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Abstract

Wearable sensors and nonlinear signal analysis methods are empowering innovative
ways of assessing balance and fall risk in older adults. However, their adoption in
research and clinical practice creates new challenges. This thesis and the studies
herein address some of these challenges and provide some insights concerning their
optimal use.
Wearable inertial sensors offer the means for developing instrumented versions of
clinical balance assessment tools, producing objective and accurate quantitative
descriptors on the timing and execution of functional tasks. However, this research
proves that selecting an adequate combination of sensor placement, movement task
and the measured variable is crucial for discriminating subjects at a higher risk of
falling. An optimal protocol for assessing fall risk based on wearable inertial sensors
is identified and presented in this thesis.
Additionally, wearable devices offer the means for continuously monitoring physi-
ological and behavioural variables, which can be used to infer outcomes linked to
impaired balance and increased risk of falling in older adults. This research shows
that wearable devices can be used to capture day-to-day variations in sleep quan-
tity and quality, which in turn produce variations in balance. This situation can
potentially expand the prevailing paradigm in fall prevention, from the current one
focusing on the occasional assessment of risk factors and changes in the balance
control system to a new one also including the continuous monitoring and detection
of short-lived factors that might result in an imminent fall.
Finally, this research demonstrates that quantitative descriptors of nonlinear dy-
namics are more sensitive than linear measures to differences in balance control as-
sociated with ageing and risk of falling (e.g. non-fallers and fallers). The adequate
selection of the input parameters required for the calculation of nonlinear measures
is of paramount importance to achieve positive results. This thesis provides some
recommendations for the parameter selection.
Collectively, the findings of this research confirm that wearable sensors and nonlin-
ear signal analysis methods can improve and extend current tools and practices in
balance and fall risk assessment.
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Chapter 1

Introduction

1.1 Chapter overview

This chapter presents the use of wearable sensors and nonlinear signal analysis

methods for assessing balance and fall risk in older adults, pinpointing the challenges

that arise from their adoption in this field (section 1.2). Moreover, it introduces the

research questions, aims and objectives of this work (section 1.3), as well as an

overview of the research methods and tools used during this research (section 1.4).

Finally, an outline of the thesis is provided (section 1.5).

1.2 Scope

Balance is an essential ability for successfully performing the activities of daily

living. Even during seemingly simple activities such as standing and walking, com-

plex regulatory mechanisms are required to preserve postural stability through the

maintenance of the body’s centre of mass within the limits of the base of support.

Balance, a term describing the dynamics of body posture to prevent falling [1],

arises from the complex interaction of sensory, motor and control systems (i.e. the

balance control system). Briefly, visual, vestibular and proprioceptive information

is integrated and processed by the cerebellum, basal ganglia and sensorimotor cor-

tex, which in turn command the musculoskeletal system via the spinal cord and the

peripheral innervation of muscles [2].

Impairment in any of these systems can result in a deficit in balance control.

Such impairment may be due to the progressive decline of function in the course of

healthy ageing, specific pathologies or behavioural factors [3, 4]. Balance impairment

is common among adults aged 60 years and over (hereafter called older adults;
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additionally, adults aged 18-59 are called younger adults), with estimates of its

prevalence ranging between 20 and 50% [4].

Impaired balance control can ultimately result in a fall and have a profound

impact on individuals regarding their quality of life and capacity for independent

living. Falls are relatively common events among older adults. Approximately, 28

to 35% of community-dwelling older adults experience at least one fall each year

[5]. The frequency of falls increases among older adults living in long-term care

institutions, where 30 to 50% of them sustain a fall each year [6]. Older adults

suffering from neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and de-

mentia, have higher prevalence of falls than their age-matched healthy counterparts

[3]. Moreover, falls are the most frequent adverse event among hospitalised older

adults, accounting for 32% of patient safety incidents in the United Kingdom [7].

In this age group, around 40 to 60% of falls lead to injuries, with 30 to 50% being

minor injuries and at least 10% being serious injuries (e.g. hip fractures and head

injuries) [5].

The high prevalence of balance impairments in older adults and their detri-

mental individual and societal impact has moved scores of researchers and clinicians

to understand more about how balance control works, and how to quantify it at any

point in time. Consequently, many balance and fall risk assessment tools have been

developed, ranging from simple questionnaires, scales and functional mobility tests

requiring no more than a stopwatch, to complex techniques relying on force-sensing

platforms and optical motion capture systems, among other items of equipment [8].

To date, questionnaires and scales represent the preferred option in clinical settings,

since they provide an inexpensive means for assessing functional performance of ac-

tivities and movements which occur in the course of everyday life (e.g. stepping or

walking) [4]. However, these tools are subjective (e.g. questionnaires) and provide

no or limited information on the underlying cause of impaired standing balance (e.g.

non-instrumented functional tests) [9]. On the other hand, instrumented techniques

provide an objective assessment of balance control and produce large amounts of

data which could potentially shed light on the underlying causes of balance impair-

ments [8]. However, their cost and complexity of use have restricted their use in

research and top-tier clinical settings.

The rise of wearable technologies is enabling novel ways of assessing bal-

ance and the risk of falling in older adults. In particular, wearable inertial sensors

(i.e. micro-electronic devices integrating accelerometers and gyroscopes) represent

a promising addition to clinical balance assessment tools. By producing detailed

information on the timing and kinematics of functional tasks (e.g. walking), they
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have the potential to provide an objective and accurate fall risk assessment. Some

studies have made use of these sensors to produce instrumented versions of clinical

balance assessment tools [10]. However, the variety of sensor placements, movement

tasks and measured variables has precluded a consensus on their clinical relevance

[11, 12]. Therefore, a systematic investigation of these factors to determine the

optimal inertial sensor-based assessment protocol is relevant and timely.

