost of complexity in AIC scores, more closely reflecting the difference in raw likelihood

despite the different parameter counts of the two models. This is notable given that the current

comparisons did not take full advantage of the greater complexity of the cUEM, as the additional

parameters of this model were in fact fixed across the comparison, but were treated as variable given

the initial manual manipulations of variance and confidence to allow for narrower components. This

does however mean that the cUEM performed better even under the harsher complexity costs of the

BIC measures, providing further support for this prior.

Model fitting results from Experiment 2 are illustrated in Figure 7, while quantitative measures are

listed in Table 3. As with the first experiment, the cUEM displayed an advantage in the number of

participants best fit by each of the models, accounting for 47 (44-51) of the 60 participants; this is

further displayed in the summed BIC scores, which again show the cUEM had a better overall fit to the

data. Separated by group, summed BIC scores again found the cUEM to have a better fit in both

conditions, accounting for 25 (23-27) of the 30 participants in the 70% condition, and 22 (20-25) of the

30 participants in the 95% condition. As with the first experiment, the difference in model ratios
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between the two groups was found to be non-significant, χ2(1) = 0.39, p = .531.

AIC scores meanwhile again show almost identical results, though with slight differences in the

ratios of participants best fit by each model, again seemingly showing greater support for the cUEM

where the penalty for complexity is less severe.

Results from both model comparisons therefore suggest that a Gaussian mixture prior was more

likely to be used in their respective tasks than a categorical prior, so supporting the apparent

continuous effects observed in the empirical contrasts. These comparisons then correspond with the

above empirical findings: while behavioural data in both experiments demonstrates qualitative evidence

of a continuous representation of past numeric experience, this is now reinforced quantitatively by

model fitting, providing greater confidence in this conclusion. This highlights the difference between the

empirical and computational comparisons used here: while empirical contrasts focus on the differences

in behaviour between the two uncertainty conditions, which may be limited in scope, the model

comparison is able to examine wider behavioural patterns across all participants, identifying a trend

towards continuous behaviour common to both groups.

This conclusion does however rely on the assumption that all participants use a common model,

which may be questionable given the division between model fits observed at the individual level: a

number of participants in both tasks were better fit individually by the dUEM, suggesting the

continuous model does not provide the better description for all participants. As such, while the

continuous prior offers a strong fit across behaviour collectively, this may not be a truly universal

system, with potential individual differences in prior format between participants. To further examine

these differences, an additional model selection analysis was performed following the procedure outlined

by Stephan, Penny, Daunizeau, Moran, and Friston (2009) and Rigoux, Stephan, Friston, and

Daunizeau (2014). This analysis treats the model as a random effect between subjects following an

underlying distribution across the population, providing estimates of both the broader frequency of each

model, and the ‘protected exceedance probability’ that a given model accounts for a greater proportion

of subjects than other candidates. Again, bootstrapping was used to provide 95% confidence intervals

on these measures to account for stochasticity in the model fits. Results from this analysis corresponded

with the division found between model fits at the individual level reported above: estimated model

proportions were higher for the cUEM (0.826 [0.785-0.872]) than the dUEM (0.174 [0.129-0.215]), while

the protected exceedance probability of the continuous model was extremely high (p > .999 in all

cases), suggesting the continuous model was significantly more common in the participant sample. This

further reinforces the suggestion that the use of continuous numerical formats is dominant within our

sample, though a minority may instead use a discrete system.

There is however an important caveat to the above results: the stochastic clustering processes used

by both models introduce substantial variation in likelihood estimates even with identical parameter
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values, as repeated simulations can produce different predicted partitions of observations, and therefore

different response distributions. This is partially demonstrated by the sizeable confidence intervals for

the model fitting measures reported above, but can be observed directly in the standard deviation in

likelihood at the best fitting points from the above exercise: average standard deviation across all

participants was 199.86 for the dUEM and 213.36 for the cUEM. As such, any individual fits from this

comparison should be taken with caution, as current likelihood values may not allow sufficient precision

to characterise the methods used by specific learners. Even so, the results do provide reasonable

confidence in the reported group-level effects, with the continuous model providing the better fit to the

participant sample on aggregate by a wide margin.

It should also be noted that these results focus purely on a direct contrast of the two candidate

models rather than the absolute fit of these models to the data; while one model might outperform

another in relative terms, this does not reveal whether either model offers an accurate account of

behaviour more generally. To provide a measure of absolute model fit, correlations were calculated

between the conditional response distributions of each participant and those generated from the

maximum likelihood estimate of each model to that participant’s data, illustrated in Figures 6 and 7.

These correlations showed moderate results (mean R2: dUEM = 0.434; cUEM = 0.453), suggesting that

these models alone may not provide a complete account of behaviour in these tasks. This is displayed

visually in Figures 6 and 7: both models do capture the preference for the modes of the respective

distributions in responses, but also seem to make greater use of mid-range values than was

demonstrated by participants. The present models may then require further development to fully

capture the process of human estimation; even so, these definitions should satisfy the comparison of

continuous and discrete numerical formats which remains the main focus of this study. It is also notable

that these measures show a higher average fit for the continuous model than the discrete model,

supporting the results of the direct model comparison, though this is a less sensitive measure of relative

fit than the BIC values used above.

