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Abstract

Wearable sensors and nonlinear signal analysis methods are empowering innovative
ways of assessing balance and fall risk in older adults. However, their adoption in
research and clinical practice creates new challenges. This thesis and the studies
herein address some of these challenges and provide some insights concerning their
optimal use.

Wearable inertial sensors offer the means for developing instrumented versions of
clinical balance assessment tools, producing objective and accurate quantitative
descriptors on the timing and execution of functional tasks. However, this research
proves that selecting an adequate combination of sensor placement, movement task
and the measured variable is crucial for discriminating subjects at a higher risk of
falling. An optimal protocol for assessing fall risk based on wearable inertial sensors
is identified and presented in this thesis.

Additionally, wearable devices offer the means for continuously monitoring physi-
ological and behavioural variables, which can be used to infer outcomes linked to
impaired balance and increased risk of falling in older adults. This research shows
that wearable devices can be used to capture day-to-day variations in sleep quan-
tity and quality, which in turn produce variations in balance. This situation can
potentially expand the prevailing paradigm in fall prevention, from the current one
focusing on the occasional assessment of risk factors and changes in the balance
control system to a new one also including the continuous monitoring and detection
of short-lived factors that might result in an imminent fall.

Finally, this research demonstrates that quantitative descriptors of nonlinear dy-
namics are more sensitive than linear measures to differences in balance control as-
sociated with ageing and risk of falling (e.g. non-fallers and fallers). The adequate
selection of the input parameters required for the calculation of nonlinear measures
is of paramount importance to achieve positive results. This thesis provides some
recommendations for the parameter selection.

Collectively, the findings of this research confirm that wearable sensors and nonlin-
ear signal analysis methods can improve and extend current tools and practices in
balance and fall risk assessment.

xXvi
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Chapter 1

Introduction

1.1 Chapter overview

This chapter presents the use of wearable sensors and nonlinear signal analysis
methods for assessing balance and fall risk in older adults, pinpointing the challenges
that arise from their adoption in this field (section 1.2). Moreover, it introduces the
research questions, aims and objectives of this work (section 1.3), as well as an
overview of the research methods and tools used during this research (section 1.4).

Finally, an outline of the thesis is provided (section 1.5).

1.2 Scope

Balance is an essential ability for successfully performing the activities of daily
living. Even during seemingly simple activities such as standing and walking, com-
plex regulatory mechanisms are required to preserve postural stability through the
maintenance of the body’s centre of mass within the limits of the base of support.
Balance, a term describing the dynamics of body posture to prevent falling [1],
arises from the complex interaction of sensory, motor and control systems (i.e. the
balance control system). Briefly, visual, vestibular and proprioceptive information
is integrated and processed by the cerebellum, basal ganglia and sensorimotor cor-
tex, which in turn command the musculoskeletal system via the spinal cord and the
peripheral innervation of muscles [2].

Impairment in any of these systems can result in a deficit in balance control.
Such impairment may be due to the progressive decline of function in the course of
healthy ageing, specific pathologies or behavioural factors [3, 4]. Balance impairment

is common among adults aged 60 years and over (hereafter called older adults;



additionally, adults aged 18-59 are called younger adults), with estimates of its
prevalence ranging between 20 and 50% [4].

Impaired balance control can ultimately result in a fall and have a profound
impact on individuals regarding their quality of life and capacity for independent
living. Falls are relatively common events among older adults. Approximately, 28
to 35% of community-dwelling older adults experience at least one fall each year
[5]. The frequency of falls increases among older adults living in long-term care
institutions, where 30 to 50% of them sustain a fall each year [6]. Older adults
suffering from neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and de-
mentia, have higher prevalence of falls than their age-matched healthy counterparts
[3]. Moreover, falls are the most frequent adverse event among hospitalised older
adults, accounting for 32% of patient safety incidents in the United Kingdom [7].
In this age group, around 40 to 60% of falls lead to injuries, with 30 to 50% being
minor injuries and at least 10% being serious injuries (e.g. hip fractures and head
injuries) [5].

The high prevalence of balance impairments in older adults and their detri-
mental individual and societal impact has moved scores of researchers and clinicians
to understand more about how balance control works, and how to quantify it at any
point in time. Consequently, many balance and fall risk assessment tools have been
developed, ranging from simple questionnaires, scales and functional mobility tests
requiring no more than a stopwatch, to complex techniques relying on force-sensing
platforms and optical motion capture systems, among other items of equipment [8].
To date, questionnaires and scales represent the preferred option in clinical settings,
since they provide an inexpensive means for assessing functional performance of ac-
tivities and movements which occur in the course of everyday life (e.g. stepping or
walking) [4]. However, these tools are subjective (e.g. questionnaires) and provide
no or limited information on the underlying cause of impaired standing balance (e.g.
non-instrumented functional tests) [9]. On the other hand, instrumented techniques
provide an objective assessment of balance control and produce large amounts of
data which could potentially shed light on the underlying causes of balance impair-
ments [8]. However, their cost and complexity of use have restricted their use in
research and top-tier clinical settings.

The rise of wearable technologies is enabling novel ways of assessing bal-
ance and the risk of falling in older adults. In particular, wearable inertial sensors
(i.e. micro-electronic devices integrating accelerometers and gyroscopes) represent
a promising addition to clinical balance assessment tools. By producing detailed

information on the timing and kinematics of functional tasks (e.g. walking), they



have the potential to provide an objective and accurate fall risk assessment. Some
studies have made use of these sensors to produce instrumented versions of clinical
balance assessment tools [10]. However, the variety of sensor placements, movement
tasks and measured variables has precluded a consensus on their clinical relevance
[11, 12]. Therefore, a systematic investigation of these factors to determine the
optimal inertial sensor-based assessment protocol is relevant and timely.

Additionally, wearable technology is also enabling the continuous monitor-
ing of physiological and behavioural variables (e.g. heart rate and sleep patterns,
respectively), which can be used to infer health status and behaviours linked to
impaired balance and increased risk of falling [13]. It can potentially expand the
prevailing paradigm in fall prevention, from the current one focussing on the oc-
casional assessment of risk factors and changes in the balance control system (e.g.
reduction of visual acuity and lower-limb muscle strength), to a new one also includ-
ing the continuous monitoring and detection of short-lived factors that might result
in an imminent fall. Melillo et al. showed how wearable Electrocardiogram (ECG)
sensors could be used to predict imminent falls due to standing hypotension, based
on the analysis of ECG signals recorded five minutes before the subject got up from
a chair [13]. Moreover, wearable technology offers new opportunities for in-home
continuous sleep monitoring in the broader population [14, 15]. It is potentially
relevant for fall prevention, given that poor sleep quality (i.e. sleep of short du-
ration and increased fragmentation), both self-reported via paper-based scales and
objectively-measured by actigraphy, is associated with future falls in older people
[16-19]. Hence, if short-lived poor sleep quality has a similar effect on balance con-
trol, continuous sleep monitoring would be relevant for fall prevention programmes
in frail populations and sleep disturbance-inducing scenarios (e.g. hospital wards).
Therefore, the potential association between day-to-day variations in sleep quality
and balance control deficits warrants further investigation.

The dissemination of dynamical systems theory and methods within the
(bio)medical research community has inspired a new approach to the study of ageing
and balance control in older adults [20]. Since the balance control system can be
considered as a nonlinear system (i.e. reactions are not proportional to the applied
stimuli), various quantitative descriptors of nonlinear dynamics have been proposed
for the analysis of balance data (e.g. a time-series describing body sway during un-
perturbed standing). These descriptors can potentially provide further information
on the underlying balance control mechanisms in ageing and represent more sensi-
tive indicators of fall risk. Among these nonlinear measures, Approximate Entropy

(ApEn) and Sample Entropy (SampEn) have been proposed as relative measures of



body sway regularity [8]. Relatively high entropy values suggest a more irregular
body sway produced by control mechanisms that are too random to command bal-
ance properly. Conversely, relatively low entropy values suggest a more regular body
sway produced by balance control mechanisms that are too stiff to cope with exter-
nal factors demanding a flexible response [21]. The ability of ApEn and SampEn
to discriminate between groups with different fall risk, and the adequate selection
of the input parameters needed for their computation, have not been systematically
investigated.

The ensemble of studies presented herein provides answers to some of the
most pressing questions arising from the diffusion of wearable sensors and nonlinear
signal analysis methods for balance and fall risk assessment, as well as for the study

of the association between balance and short-lived factors.

1.3 Research questions, aim and objectives

The use of wearable sensors (e.g. inertial and physiological sensors) and nonlinear
analysis methods has created unprecedented opportunities for the understanding of
balance control and its assessment at any point in time, as well as for the ambulatory
monitoring of health status and behaviours that are linked to impaired balance
and fall risk. However, the adoption of these devices and methods has raised new
questions. This research aims to identify how wearable sensors and nonlinear signal
analysis methods can be applied to improve balance and fall risk assessment in older
adults. In particular, the series of studies herein addressed the following research

questions:

Research question 1: What is the optimal wearable inertial sensor-based pro-
tocol for assessing fall risk in older adults, given the variety in sensor placements,

movement tasks and measured variables that these devices allow?

Research question 2: Are quantitative descriptors of nonlinear dynamics more
sensitive than linear measures to differences in balance control due to ageing and
fall risk? If so, what is the optimal way to apply them (e.g. signal pre-processing,

selection of input parameters)?

Research question 3: Are there any associations between day-to-day variations

in sleep quantity and quality, monitored using wearable devices, and balance control?



Research question 4: What is the optimal method to capture variations in bal-
ance control due to day-to-day variations in sleep quantity and quality, linear or

nonlinear measures?

The primary aim of this research was to advance the knowledge and methods
related to the use of wearable sensors and nonlinear signal analysis for the assessment
of balance and fall risk, both in research and clinical settings and in ambulatory
monitoring of health status and behaviours linked to (impaired) balance.

Accordingly, the main objectives of this research are:

Objective 1: To identify the optimal wearable inertial sensor-based protocol for
assessing fall risk in older adults, including sensor placement, movement task and

measured variable(s).

Objective 2: To determine whether quantitative descriptors of nonlinear dynam-
ics are more sensitive than linear measures to differences in balance control due to

ageing and fall risk.

Objective 3: To determine whether day-to-day variations in sleep quantity and
quality, monitored using wearable devices, are associated with balance control vari-

ations.

Objective 4: To determine whether quantitative descriptors of nonlinear dynam-
ics are more sensitive than linear measures to differences in balance control due to

day-to-day variations in sleep quantity and quality.

In order to fulfil the objectives above, four different studies were designed

and performed:

Study 1: A data set of 175 wearable inertial sensor-based measures extracted from
13 studies was analysed to identify the optimal sensor-based protocol for fall risk

assessment in older adults.

Study 2: A public dataset of balance evaluations from 163 subjects was anal-
ysed to investigate whether nonlinear descriptors, in particular ApEn and SampEn,
are more sensitive than linear measures to differences in balance control due to
ageing and fall risk, and to identify the optimal way to apply them (e.g. signal

pre-processing and selection of input parameters).



Study 3: A sample of 20 healthy subjects (age range: 21-40 years) underwent in-
home sleep monitoring and balance assessment over two consecutive days, in order
to investigate potential associations between day-to-day variations in sleep quantity

and quality and balance in unperturbed standing.

Study 4: A sample of 31 healthy subjects (age range: 22-40 years) underwent in-
home sleep monitoring and balance assessment over two consecutive days following
an extended protocol, in order to investigate the sensitivity of nonlinear measures to
differences in balance control in unperturbed standing due to day-to-day variations

in sleep quantity and quality.

The fulfilment of these objectives required the application of a broad and
diverse set of research methodologies, methods and tools for the collection and

analysis of data, which are briefly introduced in the next section.

1.4 Overview of the research methods

In study 1, the potential use of wearable inertial sensors for assessing balance and
fall risk in older adults was investigated (chapter 3). Some review articles on this
topic have revealed high heterogeneity across the included studies concerning sensor
placements, tasks and measured variables or features [11, 12]. This heterogeneity
precludes a firm conclusion on the optimal sensor-based fall risk assessment proto-
col, making the translation of this technology from research laboratories to clinical
settings difficult. This problem was tackled by performing a systematic review and
meta-analysis of the previously published evidence. A systematic review aims to
answer a research question by using explicit methods to identify, select, and criti-
cally appraise the relevant literature, in order to derive conclusions about that body
of research [22]. Systematic reviews and meta-analyses are at the top level of the
hierarchy of scientific evidence (Figure 1.1), since their outcomes represent a combi-
nation of the findings from all the studies pooled in the analysis [23]. Therefore, they
are proven tools for decision-making in healthcare (e.g. to inform health technology
assessment studies and clinical practice guidelines definition) [24].

In this research, static posturography was used extensively for assessing bal-
ance. This technique is one of the most popular in research and top-tier clinical
settings [8, 25, 26|, thus more data and evidence are publicly available. Static pos-
turography entails the assessment of the body’s Centre of Mass (CoM) or Centre

of Pressure (CoP) motion during unperturbed standing [8]. CoM motion can be
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Figure 1.1: Hierarchy of evidence in (bio)medical research, where scientific evidence
is ranked according to the strength of the freedom from various biases [23]. Meta-
analysis is at the top, since this integrates the results of several independent studies.
In contrast, animal research, in-vitro studies, case reports and case series are at the
bottom. The studies presented in this thesis cover a diversity of designs, including
a systematic review and meta-analysis (study 1), a cohort study (study 2) and two
case-control studies (studies 3 and 4).

measured using inertial sensors or an optical motion capture system; CoP motion
can be measured using in-shoe pressure sensors and force platforms [8]. Moreover,
testing conditions can be manipulated to detect the deterioration of a specific sen-
sory system (e.g. standing with eyes open and eyes closed for assessing changes
in balance due to lack of vision). CoM and CoP motions are analysed using two
approaches: global and structural analysis [8, 26]. In the first approach, the bal-
ance control system is assumed to have a linear nature and thus is characterised
by general measures computed over the entire time-series, hence the name global
measures [8, 26]. Among these measures are the range or amplitude of the signal
and the mean and median frequency of its spectral components [8, 26]. In contrast,
the second approach proposes that the balance control system must be considered a
nonlinear system (i.e. its reactions are not proportional to the applied stimuli) [20].
Accordingly, nonlinear dynamic time-series analysis has been proposed as a tool
to investigate its characteristics and mechanisms. In contrast to global measures,
quantitative descriptors of nonlinear dynamics are sensitive to structural variations
within time-series, hence they are often referred to as structural measures within
the balance research community [8, 26].

In study 2, a public dataset containing CoP data for a cohort of 163 subjects



(both young and older adults) [27] was used to investigate whether quantitative
descriptors of nonlinear dynamics are more sensitive than linear (global) measures
to differences in balance control due to ageing and fall risk (chapter 4). Namely,
ApEn and SampEn were used to quantify the regularity or self-similarity of CoP
time-series by examining them for similar epochs or subseries: more frequent, similar
subseries lead to lower entropy values. Thus low ApEn and SampEn values reflect
a high degree of regularity or self-similarity [110, 111]. A relatively irregular body
sway is produced by control mechanisms that are too random to command balance
properly. In contrast, a relatively regular body sway is produced by balance control
mechanisms that are too stiff to cope with external factors demanding a flexible
response [21]. ApEn and SampEn were selected since they are suited to the analysis
of noisy and short data (i.e. 100-5000 data points, with 1000 points used most often)
[28, 110, 111].

In studies 3 and 4, cohorts of 20 and 31 healthy young adults (i.e. 21-40 years
old, with seven subjects jointly involved in both studies), respectively, underwent
in-home sleep monitoring and balance assessment over two consecutive days, in
order to investigate the potential associations between day-to-day variations in sleep
quantity and quality and balance in unperturbed standing (chapters 5 and 6). Sleep
quality was selected as an exemplary case study to investigate the role of wearable
devices for continuously monitoring health status and behaviours that are linked
to impaired balance or fall risk. Sleep quality was chosen not only because there
is evidence of an association between chronic poor sleep quality and disturbances,
and impaired balance/fall risk [17-19], but also because an increasing number of
consumer-grade wearable devices offer the possibility to track sleep on a regular basis
[14, 15]. For balance assessment, CoP time-series were collected using a wearable
in-shoe pressure-sensing system and a force platform (studies 3 and 4, respectively).
These CoP time-series were later analysed by calculating some linear and nonlinear
measures (studies 3 and 4, respectively). A baseline sleep assessment was performed
using the Pittsburgh Sleep Quality Index (PSQI), a questionnaire that provides
a global score for sleep quality over the past month [30]. Moreover, day-to-day
variations in sleep quantity and quality were identified through a Consensus Sleep
Diary (CSD) [31] and ascertained via actigraphy and Heart Rate Variability (HRV)
analysis. Actigraphy, which is the measurement of body/limb movements based on
acceleration signals, has gained popularity among sleep researchers and clinicians
over the last years, since it allows tracking sleep under ecological conditions (e.g.
at home) and for extended periods [32]. In contrast, Polysomnography (PSG),

considered the “gold standard” for sleep studies, is generally conducted in a sleep



Table 1.1: Summary of studies performed during this research

Study Design Wearable technology Signal  analysis ap-
proach
1 Meta-analysis Inertial  sensors for Linear and nonlinear

fall risk assessment in
standing and gait
2 Cohort None Linear and nonlinear
3 Case-Control Physiological sensor for Linear
sleep monitoring, in-
shoe pressure sensors
for balance assessment
in standing
4 Case-Control Physiological sensor for Linear and nonlinear
sleep monitoring

laboratory and limited to one-night recordings [33, 34]. Moreover, HRV analysis
has been put forward as a tool for assessing autonomic cardiac activity during sleep,
providing clues about sleep architecture [35]. The concurrent use of actigraphy
and HRYV is opening up exciting possibilities for long-term, in-home monitoring and
quantification of sleep based on wearable devices [36]. In this research, acceleration
and ECG signals during sleep were collected using a wearable physiological sensor
(described in chapter 5).

Table 1.1 presents a summary of the studies designed and performed in this
research, specifying their type of design, as well as the methods and tools used for

collecting and analysing the data.

1.5 Thesis outline

Chapter 1 presents the scope, research questions, aims and objectives of this
thesis. Moreover, it presents an overview of the research methods and tools used

during this work. Finally, it presents an outline of the thesis.

Chapter 2 introduces balance control and falls in older adults. This chapter
presents the methods and techniques used to assess balance in older adults that are
relevant to this thesis. Additionally, the chapter introduces the basic principles of
sleep and highlights the methods for sleep assessment that were used in this research.
Finally, it presents a discussion on the research gaps that were used to delineate the

questions, aim and objectives behind the studies presented in later chapters.



Chapter 3 presents a systematic review and meta-analysis to identify the opti-
mal wearable inertial sensor-based protocol for assessing fall risk in older adults,

including sensor placement, movement task and measured variables.

Chapter 4 presents the secondary analysis of a public dataset of CoP time-series
performed to investigate whether nonlinear descriptors, in particular ApEn and
SampEn, are more sensitive than linear measures to differences in balance control
due to ageing and fall risk, as well as identifying the optimal way to apply them

(e.g. signal pre-processing, selection of input parameters).

Chapter 5 presents an experimental study conducted on a cohort of 20 healthy
subjects in order to investigate potential associations between wearable sensor-
ascertained day-to-day variations in sleep quantity and quality, and balance in un-

perturbed standing.

Chapter 6 presents an experimental study conducted on a cohort of 31 healthy
subjects in order to further investigate the associations between day-to-day varia-
tions in sleep and balance, as well as the sensitivity of nonlinear measures, in par-
ticular ApEn and SampEn, to differences in balance control due to daily variations

in sleep quantity and quality.
Chapter 7 summarises the main conclusions presented in this thesis and provides

some recommendations for further work based on the identified limitations and op-

portunities.
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Chapter 2

Background

2.1 Chapter overview

Balance emerges from the complex interaction of sensory, motor and control systems,
making up the balance control system. Section 2.2 presents the basic principles of
balance control in older adults, including a description of the systems involved in
balance during standing and walking.

Falls are one of the most prevalent and severe consequences of balance deficits
in older age. Section 2.3 presents some data concerning the prevalence of falls and
fall-related injuries in older adults, as well as their economic impact on healthcare
systems. More importantly, this section introduces the risk factors for falls in older
adults.

Various methods and techniques to assess balance in older adults have been
proposed, both non-instrumented and instrumented. Section 2.4 presents the meth-
ods that are most relevant to this research, including the use of wearable inertial
sensors and nonlinear signal analysis algorithms.

Sleep of short duration and poor quality is associated with falls in older
adults. Nevertheless, it has not received as much attention as other risk factors, even
though sleep alterations are prevalent during older age. Section 2.5 introduces the
basic principles of sleep, including a brief description of the normal sleep architecture
and the changes it experiences with ageing. In addition, this section presents the
methods and techniques for sleep assessment, emphasising on those that are relevant
for this research.

A critical appraisal of the sections above reveals some gaps in the body
of knowledge concerning the use of wearable sensors and nonlinear signal analysis

methods for the assessment of balance and fall risk in older adults. This chap-
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ter concludes with a summary of its contents, pinpointing the research gaps that
were identified and used to delineate the aims and objectives underlying the studies

presented in chapters 3 to 6 (section 2.6).

2.2 Balance control in older adults

2.2.1 The balance control system

Balance control has been defined as the control of the body’s Centre of Mass (CoM)
relative to the Base of Support (BoS) [2]. Humans’ upright posture requires an
active balance control in order to counteract the effects of gravity, which tends to
move the CoM out of the BoS. In a static condition, such as unperturbed bipedal
standing, the CoM has to be continually moved to maintain it within the limits of
the BoS (i.e. the convex polygon defined by the lateral borders of the feet, whose
area has been estimated at 8294103 cm? in a sample of 13 healthy adults) [26, 37)].
This constant movement of the CoM during standing is called postural sway, with
older adults (>60 years old) showing generally larger postural sways than young
adults (18-59 years old) (Figure 2.1). In a dynamic condition, such as perturbed
standing and walking, the CoM can be momentarily out of the BoS, but it has to
be moved back to within the BoS, or the BoS must be enlarged to avoid falling.
Two strategies are available to the balance control system in order to adjust the
position of the CoM [38]. When, in standing, small or no perturbations exist, the
muscles around the ankle joint can be activated to produce a torque and accelerate
the CoM around the ankles in the desired direction. Otherwise, movements of some
body parts can counteract the effects of the perturbation by accelerating the CoM
in the opposite direction (for instance, by moving the arms backwards after being
pushed forwards). In more dynamic situations, the BoS can be moved by stepping
or enlarged by grabbing for hand support [2].

To activate the muscles to move the CoM in an appropriate direction or to
reconfigure the BoS if required, the Central Nervous System (CNS) requires infor-
mation on the present position and acceleration of the CoM [1]. This information
is provided by different sensory modalities and is essential for balance control. The
human balance control system is thus made up of the sensory, central nervous and
motor systems (Figure 2.2). The sensory system assesses the current position of
the CoM in relation to the BoS, as well as the overall body posture in relation to
the environment. The CNS weights the sensory information, decides on actions re-
quired to maintain or recover balance, and activates muscles accordingly. The motor

system performs the required mechanical actions and the result is measured again
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Figure 2.1: Postural sway during standing. Illustration of the continuous movement
of the body’s centre of mass (CoM) in the (A) anterior-posterior (AP) and (B)
medial-lateral (ML) axes. For comparison, the CoM excursions are shown for a
young adult (25 years old) and an older adult (70 years old). Data sourced from a
public dataset [27].

by the sensory system. This sequence of steps defines the feedback mechanisms
of balance control. Alternatively, anticipatory or feedforward control mechanisms
can also be used to maintain balance. Sensory information can be used to predict
imminent perturbations and pre-emptive action can be taken to attenuate or even
avoid a perturbation (for instance, a rugby player widening his BoS in anticipation
of an expected frontal impact with a player of the opposite team).

The building blocks of the balance control system are described more exten-

sively in the next subsections.

2.2.1.1 The sensory system

Sensory information required for balance control is generated by the vestibular,
visual, and somatosensory systems (Figure 2.2).

The vestibular system comprises the semicircular canals and the otoliths,
which are localised in the head behind the ears (that is, under the mastoid pro-

cesses). The otoliths measure linear accelerations of the head, providing informa-
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Figure 2.2: Balance control feedback loop. The sensor system provides information
to the central nervous system. The central nervous system weights and integrates
information from the different sensory modalities and generates motor responses to
activate the muscles to adapt posture or movements to maintain balance. Adapted
from the literature [2].

tion about its orientation relative to the vertical. The semicircular canals measure
angular accelerations, providing information on the rotational movements of the
head. Adequate functioning of these organs is essential in order to maintain visual
fixation during head movements and stabilise the head during movements of the
trunk and extremities [4]. The importance of the vestibular system for maintaining
vertical postures can be experimentally demonstrated by electrical stimulation of
the vestibular organs. A bipolar current applied behind the ears during standing
alters the firing rate of the peripheral nerves connecting the vestibular system to
the brain, which in turn causes an illusion of sway towards the side of the cathode,
eliciting sway in the opposite direction [39].

The wvisual system transforms light patterns on the retina into images of
the environment. These images provide essential information for balance control,
including: 1) an estimate of the vertical; 2) the orientation of the head relative

to the vertical; 3) the rotational movements of the head; and, 4) a spatial map of
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the environment in which objects are assessed in terms of their location, direction
and speed of movement [2, 4]. The latter is essential for anticipation of potential
balance threats. Several studies have confirmed the importance of visual information
for balance control, made apparent from the increase in postural sway observed in
standing with eyes closed compared to standing with eyes open [40].

The proprioceptive somatosensory system comprises the muscle spindles,
Golgi tendon organs, and joint and skin receptors, distributed over the whole body
[41]. These sensors provide information used to assess the orientation and movement
of body segments relative to each other [2]. Muscle spindles are the primary source
of proprioceptive information since they encode variations in muscle length and the
speed of those variations.

The exteroceptive somatosensory system comprises a set of receptors in the
soles that measure skin strain, thus providing information on the forces acting on
the feet base. The importance of these receptors for balance control can also be
experimentally demonstrated by electrical stimulation of the soles, which normally

elicits an increase in postural sway [2].

2.2.1.2 The central nervous system

At its most basic level, balance control relies on automated responses generated by
the brain stem, expressed by the simultaneous activation of muscles around several
joints [2]. However, more complex balance responses require the involvement of
higher centres of the brain to integrate different sources of sensory information and
command motor responses accordingly. The centres of the brain that have been
linked to posture control are the cerebellum, the basal ganglia and the cortex [42].

The cerebellum plays an essential role in balance control. The scientific evi-
dence suggests that it integrates sensory information concerning the body and the
environment, thus enabling fine-tuning motor activity generated to maintain and
restore balance [43]. The importance of the cerebellum for balance control has been
observed in studies on humans and other animals [44]. Patients with cerebellar le-
sions exhibit severe balance disorders, which they frequently compensate for with a
wide stance to enlarge the BoS. Recent evidence also suggests that the cerebellum
is involved in the generation of appropriate patterns of limb movements, dynamic
regulation of balance, and adaptation of posture and locomotion through practice
[44].

The basal ganglia, a group of subcortical nuclei in the brain, are primarily
involved in motor control [45]. People with basal ganglia lesions (e.g. Parkinson’s

disease patients) display resting tremor, stiffening and bradykinesia (i.e. the extreme
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slowness of movements and reflexes), which compromise their ability to cope with
balance perturbations [42]. The basal ganglia also play a part in sensory integration
and weighing [45].

The role of the cortex in balance control is still debated. Yet, there is some
evidence suggesting that the premotor and primary motor cortices play a role in
anticipatory postural adjustments [46]. Cortical activity in the left premotor area
has also been associated with balance control in unperturbed gait [47]. Impaired
balance in gait has also been observed when subjects are simultaneously performing
a demanding cognitive task, which speaks about the importance of the cortex for

balance control [2].

2.2.1.3 The motor system

Muscles and tendons are the most relevant elements of the motor part of the bal-
ance control system [2]. In unperturbed standing, a moderate but continuous and
accurate force production is required to maintain the body’s CoM over the BoS.
Yet, rapid and vigorous contractions of group muscles in the lower limbs, trunk and
even upper limbs are required to compensate for large balance perturbations. The
calf and hip abductor muscles are crucial for balance control during standing and
gait [1, 48]. Moreover, tendon stiffness largely determines the rate at which forces

are transferred to the skeleton and hence at which movements can be controlled [2].

2.2.2 Balance control in unperturbed standing

Balance control requires controlling the position of the body CoM relative to the
BoS. In unperturbed bipedal standing, the CoM lies approximately anterior to the
second sacral vertebra, and the BoS is formed by the lateral borders of the feet [26].
In this posture, the force of gravity produces a torque around the ankle joints. Active
control of balance is needed to counteract this gravitational torque and thus to avoid
falling [2]. Balance control is achieved by activating the muscles around the ankle
joint in order to produce a counteractive torque around the ankles, a mechanism
known as the ankle strategy. When the ankle muscles cannot act, hip muscles are
activated in order to move the CoM posteriorly or anteriorly, a mechanism known
as the hip strategy [1]. As a result of the interplay of the gravitational force and
the postural adjustments produced by the balance control system, the body sways
continuously, and thus the CoM moves over the BoS (Figure 2.1). In unperturbed
standing, the CoM moves over the central part of the BoS [26].

The magnitude of CoM excursions (also know as body or postural sway)

16



is often used as a measure of the integrity of the balance control system and is
associated with several factors [2]. First, there are age effects on the amplitude
of postural sway: older adults generally show wider CoM excursions than young
adults. The amount and quality of sensory information available to the balance
control system at any given moment also affect body sway. The amplitude of CoM
excursions tends to increase in both young and older adults when they stand still
with Eyes Closed (EC) compared to the amplitude when they stand with Eyes
Open (EO), yet, the increase is generally more substantial for older adults [2]. This
is also the case when exteroception is perturbed, for instance, by standing on a
compliant surface (e.g. a foam mat). Figure 2.3 illustrates this phenomenon by
showing the CoM excursions for a young adult and an older adult during standing
on a rigid surface and a foam mat with EO [2]. All in all, the scientific evidence
suggests that older adults are less resilient to perturbations of any of the sensory
modalities involved in balance control. Yet, sometimes older adults show narrower
postural sways than young adults [2], possibly because in some situations older
adults manage to control balance by adopting a more rigid stance [2].

The ability to control balance is also challenged by exerting perturbations
on the CNS, particularly in older adults [2]. This phenomenon has been observed in
experiments in which the participants perform a cognitive task (e.g. counting down
from 100 by 7) while simultaneously standing still. In this situation, the performance
in the cognitive task or balance control is more affected in older adults than in young
adults [49]. This is possibly explained by the involvement of the cortex in balance
control mentioned earlier. Moreover, an association between cognitive abilities and
balance control in unperturbed standing has also been found [50]. The relationship
between cognition and balance control is more evident in older adults with dementia,
who suffer from severe losses of balance more frequently that their cognitively intact
counterparts [4].

Finally, the status of the motor system can also influence balance control in
unperturbed standing. Muscle strength determines the time that older adults can
maintain balance in an upright posture [51] and a lower precision in the production

of muscle force is associated with wider postural sways [52].

2.2.3 Balance control in unperturbed gait

During unperturbed gait, the body’s CoM is voluntarily moved forward, at which
point the BoS has to be displaced to prevent falling. This reconfiguration of the
BoS during walking is achieved by actively controlling the legs’ swing in an accurate

and coordinated manner in order to deal with variations in the environment (e.g.
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Figure 2.3: Bidirectional postural sway during bipedal standing. Body centre of
mass trajectories for a young adult (25 years old) and an older adult (70 years old)
during quiet standing (A) on a rigid surface, and (B) on a foam mat. Data sourced
from a public dataset [27].

different types of surface). Moreover, the control of balance in the Medial-Lateral
(ML) direction is more challenging than it is in unperturbed standing [2].

Several quantitative descriptors have been developed to characterise unper-
turbed gait. A first approach looks at average values of time and spatial measures of
the gait cycle and its different stages (e.g. step time, length and width) [53]. Older
adults tend to walk with wider steps than young adults. Wider steps are seemingly a
strategy older adults take to increase their BoS. However, wider steps produce wider
and faster CoM movements in the ML direction, which can jeopardise balance in
cases when environmental conditions require a narrower step width [2].

A second approach to the assessment of gait relies on the notion that un-

perturbed gait is a periodical sequence of movements with a mostly regular and
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stable behaviour. Accordingly, gait measures used in this approach quantify the
variability and stability of gait, which are then used to study how these measures
vary across age and fall risk status groups [54-56]. Older adults, particularly those
with higher fall risk, show generally more substantial variability and lower stability
in gait [54-56].

Gait variability and stability are linked to muscle strength [2]. Moreover,
narrower step widths are associated with degenerative changes in the brain in older
adults, suggesting that impaired brain connectivity prevents them from compensat-

ing their balance impairments with an increase in the BoS [2].

2.3 Falls in older adults

2.3.1 Definition

Falls have been defined by the World Health Organization as “an event which re-
sults in a person coming to rest inadvertently on the ground or floor or other lower
level [57].” Similarly, the Prevention of Falls Network Europe have defined a fall as
“an unexpected event in which the participant comes to rest on the ground, floor,
or lower level [58].” Some other definitions have been coined using more specific
terms as an attempt to differentiate falls caused by perturbations to the balance
control system (accidental falls) from those produced by specific threatening events
or medical conditions (non-accidental falls). For instance, the Kellogg International
Working Group on the prevention of falls in senior citizens defined a fall as “uninten-
tionally coming to the ground or some lower level and other than as a consequence
of sustaining a violent blow, loss of consciousness, sudden onset of paralysis as in

stroke or epileptic seizure [59].”

2.3.2 Impact

Falls are a leading cause of injury and death among older adults and a significant
public health issue [5, 7, 60]. Thirty-three per cent of the community-dwelling adults
over the age of 65 experiences a fall every year [61], with this figure increasing to
50% for those over the age of 80 [62]. The frequency of falls increases among older
adults living in long-term care institutions, where 30 to 50% of them sustain a
fall each year [6]. Older adults suffering from neurodegenerative diseases, such as
Alzheimer’s, Parkinson’s and dementia, have higher prevalence of falls than their
age-matched healthy counterparts [3]. Moreover, falls are the most frequent adverse

event among hospitalised older adults, accounting for 32% of patient safety incidents
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in the United Kingdom [7].

About 30 to 50% of falls lead to minor injuries, such as bruises or lacerations.
However, 5 to 10% of falls result in major injuries, such as fractures and Traumatic
Brain Injury (TBI) [63, 64]. Falls account for 90% of all hip fractures and 46% of
deaths in TBI patients [3, 63]. Furthermore, about 50% of older adults who fall are
unable to get up by themselves after the event. Hence, those who fall in private
spaces (e.g. their own houses) often remain on the ground for a long time, which
leads to further issues, such as dehydration, pressure sores, rhabdomyolysis and
pneumonia [65].

Besides, 40% of older adults who fall have their activities of daily living
restricted after the initial event, since they develop a marked fear of falling once
again [66]. Their restrained activity leads to a decline in physical fitness, isolation
and depression, which in turn increases the risk of further falls [66].

Falls also have a sizeable impact in terms of costs for healthcare systems
and society. In the United Kingdom alone, the annual cost to the National Health
Service (NHS) has been estimated at £2.3 billion per year [67]. Moreover, falls
lead to indirect costs, such as the loss of productivity of family members and other
caregivers. The average lost earnings due to falls could approximate £30,000 per

annum for the United Kingdom [6].

2.3.3 Risk factors and other associations

A risk factor is defined as “any attribute, characteristic or exposure of an individual
that increases the likelihood of developing a disease or injury [68].” In the context
of falls, a risk factor is the presence of a condition which, due to its direct impact on
the balance control system, leads to an increased risk of falling. On the other hand,
an association is a statistically significant correlation between a condition and a fall,
without a direct causal relationship between the associated factor and falling.

Risk factors for falls are usually categorised into intrinsic and extrinsic [3].
Intrinsic risk factors comprise age-related changes to the balance control system,
specific medical conditions and behavioural factors. Extrinsic risk factors comprise
fall hazards in and around the home, as well as inadequate footwear. Intrinsic and
extrinsic risk factors for falls are summarised in table 2.1 and described in detail

below.
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Table 2.1: Risk factors for falls in older adults [3]. Intrinsic risk factors include age-
related changes in any of the sensory, neural or motor systems involved in balance
control, some specific medical conditions and health-related behaviours. Extrin-
sic risk factors include the footwear used by the person and some elements in the
environment, especially at home.
Intrinsic risk factors
Age-related changes Sensory system
Central nervous system
Motor system

Medical conditions Neurological/Neurodegenerative problems
Cardiovascular problems
Visual problems
Osteoarthritis
Urinary incontinence
Cognitive and mental factors

Behavioural factors Use of medication
Sleep quantity and quality

Extrinsic risk factors
Home environment Poor lighting
Slippery surfaces
Loose rugs
Footwear Use of slippers

2.3.3.1 Intrinsic risk factors

Age-related changes. Balance control requires the integration of the sensory,
nervous and motor systems. Adequate functioning of these systems declines with
age, increasing fall risk. This decline in function is observed even in the absence of
disease. Many older people with a history of falls have no identifiable neurological
or musculoskeletal disease, yet perform poorly in tests of sensorimotor function [69].

Impaired sensory function produces inaccurate and conflicting sensory infor-
mation about body posture. The decline of the nervous system results in abnormal
sensory weighting and sensorimotor integration, producing imprecise corrective re-
sponses to perturbations of balance. Impaired motor function hinders the execution
of these corrective responses.

Age-related changes to the balance control system are listed and described

below.

1. Sensory system. Healthy ageing is accompanied by changes in the sensory
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subsystems involved in balance control, which are briefly described below.
Also, with ageing the nerve connections from the sensory system to the CNS
lose fibres and myelin coatings, leading to a reduction in nerve conduction,

thus slowing down feedback responses for controlling balance [70].

(a) Vestibular system. Healthy ageing is accompanied by a loss of sensors in
the vestibular organs, reflected in lower amplitudes of responses elicited
by vestibular electrical stimulation [2]. Besides, the prevalence of vestibu-
lar pathologies increases from around 50% in the 7th decade to 85% in
the 9th decade of age [71]. Vestibular disorders increase fall risk, yet it is
not yet clear whether reduced vestibular function in healthy, older adults
also has this effect [72].

(b) Visual system. A progressive decline in vision (i.e. visual acuity, depth
perception, contrast and glare sensitivity, and dark adaptation) starts
around the age of 50 [72]. Yet, after the age of 60, the improvement
in visual acuity provided by prescription lenses decreases [73]. Impaired
depth perception is considered one of the strongest risk factors for mul-
tiple falls in community-dwelling older adults [74]. The likelihood of
tripping over obstacles, such as steps, edges and cracks in the footpath

increases with a loss of contrast sensitivity [72].

(c¢) Proprioceptive and exteroceptive somatosensory systems. The number
and sensitivity of muscle spindles and skin receptors in the foot soles de-
crease with ageing. Older women show 3 to 4 times higher threshold for
the detection of movement in the ankle than young women [75]. Reduc-
tions in acuity of posture and movement perception of the knee, ankle

and big toe are associated with a higher fall risk [70].

2. Central nervous system. Healthy ageing is accompanied by a loss of brain
cells and neural connections, with the prefrontal cortex and the cerebellum
suffering the most and least prominent losses, respectively. These losses lead
to a decreased ability to integrate sensory information, making older adults
more sensitive to sensory perturbations [2]. These brain changes are associated

with impaired balance control and increased fall risk [49].

3. Motor system. Healthy ageing is accompanied by a progressive decrease in
muscle mass, which results in a decline of muscle strength [4]. Muscle weak-
ness of the lower limbs is highly correlated with fall risk in older adults, while
muscle strengthening exercise interventions improve balance control [4]. Mus-

cle power also decreases with age, due to changes in the contractile properties
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of muscle fibres and a decreased stiffness of tendons. As a result, older adults

are limited mainly in performing fast dynamic movement tasks, and thus often

less successful in regaining their balance after tripping over an obstacle than

young adults [2].

Medical conditions. Frail, older adults with multiple chronic illnesses experience

higher rates of falls than their more active, healthier counterparts [76]. This is so

because many falls occur as a result of specific, identifiable medical conditions. These

medical conditions are listed below.