Additionally, wearable technology is also enabling the continuous monitor-

ing of physiological and behavioural variables (e.g. heart rate and sleep patterns,

respectively), which can be used to infer health status and behaviours linked to

impaired balance and increased risk of falling [13]. It can potentially expand the

prevailing paradigm in fall prevention, from the current one focussing on the oc-

casional assessment of risk factors and changes in the balance control system (e.g.

reduction of visual acuity and lower-limb muscle strength), to a new one also includ-

ing the continuous monitoring and detection of short-lived factors that might result

in an imminent fall. Melillo et al. showed how wearable Electrocardiogram (ECG)

sensors could be used to predict imminent falls due to standing hypotension, based

on the analysis of ECG signals recorded five minutes before the subject got up from

a chair [13]. Moreover, wearable technology offers new opportunities for in-home

continuous sleep monitoring in the broader population [14, 15]. It is potentially

relevant for fall prevention, given that poor sleep quality (i.e. sleep of short du-

ration and increased fragmentation), both self-reported via paper-based scales and

objectively-measured by actigraphy, is associated with future falls in older people

[16–19]. Hence, if short-lived poor sleep quality has a similar effect on balance con-

trol, continuous sleep monitoring would be relevant for fall prevention programmes

in frail populations and sleep disturbance-inducing scenarios (e.g. hospital wards).

Therefore, the potential association between day-to-day variations in sleep quality

and balance control deficits warrants further investigation.

The dissemination of dynamical systems theory and methods within the

(bio)medical research community has inspired a new approach to the study of ageing

and balance control in older adults [20]. Since the balance control system can be

considered as a nonlinear system (i.e. reactions are not proportional to the applied

stimuli), various quantitative descriptors of nonlinear dynamics have been proposed

for the analysis of balance data (e.g. a time-series describing body sway during un-

perturbed standing). These descriptors can potentially provide further information

on the underlying balance control mechanisms in ageing and represent more sensi-

tive indicators of fall risk. Among these nonlinear measures, Approximate Entropy

(ApEn) and Sample Entropy (SampEn) have been proposed as relative measures of
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body sway regularity [8]. Relatively high entropy values suggest a more irregular

body sway produced by control mechanisms that are too random to command bal-

ance properly. Conversely, relatively low entropy values suggest a more regular body

sway produced by balance control mechanisms that are too stiff to cope with exter-

nal factors demanding a flexible response [21]. The ability of ApEn and SampEn

to discriminate between groups with different fall risk, and the adequate selection

of the input parameters needed for their computation, have not been systematically

investigated.

The ensemble of studies presented herein provides answers to some of the

most pressing questions arising from the diffusion of wearable sensors and nonlinear

signal analysis methods for balance and fall risk assessment, as well as for the study

of the association between balance and short-lived factors.

1.3 Research questions, aim and objectives

The use of wearable sensors (e.g. inertial and physiological sensors) and nonlinear

analysis methods has created unprecedented opportunities for the understanding of

balance control and its assessment at any point in time, as well as for the ambulatory

monitoring of health status and behaviours that are linked to impaired balance

and fall risk. However, the adoption of these devices and methods has raised new

questions. This research aims to identify how wearable sensors and nonlinear signal

analysis methods can be applied to improve balance and fall risk assessment in older

adults. In particular, the series of studies herein addressed the following research

questions:

Research question 1: What is the optimal wearable inertial sensor-based pro-

tocol for assessing fall risk in older adults, given the variety in sensor placements,

movement tasks and measured variables that these devices allow?

Research question 2: Are quantitative descriptors of nonlinear dynamics more

sensitive than linear measures to differences in balance control due to ageing and

fall risk? If so, what is the optimal way to apply them (e.g. signal pre-processing,

selection of input parameters)?

Research question 3: Are there any associations between day-to-day variations

in sleep quantity and quality, monitored using wearable devices, and balance control?
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Research question 4: What is the optimal method to capture variations in bal-

ance control due to day-to-day variations in sleep quantity and quality, linear or

nonlinear measures?

The primary aim of this research was to advance the knowledge and methods

related to the use of wearable sensors and nonlinear signal analysis for the assessment

of balance and fall risk, both in research and clinical settings and in ambulatory

monitoring of health status and behaviours linked to (impaired) balance.

Accordingly, the main objectives of this research are:

Objective 1: To identify the optimal wearable inertial sensor-based protocol for

assessing fall risk in older adults, including sensor placement, movement task and

measured variable(s).

Objective 2: To determine whether quantitative descriptors of nonlinear dynam-

ics are more sensitive than linear measures to differences in balance control due to

ageing and fall risk.

Objective 3: To determine whether day-to-day variations in sleep quantity and

quality, monitored using wearable devices, are associated with balance control vari-

ations.

Objective 4: To determine whether quantitative descriptors of nonlinear dynam-

ics are more sensitive than linear measures to differences in balance control due to

day-to-day variations in sleep quantity and quality.

In order to fulfil the objectives above, four different studies were designed

and performed:

Study 1: A data set of 175 wearable inertial sensor-based measures extracted from

13 studies was analysed to identify the optimal sensor-based protocol for fall risk

assessment in older adults.