Finally, as an additional test of the discriminability of the two models, a model recovery exercise

was performed in which sets of simulated responses were generated from each model and then fit by the

two candidate models to examine whether the fitting procedure is able to accurately identify the true

generating process. 100 sets of simulated data were generated for each of the two models using the best

fitting parameters found for the 100 collected participants from Experiments 1 and 2 in the above

model comparison. The models were then fit to the simulated data using the same procedure as the

participant data, as detailed in Appendix A.2, determining the best fitting model for each simulated

subject. Model recovery rates were then calculated by taking the proportion of simulated subjects

created for each model that were best fit by their respective generating model; these rates were

reasonably high for both models, though slightly higher for the continuous system (dUEM: 0.79; cUEM:
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0.87). This suggests the models are fairly discriminable, though as previously suggested, the continuous

model may be better able to mimic the discrete model than vice versa, seemingly being able to

accurately capture data generated through discrete systems. It should be noted however that these

recovery rates are based on data directly generated by the candidate models, whereas discriminability

based on actual participant data is less certain, as discussed above.

5 Discussion

The above sections provide evidence from two experiments of a continuous numerical system underlying

discrete estimates which reacts to uncertainty by simplifying the held representation according to

rational categorisation principles: in both tasks, responses became more varied when feedback was less

reliable, indicating a broadening of Gaussian components. This is further supported by comparisons

with computational models of estimation: in both experiments, behaviour was better fit by a Gaussian

mixture prior over a discrete mixture prior in both the number of participants accounted for and

aggregated measures of fit, providing a second source of evidence for the use of a continuous prior

format. This conclusion is not completely definitive, however: empirical data do not show reliable

continuous effects in all measures, while noise in computational data adds ambiguity to individual-level

fits. Even so, these results do indicate a common tendency towards the use of continuous numerical

formats at the aggregate level, finding greater support for continuous effects across subjects even in a

scenario in which targets, responses and feedback were all discrete.

Such findings offer an interesting contrast with the findings of Sanborn and Beierholm (2016), where

a large majority of participants were better fit by discrete systems. While this could be attributable to

a difference between the participant samples used in these studies, this may instead demonstrate the

benefit of fitting full continuous mixture models to behaviour: these direct comparisons offer a more

sensitive analysis of behaviour, potentially revealing that continuous systems are more common than

such results would suggest. This follows the suggested emulation of discrete structures by continuous

systems described in the introduction to this study: learners may be able to acquire complex

multimodal distributions through the use of a highly flexible continuous numerical system able to

emulate such detailed structures. This then allows for the appearance of the use of discrete numerical

formats in such tasks despite actually being based in continuous systems, offering a new framing of the

results of Sanborn and Beierholm (2016): the apparent use of discrete priors in that study may in fact

be the result of a continuous system emulating the narrower component format of a truly discrete

distribution. This may be attributable to aspects of the design of that study which facilitated such

emulation: for example, the range of values displayed in the task was reasonably small in comparison to

other studies (e.g. Gershman & Niv, 2013), potentially encouraging the use of a set of narrow
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components to provide better discrimination. Alternatively, the use of definitive rather than unreliable

feedback may have avoided potential noise in value assignment which could broaden components:

without any reason to believe feedback is inaccurate, participants may have been able to further narrow

their components for a closer emulation of discrete structures. Further work will therefore be required

to fully investigate the prevalence of these systems across learners, and whether the continuous

preference observed here is similarly displayed in other tasks and populations.

These findings do however correspond with the suggestions from previous research noted in the

introduction to this study that learners have both a continuous approximate number system and a

discrete symbolic number system available to them when constructing numerical representations

through experience (Dehaene, 2011). The present results then offer an interesting display of the use of

continuous systems even in discrete numerosity judgements: use of a continuous numerical format

appears dominant in the present task despite stimuli, responses and feedback all being discrete. This in

fact corresponds with previous numerical research in which numbers often appear to be considered

within a continuous format: even when presented symbolically, behaviour seems to suggest numerical

values are treated continuously, showing greater confusion between similar values (Moyer & Landauer,

1967; Spelke & Tsivkin, 2001; Dehaene & Marques, 2002). The present study may then further

contribute to the suggestion that learners often rely on approximate number systems when dealing with

numerical values, translating the output of such systems into discrete figures when required (Izard &

Dehaene, 2008). This links to the concept of ‘number sense’ (Dehaene, 2011), an innate understanding

of numerosity displayed independently of the standard symbolic numerical system, as evidenced by its

use by not just adult learners, but also infants (McCrink & Wynn, 2004) and animals (Flombaum,

Junge, & Hauser, 2005; Ditz & Nieder, 2016).