1. Neurological and neurodegenerative problems

(a)

Stroke. After a stroke, many people are unable to produce enough muscle
force in lower limbs and to coordinate the activation of different muscle
groups. Cerebrovascular accidents are common in older adults and are

associated with a two to sixfold increase in fall risk [77].

Vestibular pathologies, such as Meniere’s disease, produce obvious bal-
ance impairments in standing and gait. These pathologies are reflected
in larger body sways and increased BoS during standing, as well as in
unsteady gait patterns. Vestibular pathologies are also the most frequent
cause of persistent and recurrent symptoms of dizziness often reported
by older adults [77].

Peripheral neuropathy can result from diabetes mellitus, alcohol abuse,
vitamin B12 deficiency and chemotherapy, among others [77]. Peripheral
neuropathy affects proprioception, thus impairing balance. Peripheral

neuropathy is associated with a higher fall risk [77].

Parkinson’s disease (PD) patients show tremor, extreme slowness of move-
ments and reflexes, and muscular rigidity. Many people suffering from
PD experience frequent falls, due to their rigid posture, gait and impaired

ability to respond to external perturbations [77].

Alzheimer’s disease (AD) patients exhibit an altered gait pattern and
increased gait stability. The prevalence of falls in these patients is higher

to that of their healthy age-matched counterparts [3].

2. Cardiovascular problems

(a)

Orthostatic Hypotension (OH) is “a sustained reduction of systolic blood

pressure of at least 20 mmHg or diastolic blood pressure of 10 mmHg
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within 3 minutes of standing [78].” This condition affects approximately
30% of older adults living in the community and 70% of those living in
nursing homes [79]. In a study including 722 patients with uncontrolled
hypertension, older adults with OH had a higher fall risk than those
without OH [80].

Atrial Fibrillation (AF). A study involving 442 patients identified AF
as an independent risk factor for nonaccidental falls in elderly patients
admitted to the emergency room with a fall complaint [81]. In this sample
of older adults, the prevalence of AF was significantly higher in those with

a non-accidental fall than in patients with an accidental fall.

3. Visual problems

(a)

Cataracts, an abnormal increase in the opacity of eye lenses, are a com-
mon cause of impaired vision in older people, affecting approximately
16% of those over the age of 65 [72]. A study of 3,299 people over the
age of 45 years reported that cataracts were significantly associated with

a history of multiple falls in the previous 12 months [77].

Glaucoma, a term comprising a group of diseases characterised by an
increase in intraocular pressure, produces alterations in the visual field.
Glaucoma affects approximately 3% of people over the age of 65 and has
been reported to be associated with increased fall risk in retrospective

and prospective studies [72].

4. Osteoarthritis is a degenerative disease of articular cartilage that mainly af-

fects the major joints of the lower limb, leading to structural deformity and

decreased range of motion [77]. Older people with knee and hip osteoarthri-

tis have difficulty performing the activities of daily life. Several studies have

found osteoarthritis to be an independent risk factor for falling [77].

5. Urinary incontinence is a common problem in older adults, with up to 34% of

older men and 55% of older women suffering from it [77]. Both retrospective

and prospective studies have consistently reported urinary incontinence to be

a strong risk factor for falls in community-dwelling and institutionalised older

people [77].

6. Cognitive and mental factors

(a)

Dementia affects between 6 to 10% of community-dwelling older people

and has been reported as a strong risk factor for falls in several studies
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[77]. The mechanisms underlying this relationship are unknown as yet.
However, it has been suggested that the cognitive impairment associ-
ated with dementia limits the person’s ability to deal with environmental

hazards, increasing the risk of falling [77].

(b) Depression is a common mental health condition in later life, with 15% of
community-dwelling older adults reporting significant depressive symp-
toms, while in nursing homes the prevalence can be as high as 25% [77].
Older adults suffering from depression have a 7.5 times higher likelihood
of experiencing a fall than their healthy counterparts [77]. The mecha-
nisms underlying the relationship between depressive symptoms and falls
are not yet fully understood. However, it has been suggested that older
people who suffer are less physically active, which increases their fall risk

due to reduced muscle strength and coordination [76].

Medication. The use of multiple medications is significantly associated with an
increased fall risk [82]. Initially, multiple drug use was understood to be a proxy
measure for poor health. However, there is increasing evidence suggesting that falls
linked to use of medication are the result of adverse reactions to one or more drugs,
harmful drug interactions and incorrect use [82].

Besides, some studies have investigated the associations between an increased
fall risk in older adults and the use of specific drug groups [3, 82]. Among these drug
groups, psychoactive medications (including antidepressants, sedatives/hypnotics,
antipsychotics, and drugs used to treat bipolar disorder and dementia), as well as
cardiovascular medications (including anti-arrhythmics and cardiotonics) are weakly

but significantly associated with fall risk.

Sleep. Healthy ageing is accompanied by a reduced ability to initiate and maintain
sleep, resulting in sleep discontinuities (i.e. sleep fragmentation) and shorter sleep
duration [83]. Some prospective studies have found associations between sleep and
risk of falling in older adults [16-19].

A study of 2,978 community-dwelling older women found that the odds of
having 2 or more falls in the subsequent year was higher for women who slept 5
hours or less per night than for those who slept 7-8 hours per night [17]. Indexes of
sleep fragmentation (i.e. ”interrupted” sleep) were also associated with an increased
risk of falls. For instance, women with poor sleep efficiency (less than 70% of the
time in bed spent sleeping) had a 1.36-fold increased odds of falling compared with
the others [17].
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Similarly, a study of 3,101 community-dwelling older men found that the
odds of having 2 or more falls in the subsequent year was higher for men who slept
5 hours or less per night than for those who slept 7-8 hours per night [18]. Low
sleep efficiency (less than 70%) was also associated with a higher fall risk.

The association between sleep duration and fall risk was confirmed in a sys-
tematic review and meta-analysis of seven observational studies [84]. The meta-
analysis showed that the odds of having one or more falls in the past or subsequent
year was higher for older adults who had shorter sleep durations than for those who
had "normal” sleep durations.

Additionally, a recent study of 1,071 community-dwelling older adults inves-
tigated the association between subjective sleep quality and risk of falls in older
people [19]. Multivariable analysis revealed that participants reporting worse sub-
jective sleep quality had significantly higher odds of experiencing falls during the
1-year follow-up period. This association was similarly significant in subgroup anal-
yses for older men and women.

The findings above are relevant for fall risk assessment and prevention in
older adults. Still, to the best of the author’s knowledge, sleep has not yet been

included in any fall risk assessment programme.

2.3.3.2 Extrinsic risk factors

Identifiable environmental hazards are not significant risk factors for falling among
older people as a whole. This is particularly the case for older people’s own homes
[85]. However, the interaction between an older person’s physical disabilities and
exposure to environmental stressors does appear to be central in their risk of falling.
Although falling rates are lower in healthy older people than their frailer counter-
parts, environmental hazards have a higher contribution to falls in this group.

The home environment plays an essential role within this category of risks
for falls. For example, poor lighting, slippery floor surfaces and loose rugs may
increase the risk of falls. These factors are more problematic in individuals with
visual impairment [3]. Contrast sensitivity diminishes in older age and may be
further compromised by concurrent ocular disease.

Footwear is another essential extrinsic risk factor, which affects postural sta-
bility and thus influences the incidence of accidental falls [3]. In a systematic review,
Menant et al. reported that older people who wore slippers had a higher falls risk

score than those who walked barefoot or with fastened shoes [86].

26



2.4 Assessment of balance control

Multiple methods to assess balance in older adults have been suggested, ranging
from simple questionnaires and functional mobility tests requiring no more than
a stopwatch, to complex techniques relying on force-sensing platforms and optical
motion capture systems, among other items of equipment [4, 8]. These methods
are often used to identify balance impairments and their cause, to assess fall risk
and to assess the effects of interventions meant to improve balance control. The
most common clinical tests assess balance in unperturbed standing (static balance)
or balance in gait or other functional tasks (dynamic balance). In general, these
clinical tests quantify the ability to maintain balance during a particular task or the
quality of the performance of a balance task. Also, there are physiological tests that
assess the functioning of specific subsystems involved in balance in order to identify
potential causes for impaired balance [4]. This section presents the techniques and

methods to assess balance that are relevant to this research.

2.4.1 Subjective assessment of balance problems

Questionnaires are the simplest tool to assess fall risk in older adults. These tools
often explore indicators of prospective falls, such as the individual’s fear of falling
or balance confidence [87]. Fear of falling is defined as the concern that one may fall
while performing daily-life activities. High fear of falling is associated with worse
balance performance in standing and gait [2]. It can be measured with the Falls
Efficacy Scale International (FES-I), a 16-item questionnaire [88], or its shortened
7-item version [89].

A history of falls in the previous year is also a strong predictor of future
falls, thus an important indicator of impaired balance [56]. Hence, clinical fall risk
assessment often starts with the clinician asking the person about her fall history.

Another subjective tool for the assessment of balance impairments is the
Mini-Balance Evaluation Systems Test (Mini-BESTest). This test contains 14 items
in four different domains: anticipatory postural adjustment, reactive postural re-
sponse, sensorial organisation and gait stability. Each item is scored from 0 (abnor-
mal performance) to 2 (normal performance) points, producing a maximum total

score of 28 points [90].

2.4.2 Static balance tests

Static balance tests can be performed by measuring postural sway in unperturbed

standing with a motion capture system, comprising body markers that are placed
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on important body landmarks and infrared cameras that capture the movement of
these markers. Alternatively, wearable inertial sensors can be used to measure the
movement of body segments. In any case, data collected with the cameras or the
inertial sensors are used to estimate the location of the body CoM over time or
CoM excursions. This technique, known as static posturography, allows measuring
the amplitude, velocity, and acceleration of movements of the body CoM in Anterior-
Posterior (AP) and Medial-Lateral (ML) directions [25].

Most frequently, static balance is assessed by measuring Centre of Pressure
(CoP) motion in unperturbed standing. The CoP is the point of application of the
vertical ground reaction force vector and represents a weighted average of all the
pressures over the surface of the area in contact with the ground [1]. It is typically
acquired with a force-sensing platform, which produces a two-dimensional time-
series representing the CoP trajectories in the AP and ML axes. In other words, the
CoP is a bivariate distribution, jointly defined by its AP and ML coordinates [91].

To assess the balance control system in a natural state, subjects are usually
allowed to stand still in a comfortable, self-selected stance, facing towards the pos-
itive AP direction of the force platform [91]. In bidepal standing, the net CoP lies
somewhere between the two feet, depending on the load taken by each lower limb.
Yet, there are separate CoPs for each foot. If one force platform is used then, only
the net CoP is available. Two force platforms are required to quantify the CoP
changes within each foot [1].

The body CoM and CoP are independent, yet there is an interplay between
them. Figure 2.4 illustrates the difference between CoP and CoM. Briefly, the
location of the CoP under the feet is a direct reflection of the neural control of the
ankle and hip muscles in order to maintain the CoM over the BoS, as described in
subsection 2.2.1.

Several manipulations can be introduced during static posturography in order
to assess balance control under different testing conditions. Popular manipulations
are decreasing visual feedback (e.g. eye closure), decreasing proprioceptive feedback
(e.g. standing on a compliant surface) or a combination thereof [25]. Figure 2.5
shows the CoP excursions from a young adult and an older adult during unper-
turbed standing under four different surface-vision testing conditions: eyes open-
rigid surface, eyes closed-rigid surface, eyes open-foam surface and eyes closed-foam

surface.

Analysis of centre of pressure data. Filtering of the signal is usually the first

step in CoP analysis [26]. For the study of unperturbed standing, a fourth-order
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Figure 2.4: Illustration depicting the difference between centre of pressure (CoP)
and centre of mass (CoM) displacements in the anterior-posterior (AP) and medial-
lateral (ML) directions during the quiet standing posture (A) and examples of the
CoP and CoM for a young adult (25 years old) (B) and an older adult (70 years
old) (C). Data sourced from a public dataset [27].

Butterworth low-pass filter with a cut-off frequency of 5-10 Hz has been suggested,
as the components of the CoP signal frequency are below 10 Hz (with most of them
below 5 Hz) [26, 91].

Subsequently, it is a common procedure to remove the mean of the CoP
time-series [26, 91]. The rationale for such a procedure is that the mean position
of the CoP is not of interest, as it is simply dependent on the absolute position of
the subject on the force plate, which is not necessarily controlled. In mathematical
terms, given two time-series of length N, APy and M Lo, which represent the CoP

displacement relative to the origin of the force plate coordinate system, the mean
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Figure 2.5: Centre of pressure excursions during quiet standing for (A) a young
adult (25 years old) and (B) an older adult (70 years old) under four different
vision-surface testing conditions: open-rigid, closed-rigid, open-foam and closed-
foam. Data sourced from a public dataset [27].

30



position of the CoP is defined by the arithmetic mean of APy and M Lo, given by
[91]):

yy 1§:APo(n) (2.1)
N n=1
1 X

L=+ nzl MLo(n) (2.2)

The AP and ML coordinates of the CoP relative to its mean position are

computed from equations 2.1 and 2.2 as follows [91]:

AP(n) = APp(n) — AP forn=1,...,N (2.3)

ML(n)=MLo(n)— ML  forn=1,...,N (2.4)

Finally, the time-series AP and ML are characterised using a number of
quantitative descriptors or measures [91]. These measures can be categorised into
global and structural [8, 26].

Global measures

The starting point of the analysis of CoP time-series is the calculation of their basic
characteristics in the time and frequency domain. This approach assumes that
the balance control system has a linear nature and thus can be characterised by
measures computed over the entire time-series, hence the name global measures [8,
26]. Time-domain global measures include amplitude and standard deviation, while
frequency-domain measures include mean and median frequency of the signal.

The global CoP measures used in later chapters are:

1. Amplitude of displacement (AdCP) is the distance between the maximum and

minimum CoP displacement for each direction [8, 26]:

AdCPsp = max (AP) — min (AP) (2.5)

AdC Py, = max (ML) — min (ML) (2.6)

2. Standard deviation (SD) represents the dispersion of the CoP displacement

around the mean for each direction. Since the time-series AP and M L have a
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mean equal to zero, their standard deviation can be computed by [8, 26, 91]:

N
1
SDap=\| 37— > AP(n)? (2.7)
o n=1
1 N
— 2
SDyL = \| 7 ;ML(n) (2.8)

3. Mean velocity (MV) is the average velocity of the CoP in the AP and ML di-
rections and is approximated by dividing the total length of the CoP excursion

in each direction by the duration of the recording, 7" [91]:

N-1

MVap = % > |AP(n+1) — AP(n)| (2.9)

n=1

N-1
1
MVy ==Y |ML(n+1) - ML(n)| (2.10)
T n=1
4. Total length (DOT) quantifies the magnitude of the two-dimensional displace-
ment of the CoP over the BoS, and is approximated by the sum of the distances

between consecutive points of the CoP excursion [91]:

N—-1
DOT = > /[AP(n+1) = AP(n)]> + [ML(n + 1) - ML(n)>  (2.11)

5. Total mean velocity (TMV) is the average velocity of the CoP in the AP and
ML directions and is approximated by dividing the total length of the CoP

excursion by the duration of the recording, 7" [91]:

TMV = DTOT (2.12)

6. Area is an estimate of the dispersion of the CoP data in the AP and ML,
obtained through the computation of the area of the ellipse that contains 95%
of the CoP data points [8, 26]. The most common method to calculate this
area is through the statistical method of analysis of the principal components

suggested by Duarte et al. [26]:
Area = 7 x prod(2.4478 x +/svd(val)) (2.13)
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where val is a 2-by—2 matrix containing the eigenvectors of the 2—by—2 matrix
obtained from the calculation of the covariance between time-series AP and
ML, svd is an operator that returns the singular values of matrix val, and

prod is the product of the elements in the matrix [26].

The existence of age-related differences in CoP global measures has been
widely acknowledged by researchers and clinicians [8, 26, 91]. Yet, their predictive
value for fall risk is not clear as yet [92]. Therefore, the interpretation of global
measures is still open to discussion.

A limitation of global measures is that they are not sensitive to structural
variations in CoP excursions, a feature which could potentially provide more in-
sights into the mechanisms of balance control. A complementary approach is the
use of measures that are sensitive to structural variation in time-series, i.e. struc-

tural measures.

Structural measures

Nonlinear dynamic time-series analysis has been proposed as a tool to investigate
the characteristics and mechanisms of physiological systems and, in particular, of
the balance control system [8, 26, 29]. The assumption underlying this approach is
the idea that the balance control system must be considered a nonlinear system (i.e.
its reactions are not proportional to the applied stimuli) [20]. In contrast to global
measures, quantitative descriptors of nonlinear dynamics are sensitive to structural
variations within time-series, hence they are often referred to as structural measures
within the balance research community [8, 26].

Unfortunately, the estimation of nonlinear quantitative descriptors or mea-
sures usually requires very long time-series [29]. In practice, the data obtained
experimentally are often short in length. Static posturography, in particular, gener-
ally produces CoP time-series of short duration (i.e. 20-60 seconds), especially when
assessing older adults as it can be challenging for some of them to stand still for one
or more minutes [26, 188]. Therefore, nonlinear CoP time-series analysis needs the
application of nonlinear measures that can be estimated robustly using short data.

Approximate Entropy (ApEn) [110] and Sample Entropy (SampEn) [111] are
nonlinear measures well suited to the analysis of short and noisy data. Thus, they
are extensively used in later chapters for the analysis of CoP time-series. These
methods quantify the regularity or self-similarity of time-series by examining them
for similar epochs or subseries: more frequent, similar subseries lead to lower entropy
values. Thus low ApEn and SampEn values reflect a high degree of regularity or

self-similarity [110, 111]. Regarding CoP time-series analysis, relatively high entropy
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values may be indicative of balance control mechanisms that are too random to
command balance properly, whereas relatively low values may describe a balance
control that is too stiff to cope with situations that require flexibility [21].

The paragraphs below present the mathematical formulation and interpreta-

tion of ApEn and SampEn, as well as a comparison between both algorithms.

Approzimate Entropy (ApEn). Given the original time-series (u(n)) with the form
(u(n)) = u(1), u(2), .., u(N)

where N is the total number of data points (i.e. data length), ApEn is defined and
computed by the following step-by-step algorithm [28, 110]:

1. Fix m, an integer, and r, a positive real number. m represents the length
of the epochs or subseries to be compared to each other, and r specifies the

similarity tolerance for accepting matches between subseries.

2. Form a sequence of subseries X (1), X(2),...,X(N —m + 1) such that:

X (i) = [u(i),...,u(i +m —1)] fori=1,...,N—m+1 (2.14)

3. For a given X (7), find:

N (i) = number of d[X (i), X (j)] < £r x SD, A (2.15)

where d[X (i), X (7)] is the distance between X (i) and X (j), defined as:

d[X (i), X(5)] = max [|z(i + k) —z(j + k)|] fork=0,....m—1 (2.16)

and SD, is the standard deviation of the original time-series (u(n)), i.e.,

(p— 1 ’
SD, = N1 2 [x(n) N 321 x(n)] (2.17)
Then, compute:
mey _ V()
GO =y (2.18)

This step is performed over all ¢, i.e. t=1,..., N —m+ 1.

34



4. Calculate

1 N—-—m+1
= InC)" (i 2.1
A Zl n G (i) (2.19)

5. Increase the subseries length to m + 1 and repeat steps 2 to 4 to find ¢ +!

6. Estimate ApEn by computing

ApEn(m,r,N) = ¢]" — ¢+ (2.20)

The meaning of ApEn can be intuitively explained with the aid of Figure
2.6, which shows a time-series with 30 points (this example has been adapted from
literature [28]). For m = 2, each X (i) = [z(4),z(i + 1)] is a line segment joining
every two consecutive data points [e.g., when i = 8, X (8) = [z(8),x(9)] is shown
as a thick line in Figure 2.6(A)]. Two horizontal bands I and II, each of width
2 x r x SD,, can be drawn around z(i¢) and x(i + 1). They are the tolerance
regions that satisfy the requirement d[X (i), X(j)] < 2 x r x SD,. As shown in
Figure 2.6(A), in addition to X (8) itself, there are three other vectors satisfying
the requirement; namely X (15), X (19) and X (24). Thus N"™=2(i = 8) = 4 and
Cr=2(i =8) = 4/(N —m + 1) = 4/29 = 0.1379. In other words, N/=2(i) is the
total number of line segments (i.e. two-point subseries) formed by all the consecutive
points in the sequence that are ”close” to X (i) within the tolerance £r x SD,
and C™=2(i) is the frequency of its occurrence. Thus, ¢/ represents the average
frequency of all m-point patterns in the sequence being close to each other.

Similarly, when m = 3, X (i) = [z(i),2(i + 1),2(i + 2)] is a three-point
pattern formed by joining every three consecutive data points (for instance, X (8) =
[#(8),2(9),7(10)] is shown in Figure 2.6(B)) and N™=3(i) is the total number of
such three-point patterns X (j) = [z(j),z(j + 1),z(j + 2)] in the time-series that
are close to X(j) within the tolerance +r x SD,. As shown in Figure 2.6(B),
for the given example, only X (15) and X (19) satisfy the requirement, but X (24)
fails because its third element, x(26), falls outside the tolerance band III of x(10).
In this case, C™=3(i) is the frequency of occurrence of three-point patterns in the
sequence that are close (within the tolerance band) to the three-point pattern X (i) =
[x(7),z(i+1),2(i+2)]. Thus, ¢ represents the average frequency of all m+ 1-point
patterns in the sequence being close to each other.

Finally, ApEn(m,r) = ¢ — ¢! is the difference between the frequency
that all the two-point patterns in the sequence are close to each other and the fre-

quency that all the three-point patterns in the sequence are close to each other.

35



(A) m=2

Region I 7 X(8) / (15) X(19) (24%\ 1
_ \ // \ /,f’ // / / v4 p Va \ / /// ‘\\ 4
Region 11 / \ / \
B ATATRY ‘ w
0 5 10 15 20 25 30
B) m=3

\\ \\\
. i 24 b
Region 111 /\ X(8) / (15) /Y(w) ( \
EAVAV. \ /o .
4 \ \\ \ /]
‘ J \/ (Y

25 30

10 15 20

Figure 2.6: Graphical interpretation of approximate entropy. Adapted from the
literature [28].

Thus, ApEn(m = 2,r) expresses the degree of new pattern generation when the
dimension m decreases from 3 to 2. A large value of ApEn means that the chance
of new pattern generation is high, so the time-series is irregular (e.g. white noise);

conversely, a small value of ApEn corresponds to a regular time-series (e.g. a peri-
odic signal) [110].

Sample Entropy (SampEn). Given the original time-series (u(n)) with the form

where N is the total number of data points (i.e. data length), SampEn is defined
and computed by the following step-by-step algorithm [111]:

1. Fix m, an integer, and r, a positive real number. m represents the length
of the epochs or subseries to be compared to each other, and r specifies the
similarity tolerance for accepting matches between subseries.

2. Form a sequence of subseries X (1), X(2),...,X(N —m + 1) such that:

X (i) = [u(@),...,u(i+m —1)] fori=1,...,.N—m+1
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3. For a given X (i), find:

N]™(i) = number of d[X (i), X (j)] < £r x SD, Vi #i (2.21)

where d[X (i), X (j)] is the distance between X (i) and X(j), defined as:

d[X (i), X(5)] = max [|z(i + k) —z(j + k)|] for k=0,....m—1 (2.22)

and SD, is the standard deviation of the original time-series (equation 2.17).

Then compute

B'(i) = ]\f]i[;:n(l)—l (2.23)
This step is performed over all ¢;i.e. i=1,...,N —m.
4. Calculate
m 1 = m
Bl' = Z; B™ (i) (2.24)

5. Increase the subseries length to m + 1 and repeat steps 2 to 3 to find A" (7)

fori=1,..., N —m and then compute
m 1 = my,;
Al = z; A™ (1) (2.25)
6. Estimate of SampEn by computing
Am
SampEn(m,r,N) = —In Bj” (2.26)

r

In the above definition, B]" is the probability that two subseries will match
for m points, whereas A]"* is the probability that two subseries will match for m + 1
points [111]. As a result, SampEn is the negative natural logarithm of the condi-
tional probability that two subseries within a tolerance r x S D,, for m points remain
within 7 x SD,, of each other at the next point [111]. Therefore, a lower SampEn

value also indicates more self-similarity or regularity in the time series.

Comparison between ApEn and SampEn
As mentioned above, both ApEn and SampEn quantify the regularity of time-series,
with lower entropy values reflecting a higher degree of regularity. However, a seem-

ingly minor difference in the criterion used by each algorithm to establish similarity
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between subseries leads to a substantial difference between them: ApEn counts
self-matches when comparing subseries X (i) and X (j), whereas SampEn does not.
This difference is made explicit by comparing equations 2.15 and 2.21. In practical
terms, the fact that ApEn counts self-matches inherently produces a bias towards
regularity (i.e. an inflated entropy value).

It has also been mentioned that ApEn and SampEn can be estimated on
short and noisy data. The first feature is related to the fact that both measures are
based on conditional probabilities, which require less data than joint probabilities
to produce a reliable estimate [28]. Nevertheless, SampEn shows a more consistent
behaviour than ApEn over a wider range of data lengths [111]. The second feature
is the result of allowing a tolerance range, given by +r x SD, (equations 2.15 and
2.21), to establish similarity between subseries in order to account for the presence
of noise in the data [110, 111].

Research gaps
The appropriate selection of parameters m (subseries length),  (similarity tolerance)
and N (data length) is critical. Traditionally, for clinical data, m is to be set at 2 or
3, 7 is to be set between 0.1 and 0.25 times the standard deviation of the data and N
as equal to or greater than 1000 [110, 111]. However, these recommendations were
based on the analysis of cardiac and respiratory time-series, thus do not always
produce optimal results for all types of data. Therefore, an investigation of the
effects of changing parameter values on the computation of ApEn and SampEn for
specific types of data is needed. A previous study addressed this issue in the context
of spatiotemporal gait measures analysis (i.e. step length, step width and step time)
[112]. However, the issue has not been investigated systematically when dealing with
CoP time-series.

Moreover, the existence of group and testing-condition differences in ApEn
and SampEn values has been proved in previous studies. However, the predictive

value of ApEn and SampEn for fall risk has not yet been formally investigated.

2.4.3 Dynamic balance tests

Dynamic posturography assesses the response to experimentally-induced balance per-
turbations. A first approach is to use a movable support surface (e.g. a movable
force-sensing platform). Movable platforms can produce rapid and brief horizontal
and vertical translations, rotations and a combination thereof. Their use allows
measuring the subject’s ability to maintain or regain balance after perturbations.

An alternative approach is to apply external perturbations aimed directly at upper
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body segments, for example by pushing or pulling the trunk, shoulder or pelvis [25].
Since dynamic posturography was not used during this research, a detailed
description of the methods used to quantify dynamic balance is beyond the scope

of this thesis. Further information on this topic can be found in literature [25].

2.4.4 Functional balance tests

Functional balance tests measure the ability to maintain balance in tasks such
as getting up from a chair, standing, and walking. The Tinetti Balance Test or
Performance-Oriented Mobility Assessment (POMA) [113], the Berg Balance Scale
(BBS) [114, 115] and the Timed-Up-and-Go test (TUG test) [116, 117] are among
the most popular functional balance tests since they are inexpensive and straight-
forward. The outcomes of these functional balance tests are often interpreted in
relation to fall risk. For instance, the TUG test is often used to assess fall risk but
does not differentiate older fallers from non-fallers [118]. Also for the other tests,
there is no or minimal evidence for a predictive value concerning fall risk [119].
Currently, instrumented versions of functional balance tests are developed
and used with the aim of obtaining objective and precise results and achieving a
higher sensitivity to subtle balance impairments [12]. Wearable inertial sensors (e.g.
micro-electronic devices integrating accelerometers and gyroscopes) are among the
most used sensors since they provide kinematic data of movements in a functional
task such as walking and getting up from a chair (Figure 2.7) [10]. However, some
reviews on the topic have acknowledged an issue in the variety of sensor placements,
functional tasks and measured variables that have been used in previous studies
[11, 12]. This heterogeneity hinders a consensus on the optimal wearable inertial

sensor-based protocol for assessing fall risk in older adults.

2.5 Sleep in older adults

2.5.1 Normal sleep and sleep structure

Sleep is a reversible behavioural state of perceptual disengagement from and unre-
sponsiveness to the environment, accompanied by alternating cycles of physiological
processes [120].

Sleep is classified into Non-Rapid Eye Movement (NREM) and Rapid Eye
Movement (REM) sleep, with NREM further divided into stages N1 to N3. NREM
and REM sleep occur in alternating cycles, each lasting approximately 90 to 110

minutes in healthy adults, with approximately 4 to 6 cycles during an average 6 to
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Figure 2.7: Acceleration signals from a lower leg during gait. These signals were
recorded with the accelerometer embedded in a smartphone (Samsung Galaxy Core
Prime) while the subject walked 3-metre long straight course, turned 180 degrees
and walked back. The cyclical nature of gait is apparent from the anterior-posterior
and vertical acceleration signals. AP anterior-posterior axis, ML medial-lateral axis,
VT vertical axis. Data collected by the author.

8 hour sleep period [121]. However, these timings are dependent on many factors,
such as age, use of medication, and physical and mental health.

In healthy young adults, NREM sleep accounts for 75 to 90% of sleep time,
while REM sleep accounts for 10 to 25% of sleep time. NREM sleep comprises 3
to 5% in stage N1, 50 to 60% in stage N2 and 10 to 20% in stage N3. Stages N1
and N2 are known as light sleep and stage N3 as deep sleep or Slow Wave Sleep
(SWS). Cardiovascular activity is at a 24-h low in deep sleep, whereas there is little
difference between REM sleep and wakefulness.

Sleep stages are often interrupted by micro-arousals (1.5 to 3 seconds of

increased physiological activity) and short awakenings (shorter than 15 seconds).

2.5.2 Sleep parameters

Some parameters concerning the quantity and quality of sleep are usually included

in a sleep study report [122]:

1. Sleep Onset Latency (SOL), or sleep latency, is defined as the duration of time
between the moment a person attempts to sleep until he/she falls asleep. SOL

reflects the person’s ability to initiate sleep.

2. Wake After Sleep Onset (WASO) is defined as the cumulative duration of all
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Table 2.2: Summary of sleep parameters usually reported in a sleep study [122]

Parameter Units Definition

Interpretation

SOL minutes  Duration of time between the
moment a person attempts to
sleep until he/she falls asleep

WASO minutes  Cumulative duration of all pe-
riods of wakefulness occurring
after sleep onset

TST hours Total amount of sleep time,
from sleep onset to sleep off-
set, but excluding WASO

SE % Percentage of total time in
bed spent in sleep

Ability to initiate sleep

Ability to maintain
sleep. A more inter-
rupted or fragmented
sleep is deemed of poor
quality

Sleep duration or quan-
tity

A proxy measure of
sleep quantity and qual-
ity

SOL sleep onset latency, WASO wake after sleep onset, TST
efficiency

total sleep time, SE sleep

periods of wakefulness occurring after sleep onset. WASO is a measure of sleep

fragmentation and reflects the person’s ability to maintain sleep.

3. Total Sleep Time (TST) is the total amount of sleep time, from sleep onset to

sleep offset, but excluding WASO.

4. Sleep Efficiency (SE) refers to the percentage of total time in bed spent in

sleep. It is a combined reflection of the ability to initiate and maintain sleep.

2.5.3 Age-related changes in sleep

Healthy ageing is accompanied by a reduced ability to initiate and maintain sleep.

Some of the changes in sleep architecture that are observed from the fifth decade

and beyond are [83]:

1. earlier bedtimes and rise times
2. longer sleep latency (i.e.SOL)

3. shorter sleep duration (i.e. TST)

4. increased sleep fragmentation (i.e. less consolidated sleep with more awaken-

ings, arousals, or transitions to lighter sleep stages)
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5. more fragile sleep (i.e. higher likelihood of being woken by external sensory

stimuli)
6. reduced amount of deeper sleep
7. increased time spent in lighter NREM stages 1 and 2
8. shorter and fewer NREM-REM sleep cycles

9. increased time spent awake throughout the night

Furthermore, sleep disorders are especially prominent in later life [83].

2.5.4 Assessment of sleep
2.5.4.1 Subjective assessment of sleep

The Pittsburgh Sleep Quality Index (PSQI) is a self-reported 19-item questionnaire
that assesses sleep quality over the past 1-month time interval [30]. This instru-
ment measures several aspects of sleep, producing seven component scores and one
composite score. The component scores consist of subjective sleep quality, sleep
latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping
medication and daytime dysfunction. Each item is weighted on a 0 to 3 interval
scale. The global PSQI score is then calculated by totalling the seven component
scores, providing an overall score ranging from 0 to 21, where lower scores denote a
healthier sleep quality. A global PSQI greater than five is interpreted as indicative
of poor sleep [30].

A sleep diary provides the means to record daily sleep habits and disturbances
over several days (e.g. bed and wake-up times, number and length of awakenings
during the night). A standardised sleep diary, called the Consensus Sleep Diary
(CSD), has been proposed by collecting, analysing and compiling sleep diaries from
25 sleep experts [31]. The information reported by the user in the sleep diary allows
to estimate traditional sleep parameters (e.g. SOL, WASO and TST), as well as a
score for subjective sleep quality, for each night.

The Epworth sleepiness scale (ESS) is a questionnaire designed to measure
daytime sleepiness [123]. The responder is asked to score his or her propensity to fall
asleep in eight situations involving different levels of stimulation (e.g. sitting and
reading, watching TV and sitting and talking to someone). Significant differences
in ESS scores have been observed between controls and patients suffering from sleep
disorders characterised by excessive daytime sleepiness (e.g. narcolepsy and hyper-

somnia) [123]. However, ESS scores have been found to be uncorrelated with all
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sleep parameters but one (namely, SOL) [123]. Therefore, this scale was discarded
for the studies herein, since they focussed on sleep quantity and quality at night,

not on daytime sleepiness.

2.5.4.2 Objective assessment of sleep

Polysomnography. Polysomnography (PSG) is the “gold standard” modality for
sleep studies. As a minimum, it incorporates Electroencephalogram (EEG), Elec-
trooculogram (EOG) and submentalis Electromyogram (EMG) recordings. These
signals are then used to label 30-sec epochs into sleep stages (NREM stages N1 to
N3 and REM) from which all other sleep parameters are calculated [33, 34]. Other
physiological variables can be collected if needed (e.g., respiration, heart rate, tibialis
muscle movement, oximetry).

Sleeping naturally while wearing a large number of sensors and wires is vir-
tually impossible. Moreover, PSG studies are expensive and require specialised
facilities and staff to score the data. There are many home sleep recording systems
on the market which aim to reduce the financial cost per patient and reach a larger
population. However, the patient has to place the sensors in the correct positions

without the guidance of a specialist, which often leads to poor-quality data [121].

Actigraphy. Actigraphs are electronic devices that can measure and store limb
or body accelerations over periods lasting from a few hours to days or even weeks.
The data collected are displayed on a computer and analysed in wake-sleep based
on activity levels for individual epochs. Actigraphy is thus based on the fact that
during sleep little or no movement occurs, whereas during wake an increase in move-
ment frequency and amplitude is observed. Actigraphy is much less expensive and
unobtrusive than PSG [32].

Modern actigraphs are the size of a wristwatch and collect digitised data.
Physical movement is generally sampled several times per second and stored in 1-
minute epochs. The three primary ways in which signals can be digitised are the
threshold or Zero Crossing Mode (ZCM), Time Above Threshold (TAT) mode and
Proportional Integrating Mode (PIM) [124].

In the ZCM, the signal voltage from the accelerometer is compared with the
reference voltage, and each zero crossing generates an activity count; each movement
above the reference signal generates 2 zero crossings since the signal eventually
recedes below the threshold. The frequency of zero crossings is measured for every
epoch.

In the TAT mode, the signal voltage is compared with the reference voltage
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Figure 2.8: Electrocardiogram with highlighted R-R intervals. Data collected by
the author.

and a count is generated and stored in memory every 10th of a second while the
signal voltage remains above the threshold. The TAT mode is mostly used for
daytime activity monitoring because it is thought to be indicative of the vigour of
measured activity.

In the PIM, the area under the rectified analogue signal is measured for each
epoch, and the accumulated count is stored. The PIM measures movement intensity
by summing the deviations from 0 V every 10th second.

For clinical use, once the data are digitised, computer algorithms automat-
ically score wake and sleep and provide the user with summary statistics. These
computer algorithms generally supply information on sleep latency, sleep duration,
sleep efficiency, wake after sleep onset time, number of awakenings and time between
awakenings [32].

Heart rate variability analysis. Heart Rate Variability (HRV) analysis has
been proposed as a tool to explore autonomic cardiac modulation during sleep [35].
HRV is the variation over time of the interval between consecutive heartbeats (or
similarly in the instantaneous Heart Rate (HR)) due to autonomic neural regulation
of the heart and the circulatory system (Figure 2.8).

HRV is controlled by the activity of the Autonomic Nervous System (ANS).
The ANS connects the body’s nervous system to the main physiological systems,
regulating virtually all of the unconscious mechanisms of the human body, includ-
ing the heart beat [125]. The ANS has two components: the sympathetic and the
parasympathetic branches. Sympathetic stimulation causes an increase in HR by
increasing the firing rate of pacemaker cells in the hearts sino-atrial node. Parasym-
pathetic activity decreases the firing rate of pacemaker cells and the HR, providing a

regulatory balance in physiological autonomic function. The individual regular con-
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tributions from sympathetic and parasympathetic autonomic activity regulate the
heartbeat intervals (R-R intervals) of the QRS complex in the Electrocardiogram
(ECG) (Figure 2.9), at distinguishable frequencies. Sympathetic activity is related
to the low-frequency range (0.04-0.15 Hz) while parasympathetic activity is related
to the high-frequency range (0.15-0.4 Hz) of modulation frequencies of the HR. This
difference in frequency ranges allows HRV analysis to separate sympathetic and

parasympathetic contributions evident [126].

<— QRS complex

PR (— <«— ST segment
segmen
9 T

PR interval
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Figure 2.9: ECG waveform. Image marked as public domain.

HRYV analysis is the ability to assess overall cardiac health and the state of
ANS responsible for regulating cardiac activity [126].

HRYV is a useful signal for understanding the status of the ANS. The balanc-
ing action of the sympathetic nervous system and parasympathetic nervous system
branches of the ANS controls the HR. Increased sympathetic activity or diminished
parasympathetic activity results in cardio-acceleration. Conversely, a low sympa-
thetic activity or a high parasympathetic activity causes cardio-deceleration [126].
Therefore, the degree of variability in the HR provides information about the func-
tioning of the nervous control on the HR.

A higher parasympathetic tone has been observed during NREM, particularly
during deep sleep; in contrast, a higher sympathetic tone has been observed during
wake intervals, REM and sleep arousals [35].

Variations in HR are characterised using several quantitative descriptors or
measures, which are classified in three different categories: time-domain, frequency-
domain analysis and nonlinear analysis [126]. A summary of the HRV measures
used in this research is presented in Table 2.3. These measures were selected based
on the relevance they have for sleep studies [35].

Time-domain measures are the simplest to calculate, thus require less compu-
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tational power. Yet, they do not provide relevant information for sleep studies since
they lack the ability to differentiate between sympathetic and para-sympathetic
activity contributions to HRV. Therefore, they are not included in this thesis.

Frequency-domain measures are obtained from the spectral analysis of the
sequence of NN intervals in the ECG recording. NN intervals are normal R-R
intervals, thus excluding abnormal R-R intervals such as those produced by ectopic
beats. Two main spectral components are distinguished in a spectrum calculated
from ECG recordings in sleep studies: Low-Frequency (LF) and High-Frequency
(HF) components. Measurement of LF and HF components is usually made in
absolute values of power (ms?), yet can also be measured in normalised units (n.u.).
The details for the computation of these normalised measures can be found in Table
2.3. HF power describes the parasympathetic activity, whereas LF power describes
both parasympathetic and sympathetic activity. Thus, the relationship between
both branches usually is explored with the normalised frequency values and the
LF/HF ratio. Broadly speaking, HRV analyses also include the Very Low-Frequency
(VLF) component (i.e. <0.04 Hz) [127]. However, its association with autonomic
activity is much less understood, especially in the context of sleep studies [35, 127].
Therefore, this component was not included in the studies herein. Wavelet-based
methods for HRV analysis have been put forward as an alternative to overcome
the limitations of conventional methods of spectral analysis based on the Fourier
transform when dealing with non-stationary time-series [126]. Unfortunately, the
relationship between sleep stages and wavelet-based features is not well understood
as yet [35]. Alternatively, trend removal may be applied to the R-R interval time-
series without affecting the components of interest for sleep studies (i.e. LF and
HF) [127].