Study 2: A public dataset of balance evaluations from 163 subjects was anal-

ysed to investigate whether nonlinear descriptors, in particular ApEn and SampEn,

are more sensitive than linear measures to differences in balance control due to

ageing and fall risk, and to identify the optimal way to apply them (e.g. signal

pre-processing and selection of input parameters).
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Study 3: A sample of 20 healthy subjects (age range: 21-40 years) underwent in-

home sleep monitoring and balance assessment over two consecutive days, in order

to investigate potential associations between day-to-day variations in sleep quantity

and quality and balance in unperturbed standing.

Study 4: A sample of 31 healthy subjects (age range: 22-40 years) underwent in-

home sleep monitoring and balance assessment over two consecutive days following

an extended protocol, in order to investigate the sensitivity of nonlinear measures to

differences in balance control in unperturbed standing due to day-to-day variations

in sleep quantity and quality.

The fulfilment of these objectives required the application of a broad and

diverse set of research methodologies, methods and tools for the collection and

analysis of data, which are briefly introduced in the next section.

1.4 Overview of the research methods

In study 1, the potential use of wearable inertial sensors for assessing balance and

fall risk in older adults was investigated (chapter 3). Some review articles on this

topic have revealed high heterogeneity across the included studies concerning sensor

placements, tasks and measured variables or features [11, 12]. This heterogeneity

precludes a firm conclusion on the optimal sensor-based fall risk assessment proto-

col, making the translation of this technology from research laboratories to clinical

settings difficult. This problem was tackled by performing a systematic review and

meta-analysis of the previously published evidence. A systematic review aims to

answer a research question by using explicit methods to identify, select, and criti-

cally appraise the relevant literature, in order to derive conclusions about that body

of research [22]. Systematic reviews and meta-analyses are at the top level of the

hierarchy of scientific evidence (Figure 1.1), since their outcomes represent a combi-

nation of the findings from all the studies pooled in the analysis [23]. Therefore, they

are proven tools for decision-making in healthcare (e.g. to inform health technology

assessment studies and clinical practice guidelines definition) [24].

In this research, static posturography was used extensively for assessing bal-

ance. This technique is one of the most popular in research and top-tier clinical

settings [8, 25, 26], thus more data and evidence are publicly available. Static pos-

turography entails the assessment of the body’s Centre of Mass (CoM) or Centre

of Pressure (CoP) motion during unperturbed standing [8]. CoM motion can be
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Figure 1.1: Hierarchy of evidence in (bio)medical research, where scientific evidence
is ranked according to the strength of the freedom from various biases [23]. Meta-
analysis is at the top, since this integrates the results of several independent studies.
In contrast, animal research, in-vitro studies, case reports and case series are at the
bottom. The studies presented in this thesis cover a diversity of designs, including
a systematic review and meta-analysis (study 1), a cohort study (study 2) and two
case-control studies (studies 3 and 4).

measured using inertial sensors or an optical motion capture system; CoP motion

can be measured using in-shoe pressure sensors and force platforms [8]. Moreover,

testing conditions can be manipulated to detect the deterioration of a specific sen-

sory system (e.g. standing with eyes open and eyes closed for assessing changes

in balance due to lack of vision). CoM and CoP motions are analysed using two

approaches: global and structural analysis [8, 26]. In the first approach, the bal-

ance control system is assumed to have a linear nature and thus is characterised

by general measures computed over the entire time-series, hence the name global

measures [8, 26]. Among these measures are the range or amplitude of the signal

and the mean and median frequency of its spectral components [8, 26]. In contrast,

the second approach proposes that the balance control system must be considered a

nonlinear system (i.e. its reactions are not proportional to the applied stimuli) [20].

Accordingly, nonlinear dynamic time-series analysis has been proposed as a tool

to investigate its characteristics and mechanisms. In contrast to global measures,

quantitative descriptors of nonlinear dynamics are sensitive to structural variations

within time-series, hence they are often referred to as structural measures within

the balance research community [8, 26].

In study 2, a public dataset containing CoP data for a cohort of 163 subjects
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(both young and older adults) [27] was used to investigate whether quantitative

descriptors of nonlinear dynamics are more sensitive than linear (global) measures

to differences in balance control due to ageing and fall risk (chapter 4). Namely,

ApEn and SampEn were used to quantify the regularity or self-similarity of CoP

time-series by examining them for similar epochs or subseries: more frequent, similar

subseries lead to lower entropy values. Thus low ApEn and SampEn values reflect

a high degree of regularity or self-similarity [110, 111]. A relatively irregular body

sway is produced by control mechanisms that are too random to command balance

properly. In contrast, a relatively regular body sway is produced by balance control

mechanisms that are too stiff to cope with external factors demanding a flexible

response [21]. ApEn and SampEn were selected since they are suited to the analysis

of noisy and short data (i.e. 100-5000 data points, with 1000 points used most often)

[28, 110, 111].

In studies 3 and 4, cohorts of 20 and 31 healthy young adults (i.e. 21–40 years

old, with seven subjects jointly involved in both studies), respectively, underwent

in-home sleep monitoring and balance assessment over two consecutive days, in

order to investigate the potential associations between day-to-day variations in sleep

quantity and quality and balance in unperturbed standing (chapters 5 and 6). Sleep

quality was selected as an exemplary case study to investigate the role of wearable

devices for continuously monitoring health status and behaviours that are linked

to impaired balance or fall risk. Sleep quality was chosen not only because there

is evidence of an association between chronic poor sleep quality and disturbances,

and impaired balance/fall risk [17–19], but also because an increasing number of

consumer-grade wearable devices offer the possibility to track sleep on a regular basis

[14, 15]. For balance assessment, CoP time-series were collected using a wearable

in-shoe pressure-sensing system and a force platform (studies 3 and 4, respectively).