The apparent use of continuous structures across numerical tasks may then reflect a common

preference for this number sense, utilising a more fundamental numerical system where possible and

converting this to symbolic formats as needed rather than directly working in a purely symbolic format

learned in later life. What is more, the current results demonstrate that despite being a more primitive

system, these structures can still enable efficient learning under the right circumstances: within the

framework of a rational clustering process, continuous structures can be used to represent reasonably

complex distributions, particularly where their inherent flexibility can be exploited. This being said,

such a reliance on continuous numerical formats may not be universal, as a small subset of the

participants in these experiments were better fit by the discrete model. This could suggest that a

minority of learners do in fact prefer to use the symbolic number system to represent their experience

with discrete estimates, possibly due to its correspondence with task elements, or potentially for a

greater level of precision than is provided by the approximate system. As previously noted, however,

the level of noise in likelihood estimates in the present results introduces some doubt to individual
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model fits, preventing any firm conclusions regarding actual usage rates of these formats. This

reinforces the need for further testing on the prevalence of the use of these numerical systems, and

whether any observed differences are driven by individual preference or task demands.

It is also notable that the present findings indicate the use of a highly flexible estimation system in

which any formed representation and resulting behaviour are highly sensitive to the scenarios that

produce them. This applies to both the availability of two number systems, but also the flexibility of

these systems themselves: both the continuous and discrete prior formats are able to adjust their

structures to suit external data, though the continuous prior does have greater flexibility in this regard

given its ability to adjust the variance of its components. Such flexibility allows either system to acquire

more complex distributions such as those used in the present experiments: without such a

representation, learners would not be able to accurately capture such forms. This can in fact be

demonstrated by lesioning the present models to remove their respective priors, thereby basing decisions

solely on perceptual evidence; this generates a drop in estimated accuracy for both discrete (15.9% vs.

5.00%) and continuous (16.4% vs. 5.20%) formats, illustrating the benefits to learning provided by such

a system (more detail on this procedure is given in Appendix A.5). This flexibility also allows the

learner to account for uncertainty in the formed representation, further altering mental structures

according to noise in the environment such as the unreliable feedback of the present designs. In

addition, recent work has also suggested such systems could offer an advantage in terms of cognitive

economy, reducing complex distributions to sets of summary statistics for component clusters to aid

representation (Sun, Li, & Zhang, 2019). As such, these results help to demonstrate the power of a

rational system in this task, utilising both direct observations and background knowledge to build a

mental representation which accurately captures both external patterns and their surrounding context.

In addition to the format of numerical information, the present distinction between discrete and

continuous systems also demonstrates the impact of this structure on behaviour through the application

of simplicity: the two priors provide almost directly opposing reactions to uncertainty, with one

reducing the number of considered responses in order to simplify response selection, and one reducing

the number of response regions but allowing for more potential values. The use of these numerical

structures therefore carries distinct behavioural implications: use of a continuous system will likely lead

to greater reliance on prior expectations where feedback is judged to be unreliable, drawing estimates

towards previously expected values, but without necessarily disregarding such information. Returning

again to the example of counting people in a room, if the observer receives a potential count from

another individual that is viewed as unreliable, under a continuous format they are unlikely to store

that figure in memory, but may use a similar number that falls between the feedback figure and their

own prior expectations. In contrast, use of a discrete system may show more extreme behaviour,

potentially completely abandoning unreliable feedback in favour of prior expectations. Such a
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distinction is important given that real-world estimates are rarely followed by definitive feedback; even

where such information is provided, this can be vague, or from an untrustworthy source. This illustrates

the broader importance of understanding the form of our representations, as slight differences in

structure can have substantial effects on behaviour. As such, any interventions into such systems must

consider what structures people may hold in order to provide meaningful results; in the current case,

this applies primarily to methods that may encourage more accurate learning of real-world

distributions, though this concept applies to any action based on internal mental representations.

There are however some additional elements to consider regarding these conclusions, beginning with

the limitations of the present analysis: as noted above in the results of the model comparison, there is a

substantial amount of noise in the estimation of likelihoods for these models, leading to some doubt in

model fits for individual subjects. We have therefore focused here on broader group-level effects where

support for the continuous model is more assured rather than the relative prevalence of the two models

in this sample. Such individual differences in the use of numerical formats do however remain an

important consideration, requiring further testing to provide more definitive results. Moreover,

measures of absolute fit for the current models are fairly low, indicating neither the discrete nor

continuous model definitions used here offers a complete account of learning in this task. These

definitions were chosen to provide the clearest contrast of continuous and discrete numerical formats,

mirroring the pre-existing distinction between the approximate and symbolic systems given by past

research. Given the apparent limitations of these definitions, however, these models will require further

development if they are to account for actual behaviour. Future work is therefore clearly required in

order to fully understand the processes used in such estimation tasks, both expanding the present

models and proposing new potential systems for comparison with behaviour.