Nonlinear measures in HRV analyses are drawn from recent developments
in the theory of nonlinear dynamics. It is generally accepted that these nonlinear
techniques can improve the characterisation of biosignals. Two of these nonlinear
measures that are of particular interest for HRV analysis in sleep studies are ApEn
and SampEn, which have been described earlier. These entropy measures represent
an index of complexity in the cardiac signal. An increase in complexity (i.e., an
increase in the entropy measure) is associated with parasympathetic modulation,

and its decrease is interpreted as the result of an increased sympathetic tone.
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Table 2.3: Selected heart rate variability measures. HF power describes parasympa-
thetic activity, whereas LF power describes both parasympathetic and sympathetic
activity. The relationship between both branches is explored with the LF/HF ra-
tio. Entropy measures represent an index of complexity in the cardiac signal. An
increase in entropy is associated with parasympathetic modulation and a decrease
with an increased sympathetic tone [126].

Frequency-domain measures

LF ms? Power in the low-frequency range (0.04-0.15 Hz)
LF power in normalised units

LF norm = LF/(LF + HF) x 100

HF ms? Power in the high-frequency range (0.15-0.4 Hz)
HF power in normalised

LF norm = HF/(LF + HF) x 100

LF/HF Ratio LF [ms?] / HF [ms?]

LF norm n.u.

HF norm n.u.

Nonlinear measures
ApEn A measure of the regularity in the NN time-series
SampEn An improved measure of the regularity in the NN time-series

ApEn approximate entropy, SampFEn sample entropy

2.6 Conclusions

This chapter has introduced balance control and falls in older adults (sections 2.2
and 2.3). Balance arises from the dynamic interaction of the sensory, motor and
control systems. Impairment in any of these systems produces a deficit in balance
control, which in turn increases the risk of falling. Falls are one of the most common
and severe consequences of balance deficits in older age, with one in three adults
over the age of 65 experiencing a fall each year.

Falls are associated with several risk factors, which are usually classified into
two categories: intrinsic and extrinsic. Intrinsic risk factors comprise age-related
changes to the balance control system (i.e. a decline in sensory and neuromotor
control functions), some medical conditions and behavioural factors (e.g. multiple
medications and short sleep duration). Extrinsic risk factors refer to environmental
hazards, such as slippery surfaces and inadequate footwear.

Balance assessment is an essential component of fall prevention in older
adults. This chapter has also introduced the methods and techniques for assess-
ing balance control, emphasising those that are relevant to this thesis (section 2.4).
Balance in standing is usually assessed via posturography; that is, the measurement
of the body’s CoP motion using a force-sensing platform or other instrumented sur-

face (e.g. pressure-sensing insoles). Besides, balance in gait is usually performed
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using an optical camera system. Furthermore, the diffusion of wearable inertial
sensors is enabling novel ways of assessing balance in standing and gait.

A critical reading of the background literature in the sections above revealed
some research gaps regarding the assessment of balance and fall risk in older adults.
The first research gap concerns the use of wearable inertial sensors for instrumenting
traditional functional balance tests (e.g. TUG test). These sensors can potentially
provide an objective and accurate fall risk assessment, by producing detailed infor-
mation on the timing and execution of functional tasks (e.g. standing and walking).
However, some reviews on the topic have acknowledged an issue in the variety of
sensor placements, functional tasks and measured variables that have been used in
previous studies. This heterogeneity hinders a consensus on the optimal wearable
inertial sensor-based protocol for assessing fall risk in older adults. Therefore, the
identification of an optimal protocol requires further research. This gap motivated
the study presented in chapter 3.

The second research gap concerns the methods used to characterise pos-
turography data, specially CoP time-series. For decades, global measures of CoP
displacement have been used (e.g. total length, amplitude and standard deviation),
which represents a linear analysis of the data. However, the diffusion of the dynam-
ical systems theory within the biomedical research community has inspired the use
of various quantitative descriptors of nonlinear dynamics. Among them, ApEn and
SampEn have been proposed as a measure of body sway (ir)regularity. However,
their ability to discriminate between groups with different fall risk and the suitable
selection of the input parameters needed for their computation, have not yet been
formally investigated. This gap motivated the study presented in chapter 4.

The third research gap is more concerned with the philosophy underlying
current practices in fall risk assessment and prevention. As seen in this chapter,
these practices focus on the occasional assessment of risk factors and changes in
the balance control system that may lead to a fall (e.g. limited functional mobility
and reduced visual acuity). Nevertheless, the dissemination of wearable technology
is enabling the continuous monitoring of physiological and behavioural variables
(e.g. heart rate and sleep patterns, respectively), which can be potentially used to
infer health status and behaviours linked to impaired balance and increased risk
of falling. Hence, these technologies could drive a shift to a new approach to fall
prevention in vulnerable populations, i.e. one which includes the continuous mon-
itoring and detection of short-lived factors that might result in an imminent fall.
In particular, wearable technology offers new opportunities for in-home continuous

sleep monitoring in a wider population (e.g. older adults living in long-term care
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institutions). It is potentially relevant for fall prevention, given that chronic sleep
disturbances and poor sleep quality are associated with future falls in older people.
Hence, if short-lived sleep disturbances and poor sleep quality have a similar effect
on balance control, continuous sleep monitoring would be relevant for fall preven-
tion programmes in frail populations and sleep disturbance-inducing scenarios (e.g.
hospital wards). Therefore, the potential association between day-to-day variations
in sleep quality and balance control deficits warrants investigation. This gap moti-
vated the study presented in chapter 5. Accordingly, the present chapter has also
introduced the basic principles of sleep and its assessment, highlighting those that
are relevant to this thesis (section 2.5).

The next chapters present the studies performed to address the above re-
search gaps. As an ensemble, these studies aimed to expand the body of knowledge
regarding the use of wearable sensors and nonlinear signal analysis methods for

balance and fall risk assessment in older adults.
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Chapter 3

Wearable Inertial Sensors for
Fall Risk Assessment in Older
Adults: a Systematic Review

and Meta-Analysis

3.1 Chapter overview

Wearable inertial sensors can potentially provide an objective and accurate fall risk
assessment based on detailed information on the timing and execution of functional
tasks (e.g. standing and walking). However, some reviews on the topic have acknowl-
edged an issue in the variety of sensor placements, movement tasks and measured
variables that have been used in previous studies. This heterogeneity hinders a con-
sensus on the optimal wearable inertial sensor-based protocol for assessing fall risk
in older adults. Therefore, the identification of an optimal protocol requires further
research. This chapter presents a systematic review and meta-analysis performed
in order to identify such a protocol, including optimal sensor placement, task and

measured variables or features.

3.2 Introduction

Wearable inertial sensors are microelectronic devices that integrate accelerometers
and gyroscopes in a small unit, enabling the continuous quantification of movements
of the user during the execution of functional tasks (e.g. walking). More specifically,

these sensors measure the linear acceleration and angular velocity of body segments,
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from which a vast number of quantitative descriptors, or features, can be computed.

In the last two decades, the use of wearable inertial sensors for fall risk
assessment has been on the rise. Researchers have used these sensors with the
aim of producing instrumented functional balance tests [10, 12]. In their studies,
subjects were asked to perform one or more movement tasks while wearing one or
more inertial sensors on different body landmarks. Moreover, subjects at high risk of
falling were identified based on retrospective fall history (i.e. self-reported previous
falls), prospective fall occurrence, clinical assessment (e.g. a Timed-Up-and-Go test
(TUG test)) or a combination thereof. This information and the features extracted
from the recorded signals were later used to develop mathematical or statistical
models for predicting future fall occurrence or classifying subjects into fall risk
categories.

Some reviews on the topic have revealed a considerable heterogeneity between
studies regarding the sensor placement, movement task, features and models used
for the development of sensor-based fall risk assessment tools [10-12]. This hetero-
geneity precludes any firm conclusions on the optimal wearable inertial sensor-based
protocol for assessing fall risk.

This chapter presents an original systematic review and meta-analysis per-
formed to synthesise the empirical evidence related to the use of inertial sensors for
fall risk assessment and prediction in generally healthy older adults (>60 years old
with no medical history of neurological, neurodegenerative, cognitive or motor prob-
lems), in order to identify the optimal combination of sensor placement, movement
task and measured variables or features. The identification of such a protocol should
contribute to closing the gap between research studies and clinical applications, by
enabling the evidence-based design of new studies and real-life applications. The

contents of this chapter have been published elsewhere [128].

3.3 Methods

3.3.1 Search strategy

Potentially relevant articles were identified through a literature search in PubMed,
EMBASE, IEEEXplore, Cochrane Central Register of Controlled Trials (CENTRAL),
ClinicalTrials.gov and the World Health Organization (WHO) International Clinical
Trials Registry Platform electronic databases.

Articles were searched using Boolean combinations of the following keywords
or equivalent Medical Subject Heading (MeSH) terms: accidental falls AND (risk
assessment OR prediction) AND (sensor OR device OR wearable OR technology).
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Additional papers were identified from the references of relevant review ar-
ticles previously published [10, 11, 54].
Papers were considered suitable for this review if they met these inclusion

criteria:

1. Original peer-reviewed journal articles published between January 2006 and
December 2016;

2. Studies in which the subjects were labelled as fallers and non-fallers (alterna-
tively, high and low fall-risk), based on retrospective fall history, prospective

fall occurrence, clinical assessment (e.g. TUG test) or a combination thereof;
3. A sample of at least ten subjects with an average age of 60 or over;

4. Body-worn inertial sensors were used to characterise a functional task (e.g.

walking) by extracting features from the recorded signals, and;

5. Group statistics, specifically mean and standard deviation, for sensor-based
features, as well as the statistical significance level for the difference between

groups were reported.

Papers were excluded if they reported studies focused on patients suffering
from neurological, neurodegenerative, cognitive or motor problems (e.g. stroke,
Parkinson’s disease, dementia and osteoarthritis, respectively), since this review

was focussed on generally healthy older adults.

3.3.2 Paper selection and data extraction

Database records responding to the selected keywords were identified following the
search strategy described above. After excluding duplicates (i.e. titles indexed
in more than one database), studies were shortlisted based on the inclusion and
exclusion criteria by screening titles, abstracts and full-texts.

Subsequently, relevant data were extracted from the shortlisted studies; namely:
first author and year of publication; number of participants and proportion of fallers;
subject labelling method with details (e.g. the duration of follow-up period when
prospective fall occurrence was used); type, quantity and placement of inertial sen-
sors; functional task or test characterised using sensor-based features (e.g. walking
or the TUG test, respectively).

Finally, a listing of features reported in the shortlisted studies was compiled
to enable further statistical analysis. For each feature the following items were

included: name and category (i.e. linear acceleration, angular velocity, temporal,
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spatial, frequency, or nonlinear features [10]), units, mean and standard deviation for
each group (i.e. on-fallers and fallers), and trend of the difference between groups.
A trend was represented with two arrows, |} (or 171), if the mean value of a feature
significantly (p-value<0.05) decreased (increased) for fallers compared to the mean
value for non-fallers. Similarly, one arrow, | (or 1), was used if the mean value of
a feature non-significantly (p-value>.05) decreased (increased) for fallers compared
to the mean value for non-fallers. Sensor placement and functional task for each

feature were also included in the listing.

3.3.3 Statistical analysis of sensor-based features

Standard methods for the analysis of categorical data were applied on the fea-
ture listing with two objectives [129, 130]: 1) to investigate the level of association
between trend significance status (i.e. non-significant or significant) and feature
category, sensor placement and task, and; 2) to identify optimal triads of feature
category, sensor placement and task.

Firstly, Pearson’s chi-squared tests were performed in order to prove the
association between trend significance status (dependent variable) and feature cat-
egory, sensor placement and task (covariates). In other words, the aim was to prove
that significant feature trends are dependent on feature category, sensor placement
and task. A p-value<0.05 was accepted as statistically significant evidence of a
nonrandom association. Moreover, Pearson’s Contingency (C) and Cramer’s (V)
coefficients were computed in order to quantify the level of association between
each covariate and trend significance status. A C (V) coefficient of 0.1 (0.1), 0.287
(0.3) and 0.447 (0.5) was considered as evidence of small, medium and large level of
association, respectively [131].

Secondly, significant triads of feature category, sensor placement and task
were identified as follows. A three-way contingency table containing the covariates
above was created using the subset of features containing only significant trends.
Pearson’s residuals were computed for each triad in the table and used to charac-
terise the strength (value) and nature (sign) of association for each triad. Large
positive residuals are obtained when the observed frequency of significant features
is substantially higher than the expected frequency, which would suggest signifi-
cant features were more likely to arise from that specific triad. Conversely, large
negative residuals are obtained when the observed frequency of significant features
is substantially lower than the expected, which would suggest significant features
were less likely to arise from that specific triad. For interpretability, the following

representation was used to report the results (instead of numerical values): two ar-
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rows, JJ (or 17), if the residuals were smaller (or larger) than -4 (or +4), revealing
strong associations; one arrow, | (or 1), if the residuals were smaller (or larger)
than -2 (or +2), revealing medium-associations, and; a dash, -, for residuals greater
than or equal to -2 but smaller than or equal to +2, revealing weak associations.
These thresholds are customarily used in the interpretation of Pearson residuals as
a measure of the strength of association [130]. A Pearson’s chi-squared test of inde-
pendence was performed to confirm the statistical significance of those associations
(p-value<0.05).

The software R version 3.2.3 was used to perform this analysis. The source

code can be found in Appendix A.

3.3.4 Meta-analysis of sensor-based features

A meta-analysis of the features extracted from the shortlisted studies was conducted
to calculate the pooled difference between groups (fallers - non-fallers), as well as
the statistical significance of these differences. Features were included in the meta-
analysis if [the feature was reported in at least two studies] AND [the feature was
computed for the same task/subtask] AND [the sensor placement and type were the
same across studies OR feature was independent of the sensor placement and type
(e.g. number of steps or stride time)]. Standard methods for combining and report-
ing continuous outcomes were employed to pool the features [132]: pooled sample
size, Mean Difference (MD) with Confidence Interval at 95% (CI), and statistical
significance level (p-value). MD and CI were considered significant if the p-value <
0.05.

Random or fixed effect models were selected based on the heterogeneity be-
tween studies, assessed using the Q-statistic (computed via a Chi-squared test) and
the 12 statistic. A significant Q-statistic is indicative of dissimilar effect sizes across
studies; a threshold significance level of 0.1 was selected as statistically significant
value as suggested in [132]. The 12 statistic indicates the percentage of the vari-
ability in effect sizes due to heterogeneity across studies, and not due to sampling
error within studies. An I? value from 30% to 60%, 50% to 90% and 75% to 100%
represent moderate, substantial and considerable heterogeneity, respectively.

The R package meta_4.8-4 was used to perform the meta-analysis [133]. The
default options for both fixed and random effects models were used; i.e. the inverse
variance method for study weighting and the DerSimonian-Laird estimate for the

random effects model [134]. The source code can be found in Appendix A.
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3.3.5 Quality appraisal of selected studies

The methodological quality of the selected studies was assessed using the checklist
provided in Appendix B. This checklist was adapted from [135]. It contains 15
questions that are scored yes or no/unclear. These questions are organised in 3

dimensions:

e Reporting (11 items) which assessed whether the information provided in the

paper was clear and sufficient to replicate the study and appraise its validity.

e External validity (2 items) which addressed the extent to which the findings

of the study could be generalised to a broader population and context.

e Internal validity (2 items) which assessed whether the evidence at hand sug-
gests that the study was designed and conducted to minimise bias and con-

founding.

A summary of the main findings is provided below in an attempt to reveal
the methodological issues that future studies in the field should address in order to

produce more robust scientific evidence.

3.4 Results

Based on the search strategy described above, 481 records were identified through
a database search and 18 through a linear search. After removing 51 duplicates,
448 titles were screened by title and 257 were excluded as they did not meet the
inclusion/exclusion criteria. From the remaining 191 titles, 127 were removed af-
ter screening the abstract against inclusion/exclusion criteria, which left 64 papers
to be read in full-text. After reading the full-texts, 51 were excluded due to the
inclusion/exclusion criteria. Therefore, 13 studies were shortlisted for this review
[136-148]. A flowchart of the study selection process is shown in Figure 3.1.
Importantly, there were some papers among the excluded ones which are
noteworthy for the novelty of their approach to the problem, but that failed to meet
inclusion criterion 5. In particular, the studies by Toebes et al. [55] and Riva et
al. [149] found significant associations between fall risk and nonlinear descriptors
of gait dynamics (e.g. Multi-scale Entropy (MSE) and Recurrence Quantification
Analysis (RQA) measures). Moreover, Rispens et al. [150] and van Schooten et
al. [56, 151] found significant associations between fall risk and ambulatory gait

measures of quantity and quality.
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481 records from database search
18 records from linear search

\ 4

51 duplicates

448 unique records

257 excluded as not
L relevant

A

191 potentially relevant papers
identified on the basis of record
information

.| 127 deemed not relevant
from the abstract

A

64 papers assessed from abstract

| 51 deemed not relevant
from full-text

A

13 papers included in review

Figure 3.1: Flowchart of study selection. The 13 selected papers were original
peer-reviewed journal articles published between January 2006 and December 2016.
These papers reported studies with a minimum sample size of 10 subjects (mean
age > 60 years), who were labelled as fallers and non-fallers based on retrospective
fall history, prospective fall occurrence, clinical assessment or a combination thereof.
Body-worn inertial sensors were used to characterise a functional task (e.g. walking),
and the mean and standard deviation for each sensor-based measure was reported.
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3.4.1 Characteristics of selected studies

The 13 studies enrolled from 17 to 349 subjects each (mean + standard deviation:
93.15 £ 86.18 subjects), for a cumulative population of 1,211. Overall, the studies
included 565 faller subjects, i.e. 47% of the cumulative population. However, this
proportion ranged from 14 to 71% across the 13 selected studies. The majority of
studies (92%) enrolled both men and women, except for one study which enrolled
only women [139]. Subjects were enrolled in a clinic as part of a larger clinical
research project in 4 studies [138, 141, 142, 145], in a community centre in one
study [146], in a hospital’s physiotherapy service in one study [137], and via a letter
sent to members of the community in one study [139]; details about the recruitment
process were not provided in six studies [136, 140, 143, 144, 147, 148]. Additional
details about the shortlisted studies are reported in Table 3.1.

Subjects were labelled as (non-)fallers using retrospective fall history in ten
studies, with a recall period of one year for eight studies and five years for two stud-
ies; prospective fall occurrence through a one-year follow-up period in two studies;
and a clinical assessment (i.e. the Tinetti scale [76]) in one study.

Tri-axial accelerometers and gyroscopes were the only types of inertial sensor
used in 10 studies and one study respectively; a combination of sensors was used in
two studies. In seven studies only one sensor was used, in five studies two sensors
were used, and one study used four sensors.

The most common sensor placement was the lower back (i.e. approximately
on the L3 vertebra) with ten studies, followed by shins (i.e. frontal middle point
between the knee and the foot) and feet (i.e. dorsal part of the foot) with two
studies each. Other placements were knee, ankle, thigh, sternum and upper back
(i.e. approximately on the C7 vertebra), with one study each. When grouping
placements into upper body (trunk) and lower body (lower limbs), there were eleven
(91.7%) and seven (58.3%) studies, respectively.

Inertial signals were acquired during the following tasks: walking other than
a standardised test (7 studies), unperturbed standing (three studies), the TUG test
(two studies), the 10-Meters-Walking test (10MW test) (one study), and the Five-
Times-Sit-to-Stand test (FTSS test) (one study). A brief description of these tasks
is presented in table 3.2; for a more detailed description, the reader may refer to the

referenced paper.
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Table 3.2: Description of tasks
Task Description

Walking Participants were instructed to walk:

810 steps at comfortable and maximum speeds along
a straight course [136]

7 minutes at self-selected speed around a continuous
walking circuit [139]

3 metres at comfortable speed along a straight course
[141]

10 metres at a self-selected speed along a straight
course which included stepping over six obstacles sep-
arated by 1.5 metres [143]

20 metres at self-selected speed on a straight course
and back to the starting point [144]

1 minute or longer walking bouts during daily life ac-
tivities [147]

1 minute under three different conditions: 1) baseline,
usual walk; 2) baseline, usual walk with harness; 3) an
obstacle course walk with harness [148§]

Unperturbed standing Participants were instructed to stand still:

TUG test

10MW test

FTSS test

30 seconds on a rigid surface with eyes open and eyes
closed, as well as on a mat with eyes open and closed
[137, 141]

40 seconds with eyes open in a semi-tandem stance
and 30 seconds with eyes closed [142]

Participants were instructed to rise from a chair, walk 3
metres at a comfortable speed on a straight course, turn
around, walk back to the chair and sit down [138, 140]
Participants were instructed to walk at comfortable speed
along a 10-metres straight course [146]

Participants were instructed to keep their arms folded across
their chest for the duration of the test and to fully stand up
and sit back down five times as quickly as possible [145]

TUG test timed up and go test, 10M W test 10-metre walk test, F'T'SS test five-times-

sit-to-stand test
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3.4.2 Sensor-based features and their trends

The full listing of features extracted from the inertial sensors that were reported
in the 13 selected papers was published elsewhere as supplementary material [128].
Green et al. [138] reported features for all of the subjects included in their analysis as
well as for some subgroups separately (i.e. males, females < 75 years old and females
> 75 years old). However, only the results for all the subjects were included in this
review. Moreover, Doheny et al. [141] performed an instrumented gait assessment
four times in the same day. However, only the results of the first assessment (between
9:00 and 9:30 a.m.) were included in the review.

In summary, 93 distinct features were identified in the selected studies and
categorised as suggested elsewhere [10]: linear acceleration (15 features, 16.1%),
angular velocity (28 features, 30.1%), spatial (four features, 4.3%), temporal (24
features, 25.8%), frequency (21 features, 22.6%) and nonlinear (one feature, 1.1%).

These features were reported 175 times in the selected studies out of which
for 84 times (48%) they exhibited a significant trend. Table 3.3 summarises the fre-
quency of features per task, sensor placement and feature category for the complete

listing of features and the subset of features showing significant trends.

3.4.3 Statistical analysis of sensor-based features

The results from the Pearson’s chi-squared tests and the measures of association
revealed statistically significant associations between feature significance and feature
category, sensor placement and task (Table 3.4).

Furthermore, the computed Pearson’s residuals for the three-way table con-
taining feature category, task and sensor placement as covariates revealed strong
to very strong associations for nine triads. Table 3.5 summarises these results.
As an example, the double arrow, 11, for the triad ‘angular velocity-walking-shins’
means that significant features are much more likely to arise from this combination.
Conversely, the single arrow, ‘]’, for the triad ‘angular velocity-walking-lower back’
means that significant features are less likely to arise from this combination. The
> symbol indicates that the significance of a feature is not particularly affected by

its category, sensor placement or task.

3.4.4 Meta-analysis of sensor-based features

Based on the selection criteria for the meta-analysis, 20 features were pooled using
the methods described above. Table 3.6 shows the trend and values for those fea-

tures, as well as the number of subjects in each group. It also shows the task and

60



Table 3.3: Frequency table for features by task, sensor placement and feature cate-
gory. The first two columns are the frequency and percentage of features per task,
sensor and category for all the sensor-based features reported in the selected stud-
ies. The second two columns are the frequency and percentage of features per task,
sensor and category for features that showed differences between non-fallers and

fallers.
All features Significant features

(n = 175) (n = 84)

Count % Count %
Task
Walking ¢ 110 62.9 61 72.6
Unperturbed standing 48 274 15 17.8
Sit-to-stand /Stand-to-sit 14 8 5 6
TUG test 3 1.7 3 3.6
Sensor placement
Lower back 98 56 49 58.3
Shins 60 34.3 33 39.3
Foot 7 4 0 0
Sternum 4 23 0 0
Upper back 3 17 2 2.4
Knee 3 1.7 0 0
Feature category
Linear acceleration 48 274 20 23.8
Temporal 45 25.7 19 22.6
Frequency 42 24 16 19
Angular velocity 32 183 25 29.8
Spatial 7 4 4 4.8
Nonlinear 1 0.6 0 0

¢ Including the walking part of a functional test (e.g. TUG test)

b Including sit-to-stand /stand-to-sit transitions being part of a functional test
(e.g. TUG test)

TUG test timed up and go test
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Table 3.4: Measures of association between feature significance and covariates. The
level of association describes the extent to which the significance of the difference
between non-fallers and fallers depends on the task, sensor placement and feature

category.
Covariate 2 p-value C V  Association level ¢
Task 11.94 <0.01 0.253 0.261 Medium
Sensor placement 14.68 0.01 0.278 0.29 Medium
Feature category 15.82 <0.01 0.288 0.301 Medium

x? Pearson’s chi-squared statistic for the association test in which the null hypothesis
is no association, C' Pearson’s contingency coefficient, ¥V Cramer’s coefficient.

“ A C (V) of 0.100 (0.1), 0.287 (0.3) and 0.447 (0.5) are considered as evidence of
small, medium and large association, respectively

Table 3.5: Association trend. The association trend describes the extent to which
the significance of the difference between non-fallers and fallers depends on a specific
combination of task, sensor placement, and feature category. Combinations produc-
ing double upward arrows should be favoured in sensor-based fall risk assessment
protocols.

Task
Unpertl}rbed FTSS test | TUG test | Walking
standing
- - - d LB
Arllg“iltar _ _ ; ++ | Shins
velocity ) i i i UB
2 - - - 1 LB
S  Frequency - - - + Shins
% - - - 1 UB
3} N -
o) Linear T " L.B
= . - - - 4 Shins
= acceleration
- - - - - UB
£ - - - - LB
Spatial - - - - Shins
- - - - UB
- - - - LB
Temporal - - T - Shins
- - - - UB
FTSS test five-times-sit-to-stand test, TUG test timed up and go test, LB lower back,

UB upper back

3 (11): substantially stronger negative (positive) association for a specific triad of
feature category, task and sensor placement

4 (1): strong negative (positive) association for a specific triad of feature category,
task and sensor placement

-: non-significant association for a specific triad of feature category, task and sensor
placement
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the sensor placement for each feature.

Linear acceleration features included in the meta-analysis were: Root Mean
Square (RMS) value (expressed in g-force units) of the acceleration signal in the
Medial-Lateral (ML) direction assessed at the lower back during unperturbed stand-
ing with both eyes open and eyes closed (ML RMS of acceleration). This feature is
related to postural stability during standing.

Spatial features included in the meta-analysis were: the number of steps
during the TUG test, and step length estimated from inertial signals measured
during the walking stage of the TUG test or another walking task.

Temporal features included in the meta-analysis were: cadence (i.e. steps per
minute); gait speed; step time; stance time; swing time; stride time; total time to
complete the TUG test; single and double support time, i.e. the time during which
only one foot and both feet are in contact with the walking surface, respectively,
expressed as a percentage of a gait cycle; and the Coefficient of Variation (CV) for
step, stance, swing, stride, single and double support times. The CV is the ratio of
the standard deviation to the mean for a given feature, expressed as a percentage;
hence, it is a standardised measure of dispersion of the distribution of feature values.

All the spatial and temporal features included in the meta-analysis are widely
used in clinical gait analysis [53].

One frequency feature was included in the meta-analysis: the Harmonic Ra-
tio of trunk acceleration in the vertical direction. The Harmonic Ratio has been
defined as the ratio of even to odd signal harmonics extracted from the spectrum
of the acceleration signal and has been suggested as a measure of the stability and
smoothness of trunk movement during gait [146].

Neither angular velocity nor non-linear features were included in the meta-
analysis, as none of them met the criteria to be pooled; i.e. either they were reported
only in one study or they were measured during different tasks or at different sensor
body placements.

The relative pooling weight of each study is reported in Table 3.6. The results
of the pooling are reported in Table 3.7, where also the trend of the pooled features
is shown.

Four out of twenty pooled features showed a statistically significant difference

between fallers and non-fallers. Namely, fallers exhibited:

e A higher RMS value for the ML acceleration during unperturbed standing
with eyes closed (MD: 0.01 g; CI: 0.006-0.014; p<0.01)

e A higher number of steps to complete the TUG test (MD: 1.638 steps; CI:
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0.384-2.892; p=0.01)

e A longer time to complete the TUG test (MD: 2.274 seconds; CI: 0.531-4.017;
p<0.01)

e A longer step time during walking (MD: 0.053 seconds; CI: 0.012-0.095; p=0.01)

3.4.5 Quality appraisal of selected studies

All the studies reported the aim of the study, experimental protocol (i.e. task,
sensor quantity and placement), technical specifications of the sensor, methods for
signal processing, feature extraction and statistical analysis, and features’ summary
statistics per group (non-fallers and fallers). However, only seven studies reported
actual p-values (e.g. 0.035 rather than <0.05) for the differences between groups
[137, 140, 144-148].

Moreover, only seven studies reported inclusion and exclusion criteria of par-
ticipants and the distribution of potential confounders per group (e.g. age and
comorbidities) [139, 140, 142, 144, 146-148]. Therefore, the internal validity of six
studies remains unclear, since unreported (or unobserved) variables could explain
feature differences between fallers and non-fallers.

Finally, external validity was found for all shortlisted studies, since their
samples were representative of the population under investigation and the task was

representative of clinical fall-risk assessment protocols or daily-life activities.
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3.5 Discussion

This study analysed the scientific literature focusing on the use of wearable inertial
sensors for the risk of fall assessment and prediction, exploring the sensitivity of
sensor-based features to sensor placement, functional task and feature category.
The statistical analysis of features reported in the 13 shortlisted studies re-
vealed significant, very strong, positive associations in three different triads of fea-

ture category, task, and sensor placement:

e Angular velocity - Walking - Shins
e Linear acceleration - Unperturbed standing - Lower back

e Linear acceleration - Stand to sit/Sit to stand - Lower back

These results suggested that these are optimal combinations when using in-
ertial sensors to discriminate between fallers and non-fallers. Other potentially

suitable combinations, given their strong, positive associations are:

e Frequency - Walking - Lower back
e Frequency - Walking - Upper back

e Temporal — TUG test - Shins

Conversely, the findings suggest that the use of the following combinations

should be avoided as they are less discriminative of fall risk:

e Angular velocity - Walking - Lower back
e Frequency - Walking - Shins

e Linear acceleration - Walking - Shins

Further multivariate analyses can potentially reveal optimal combinations
that include other factors, such as age and gender of the subjects. However, this
would require more studies to be included in the analysis.

Moreover, the results of the meta-analysis demonstrated that four features
are significantly higher in fallers than in non-fallers (p<0.05): the RMS acceleration
in the medial-lateral direction during unperturbed standing with eyes closed (MD:
0.01 g; CI: 0.006-0.014); the number of steps (MD: 1.638 steps; CI: 0.384-2.892) and
total time (MD: 2.274 seconds; CI: 0.531-4.017) to complete the TUG test; and the
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step time (MD: 0.053; CI: 0.012-0.095) during walking. These results suggest that
these combinations of task and features may be more suitable for fall risk assessment.

Additionally, five features exhibited a consistent trend across the selected
studies. These features were: step time, CV for step time, CV for stride time and
CV for single support time, which showed a higher value in fallers than in non-
fallers; and double support time, which showed a lower value for fallers. However,
these trends were not found to be statistically significant when pooled in the meta-
analysis. This may be explained by the high values of standard deviation reported in
the study by Green et al. [138], which was included in the pooling of these features.
No clear explanation for such variability within that study can be inferred from the
paper.

In contrast, seven features showed an inconsistent trend across the selected
studies: step length, cadence, gait speed, harmonic ratio in the vertical direction, CV
for stance time, CV for swing time, and CV for double support time. Importantly,
in four features the methods used to classify subjects as (non-)fallers were also
inconsistent between studies: step length and cadence were pooled from [140] and
[144], in which the classification methods were retrospective fall history and clinical
assessment, respectively. Although both studies scored high in terms of quality,
there is additional evidence supporting the results provided by Weiss et al. [140].
Namely, in a study by Kwon et al. a significantly shorter step length was observed
in fallers [152]. Gait speed was pooled from [140, 144, 146], with the latter adding
prospective fall occurrence to the diversity of classification methods. Nevertheless,
both Weiss et al. and Doi et al. reported a similar trend (i.e. a significantly lower
gait speed in fallers), which renders their results more reliable [140, 146]. Finally, the
harmonic ratio in the vertical direction was also pooled from [144, 146], combining
subjects labelled as fallers using two different methods. Both studies scored high in
terms of quality. Nevertheless, the study by Kwon et al. also provides supporting
evidence to the significantly lower harmonic ratio reported by Doi et al. [146, 152].
The potential sources of between-study heterogeneity, revealed by the above trend
inconsistencies, can potentially be further explored using quantitative approaches
(e.g. subgroup analysis by study and patient characteristics). Unfortunately, the
low number of studies reporting on the same feature rendered it unfeasible to apply
these approaches.

Moreover, five features showed an ambiguous trend across the selected stud-
ies, as they were reported with no mean difference between non-fallers and fallers
in one study while exhibiting a trend (significant or not) in another study. These

features were: the RMS value of the acceleration in the medial-lateral direction with
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eyes open, and stance time, swing time, stride time, and single support time during
walking.

Altogether, the evidence synthesised in this review suggests that the instru-
mented TUG test is a suitable tool for discriminating non-fallers and fallers, provided
that the inertial sensors are placed on the shins and angular velocity, temporal (e.g.
total time and step time) and spatial (e.g. number of steps) features are computed.
Additionally, the triad linear acceleration - unperturbed standing - lower back seems
to be a suitable choice as well.

Nevertheless, it should be stressed that these results are limited, as they are
based only on features reported in the 13 papers included in the review. Hence, they
are unable to provide a representative inference of all features used and all studies
published, but not included in the review. This means that there might be some
other sensor-based features that are discriminant between non-fallers and fallers
but which were not included in this systematic review as they were not reported as
required by the inclusion criteria. This may be the case for some of the features
reported in [55, 56, 149-151]. Relaxing the inclusion criteria could have increased
the number of studies included in this study (e.g. including studies focused on falls
in neurological patients as well) but at the risk of increasing the between-study
heterogeneity.

Finally, a comment regarding heterogeneity in hit rate (i.e. the ratio of all
features to significant features expressed as a percentage) reported in the selected
studies is deemed relevant to this study. In some studies reporting a relatively high
number of features (i.e. 28 or more) a hit rate ranging from 25 to 66% was achieved
[138, 141, 142]. In contrast, some studies reporting a low number of features (i.e.
seven or less) achieved hit rates above 85%, with two studies reporting a surprising
100% [144, 146, 148]. From these studies, it was not clear if the authors investigated
a low number of features or if they investigated a large number of features but only
reported the most significant ones. Even if reporting bias (a.k.a. selective reporting)
should not be concluded from this finding, it should at least arise awareness of the
potential presence of this practice in the biomedical engineering field. This practice
could undermine the findings of future studies, making it more difficult to converge

to meaningful conclusions.

3.6 Conclusions

This chapter presented an original systematic review and meta-analysis performed

to synthesise the empirical evidence related to the use of inertial sensors for fall risk
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assessment and prediction, in order to identify the optimal combination of sensor
placement, movement task and measured variables or features.

The evidence collected in this study produced a comprehensive inventory of
the sensor-based features that have been used for assessing the risk of falling in
older adults and reported in the literature, including the difference between groups
(non-fallers and fallers) and the statistical significance of these differences.

The statistical analysis of features above demonstrated that the combination
‘angular velocity-walking-shins’ has more discriminative power between non-fallers
and fallers than other combinations. Moreover, the meta-analysis demonstrated
that four features are significantly different between non-fallers and fallers. However,
most features were not included in the meta-analysis because they were not reported
with sufficient homogeneity in at least two studies, suggesting that future studies
are required to produce more evidence that allows conducting a more comprehensive
meta-analysis.

Overall, the results of this study suggest that the instrumented TUG test
is a suitable tool for discriminating non-fallers and fallers, provided that the iner-
tial sensors are placed on the shins and angular velocity, temporal (e.g. total time
and step time) and spatial (e.g. number of steps) features are computed. These
findings should contribute to closing the gap between research studies and clini-
cal applications, by enabling the evidence-based design of new studies and real-life
applications.

Nevertheless, these results are based on data extracted from a limited number
of studies. Hence, there might be some other sensor-based features that are discrim-
inant between non-fallers and fallers but were not included in this systematic review
as they were not reported as required by the inclusion criteria.

This study led to the identification of an optimal inertial sensor-based proto-
col for fall risk assessment in older adults, thus answering the first research question
underlying this thesis (see chapter 1). The study presented in the next chapter in-
vestigates whether quantitative descriptors of nonlinear system dynamics are more
sensitive than linear measures to differences in balance control due to ageing and

fall risk, thus addressing the second research question.
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Chapter 4

Approximate Entropy and
Sample Entropy for Fall Risk
Assessment in Older Adults

4.1 Chapter overview

The diffusion of nonlinear dynamical systems theory into the biomedical research
community has inspired the use of quantitative descriptors of nonlinear dynamics for
assessing balance control. In particular, Approximate Entropy (ApEn) and Sample
Entropy (SampEn) have been proposed as measures of body sway regularity during
unperturbed standing. However, their ability to discriminate between groups with
different fall risk and the suitable selection of the input parameters needed for their
computation, have not yet been formally investigated. This chapter presents a study
performed to investigate whether ApEn and SampEn are more sensitive than linear
measures to differences in balance control due to ageing and fall risk, as well as to
identify the optimal way to apply them (e.g. signal pre-processing, selection of input

parameters, etc.).

4.2 Introduction

Centre of Pressure (CoP) time-series have been mostly characterised using linear
measures, which describe the magnitude of CoP excursions in the time and frequency
domains (e.g. path length and mean frequency of CoP motion, respectively). Age-
related differences in these measures have been widely recognised, with older adults

(>60 years old) showing generally larger CoP sways than young adults (18-59 years
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Figure 4.1: Representative centre of pressure (CoP) trajectories for (A) a young
adult (27 years), (B) a non-faller (68 years) and (C) a faller (61 years). Older
adults show generally wider CoP displacements than young adults. In contrast,
CoP excursions from older adults with different fall risk are similar in terms of
amplitude, making global measures inadequate to discriminate between them. Data
sourced from the public dataset used in this study [27].

old) [2]. These differences are evident even through the visual inspection of CoP
traces, as can be seen in Figure 4.1 panels A and B. In contrast, CoP excursions
from older adults with different fall risk are similar in terms of amplitude, as can be
seen in Figure 4.1 panels B and C.

Structural measures are sensitive to the structural variation in the time-
series, thus they represent a potential alternative for describing differences in CoP
excursions of a different nature. Entropy measures have been used for assessing
the regularity of CoP time-series in different testing conditions and experimental
groups [21, 95-109]. For instance, Cavanaugh et al. used ApEn to evaluate the
effect of performing a secondary cognitive task on postural control in a sample of
healthy young adults (n=30), as compared to performing a single task (i.e., posture
control plus cognitive task versus posture control only) [97]. The authors observed
generally higher ApEn values in the anterior-posterior CoP time-series during a dual
task than during a single task. However, no significant differences in ApEn values for
the medial-lateral direction were observed. In another study, Borg and Laxaback
investigated the differences in SampEn values between young adults (n=45) and
older adults (n=91) [21]. Significant differences between groups were observed for
the Anterior-Posterior (AP) axis with higher values for older adults than for young
adults. However, the ability of ApEn and SampEn to discriminate between groups of
older adults with different risks of falling has not been investigated (e.g. non-fallers
versus fallers).

A detailed definition of ApEn and SampEn is presented in section 2.4. Briefly,
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given a time-series of length N, ApEn(m,r, N) is the difference between the fre-
quency that all the m-point subseries in the time-series are close to each other
(within a tolerance given by +r times the standard deviation of the time-series) and
the frequency that all the m 4 1-point subseries in the time-series are close to each
other (again, within a tolerance given by +r times the standard deviation of the
time-series). Importantly, the ApEn algorithm counts each subseries as matching
itself. As a consequence, the ApEn algorithm inherently produces a bias towards
regularity. In order to counteract this shortcoming, the SampEn algorithm does
not count self-matches. SampEn(m,r, N) is the negative natural logarithm of the
conditional probability that two subseries similar for m points remain similar for
m + 1 points, where self-matches are not included in calculating the probability.
In addition to eliminating self-matches, it has been shown that SampEn is mostly
independent of the data length and shows more consistent behaviours than ApEn
[111].