These CoP time-series were later analysed by calculating some linear and nonlinear

measures (studies 3 and 4, respectively). A baseline sleep assessment was performed

using the Pittsburgh Sleep Quality Index (PSQI), a questionnaire that provides

a global score for sleep quality over the past month [30]. Moreover, day-to-day

variations in sleep quantity and quality were identified through a Consensus Sleep

Diary (CSD) [31] and ascertained via actigraphy and Heart Rate Variability (HRV)

analysis. Actigraphy, which is the measurement of body/limb movements based on

acceleration signals, has gained popularity among sleep researchers and clinicians

over the last years, since it allows tracking sleep under ecological conditions (e.g.

at home) and for extended periods [32]. In contrast, Polysomnography (PSG),

considered the “gold standard” for sleep studies, is generally conducted in a sleep
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Table 1.1: Summary of studies performed during this research
Study Design Wearable technology Signal analysis ap-

proach

1 Meta-analysis Inertial sensors for
fall risk assessment in
standing and gait

Linear and nonlinear

2 Cohort None Linear and nonlinear
3 Case-Control Physiological sensor for

sleep monitoring, in-
shoe pressure sensors
for balance assessment
in standing

Linear

4 Case-Control Physiological sensor for
sleep monitoring

Linear and nonlinear

laboratory and limited to one-night recordings [33, 34]. Moreover, HRV analysis

has been put forward as a tool for assessing autonomic cardiac activity during sleep,

providing clues about sleep architecture [35]. The concurrent use of actigraphy

and HRV is opening up exciting possibilities for long-term, in-home monitoring and

quantification of sleep based on wearable devices [36]. In this research, acceleration

and ECG signals during sleep were collected using a wearable physiological sensor

(described in chapter 5).

Table 1.1 presents a summary of the studies designed and performed in this

research, specifying their type of design, as well as the methods and tools used for

collecting and analysing the data.

1.5 Thesis outline

Chapter 1 presents the scope, research questions, aims and objectives of this

thesis. Moreover, it presents an overview of the research methods and tools used

during this work. Finally, it presents an outline of the thesis.

Chapter 2 introduces balance control and falls in older adults. This chapter

presents the methods and techniques used to assess balance in older adults that are

relevant to this thesis. Additionally, the chapter introduces the basic principles of

sleep and highlights the methods for sleep assessment that were used in this research.

Finally, it presents a discussion on the research gaps that were used to delineate the

questions, aim and objectives behind the studies presented in later chapters.
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Chapter 3 presents a systematic review and meta-analysis to identify the opti-

mal wearable inertial sensor-based protocol for assessing fall risk in older adults,

including sensor placement, movement task and measured variables.

Chapter 4 presents the secondary analysis of a public dataset of CoP time-series

performed to investigate whether nonlinear descriptors, in particular ApEn and

SampEn, are more sensitive than linear measures to differences in balance control

due to ageing and fall risk, as well as identifying the optimal way to apply them

(e.g. signal pre-processing, selection of input parameters).

Chapter 5 presents an experimental study conducted on a cohort of 20 healthy

subjects in order to investigate potential associations between wearable sensor-

ascertained day-to-day variations in sleep quantity and quality, and balance in un-

perturbed standing.

Chapter 6 presents an experimental study conducted on a cohort of 31 healthy

subjects in order to further investigate the associations between day-to-day varia-

tions in sleep and balance, as well as the sensitivity of nonlinear measures, in par-

ticular ApEn and SampEn, to differences in balance control due to daily variations

in sleep quantity and quality.

Chapter 7 summarises the main conclusions presented in this thesis and provides

some recommendations for further work based on the identified limitations and op-

portunities.
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Chapter 2

Background

2.1 Chapter overview

Balance emerges from the complex interaction of sensory, motor and control systems,

making up the balance control system. Section 2.2 presents the basic principles of

balance control in older adults, including a description of the systems involved in

balance during standing and walking.

Falls are one of the most prevalent and severe consequences of balance deficits

in older age. Section 2.3 presents some data concerning the prevalence of falls and

fall-related injuries in older adults, as well as their economic impact on healthcare

systems. More importantly, this section introduces the risk factors for falls in older

adults.

Various methods and techniques to assess balance in older adults have been

proposed, both non-instrumented and instrumented. Section 2.4 presents the meth-

ods that are most relevant to this research, including the use of wearable inertial

sensors and nonlinear signal analysis algorithms.

Sleep of short duration and poor quality is associated with falls in older

adults. Nevertheless, it has not received as much attention as other risk factors, even

though sleep alterations are prevalent during older age. Section 2.5 introduces the

basic principles of sleep, including a brief description of the normal sleep architecture

and the changes it experiences with ageing. In addition, this section presents the

methods and techniques for sleep assessment, emphasising on those that are relevant

for this research.

A critical appraisal of the sections above reveals some gaps in the body

of knowledge concerning the use of wearable sensors and nonlinear signal analysis

methods for the assessment of balance and fall risk in older adults. This chap-
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ter concludes with a summary of its contents, pinpointing the research gaps that

were identified and used to delineate the aims and objectives underlying the studies

presented in chapters 3 to 6 (section 2.6).