This also raises the possibility of considering further learning systems outside of the strict

dichotomy between continuous and discrete formats which was the focus of this study: alternate models

could in fact bridge these two formats, either switching between systems according to task demands or

mixing the two priors to form a hybrid distribution. Such a combination could result in a highly flexible

estimation system able to produce either of the behaviours associated with the individual priors

described here. This would however come at the cost of significant complexity, not only aggregating the

demands of both the priors considered in this study, but also requiring additional learning of the points

at which each prior is beneficial if this system is to be effective. Even so, these combinations do remain

an interesting possibility, and therefore may need to be considered in future work.

It should also be noted again that the present Bayesian models were used as descriptions of

behaviour to facilitate the comparison between discrete and continuous prior formats, and do not

necessarily reflect the processes used by actual learners when making numeric estimates. This also

places the current models at the computational level of analysis (Marr, 1982), offering high-level
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principles for behaviour rather than any specific algorithmic mechanism that may be used by actual

learners. Even so, BDT does remain a strong candidate for the true process: as previously noted, BDT

provides a better account for the use of prior information than theories such as calibration (Sanborn &

Beierholm, 2016), allowing for the acquisition of more complex distributions such as those used in the

present study. In addition, existing work has offered a number of algorithms which could support

Bayesian models such as these, most notably sampling methods (Gelman et al., 2013), which have been

found to accurately account for human biases in a number of tasks (Sanborn, Griffiths, & Navarro,

2010; Griffiths, Vul, & Sanborn, 2012; Sanborn & Chater, 2016). The current results are not however

able to definitively determine the validity of the considered Bayesian models, meaning these models

remain descriptions until more direct tests are performed.

Finally, one additional factor to consider in this study is the method by which uncertainty was

manipulated in this design: in order to create doubt in the task feedback, true values were presented as

answers given by a past participant, using that participant’s reported accuracy rate as a measure of

reliability. This therefore introduces a social information element to the task, as participants are made

to consider the method by which these feedback values are generated. This is particularly notable given

that previous research has found that learners may draw different inferences from observed data

according to its origin: beliefs may differ when examples are chosen by a teacher to illustrate an idea

(Shafto, Goodman, & Griffiths, 2014), or when samples are noted to be exclude certain results (Hayes,

Banner, & Navarro, 2017) compared to observation alone.

While the current task is unlikely to have encouraged these particular higher level inferences, the

origin of feedback remains a consideration when determining how participants interpret this information

during decision making: there are multiple potential methods of using feedback data with varying levels

of complexity, ranging from a reasonably simplistic correct/incorrect dichotomy to a full model of the

past participant’s decision process. For the purposes of simplifying model fitting, a reasonably basic

form of this process was used in both of the present models, using a single parameter to reflect the

probability of the feedback being accurate with surrounding noise; future work on this subject may

therefore wish to consider these alternate definitions in order to provide a more complete model of

behaviour. Alternatively, similar tasks could make use of non-social manipulations of uncertainty to

assess the impact of this factor on decision making.

5.1 Conclusion

The present study provides both empirical and computational evidence that discrete numeric estimates

are built on continuous mental structures, displayed here via reactions to uncertainty: learners react to

unreliable feedback by broadening their response regions, utilising the inherent flexibility of their

representation to account for noise in the environment. This demonstrates not just the systems used
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within numerical estimation, but also the impact of these systems on both the distributions learned

through this process as well as behaviour built on this representation. These findings are however

limited by uncertainty regarding potential differences in the use of these systems between individuals,

requiring further testing to determine the true prevalence of the use of continuous formats in the wider

population. We therefore hope that this study can provide a basis for further examination of the

mechanisms underlying numerical estimation, using additional experimental contrasts and more

advanced computational models to offer greater insight into these systems, and so the wider

representation of numerical information.
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A Appendices

A.1 Model Definition

The following provides the full definition of both the discrete and continuous forms of the Uncertain

Estimations Model. On each estimation trial, the model determines the probability of each potential

value in each potential cluster generating both the observed perceptual data and the given feedback

value across all possible partitions of past observations:

p(St|X1:t, F1:t) =
∑
S1:t−1

∑
Z1:t

p(St, S1:t−1, Zt, Z1:t−1|X1:t, F1:t) (1)

where t is the current trial, S1:t−1 is a vector containing the dot counts S1, S2, ..., St−1, Z1:t is a vector

containing the cluster indices Z1, Z2, ..., Zt, X1:t is a vector containing the perceptual data

X1, X2, ..., Xt and F1:t is a vector containing the feedback values F1, F2, ..., Ft. This can be broken down

to isolate the probability of the proposed value generating the observed perceptual and feedback data:

p(St|X1:t, F1:t) ∝∑
S1:t−1

∑
Z1:t

p(Xt|St)p(Ft|St)p(St|S1:t−1, Z1:t)p(Zt|Z1:t−1)p(S1:t−1, Z1:t−1|X1:t−1, F1:t−1)
(2)

This equation is composed of five elements to be calculated: first, p(Xt|St) notes the probability of

the observed perceptual stimulus given the potential value St, where Xt is an estimate of the perceptual

stimulus sampled from a lognormal distribution with mean equal to the logarithm of the true dot count

vt and fixed variance σ2
l based on assessment of the observer’s discrimination ability:

p(Xt|vt) = logN(ln(vt), σ
2
l ) (3)