The appropriate selection of parameters m (subseries length), r (similarity
tolerance) and N (data length) is critical. Traditionally, for clinical data, m is to
be set at 2 or 3, r is to be set between 0.1 and 0.25 times the standard deviation
of the data and N as equal to or greater than 1000 [110, 111]. However, these
recommendations were based on the analysis of cardiac and respiratory time-series,
thus do not always produce optimal results for all types of data. Therefore, an
investigation of the effects of changing parameter values on the computation of
ApEn and SampEn for specific types of data is needed. Nevertheless, the issue has
not been investigated systematically when dealing with CoP time-series.

This chapter presents an original study performed: (1) to determine the abil-
ity of ApEn and SampEn to discriminate between experimental groups, especially
between non-fallers and fallers; and, (2) to examine the effect of changing the value
of the parameters m, r and N on ApEn and SampEn values in CoP time-series
(e.g. signal pre-processing and selection of input parameters). The contents of this
chapter have been published elsewhere [153].

ApEn and SampEn were selected among other nonlinear measures given that
they are well suited to the analysis of short and noisy data. As mentioned above,
these methods quantify the regularity or self-similarity of time-series by examining
them for similar epochs or subseries: more frequent, similar subseries lead to lower
entropy values. Thus low ApEn and SampEn values reflect a high degree of reg-
ularity or self-similarity [110, 111]. Regarding CoP time-series analysis, relatively
high entropy values may be indicative of a balance control mechanisms that are too

random to command balance properly, whereas relatively low values may describe a
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balance control that is too stiff to cope with situations that require flexibility [21].

This study was motivated by the promising results obtained in a preliminary
study, in which the issue of the adequate selection of ApEn and SampEn parameter
values for CoP time-series analysis was partially addressed [154]. However, the
present study represents a more comprehensive investigation of this issue, as it covers
a broader range of parameter values, included the Medial-Lateral (ML) direction in
addition to the AP direction and compared the ability of ApEn and SampEn to
discriminate between experimental groups to that of traditional measures of CoP
displacement. Therefore, the methods and results in the present study should be

considered more robust and informative for future studies.

4.3 Methods

4.3.1 Dataset description

This study made use of an open dataset of human balance evaluations [27]. The
dataset contains static posturography data from 163 participants. A detailed de-
scription of this protocol, the data pre-processing methods and the resulting dataset
can be found elsewhere [155]. Briefly, CoP time-series were recorded while subjects
were standing still for 60 seconds in four different conditions: with eyes open on a
rigid surface, with eyes open on a foam mat, with eyes closed on a rigid surface, and
with eyes closed on a foam mat. Three trials per condition were recorded, producing
1,930 trials in total (the authors reported 26 trials from 5 subjects as missing due to
the inability of those subjects to complete the tasks). During the trials, 3D ground
reaction forces and moments were recorded using a force platform with a sampling
frequency of 100 Hz and were later used to compute the CoP position in the AP and
ML axes. Importantly, the authors reported having smoothed the signals using a
fourth-order zero-lag Butterworth low-pass filter with a cut-off frequency of 10 Hz.
Previous studies have investigated the effects of digital filtering (specifically using a
second-order dual-pass Butterworth low-pass filter) on linear and entropy measures
of CoP displacement (Standard Deviation (SD)/Root Mean Square (RMS) value
and sample entropy, respectively) [156, 157]. While digital filtering did not affect
traditional measures [156], a decrease in sample entropy was reported for filtered
data compared to unfiltered data [156, 157]. Therefore, should the present data
analysis be replicated on unfiltered CoP data, higher entropy values would be ex-
pected to come out from it. Figure 4.2 shows representative CoP time-series taken
from this dataset.

Additionally, the dataset contains sociodemographic, anthropometric, and
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Figure 4.2: Representative centre of pressure time-series (CoP) for an older adult (61
years old) who experienced a fall within the past 12 months: (A) anterior-posterior
(AP) and medial-lateral (ML) time-series versus time, and (B) medial-lateral versus
anterior-posterior. Data sourced from the public dataset used in this study [27].

health status data for each participant (e.g. age, height, weight, morbidities and
disabilities), as well as their history of falls (i.e.number of non-intentional falls in
the past 12 months) and scores for other evaluations related to balance, fear of
falling, physical activity and cognitive function. Age and history of falls were used
to label subjects as Young, Non-Fallers and Fallers as described in subsection 4.3.3.
Reported disabilities were used to discard subjects with physical disabilities from
the data analysis.

This open dataset was collected by researchers from the Laboratory of Biome-
chanics and Motor Control at the Federal University of ABC (Sao Bernardo do
Campo, Brazil) following a research protocol approved by the local ethics commit-
tee of the University (#842529/2014) [155].

4.3.2 Data processing

Besides m, r and N, the ApEn and SampEn algorithms allow adjusting a fourth
parameter known as the time delay (7) in the computation of entropy values. Gen-
erally speaking, by adjusting the time delay to a specific value of 7, the time-
series used for the computation of ApEn/SampEn would be made of the first
sample and then every 7t* sample after the first. In more formal terms, for a
time-series X of length N, X = {z(1),2(2),2(3),...,z(N)}, the computation of
ApEn/SampEn with a time delay of 7 would be performed on the time-series given
by X' = {x(1),2(1 + 7),z(1 + 27),..., X(N — 7+ 1)}. In a previous study, Kaf-
fashi et al. [158] showed that, for time-series generated by non-linear dynamics that
have a long-range autocorrelation (e.g. a slowly decaying Autocorrelation Function

(ACF), such as those observed for CoP time-series), using a unity delay (7 = 1)
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would solely measure the linear autocorrelation properties of the signal. This would
mask the ability of the ApEn/SampEn approach to quantify the regularity in the
time-series resulting from long-range non-linear features. Therefore, the choice of
the value of 7 is crucial. For this type of data, using a higher time-delay value has
been suggested [158]. Ideally, the choice of time delay must correspond to either
the first minimum or zero-crossing of the ACF. However, an exploratory analysis of
the CoP data used in this study revealed that these conditions were met for very
large values of 7, which would leave a number of data points far below the minimum
required to compute ApEn and SampEn. Therefore, 7 was set to 5, as a compromise
between data length and an acceptable reduction in ACF. This was implemented
computationally by downsampling the CoP time-series by a factor of 5, indirectly
adjusting the time delay (7 = 5) in the computation of ApEn and SampEn [158].
Consequently, the downsampled data had an effective frequency of 20 Hz, resulting
in a length of N = 1200 data points (20 Hz x 60 s).

To examine the effect of the choice of input parameters m, r and N, each
CoP time-series was subjected to ApEn and SampEn calculation for all possible
combinations of m = 2,3,4,5, » = 0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5 and
N = 600,1200 (i.e., 30 and 60 seconds, respectively). These ranges of input pa-
rameter values are more comprehensive than the ones adopted in previous studies,
in which values of m equal to 2, 3 or 5 and r from 0.1 to 0.3 have been used [21,
95-98, 100-103, 107-109]. This choice was motivated by our interest in exploring
the behaviour of ApEn and SampEn for a range of input parameters extending be-
yond the traditional values. A detailed description of the methods used to compute
ApEn and SampEn was presented in section 2.4. As mentioned above, these meth-
ods quantify the regularity or self-similarity of time-series by examining them for
similar epochs or subseries: more frequent, similar subseries led to lower entropy
values. Thus low ApEn and SampEn values reflect a high degree of regularity or
self-similarity [110, 111]. Regarding CoP time-series analysis, relatively high en-
tropy values may be indicative of balance control mechanisms that are too random
to command balance properly, whereas relatively low values may describe a balance
control that is too stiff to cope with situations that require flexibility [21].

Additionally, CoP displacement linear measures were also computed as de-
scribed in section 2.4: total length of displacement, the amplitude of displacement
in the AP and ML axes, the standard deviation in the AP and ML axes, mean
velocity in the AP and ML axes, total mean velocity and area covered by the dis-
placement. These measures were computed for detrended CoP time-series (i.e. mean

value subtracted) of length N = 1200, i.e. 60-second recordings (in line with the
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latest recommendations [188]) at an effective frequency of 20 Hz (that is, twice the
frequency of the CoP signal, in line with the Nyquist theorem).

A block diagram depicting the steps followed for data processing is shown in
Figure 4.3. The scripts for data processing were written in MATLAB R2017b (The
Mathworks, Inc., Natick, MA, USA). The source code can be found in Appendix A.

4.3.3 Data analysis

4.3.3.1 Effects of changing input parameters on approximate and sample

entropy

A three-way Analysis of Variance (ANOVA) was conducted to determine the effect
of changing m, r and N on ApEn and SampEn values. As described before, there
were four levels of m (i.e., 2, 3, 4, 5), nine levels of r (i.e. 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5) and two levels of N (i.e. 600 and 1200). A significant three-
way interaction between m, r, and N (p-value<0.05) indicated that entropy values
changed significantly for one or more combinations of m, r and N. Otherwise, a
significant two-way interaction indicated that entropy values changed significantly
for one or more combinations of those two parameters, yet entropy values were not
significantly different across the values for the third parameter. These analyses were
performed including ApEn and SampEn values for all CoP time-series, regardless of
testing condition (i.e. all trials per testing condition were included).

Additionally, the contributions of each factor (i.e. main factors m, r and N,
and their interactions) to the variation of ApEn and SampEn values were quantified

by the partial eta-squared measure, ng, which is computed as follows:

SumSQfactor

2
= 4.1
p SumSQfactor + SumsquTOT ( )

where SumSqyqctor is the variation attributable to the factor and SumSqerror
is the error variation [159], as derived from the three-way ANOVA. The higher the
773 value, the stronger the contribution of a factor is to the variation of ApEn and
SampEn [159].

4.3.3.2 Ability of approximate and sample entropy to discriminate be-
tween non-fallers and fallers

Firstly, subjects were grouped based on their age and history of falls in the past
12 months: young adults (Young, age<60), older adults (age>60) without falls in
the last 12 months (Non-Fallers) and older adults (age>60) who experienced one or
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more falls in the last 12 months (Fallers). Subjects with reported physical disabilities
were excluded from the analysis.

Subsequently, ApEn and SampEn group mean and standard deviation values
by group for all combinations of m, r and N were computed, regardless of testing
condition. To determine the effects of group on ApEn and SampEn, a mixed-design
ANOVA was conducted. It consisted of one between-subjects factor (i.e., group)
and three within-subjects factors (i.e., m, r and N). There were three levels of
group (i.e. Young, Non-Fallers and Fallers); the levels for the within-subject factors
have been introduced above. A significant four-way interaction between group,
m, r and N indicated that the entropy values were different between at least two
groups for one or more combinations of m, r and N. These combinations were
identified by performing a post hoc analysis of the differences between groups for
each combination of m, r and N using the Tukey’s honest significant difference
procedure. A p-value<0.05 was accepted as evidence of statistical significance.

In addition, the statistical significance of differences in linear measures be-
tween groups was also determined using a one-way ANOVA and a post hoc analysis
(Tukey’s honest significant difference procedure). These latter analyses were per-
formed in order to compare the ability of ApEn and SampEn to discriminate between

different groups to that of the more standard methods.

4.3.3.3 Behaviour of sample entropy in different testing conditions

Additionally, the behaviour of SampEn in different testing conditions was also in-
vestigated. Namely, SampEn mean and standard deviation values by group for
all combinations of m, r and N were computed separately for each testing con-
dition: Eyes open on a rigid surface (OR), Eyes closed on a rigid surface (CR),
Eyes open on a foam mat (OF) and Eyes closed on a foam mat (CF). For each
testing condition, a one-way ANOVA with group as a factor, as well as a post hoc
analysis (Tukey’s honest significant difference), was performed for each parameter
combination. These analyses were carried out in order to determine whether a spe-
cific testing condition might boost the sensitivity of SampEn to differences between
groups (e.g. more parameter combinations produced significant differences between
groups). These analyses were performed only on SampEn values from CoP time-
series in the anterior-posterior direction, as the analyses described earlier revealed
that these were more sensitive to differences between groups, especially between
Non-Fallers and Fallers.
All statistical analyses were performed in MATLAB R2017b.
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4.4 Results

4.4.1 Effects of changing input parameters on approximate and
sample entropy

For ApEn in the anterior-posterior direction, the three-way ANOVA with m, r, and
N as factors revealed statistically significant main effects of m, » and N. These main
effects were qualified by an interaction between m, r and N (Table 4.1). For ApEn in
the medial-lateral direction, the three-way ANOVA revealed statistically significant
main effects of m, r and N. These main effects were qualified by an interaction
between m, r and N (Table 4.1). The existence of significant three-way interactions
suggests that ApEn values changed significantly for different combinations of m, r
and N.

For SampEn in the anterior-posterior direction, a three-way ANOVA with
m, r, and N as factors revealed a main effects of m, r and N. These main effects
were qualified by interactions between m and r, between m and N and between
r and N. The interaction between m, r, and N was not significant (Table 4.2).
For SampEn in the medial-lateral direction, the three-way ANOVA revealed a main
effects of m, r and N. These main effects were qualified by interactions between
m and r, m and N, and r and N. The interaction between m, r, and N was not
significant (Table 4.2). The existence of significant two-way interactions suggests
that SampEn values changed significantly for one or more combinations of these two
parameters, yet entropy values were not significantly different across the values for
the third parameter.

These findings are illustrated in Figure 4.4, where ApEn and SampEn for
the AP component are presented as a function of m, r and N. It can be observed
that the shape of ApEn as a function of » was different for different combinations of
m and N (top panels). As for SampEn, its values tended to decrease as r increased,
yet its shape was consistent across different combinations of m and N (bottom pan-
els). Interestingly, subplots c¢) and d) in Figure 4.4 suggest a reciprocal relationship
between r and SampEn. ApEn and SampEn showed a similar behaviour for the ML

component of the CoP time-series (see Figure S1 in Appendix C).
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Table 4.1: Effects of input parameters on approximate entropy: three-way ANOVA
summary table.

A) Anterior-posterior direction

Source Sum Sq. d.f. Mean Sq. F p 7712)

m 209.58 3 69.862 8195.1 < 0.001 0.1504

r  1327.60 8 165.952 19467 < 0.001 0.5286

N 0.22 1 0.220 25.8 < 0.001 0.0002

mxr 193.92 24 8.080 947.8 < 0.001 0.1407

m* N 6.05 3 2.016 236.5 < 0.001 0.0051

r* N 25.22 8 3.152  369.7 < 0.001 0.0209

m*x7r*x N 2.62 24 0.109 12.8 < 0.001 0.0022
Error 1184 138888 0.009

Total  2949.20 138959

B) Medial-lateral direction

Source Sum Sq. d.f. Mean Sq. F p 7712)

m 224.69 3 74.896 13287 < 0.001  0.223

r 1284.3 8 160.537 28481 < 0.001 0.6213

N 1.04 1 1.036 183.78 < 0.001 0.0013

mxr 175.31 24 7.305 12959 < 0.001 0.183

mx N 6.28 3 2.092 371.18 < 0.001  0.008

rx N 22.98 8 2.873 509.64 < 0.001 0.0285

m*xrx N 2.02 24 0.084 14.9 < 0.001 0.0026
Error 782.87 138888 0.006

Total 2499.5 138959

Sum Sq. type III sum of squares, d.f. degrees of freedom, Mean Sq. mean square, F'
F-statistic, p p-value, 7]12, partial eta-squared
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Table 4.2: Effects of input parameters on sample entropy - three-way ANOVA sum-

mary table

A) Anterior-posterior direction

Source Sum Sq. d.f. Mean Sq. F p 7713

m 43.13 3 14.3753 11954 < 0.001 0.0252

r  2463.90 8  307.9882 25612 < 0.001 0.5960

N 17.04 1 17.0362 1416.7 < 0.001 0.0101

m*r 20.04 24 0.8351 69.4 < 0.001 0.0119

mx N 0.71 3 0.2357 19.6 < 0.001 0.0004

rx N 0.36 8 0.0455 3.8 < 0.001 0.0002

m*rx N 0.08 24 0.0034 0.3 1 0
Error 1670.2 138888 0.012

Total 4215.4 138959
B) Medial-lateral direction

Source Sum Sq. d.f. Mean Sq. F p 7]12)

m 59.34 3 19.7808  2561.1 < 0.001 0.0524

r  2199.40 8 274.9212 35595.0 < 0.001 0.6722

N 21.01 1 21.0063  2719.8 < 0.001 0.0192

m*r 28.42 24 1.1841 153.3 < 0.001 0.0258

m* N 0.94 3 0.3133 40.6 < 0.001 0.0009

r*x N 0.42 8 0.0521 6.7 < 0.001 0.0004

m*xrx N 0.10 24 0.0041 0.5 0.969 0.0001
Error 1072.70 138888 0.0077

Total  3382.30 138959

Sum Sq. type III sum of squares, d.f. degrees of freedom, Mean Sq. mean square, F'
F-statistic, p p-value, 7]12, partial eta-squared
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Figure 4.4: Approximate entropy (ApEn) and sample entropy (SampEn) as a func-
tion of m, r and N for the anterior-posterior (AP) component of the centre of
pressure displacement during unperturbed standing: a) ApEn for N = 600, b)
ApEn for N = 1200, ¢) SampEn for N = 600, and d) SampEn for N = 1200
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4.4.2 Ability of approximate and sample entropy to discriminate

between non-fallers and fallers
4.4.2.1 Participant grouping and characteristics

The CoP data from four participants were discarded from this analysis due to phys-
ical disabilities (namely, poliomyelitis and cerebral palsy), leaving 159 participants
(115 females, 44 males) for the analysis: 85 subjects were young adults (Young),
56 subjects were older adults without falls in the last 12 months (Non-Fallers), and
18 subjects were older adults with one or more falls in the last 12 months (Fallers).
Table 4.3 shows the mean value (standard deviation) for participant characteristics
by group: age, height, weight and Body Mass Index (BMI). Moreover, it shows re-
sults from a one-way ANOVA and post hoc comparisons between groups carried out
using the Tukey’s honest significant difference procedure. No significant differences
were observed between the Non-Fallers and Fallers groups, suggesting homogeneity
between them concerning age and anthropometric variables (thus discarding those

characteristics as potential confounders).

4.4.2.2 Approximate entropy

A significant four-way interaction between group, m, r and N was found [Anterior-
Posterior: F'(6.96,6601) = 16.3, p < 0.001, ng = 0.17; Medial-Lateral: F'(6.99,6624)
5.43, p < 0.001, 7]2% = 0.006]. This indicated that the ApEn values were different be-
tween at least two groups for one or more combinations of m, r and N. Importantly,
the p-values reported above were produced by applying the Greenhouse-Geisser pro-
cedure, since the data violated the assumption of sphericity imposed by the mixed-
ANOVA test (i.e. Mauchly’s test with a p < 0.001 for both anterior-posterior and
medial-lateral CoP). The term sphericity refers to the condition where the variances
in the differences between all possible pairs of factors (i.e. group, m, r and N) are
equal. If this assumption is violated, then the mixed-ANOVA test results in an
inflated F-statistic and thus deflated p-values. The Greenhouse-Geisser correction
adjusts the degrees of freedom in the mixed-ANOVA so that a valid F-statistic can
be obtained [160].Therefore, the reported p-values represent a more conservative

approach and thus the results can be considered more valid.

Young versus Older adults (Non-Fallers and Fallers). For N = 1200 (i.e. 60
seconds) in the AP direction, Fallers and Non-Fallers showed generally higher ApEn
mean values than Young adults (Figure 4.5). There was only one exception to this

trend (namely, for ApEn(m = 5,7 = 0.1)) for which Fallers had a slightly lower
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ApEn mean value than Young adults (a behaviour hereon referred to as “trend flip”
or “crossover”). Statistical testing revealed that those differences were significant
(p < 0.05) for all combinations of m and r (Table 4.4). In the ML direction, Fallers
had lower ApEn mean values than Young adults for all combinations of m and r
(see Figure S2 in Appendix C). However, statistical testing revealed that only one
combination of m and r produced significant differences between groups (see Table
S2 in Appendix C). The differences between Young adults and Non-Fallers did not
exhibit a consistent trend.

For N = 600 (i.e. 30 seconds), in the AP direction, similar trends to those
for longer data lengths (N = 1200) were observed. Namely, older adults showed
generally higher ApEn mean values than young adults, with a decreased consistency
in trend (3 trend flips for N = 600 versus one trend flip for N = 1200) (see Figure
S3 in Appendix C). These differences were statistically significant (p < 0.05) for all
but one combination of m and r (see Table S3 in Appendix C). In the ML direction,
Fallers generally showed lower ApEn mean values than Young adults, in partial
agreement with the results obtained for N = 1200 (see Figure S4 in Appendix
C). The dissimilarities observed were that, in contrast to the trend observed for
N = 1200, the trend observed for N = 600 was not consistent for all combinations
of m and r (i.e. some flips appeared for shorter data length) and was found to be
statistically significant for some combinations of m and r (see Table S4 in Appendix
C). As for the differences between Non-Fallers and Young adults, no consistent trend

was observed, in agreement with the results for a data length of N = 1200.

Older adults, Non-Faller versus Fallers. For N = 1200 (i.e. 60 seconds) in the
AP direction, Fallers showed generally higher ApEn mean values than Non-Fallers
(Figure 4.5). Some exceptions to this trend were found: ApEn(m = 4,r = 0.1)
and ApEn(m = 5,7 = {0.1,0.15}). However, statistical testing revealed significant
differences only for specific parameter combinations (Table 4.4). In the ML direction,
Fallers exhibited lower ApEn mean values than Non-Fallers for all combinations of
m and r (see Figure S2 in Appendix C). However, statistical testing revealed that
only two combinations of m and r produced significant differences between groups
(see Table S2 in Appendix C).
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Figure 4.5: Approximate entropy (ApEn) mean value (bars) and standard deviation
(error lines) by group as a function of r for m = 2,3,4,5 and N = 1200 (i.e.
60 seconds) for the anterior-posterior (AP) component of the centre of pressure
displacement during unperturbed standing: a) m = 2, b) m = 3, ¢) m = 4, and d)
m =25
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For N = 600 (i.e. 30 seconds) in the AP direction, the relative consistency
of ApEn and its ability to discriminate between Non-Fallers and Fallers were chal-
lenged. Firstly, more trend flips were observed for shorter time-series (N = 600)
than for longer ones (N = 1200) (see Figure S3 in Appendix C). Also, statistical sig-
nificance was only observed for combinations of m and r producing trend flips, thus
casting doubt on its legitimacy (see Table S3 in Appendix C). In the ML direction,
similar trends in group differences were observed for shorter data lengths (N = 600)
compared to longer data length (N = 1200). Namely, Fallers showed generally lower
ApEn mean values than Non-Fallers, with a slightly less consistent trend (1 trend
flips for N = 600 versus any flip for N = 1200) (see Figure S4 in Appendix C).
Moreover, in agreement with results for N = 1200, only specific combinations of m

and 7 produced statistically significant trends (see Table S4 in Appendix C).

4.4.2.3 Sample entropy

A significant four-way interaction between group, m, r and N was found [Anterior-
Posterior: F(4.82,4571 = 6.71, p < 0.001, partial n? = 0.007; Medial-Lateral:
F(6.7,6354) = 2.18, p = 0.035, partial 2 = 0.002]. This indicated that the SampEn
values were different between at least two groups for one or more combinations of
m, r and N. Once again, the reported p-values are the corrected ones using the
Greenhouse-Geisser procedure, given that the compound symmetry assumption was
violated (Mauchly’s test with a p < 0.001 for both anterior-posterior and medial-

lateral CoP time-series).

Young versus Older adults (Non-Fallers and Fallers). For N = 1200 (i.e.
60 seconds) in the AP direction, Fallers and Non-Fallers showed higher SampEn
mean values than Young adults for all combinations of m and r (Figure 4.6). Those
differences were found statistically significant with a p < 0.001 (Table 3). In the ML
direction, Non-Fallers had higher SampEn mean values than Young adults for all
combinations of m and r (see Figure S5 in Appendix C). In contrast, Fallers generally
had lower values compared to Young adults. However, all those differences between
Young and Non-Fallers/Fallers were found not statistically significant (see Table S5
in Appendix C).

For N = 600 (i.e. 30 seconds) in the AP direction, the relative trend con-
sistency of SampEn and its ability to discriminate between Young adults and older
adults (both Fallers and Non-Fallers) were preserved. Namely, Non-Fallers and Fall-
ers showed higher SampEn mean values than Young adults for all combinations of

m and r (see Figure S6 in Appendix C). Those differences remained statistically sig-
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nificant with p—value < 0.001 (Table S6 in Appendix C). In the ML direction, some
combinations of m and r produced statistically significant differences between Young
adults and Fallers (see Table S7 in Appendix C), an unexpected result considering
that no significant differences between groups were observed for longer time-series
(N = 1200). More specifically, Fallers showed lower SampEn mean values than
Young adults (Figure S7 in Appendix C). On the other hand, the relative trend
consistency in differences between Young adults and Non-Fallers was challenged,
corrupting the consistent trend observed for longer time-series (N = 1200) for which
Non-Fallers showed higher SampEn values than Young adults for all combinations

of m and r.

Older adults, Non-Faller versus Fallers. For N = 1200 (i.e. 60 seconds) in
the AP direction, Fallers exhibited higher SampEn mean values than Non-Fallers
for all combinations of m and r (Figure 4.6). However, statistical testing revealed
significant differences only for specific parameter combinations (Table 3). In the
ML direction, Fallers exhibited lower SampEn mean values than Non-Fallers for all
combinations of m and r (see Figure S5 in Appendix C). No significant differences
were found between Non-Fallers and Fallers (Table S5 in Appendix C).

For N = 600 (i.e. 30 seconds) in the AP direction, the ability of SampEn
to discriminate between Non-Fallers and Fallers was challenged. Namely, no statis-
tically significant differences between Non-Fallers and Fallers were observed (Table
S6 in Appendix C), even if a consistent decrease was preserved (Figure S6 in Ap-
pendix C). In the ML direction, two combinations of m and r produced statistically
significant differences between Non-Fallers and Fallers (Table S7 in Appendix C),
with Fallers showing lower SampEn mean values than Non-Fallers (Figure S7 in Ap-
pendix C). These results differ from the results obtained with longer CoP time-series

(N = 1200), where no significant differences were observed.

4.4.2.4 Linear measures

Both Fallers and Non-Fallers exhibited higher mean values than Young adults for
all linear measures of CoP displacement. These differences were found statistically
significant with a p < 0.001. Moreover, Fallers exhibited higher mean values than
Non-Fallers for all linear measures. However, those differences did not reach statis-

tical significance (Table 4.6).
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Figure 4.6: Sample entropy (SampEn) mean value (bars) and standard deviation
(error lines) by group as a function of r for m = 2,3,4,5 and N = 1200 (i.e.
60 seconds) for the AP component of the CoP displacement during unperturbed
standing: a) m =2,b) m =3,¢c) m=4,andd) m =5
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4.4.3 Behaviour of sample entropy under the different testing con-
ditions

For any given parameter combination, the mean SampEn value by group increased
across the four testing conditions (vision-surface): OR < CR < OF < CF. Older
adults showed higher mean SampEn values than young adults across all testing con-
ditions, with Fallers consistently exhibiting higher mean values than Non-Fallers.
The differences between older and young adults were found to be significant for
all parameter combinations across testing conditions (Tables S8 to S11 in Appendix
C). However, significant differences between Non-Fallers and Fallers were only found
under the OF condition for two parameter combinations (see Table S10 in Appendix
C). To illustrate these findings, Figure 4.7 shows the SampEn mean value and 95%
confidence interval by group and testing condition for three selected parameter com-
binations, one of which produced significant differences between Fallers and Non-
fallers (m = 2, r = 0.1, N = 1200).

4.5 Discussion

The use of ApEn and SampEn to characterise the regularity of CoP trajectories
is still relevant. While previous studies have achieved promising results regarding
the use of these entropy measures to discriminate between experimental groups and
testing conditions, the adequate selection of input parameter values for the analysis
of CoP time-series has not yet been formally investigated. This study aimed (1)
to examine the effect of changing the values of parameters m, r and N on ApEn
and SampEn values in CoP time-series, and (2) to determine the ability of ApEn
and SampEn to discriminate between experimental groups. It was expected that
ApEn and SampEn values would change significantly as functions of m, r and N,
yet that SampEn would maintain consistent behaviour across different parameter
value combinations (e.g. young adults showing consistently either higher or lower
entropy values than older adults) [112]. Moreover, it was expected that significant
differences in entropy values between young and older adults would be observed
and that some parameter value combinations would potentially reveal significant

differences between non-fallers and fallers.
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Firstly, the results confirm that the ApEn and SampEn algorithms are very
sensitive to input parameter choice. Consequently, researchers and clinicians should
be cautious when comparing studies using different parameters, even in similar pop-
ulations and testing conditions: a direct comparison of entropy values (e.g. mean
and range) should be completely avoided. However, the analyses in this study al-
low observation of the behaviour of ApEn and SampEn mean values over a wide
range of input parameters, which might be useful for other studies. Namely, for
a chosen m, both ApEn and SampEn tended to decrease as r increased, except in
the case of ApEn for low values of r in combination with high values of m. The
decreasing trend showed steeper slopes for lower values of m. Similarly, for a chosen
r, ApEn and SampEn tended to decrease as m increased (Figure 4.4). In other
words, CoP time-series exhibited more regularity (i.e. lower entropy values) for
higher similarity tolerances and higher subseries lengths. The increase in regularity
for higher values of r is an expected result, as it is a reasonable assumption that
a higher number of subseries will meet the similarity criterion for a more relaxed
tolerance. The increase in regularity for higher values of m suggests that patterns
in CoP time-series are observed at larger time-scales rather than at smaller time-
scales (e.g. in our study, m = 5 would correspond to a 0.25 to 0.3-second pattern
and m = 2 to a 0.1 to 0.15-second pattern). This could presumably be linked to
the well-known fact that for unperturbed standing posture the main components of
the CoP signal are below 10 Hz [26]. As for the effects of data length, our results
confirmed that ApEn is more dependent on this parameter than SampEn [111].
This claim is supported by the lower ApEn values observed for shorter time-series
(N = 600) than for longer time-series (N = 1200). This situation is particularly
evident for higher m values and lower r values. For instance, see Figure 4.4 and
compare ApEnap(m = 5,7 = 0.1) for N = 600 (top left pane) to N = 1200
(top right pane); then compare SampEnap(m = 5,7 = 0.1) for N = 600 (bottom
left panel) to N = 1200 (bottom right panel). Whereas a difference in the ApEn
value between longer and shorter time-series is evident, the difference in the Sam-
pEn value is barely noticeable. These initial findings already tipped the scales in
favour of SampEn when dealing with CoP time-series, in line with previous studies
that had suggested their use for the analysis of cardiac inter-beat interval, gait and
brain activity time-series [111, 112, 161]. Otherwise, they allow narrowing down the
number of potentially useful input parameter combinations in case of using ApEn,
discarding combinations of m = {4,5} and r = {0.1,0.15,0.2}.

Secondly, the results highlight issues with the relative consistency in CoP

time-series for ApEn, as observed by the change in the direction of differences be-
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tween groups (known as “flip” or “crossovers”) for some combinations of m and
r. For instance, in the AP direction older adults with falls in the last 12 months
(Fallers) showed generally higher ApEn mean values than young adults, but the
opposite trend was observed for ApEn(m = 5,7 = 0.1). This issue was still more
evident when comparing older adults with and without falls in the last 12 months
(i.e. Non-fallers and Fallers, respectively) as more combinations of m and r pro-
duce crossovers. Moreover, the issue with relative consistency was accentuated for
shorter time-series (N = 600). Importantly, these issues were observed for higher
values of m and lower values of r, which once again suggest that these values are not
an optimal choice for CoP time-series analysis based on ApEn. In contrast, Sam-
pEn showed relative consistency, as no crossovers between groups were observed.
This feature has been highlighted as one of the advantages of SampEn over ApEn
for other types of biological data analysis as well [111, 112, 161]. This is an addi-
tional reason why researchers and clinicians should favour SampEn over ApEn for
analysing CoP time-series.

Additionally, the results suggest that ApEn and SampEn are more sensitive
than linear CoP displacement measures to differences between groups: ApEn and
SampEn were able to discriminate between older adults with and without falls in
the past 12 months (Tables 4.4 and 4.5), whereas linear measures were not (Table
4.6). In other words, while Non-fallers and Fallers exhibited commensurable CoP
displacements in terms of magnitude (i.e. total length, amplitude and area), vari-
ability (i.e. standard deviation) and velocity (for instance, see Figure 4.1), they
manifested differences in CoP time-series structure (more specifically, in regular-
ity). Nevertheless, the results also revealed that the selection of input parameters in
the computation of ApEn and SampEn is critical in the identification of significant
differences between groups. Indeed, ApEn and SampEn were able to discriminate
with ease between two highly heterogeneous groups, i.e. young and older adults,
for a wide range of m, r and N values. However, only a subset of combinations
revealed significant differences between more homogeneous groups; i.e., older adults
with and without falls in the last 12 months. Those differences between groups were
mainly observed for CoP time-series in the anterior-posterior direction with longer
length (N = 1200, equivalent to a 60-second duration). Moreover, SampEn revealed
significant differences for a higher number of combinations than ApEn. Therefore,
it is suggested that researchers and clinicians aim to collect at least 60 seconds of
posturography data and focus on the analysis of the anterior-posterior component
of the CoP displacement using SampEn. However, it is appreciated that sustaining

a quiet standing posture for more than 60 seconds can be challenging for some older
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adults.

Furthermore, a more in-depth analysis of SampEn behaviour under four dif-
ferent testing conditions revealed that, while SampEn can discriminate with ease
between two highly heterogeneous groups (i.e. young and older adults) for a wide
range of testing conditions, some specific conditions might boost its sensitivity to
differences between more homogeneous groups (i.e. older adults with and without
falls in the last 12 months). Namely, older adults show significantly higher mean
values than young adults across all testing conditions. However, significant differ-
ences between Non-Fallers and Fallers were only found for one condition; namely,
the eyes open-foam surface condition (OF). Certainly, this was the case only for
two parameter combinations. However, this fact might be explained by the imbal-
ance in the dataset: there were 85 (53.5%) young adults, 56 (35.2%) non-fallers and
only 18 (11.3%) fallers. These numbers have an important impact on inferential
statistics: with a particularly low number of subjects in the Fallers group, the 95%
confidence interval for the mean (Confidence Interval at 95% (CI)) of the group is
expected to be wide, thus overlapping with the CI of the Non-fallers group. This
situation is illustrated in 4.7, where SampEn mean values and CI by group and
condition are shown for three selected parameter combinations. It can be observed
that the 95%CIs for the Non-fallers and Fallers groups in the OF condition only
partially overlap, suggesting that given a higher number of subjects in the Fallers
group its CI would shrink, potentially producing non-overlapping Cls between those
two groups. In contrast, the Non-Fallers and Fallers CI for other testing conditions
are totally or almost overlapping, suggesting that they would remain so even if the
size of the former group were higher. Similar results were observed across all values
of m considered in the present study. Thus its choice seems to play a minor role
in this specific aspect of analysis. However, the results suggest that the choice of
r is critical, as higher values of r (e.g. r = 0.5) seem to distort the potentially
distinctive profile line that each group shows for lower values (e.g. 7 = 0.1) when
SampEn mean values are plotted across testing conditions. This observation allows
narrowing further down the options of potentially useful values of r to somewhere
in the middle of the range (e.g. r = {0.25,0.3,0.35}).

From the clinical perspective, the results provide researchers interesting in-
sights. The first has to do with the direction of the difference in entropy values be-
tween the experimental groups in this study (i.e. young adults and older adults with
and without recent falls). In the anterior-posterior direction, older adults (both fall-
ers and non-fallers) exhibited significantly higher entropy values than young adults

for most combinations of m, r and N. Moreover, Fallers exhibited generally higher
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SampEn values than Non-Fallers (although that difference was significant only for
some combinations of input parameters). Therefore, these findings conflict with the
traditional interpretation of entropy values, which suggest that older adults should
exhibit generally lower entropy values as a consequence of the loss of physiological
complexity due to ageing and ill-health [162]. This conflict is solved by bearing in
mind that entropy cannot be directly linked to complexity: a smaller entropy value
does not mean less complexity, it only indicates more regularity based on one partic-
ular timescale [110, 111]. Therefore, if CoP entropy values observed in healthy young
adults are to be taken as a reference, then the higher values found in older adults
(especially in Fallers) may be indicative of posture control mechanisms that are too
random to command balance properly. In other words, the irregularity observed
in older adults might be associated with an unstructured system which becomes
less sustainable [21]. As for CoP entropy values in the ML direction, the observed
results resist a straightforward interpretation, as no significant differences between
groups were found. However, the generally lower entropy values observed in Fallers
compared to Young adults and Non-Fallers may suggest posture control mechanisms
that are too stiff (too regular), which could be problematic when coping with exter-
nal factors demanding an adaptable balance control. A second insight relates to the
sensitivity of entropy measures to differences between groups compared to that of
traditional measures. While the traditional measures were only able to discriminate
between highly heterogeneous groups (young adults versus older adults), entropies
could also discriminate between more homogeneous groups (non-fallers versus fall-
ers). This suggests that Fallers suffer from balance impairments of a different nature
to those produced by normal ageing. However, the elucidation of the specific nature
of those impairments was beyond the scope of this study. A third insight relates
to the conditions that seem to accentuate the differences in balance control mecha-
nisms between the experimental groups. The findings suggest that neither the least
nor the most challenging testing conditions (vision-surface: open-rigid and closed-
foam, respectively) enable the discrimination of differences between Non-fallers and
Fallers: both groups seem to cope similarly with those conditions. In contrast, a
testing condition of intermediate complexity (i.e. open-foam) seems to better reveal
those differences.

Finally, it must be acknowledged that there are more recent developments in
the field of nonlinear analysis that could potentially improve the sensitivity when
looking for differences between groups. In particular, the development of multiscale
entropy and multivariate Multi-scale Entropy (MSE) have offered new perspectives

for the analysis of biological time-series [163-166]. A few studies have already ap-
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plied these approaches to the analysis of CoP time-series [99, 105, 107]. Briefly, these
approaches rely on the computation of sample entropy values at different time-scales
and produce a two-dimensional plot (time-scale versus sample entropy) depicting a
profile line for each experimental group/condition. An overall entropy ‘score’ can
be computed by adding the entropy values at specific time-scales [105]. While these
new approaches represent an interesting tool to explore the level of regularity con-
tained at different time-scales, they cannot avoid the issue of the adequate selection
of input parameters. Since MSE and its variations are based on SampkEn, the re-
searchers and clinicians that opt for these newer approaches face essentially the
same problem that those who opt for ‘single-scale’ entropy measures when it comes
to input parameter selection. Hopefully, the present work will aid them in their
choices or at least inspire them to adopt a systematic approach to the identification

of the optimal parameters.

4.6 Conclusions

This chapter presented the secondary analysis of a public dataset of CoP time-
series performed to investigate whether nonlinear descriptors, specially ApEn and
SampEn, are more sensitive than linear measures to differences in balance control
due to ageing and fall risk, as well as to identify the optimal way to apply them
(e.g. signal pre-processing, selection of input parameters).

In summary, the results suggest that SampEn represents a better choice for
the analysis of CoP time-series given its relative consistency and ability to discrim-
inate between experimental groups. Nevertheless, the selection of input parameter
values proved to be critical in the identification of significant differences between
groups, in particular when those groups a presumably close to each other (in par-
ticular, older adults with and without falls in the last 12 months).

In particular, significant differences were mostly observed in CoP time-series
in the AP direction of 60-s duration (N = 1200). Therefore, future studies using
these entropy measures should favour longer CoP recordings (e.g. > 60 seconds)
over shorter CoP recordings (e.g. 30 seconds), as well as focus the analyses on AP
time-series.

Additionally, significant differences between groups with a consistent trend
were mostly observed for sample entropy. Hence, future studies should favour the use
of the latter over approximate entropy. More specifically, when analysing the data re-
gardless of testing condition, significant differences were observed for SampEn(m =
2,r = {0.4,0.45,0.5}) and SampEn(m = {4,5},r = {0.25,0.3,0.35,0.4,0.45,0.5}).
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Nevertheless, when analysing the data for specific testing conditions, higher values
of r (> 4) distorted the seemingly distinctive pattern that each group showed when
plotting SampEn mean values across testing conditions.