2.2 Balance control in older adults

2.2.1 The balance control system

Balance control has been defined as the control of the body’s Centre of Mass (CoM)

relative to the Base of Support (BoS) [2]. Humans’ upright posture requires an

active balance control in order to counteract the effects of gravity, which tends to

move the CoM out of the BoS. In a static condition, such as unperturbed bipedal

standing, the CoM has to be continually moved to maintain it within the limits of

the BoS (i.e. the convex polygon defined by the lateral borders of the feet, whose

area has been estimated at 829±103 cm2 in a sample of 13 healthy adults) [26, 37].

This constant movement of the CoM during standing is called postural sway, with

older adults (≥60 years old) showing generally larger postural sways than young

adults (18–59 years old) (Figure 2.1). In a dynamic condition, such as perturbed

standing and walking, the CoM can be momentarily out of the BoS, but it has to

be moved back to within the BoS, or the BoS must be enlarged to avoid falling.

Two strategies are available to the balance control system in order to adjust the

position of the CoM [38]. When, in standing, small or no perturbations exist, the

muscles around the ankle joint can be activated to produce a torque and accelerate

the CoM around the ankles in the desired direction. Otherwise, movements of some

body parts can counteract the effects of the perturbation by accelerating the CoM

in the opposite direction (for instance, by moving the arms backwards after being

pushed forwards). In more dynamic situations, the BoS can be moved by stepping

or enlarged by grabbing for hand support [2].

To activate the muscles to move the CoM in an appropriate direction or to

reconfigure the BoS if required, the Central Nervous System (CNS) requires infor-

mation on the present position and acceleration of the CoM [1]. This information

is provided by different sensory modalities and is essential for balance control. The

human balance control system is thus made up of the sensory, central nervous and

motor systems (Figure 2.2). The sensory system assesses the current position of

the CoM in relation to the BoS, as well as the overall body posture in relation to

the environment. The CNS weights the sensory information, decides on actions re-

quired to maintain or recover balance, and activates muscles accordingly. The motor

system performs the required mechanical actions and the result is measured again
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Figure 2.1: Postural sway during standing. Illustration of the continuous movement
of the body’s centre of mass (CoM) in the (A) anterior-posterior (AP) and (B)
medial-lateral (ML) axes. For comparison, the CoM excursions are shown for a
young adult (25 years old) and an older adult (70 years old). Data sourced from a
public dataset [27].

by the sensory system. This sequence of steps defines the feedback mechanisms

of balance control. Alternatively, anticipatory or feedforward control mechanisms

can also be used to maintain balance. Sensory information can be used to predict

imminent perturbations and pre-emptive action can be taken to attenuate or even

avoid a perturbation (for instance, a rugby player widening his BoS in anticipation

of an expected frontal impact with a player of the opposite team).

The building blocks of the balance control system are described more exten-

sively in the next subsections.

2.2.1.1 The sensory system

Sensory information required for balance control is generated by the vestibular,

visual, and somatosensory systems (Figure 2.2).

The vestibular system comprises the semicircular canals and the otoliths,

which are localised in the head behind the ears (that is, under the mastoid pro-

cesses). The otoliths measure linear accelerations of the head, providing informa-
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Figure 2.2: Balance control feedback loop. The sensor system provides information
to the central nervous system. The central nervous system weights and integrates
information from the different sensory modalities and generates motor responses to
activate the muscles to adapt posture or movements to maintain balance. Adapted
from the literature [2].

tion about its orientation relative to the vertical. The semicircular canals measure

angular accelerations, providing information on the rotational movements of the

head. Adequate functioning of these organs is essential in order to maintain visual

fixation during head movements and stabilise the head during movements of the

trunk and extremities [4]. The importance of the vestibular system for maintaining

vertical postures can be experimentally demonstrated by electrical stimulation of

the vestibular organs. A bipolar current applied behind the ears during standing

alters the firing rate of the peripheral nerves connecting the vestibular system to

the brain, which in turn causes an illusion of sway towards the side of the cathode,

eliciting sway in the opposite direction [39].

The visual system transforms light patterns on the retina into images of

the environment. These images provide essential information for balance control,

including: 1) an estimate of the vertical; 2) the orientation of the head relative

to the vertical; 3) the rotational movements of the head; and, 4) a spatial map of
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the environment in which objects are assessed in terms of their location, direction

and speed of movement [2, 4]. The latter is essential for anticipation of potential

balance threats. Several studies have confirmed the importance of visual information

for balance control, made apparent from the increase in postural sway observed in

standing with eyes closed compared to standing with eyes open [40].

The proprioceptive somatosensory system comprises the muscle spindles,

Golgi tendon organs, and joint and skin receptors, distributed over the whole body

[41]. These sensors provide information used to assess the orientation and movement

of body segments relative to each other [2]. Muscle spindles are the primary source

of proprioceptive information since they encode variations in muscle length and the

speed of those variations.

The exteroceptive somatosensory system comprises a set of receptors in the

soles that measure skin strain, thus providing information on the forces acting on

the feet base. The importance of these receptors for balance control can also be

experimentally demonstrated by electrical stimulation of the soles, which normally

elicits an increase in postural sway [2].

2.2.1.2 The central nervous system

At its most basic level, balance control relies on automated responses generated by

the brain stem, expressed by the simultaneous activation of muscles around several

joints [2]. However, more complex balance responses require the involvement of

higher centres of the brain to integrate different sources of sensory information and

command motor responses accordingly. The centres of the brain that have been

linked to posture control are the cerebellum, the basal ganglia and the cortex [42].