This estimate is then compared with each considered value using a second lognormal distribution with

mean equal to the logarithm of the considered value and equal variance:

p(Xt|St) = logN(ln(St), σ
2
l ) (4)

Secondly, p(Ft|St) notes the probability of the feedback score given the proposed value, allowing for

the consideration of uncertainty in feedback information. For the purposes of simplicity, this uses a

single parameter to reflect the assumed reliability of trial feedback, with remaining probability being

spread uniformly over other potential values. Given the supposed social nature of feedback information,

however, there may be an assumption that even if inaccurate, the feedback figure should be close to the
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true value, meaning uniform noise may be invalid. To address this concern, a log-normal noise function

was added to the feedback distribution, corresponding with the perceptual distribution given in

Equation 4, before being renormalised:

p(Ft|St) =
cfδ(Ft − St) +

1−cf
nv−1 (1− δ(Ft − St)) + logN(ln(St), σ

2
l )

1 +
∑
logN(ln(St), σ2

l )
(5)

where cf is the feedback accuracy parameter, fixed across all trials, nv is the number of values

considered for St, and δ is a Dirac function comparing the proposed value St with the feedback value

Ft, being 1 where these values are equal and 0 elsewhere. This then assumes that the observer treats

the feedback figure as a sample from a perceptual distribution identical to their own, avoiding any

substantial modelling of the ‘past participant’.

Thirdly, p(St|S1:t−1, Z1:t) notes the probability of the proposed value given the partition suggested

by S1:t−1 and Z1:t−1 and the proposed cluster Zt. This term therefore introduces the distinction

between continuous and discrete structures, as this affects the generated partition.

A.1.1 Discrete Format

For the discrete form, a count of matching observations is used:

p(St|S1:t−1, Z1:t) =
ns
nz

(6)

where ns is the count of observations in cluster Zt with value St and nz is the total membership of

cluster Zt; this distribution therefore becomes binary for non-empty clusters due to the uniformity of

their membership, being 1 where St matches the value of these members and 0 elsewhere. For new

potential clusters without any members, this instead uses a uniform prior across the considered values

of St. This distribution therefore matches the definition used by the RMC for likelihood values using

discrete dimensions where the prior expectancy parameter used by the RMC (α) approaches zero.

A.1.2 Continuous Format

For the continuous form, a Gaussian mixture is used, computing the mean and variance of the cluster

distribution given its currently assigned members as well as an assumed prior mean and variance

independent of any observations. This follows the definition given by the RMC for likelihoods using

continuous dimensions, in which an inverse chi-squared distribution is used to provide an estimate of

the variance:

σ2 ∼ β0σ02χβ0

2 (7)
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where σ0
2 is the prior variance and β0 refers to the confidence in this prior variance, while the mean

uses a Gaussian distribution:

µ|σ ∼ N
(
µ0,

σ√
λ0

)
(8)

where µ0 is the prior mean and λ0 is the confidence in this prior mean (note that the second parameter

of this distribution is the standard deviation rather than the variance). The use of these two

distributions then results in a t-distribution describing the probability of value St in the given cluster

(again, the second parameter of this t-distribution is the standard deviation rather than the variance):

p(St|S1:t−1, Z1:t) = tc(µi, σi
√

1 + 1/λi) (9)

normalised within each cluster to prevent probability exceeding 1 where variance is low. The

parameters of this distribution are calculated according to the proposed membership of the target

cluster in the currently assumed partition, combining the prior mean µ0 and variance σ0
2 with the

observed mean x̄ and variance s2 using the confidence values β0 and λ0:

βi = β0 + nz (10)

λi = λ0 + nz (11)

µi =
λ0µ0 + nzx̄

λ0 + nz
(12)

σ2
i =

β0σ
2
0 + (nz − 1)s2 + λ0nz

λ0+nz
(µ0 − x̄)2

β0 + nz
(13)

Fourthly, p(Zt|Z1:t−1) is a Chinese Restaurant prior (Aldous, 1985; Pitman, 2002) describing the

probability of the observation being assigned to cluster Zt based on the size of that cluster, following

the format of Anderson (1991):

p(Zt|Z1:t−1) =



cnz
(1− c) + cn

if Zt is old

(1− c)
(1− c) + cn

if Zt is new

(14)

where nz is the number of observations in cluster Zt in the current partition, n is the total number of

assigned observations and c is a coupling parameter describing the probability of two items being

grouped together independent of any other observations.

Finally, p(S1:t−1, Z1:t−1|X1:t−1, F1:t−1) describes the probability of the currently assumed partition

given by S1:t−1 and Z1:t−1, which is equal to the product of the probability of each past observation’s
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assignment to the partition as defined by Equation 2.