Finally, researchers and clinicians working on the analysis of CoP time-
series are recommended: 1) to use SampEn with input parameters m = {4,5}
and r = {0.25,0.3,0.35}, 2) to focus the analysis on the AP component, and 3) to
further explore the ‘eyes open-foam surface’ testing condition as a potential booster
of differences between groups.

This study led to the identification of optimal combinations of input param-
eters leading to discrimination between non-fallers and fallers using SampEn, thus
answering the second research question underlying this thesis (see chapter 1). The
study presented in the next chapter investigates potential associations between day-
to-day variations in sleep quantity and quality, monitored using wearable devices,
and balance in unperturbed standing. Hence, the study addresses the third research

question.
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Chapter 5

Day-to-Day Variations in Sleep
Quality and Balance in
Standing: the Role of Wearable

Sensors

5.1 Chapter overview

Wearable devices are offering new opportunities for in-home continuous sleep mon-
itoring in the broader population. They are potentially relevant for fall preven-
tion, given that chronic sleep disturbances and poor sleep quality are associated
with future falls in older people. Hence, if short-lived sleep disturbances and poor
sleep quality have a similar effect on balance control, continuous sleep monitor-
ing would be relevant for fall prevention programmes in frail populations and sleep
disturbance-inducing scenarios (e.g. hospital wards). Therefore, the potential asso-
ciation between day-to-day variations in sleep quality and balance control deficits
warrants investigation. This chapter presents a study that aimed to investigate the
associations between day-to-day variations in sleep quality, measured via wearable
devices, and balance in standing. Namely, this study investigated the potential
use of wearable devices for monitoring day-to-day variations in sleep quantity and

quality, as well as the sensitivity of the balance control system to these variations.
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5.2 Introduction

Acute sleep deprivation is associated with alterations in posture control during quiet
standing [167—177]. Balance deficits after intervals of 24 to 48 hours of sleep depriva-
tion are reflected by wider [168, 171, 174-176], more fluctuating [167, 170, 172, 173]
and faster [169] Centre of Pressure (CoP) displacements in the Anterior-Posterior
(AP) axis. Moreover, vision plays a substantial role in static balance after 24 hours
of sleep deprivation, as suggested by wider and more fluctuating CoP displacements
observed when subjects are tested with eyes closed than when they are tested with
eyes open [173]. After 26 hours of sleep deprivation, subjects also showed higher
body sway under a single-task condition and lower body sway under a dual-task con-
dition, suggesting that cognitive load also plays an essential role in balance control
under sleep deprivation. These findings suggest that the effects of sleep deprivation
on postural steadiness found under no cognitive load are compensated with a freez-
ing strategy under cognitive load condition [175]. Moreover, older adults (>60 years
old) suffer more sleep deprivation effects on balance than young adults (18-59 years
old) [176]. This finding may be relevant in the context of fall prevention in senior
citizens, especially in hospitalised older adults. Therefore, all these studies agreed
that long periods of sleep deprivation (>24 h) are associated with deteriorations in
static balance, especially in senior subjects.

More recently, the effects of chronic sleep restriction due to sleep debt and
social jet lag have been studied [178, 179]. Chronic low sleep quality (i.e. higher sleep
fragmentation and lower sleep efficiency) was found to affect balance control causing
higher postural instability [178]. Moreover, social jetlag (i.e. the misalignment of
the biological driven and socially dictated sleep times) was also found to deteriorate
balance control [179], as suggested by posture control performance being consistently
better on Mondays (after two of days of higher-quality sleep) than on Fridays (after
a week of restricted sleep).

This chapter presents an experimental study performed to investigate the
associations between day-to-day variations in sleep and balance. More specifically,
this study investigates the potential use of wearable devices for monitoring day-to-
day variations in sleep quantity and quality, as well as the sensitivity of the balance
control system to these variations. The contents of this chapter have been published
elsewhere [180].
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5.3 Materials and methods

5.3.1 Study participants

Participants were recruited using e-mail advertising sent to postgraduate students
from the School of Engineering of the University of Warwick. Exclusion criteria
included having a medical history of sleep disorders, neurological or physical dis-
abilities and having pharmacological treatment potentially affecting sleep patterns
and postural control (e.g. anti-depressants, hypnotics and stimulants).

Baseline characteristics, such as age, height, weight, general health status
and use of medications, were collected during a baseline assessment and briefing
session. Participants were also asked to complete the Pittsburgh Sleep Quality
Index (PSQI) instrument [30]. The PSQI questionnaire provided a global score
computed from nineteen self-rated questions related to sleep quality, sleep latency,
sleep duration, sleep efficiency, sleep disturbances, use of sleeping medication and
daytime dysfunction. The PSQI global score was used to compare baseline sleep
quality over the past month between groups.

All subjects provided informed consent before participating in the study. The
research protocol was approved by the Biomedical and Scientific Research Ethics
Committee of the University of Warwick (REGO-2014-1039 AMO1).

5.3.2 Equipment

Sleep monitoring was performed using the Zephyr BioHarness 3.0 (Medtronic, Inc.,
Annapolis, MD, USA), a wearable device that measures tri-axial trunk acceleration
and one-lead Electrocardiogram (ECG) signals at a sampling frequency of 100 Hz
and 1 kHz, respectively, at a resolution of 12 bits per sample (Figure 5.1). The
device is attached to chest over the xiphoid process (i.e. the bone structure located
at the centre to the chest, below the lower part of the sternum) using a pair of pre-
gelled, disposable electrodes. This device uses proprietary algorithms to calculate
the user’s activity level and posture based on acceleration signals. Activity level is
reported in gravitational force units (i.e. g-force or simply g, where 1g = 9.806m,/s2)

within a range of 0 to 16 g and is computed as

Activity = /22 +y2? + 22 (5.1)

where x, y and z are the average acceleration for the vertical, medial-lateral
and anterior-posterior axes, respectively, over 1-second, non-overlapping windows.

Posture is the wearer’s angle of deviation from the vertical axis, where 0°=subject
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Figure 5.1: Wearable device used for sleep monitoring

vertical, 90°=subject prone (face down) and -90°=subject supine (face up) Activity
and Posture time-series are reported with a frequency of 1 sample per second. More-
over, this device performs R peak detection on the ECG waveform and reports R-R
intervals in milliseconds. Raw three-axial accelerations, ECG signals, R-R interval
time-series, and a summary file containing the activity and posture time-series are
stored in the internal memory of the device during use and can be downloaded for
further processing. The validity and reliability of the Zephyr BioHarness are strong
to very strong for heart rate, acceleration and posture monitoring at low to moder-
ate physical activity levels [181, 182]. Figure 5.2 shows representative activity and
posture signals during sleep.

Balance assessment was performed using the Tekscan F-Scan system (Tekscan,
Inc., South Boston, MA, USA), a plantar pressure measurement and analysis sys-
tem. This system is based on a pair of ultra-thin (0.15mm) instrumented insoles
with a spatial resolution of 3.9 pressure-sensing elements per cm?. Bi-plantar pres-
sure data were collected at a rate of 200 frames per second. Based on pressure
data, the F-Scan Research 7 software computes the foot CoP location for each
frame. CoP displacement is stored as a time-series of numerical data in the AP
and Medial-Lateral (ML) axes in relation to the orientation of the subject. Fig-
ure 5.3 shows a representative bi-plantar pressure distribution map during quiet
standing and the resulting centre of pressure displacement trajectory. According
to the manufacturer’s recommended procedures, the F-Scan system was calibrated
for each participant following the point calibration routine, the suggested method
for standing balance trials. This calibration procedure requires each sensor to be
individually calibrated by having the subject standing on a single foot at a time for
a few seconds (=5 seconds). Hsiao et al. emphasised the importance of calibrating
the system in actual experimental conditions before use [183]. Providing that the
proper calibration procedure is followed, the accuracy of the F-Scan system has been

found to be satisfactory (i.e., with a measurement error of less than 6%) when the
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Figure 5.2: Activity (top) and posture (bottom) signals during sleep for a participant
that reported poor sleep quality. Activity level is expressed in gravitational force
units with a range from 0 to 16 g (1 g = 9.806 m/s?). Posture is the wearer’s angle
of deviation from the vertical axis, where 0°=subject vertical, 90°=subject prone
(face down) and -90°=subject supine (face up). Data collected by the author as
part of this study.

sensors are subjected to static loads (e.g. during quiet standing) and the pressure
applied during the protocol is comparable with that used during calibration [183].
These considerations are worth mentioning, as some studies have questioned the
validity and reliability of the Tekscan F-Scan system, when utilised with dynamic
loads (i.e. walking [184]) or when the sensors were calibrated using two pressure

values and tested over a broader range [185].

5.3.3 Study protocol

A schematic of the study protocol is depicted in Figure 5.4. After baseline assess-
ment, participants underwent sleep and balance assessment for two consecutive days.
For sleep assessment, they were asked to wear the BioHarness during sleep; i.e., to
apply it at the time of usual bedtime and to take it off after the final awakening.
Additionally, subjects were required to complete the Consensus Sleep Diary (CSD)
every morning immediately after getting out of bed during their participation in
the study [31]. Participants were invited to stick to their regular sleep schedule and
habits (i.e. no intervention was applied).

Balance was assessed in two morning sessions starting at the same time of the

day (9:00 or 10:00 a.m.) for any given participant. Previous studies have suggested
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Figure 5.3: Plantar pressure map and centre of pressure (CoP) trajectory. Left:
Representative bi-plantar pressure map during quiet standing. The black and white
circle represents the foot CoP computed from pressure distribution data. Right:
Representative centre of pressure trajectory (left foot) for a 20-second window. Data
collected by the author as part of this study.
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Figure 5.4: Schematic diagram of the study protocol. Sleep monitoring was per-
formed using a wearable device that records acceleration and electrocardiogram
signals. Balance assessment was performed using a plantar pressure measurement
and analysis system based on a pair of instrumented insoles.
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that CoP measures vary throughout the day, allegedly following a circadian pattern
[168-170]. By starting both sessions at the same time of the day, the influence of
time of day on CoP measures was discarded as a potential confounder. At each
session, participants were asked to complete four quiet standing trials with eyes
open. Namely, they were instructed to stand quietly on the foot pressure sensors
with arms hanging naturally at their sides and eyes staring at a fixed point on
the wall in front of them. The sensors were attached to the floor side-by-side in
a comfortable position for each participant (about shoulder width). The duration
of each trial was 30 seconds and a brief resting interval (~=15 seconds) was allowed

between trials. Participants wore socks but no shoes during the session.

5.3.4 Data processing

Data collected via the sleep diary, the BioHarness and the Tekscan system were
processed as follows in order to compute a set of sleep and balance measures (see

Table 5.1 for a summary of those measures with their definitions).

5.3.4.1 Sleep diary measures

Five sleep measures were extracted from the sleep diary: 1) Sleep Onset Latency
(SOL); 2) Wake After Sleep Onset (WASO), a measure of sleep fragmentation;
3) Total Sleep Time (TST) or sleep duration; 4) Sleep Efficiency (SE), and; 5)
Subjective Sleep Quality (SSQ). The definition of these measures can be found in
Table 5.1.

5.3.4.2 Sleep activity level measures

Activity level signals were processed to compute six measures of activity during sleep
(Figure 5.5). Firstly, raw signals were trimmed based on posture data to discard
activity data outside the sleep period (i.e. before getting into and after getting
out of bed). Then, the signals were segmented into continuous, non-overlapping
1-minute epochs and activity counts were computed for each epoch using the zero-
crossing mode, described in section 2.5; i.e., the activity level was compared with
the reference activity level, and each threshold crossing generated an activity count
[124]. The threshold was set to 0.1 g for high sensitivity. This generated a time-series
(ACT(n)) with the form

(ACT(n)) = ACT(1), ACT(2), ..., ACT(N)
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where ACT (i) is the number of activity counts for the 1-minute 7*" 1-minute
epoch and N is the total number of 1-minute epochs.

Subsequently, an inactive interval was defined as a sequence of two or more
consecutive epochs whose number of activity counts is equal to zero. Based on this
definition, the (ACT(n)) was examined to determine the number and duration of

inactive intervals, which produced a time-series (I(m)) of the form

where I(j) is the duration (minutes) of the j** inactive interval and M is the
total number of inactive intervals.

Finally, six activity measures were computed (Table 5.1):

1. Mean activity counts per epoch
1 N
ACTmean = & z; ACT(3) (5.2)
i

2. Standard deviation of activity counts per epoch

1 N

N 2
. 1 .
=1 =1

3. Activity index, defined as the percentage of epochs that the participant was

active (i.e. activity counts>0)

number of ACT (i) > 0

Al =
N

x 100 Vi (5.4)

4. Fragmentation index, defined as the percentage of inactive intervals with du-

ration of less than or equal to 5 minutes

number of I(j) <5

FI = 100 W] 5.5
i x j (5.5)

5. Duration of the longest inactive interval
Iy = max I(7) (5.6)
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6. Mean duration of the inactive intervals
1 M
Imean == Mzzlj(j) (57)
j:

These measures were computed using in-house written scripts in MATLAB
R2017b (The Mathworks, Inc., Natick, MA, USA). The source code can be found
in Appendix A.

5.3.4.3 Heart rate variability measures

Heart Rate Variability (HRV) measures were computed from R-R time-series in
order to characterise autonomic cardiac modulation during sleep (Figure 5.5). As
mentioned in section 2.5, a higher parasympathetic tone has been observed during
Non-Rapid Eye Movement (NREM) sleep, especially during deep sleep; in contrast,
a higher sympathetic tone has been observed during wake intervals, Rapid Eye
Movement (REM) sleep and sleep arousals [35]. Therefore, the HRV analysis pro-
vided with an indication of the presence of wake intervals and arousals, as well as
of shorter deep sleep periods.

Firstly, the R-R series were segmented based on posture data to discard
heartbeats outside the sleep period. Subsequently, the software HRVanalysis was
used to correct R-R time-series and compute four HRV measures from them: two
frequency-domain measures (Low-Frequency (LF) and High-Frequency (HF) power)
and two nonlinear measures (Approximate Entropy (ApEn) and Sample Entropy
(SampEn)) [186]. The automatic R-R interval correction algorithms involve two
steps. First, spurious R-R intervals are detected based on the relative variation in
successive intervals: R-R intervals with a variation of +32.5% or -24.5% are consid-
ered to be spurious and thus discarded [187]. Second, discarded R-R intervals are
recalculated as follows: if the number of successive false R-R intervals is 3 or less,
these are recalculated by cubic spline interpolation; otherwise, they are replaced by
copying the same number of previous valid R-R intervals [186]. In addition, three
frequency-domain measures were computed using in-house written scripts in MAT-
LAB R2017b: LF normalised, HF normalised and LF/HF ratio. The meaning of
these HRV measures has been widely described in literature [126, 127]. In the con-
text of sleep assessment, those features are associated with specific sleep stages and
other relevant phenomena (e.g. arousals) [126]. In the frequency-domain, HF power
describes the parasympathetic activity, whereas LF power describes both parasym-

pathetic and sympathetic activity. Thus, the relationship between both branches
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usually is explored with the normalised frequency values and the LF/HF ratio. A
higher LF/HF ratio reflects a higher HRV. Finally, entropy measures represent an
index of regularity in the cardiac signal. An increase in regularity (i.e., an increase
in the entropy measure) is associated with parasympathetic modulation, and its

decrease is interpreted as the result of an increased sympathetic tone.

5.3.4.4 Balance measures

A block diagram depicting the steps followed for the CoP data processing is shown
in Figure 5.6. CoP time-series were segmented to discard the initial and last 5
seconds of each trial in order to account for the adaptation phase of the participant
to the quiet standing task and the effects of fatigue or lack of attention associated
with a sustained task, respectively [188]. Subsequently, the CoP time-series were
passed through a fourth-order, zero-phase Butterworth low-pass digital filter with a
cut-off frequency of 5 Hz in order to remove acquisition noise. This cut-off frequency
was selected since most of the components of CoP signals are below this frequency
[189]. Afterwards, they were detrended (i.e., subtraction of the mean value from the
time-series). Hence, the analysis of the CoP displacement was carried out relative
to its mean position and not to the origin of the sensors’ coordinate system. Finally,
three CoP displacement measures were computed as described in detail in section
2.4: area, amplitude and standard deviation. These measures were computed for left
and right feet independently. Additionally, the measures for left and right feet were
averaged. Amplitude and standard deviation were computed in the AP axis only, as
previous studies have shown that it is mainly on this axis that balance alterations
are observed [171, 173, 175, 176]. The definition of these measures is presented in
Table 5.1.

Scripts for CoP data processing were also written in MATLAB R2017b. The

source code can be found in Appendix A.
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5.3.5 Statistical analysis

Participants were grouped based on the sleep quality scores they reported in the
sleep diary (i.e. SSQ). Participants who reported no variation in sleep quality over
two consecutive nights were assigned to the Control group. Participants who re-
ported a variation in sleep quality over two consecutive nights (e.g. good sleep
quality in one night and poor sleep quality in the other) were assigned to the Case
group. The validity of self-reported sleep quality was tested by running pairwise
comparisons for all other sleep measures within each group. By definition, no differ-
ences over consecutive nights were expected for the Control group, while significant
differences were expected for the Case group. Two-sided Wilcoxon paired tests with
a significance level set at 0.05 were used for these comparisons, given that most sleep
measures exhibited a non-normal distribution (Table 5.2).

Subsequently, a repeated measures Analysis of Variance (ANOVA)-type rank
test for factorial designs was performed in order to test the main effects and the in-
teraction effects of Group and Session on balance measures [190]. This test was
developed for experimental designs where subjects are stratified in several groups,
as well as observed at different time points (i.e., mixed designs). Importantly, these
tests are robust to outliers and small sample sizes. The computational implemen-
tation of this test provided by the authors via the R package nparLLD version 2.1
was used [191]. The main effects and interaction effects of Group and Session were
tested for all balance measures. A p-value < 0.05 was accepted as indicative of sta-
tistical significance. This analysis was performed in R version 3.4.1 (R Foundation
for Statistical Computing, Vienna, Austria).

Finally, differences in balance measures between sessions were investigated for
each group (i.e. post hoc comparisons): for the Control group, pairwise comparisons
were always made between Session 2 and Session 1, given that by definition for this
group sleep quality was equally rated in both sleep opportunities; for the Case group,
pairwise comparisons were made between the session with the poorest sleep quality
and the session with the best sleep quality, regardless of the chronological order in
which they were presented. Two-tailed Wilcoxon paired tests were performed given
the non-normal distribution of most balance measures (Shapiro-Wilk test with a p-
value < 0.05). A p-value < 0.05 was accepted as indicative of statistical significance.
These tests were conducted in MATLAB R2017b.
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Table 5.2: Normality test on sleep measures. A Shapiro-Wilk test of normality
was performed on the sleep measures. P-values < 0.05 (bold) suggest that there is
evidence that the data tested were not normally distributed.

Measure W-statistic p-value
Sleep diary measures
SOL 0.66 0
WASO 0.59 0
TST 0.97 0.351
SE 0.92 0.011
Activity level measures
ACT ean 0.87 0.001
ACTyy 0.93 0.020
Al 0.85 0
FI 0.97 0.491
j — 0.94 0.056
Lnean 0.98 0.741
HRV measures
LF 0.87 0.001
HF 0.67 0
LF normalised 0.95 0.103
HF normalised 0.95 0.103
LF/HF ratio 0.89 0.003
ApEn 0.99 0.938
SampEn 0.98 0.547

SOL sleep onset latency, WASO wake after sleep onset, T'ST total sleep time, SE sleep
efficiency, HRV heart rate variability, LF low-frequency power, HF high-frequency
power, ApEn approximate entropy, SampFEn sample entropy
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5.4 Results

5.4.1 Participants baseline characteristics and stratification

Twenty volunteers (12 females and 8 males) participated in this study. The sample
had an overall mean (standard deviation) age of 28.8 (5.7) years, height of 170.8
(8.3) cm, mass of 68.7 (13.2) kg, body mass index of 23.4 (3.4) kg/m?, heart rate at
rest of 63.1 (8.7) beats/minute, PSQI score of 5.1 (2.4) and average sleep duration
of 7 (1) hours during the past month. No significant differences were found between
groups for these characteristics (Table 5.3).

Six participants reported no variation in sleep quality over two consecutive
nights (Control group), whereas 14 participants reported a variation in sleep quality
over two consecutive nights (Case group). No significant differences were found in
sleep measures over the two consecutive nights for the Control group. Conversely,
the Case group exhibited significant differences for some sleep measures (Table 5.4).
Namely, for the poorest sleep quality night (i.e., the lowest-rated) the Case group
exhibited:

e Longer WASO (p=0.043) and shorter TST (p=0.038), as self-reported in the
sleep diary.

e Higher mean and standard deviation of activity counts per epoch (p=0.033
and p=0.048, respectively), higher activity index (p=0.033) and shorter mean
duration of the more extended inactive interval (p=0.041) as computed from

the trunk acceleration signals.

e Lower heart rate variability, as reflected by lower power in the HF band
(p=0.033) and lower ApEn and SampEn (p=0.021 and p=0.006, respectively).
5.4.2 Group and Session main effects and interaction effects on

balance measures

The main effects of Group and Session were not significant for any CoP displacement
measure (Table 5.5). However, two CoP displacement measures showed significant

Group™*Session interaction effects:

e Area of displacement for the right foot (p=0.025)

e Standard deviation (AP axis) for the right foot (p=0.017)
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Table 5.3: Baseline characteristics of study participants. Mean and standard
deviation for all subjects, subjects without day-to-day variation in sleep quality
(Control group) and subjects with variation in day-to-day sleep quality (Case
group). P-values from two-tailed paired t-tests are also shown.

All Control group Case group
(n = 20) (n=6) (n = 14)

Variable Mean  SD Mean SD Mean  SD p-value
Age (years) 288 5.7 29.5 5.7 284 5.9 0.711
Mass (kg) 68.7 13.2 64.3 11.3 70.6 13.9 0.339
Height (cm) 170.8 8.3 167.6 6.8 172.1 8.8 0.279
BMI (kg/m?) 23.4 34 22.8 3.7 23.7 34 0.608
HR (bpm) 63.1 8.7 63.4 8.2 63.0 9.2 0.925
PSQI 51 24 5.0 1.7 51 2.7 0.908
TST (hours) 7.0 1.0 7.2 1.0 7.0 1.1 0.727

SD standard deviation, BMI body mass index, HR heart rate at rest, PSQI Pittsburgh
Sleep Quality Index, T'ST total sleep time for the past month

5.4.3 Pairwise comparisons for balance measures

As reported in Table 5.6, eight CoP displacement measures exhibited significant
differences after sleep deterioration (Case group). Namely, after the lowest-rated

sleep participants showed a less stable balance as reflected by:

e an increase in the area of displacement for left and right feet, as well as for

the averaged measure (p=0.049, p=0.011 and p=0.035, respectively)

e an increase in the amplitude of displacement (AP axis) for left and right feet, as

well as for the averaged measure (p=0.025, p=0.013 and p=0.020, respectively)

e an increase in standard deviation (AP axis) for the right foot and the average
for both feet (p=0.035 and p=0.042, respectively)

Conversely, no significant CoP displacement measure variations were ob-
served in the Control group (i.e., subjects presenting no sleep quality variations).
Figure 5.7 illustrates the observed results for the feet-averaged CoP displacement

measures.

5.5 Discussion

This study investigated the potential use of wearable devices for monitoring day-

to-day variations in sleep quantity and quality, as well as the sensitivity of the
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balance control system to these variations. The hypothesis was that balance in
unperturbed standing, measured by foot CoP displacement, may be affected by
changes in sleep quantity and quality over two consecutive nights. Firstly, the study
explored whether day-to-day self-reported sleep quantity and quality was confirmed
by instrumented sleep assessment using wearable devices. Therefore, participants
were divided into two groups based on whether or not they reported a shift in sleep
quality over two consecutive nights. Importantly, reported changes in sleep quality
were not artificially induced; they were instead the consequence of spontaneous sleep
disturbances experienced during the lowest-rated sleep opportunity (e.g. the need
to use the toilet, an uncomfortable room temperature and involuntarily waking up
in the middle of the night or early in the morning for no apparent reason, among
the most referred disturbances). Subjects reporting a shift in sleep quality reported
significantly higher sleep fragmentation (WASO) and significantly lower sleep dura-
tion (TST) for the lowest-rated sleep opportunity. They also showed higher levels
of activity and shorter inactive intervals as measured via body acceleration signals,
suggesting a less quiet and more fragmented sleep. These results suggest that self-
reported sleep quality was indeed associated with a shorter, more discontinuous and
less quiet sleep, in line with the study by Furtado et al. [178], in which higher WASO
and activity levels were observed in subjects with low-quality sleep over one week.
Moreover, in the present study, subjects reporting a variation in sleep quality also
exhibited higher sympathetic activity (i.e., lower heart rate variability) during the
sleep opportunity, which according to existing literature suggests the presence of
more wake intervals and/or arousals, and fewer and/or shorter deep sleep intervals
[35]. All these differences confirmed that the subjective sleep quality appraisal that
participants made via the sleep diary reflected actual variations in objective sleep
measures. Therefore, wearable devices can be used to detect day-to-day variations

in sleep quantity and quality.
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The main effects and the interaction effects of Group and Session on balance
measures were tested. No significant Group or Session main effects were found
for any CoP measure, confirming the overall homogeneity in balance performance
between groups and sessions. Conversely, two CoP displacement measures showed
significant Group*Session interactions, confirming the hypothesis that day-to-day
variations in balance are associated with variations in sleep quantity and quality
over consecutive nights.

The Group*Session interaction effects above were found to be attributable
to subjects that exhibited a variation in sleep quantity and quality over consecutive
nights. The group of subjects reporting and exhibiting worsening in sleep measures
over two consecutive days also exhibited larger CoP displacements (i.e., amplitude
and area) and fluctuations (i.e., standard deviation), particularly in the anterior-
posterior axis. These results are in line with previous studies, which have also
found larger, more fluctuating and faster CoP displacements in the anterior-posterior
axis as a result of 24 to 48 hours of sleep deprivation [167-176]. This suggests
that the alterations in postural control observed after a day-to-day deterioration
in sleep quality have similar manifestations (direction) to those produced by more
extended periods of sleep deprivation. These alterations could potentially increase
(in magnitude) in older adult populations, as suggested by a previous study where
the effects of sleep loss on balance measures were found to be modulated by age,
with older adults showing an increase in CoP speed more than twice higher than
younger adults after sleep deprivation [176]. However, this observation requires
further investigation.

Altogether, these results confirm that day-to-day variations in sleep quality
are associated with variations in static balance among healthy young adults. The
fact that no differences were found in the group of participants that reported and
exhibited no differences in sleep quality over two nights supports this conclusion.

The neurophysiological mechanisms behind the observed alterations in pos-
tural control need to be elucidated. It is known that both vigilant attention and
the visual system are affected by sleep deprivation [192-195]. Both have also been
found to play an essential role in postural control [40, 196-199]. Future studies could
further investigate the effects of day-to-day variations in sleep quantity and quality,
and standing balance by observing its modulation by available attentional resources
(e.g. cognitive plus postural task versus only postural task) and visual conditions
(e.g. eyes open versus eyes closed).

Although the effects of acute total sleep deprivation [167-176], chronic low
sleep quality [178] and social jetlag [179] on postural control had been previously
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Figure 5.7: Centre of pressure displacement measures. Mean (bars) and standard
error of the mean (error lines) by group and session. The Control group comprises
subjects without day-to-day variations in sleep quality; the Case group comprises
subjects with variations. AP anterior-posterior, p p-value from two-tailed paired
Wilcoxon tests
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investigated, the novelty of this study is that it focused on whether or not spon-
taneous variations in sleep quantity and quality over two consecutive nights may
affect static balance. The findings suggest that a deterioration in sleep quantity and
quality over two consecutive nights is associated with balance during unperturbed
standing characterised by the centre of pressure displacement.

This finding may be relevant in the context of fall prevention, as previous
studies have found significant associations between CoP displacement measures and
risk of falling (although a consensus has not yet been reached on what are the key
balance outcome measures for fall prediction) [10, 92, 200, 201]. Importantly, the
findings presented in this chapter are based on the analysis of a small sample of
young adults. Therefore, further research is required to confirm them in a larger
sample of older adults.

An additional limitation of the present study relates to the fact that only two
consecutive nights of sleep monitoring were considered. Further studies should con-
sider a longer period (i.e. one week) in order to investigate longitudinal associations

between sleep and balance.

5.6 Conclusions

This chapter presented a study performed to investigate the potential use of wearable
devices for monitoring day-to-day variations in sleep quantity and quality, as well
as the sensitivity of the balance control system to these variations.

Firstly, the results of this study suggest that wearable devices can be used
for detecting day-to-day variations in sleep quantity and quality. In particular, the
duration of rest periods and the presence of sleep disturbances can be estimated
from acceleration and electrocardiogram signals.

Moreover, the results of the study suggest that day-to-day variations in sleep
quantity and quality affect balance control during unperturbed standing. This sit-
uation can potentially expand the prevailing paradigm in fall prevention, from the
current one focusing on the occasional assessment of risk factors and changes in the
balance control system to a new one including also the continuous monitoring and
detection of short-lived factors that might result in an imminent fall.

This study investigated the associations between day-to-day variations in
sleep quantity and quality, monitored using wearable devices, and balance in unper-
turbed standing, thus answering the third research question underlying this thesis
(see chapter 1). The study presented in the next chapter investigates whether quan-

titative descriptors of nonlinear dynamics are more sensitive than linear measures
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to differences in balance control due to day-to-day variations in sleep quantity and

quality. Hence, the study addresses the fourth research question.
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Chapter 6

Day-to-Day Variations in Sleep
Quality and Balance in
Standing: the Role of Nonlinear
Signal Analysis

6.1 Chapter overview

This chapter presents a study performed to investigate further the associations be-
tween day-to-day variations in sleep and balance observed in the previous study
(chapter 5). Additionally, this study investigated whether nonlinear measures, es-
pecially Sample Entropy (SampEn), are sensitive to the differences in balance control

produced by day-to-day variations in sleep quantity and quality.

6.2 Introduction

The study presented in chapter 5 investigated the potential use of wearable devices
for monitoring day-to-day variations in sleep quantity and quality, as well as the sen-
sitivity of the balance control system to these variations. The results suggested that
wearable devices can be used for detecting day-to-day variations in sleep quantity
and quality. Moreover, the results of that study also suggest that these variations
in sleep affect balance control during unperturbed standing.

Moreover, the study presented in chapter 4 compared the sensitivity of linear
and nonlinear measures to differences in balance control due to ageing and fall risk.

The results of the study suggested that measures of nonlinear dynamics can reveal

133



differences in balance control that linear measures do not reveal.

This chapter presents a study performed to confirm and extend the findings
of the studies mentioned earlier. Namely, the present study investigated further the
associations between day-to-day variations in sleep and balance. As in the previous
study (chapter 5), wearable devices were used for in-home sleep monitoring in order
to confirm their potential use for capturing daily variations in sleep quantity and
quality. Moreover, the study investigated further the association of those variations
in sleep with variations in balance control. In contrast with the previous study,
the present study explored the sensitivity of SampEn to the differences in balance
control produced by day-to-day variations in sleep quantity and quality, based on
the findings presented in chapter 4. Some preliminary results of this study were

presented elsewhere [202].

6.3 DMaterials and methods

6.3.1 Study participants

Participants were recruited using e-mail advertising sent to postgraduate students
from the School of Engineering, University of Warwick. Exclusion criteria included
to have a medical history of sleep disorders, neurological or physical disabilities
and to be in a pharmacological treatment potentially affecting sleep patterns and
postural control (e.g. anti-depressants, hypnotics and stimulants).

Baseline characteristics, such as age, height, weight, general health status
and use of medications, were collected during a baseline assessment and briefing
session. All subjects provided informed consent before participating in the study.
The research protocol was approved by the Biomedical and Scientific Research Ethics
Committee of the University of Warwick (REGO-2014-1039 AMO02).

6.3.2 Equipment

Sleep monitoring was performed using the Zephyr BioHarness 3.0 (Medtronic, Inc.,
Annapolis, MD, USA), a wearable device that measures and records tri-axial trunk
acceleration and one-lead Electrocardiogram (ECG) signals at a sampling frequency
of 100 Hz and 1 kHz, respectively, at a resolution of 12 bits per sample (Figure 6.1).
The device is attached to chest over the xiphoid process (i.e. the bone structure
located at the centre to the chest, below the lower part of the sternum) using a
pair of pre-gelled, disposable electrodes. The device uses proprietary algorithms

to calculate the user’s activity level and posture based on the acceleration signals.
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Figure 6.1: Wearable device used for sleep monitoring

Activity level is expressed in gravitational force units (i.e. g-force or simply g, where

1 g = 9.806 m/s?) with a range from 0 to 16 g and is computed a

Activity = /x? + y? + 22 (6.1)

where x, y and z are the average acceleration for the vertical, medial-lateral
and anterior-posterior axes, respectively, over 1-second, non-overlapping windows.
Posture is the wearer’s angle of deviation from the vertical axis, where 0°=subject
vertical, 90°=subject prone (face down) and -90°=subject supine (face up). Activity
level and Posture time-series are reported with a frequency of 1 sample per second.
Moreover, this device performs R peak detection on the ECG waveform and reports
R-R intervals in milliseconds. Raw three-axial accelerations, ECG signals, R-R in-
terval time-series, and a summary file containing the activity and posture time-series
are stored in the internal memory of the device during use and can be downloaded
for further processing. The validity and reliability of the Zephyr BioHarness are
strong to very strong for heart rate, acceleration and posture monitoring at low to
moderate physical activity levels [181, 182]. Figure 6.2 shows representative activity
and posture signals during sleep.

Balance testing was performed using a tri-axial force platform (Advanced
Mechanical Technology, Inc., Watertown, MA, USA) at a sampling frequency of 1
kHz. Based on force data, the Vicon Nexus 1.4.116 software (Vicon Motion Systems
Ltd., Oxford, UK) computes the net Centre of Pressure (CoP) location for each
frame. CoP displacement is stored as time-series of numerical data in the Anterior-
Posterior (AP) and Medial-Lateral (ML) axes in relation to the orientation of the
subject orientation. Figure 6.3 shows a participant standing quietly on the force

plate and the corresponding CoP displacement trajectory.
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Figure 6.2: Activity (top) and posture (bottom) signals during sleep for a participant
who reported very poor sleep quality. Activity level is expressed in gravitational
force units with a range from 0 to 16 g (1 g = 9.806 m/s?). Posture is the wearer’s
angle of deviation from the vertical axis, where 0°=subject vertical, 90°=subject
prone (face down) and -90°=subject supine (face up). Data collected by the author
as part of this study.

AP displacement (mm)

10 -5 0 5 10
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Figure 6.3: Balance assessment: (A) Participant standing quietly on the force plate
and (B) Centre of pressure trajectory. AP anterior-posterior, ML medial-lateral.
Data collected by the author as part of this study.
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Briefing session Night 1 Lab session 1 Night 2 Lab session 2

Baseline Sleep Balance Sleep
assessment assessment testing assessment

Static posturography
with eyes open (x3)
and eyes closed (x3)

Balance
testing

Static posturography
with eyes open (x3)
and eyes closed (x3)

Sleep monitoring
& sleep diary

Sleep monitoring

Questionnaire & sleep diary

Figure 6.4: Schematic diagram of the study protocol. Sleep monitoring was per-
formed using a wearable patch-type device that records acceleration and electrocar-
diogram signals. Balance testing was performed using static posturography.

6.3.3 Study protocol

A schematic of the study protocol is shown in Figure 6.4. After baseline assessment,
participants underwent sleep and balance assessment for two consecutive days. For
sleep assessment, they were asked to wear the BioHarness during sleep; i.e., to
apply it at the time of usual bedtime and to take it off after the final awakening.
Additionally, subjects were required to complete the Consensus Sleep Diary (CSD)
every morning immediately after getting out of bed during their participation in
the study [31]. Participants were invited to stick to their regular sleep schedule and
habits (i.e. no intervention was applied).

Balance was assessed in two morning sessions starting at the same time of
the day (9:00 or 10:00 a.m.) for any given participant. Previous studies have sug-
gested that CoP measures change throughout the day, allegedly following a circadian
pattern [168-170]. By starting both sessions at the same time of the day, the in-
fluence of time of day on postural control measures was discarded as a potential
confounder. At each session, participants were asked to complete six quiet standing
trials, three with Eyes Open (EO) and three with Eyes Closed (EC). For the EO
trials, they were instructed to stand quietly on the force platform placing the feet in
a comfortable position (about shoulder width), letting the arms hang naturally at
their sides and stare at a point on the wall in front of them. For the EC, subjects
were instructed to close their eyes once they had stepped on the force plate, set the
feet in a comfortable position, and leave their arms to hang naturally. The duration
of each recording was 30 seconds and a brief resting interval (=15 seconds) was al-
lowed between trials. Participants wore socks but no shoes during data acquisition,
in order to discard spurious differences in balance due to footware (e.g. additional

support and altered foot sole sensation) [188, 203].
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6.3.4 Data processing

Data collected via the sleep diary, the BioHarness and the force platform were
processed as described in the following subsections in order to compute a set of

sleep and balance measures. A summary of those measures is shown in Table 6.1.

6.3.4.1 Sleep diary measures

Five sleep measures were extracted from the sleep diary (Table 6.1): 1) Sleep Onset
Latency (SOL); 2) Wake After Sleep Onset (WASO), a measure of sleep fragmen-
tation; 3) Total Sleep Time (TST) or sleep duration; 4) Sleep Efficiency (SE), and,;
5) Subjective Sleep Quality (SSQ).

6.3.4.2 Sleep activity level measures

Activity level signals were processed to compute six measures of activity during sleep
(Figure 6.5). Firstly, raw signals were trimmed based on posture data to discard
activity data outside the sleep period (i.e. before getting into and after getting
out of bed). Then, the signals were segmented into continuous, non-overlapping
1-minute epochs and activity counts were computed for each epoch using the zero-
crossing mode, described in section 2.5; i.e., the activity level was compared with
the reference activity level, and each threshold crossing generated an activity count
[124]. The threshold was set to 0.1 g for high sensitivity. This generated a time-series
(ACT (n)) with the form

(ACT(n)) = ACT(1), ACT(2), ..., ACT(N)

where ACT (i) is the number of activity counts for the 1-minute i 1-minute
epoch and N is the total number of 1-minute epochs.

Subsequently, an inactive interval was defined as a sequence of two or more
consecutive epochs whose number of activity counts is equal to zero. Based on this
definition, the (ACT(n)) was examined to determine the number and duration of

inactive intervals, which produced a time-series (I(m)) of the form

where I(j) is the duration (minutes) of the 5" inactive interval and M is the
total number of inactive intervals.
Finally, six activity measures were computed as described in chapter 5 (equa-

tions 5.3.4.2 to 5.7). These measures were computed using in-house written scripts
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in MATLAB R2017b (The Mathworks, Inc., Natick, MA, USA). The source code
can be found in Appendix A.

6.3.4.3 Heart rate variability measures

Heart Rate Variability (HRV) measures were computed from R-R interval time-
series in order to characterise autonomic cardiac modulation during sleep (Figure
6.5). A higher parasympathetic tone has been observed during Non-Rapid Eye
Movement (NREM), particularly during deep sleep; in contrast, a higher sympa-
thetic tone has been observed during wake intervals, Rapid Eye Movement (REM)
and sleep arousals [35]. Therefore, the HRV analysis provided with an indication of
the presence of wake intervals and arousals, as well as of shorter deep sleep periods.