The cerebellum plays an essential role in balance control. The scientific evi-

dence suggests that it integrates sensory information concerning the body and the

environment, thus enabling fine-tuning motor activity generated to maintain and

restore balance [43]. The importance of the cerebellum for balance control has been

observed in studies on humans and other animals [44]. Patients with cerebellar le-

sions exhibit severe balance disorders, which they frequently compensate for with a

wide stance to enlarge the BoS. Recent evidence also suggests that the cerebellum

is involved in the generation of appropriate patterns of limb movements, dynamic

regulation of balance, and adaptation of posture and locomotion through practice

[44].

The basal ganglia, a group of subcortical nuclei in the brain, are primarily

involved in motor control [45]. People with basal ganglia lesions (e.g. Parkinson’s

disease patients) display resting tremor, stiffening and bradykinesia (i.e. the extreme
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slowness of movements and reflexes), which compromise their ability to cope with

balance perturbations [42]. The basal ganglia also play a part in sensory integration

and weighing [45].

The role of the cortex in balance control is still debated. Yet, there is some

evidence suggesting that the premotor and primary motor cortices play a role in

anticipatory postural adjustments [46]. Cortical activity in the left premotor area

has also been associated with balance control in unperturbed gait [47]. Impaired

balance in gait has also been observed when subjects are simultaneously performing

a demanding cognitive task, which speaks about the importance of the cortex for

balance control [2].

2.2.1.3 The motor system

Muscles and tendons are the most relevant elements of the motor part of the bal-

ance control system [2]. In unperturbed standing, a moderate but continuous and

accurate force production is required to maintain the body’s CoM over the BoS.

Yet, rapid and vigorous contractions of group muscles in the lower limbs, trunk and

even upper limbs are required to compensate for large balance perturbations. The

calf and hip abductor muscles are crucial for balance control during standing and

gait [1, 48]. Moreover, tendon stiffness largely determines the rate at which forces

are transferred to the skeleton and hence at which movements can be controlled [2].

2.2.2 Balance control in unperturbed standing

Balance control requires controlling the position of the body CoM relative to the

BoS. In unperturbed bipedal standing, the CoM lies approximately anterior to the

second sacral vertebra, and the BoS is formed by the lateral borders of the feet [26].

In this posture, the force of gravity produces a torque around the ankle joints. Active

control of balance is needed to counteract this gravitational torque and thus to avoid

falling [2]. Balance control is achieved by activating the muscles around the ankle

joint in order to produce a counteractive torque around the ankles, a mechanism

known as the ankle strategy. When the ankle muscles cannot act, hip muscles are

activated in order to move the CoM posteriorly or anteriorly, a mechanism known

as the hip strategy [1]. As a result of the interplay of the gravitational force and

the postural adjustments produced by the balance control system, the body sways

continuously, and thus the CoM moves over the BoS (Figure 2.1). In unperturbed

standing, the CoM moves over the central part of the BoS [26].

The magnitude of CoM excursions (also know as body or postural sway)
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is often used as a measure of the integrity of the balance control system and is

associated with several factors [2]. First, there are age effects on the amplitude

of postural sway: older adults generally show wider CoM excursions than young

adults. The amount and quality of sensory information available to the balance

control system at any given moment also affect body sway. The amplitude of CoM

excursions tends to increase in both young and older adults when they stand still

with Eyes Closed (EC) compared to the amplitude when they stand with Eyes

Open (EO), yet, the increase is generally more substantial for older adults [2]. This

is also the case when exteroception is perturbed, for instance, by standing on a

compliant surface (e.g. a foam mat). Figure 2.3 illustrates this phenomenon by

showing the CoM excursions for a young adult and an older adult during standing

on a rigid surface and a foam mat with EO [2]. All in all, the scientific evidence

suggests that older adults are less resilient to perturbations of any of the sensory

modalities involved in balance control. Yet, sometimes older adults show narrower

postural sways than young adults [2], possibly because in some situations older

adults manage to control balance by adopting a more rigid stance [2].

The ability to control balance is also challenged by exerting perturbations

on the CNS, particularly in older adults [2]. This phenomenon has been observed in

experiments in which the participants perform a cognitive task (e.g. counting down

from 100 by 7) while simultaneously standing still. In this situation, the performance

in the cognitive task or balance control is more affected in older adults than in young

adults [49]. This is possibly explained by the involvement of the cortex in balance

control mentioned earlier. Moreover, an association between cognitive abilities and

balance control in unperturbed standing has also been found [50]. The relationship

between cognition and balance control is more evident in older adults with dementia,

who suffer from severe losses of balance more frequently that their cognitively intact

counterparts [4].

Finally, the status of the motor system can also influence balance control in

unperturbed standing. Muscle strength determines the time that older adults can

maintain balance in an upright posture [51] and a lower precision in the production

of muscle force is associated with wider postural sways [52].

2.2.3 Balance control in unperturbed gait

During unperturbed gait, the body’s CoM is voluntarily moved forward, at which

point the BoS has to be displaced to prevent falling. This reconfiguration of the

BoS during walking is achieved by actively controlling the legs’ swing in an accurate

and coordinated manner in order to deal with variations in the environment (e.g.
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Figure 2.3: Bidirectional postural sway during bipedal standing. Body centre of
mass trajectories for a young adult (25 years old) and an older adult (70 years old)
during quiet standing (A) on a rigid surface, and (B) on a foam mat. Data sourced
from a public dataset [27].

different types of surface). Moreover, the control of balance in the Medial-Lateral

(ML) direction is more challenging than it is in unperturbed standing [2].