Once the probability of each potential permutation has been calculated, these values can be used to

generate the predictive probability of any value appearing in the next trial by averaging over the

individual distributions of each potential partition:

p(St+1|X1:t, F1:t) =
∑
S1:t

∑
Z1:t+1

p(St+1, S1:t, Zt+1, Z1:t|X1:t, F1:t) (15)

∝
∑
S1:t

∑
Z1:t+1

p(St+1|S1:t, Z1:t+1)p(Zt+1|Z1:t)p(S1:t, Z1:t|X1:t, F1:t) (16)

Similarly, the UEM is able to calculate the probability of the responses made by participants in the

present experimental procedure, where estimates are given to the perceptual stimulus prior to receiving

feedback, by simply omitting the feedback element from Equation 2:

p(St|X1:t, F1:t−1) =
∑
S1:t−1

∑
Z1:t

p(St, S1:t−1, Zt, Z1:t−1|X1:t, F1:t−1) (17)

∝
∑
S1:t−1

∑
Z1:t

p(Xt|St)p(St|S1:t−1, Z1:t)p(Zt|Z1:t−1)p(S1:t−1, Z1:t−1|X1:t−1, F1:t−1) (18)

A.1.3 Details of Model Approximations

While the above equations do provide a calculable formula, by considering all possible permutations of

past cluster and value assignments, the full version of the model would quickly become intractable at

even a moderate number of observations. As such, this full solution is approximated by reducing the

number of considered permutations to a set of samples using particle filtering. This process makes use

of a fixed number of ‘particles’, each containing a possible permutation of cluster and value assignments

for past trials at that point in time (Griffiths, Sanborn, Canini, Navarro, & Tenenbaum, 2011).

Following a new observation, the model considers only the assignments of that observation which are

consistent with current particles, calculating the probability of the assignment according to:

p(St, Zt|X1:t, F1:t) ≈
1

ni

∑
i

p(Xt|S(i)
t )p(Ft|S(i)

t )p(S
(i)
t |S

(i)
1:t−1, Z

(i)
1:t)p(Z

(i)
t |Z

(i)
1:t−1) (19)

where S
(i)
1:t−1 and Z

(i)
1:t−1 represent the value and cluster assignments in particle i, and ni is the number

of particles. The equations for each of these components are therefore identical to those given above

restricted to the partition held by the particle under consideration. Once the probability of each valid

assignment has been calculated, these probabilities are then used to stochastically sample new

partitions including the latest observation to be held as the new particles for the next trial.

Similar processes can then be performed for both prediction and response selection, again

restricting the considered permutations to those currently held in the particles; as such, the predictive
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distribution becomes:

p(St+1|X1:t, F1:t) ≈
1

ni

∑
i

p(S
(i)
t+1|S

(i)
1:t , Z

(i)
1:t+1)p(Z

(i)
t+1|Z

(i)
1:t) (20)

replacing Equation 16, while the response distribution becomes:

p(St|X1:t, F1:t−1) ≈ 1

ni

∑
i

p(Xt|S(i)
t )p(S

(i)
t |S

(i)
1:t−1, Z

(i)
1:t)p(Z

(i)
t |Z

(i)
1:t−1) (21)

replacing Equation 18.

In addition to the particle filter, the model included a second approximation within the perceptual

distribution of Equation 4: to make computation more tractable, the sampled value Xt was replaced

with the true value vt, so assuming perceptual samples were perfectly accurate:

p(Xt|St) = logN(ln(vt), σ
2
l ) (22)

replacing Equation 4. While this does remove some noise from the estimation system, this can be

subsequently reinserted by sampling responses from the distribution given by Equation 21 rather than

simply taking the maximum, an approximation which has previously been found to be successful (e.g.

Sanborn, Mansinghka, & Griffiths, 2013).

Finally, for the purposes of fitting the UEM to actual behaviour, the response distribution was

further edited to include two additional elements: first, the distribution is raised to an exponent to

allow the model to interpolate between probability matching and maximisation, and second, the

response distribution is combined with a uniform background distribution to emulate potential noise in

response selection:

p(Rt|X1:t, F1:t−1) = (1− wb)
p(St|X1:t, F1:t−1)e∑
p(St|X1:t, F1:t−1)e

+ wbU(v1, v2) (23)

where Rt is the potential response, e is the response exponent, wb is the weight applied to the

background distribution and v1 and v2 provide the range of values considered in the uniform

distribution. Responses can then be drawn from this distribution using various methods, with the

resulting feedback being used to update the representation using the above method. For the purposes of

this study, however, no fixed sampling method is defined, with this distribution instead being used to

provide the probability of a given participant response.
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A.2 Model Comparison

Full details of the model comparison procedure are provided here. As noted in the main text, the model

comparison used a grid point search across model parameters to suggest best fits to the data. This was

used in place of more traditional gradient descent functions due to potential issues with such methods

for clustering models: the likelihood function of these models is often highly complex, leading gradient

descent functions to become fixed at local maxima rather than the global maximum. The search ran

across the four parameters shared by the two models: the coupling parameter c, response exponent e,

feedback confidence cf and background weight wb. Considered values were: for c, 0.1 to 0.9 in steps of

0.1; for e, 0.1, 0.25, 0.5, 1, 1.5 and 2; for cf , 0.1, 0.3, 0.5, 0.7 and 0.95 (capturing the stated accuracy in

the 95% condition); and for wb, 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9.