Firstly, the R-R series were segmented based on posture data to discard
heartbeats outside the sleep period. Subsequently, the software HRVanalysis was
used to correct R-R time-series and compute four HRV measures from them: two
frequency-domain measures (Low-Frequency (LF) and High-Frequency (HF) power)
and two nonlinear measures (Approximate Entropy (ApEn) and SampEn) [186]. The
automatic R-R interval correction algorithms involve two steps. First, spurious R-R
intervals are detected based on the relative variation in successive intervals: R-R
intervals with a variation of +32.5% or -24.5% are considered to be spurious and
thus discarded [187]. Second, discarded R-R intervals are recalculated as follows: if
the number of successive false R-R intervals is 3 or less, these are recalculated by
cubic spline interpolation; otherwise, they are replaced by copying the same number
of previous valid R-R intervals [186]. In addition, three frequency-domain measures
were computed in MATLAB R2017b: LF normalised, HF normalised and LF/HF
ratio. The meaning of these HRV measures has been widely described in literature
[126, 127]. In the context of sleep assessment, those features are associated with
specific sleep stages and other relevant phenomena (e.g. arousals) [126]. In the
frequency-domain, HF power describes the parasympathetic activity, whereas LF
power describes both parasympathetic and sympathetic activity. Thus, the rela-
tionship between both branches usually is explored with the normalised frequency
values and the LF/HF ratio. A higher LF/HF ratio reflects a higher HRV. Finally,
entropy measures represent an index of regularity in the cardiac signal. An increase
in regularity (i.e., an increase in the entropy measure) is associated with parasym-
pathetic modulation, and its decrease is interpreted as the result of an increased

sympathetic tone.
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6.3.4.4 Balance measures

A block diagram depicting the steps followed for CoP data processing is shown in
Figure 6.6. Firstly, CoP time-series were passed through a fourth-order zero-phase
Butterworth low-pass digital filter with a cut-off frequency of 10 Hz in order to
replicate the initial specifications of CoP time-series used in the study described in
chapter 4. Then, the resulting signals were processed differently as required for the

computation of CoP linear measures and sample entropy.

Linear measures. CoP time-series were downsampled by a factor of 10 to achieve
an effective sampling frequency of 100 Hz. Subsequently, the CoP time-series were
detrended (i.e., subtraction of the mean value from the time-series). Finally, six CoP
displacement linear measures were computed as described in section 2.4: Amplitude,
Standard deviation, Mean velocity, Total length, Total mean velocity and Area.
Amplitude, Standard deviation and Mean velocity were computed independently
for the AP and the ML axes, producing a value for each displacement direction. By
definition, Total length, Total mean velocity and Area are composite measures of

displacement that consider the CoP displacement in both directions.

Sample entropy. CoP time-series were downsampled by a factor of 50 to achieve
an effective sampling frequency of 20 Hz, thus replicating the specifications of the
time-series in the study described in chapter 4. Then, SampEn was computed using
m =5, r=0.1 and N = 600 data points (20 Hz x 30 s).

Scripts for CoP data processing were also written in MATLAB R2017b. The

source code can be found in Appendix A.

6.3.5 Statistical analysis

Participants were grouped according to the sleep quality scores they reported in
the sleep diary (SSQ). Those who reported no variation in sleep quality over two
consecutive nights were assigned to the Control group. Participants who reported
a variation in sleep quality over two consecutive nights (e.g. good sleep quality in
one night and poor sleep quality in the other) were assigned to the Case group. The
validity of self-reported sleep quality was tested by running pairwise comparisons for
all other sleep measures within each group. By definition, no differences over consec-
utive nights were expected for the Control group, while significant differences were
expected for the Case group. Two-sided Wilcoxon paired tests with a significance
level set at 0.05 were used for these comparisons, given that most sleep measures

exhibited a non-normal distribution (Shapiro-Wilk test with a p-value < 0.05).
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Subsequently, a repeated measures Analysis of Variance (ANOVA)-type rank
test for factorial designs was performed in order to test the main effects and the in-
teraction effects of Group and Session on balance measures [190]. This test was
developed for experimental designs where subjects are stratified in several groups,
as well as observed at different time points (i.e., mixed designs). Importantly, these
tests are robust to outliers and small sample sizes. The computational implementa-
tion of this test provided by the authors through the R package nparLLD version 2.1
was used [191]. The main effects and interaction effects of Group and Session were
tested for the CoP linear measures and SampEn. A p-value < 0.05 was accepted as
indicative of statistical significance. This analysis was performed in R version 3.4.1
(R Foundation for Statistical Computing, Vienna, Austria).

Finally, differences in CoP linear measures and SampEn between sessions
were investigated for each group: for the Control group, pairwise comparisons were
always made between Session 2 and Session 1, given that by definition for this group
sleep quality was equally rated in both sleep opportunities; for the Case group,
pairwise comparisons were made between the session with the poorest sleep quality
and the session with the best sleep quality, regardless of the chronological order in
which they were presented. Two-tailed Wilcoxon paired tests were performed given
the non-normal distribution of most balance measures (Shapiro-Wilk test with a p-
value < 0.05). A p-value < 0.05 was accepted as indicative of statistical significance.
These tests were conducted in MATLAB R2017b.

6.4 Results

6.4.1 Participants baseline characteristics and stratification

Thirty-one healthy volunteers (14 females and 17 males) participated in this study,
from which seven also participated in the study reported in chapter 5. The sample
had an overall mean (standard deviation) age of 28.8 (4.7) years, height of 172.1
(10.6) cm, mass of 72.3 (14.8) kg and body mass index of 24.2 (3.2) kg/m?. No
significant differences were found between groups for these characteristics (Table
6.2).

Seven participants reported no variation in sleep quality over two consecutive
nights (Control group), whereas 24 participants reported a variation in sleep quality
over two consecutive nights (Case group). No significant differences were found in
sleep measures over the two consecutive nights for the Control group. Conversely,
the Case group exhibited significant differences for some sleep measures (Table 6.3).

Namely, for the poorest sleep quality night (i.e., the lowest-rated) the Case group
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Table 6.2: Baseline characteristics of study participants. Mean and standard
deviation for all subjects, subjects without day-to-day variation in sleep quality
(Control group) and subjects with variation in day-to-day sleep quality (Case group).

All Control group Case group
(n=31) n="7) (n=24)
Variable Mean SD Mean SD Mean SD p
Age (years) 28.8 4.7 29.7 5.2 28.5 4.6 0.557
Mass (kg) 72.3 14.8 69.3 16.3 73.2 14.6 0.551
Height (cm) 172.1 10.6 169.9  12.3 172.8 10.2 0.534
BMI (kg/m?) 242 3.2 23.7 35 243 3.1 0.678

SD standard deviation, BMI body mass index, p p-values from two-tailed paired t-tests

exhibited:

e Longer WASO (p=0.004), shorter TST (p<0.001) and lower SE (p=0.039), as
self-reported in the sleep diary.

e Shorter mean duration of the longest inactive interval (p=0.016), as computed

from the trunk acceleration signals.
e Lower heart rate variability, as reflected by a lower power in the HF band

(p=0.007) and lower ApEn and SampEn (p=0.020 and p=0.036, respectively).

6.4.2 Group and Session main effects and interaction effects on

balance measures
6.4.2.1 Linear measures

The main effects of Session were found significant for one CoP displacement measure
under the EC testing condition Table 6.4.

No significant Group*Session interactions were found for CoP displacement
measures under the EO testing condition. Conversely, two CoP displacement linear
measures showed significant Group™Session interaction effects under the EC testing

condition:
e Standard deviation in the ML direction (p=0.044)

e Mean velocity in the ML direction (p=0.037)

6.4.2.2 Sample entropy

Neither main nor interaction effects were found significant for CoP sample entropy
(Table 6.5).
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6.4.3 Pairwise comparisons for balance measures
6.4.3.1 Linear measures

No significant differences in linear measures were observed for CoP displacements
under the EO testing condition, neither for subjects in the Control group nor for
those in the Case group. As for CoP displacements in the EC testing condition,
three linear measures exhibited significant differences after sleep deterioration (Case
group) (Table 6.6). Namely, after the lowest-rated sleep participants showed a stiffer

balance control as reflected by:

e a decrease in the total length of displacement (p=0.012)

e a decrease in the total mean velocity of displacement and mean velocity in the
ML direction (p=0.012 and p=0.013, respectively)

Conversely, no significant CoP displacement measure variations were ob-
served in the Control group (i.e., subjects presenting no sleep quality variations)

under the EC testing condition.

6.4.3.2 Sample entropy

No significant differences in CoP sample entropy were observed under the EO testing
condition, neither for participants in the Control group nor for those in the Case
group. Under the EC testing condition, participants in the (Case group) showed a
significantly lower CoP sample entropy (Table 6.7).
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Table 6.5: Main effects and interactions effects of Group and Session on centre of
pressure sample entropy.

Factor / Interaction Group Session Group*Session
Measure Fn p Fn p Fn p
Eyes open 3.623  0.057 0 0.986 0.119 0.730
SampEn, AP 0.114 0.736 0.984 0.321 0.004 0.952
SampEn, ML
FEyes closed
SampEn, AP 1.942 0.163 0.447 0.504 0.820 0.365
SampEn, ML 0.381 0.537 0.529 0.467 0.033  0.856

SampFEn sample entropy, AP anterior-posterior, ML medial-lateral, F'n ANOVA-type statis-
tic, p p-values from ANOVA-type non-parametric two-tailed paired tests.
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Table 6.7: Day-to-day differences in centre of pressure displacement sample entropy.
Median difference and its interquartile range for subjects without day-to-day varia-
tion in sleep quality (Control group) and subjects with variation in day-to-day sleep
quality (Case group).

Control group (n = 7) Case group (n = 24)

Measure MD IQR p MD IQR p Trend
FEyes open

SampEn, AP -0.038 0.137 0.813 0.001 0.139 0.733 T

SampEn, ML -0.047 0.257 0.813 -0.018 0.127 0.249 {
FEyes closed

SampEn, AP 0.008 0.133 1 -0.033 0.139 0.131 +

SampEn, ML -0.081 0.236  0.813 -0.029 0.057 0.042 W

SampFEn sample entropy, AP anterior-posterior, ML medial-lateral, MD median difference,
IQR interquartile range, p p-values from two-tailed paired Wilcoxon tests

Bold values indicate significant differences

J: significantly lower or poorer sleep quality night

J: lower for poorer sleep quality night

6.5 Discussion

This study was based on the findings presented in chapters 4 and 5. Firstly, the
study aimed to investigate further whether day-to-day self-reported sleep quality was
confirmed by instrumented sleep assessment. Therefore, participants were divided
into two groups based on whether or not they reported a shift in sleep quality over
two consecutive nights. As in the previous study, reported changes in sleep quality
were not artificially induced; they were instead the consequence of natural sleep
disturbances experienced during the lowest-rated sleep opportunity (e.g. the need to
use the toilet and an uncomfortable room temperature). Subjects reporting a shift in
sleep quality reported significantly higher sleep fragmentation (WASO), shorter sleep
duration (TST) and lower sleep efficiency (SE) for the lowest-rated sleep period.
They also showed shorter inactive intervals measured from body acceleration signals,
suggesting a less quiet and more fragmented sleep. Moreover, subjects reporting
a variation in sleep quality also exhibited higher sympathetic activity (i.e., lower
heart rate variability) during the lowest-rated sleep opportunity, which suggests the
presence of more wake intervals and arousals, as well as fewer and shorter deep sleep
intervals [35]. Generally speaking, these results are in agreement with those reported
in chapter 5. Moreover, these results confirmed that wearable devices could be used
to detect day-to-day variations in sleep quantity and quality.

The interaction effects of Group and Session on balance measures were
tested. Two CoP displacement linear measures showed significant Group*Session

interactions (Table 6.4), suggesting that day-to-day variations in balance are asso-
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ciated with variations in sleep quantity and quality over consecutive nights.

The Group*Session interaction effects above were found to be attributable
to subjects that exhibited a variation in sleep quantity and quality over consecutive
nights. The group of subjects reporting and exhibiting worsening in sleep over
two consecutive days exhibited shorter, slower and more regular CoP displacements
under the EC testing condition, particularly in the ML axis. In contrast with the
results obtained in the previous study, no significant differences were observed for
any CoP measure in the AP axis under the EO condition. Nevertheless, shorter and
slower CoP motion in the ML direction has been observed in healthy subjects tested
under high cognitive load conditions (e.g. dual-task) [175]. Also, more regular ML
CoP time-series were observed for older adults at higher risk of falling in the study
presented in chapter 4 [153].

Altogether, the results from this study also suggest that a shorter and more

fragmented sleep affects balance control in unperturbed standing.

6.6 Conclusions

This chapter presented a study performed to confirm and extend the findings of the
studies mentioned earlier. Namely, this study investigated further the associations
between day-to-day variations in sleep and balance. The results confirmed the po-
tential of wearable devices for in-home sleep monitoring with the aim of capturing
daily variations in sleep quantity and quality.

Moreover, the study investigated further the association of those variations
in sleep with variations in balance control. Interestingly, both linear measures and
SampEn were able to capture the differences in balance control resulting from day-
to-day variations in sleep quantity and quality.

This study investigated whether quantitative descriptors of nonlinear dynam-
ics are more sensitive than linear measures to differences in balance control due to
day-to-day variations in sleep quantity and quality, thus addressing the fourth and
final research question underlying this thesis (see chapter 1). The next chapter sum-
marises the main conclusions of this research and provides some recommendations

for further work based on the identified limitations and opportunities.
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Chapter 7

Conclusions and Further Work

7.1 Chapter overview

This chapter presents the main conclusiond of this thesis. Section 7.2 restates the
scope, aim and objectives of this work. Section 7.3 recapitulates the research gaps
and questions that motivated this work and summarises the work done and the
main findings. Section 7.4 provides recommendations for further work, based on the
limitations and opportunities identified in this research. Section 7.5 presents some

final remarks.

7.2 Scope, aim and objectives

The spread of wearable technology is empowering innovative ways of assessing bal-
ance and risk of falling in older adults. Wearable inertial sensors are a promising
complement to clinical balance assessment tools since they potentially provide an
objective and accurate quantification of the timing and kinematics of functional
tasks.

Moreover, wearable devices also enable the ambulatory monitoring of phys-
iological and behavioural variables, which can be used to infer health status and
health-related behaviours linked to impaired balance and fall risk. This situation
could conceivably enrich the prevailing paradigm in fall prevention, from the current
one mainly involving the occasional assessment of risk factors to a novel paradigm
also including the continuous monitoring and detection of short-lived factors that
might result in an imminent fall.

Additionally, the diffusion of dynamical systems theory and methods within

the medical research community are stirring a new approach to the study of ageing
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and balance in older adults. In particular, nonlinear signal analysis methods could
potentially provide further information on the underlying control mechanisms in
ageing and produce more sensitive measures of fall risk.

Despite the advantages that this can provide, there are several challenges in
the adoption of wearable technologies and nonlinear analysis methods for balance
and fall risk assessment, which still preclude a firm conclusion on their scientific and
clinical value. This research aimed to advance the knowledge and methods related
to the use of wearable sensors and nonlinear signal analysis for the assessment of
balance and fall risk, both in research and clinical settings and ambulatory moni-

toring of health status and behaviours linked to impaired balance.
Accordingly, the main objectives of this research were:

Objective 1: To identify the optimal wearable inertial sensor-based protocol for
assessing fall risk in older adults, including sensor placement, movement task and

measured variable(s).

Objective 2: To determine whether quantitative descriptors of nonlinear dynam-
ics are more sensitive than linear measures to differences in balance control due to

ageing and fall risk.

Objective 3: To determine whether day-to-day variations in sleep quantity and
quality, monitored using wearable devices, are associated with balance control vari-

ations.

Objective 4: To determine whether quantitative descriptors of nonlinear dynam-
ics are more sensitive than linear measures to differences in balance control due to

day-to-day variations in sleep quantity and quality

7.3 Research questions and answers

The objectives above were derived from a set of research questions identified through
a review of the literature (chapter 2). These questions are restated below, each
followed by the research gap on which it is based, a summary of the work carried

out to address them and the main findings.
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Research question 1: What is the optimal wearable inertial sensor-based pro-
tocol for assessing fall risk in older adults, given the variety in sensor placements,

movement tasks and measured variables that these devices allow?

In the last two decades, the use of wearable inertial sensors for fall risk
assessment has been on the rise. Researchers have used these sensors with the
aim of producing instrumented functional balance tests [10-12]. In their studies,
subjects were asked to perform one or more movement tasks while wearing one or
more inertial sensors on different body landmarks. Moreover, subjects at high risk of
falling were identified based on retrospective fall history (i.e. self-reported previous
falls), prospective fall occurrence, clinical assessment (e.g. Timed-Up-and-Go test
(TUG test)) or a combination thereof. This information and the features extracted
from the recorded signals were later used to develop mathematical or statistical
models for predicting further fall occurrences or classifying subjects into fall risk
categories. Some reviews on the topic have revealed a considerable heterogeneity
between studies regarding the sensor placement, movement task, features and models
used for the development of sensor-based fall risk assessment tools [10-12]. This
heterogeneity hinders any firm conclusions on the optimal wearable inertial sensor-
based protocol for assessing fall risk in older adults [11, 12].

Chapter 3 presented an original systematic review and meta-analysis per-
formed in order to identify the optimal wearable inertial sensor-based protocol for
assessing fall risk in older adults, including sensor placement, movement task and
measured variables (or features). A data set of 175 wearable inertial sensor-based
features extracted from 13 studies was analysed in order to identify an optimal pro-
tocol. Namely, studies that used wearable inertial sensors for discriminating fallers
from non-fallers were systematically reviewed. Standard methods for the analysis
of categorical data were used to identify optimal combinations of sensor placement,
movement task and features. Additionally, standard methods for the meta-analysis
of continuous variables were used to identify significant features for discrimination
between fallers and non-fallers.

The results of the analyses above suggest that the instrumented TUG test is
a suitable tool for discriminating non-fallers and fallers, provided that the inertial
sensors are placed on the shins and angular velocity, temporal (e.g. total time and
step time) and spatial (e.g. number of steps) features are computed. Additionally,
the evidence also suggests that an additional sensor placed on the lower back could
potentially provide relevant measures derived from accelerations during sit-to-stand

and stand-to-sit transitions. The study has been published elsewhere [128].
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Research question 2: Are quantitative descriptors of nonlinear dynamics more
sensitive than linear measures to differences in balance control due to ageing and
fall risk? If so, what is the optimal way to apply them (e.g. signal pre-processing,

selection of input parameters)?

The diffusion of nonlinear dynamical systems theory in the biomedical re-
search community has inspired the use of quantitative descriptors of nonlinear dy-
namics for assessing balance control. In particular, Approximate Entropy (ApEn)
and Sample Entropy (SampEn) have been proposed as a measure of body sway regu-
larity during unperturbed standing. However, their ability to discriminate between
groups with different fall risk and the suitable selection of the input parameters
needed for their computation, have not yet been formally investigated.

Chapter 4 presented a study performed to investigate whether ApEn and
SampEn are more sensitive than linear measures to differences in balance control
due to ageing and fall risk, as well as to identify the optimal way to apply them
(i.e. signal pre-processing and selection of input parameters). A public dataset of
Centre of Pressure (CoP) time-series from 163 subjects was used [27]. Subjects were
grouped into young adults (age<60, n=85), and older adults (age>60) with (n=18)
and without (n=56) falls in the previous year (therefore, having a higher and lower
risk of falling, respectively). After signal pre-processing, ApEn and SampEn were
calculated using 72 different combinations of input parameters. Standard methods
for the statistical analysis of continuous data were used in order to (1) investigate the
effects of changing input parameters on ApEn and SampEn on ApEn and SampEn
values; (2) determine the ability of ApEn and SampEn to discriminate between
groups, in particular between young adults, non-fallers and fallers; and, (3) identify
specific combinations of input parameters revealing significant differences between
groups.

The results of this study suggest that SampEn represents a better choice
for the analysis of CoP time-series given its relative consistency and ability to dis-
criminate between experimental groups. However, the selection of input parameter
values proved to be critical in the identification of significant differences between
older adults with and without falls in the last 12 months (i.e. fallers and non-fallers,
respectively). In particular, significant differences were mostly observed in CoP
time-series in the Anterior-Posterior (AP) direction of 60-s duration (N = 1200).
Therefore, further studies using these entropy measures should favour longer CoP
recordings (e.g. > 60 seconds) over shorter CoP recordings (e.g. 30 seconds), as well

as focus the analyses on AP time-series. Researchers and clinicians working on the
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analysis of CoP time-series are recommended to use SampEn with input parameters
m = {4,5} and r = {0.25,0.3,0.35}. The study has been published elsewhere [153].

Research question 3: Are there any associations between day-to-day variations

in sleep quality, as measured via wearable sensors, and balance control?

Research question 4: What is the optimal method to capture variations in bal-
ance control due to day-to-day variations in sleep quality, linear or nonlinear mea-

sures?

Wearable devices offer new opportunities for in-home continuous sleep mon-
itoring in the broader population. It is potentially relevant for fall risk assessment,
given that chronic sleep disturbances and poor sleep quality are associated with
further falls in older people. Hence, if short-lived sleep disturbances and poor sleep
quality have a similar effect on balance control, continuous sleep monitoring would
be relevant for fall prevention programmes in frail populations and sleep disturbance-
inducing scenarios (e.g. hospital wards). Therefore, the potential association be-
tween day-to-day variations in sleep quality and balance control deficits warrants
investigation.

Chapter 5 presented a study performed to investigate the potential use of
wearable devices for capturing day-to-day variations in sleep quantity and quality,
as well as the sensitivity of the balance control system to these variations. A sample
of 20 young volunteers with no history of sleep disorders or balance impairments
participated in the study. Sleep and balance were assessed over two consecutive
days. Sleep quantity and quality variations were assessed using a sleep diary, actig-
raphy and Heart Rate Variability (HRV) measures. Sleep was monitored at home
using an unobtrusive wearable device. Balance was assessed in a gait lab using
foot CoP displacement during unperturbed standing. Subjects with a day-to-day
deterioration in sleep quantity and quality (i.e., decreased duration and increased
fragmentation, increased nocturnal activity and decreased HRV) exhibited signifi-
cant changes in balance (i.e., larger CoP area, amplitude and standard deviation).
Conversely, subjects with no significant alterations in sleep quantity and quality
showed no significant changes in CoP displacements. Firstly, the results of this
study suggest that wearable devices can be used for detecting day-to-day variations
in sleep quantity and quality. In particular, the duration of rest periods and the
presence of sleep disturbances can be estimated from acceleration and Electrocar-

diogram (ECG) signals. Moreover, the results suggest that day-to-day variations in
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sleep quantity and quality affect balance control during unperturbed standing. This
study has been published elsewhere [180].

In addition, chapter 6 presented a study performed to confirm and extend
the findings of the studies mentioned earlier. Namely, this study investigated fur-
ther the potential use of wearable devices for capturing day-to-day variations in
sleep quantity and quality, as well as the sensitivity of the balance control system
to these variations, in a sample of 31 young healthy volunteers, from which seven
also participated in the study reported in chapter 5. As in the study above, sleep
quantity and quality variations were assessed using sleep diary, actigraphy and HRV
measures, the last two derived from an unobtrusive wearable device. Balance was
assessed using net CoP displacement during unperturbed standing. In contrast with
the previous study, the present study explored the sensitivity of SampEn to the dif-
ferences in balance control produced by day-to-day variations in sleep quantity and
quality. Subjects with a day-to-day deterioration in sleep quantity and quality (i.e.,
decreased duration and increased fragmentation, increased nocturnal activity and
decreased HRV) exhibited significant changes in balance (i.e., slower and more reg-
ular CoP motion, in particular in the Medial-Lateral (ML) direction under the Eyes
Closed (EC) testing condition). Conversely, subjects with no significant alterations
in sleep quantity and quality showed no significant changes in CoP displacements.
Firstly, the results of this study confirmed that wearable devices could be used for
detecting day-to-day variations in sleep quantity and quality. Moreover, the results
confirmed that day-to-day variations in sleep quantity and quality affect balance
control during unperturbed standing. Both linear and nonlinear measures of CoP
displacement captured these variations. Preliminary results of this study were pre-
sented elsewhere [202].

Overall, both studies show that wearable devices can be used to capture day-
to-day variations in sleep quantity and quality, which in turn produce variations in
balance. In particular, both studies show that self-reported sleep quality is associ-
ated with a sleep of short duration and higher fragmentation (i.e. interrupted sleep).
However, the effects of poor sleep on balance control differ from one study to the
other. In study 3 (chapter 5) the effects are observed on the AP direction, whereas
in study 3 the effects are apparent on the ML direction. This heterogeneity has
been previously in previous studies, which has precluded a firm conclusion about
the optimal CoP measures for fall risk assessment in older adults [92]. Notwith-
standing, both studies reveal a deterioration of balance control after poor sleep,
with study 4 showing that both linear and nonlinear CoP measures are sensitive to

this deterioration. This last observations provides a higher relevance to study 4.
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7.4 Limitations and further work

This thesis and the studies herein produced relevant contributions to the body of
knowledge related to the adoption of wearable sensors and nonlinear signal analysis
methods for balance and fall risk assessment in older adults. However, due to time
and resources constraints, this research presents some limitations, which provide the
basis for a sketch of further work.

Firstly, the study presented in chapter 3 identified an optimal protocol for
fall risk assessment in older adults using wearable inertial sensors, including opti-
mal sensor placement, functional task and measured variables. Nevertheless, these
results are based on data extracted from a limited number of studies. Hence, they
are unable to provide a representative inference of all features used and all studies
published, but not included in the review. This means that there might be some
other sensor-based features that are discriminant between non-fallers and fallers but
which were not included in this systematic review as they were not reported as re-
quired by the inclusion criteria. Further studies could validate the optimal protocol
for fall risk assessment suggested in this thesis and explore further those features
which have shown a consistent trend across different studies, but that were not found
significant possibly due to the low number of studies pooled in the analysis and the
heterogeneity between studies in terms of design (see Table 3.6).

Moreover, among the studies not included in the review, there are some
whose focus is of interest to this research. Namely, some studies used wearable iner-
tial sensors for collecting data related to gait quantity and quality during daily-life
activities [56, 150, 151]. Moreover, some studies have reported significant associa-
tions between fall risk and nonlinear descriptors of gait dynamics (e.g. Multi-scale
Entropy (MSE) and Recurrence Quantification Analysis (RQA) measures) [55, 149].
Although there is not enough evidence to support a firm conclusion, the results of
these studies suggest that ambulatory gait monitoring combined with nonlinear de-
scriptors of gait is a promising approach to fall risk assessment. Further research on
this line is warranted.

The study presented in chapter 4 confirmed the ability of ApEn and Sam-
pEn to discriminate non-fallers from fallers and identified the optimal usage of these
nonlinear measures. However, it must be acknowledged that there are more recent
developments in the field of nonlinear analysis that could potentially improve the
sensitivity when looking for differences between groups. In particular, the develop-
ment of multiscale entropy and multivariate MSE have offered new perspectives for

the analysis of biological time-series [163-166]. A few studies have already applied
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these approaches to the analysis of CoP time-series [99, 105, 107]. Briefly, MSE relies
on the computation of sample entropy values at different time-scales and produces
a two-dimensional plot (time-scale versus sample entropy) depicting a profile line
for each experimental group/condition. An overall entropy ‘score’ can be computed
by adding the entropy values at specific time-scales [105]. While MSE represents an
interesting tool to explore the level of regularity contained at different time-scales,
it cannot avoid the issue of the adequate selection of input parameters. Since MSE
and its variations are based on SampEn, researchers that opt for MSE face essen-
tially the same problem faced when ‘single-scale’ entropy measures are used; i.e. the
adequate selection of input parameters. Further studies could investigate the ability
of MSE to discriminate non-fallers from fallers, leveraging on the findings presented
in this thesis regarding optimal parameter selection or at least the adoption of a
systematic approach to the identification of optimal parameters.

The studies presented in chapters 5 and 6 confirmed the ability of wearable
devices for capturing day-to-day variations in sleep quantity and quality. However,
the methods related to sleep assessment used in this research require further devel-
opment to produce sleep parameters more relevant for the user and clinician (e.g.
time in light and deep sleep). This was not possible due to the lack of annotated
data (e.g. knowing the actual sleep stage for each epoch). Therefore, further studies
should consider collecting chest actigraphy, ECG and polysomnography data con-
currently, in order to develop novel sleep staging algorithms based on activity and
HRV measures [36]. Moreover, future studies should also investigate whether the
actual wearing of body-attached sensors alters sleep quantity and quality in older
adults. This and other aspects (e.g. perceived usefulness and social influence) are
considered as potential determinants of wearable technology acceptance among older
adults and thus warrant further investigation [204].

Finally, the studies in chapters 5 and 6 also confirmed the sensitivity of the
balance control system to day-to-day variations in sleep quantity and quality. How-
ever, the neurophysiological mechanisms behind the observed alterations in postural
control cannot be elucidated from the data collected. Also, these studies enrolled
young adults, yet the primary interest is on fall risk assessment in older adults.
Therefore, further studies should enrol older adults and evaluate balance under

more testing conditions in order to detect and identify underlying mechanisms.
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7.5 Final remarks

Wearable sensors and nonlinear signal analysis methods are empowering innovative
ways of assessing balance and fall risk in older adults. However, their adoption in
research and clinical practice poses some challenges. This thesis and the studies
herein addressed some of those challenges and provided some insights concerning
their optimal use.

Indeed, wearable inertial sensors offer the means for developing instrumented
versions of clinical balance assessment tools, producing objective and accurate quan-
titative descriptors on the timing and execution of functional tasks. However, this
research proved that selecting an adequate combination of sensor placement, move-
ment task and measured variable is crucial for discriminating subjects at a higher
risk of falling. An optimal protocol for assessing fall risk based on wearable inertial
sensors was identified.

Additionally, wearable devices offer the means for continuously monitoring
physiological and behavioural variables, which can be used to infer outcomes linked
to impaired balance and increased risk of falling. This research proved that wearable
devices could be used to capture day-to-day variations in sleep quantity and quality,
which in turn produce variations in balance. This situation can potentially expand
the prevailing paradigm in fall prevention, from the current one focusing on the
occasional assessment of risk factors and changes in the balance control system to a
new paradigm including also the continuous monitoring and detection of short-lived
factors that might result in an imminent fall.

Finally, this research proved that quantitative descriptors of nonlinear dy-
namics are more sensitive than linear measures to differences in balance control due
to ageing and risk of falling (e.g. non-fallers and fallers). However, it was also shown
that the adequate selection of the input parameters required for their computation
is of paramount importance to achieve positive results. This thesis provided some
recommendations for the parameter selection.

Collectively, the findings of this research confirm that wearable sensors and
nonlinear signal analysis methods can improve and extend current tools and prac-

tices in balance and fall risk assessment.
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Appendix A

Source codes listings

Listing A.1: R script for the statistical analysis of the inertial sensor-based features

#Preparing the environment
require (dplyr)

require (ved)

# Loading and preparing data

features = read.csv(”features.csv”);
features$Significance = as.factor (features$Significance);
sfeatures = filter (features, features$Significance = 7 Significant”);

# Getting familiar with the data
summary ( features) ;

summary ( sfeatures) ;

# Count and proportion of features per family/task/sensor placement/
study
summary ( features$Category)

round (prop. table (summary (features$Category))*100,1)

summary ( features $Task)

round (prop. table (summary (features$Task))*100,1)

summary ( features$Sensor . placement)

round (prop. table (summary (features$Sensor . placement))*100,1)

summary (features $Study)

round (prop. table (summary (features$Study))«100,1)

summary ( sfeatures$Category)
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67

68

69

70
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72

round (prop. table (summary (sfeatures$Category))*100,1)

summary ( sfeatures$Task)

round (prop. table (summary(sfeatures$Task))x100,1)

summary ( sfeatures $Sensor . placement)

round (prop. table (summary (sfeatures$Sensor.placement))*100,1)

summary (sfeatures $Study)

round (prop. table (summary (sfeatures$Study))«100,1)

# Tests and measures of association for 2—way contingency tables

task.signif = xtabs( Task + Significance, data

addmargins (task.signif);
summary (assocstats (task.signif));

= features);

placement.signif = xtabs(~Sensor.placement + Significance , data =

features);
addmargins (placement . signif);

summary (assocstats (placement. signif));

category.signif = xtabs( Category + Significance , data = features);

addmargins (category . signif);

summary (assocstats (category .signif));

study . signif = xtabs( Study + Significance , data = features);

addmargins (study . signif);
summary (assocstats (study.signif));

#Second step

sfeatures = droplevels(sfeatures);

task.placement = xtabs( Task 4+ Sensor.placement, data = sfeatures);

addmargins (task . placement) ;

summary (assocstats (task.placement));

round ((task.placement—independence_table (task.placement))/sqrt(

independence _table (task.placement)),
assoc (task.placement , shade = TRUE);

task.category = xtabs( Task + Category, data

addmargins (task .category);

summary ( task . category);

1);

sfeatures);

round ((task.category—independence _table (task.category))/sqrt(

independence _table (task.category)),
assoc (task.category, shade = TRUE);
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7

78

79

80

81

82

83

84

85

category .placement = xtabs(~Category + Sensor.placement, data =
sfeatures);
addmargins (category . placement) ;

summary (assocstats (category . placement)) ;

round ((category .placement—independence _table (category .placement))/sqrt (

independence _table (category.placement)), 1);

assoc (category .placement , shade = TRUE);

three.way.table = xtabs(~ Category + Task + Sensor.placement, data
sfeatures)

structable (three.way. table)

summary (three .way. table)

round ((three .way.table—independence _table (three.way.table))/sqrt (
independence _table (three.way. table)) ,1)

assoc (three.way.table, shade = TRUE)
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Listing A.2: R script for the meta-analysis of the inertial sensor-based features

## Loading required

require (XLConnect)

require (meta)

# Loading features

# Running analysis

packages

data from file
wb = loadWorkbook (7 features . xlsx”)
N = length (getSheets (wb));

pooled = data.frame(Outcome = character (), I2 = numeric(), Q = numeric

()’

p = numeric (), Model = character (), Subjects =
numeric () ,
MD = numeric(), CI_lower = numeric(), CI_upper
numeric () ,
pvalue = numeric())
mdl_type = matrix(nrow = N, ncol = 1)
for(i in 1:N) {
outcome = readWorksheet (wb, sheet = i)

mdl = metacont (F.N, F.Mean, F.SD, NF.N, NF.Mean, NF.SD, data

outcome ,

studlab = Study, label.e = "Fallers”, label.c
—Fallers”)

I2 = round (mdl$I12%100,1)
Q = round (mdl$Q,
p = round(pchisq(mdl$Q, mdl$df.Q, lower.tail = FALSE), 4)

pooled [i, 2]
pooled [i, 3]
pooled [i, 4]
pooled [i, 6]

= 12

Q
P

2)

sum (mdl$n. e )+sum(mdl¥n.c)

if (12 < 60 [| p> 0.1) {

mdl_type[i] =7

pooled [i,
pooled [i,

[
pooled [1i,
[

pooled [1i,

}
else {

mdl_type[i]

pooled [1i,
pooled [i,

7

= © o

]

7]
8]

]
]
] =
0] = round (mdl$pval.fixed , 4)

Fixed”

round (mdI$TE. fixed , 4)
round (mdl$lower . fixed , 4)
round (mdl$upper. fixed , 4)

” Random”

round (mdI$TE. random, 4)

round (mdl$lower .random, 4)
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41 pooled [i, 9] = round(mdl$upper.random, 4)
42 pooled[i, 10] = round(mdl$pval.random, 4)
43 }

44

45}

46

47 pooled$Outcome = getSheets (wb)

48 pooled$Model = mdl_type

49

50 # Displaying and printing pooled features data.frame
51 View (pooled)

52 print (pooled)

53

54 # Writing pooled features to CSV file
55 write.csv(pooled, file = "pooled.csv”)
56

57 # Cleaning environment
58 rm(list=ls())
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Listing A.3: MATLAB function for CoP time-series preprocessing

function [CPap, CPml] = preprocessingCoP (CPap, CPml, fs, fc)

% preprocessingCoP

% Applies preprocessing operations to centre of pressure (CoP)

% time—series: filtering and detrending (mean value substraction)

%

%  INPUTS: CPap= input ldim array containing the raw CoP time—series

for

% the anterior—posterior direction; CPml= input 1dim array containing

the

% raw CoP time—series for the medial-lateral direction; fs= original

% sampling frequency of the CoP time—series; fc= cut—off frequency of
the

% filter

%

%  OUTPUTS: CPap= output 1ldim array containing the processed CoP

% time—series for the anterior—posterior direction; CPml= output 1dim

% array containing the processed CoP time—series for the medial—
lateral
% direction

%% Filtering: 4th—order Butterworth low—pass filter
[z,p,k] = butter (4, (2«xfc)/fs, ’low’);
[sos, g] = zp2sos(z, p, k);

% Zero phase filtering

CPap = filtfilt (sos, g, CPap);

CPml = filtfilt (sos, g, CPml);

%% Detrending: Mean value substraction
CPap = CPap — mean(CPap) ;

CPml = CPml — mean(CPml) ;

end
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Listing A.4: MATLAB functions for global CoP measures calculation.

function globalCoPtbl = globalCoP (CPap, CPml, fs)
%% globalCoP

% Calculates features for the global analysis of the Center of
Pressure
% (CoP) as described in:

%

% Duarte, M., & Freitas, S. M. (2010). Revision of posturography
based on

% force plate for balance evaluation. Brazilian Journal of Physical

%  Therapy, 14(3), 183 192.

%

%  INPUTS: CPap= input ldim array containing the CoP time—series for
the

% anterior —posterior direction; CPml= input 1dim array containing the
CoP

% time—series for the medial-lateral direction; fs= sampling

frequency of
[0y
0

%
%  OUTPUTS: globalCoPtbl= 1x9 table containing computed global CoP

% measures

the CoP time—series

%% Computing features calling to specific functions (below)
dot = DOT(CPap, CPml);

[SDap, SDml] = SD(CPap, CPml);

[AdCPap, AdCPml] = AdCP(CPap, CPml);

[TMV, MVap, MVml|] = MV(CPap, CPml, fs);

area = Area(CPap, CPml);

%% Creating output table

FeatureNames = {’DOT’, ’SDap’, ’SDml’, *AdCPap’, ’'AdCPml’ ,...
"TMV’, "MVap’, 'MVml’, ’'Area’};

globalCoPtbl = table(dot, SDap, SDml, AdCPap, AdCPml, TMV, MVap, MVml,
area , ...

"VariableNames ', FeatureNames) ;
end
%% DOT, Total length
function DOT = DOT(CPap, CPml)

DOT = sum(sqrt (diff (CPap)."2 + diff(CPml)."2));
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end
%% Standard deviation
function [SDap, SDml] = SD(CPap, CPml)

SDap = std (CPap) ;
SDml = std (CPml) ;

end
9% Amplitud of displacement
function [AdCPap, AdCPml] = AdCP(CPap, CPml)

AdCPap = abs (max(CPap)—min (CPap) ) ;
AdCPml = abs (max(CPml)—min (CPml) ) ;

end

%% Mean velocity: AP (MVap), ML (MVml) and total (TMV)
function [TMV, MVap, MVml] = MV(CPap, CPml, fs)

%t : Length of CoP signal (seconds)

t = length (CPap)/fs;

%Calculation of the total CoP velocity
TMV = sum(sqrt (diff (CPap)."2 + diff(CPml)."2)) / t;

%Calculation of CoP velocity in the ML direction
MVml = sum(sqrt (diff (CPml)."2)) / t;

%Calculation of CoP velocity in the AP direction
MVap = sum(sqrt (diff (CPap)."2)) / t;

end

%% Area
function Area = Area(CPap, CPml)

[vec,val] = eig(cov(CPap,CPml));
Area = pixprod(2.4478xsqrt(svd(val)));

end
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Listing A.5: MATLAB function for approximate entropy (ApEn) computation

function ApEn = ApEn(u, m, r)

%% ApEn

% Estimates approximate entropy (ApEn) from a time—series as described
in:

%J

% Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A
regularity

% statistic for medical data analysis. Journal of Clinical Monitoring

and
% Computing, 7(4), 335 345.
%
% INPUTS: u= input time series; m= subseries length; r= similarity

% tolerance

%
% OUTPUT: ApEn= ApEn value

N = length(u);
phi = zeros(1,2);
for iter = 1:2
dim = mdt-iter —1;
C = zeros (1, N—dim+1);
X = zeros(dim, N-dim+1);
% Form subseries X(1), X(2), ..., X(N):
if dim = 1
X = u;
else
for i = 1:dim
X(i,:) = u(i:N-dim+i);
end
end
% For each X(i), find C:
for i = 1:N—-dim+1
% Distance between subseries
if dim = 1
d = abs(X — repmat(X(:,i), 1, N-dim+1));
else
d = max(abs(X — repmat(X(:,i), 1, N-dim+1)));
end
% Check if distances are less than the tolerance level
bool = any(d < rxstd(u), 1);
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% Calculate C
C(i) = sum(bool) /(N-dim+1)

end
% Calculate phi

phi(iter) = mean(log(C));
end

%Estimate ApEn
ApEn = phi(1) — phi(2);

end

)

186



1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Listing A.6: MATLAB function for sample entropy(SampEn) computation

function SampEn = SampEn(u, m, r)
%% SampEn

%o
%o
%
%o

%o
%o
%
%o
%o

Q
0

N

Estimates sample entropy (SampEn) from a time—series as described in:

Richman, J. S., & Moorman, J. R. (2000). Physiological time—series

analysis using approximate entropy and sample entropy. American
Journal

of Physiology—Heart and Circulatory Physiology, 278(6), H2039H2049.