Several quantitative descriptors have been developed to characterise unper-

turbed gait. A first approach looks at average values of time and spatial measures of

the gait cycle and its different stages (e.g. step time, length and width) [53]. Older

adults tend to walk with wider steps than young adults. Wider steps are seemingly a

strategy older adults take to increase their BoS. However, wider steps produce wider

and faster CoM movements in the ML direction, which can jeopardise balance in

cases when environmental conditions require a narrower step width [2].

A second approach to the assessment of gait relies on the notion that un-

perturbed gait is a periodical sequence of movements with a mostly regular and
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stable behaviour. Accordingly, gait measures used in this approach quantify the

variability and stability of gait, which are then used to study how these measures

vary across age and fall risk status groups [54–56]. Older adults, particularly those

with higher fall risk, show generally more substantial variability and lower stability

in gait [54–56].

Gait variability and stability are linked to muscle strength [2]. Moreover,

narrower step widths are associated with degenerative changes in the brain in older

adults, suggesting that impaired brain connectivity prevents them from compensat-

ing their balance impairments with an increase in the BoS [2].

2.3 Falls in older adults

2.3.1 Definition

Falls have been defined by the World Health Organization as “an event which re-

sults in a person coming to rest inadvertently on the ground or floor or other lower

level [57].” Similarly, the Prevention of Falls Network Europe have defined a fall as

“an unexpected event in which the participant comes to rest on the ground, floor,

or lower level [58].” Some other definitions have been coined using more specific

terms as an attempt to differentiate falls caused by perturbations to the balance

control system (accidental falls) from those produced by specific threatening events

or medical conditions (non-accidental falls). For instance, the Kellogg International

Working Group on the prevention of falls in senior citizens defined a fall as “uninten-

tionally coming to the ground or some lower level and other than as a consequence

of sustaining a violent blow, loss of consciousness, sudden onset of paralysis as in

stroke or epileptic seizure [59].”

2.3.2 Impact

Falls are a leading cause of injury and death among older adults and a significant

public health issue [5, 7, 60]. Thirty-three per cent of the community-dwelling adults

over the age of 65 experiences a fall every year [61], with this figure increasing to

50% for those over the age of 80 [62]. The frequency of falls increases among older

adults living in long-term care institutions, where 30 to 50% of them sustain a

fall each year [6]. Older adults suffering from neurodegenerative diseases, such as

Alzheimer’s, Parkinson’s and dementia, have higher prevalence of falls than their

age-matched healthy counterparts [3]. Moreover, falls are the most frequent adverse

event among hospitalised older adults, accounting for 32% of patient safety incidents
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in the United Kingdom [7].

About 30 to 50% of falls lead to minor injuries, such as bruises or lacerations.

However, 5 to 10% of falls result in major injuries, such as fractures and Traumatic

Brain Injury (TBI) [63, 64]. Falls account for 90% of all hip fractures and 46% of

deaths in TBI patients [3, 63]. Furthermore, about 50% of older adults who fall are

unable to get up by themselves after the event. Hence, those who fall in private

spaces (e.g. their own houses) often remain on the ground for a long time, which

leads to further issues, such as dehydration, pressure sores, rhabdomyolysis and

pneumonia [65].

Besides, 40% of older adults who fall have their activities of daily living

restricted after the initial event, since they develop a marked fear of falling once

again [66]. Their restrained activity leads to a decline in physical fitness, isolation

and depression, which in turn increases the risk of further falls [66].

Falls also have a sizeable impact in terms of costs for healthcare systems

and society. In the United Kingdom alone, the annual cost to the National Health

Service (NHS) has been estimated at £2.3 billion per year [67]. Moreover, falls

lead to indirect costs, such as the loss of productivity of family members and other

caregivers. The average lost earnings due to falls could approximate £30,000 per

annum for the United Kingdom [6].

2.3.3 Risk factors and other associations

A risk factor is defined as “any attribute, characteristic or exposure of an individual

that increases the likelihood of developing a disease or injury [68].” In the context

of falls, a risk factor is the presence of a condition which, due to its direct impact on

the balance control system, leads to an increased risk of falling. On the other hand,

an association is a statistically significant correlation between a condition and a fall,

without a direct causal relationship between the associated factor and falling.

Risk factors for falls are usually categorised into intrinsic and extrinsic [3].

Intrinsic risk factors comprise age-related changes to the balance control system,

specific medical conditions and behavioural factors. Extrinsic risk factors comprise

fall hazards in and around the home, as well as inadequate footwear. Intrinsic and

extrinsic risk factors for falls are summarised in table 2.1 and described in detail

below.
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Table 2.1: Risk factors for falls in older adults [3]. Intrinsic risk factors include age-
related changes in any of the sensory, neural or motor systems involved in balance
control, some specific medical conditions and health-related behaviours. Extrin-
sic risk factors include the footwear used by the person and some elements in the
environment, especially at home.

Intrinsic risk factors
Age-related changes Sensory system

Central nervous system
Motor system

Medical conditions Neurological/Neurodegenerative problems
Cardiovascular problems
Visual problems
Osteoarthritis
Urinary incontinence
Cognitive and mental factors

Behavioural factors Use of medication
Sleep quantity and quality

Extrinsic risk factors
Home environment Poor lighting

Slippery surfaces
Loose rugs

Footwear Use of slippers

2.3.3.1 Intrinsic risk factors

Age-related changes. Balance control requires the integration of the sensory,

nervous and motor systems. Adequate functioning of these systems declines with

age, increasing fall risk. This decline in function is observed even in the absence of

disease. Many older people with a history of falls have no identifiable neurological

or musculoskeletal disease, yet perform poorly in tests of sensorimotor function [69].