In order to simplify the comparison, the prior parameters unique to the cUEM (µ0, σ0
2, β0 and λ0)

were fixed across model fits. The values of these parameters were set according to the range of

displayed dot counts following the format of Anderson (1991); however, in order to allow for the

previously described emulation of categorical components by the Gaussian mixture prior, the prior

variance and confidence values were edited to provide a narrower initial form. As such, the prior mean

was set at the midpoint of the range (27.5), the prior variance was set at a twentieth of the range

squared (0.2025), the confidence in the prior mean β was set at one, and the prior variance confidence

λ0 was set at 0.01, determined through limited likelihood testing using manual adjustments of this

parameter on a subset of the data. While these manipulations were limited, these were considered as

full parameters for the purposes of calculating complexity penalties in subsequent measures. The dUEM

was therefore defined as having four free parameters, while the cUEM had six.

Both models were then fit to each participant individually by providing the model with the

observed dot counts in matching order for partitioning, calculating the response distribution (given in

Equation 23) and taking the resulting probability of the participant’s response for that trial. These trial

probabilities were then converted into log likelihoods and summed for each participant at each grid

point of each model. Maximum log likelihood figures for each model for each participant were then

converted into AIC and BIC values, as used in the main text. Because of the stochasticity added to the

models by the particle filter, each grid point was repeated 10 times to provide an average log likelihood

to more reliably measure model fit, and the number of particles used within the filter was set to 20

across all grid points to encourage greater consistency between repetitions. These values were

maximised whilst still making fitting computationally feasible within our available resources (using 25

new desktop computers each running four parallel sessions for one week), though this did not completely

eliminate stochasticity in the simulations (as reported in the main text, average standard deviation in

log likelihoods at the best fitting parameters was 199.86 for the dUEM and 213.36 for the cUEM).

As a check of the impact of this noise in likelihood estimates, additional simulations were
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subsequently performed at the best fitting parameters of each participant, providing 50 new repetitions

at these points. Average log likelihood values across these additional simulations demonstrated high

correlations with the initial estimates (dUEM: r = 0.942; cUEM: r = 0.923), but comparisons between

the two models across these new simulations found mixed results: while the proportion of participants

best fit by each model was consistent with the main analysis (dUEM: 25; cUEM: 74), the best fitting

model differed for 33 of the 99 participants. As a result, we have been somewhat cautious in the

conclusions drawn from this fitting process: while the collected data give reasonable confidence that the

continuous model provides the better fit across all subjects, we cannot be similarly confident regarding

the best fitting model for each individual participant. This seems to be due to the difficulty of fitting

stochastic clustering processes such as those used in the present models to behaviour, as partitions can

differ substantially even at identical parameters, leading to large differences in the estimated likelihood

of observed data. The present results are therefore an approximation of the true best fits of the

candidate models to participant data, though it is notable that the additional repetitions did find

qualitatively similar results to the main analysis overall.

A.3 Additional Modelling Results

The following provides alternate model comparison results, beginning with the global fits assuming a

common set of parameters across participants within each experiment, summarised in Table 4. This

finds qualitatively identical results to the individual parameters reported in the main text, with the

cUEM outperforming the dUEM in both experiments by a wide margin. As previously noted, however,

fits are substantially better when using individual parameters in both tasks, making those findings more

helpful in separating the models.

Secondly, we here list the full results of the model comparisons using AIC values, as summarised in

Table 3. For Experiment 1, as with the BIC scores above, aggregate AIC scores show the cUEM had a

better fit to experimental data, with a similar proportion of participants being best fit by each model

(dUEM: 5 [3-8 95% CI]; cUEM: 34 [31-36]). When separated by uncertainty condition, the cUEM held

a better fit in both the 75% and 95% groups, suggesting behaviour was best described using a Gaussian

mixture prior even where feedback was more reliable; this is further displayed in the ratios of

Experiment Best Model ∆MLL ∆AIC w(AIC) ∆BIC w(BIC)

Experiment 1 cUEM 1851
(2211, 1684)

-3699
(-3364, -4419)

1 -3682
(-3349, -4403)

1

Experiment 2 cUEM 2945
(3635, 2693)

-5904
(-5381, -7267)

1 -5868
(-5365, -7250)

1

Table 4: Global modelling results from Experiments 1 and 2, where ∆MLL is the difference in maxi-
mum log likelihood for the best fitting model in that comparison assuming common parameters across
participants in each experiment. Brackets give bootstrapped 95% CIs.
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participants best fit by each model, with the cUEM accounting for 16 (14-19) of the 19 participants in

the 70% condition and 18 (16-19) of the 20 participants in the 95% condition. As with the BIC

measures, this difference in ratio between conditions was non-significant, χ2(1) < 0.01, p = .951.