INPUTS: u= input time series; m= subseries length; r= similarity

tolerance
OUTPUT: SampEn= SampEn value

= length (u);

B_A = zeros(1,2);

for iter = 1:2

dim = m + iter —1;
X = zeros(dim, N-dim+1);

N_matches = zeros (1, N—dim);

% Form subseries X(1), X(2), ..., X(N):
if dim =1

X = u;
else

for i = 1:dim

X(i,:) = u(i:N—dim+i);
end

% Find Ni
for i = 1:N—dim
% Distance between subseries
if dim =— 1
d = abs(X — repmat(X(:,i), 1, N-dim+1));
else
d = max(abs(X — repmat(X(:,i), 1, N=dim+1)));
end
% Check if distances are less than the tolerance level
bool = (d <= rxstd(u));
% Find number of d < r * SD_u minus 1 to discard self-—match
N_matches (i) = (sum(bool)—1);

end
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% Calculate Bi (when iter=1) and Ai (when iter=2)

Bi_Ai = N_matches/(N-dim—1);

% Calculate B (when iter=1) and A (when iter=2)

B_A(iter) = mean(Bi-Ai);
end

%Estimate SampEn
SampEn = —log (B_A(2)/B_A(1));

end
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Listing A.7: MATLAB function for Zero Crossing Mode implementation

function ZCM_data = ZCM(VMU_data)

% ZCM
% Calculates activity counts for l—-minute epochs using the Zero—
Crossing
%  Mode (ZCM) as described in:
%
% Jean—Louis, G., Kripke, D. F., Mason, W. J., Elliott, J. A., &
% Youngstedt, S. D. (2001). Sleep estimation from wrist movement
% quantified by different actigraphic modalities. Journal of
Neuroscience
%  Methods, 105(2), 185191 .
%
% INPUT: VMU_data= input acceleration data, fs=1Hz,
OO
%  OUTPUT: ZCM_data= activity counts for l-min epochs
Nepochs = floor (length (VMU_data) /60); % Number of epochs to be
generated
T=0.1;
for i = 0:Nepochs—1
counter = 0;
indexl = i%x60 + 1;
index2 = i%x60 4+ 60;
for j = indexl:index2 — 1
if ((VMU_data(j)<T & VMU_data(j+1)>T) | (VMU.data(j)>T &
VMU _data(j+1)<T))
counter = counter+1;
end
end
ZCM_data(i+41) = counter;
end
end
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Listing A.8: MATLAB function for Activity measures calculation
function ACTmeasures = ACT(ZCM_data, Posture)

% ACT

% Calculates activity measures from activity counts (1—min epochs)
and

% posture data

%

%  INPUTS: ZCM_data= 1—dim array of length N containing activity
counts

% for N 1-min epochs; Posture= posture data as reported by the Zephyr
BH3

%

%  OUTPUT: ACTtbl= 1x6 table containing activity measures

% Preparing Posture data
Posture = downsample(Posture, 60); % Downsampling to 1 sample/minute
Posture = Posture(1:length(ZCM_data));

% Finding Bed Time (BT) and and Out—of—Bed Time (OBT)
[BT OBT] = findBedTime (Posture, 50, 15);

% Segment signal: Time in Bed
ZCM_data_TIB = ZCM_data (BT:0BT) ;

% Computes activity measures by calling specific functions (below)

ACTmeasures (1) = mean(ZCM_data_TIB) ; %ACT _mean
ACTmeasures(2) = std (ZCM_data_TIB); %ACT _sd
ACTmeasures (3) = AI(ZCM_data_TIB); %A1

[ACTmeasures (4) ACTmeasures(5) ACTmeasures(6)] = FI(ZCM_data_TIB);

ACTmeasures = array2table (ACTmeasures, 'VariableNames’ ...
{’ACT.mean’,”’ACT.sd’,’ACT_AIl" ,”ACT_FI’ ,”ACT.I.max’, ’ ACT_I.mean’});

end
function [BT OBT] = findBedTime (Posture_data, Angle, Window)
%% findBedTime

% If subject is facing up/down then Pbin = 0; (upright) else Pbin = 1
Posture_bin = abs(Posture_data) < Angle;

% Finding Bed Time
for i = l:length(Posture_bin)
if (Posture_bin(i : i 4+ Window) == 0)
BT = i;
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break;
end

end

% Finding Out—of_Bed Time (OBT)
for i=length (Posture_bin):—1:1+Window
if (Posture_bin (i—Window:i) = 0)
OBT = i;
break;
end

end
end

function ai = Al(data)

%% Activity Index

ai = (sum(data>0)/length (data))=100;
end

function [fi I_max I_mean] = FI(data)

%% Fragmentation Index

RestBouts = zeros (720,1);
counter = 1;
for i=2:length (data)
if (data(i)==0)
if (data(i—1)"=0)

counter = counter + 1;

RestBouts (counter) = RestBouts(counter) + 1;

else

RestBouts(counter) = RestBouts(counter) + 1;

end
end

end

RestBouts = RestBouts(RestBouts ™ =0);

fi = (sum(RestBouts<=5) / length (RestBouts))*100;

I_max = max(RestBouts);
I_mean = mean(RestBouts);
end
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Document S1. Checklist for Study Quality Appraisal

Study identification (include author(s), title, year of publication, journal title, pages)

Reporting
Aim/Objective
1) Is the hypothesis/aim/objective of the study clearly described?

Materials & Methods

2) Are study participants' inclusion/exclusion criteria clearly stated?

3) Is the experimental protocol clearly described? The experimental protocol must include at least a description of the way
in which subjects were labelled as fallers and non-fallers, the task(s) they were requiered to perform and the number and
placement of sensors used during the experiments.

4) Are sensors' technical specifications provided? Alternatively, product name, model and manufacturer must be provided.

5) Are the main methods for signal preprocessing clearly described or properly referenced?
6) Are the main methods for feature extraction clearly described or properly referenced?
7) Are the statistical analysis clearly described and appropiate?

Results
8) Is the age of participants included in both groups clearly stated?
9) Are the distributions of principal confounders (other than age; e.g. BMI, medication, comorbidities, etc) in each group
of subjects to be compared clearly described?
10) Are summary statistics (mean and standard deviation) provided for all features described in the methods?
11) Have actual probability values been reported (e.g. 0.035 rather than <0.05) for the main outcomes except where the
probability value is less than 0.001?

External validity
12) Were study participants representative of the population under investigation?
13) Was the activity assessed representative of clinical fall risk assessment protocols or the daily life activities?

Internal validity - Bias & Confounding

14) Were the subjects in different groups (non-fallers and fallers) recruited from source populations that are comparable in
all aspects other than fall status and over the same period of time?

15) Was the study designed and conducted to minimise the risk of bias and confounding and to establish a relationship
between measures and fall status?

SUM
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Fig. S1 Approximate entropy (ApEn) and sample entropy (SampEn) as a function of m, » and N for the medial-
lateral (ML) component of the centre of pressure displacement during quiet standing.
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Fig. S5 Sample entropy (SampEn) mean value (bars) and standard deviation (error lines) by group as a function
of rform=1{2,3,4,5} (from top to bottom) and N= 1200 (i.e. 60 seconds) for the medial-lateral (ML) component
of the centre of pressure displacement during quiet standing.
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Fig. S6 Sample entropy (SampEn) mean value (bars) and standard deviation (error lines) by group as a function
of r for m = {2, 3, 4, 5} (from top to bottom) and N = 600 (i.e. 30 seconds) for the anterior-posterior (AP)
component of the centre of pressure displacement during quiet standing.
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Fig. S7 Sample entropy (SampEn) mean value (bars) and standard deviation (error lines) by group as a function
of rform=1{2,3,4,5} (from top to bottom) and N = 600 (i.e. 30 seconds) for the medial-lateral (ML) component
of the centre of pressure displacement during quiet standing.

201



SOOUQIAJJIP JULDLIUSIS S)EOIPUI SANEA P[OF
QOUIQYJIP UBSW (77 ‘UONBIADP PIEPUBIS (7S “ONSNLIS-] o]

LOL'O £€00°0- 8€L°0 €000~ 166°0 0 1500 0LI°0 L¥0°0 €LT0 500 €L1°0 LILO £€°0 S0
9L9°0 ¥00°0- 0€9°0 ¥00°0- 666°0 0 $$0°0  L8I0 6¥0°0 161°0 $S0°0 161°0 S¥9°0 0 S¥°0
1€9°0 ¥00°0- 9150 S00°0- SL6'0 100°0- LS00 LOTO £50°0 110 650°0 110 LYS'0 09°0 7’0
SES0 S00°0- 29¢°0 900°0- 926°0 100°0- 190°0  6CCT0 LS00 Y€T0 $90°0 SET0 96¢°0 £€6°0 Se0
Eladl] 900°0- 99T°0 800°0- 060 100°0- L90°0  9ST0 2900 €970 8900  ¥9T°0 00€°0 1Tl €0
0Ce0 800°0- 00 600°0- 6¥6°0 100°0- CLO'0 680 890°0 L6T0 €L0°'0  86T°0 0€C°0 LY'1 S0
€LT0 010°0- 910 010°0- 1 0 ¥L0'0  LTEO 1L0°0 LEE0 yLO'0  LEEO €S1°0 88’1 0
LS00 loo- Yo1°0 600°0- ¥59°0 €00°0 9900 S9¢€°0 ¥90°0 LLEO $90°0  ¥LEO ¢L00 £€9°C S0
970°0 L00°0- 180 200°0- £10°0 9000 0¥0'0  S9¢°0 6€0°0 €LE0 6€0°0  L9E0 L00°0 86'v 1’0
c=u
S19°0 ¥00°0- 66L°0 £00°0- 198°0 100°0 §S0°0  LLTO 150°0 181°0 9600  6L1°0 £€9°0 90 0]
8190 ¥00°0- ISL°0 €000~ 026°0 100°0 8500 S61°0 ¥50°0 00C°0 6500 8610 S¥9°0 7o S0
190 ¥00°0- 859°0 ¥00°0- €860 100°0 190°0  LITO 950°0 12T0 £€90°0 1cC0 LT9°0 LY'0 ¥'0
065°0 S00°0- 125°0 S00°0- $66°0 0 ¥90°0  1¥T0 650°0 9¥T0 990°0  9¥T0 £7S0 190 Seo
5670 900°0- G8¢°0 L00°0- €60 100°0- 6900 0LT0 £€90°0 9LT0 [L0°0  LLTO 6110 L80 €0
89¥°0 L00°0- 10 600°0- 1€8°0 200°0- SLO0  S0E0 690°0 cleo LLOO  ¥IC0 69C°0 1€l STo
0820 010°0- LET'O cloo- 880 20070~ 7800  6vE0 LLOO 65€°0 £€80°0 19¢°0 £€91°0 (43! 0
811°0 €10°0- 680°0 €10°0- 866°0 0 G800 €0¥0 80°0 91¥°0 ¥80°0  LI¥'O 960°0 PeT S1°0
£€0°0 Cl00- 1140 800°0- 9€€°0 ¥00°0 $90°0  0St°0 £90°0 29¥°0 0900 8S¥°0 6£0°0 9T¢ 10
p=uw
LESO S00°0- SE8°0 €000~ €690 €00°0 §90°0 1810 190°0 L81°0 $90°0  ¥81°0 SIS0 99°0 S0
€150 9000~ €180 €000~ ¥69°0 €00°0 6900 +0T0 §90°0 60C°0 6900  LOTO 867°0 0L0 Sv'0
605°0 900°0- ¥8L°0 ¥00°0- SEL'0 €00°0 €L0°0  6CCT0 890°0 9€T0 €L0°0 £€C0 605°0 89°0 ¥'0
10S°0 L00°0- SEL0 ¥00°0- 86L°0 2000 SLO0  6STO 0L0°0 99T°0 9L0°0 €970 02s0 $9°0 Se0
¥05°0 L00°0- w90 S00°0- €160 200°0 LLO'O  ¥6T°0 cL00 00€°0 6L0°0  66T0 9€¢°0 90 €0
88%°0 L00°0- 9Ly'0 L0070~ 666°0 0 0800 t€€0 ¥L0°0 170 780°0 €0 LLY'0 L0 sTo
LEV'O 800°0- 69C°0 010°0- 916°0 200°0- ¥80°0 T80 8L0°0 06€°0 L80°0  T6E0 €0€°0 0Tl 0
960 110°0- 8070 S10°0- 8€L0 €00°0- 2600  vPy0 L80°0 SSY0 S60°0  6SY°0 001°0 0€'C ST°0
060°0 910°0- £€0°0 810°0- 688°0 200°0- S60°0  ¥CS°0 £60°0 0¥5°0 ¥60'0  T¥S'0 £70°0 453 1'0
S=w
T1L°0 ¥00°0- 8260 00°0- CLLO 2000 9L0°0  ¥LI°O L90°0 6L1°0 6900  9LT°0 €L9°0 (4 0]
£79°0 S00°0- S68°0 €00°0- wLo €00°0 ¥80°0 6610 9L0°0 S0T0 8L0°0  C0T'0 90 6v°0 Sv'0
¥95°0 L00°0~ 058°0 ¥00°0- 60L°0 £00°0 €600  0€T0 6800 LETO 8800  ¥ETO 1750 19°0 7’0
0150 800°0- (4240 ¥00°0- LS90 ¥00°0 010 6970 ¥60°0 8LT0 860°0 €LT0 18¥°0 €L°0 Se0
LyY¥0 010°0- 86L°0 §00°0- 119°0 S00°0 011°0  8I£0 010 8CE0 LO1°0 £€CE0 61¥°0 L80 €0
Sov'0 110°0- 9LL0 900°0- LLSO 900°0 911’0 8LEO 801°0 68¢°0 PITO  ¥8€°0 8LE°0 L6°0 STo
78¢€°0 C100- €IL°0 L0070~ 8€9°0 S00°0 9IT'0  1IS¥'0 801°0 €910 9IT'0  8S¥'0 08€°0 L6°0 0
LIE0 Cloo- (4240 010°0- 868°0 200°0 OIT0  8¢S0 wro 055°0 €Iro  8¥5°0 6v¢0 SO'1 S0
Y20 Cl00- 960°0 L10°0- 099°0 S00°0- $01°0  6£9°0 8600 159°0 I[11°0 9590 011°0 17T 1’0
J=u
anjea-d an anjea-d an das uen as UBI\ as UBIA njeA- A ]
A-d A-dAN (D) sad184 (IN) sd[B4-UON (A) unox
J0y-)soq dnoa3 £q sonspe)s aandrsaq VAONYV Aem-duQ

*(Spu009s-(9 "9°T) 00T =N JO YISUS] €Jep © I0J Wl PUL £ JO UOTIOUNJ B SB UONOIIP [e1ore[-[erpaw oy ul KAdonuo srewrxorddy 7§ aiqe],

202



SOOULIAJJIP JUBOIUSIS A)EOIPUI SAN[EA Plog
9OURIQYJIP UBSW (7 ‘UOHBIADD PIEPUEIS (7S ‘ONSHRIS-] o]

€LS°0 S00°0 100°0>  T¥0°0 100°0> LEO0 L90°0  LITO LS00 €10 190°0 9LT0 100°0> SI'v6 S0
€290 S00°0 100°0>  #%0°0 100°0>  6£0°0 CLO0  LETO 190°0 €E€T0 ¥90°0 £61°0 100°0> I'v6 S¥°0
989°0 ¥00°0 100°0>  9¥0°0 100°0> w00 9L0°0  09T°0 §90°0 S$STo 8900 €170 100°0> St'v6 0
YLLO ¥00°0 100°0>  8+%0°0 100°0>  +¥0°0 0800 S8T0 890°0 18C°0 ¢LO0 9€T0 100°0> 0T¥6 SE0
8260 2000 100°0>  6¥0°0 100°0> L¥00 7800 11€0 0L0°0 60¢°0 SLO0 970 100°0> 6L'v6 €0
996°0 100°0- 100°0>  L¥0°0 100°0> 8¥0°0 0800 9¢€°0 6900 8€€°0 SLO0 0620 100°0> 86001 ST0
£9¢°0 L0070~ 100°0>  L£00 100°0>  #¥0°0 L90°0  TSE0 850°0 6S€°0 L90°0 S1€0 100°0> 65101 0
7200°0 C100- 200°0 1100 100°0> €200 SY0'0  9¢€°0 LE00 8¥€°0 6¥0°0 $2¢0 100°0> IL°SS ST°0
7200 110°0- 100°0>  1€0°0- 100°0>  020°0- 900  S¥T0 9500 9670 8¥0°0 9LT0 100°0> S9'8% 1’0
c=ul
190 S00°0 100°0>  +¥0°0 100°0>  6£0°0 0L0°0 9TT0 650°0 12C°0 §90°0 810 100°0> LO'S6 S0
S€9°0 S00°0 100°0>  9+0°0 100°0> 1%0°0 ¥L0'0  8¥CT0 £90°0 3 All] 8900 10C°0 100°0> S0°S6 St'0
790 S00°0 100°0>  6¥0°0 100°0>  ¥¥0°0 6L0°0 TLTO L9070 L9T0 °L00 €0 100°0> 0€°56 0
2090 9000 100°0> 2SO0 100°0> L¥00 ¢80°0 10€0 °L00 S6T°0 LLOO 6¥C0 100°0> STY6 Se0
9%9°0 900°0 100°0> §S0°0 100°0>  6¥0°0 1600 t¥€€0 LLOO 87¢€°0 180°0 6LT°0 100°0> €6 €0
T80 ¥00°0 100°0> LSOO 100°0> £50°0 9600  0L£0 180°0 99¢°0 $80°0 €1e0 100°0> L1996 STo
866°0 0 100°0> §S0°0 100°0> $S0°0 €600  90¥°0 080°0 LOY'0 $80°0 1s€0 100°0> €T 101 0
ory'0 L00°0- 100°0>  6€0°0 100°0>  9%0°0 ¥L0'0  STVO 2900 4340} ¥L0°0 98¢0 100°0> 0S'v6 S1°0
100> #10°0- 0L0°0 L00°0- 110°0 900°0 0500 69¢°0 £¥0°0 €3¢0 S¥0°0 LLEO 100°0> 988 o
p=u
£8L°0 ¥00°0 100°0>  6¥0°0 100°0> S¥0°0 8L0°0 8¢£T0 L90°0 ¥€C°0 ¥L0°0 681°0 100°0> S0'86 S0
€780 ¥00°0 100°0> 1500 100°0> 8%0°0 7800  T9TO 0L0°0 6ST0 8L0°0 110 100°0> 1186 St'0
9€8°0 $00°0 100°0> €50°0 100°0>  0S0°0 §80°0 06C°0 °L00 98C°0 7800 LETO 100°0> 81°86 70
¥9L°0 S00°0 100°0> 9500 100°0> 7500 6800 TTEO SLOO LTIE0 $80°0 99T°0 100°0> YEL6 S€0
8¥9°0 9000 100°0> 6500 100°0> £50°0 S60°0  6S€0 8L0°0 £5¢°0 8800 00€0 100°0> £6'76 €0
119°0 L00°0 100°0> 190°0 100°0> $S0°0 1010  20¥'0 £30°0 S6£°0 760°0 0¥€'0 100°0> €€6 ST0
689°0 900°0 100°0>  $90°0 100°0> 8600 801°0 TSY'0 06070 Cladl] 9600 88¢€°0 100°0> 7’6 0
0L6°0 200°0 100°0> 7900 100°0> 0900 LOT'0 0SS0 0600 0S50 960°0 w0 100°0> 44 ST°0
8710 0100~ 100°0>  0£0°0 100°0> 1700 €L0°0  LISO 2900 8TS'0 9L0°0 L8Y'0 100°0> 90°0L 1'0
=
88%°0 800°0 100°0> 190°0 100°0> €500 6600 9¥T0 £30°0 8€T0 ¥80°0 S81°0 100°0> £€'86 S0
0190 L00°0 100°0>  990°0 100°0> 6500 LO1°0  LLTO 160°0 0LT0 £60°0 110 100°0> L8'86 St'0
YrL 0 900°0 100°0> 1L0°0 100°0> §90°0 Y10 ¥I€0 860°0 80€°0 01°0 €0 100°0> €2°001 ¥'0
S¥8°0 S00°0 100°0> SLOO 100°0> 1L0°0 0ZI'0  8S¢0 €01°0 €5¢€°0 cIro £8C°0 100°0> 20101 SE0
¥26°0 €00°0 100°0>  8L00 100°0> SLO0 ¥2ro  60v’0 LOT°0 S0¥°0 611°0 1€€°0 100°0> €6°001 €0
6176°0 €000 100°0>  6L0°0 100°0>  9L0°0 STI'0  L9Y0 901°0 ¥9t°0 1o 88¢€°0 100°0> ££°66 STo
6L6°0 200°0 100°0> SLOO 100°0> €L0°0 1210 TES0 101°0 0€5°0 €210 LSY'0 100°0> 0¥'96 0
6960 2000 100°0> 8900 100°0>  990°0 Y110 ¥09°0 9600 2090 9110 SES0 100°0> £8'88 ST°0
6¥6°0 €000 100°0> 0900 100°0> LS00 CIT0  8L90 $60°0 9L9°0 901°0 6190 100°0> 0v'vL 1’0
c=u
an anjea-d an ds ueBn as UBIA! as UGN anfeA- A A
A-d A-dAN (D) sd11ed (IN) Sd[[ed-UON () Bunox
J0y-)soq dnoa3 £q sonspe)s aandrLsaq VAONYV Aem-d3uQ

*(Spu029s-( ¢ "9°T) 009=N JO JISUS] BIEP ® I0J W/ PUL . JO UOTIOUN] B SB UOT0AIIP JoLe)sod-1otoyue o) ur Adonud oewrxorddy €8 d[qe],

203



SOOUQIAJJIP JULOLIUSIS S)EOIPUI SAN[EA P[Og
QOUIQYJIP UBSW (774 ‘UONBIADD PIEPUBIS (7S “ONSNLIS- ]

88C°0 900°0- 650°0 800°0- 17S°0 €00°0- 0500 0810 9%0°0 981°0 150°0 881°0 L90°0 0L'e S0
89C°0 900°0- 8¢€0°0 010°0- 6110 £00°0- £€50°0 9610 8¥0°0 €0T°0 ¥50°0 900 1¥0°0 1ce S0
9€T°0 L0070~ 610°0 110°0- 8T0 ¥00°0- 9600  vITO 500 12T0 8600 9TT0 810°0 14 ¥'0
161°0 80070~ ¥10°0 C1oo- 10€°0 ¥00°0- 0900 S€TO $S0°0 £eveo 190°0 8¥CT°0 S10°0 0Ty SE0
Sv1°0 6000~ T10°0 €10°0- 9LE0 ¥00°0- £€90°0  6STO 6500 69C°0 £€90°0 €LTO S10°0 YTy €0
2600 010°0- €10°0 €10°0- 9650 £00°0- 990°0 9870 2900 9620 ¥90°0 6620 810°0 [{\h4 S0
650°0 010°0- 010°0 €10°0- 0L’0 2000~ €900 CTIE0 850°0 €Ce0 LS00 STE0 1070 Yoy (4]
L10°0 600°0- £€€0°0 800°0- 098°0 100°0 8¥0°0  €T€0 £v0°0 4330} 0¥0°0 1€€0 120°0 88°¢ S1o
££6°0 100°0 8S¥'0 ¥00°0 8¢r'0 £00°0 170'0  SLTO w00 €LT0 9%0'0 1LT0 60€°0 8I'1 1’0
c=u
69C°0 900°0- STro 800°0- 0L8°0 100°0- §S0°0  061°0 050°0 L61°0 §S0°0 861°0 0ST°0 06’1 S0
°eTo L0070~ 0L0°0 600°0- 0€L°0 200°0- LS00 80T0 s0°0 SIco LS00 LIT0 L80°0 Sv'c Sv'0
600 800°0- £€€0°0 110°0- S0S°0 £00°0- 6500 8TTO $50°0 SET0 090°0 6€C°0 6£0°0 sTe ¥'0
€61°0 800°0- 810°0 €100~ se0 ¥00°0- 7900 1ST0 LS00 65ST0 ¥90°0 €970 020°0 ¥6'¢ Se0
891°0 600°0- 600°0 ¥10°0- 6¥C°0 S00°0- 9900  LLTO 190°0 98T°0 890°0 670 600°0 89t €0
0€1’0 110°0- €00°0 9100~ °wTo 9000~ CLO0  80¢E°0 990°0 61€0 TLo0 STE0 €00°0 €S S0
2800 r10°0- $00°0 L10°0- °Te0 S00°0- SLO0O  SPE0 1L0°0 LSE0 €L0°0 29¢°0 €00°0 8T'S 0
§70°0 €10°0- $00°0 S10°0- 19L°0 2000~ 6900 08¢0 ¥90°0 £6£°0 2900 S6¢£°0 900°0 60°S S1°0
050°0 L00°0- 890 $00°0- 19¢°0 £00°0 0’0 €LE°0 170°0 18¢€°0 8€0°0 8LE0 LS00 L8'T 1o
p=w
°sTo 800°0- ¥6C°0 L00°0~ L96°0 100°0 L90°0  10T°0 900 60C°0 $90°0 80C°0 ¥9T°0 (2 S0
61C°0 600°0- LTTO 800°0- 8860 0 6900 €TTO ¥90°0 °€eTo 890°0 °€eTo L1T0 €51 Sv'0
S0T0 600°0- 991°0 600°0- 8660 0 1L0°0  8¥CT0 $90°0 LSTO 0L0°0 8ST°0 LLT'O €L'T 0
¥81°0 010°0- 001°0 110°0- S¥6°0 100°0- €L0°0  9LTO 990°0 98C°0 ¢LO0 L8TO 611°0 €re SE0
€S1°0 0100~ €10°0 €10°0- 65L°0 €00°0- ¥L0'0  80€0 890°0 81¢€°0 ¥L0°0 12€°0 950°0 68'C €0
1S1°0 110°0- 910°0 S10°0- w0 ¥00°0- 9L0°0  €¥E0 690°0 €0 9L0°0 8S€°0 020°0 16'¢ sTo
o cl100- £€00°0 610°0- ¥91°0 L00°0- 6L0°0 S8E0 €L0°0 L6€°0 080°0 $0¥°0 €00°0 16'S 0
910°0 S10°0- 100°0 €200~ 871°0 800°0- €300 ¥EV0 6L0°0 6¥¥°0 780°0 LSY'0 100°0 yeL ST°0
110°0 S10°0- 100°0> 0200~ STE0 S00°0- CLO'0  LLYO 8900 670 §90°0 L6¥'0 100°0> 68'L 1'0
S=w
STyo 800°0- LLEO 800°0- 6660 0 £€80°0 6610 9L0°0 90T°0 8L0°0 90T°0 °6¢°0 ¥6°0 0]
[LE0 600°0- £€9¢°0 6000~ L66°0 0 1600 9TC0 €800 SET0 980°0 SET0 19¢°0 w1 Sv'0
61¢°0 110°0- 6T¢°0 010°0- 166°0 100°0 8600 09T0 160°0 1LT0 ¥60°0 0LT°0 81€°0 ST'T 7’0
sTo cl1oo- 86C°0 110°0- ¥96°0 100°0 9010 10€0 L60°0 €1e0 oro (4530 §9C°0 €e'l Se0
1120 ¥10°0- yLTO C100- 6€6°0 2000 11170 0S€0 °01°0 $9¢€°0 901°0 79¢°0 0€C0 LY'1 €0
¥S1°0 S10°0- 01co €10°0- LT6'0 00°0 €110 LO¥'o 010 €0 LOT°0 1cr'o 0L1°0 LL'1 STo
0z1°0 910°0- L80°0 910°0- 966°0 0 601°0  €LVO 860°0 687°0 ¥01°0 687°0 $60°0 SET 0
150°0 L10°0- L00°0 120°0- 959°0 ¥00°0- 6600 €vS0 680°0 095°0 L6070 $95°0 010°0 LSV ST°0
820°0 810°0- 100°0> 8700~ 650°0 010°0- 6800 €190 $80°0 1€9°0 260°0 1¥9°0 100°0> 6v'6 1’0o
J=u
npea- an njea: an as uey as UBIIA as UBIIA anfeA- a1 4
A-d A- AN (D) sad11eg (IN) sd[[e4-UON (A) unox
Joy-)soq dnoa3 £q sonspe)s sandrsaq VAONYV Aem-duQ

*(Spu023s-(€ "9°T) 009=N JO YISUS] BJEP ® I0J W/ PUL . JO UOIIOUN] B SB UONOAIP [e1dje]-[erpawt oy ut Adonus sjewrxorddy 4§ aiqe],

204



SOOUQIAJJIP JuLdLIUSIS S)EOIPUI SANJEA P[Og
QOUQIQYJIP UBSW (774 ‘UONBIADD PIEPUBIS (7S “ONSNLIS-] ]

01,0 £00°0- €560 100°0- €0L°0 00°0 ¥70°0  €¥I°0 0€¥0°0 910 L¥0'0 P10 €9°0 9’0 S0
059°0 €00°0- 916°0 100°0- 80L°0 00°0 LY0'0  6ST°0 09t0°0 910 0500 0910 009°0 IS0 S¥°0
209'0 ¥00°0- 998°0  C00°0- LEL'O 000 7500 LLTO 0050°0 181°0 §S0'0  6L1'0 185°0 ¥S°0 70
62S°0 S00°0- 68L°0  €00°0- 6SL°0 2000 LS00 8610 0tS0°0 £0T°0 0900 10T0 £€5°0 £9°0 Se0
SLY'0 900°0- LTL'0  +00°0- 0LL0 00°0 €900  STTO 0190°0 1€C°0 L90°0  6CC0 l6t'0 IL°0 €0
G8¢°0 800°0- 8790  S00°0- 69L°0 £00°0 ¢LO0  6STO 0690°0 L9T0 SLOO  ¥9T°0 11v°0 680 ST0
°LTo 010°0- €050  L000- 9€L’0 €000 800 S0€0 0Z80°0 SIE0 L800  TIEO 10€°0 0T'1 0
910 ¥10°0- €87'0 6000~ 0¥9°0 S00°0 SOI'0  €L€0 101’0 L8E°0 9010 T8C0 8€T0 'l SI°0
Is1°0 020°0- I6v'0  TI0°0- (3244 800°0 o¥I'0 6870 LET'O 605°0 1’0 10S°0 €51°0 881 1’0
c=u
989°0 £€00°0- L6’0 100°0- 009°0 2000 LY0'0  8¥I°0 S¥0°0 IST°0 6¥0°0  8¥1°0 9$S°0 6S°0 S0
159°0 ¥00°0- LS6°0 100°0- 86S°0 00°0 0500 ¥91°0 870°0 L91°0 €500  S91°0 LESO 90 St'0
609°0 ¥00°0- LT6'0  T00°0- S19°0 £00°0 7500 €81°0 500 L8T°0 LS00 S8T1°0 §TS0 $9°0 0
LSO S00°0- 7880 C00°0- 6590 €000 6500  90T0 950°0 110 7900 80T0 250 S9°0 Se0
yES°0 900°0- Y280  €00°0- 60L°0 €00°0 ¥90°0  ¥€CT0 190°0 6€C0 8900  LETO 6150 99°0 €0
(4340 L0070~ 6€L°0  ¥00°0- €9L°0 €00°0 €L0°0  69T0 690°0 9LT0 9L0°0  ¥LTO So6t'0 0L0 ST0
09¢°0 600°0- 0650 900°0- 8LLO €00°0 G800 LIEO 8070 9T¢0 6800  ¥CE0 68¢°0 ¥6°0 0
970 €10°0- 8870 6000~ 6€L°0 ¥00°0 901°0  68¢0 010 °0¥'0 801'0  86¢£0 °6T0 €Tl S1°0
SLT°0 020°0- Pry’0  €10°0- 6850 L00°0 €P1°0 TIS0 6€1°0 €S0 SPI'0  STS0 ¥61°0 ¥9'1 10
p=uw
0€9°0 ¥00°0- 8L6°0 100°0- 88%°0 €00°0 ¢s0°0  IST°0 150°0 SS1'0 $60°0  TSI'0 9¢¥°0 6L°0 S0
66S°0 ¥00°0- ¥L6°0 100°0- 12940 €000 960°0 6910 §S0°0 LT 8600  0LT'0 0Ty'0 L8°0 St'0
8960 S00°0- L96°0 100°0- LEVO ¥00°0 1900 1610 650°0 961°0 €900  T61°0 96€°0 £6°0 70
S¥S0 S00°0- 656°0 100°0- 9’0 ¥00°0 §90°0 LITO £90°0 w0 8900  8ICTO 6LE0 L6'0 Se0
8CS°0 900°0- ¥76°0  C00°0- Sv'0 ¥00°0 1L0°0  6¥C0 890°0 §ST0 ¥L0'0  0ST0 ¥8¢°0 96°0 €0
6LY°0 L0070~ I188°0 €000~ €150 ¥00°0 LLOO  88T0 €L0°0 S6T0 1800  06C°0 L6E°0 w60 ST0
(4240 800°0- ¥9L°0  S00°0- 099°0 ¥00°0 980°0 6£€°0 80°0 LYE0 0600  €¥€0 £Ev'0 ¥8°0 0
9¢€°0 110°0- ILS°0 8000~ 118°0 £00°0 €010 CIvo 6600 €0 LOT'0  0T¥0 L6€0 60 ST°0
£rC0 810°0- 69¢0  ¥10°0- 0L8°0 ¥00°0 1710 LESO 9¢€1'0 §SS°0 er1'0 15670 €LT0 0¢'l 1’0
S=w
689°0 ¥00°0- 860 100°0- 6550 €00°0 8600 8¥I°0 ¥50°0 o LS00 6¥1'0 0€5°0 ¥9°0 S0
79°0 ¥00°0- 8L6°0 100°0- 60S°0 €00°0 $90°0 8910 190°0 (AN €900 6910 9L¥"0 L0 St'0
7650 S00°0- °L6’0 100°0- €S0 ¥00°0 TLO0 €610 890°0 861°0 1L00  ¥61°0 91¥°0 88°0 ¥'0
0SS0 900°0- ¥L6°0 100°0- 98¢0 S00°0 0800 ¥CC0 LLOO €20 0800  9TT0 GSe0 ¥0°L SE0
€1s°0 800°0- 8L6°0 100°0- 12¢°0 900°0 6800 ¥9C°0 980°0 °LTo 0600  S9T°0 L6T0 171 €0
9LY'0 600°0- 186°0 100°0- §9T0 800°0 8600 SIE0 ¥60°0 ¥2e0 00I'0  9I¢€0 LYT0 or'1 ST0
€S0 010°0- SL6'0  TO00- LSTO 800°0 LOT'0  T8E0 01°0 76£°0 0110 ¥8€°0 9€T0 SY'1 0
01¥°0 loo- 060 +00°0- 86¢€°0 800°0 SIT'0  TLYO 601°0 ¥8¥°0 6110  9L¥'0 £8C°0 9’1 SI°0
0LE0 ¥10°0- 2960 0lo0- 1€8°0 +00°0 I€1°0 S09°0 STI0 619°0 8¢I'0  S19°0 €00 160 10
=u
AN aN adn as U as UBIIA as UBdIA anea-d d 4
A-d A- AN (D) sd11ed (AN) sdI[eg-UoON (A) Bunox
J0y-)soq dnoa3 £q sonspe)s aandrLsaq VAONYV Aem-duQ

*(Spu029s-(9 "9°T) 00T [=N JO YISUS] BJEP © I0J W/ PUL £ JO UONOUNJ B SB UOT0IIP [e1ore[-[erpaw o) ut KAdonuo ojdures ¢S a[qe],

205



SOOUQIAJJIP JULDLIUSIS S)EOIPUI SANEA P[Og
QOUQIQJJIP UBSW (7 ‘UONRIADP PIEPUBIS (7S “ONSHLIS- ]

S¥9°0 +00°0 100°0>  0t0°0 100°0>  9¢€0°0 §90°0 161°0 §S0°0 L8T°0 950°0 IS1°0 100°0> 99°001 S0
590 $00°0 100°0>  ++0°0 100°0>  6€0°0 0L0°0 11IT0 090°0 LOT0 1900  891°0 100°0> 96'101 S0
$S9°0 S00°0 100°0>  8+0°0 100°0>  €¥0°0 LLO'O  SE€TO 990°0 0€T°0 9900  L8T0 100°0> 90°€0T 70
L¥9°0 S00°0 100°0>  €S0°0 100°0>  8+0°0 9800 €9T0 °L00 8670 €L0°0  0ITO 100°0> 81%01 SE0
¥59°0 900°0 100°0> 6500 100°0> €500 960°0  L6T0 080°0 620 1800  8€CT0 100°0> 9101 €0
€0L°0 900°0 100°0>  L90°0 100°0> 1900 6010 1¥€0 160°0 SEE0 1600  ¥LT0 100°0> L£901 ST0
ST8°0 S00°0 100°0>  LLOO 100°0>  ZLOO LTI'0  86E°0 S01°0 £6£°0 S0T°0 120 100°0> L8'LOT 0
¥L8°0 S00°0 100°0> 1600 100°0>  980°0 S0 080 8CI°0 SLY'0 8CI'0  68¢°0 100°0> °6'€01 ST°0
L86'0 2000 100°0> 6010 100°0> 9010 1120 L1900 9LT'0 S19'0 610 6050 100°0> 8L'SL 1’0
c=u
£69°0 ¥00°0 100°0>  1+0°0 100°0>  8¢0'0 9900 9610 950°0 610 8600  SSI'0 100°0> 0€°201 S0
890 +00°0 100°0>  S+0°0 100°0>  1+0°0 TLO0  LITO 190°0 €170 €900  TLIO 100°0> 05°€01 S¥'0
$9°0 S00°0 100°0>  6%0°0 100°0>  ++0°0 8L0°0 I¥T0 990°0 LETO 8900  T6I°0 100°0> 80101 0
£19°0 900°0 100°0>  +S0°0 100°0>  6¥0°0 L80°0 1LTO €L0°0 §9T0 ¥LO'0  LITO 100°0> 61101 Se0
995°0 L0070 100°0> 1900 100°0>  +¥S0°0 8600 80¢°0 180°0 10€°0 7800  LYTO 100°0> €6'701 €0
6LS°0 L00°0 100°0>  0L0°0 100°0>  290°0 CIro  +s€o0 £60°0 LYE0 €600  S8T0 100°0> 8L7901 S0
$89°0 L0070 100°0>  180°0 100°0>  +L0°0 ¢ero  L1vo 601°0 0140 80I'0  9¢€°0 100°0> 88801 0
L89°0 600°0 100°0> 8600 100°0> 6800 6S1°0 8050 ¢ro 667°0 c¢ero  0Ivo 100°0> °TLOT S1°0
606°0 900°0 100°0> 6110 100°0> €110 S0T0  LS9°0 YLT'0 159°0 9L1'0 8¢SO 100°0> LL'96 1o
p=uw
608°0 £00°0 100°0>  ++0°0 100°0>  1+0°0 1L0°0  €0T°0 190°0 0020 €900  6SI0 100°0> 68°€01 S0
0280 €000 100°0>  8+0°0 100°0>  S¥0°0 9L0°0 STTO §90°0 [444] 8900  8LI'0 100°0> SL'SOT St'0
SI8°0 €000 100°0> 2SO0 100°0>  8+0°0 7800 1STO 690°0 8¥C°0 €L0°'0  00T0 100°0> 95901 0
08L°0 $00°0 100°0> 9500 100°0>  TS0'0 8800 T8T0 ¥L0°0 8LT0 6L0°0  9TT0 100°0> 6C°LOT SE0
699°0 900°0 100°0> 7900 100°0> 9500 8600 1T¢0 180°0 S1€0 9800  6SC0 100°0> LTLOT €0
6LS0 L00°0 100°0>  0L0°0 100°0> 7900 011’0 69¢0 160°0 79¢°0 600  00€0 100°0> 9T'LOT ST0
0€5°0 600°0 100°0>  180°0 100°0>  TLOO 6C1'0  Sev0 LOT°0 9Ty'0 6010  ¥S€°0 100°0> 88901 0
80S°0 100 100°0> 6600 100°0>  L800 8S1°0  1€5°0 1€1°0 6150 Eero  Tevo 100°0> 06'S01 ST°0
080 600°0 100°0>  1ZI'0 100°0>  CII'0 $020 8890 CLT0 6L9°0 SLI'0  L9S0 100°0> 186 1'0
S=w
L99°0 S00°0 100°0>  0S0°0 100°0>  S¥0°0 €800  60CT°0 0L0°0 020 6900  6ST°0 100°0> 1€°101 S0
61L°0 S00°0 100°0> 9500 100°0> 1500 1600 S€TO LLOO 0€T°0 LLO'O 0810 100°0> 61°¢€01 S¥'0
L8L0 S00°0 100°0> 1900 100°0> LSOO 6600 L9T0 6800 970 6800  90T0 100°0> 8¢€°601 ¥'0
S¥8°0 +00°0 100°0>  L90°0 100°0> €900 801'0  S0€°0 2600 10€°0 600  LETO 100°0> €V'L01 S€0
968°0 ¥00°0 100°0>  +L0°0 100°0> 0,00 9IT’'0  1S€0 660°0 LY€0 Y01'0  LLTO 100°0> $9°601 €0
¥68°0 +00°0 100°0> 0800 100°0>  9L0°0 $2I'0 - 80t°0 S01°0 010 Y110 8TE0 100°0> 9111 S0
1L8°0 S00°0 100°0> L300 100°0> 7800 €ET°0  1I8%°0 CIro 9LY'0 YCro  ¥6€0 100°0> 6T 111 0
$69°0 600°0 100°0>  960°0 100°0> 8800 871°0 0850 o LSO LET'O  ¥8Y°0 100°0> 6S°L01 ST°0
§95°0 £10°0 100°0>  SIT°0 100°0> 2010 L8T'0  LELO 9s1'0 ¥TL0 S91'0  TT90 100°0> LT96 1o
c=u
anfea-d QN an an ds U as UBdA as UBIA anfea- A A
AN- 4 A-d A-dAN (D) sad184 (IN) sd[[e4-UON () Bunox
J0y-)soq dnoa3 £q sonspe)s andrsaq VAONYV Aem-duQ

*(SPU093s-(€ "9°T) 009=N JO JISUS] BJEP © I0J W/ PUL £ JO UONOUNJ B S UONOAIIp Jotdysod-Toudue oy ut KAdonuos ojdureg 9 a[qe],

206



SOIUQIAJJIP JULdTUSIS S)EOIPUI SANEA P[Og
QOUQIQJJIP UBSW (7 ‘UONBIADP PIEPUBIS (7S “ONSHLIS- ]

10€°0 S00°0- 661°0 900°0- $96'0 100°0- L¥0'0 9510 ¥¥0°0 191°0 6¥0°0  291°0 STTo 67’1 S0
88C°0 900°0- €91°0 L0070~ 926°0 100°0- 1500 CLI'0 8¥0°0 8L1°0 cs00  6L1°0 061°0 99°1 S 4
6¥C°0 L00°0- 011°0 800°0- 798°0 100°0- §S0°0 0610 500 961°0 LSOO 861°0 €10 [\ ¥'0
10 800°0- 8070 010°0- LEY0 200°0- 0900 TIT0 LS00 61T0 290°0 1cTo 2010 6C'C SE0
€81°0 6000~ L90°0 110°0- LT80 20070~ L90°0  8€TO ¥90°0 LYT0 6900  6¥C°0 ¥80°0 8¥'C €0
Lro 110°0- £€50°0 €10°0- SLLO €00°0- LLOO  TLTO €L0°0 €870 8L0°0  S8T0 £90°0 0L'c ST0
L9T°0 €10°0- 810°0 910°0- 8SL°0 €00°0- 7600 810 980°0 1€€°0 1600  ¥€€°0 790°0 8L'T 0
€01°0 810°0- £€70°0 020°0- L060 200°0- Y110 S8€°0 8010 £0¥°0 eIro  90v°0 ¥50°0 [ S1o
180°0 L20°0- 6L0°0 920°0- 166'0 100°0 091°0  ¥0S°0 LST'0 0€5°0 091°0 6750 9L0°0 86'C 1’0
c=u
0820 90070~ €870 900°0- £66°0 0 0500  791°0 L¥0°0 891°0 100 891°0 9LT0 6C'1 S0
§sT0 L0070~ LIT0 L0070~ I 0 €500  6L1°0 050°0 S81°0 g50°'0  S8I'0 8CC0 871 St'0
8TCT0 L00°0- o 800°0- SL6°0 100°0- LS00 8610 $50°0 S0T0 6500 90T°0 °LT0 9Ll 0
961°0 800°0- 860°0 010°0- 6160 100°0- 7900 0CTO 860°0 6CC0 $90°0  0€T°0 811°0 144 Se0
061°0 600°0- 690°0 110°0- §T8°0 200°0- 8900 6¥C0 ¥90°0 86T0 0,00 09C°0 L80°0 IS4 €0
[YAN] 110°0- $¥0°0 ¥710°0- LILO £€00°0- LLOO  ¥8T0 €L0°0 S6C0 080°0  86C°0 850°0 98°C STo
LY1T°0 €10°0- °€0°0 L1070~ €L9°0 $00°0- 1600  €€€°0 880°0 9PE0 7600  0S€0 wo'o 8I'¢ 0
8600 6100~ 970°0 200 ¥8L°0 7000~ SIT'0  SO¥'0 011°0 YTro LIT'0  8T¥'0 S€0°0 LEE S1°0
8+0°0 620°0- 920°0 1€0°0- 086°0 200°0- 9S1°'0  1€S°0 £S1°0 095°0 091°0 2950 0€0°0 0s'¢ 1’0
p=uw
86T°0 L00°0- 4544 S00°0- ¥8L°0 200°0 8600 6910 ¥50°0 9LT’0 LSOO ¥LI'O 06C°0 YTl S0
¥€T0 800°0- S6£°0 900°0- L18°0 200°0 7900 8810 850°0 S61°0 1900  ¥61°0 99T°0 [43! St'0
14 800°0- 120 L0070~ 088°0 200°0 §90°0 0IT0 190°0 810 900  LITO 0¥C0 el 70
681°0 600°0- 6€C°0 80070~ LY6'0 100°0 6900 9€T0 $90°0 SYT0 0,00  ¥¥C0 £0T0 09°1 S€0
76170 110°0- 910 010°0- 966°0 0 ¥L0°0  L9T0 690°0 8LT0 SLO'0  LLTO Sv1'0 ¥6'1 €0
6S1°0 110°0- $80°0 €10°0- S¥6'0 100°0- 6L0°0 SOE0 SLO0 LTIE0 7800  8IE0 101°0 6C'C ST0
LY1°0 €10°0- 8€0°0 L1070~ €€L°0 €00°0- 0600 9S€°0 980°0 0LE0 €600  €L€0 6+0°0 10°¢ 0
91T°0 L1070~ 810°0 €200~ 109°0 S00°0- 1110 0¢¥'0 LOT°0 8¥¥°0 SIT0  €SY0 €70°0 ILe ST°0
6+0°0 6200~ 600°0 ¥€0°0- £vL'0 900°0- ¢SI'0 6550 0S1°0 8850 8SI'0 €650 €100 1404 1’0
S=w
0€€°0 L00°0- LTS0 S00°0- €180 2000 L90°0 6910 7900 9LT'0 $900  ¥LT°O €9¢€°0 10°1 S0
S6C0 800°0- [16°0 900°0- CLL'O 200°0 ¥L0°0  161°0 690°0 661°0 1L0°0  L6l'0 LTE0 [4N! St'0
9sT°0 010°0- 6L¥°0 L0070~ 0¥L0 £00°0 7800 8ITO LLOO 8TCT0 8L0'0  STTO 98T°0 ST1 ¥'0
61C0 110°0- 95¥°0 80070~ 069°0 ¥00°0 0600 ISTO ¥80°0 €920 980°0  65T°0 9T0 or'l SE0
¥61°0 €10°0- €0 60070~ 9L9°0 ¥00°0 8600 €6C0 160°0 90¢€°0 ¥60°'0  20€0 0TT0 (40! €0
0L1°0 ¥10°0- L9¢°0 010°0- €0L°0 ¥00°0 9010  SPE0 860°0 65¢°0 01’0 SSE0 L61°0 [CA! STo
8¥1°0 910°0- €T0 €10°0- SL80 £00°0 CIro  11v°0 €01°0 LTY0 6010  ¥T¥'0 0LT°0 LL'T 0
901°0 810°0- €800 61070~ I 0 611°0  86¥°0 [UANV) 91¢°0 611°0 9150 680°0 (34 S1°0
6L0°0 ¥20°0- 010°0 1€0°0- 185°0 L00°0- 6610 LT90 £e1’o 159°0 SPI'0 8590 ¥10°0 LTY 1’0
c=u
anfea: anfeA- an an das uey as UBdAl as UBIA A ]
A-d A-dAN (&) s1ar1e 4 (IN) SdI[ed-UON (A) unox
J0y-)s0q dnoa3 £q sonspe)s andrsaq VAONYV Aem-duQ

*(Spu02as-( ¢ "9°T) 009=N JO JISUS] BIEP ® I0J W/ PUL ./ JO UONIOUN] B SB UONOAIIP [e1dje]-[erpaut oY) ut Adonus ojdueg LS dqe],

207



SOOUQIAJJIP JULDLIUSIS S)EOIPUI SANEA P[Og
QOUQIQJJIP UBSW (7 ‘UONRIADP PIEPUBIS (7S “ONSHLIS- ]

8LE0 110°0 100°0> S¥0°0 100°0> ¥€0°0 S90'0  LSI'O 150°0 910 8+0°0 1o 100°0> 43 S0
68¢°0 110°0 100°0> 6100 100°0> L£0°0 0L0°0  SLI°O Gs0'0 €91°0 500 9T1°0 100°0> 06'1¢ S0
o 100 100°0> €500 100°0> 1+0°0 LLOO  S61°0 190°0 ¥81°0 LS00 €10 100°0> 08'1¢ 0
9Tr'0 €100 100°0> 8500 100°0> S¥0°0 ¢80°0 1TTO L90°0 80C°0 290°0 €91°0 100°0> Yr1e €0
120 G100 100°0>  +90°0 100°0> 050°0 960°0 €ST0 SLOO 8€T°0 690°0 881°0 100°0> 6C'1¢ €0
STro 910°0 100°0>  TLOO 100°0> 960°0 601°0  ¥6T°0 980°0 LLTO 8L0°0 120 100°0> [S113 ST0
L9Y°0 8100 100°0> £80°0 100°0> $90°0 8CI'0  8¥E0 001°0 0€€0 680°0 S9T0 100°0> 16°6C 20
S09°0 810°0 100°0> L6070 100°0> 6L0°0 961'0  8TY0 9C1'0 01t°0 601°0 1€€°0 100°0> $88¢C SIo
L9L°0 810°0 100°0> 911°0 100°0> 6600 S0T’0 1950 L91°0 €S0 8¥1°0 a4l 100°0> 0CT'tC 10
S=u
SEV'0 010°0 100°0>  9%0°0 100°0> 9¢€0°0 L£90°0  091°0 €500 0S1°0 050°0 €Iro 100°0> L6'TE S0
€9t°0 110°0 100°0>  0S0°0 100°0> 6€0°0 €L0°0  8LI'O LS00 L91°0 +S0°0 8TI1'0 100°0> Y0'CE S0
98%°0 110°0 100>  +S0°0 100°0> £€70°0 6L0°0 000 290°0 881°0 650°0 Sy1°0 100°0> 43 0
861°0 100 100°0> 650°0 100°0> L¥0°0 L80°0 9TT0 690°0 Y1C°0 +90°0 L91°0 100°0> €8°1¢ S0
70S°0 €100 100°0> $90°0 100°0> 150°0 960°0 8ST0 9L0°0 SYT0 1L0°0 ¥61°0 100°0> YE1¢ €0
687°0 G100 100°0> €L0°0 100°0> LS00 601°0 10€°0 L80°0 98C°0 080°0 8TT0 100°0> [4113 4}
0€S°0 L10°0 100°0> €80°0 100°0> 990°0 LTI'0  8S€°0 €010 1+€0 260°0 SLTO 100°0> TL'6T 0
€19°0 810°0 100°0> 660°0 100°0> 180°0 8S1'0 TPV O 0€ro YTr'o I11°0 £V€0 100°0> 9t'8C SI'o
89°0 200 100°0> ¢TI0 100°0> €01°0 YIT0 8850 1LT°0 9960 1S1°0 €910 100°0> LY'ST 10
p=u
¥9¢€°0 100 100°0>  0S0°0 100°0> 8€0°0 SLO'0  ¥91°0 LS00 s10 €500 YI1°0 100°0> 90'1¢ S0
12¥°0 100 100°0> 7S0°0 100°0> w00 1800 #81°0 2900 ILT0 6S0°0 6210 100°0> LY'1E S0
6Ly 0 100 100°0> 6500 100°0> L¥0°0 L80°0 LOTO 890°0 61°0 +90°0 8¥1°0 100°0> 88°1¢ 0
8€S°0 100 100°0>  +90°0 100°0> 150°0 ¥60°0  S€TO €L0°0 o 1L0°0 IL1°0 100°0> M43 S0
0LS°0 €100 100°0> 6900 100°0> 950°0 2010 0LT0 080°0 LST0 8L0°0 00C°0 100°0> €0'Ce €0
6950 100 100°0> 9L0°0 100°0> 2900 CIro  vigo 6800 00€°0 980°0 8€T0 100°0> ve1e ST0
S96°0 910°0 100°0> S80°0 100°0> 890°0 LTI'0  $LEO €010 86€°0 960°0 68C°0 100°0> L1°0€ 0
8€S°0 1200 100°0>  001°0 100°0> 6L0°0 SS1'0 €9%°0 LT1°0 w0 Y110 £€9¢°0 100°0> 17°8¢C SIo
€650 S20'0 100°0> ¢TI0 100°0> 8600 80C°0 TI90 0L1°0 L8S°0 510 88%°0 100°0> 80'¥C 1'0
S=u
961°0 910°0 100°0>  +S0°0 100°0> 8¢€0°0 §80°0 910 190°0 6v1°0 ¥50°0 111°0 100°0> 6£'6C S0
¥TC0 810°0 100°0> 0900 100°0> £€70°0 ¥60°0  L81°0 890°0 691°0 190°0 LT1°0 100°0> 56T S0
970 6100 100°0> L90°0 100°0> 6%0°0 v01'0  ¥1T0 LLOO S61'0 0L0°0 9%1°0 100°0> 8L°6C 7’0
STe0 610°0 100°0> SLO0 100°0> 960°0 SIT'0  LYTO 980°0 LTTO 6L0°0 IL1°0 100°0> 9T°0¢ Se0
S0t°0 020°0 100°0>  +80°0 100°0> ¥90°0 LTI'0  88T0 960°0 69C°0 160°0 ¥0T°0 100°0> 80¢ €0
S0S°0 6100 100°0> £€60°0 100°0> ¥L0°0 8¢€I'0  TPE0 LO1°0 €20 ¥01°0 6vC'0 100°0> STle ST0
8790 L10°0 100°0> 101°0 100°0> 80°0 8Y1'0  11¥°0 LIT0 76€°0 8110 01€0 100°0> 16°1¢ 20
€0L°0 L10°0 100°0>  601°0 100°0> 260°0 191°0 6050 6C1°0 610 e€ero 66€£°0 100°0> 86°0¢ Sro
£€99°0 200 100°0> 121°0 100°0> 001°0 061°0 7990 LST°0 0%9°0 9¢61°0 0S50 100°0> ¥8'ST 10
c=u
an dN[BA d an dN[BA- d adn as UBIAI as UBIAI as UBIAI u:—ﬂ>nm A d
AN - A A-d A-AN () s1aqreq (AN) s1d[[eg-uoN (X) Sunox
J0y-)soqd dnoa3 £q sonspe)s Lrewwing VAONYV Aem-duQ

(JO) 2oejans pI31 — uddo $9AJ :(SPU0IAS-()9 *9°'1) 00 [=N JO YISUQ[ BIep © IO U/ PUL L JO UONIOUNJ B SB UONIIIP Jolv)sod-1oujue ay) ut Adonus ojdues 8§ dqe L,

208



SOOUSIQJJIP JUBOYTUSIS 9JeoIpul sanjeA pjog
QOUISJJIP UBSW (774 “UONBIASP pIepuels (7§ “OnsneIs-q

6850 8000 100°0> 500 100°0> ¥¥0°0 8900 9910 £50°0 8S1°0 150°0 y11°0 100°0> 9¢e'ey S0
6650 6000 100°0> LS00 100°0> 8¥0°0 ¥L0'0  S81°0 LS00 9LT°0 950°0 8CI'0 100°0> 12834 S0
0650 0100 100°0> 7900 100°0> €500 780°0  LOTO 7900 L61°0 190°0 P10 100°0> 0Ty 70
YLSO0 11070 100°0> 690°0 100°0> 860°0 1600 +€T0 690°0 €CT0 L9070 S91°0 100°0> SOvy SE0
8L5°0  TI00 100°0> LLOO 100°0> §90°0 €010 L9T0 LLOO S$ST0 ¥L0°0 061°0 100°0> LY'vy €0
6850  +10°0 100°0> L80°0 100°0> €L0°0 611°0 0I€0 L80°0 9620 £80°0 €0 100°0> 12444 S0
1090 9100 100°0> 01°0 100°0> 980°0 €r1'0 69€°0 €01°0 €5¢°0 960°0 L9T°0 100°0> Wy 0
¢SS0 1200 100°0> €C1'o 100°0> 10 €81°0  SSP°0 92I°0 12340 911°0 e 100°0> 10y S1°0
€0 6£0°0 100°0> 0L1°0 100°0> 1€1°0 ¥9T0  +19°0 0L1°0 9LS0 961°0 aadl) 100°0> £6'8¢ 10
S=u
S19°0 8000 100°0> ¥50°0 100°0> 9%0°0 0L0°0  0LT0 $S0°0 910 €500 91T°0 100°0> 6Lty S0
6290 6000 100°0> 6500 100°0> 0500 9L0°0  681°0 6500 081°0 8500 0€1°0 100°0> 14844 S¥'0
$€9°0 6000 100°0> $90°0 100°0> §S0°0 £€80°0 TITO ¥90°0 00 £90°0 LY1°0 100°0> (R 474 ¥0
1190 1100 100°0> 1L0°0 100°0> 0900 2600  0¥T0 0L0°0 6CTC0 6900 691°0 100°0> 8Ly Se0
L09°0  TIOO 100°0> 6L0°0 100°0> L90°0 Y010 ¥LTO 8L0°0 2970 LLOO 961°0 100°0> 99ty €0
0650  ¥10°0 100°0> 680°0 100°0> SLO0 0CI'0  61¢0 680°0 S0€0 980°0 0€T0 100°0> Y0'v¥ S0
$65°0 9100 100°0> €01°0 100°0> L8070 €Y1°0 08¢0 S01°0 $9¢°0 6600 LLTO 100°0> seey 0
6090 0200 100°0> STro 100°0> So1°0 781°0  0LY'0 0€1'0 0St'0 (aN(] SPe0 100°0> 8¥' 1y S1°0
02,0 1200 100°0> LST°0 100°0> 9¢1'0 PPT0 €290 SLT'0 209°0 910 99%°0 100°0> ELLE 1o
= ul
9860 6000 100°0> 6500 100°0> 0500 SLOO  SLIO 190°0 991°0 LS00 9110 100°0> (XA 4% S0
6190 0100 100°0> ¥90°0 100°0> §S0°0 7800 9610 990°0 981°0 7900 ero 100°0> Yo'y St'0
€590 0100 100°0> 0L0°0 100°0> 090°0 680°0 0CTO 1L0°0 012’0 690°0 0s1°0 100°0> 60°'SY ¥0
7890 0100 100°0> 9L0°0 100°0> 990°0 L60°0  6¥T0 9L0°0 6€C°0 SLO0 €LT0 100°0> 19°SY SE0
01L°0 110°0 100°0> £80°0 100°0> °L00 LO1°0  S8T0 7800 SLTO £80°0 200 100°0> €SSy €0
7890  TIOO 100°0> 7600 100°0> 6L0°0 0CI'0 T 060°0 0T€0 7600 0¥To 100°0> 96'tY ST0
%90 S10°0 100°0> $01°0 100°0> 680°0 or1'0  S6£0 ¥01°0 08¢0 ¥01°0 1620 100°0> oL'ey 0
0190 6100 100°0> Y210 100°0> ¥01°0 PLT'O 8810 8C1°0 69%°0 €C10 §9¢°0 100°0> LY’ 1Y ST°0
£€19'0 9200 100°0> LST'0 100°0> 1€1°0 9€T0  8¥9°0 €LI'0 790 910 06¥°0 100°0> 78'9¢ 1'0
=u
8I¥'0 €100 100°0> $90°0 100°0> 500 €800 8LI'O 690°0 S91°0 LS00 yIr'o 100°0> SSey S0
0s¥'0  ¥10°0 100°0> °L00 100°0> 8500 £€60°0 10T°0 9L0°0 881°0 §90°0 6210 100°0> 98¢y S¥'0
wro  ¥10°0 100°0> 180°0 100°0> 990°0 €01°0  0€T0 $80°0 SI1T0 ¥L0°0 6¥1°0 100°0> (4% 44 ¥'0
§95°0  SI0°0 100°0> 060°0 100°0> 9L0°0 SIT'0  $9T°0 $60°0 050 $80°0 yLT'O 100°0> 06'v¥ SE0
6¥9°0  +10°0 100°0> 001°0 100°0> 980°0 LTI'0  LOEO €01°0 €670 960°0 LOT'0 100°0> SS'SY €0
ceLo €100 100°0> I11°0 100°0> L60°0 or1'0  T9¢0 1110 8¥¢0 011°0 1ST°0 100°0> 6097 S0
L08°0  TIOO 100°0> 121°0 100°0> 801°0 €S1°0  €€¥°0 611°0 12¥°0 STro CIeo 100°0> €6'SY (4
0€8°0 €100 100°0> ¢ro 100°0> 611°0 CLT’0  TESO 6C1°0 02S°0 wio 10¥°0 100°0> 8y S1°0
90,0 1200 100°0> s10 100°0> 1€1°0 CIT0 690 LST°0 €L9°0 L91°0 wso 100°0> 88'8¢ 1o
c=u
npea- an anpea-d an ds uedp as UBIIA as UBdIA anfea-d A 4
A-d A-dAN (&) saar1e (IN) sd[[eg-UON (A) unox
J0y-)soq dnoa3 £q sopspe)ys Lrewwng VAONYV Aem-duQ

(YD) 998yINS PISLI — PISO[ SIS :(SPU0DIS-()9 9°T) OOT [=N JO JITUS] ©IBP B 10J Wi PUE . JO UOTOUNJ B SB UON0AIp JoLdisod-1oudiue oy ut Adonus ojdwes ¢S dqe],

209



SOOUQIAJJIP JULDLIUSIS S)EOIPUI SANEA P[Og
QOUQIQJJIP UBSW (7 ‘UONRIADP PIEPUBIS (7S “ONSHLIS- ]

9,00 9100 100°0> 0900 100°0>  S¥0°0 0S0°0  10T°0 1+0°0 S81°0 L¥0°0 Iv1°0 100°0> 19'89 S0
0L0°0  L100 100°0> 9900 100°0>  6%0°0 §S0°0  €TT0 S¥0°0 90C°0 1500 LST'0 100°0> LE69 S0
0L0°0 6100 100°0> €00 100°0>  ¥S0°0 1900 6¥T0 6¥0°0 0€2°0 950°0 9LT'0 100°0> 90°0L 70
7900 120°0 100°0> 1800 100°0>  090°0 6900  8T0 500 65T°0 7900 661°0 100°0> croL SE0
2900  ¥20°0 100°0> 1600 100°0>  L90°0 8L0°0 8I€0 090°0 62°0 0L0°0 LTTO 100°0> I¥'0L €0
8L0°0 9200 100°0> 2010 100°0>  9L0°0 6800 99¢°0 890°0 0¥¢°0 6L0°0 9270 100°0> S9°0L ST0
7600 6200 100°0>  LIT°0 100°0>  880°0 101°0  6Ct0 6L0°0 00t°0 2600 11€°0 100°0> 1€0L 70
SLO0  9¢£0°0 100°0> 110 100°0>  SO1°0 §T1I'o 0TS0 £60°0 ¥8%°0 orro 6LE°0 100°0> $9°69 ST°0
LY0'0 0500 100°0> 0810 100°0>  0€I°0 6S1°0  §99'0 611°0 919°0 LET'0 98¥°0 100°0> 19'69 1’0
c=u
9L0'0 9100 100°0> 2900 100°0>  9%0°0 0500  S0TO w00 681°0 8%0°0 [34N1} 100°0> 10° 1L S0
0L0°0  L100 100°0> 8900 100°0>  0S0°0 §S0°0 LTTO S¥0°0 0120 500 091°0 100°0> I8'1L S0
8900 6100 100°0>  +.0°0 100°0>  SS0°0 1900  +¥ST0 6¥0°0 SET0 LS00 081°0 100°0> L 0
0900  CC00 100°0> 2800 100°0>  090°0 8900 98T0 +50°0 ¥92°0 £€90°0 00 100°0> 90°CL (SN}
0900  ¥20°0 100°0> 1600 100°0>  L90°0 LLOO  ¥TE0 190°0 00€°0 0L0°0 €€T0 100°0> WL €0
1900  LT00 100°0>  #01°0 100°0>  LLOO 6800 tLEO 690°0 LYE0 6L0°0 0LT0 100°0> SY'IL STo
9L0°0 1€0°0 100°0>  0CTI'0 100°0>  060°0 €01°0  I¥¥°0 180°0 11y°0 €600 12¢€°0 100°0> 9°0L 0
2600 9¢0°0 100°0>  S¥I°0 100°0>  601°0 LTI'0  8€S°0 L6070 00 €110 £6£°0 100°0> 9Y'0L S1°0
€€1'0  TH0'0 100°0> 8L1°0 100°0>  9¢1°0 8S1°'0 8890 121°0 L¥9°0 Pr1°0 0150 100°0> 01’89 1o
p=uw
LTI°0 S10°0 100°0> 9900 100°0>  0S0°0 500 01T0 S¥0°0 S61°0 500 Sv1°0 100°0> IS'IL S0
SIT0  LIOO 100°0>  1L00 100°0>  $S0°0 950°0  ¥€TO 8Y0°0 81T0 LS00 €91°0 100°0> €reL S 4]
901’0 8100 100°0>  8L00 100°0>  6S0°0 0900 T9T0 150°0 Y¥T0 190°0 S81°0 100°0> I€yvL 0
¥60°0 0200 100°0>  S80°0 100°0>  $90°0 9900 S6T0 +50°0 SLTO 990°0 1120 100°0> 08'vL SE0
180°0 €200 100°0> 2600 100°0>  690°0 €L0°0  SEE°0 6500 45 cL00 wao 100°0> SI'vL €0
L90°0 9200 100°0> €010 100°0>  LLOO ¥80°0  S8€°0 9900 65S€°0 6L0°0 80 100°0> €6'€L S0
$S0°0  T€00 100°0>  8I1°0 100°0>  L80°0 6600 €SY°0 8L0°0 1290 060°0 S3N1} 100°0> 6’ 1L 0
9600  6£0°0 100°0>  #¥1°0 100°0>  901°0 9TI'0 TSSO L6070 Y1570 601°0 80¥°0 100°0> 9°0L ST°0
2600 9%0°0 100°0>  #81°0 100°0>  8¢€I°0 £€91°0  ¥ILO Y210 899°0 Sv1°0 0€5°0 100°0> 1L'89 1'0
S=w
651°0 9100 100°0> 0,00 100°0>  ¥S0°0 1900 TITO 7500 961°0 950°0 wio 100°0> €099 S0
IS1°0 8100 100°0> 6,00 100°0> 1900 L900  0vT0 LS00 o €90°0 o910 100°0> S0'89 S 41}
SS1'0 0200 100°0> 8800 100°0>  690°0 €L0°0  PLTO £€90°0 ¥ST0 1L0°0 981°0 100°0> LOOL 0
910 T00 100°0> 6600 100°0>  LLOO 6,00 tIE0 890°0 €670 6L0°0 910 100°0> 90°CL S€0
€910 +¥20°0 100°0>  0I1°0 100°0>  980°0 800  +9¢°0 €L0°0 0¥€°0 880°0 ¥$T0 100°0> €I'vL €0
€LT0 §20°0 100°0> 0210 100°0>  S60°0 8800 ¥TH0 LLOO 66¢°0 L60°0 0€°0 100°0> 0€'9L STo0
S91°'0  LTOO 100°0>  621°0 100°0>  201°0 Y600 66%°0 080°0 ILY'0 901°0 69¢°0 100°0> ¥89L 70
01°0 £€0°0 100°0>  T¥1°0 100°0>  601°0 9010 6650 980°0 995°0 €110 LSY'0 100°0> 19°9L ST°0
L¥0'0  9%0°0 100°0>  691°0 100°0>  €T1°0 rl'0 ¥SLO 801°0 80L°0 1€1°0 S350 100°0> 66'0L 1’0
c=u
an anfea-d QI anea-d qIN as uey as UBIIA as TR anpea-d a1 ]
AN-4d A-d A- AN (D) sad1184 (IN) sd[[e4-UON (A) unox
J0y-)soq dnoa3 £q sopspe)ys Lrewwng VAONYV Aem-duQ

(40) 9@9ejans wieoy — uddo sakd :(Spu0das-(9 1) 00T [=N JO YISUI] BILP © I0J U PUE £ JO UOHIUNJ B SB UONIIIp JoLd)sod-1oudyue oy ur Adonus sjdwes 1S dqeL

210



SOOUQIAJJIP JULOLIUSIS S)EOIPUI SAN[EA P[Og
QOUIQYJIP UBSW (774 ‘UONBIADD PIEPULIS (7S ‘ONSNLIS-] o]

£vS0 800°0 100°0>  +€0°0 100°0> 9200 1S0°0  80T0 10°0 00C°0 8¥0°0 ANV 100°0> 86'1C S0
6950 800°0 100°0>  8¢0°0 100°0> 6200 960°0  0€TO LY0°0 1220 €50°0 610 100°0> LTTT S 4}
L6S°0 600°0 100°0> 1700 100°0> €€0°0 1900 SSTO 500 LYT0 850°0 Y120 100°0> 9L'TT 0
809°0 0100 100°0> 900 100°0>  L€00 8900 98T0 LS00 LLTO §90°0 00 100°0> 60°€C SE€0
L8S°0 110°0 100°0>  ¢S00 100°0> 1¥0°0 LLOO  STEO 7900 Y1€0 ¥L0°0 €LTO0 100°0> [4%%4 €0
009°0 40X 100°0> 6500 100°0>  Lt0°0 8800 €LE€0 0L0°0 19€°0 ¥80°0 Y1€°0 100°0> YT €T sTo
609°0 ¥10°0 100°0> 8900 100°0>  $S0°0 010 9¢ev’0 080°0 (4440l 860°0 89¢°0 100°0> §sTe 0
€290 9100 100°0>  6L0°0 100°0> €90°0 o €250 7600 L0S°0 SIT°0 iaadV] 100°0> £v'Ce s1o
Y150 $20°0 100°0> 0010 100°0>  9.00 9S1°'0 0990 911°0 9€9'0 [34%4 095°0 100°0> 1L'1T 1’0
c=ul
S6t'0 600°0 100°0> §€0°0 100°0>  LT00 100  TITO ¥0°0 070 6¥0°0 LLT°O 100°0> 61°CC S0
667°0 600°0 100°0>  8€0°0 100°0> 6200 960°0  S€TO L¥0°0 9TT0 €50°0 L61°0 100°0> 81°CC S 40}
005°0 0100 100°0>  Z¥0°0 100°0>  T€0'0 7900 1920 150°0 1520 650°0 610 100°0> LETT 0
6150 1100 100°0>  L¥0°0 100°0>  9¢0°0 6900 €6T°0 LS00 8C0 $90°0 9¥T0 100°0> SSyad SN}
16¥°0 €100 100°0> €500 100°0>  0¥0°0 8L00 €€€°0 €900 0T€0 ¥L0°0 0820 100°0> 0L'TC €0
S0S°0 S10°0 100°0> 190°0 100°0>  L+0°0 6800 +8¢°0 1L0°0 69¢°0 $80°0 (443 100°0> 60°€C sTo
185°0 S10°0 100°0>  0L0°0 100°0> §S0°0 $0I'0  0St'0 €800 YEro 101°0 08¢°0 100°0> LY'TT 0
£€99°0 9100 100°0> 7800 100°0> 9900 SCI'o  €vS°0 L6070 LTS0 1cro 19%°0 100°0> 6v'TC S1'0
+09°0 200 100°0> 101°0 100°0>  6L0°0 6510 €690 611°0 1L9°0 IST°0 650 100°0> 9¢'1¢ 10
p=w
0LS°0 800°0 100°0>  L£0O 100°0> 6200 $S0°0  61T0 9%0°0 1120 500 810 100°0> 06'CC S0
095°0 600°0 100°0>  0¥0°0 100°0> 1€0°0 8600 €¥TO 6¥0°0 ¥€T0 950°0 €0T0 100°0> €T S0
€570 0100 100°0>  #%0°0 100°0>  +€0°0 7900 1LTO 500 192°0 190°0 8CC0 100°0> et 0
87S°0 1100 100°0>  L¥00 100°0>  L£00 8900 +0€0 950°0 €670 990°0 LSTO 100°0> 8T€T SE0
99%°0 €10°0 100°0> €50°0 100°0>  0¥0°0 SLO0  SPE0 190°0 (431 €L0°0 60 100°0> 66'CC €0
S0t'0 9100 100°0> 0900 100°0>  +¥0°0 9800 96¢£°0 890°0 08¢0 780°0 9€€°0 100°0> 66'CC ST0
€0 8100 100°0>  0L0°0 100°0> 1500 010 €9%°0 080°0 S0 L60°0 6€°0 100°0> 61T 0
L8Y°0 1200 100°0> §80°0 100°0>  +90°0 LTI'0 19570 6600 0vS°0 0zr'o 9LY"0 100°0> €6'1C S1°0
L99°0 0200 100°0> £01°0 100°0> 7800 1910 LILO 210 L69°0 8S1°0 S19'0 100°0> 8L°0C 1’0
S=w
TLS0 600°0 100°0> 1700 100°0>  T€00 7900  €TTO €500 Y120 650°0 810 100°0> 6v'1C S0
650 0100 100°0>  9+0°0 100°0>  9€0°0 6900 TSTO 850°0 wao $90°0 90C°0 100°0> S1'ee S 40}
L19°0 0100 100°0> 1S0°0 100°0> 100 SLO'0  98T0 ¥90°0 9LT0 °L00 SET0 100°0> L6'TT 70
9%9°0 1100 100°0> 9500 100°0> S¥0°0 180°0 LTEO 890°0 91¢0 6L0°0 1LT0 100°0> £€8°¢C seo0
£€59°0 40X 100°0> 190°0 100°0> 0500 L800 LLEO €L0°0 §9¢°0 980°0 SIE0 100°0> 19°%C €0
8€9°0 €10°0 100°0>  990°0 100°0>  +S0°0 1600 LEV'O 9L0°0 Str'0 £€60°0 1LE0 100°0> 9¢°6C sTo
G86°0 S10°0 100°0>  TLOO 100°0> LSOO L60°0 TISO 6L0°0 L6Y'0 001°0 0¥¥°0 100°0> 1€°6C 0
£81°0 6100 100°0>  6L0°0 100°0> 0900 0Ir'o 0190 $80°0 165°0 Irro (4391 100°0> 16°€T s1o
SEv'0 9200 100°0>  L60°0 100°0> 1,00 8710 ¥9L°0 111°0 8€L°0 (4450 L£99°0 100°0> ¥€0¢ 10
=u
anfea-d an an anfea: an as uey as UBIA as UBIIA anpea-d A ]
AN-d A-d A-dAN (D) sad118 (IN) sd[[e4-UON () Sunox
J0y-)s0q dnoa3 £q sopspe)s Lrewwng VAONYV Aem-duQ

(D) 99BJINS WROJ — PISO[O SAAD :(SPU0ISS-(9 "'T) 0OT [=N JO YISUI] BILP B I0J 4 PUE £ JO UOTIOUN] B SB UONIAIIP JoLId)sod-1oL1diue oy ur Adonuo ojdwes 11§ dqeL

211



	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Abbreviations
	Chapter Introduction
	Chapter overview
	Scope
	Research questions, aim and objectives
	Overview of the research methods
	Thesis outline

	Chapter Background
	Chapter overview
	Balance control in older adults
	The balance control system
	The sensory system
	The central nervous system
	The motor system

	Balance control in unperturbed standing
	Balance control in unperturbed gait

	Falls in older adults
	Definition
	Impact
	Risk factors and other associations
	Intrinsic risk factors
	Extrinsic risk factors


	Assessment of balance control
	Subjective assessment of balance problems
	Static balance tests
	Dynamic balance tests
	Functional balance tests

	Sleep in older adults
	Normal sleep and sleep structure
	Sleep parameters
	Age-related changes in sleep
	Assessment of sleep
	Subjective assessment of sleep
	Objective assessment of sleep


	Conclusions

	Chapter Wearable Inertial Sensors for Fall Risk Assessment in Older Adults: a Systematic Review and Meta-Analysis
	Chapter overview
	Introduction
	Methods
	Search strategy
	Paper selection and data extraction
	Statistical analysis of sensor-based features
	Meta-analysis of sensor-based features
	Quality appraisal of selected studies

	Results
	Characteristics of selected studies
	Sensor-based features and their trends
	Statistical analysis of sensor-based features
	Meta-analysis of sensor-based features
	Quality appraisal of selected studies

	Discussion
	Conclusions

	Chapter Approximate Entropy and Sample Entropy for Fall Risk Assessment in Older Adults
	Chapter overview
	Introduction
	Methods
	Dataset description
	Data processing
	Data analysis
	Effects of changing input parameters on approximate and sample entropy
	Ability of approximate and sample entropy to discriminate between non-fallers and fallers
	Behaviour of sample entropy in different testing conditions


	Results
	Effects of changing input parameters on approximate and sample entropy
	Ability of approximate and sample entropy to discriminate between non-fallers and fallers
	Participant grouping and characteristics
	Approximate entropy
	Sample entropy
	Linear measures

	Behaviour of sample entropy under the different testing conditions

	Discussion
	Conclusions

	Chapter Day-to-Day Variations in Sleep Quality and Balance in Standing: the Role of Wearable Sensors
	Chapter overview
	Introduction
	Materials and methods
	Study participants
	Equipment
	Study protocol
	Data processing
	Sleep diary measures
	Sleep activity level measures
	Heart rate variability measures
	Balance measures

	Statistical analysis

	Results
	Participantsâ•Ž baseline characteristics and stratification
	Group and Session main effects and interaction effects on balance measures
	Pairwise comparisons for balance measures

	Discussion
	Conclusions

	Chapter Day-to-Day Variations in Sleep Quality and Balance in Standing: the Role of Nonlinear Signal Analysis
	Chapter overview
	Introduction
	Materials and methods
	Study participants
	Equipment
	Study protocol
	Data processing
	Sleep diary measures
	Sleep activity level measures
	Heart rate variability measures
	Balance measures

	Statistical analysis

	Results
	Participantsâ•Ž baseline characteristics and stratification
	Group and Session main effects and interaction effects on balance measures
	Linear measures
	Sample entropy

	Pairwise comparisons for balance measures
	Linear measures
	Sample entropy


	Discussion
	Conclusions

	Chapter Conclusions and Further Work
	Chapter overview
	Scope, aim and objectives
	Research questions and answers
	Limitations and further work
	Final remarks

	References
	Appendix Source codes listings
	Appendix Supplementary materials for study 1
	Appendix Supplementary materials for study 2