For Experiment 2, aggregate AIC scores also found the cUEM held a better fit to data, accounting

for 52 (48-54) of the 60 participants. When divided by uncertainty condition, the cUEM again held a

better fit in both the 75% and 95% groups, accounting for 27 (24-28) of the 30 participants in the 70%

condition and 25 (23-27) of the 30 participants in the 95% condition. Again, this ratio did not

significantly differ between groups, χ2(1) = 0.14, p = .704.

A.4 Parameter Values

We here provide more detailed discussion of the results of the model fitting based on the best-fitting

parameters suggested by the model comparison, offering further insight on the behaviour inferred by the

candidate models. Figure 8 shows the distribution of values taken from the best fits of both models to

participant data. These distributions show reasonably similar patterns between the models, though

there are some notable distinctions: first, the coupling parameter was generally lower for the discrete

model, indicating a tendency towards a larger number of clusters; this is understandable given that

clusters in the discrete model are less varied, meaning a wider set of clusters may be required to

adequately represent the target distribution. Second, the response exponent is reasonably similar

between models, but tended to be slightly higher for the continuous model, suggesting a tendency

Figure 8: Histograms of the best-fitting parameter values from the considered figures given to both models
collected across all participants from the two experiments.
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towards probability matching in response selection for that model. Third, feedback confidence is

reasonably high in both models, indicating that participants did make use of feedback information

despite its potential inaccuracy, though it is notable that a number of participants used lower

confidence values than the accuracy level stated in the experimental instructions. Finally, weight on the

uniform background distribution was low for both models, suggesting little noise in responses.

A.5 Model Lesioning

To test the actual impact of the use of these prior distributions on the accuracy of subsequent

estimation, the continuous and discrete models described above were compared with a lesioned version

of the UEM removing either prior, labelled the lUEM. This meant that responses were based solely on

perceptual data, as defined by Equation 22, though this distribution was again modified by the response

exponent and background distribution as in Equation 23:

p(Rt|Xt) = (1− wb)
logN(log(vt), σ

2
l )e∑

logN(log(vt), σ2
l )e

+ wbU(v1, v2) (24)

The dUEM, cUEM and lUEM were run at the best fitting parameters found for each model for each

participant in the above model comparison and used to calculate an estimate of accuracy by taking the

average probability of the model giving the true displayed value as a response across estimate trials.

The predicted accuracy of the lUEM was significantly lower than both the dUEM (t(99) = 16.9, p <

.001) and cUEM (t(99) = 15.9, p < .001), suggesting the use of either the discrete or continuous prior

distributions benefits estimation performance. This is understandable as the lesioned model by

definition has no knowledge of the underlying prevalence of values, and so is unable to capture complex

distributions such as those used in the present experiments.

A.6 Correspondence Between the Discrete Mixture and the Dirichlet

Distribution

We here provide a comparison between the definition of the discrete mixture prior used in this study and

a distribution commonly used as a prior in for discrete formats, the Dirichlet distribution. These two

distributions can in fact be shown to be equivalent, as demonstrated below. As such, any conclusions

regarding the discrete model made in this study can also be applied to the Dirichlet prior, most

prominently that both appear to be outperformed by the use of a continuous numerical representation.

Using the definition of the discrete mixture prior given in Equation 25, we first substitute in

p(St|S1:t−1, Z1:t) and p(Zt|Z1:t−1) to produce Equation 26, using a form of the latter term that first

gives the prior probability of Zt being new combined with a uniform probability over all K possible

alternatives. The second part of p(Zt|Z1:t−1) sums over all of the old cluster Zt, weighting each with 0
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or 1 (e.g., ns/nz) depending on whether that cluster includes dot counts equal to the current

observation St. In Equation 27, the weights and priors for each old cluster Zt have been summed over,

and ns′ is simply the number of past dot counts equal to St regardless of assignment to clusters. As the

probabilities of St now no longer depend on past assignments Z1:t−1, these assignments are dropped (as∑
Z1:t−1

p(Z1:t−1|S1:t−1) = 1) in Equation 28. Finally, we define a0 = (1− c)/c and reorder the terms to

produce Equation 29. Equation 29 shows that p(St|S1:t−1) is the conditional probability of St given the

past dot counts and a symmetric Dirichlet prior with parameters a0/K over all of the K possible

responses.

p(St|S1:t−1) =
∑
Z1:t

p(St|S1:t−1, Z1:t)p(Zt|Z1:t−1)p(Z1:t−1|S1:t−1) (25)

=
∑
Z1:t−1

((
(1−c)

(1−c)+cn

) (
1
K

)
+
∑
Zt∈Z1:t−1

(
ns

nz

)(
cnz

(1−c)+cn

))
p(Z1:t−1|S1:t−1) (26)

=
∑
Z1:t−1

(
(1−c)

K((1−c)+cn) + cns′
(1−c)+cn

)
p(Z1:t−1|S1:t−1) (27)

= (1−c)+Kcns′
K((1−c)+cn) (28)

= ns′+α0/K
n+α0

(29)
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