Impaired sensory function produces inaccurate and conflicting sensory infor-

mation about body posture. The decline of the nervous system results in abnormal

sensory weighting and sensorimotor integration, producing imprecise corrective re-

sponses to perturbations of balance. Impaired motor function hinders the execution

of these corrective responses.

Age-related changes to the balance control system are listed and described

below.

1. Sensory system. Healthy ageing is accompanied by changes in the sensory
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subsystems involved in balance control, which are briefly described below.

Also, with ageing the nerve connections from the sensory system to the CNS

lose fibres and myelin coatings, leading to a reduction in nerve conduction,

thus slowing down feedback responses for controlling balance [70].

(a) Vestibular system. Healthy ageing is accompanied by a loss of sensors in

the vestibular organs, reflected in lower amplitudes of responses elicited

by vestibular electrical stimulation [2]. Besides, the prevalence of vestibu-

lar pathologies increases from around 50% in the 7th decade to 85% in

the 9th decade of age [71]. Vestibular disorders increase fall risk, yet it is

not yet clear whether reduced vestibular function in healthy, older adults

also has this effect [72].

(b) Visual system. A progressive decline in vision (i.e. visual acuity, depth

perception, contrast and glare sensitivity, and dark adaptation) starts

around the age of 50 [72]. Yet, after the age of 60, the improvement

in visual acuity provided by prescription lenses decreases [73]. Impaired

depth perception is considered one of the strongest risk factors for mul-

tiple falls in community-dwelling older adults [74]. The likelihood of

tripping over obstacles, such as steps, edges and cracks in the footpath

increases with a loss of contrast sensitivity [72].

(c) Proprioceptive and exteroceptive somatosensory systems. The number

and sensitivity of muscle spindles and skin receptors in the foot soles de-

crease with ageing. Older women show 3 to 4 times higher threshold for

the detection of movement in the ankle than young women [75]. Reduc-

tions in acuity of posture and movement perception of the knee, ankle

and big toe are associated with a higher fall risk [70].

2. Central nervous system. Healthy ageing is accompanied by a loss of brain

cells and neural connections, with the prefrontal cortex and the cerebellum

suffering the most and least prominent losses, respectively. These losses lead

to a decreased ability to integrate sensory information, making older adults

more sensitive to sensory perturbations [2]. These brain changes are associated

with impaired balance control and increased fall risk [49].

3. Motor system. Healthy ageing is accompanied by a progressive decrease in

muscle mass, which results in a decline of muscle strength [4]. Muscle weak-

ness of the lower limbs is highly correlated with fall risk in older adults, while

muscle strengthening exercise interventions improve balance control [4]. Mus-

cle power also decreases with age, due to changes in the contractile properties
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of muscle fibres and a decreased stiffness of tendons. As a result, older adults

are limited mainly in performing fast dynamic movement tasks, and thus often

less successful in regaining their balance after tripping over an obstacle than

young adults [2].

Medical conditions. Frail, older adults with multiple chronic illnesses experience

higher rates of falls than their more active, healthier counterparts [76]. This is so

because many falls occur as a result of specific, identifiable medical conditions. These

medical conditions are listed below.

1. Neurological and neurodegenerative problems

(a) Stroke. After a stroke, many people are unable to produce enough muscle

force in lower limbs and to coordinate the activation of different muscle

groups. Cerebrovascular accidents are common in older adults and are

associated with a two to sixfold increase in fall risk [77].

(b) Vestibular pathologies, such as Menière’s disease, produce obvious bal-

ance impairments in standing and gait. These pathologies are reflected

in larger body sways and increased BoS during standing, as well as in

unsteady gait patterns. Vestibular pathologies are also the most frequent

cause of persistent and recurrent symptoms of dizziness often reported

by older adults [77].

(c) Peripheral neuropathy can result from diabetes mellitus, alcohol abuse,

vitamin B12 deficiency and chemotherapy, among others [77]. Peripheral

neuropathy affects proprioception, thus impairing balance. Peripheral

neuropathy is associated with a higher fall risk [77].

(d) Parkinson’s disease (PD) patients show tremor, extreme slowness of move-

ments and reflexes, and muscular rigidity. Many people suffering from

PD experience frequent falls, due to their rigid posture, gait and impaired

ability to respond to external perturbations [77].

(e) Alzheimer’s disease (AD) patients exhibit an altered gait pattern and

increased gait stability. The prevalence of falls in these patients is higher

to that of their healthy age-matched counterparts [3].

2. Cardiovascular problems

(a) Orthostatic Hypotension (OH) is “a sustained reduction of systolic blood

pressure of at least 20 mmHg or diastolic blood pressure of 10 mmHg
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within 3 minutes of standing [78].” This condition affects approximately

30% of older adults living in the community and 70% of those living in

nursing homes [79]. In a study including 722 patients with uncontrolled

hypertension, older adults with OH had a higher fall risk than those

without OH [80].

(b) Atrial Fibrillation (AF). A study involving 442 patients identified AF

as an independent risk factor for nonaccidental falls in elderly patients

admitted to the emergency room with a fall complaint [81]. In this sample

of older adults, the prevalence of AF was significantly higher in those with

a non-accidental fall than in patients with an accidental fall.

3. Visual problems

(a) Cataracts, an abnormal increase in the opacity of eye lenses, are a com-

mon cause of impaired vision in older people, affecting approximately

16% of those over the age of 65 [72]. A study of 3,299 people over the

age of 45 years reported that cataracts were significantly associated with

a history of multiple falls in the previous 12 months [77].

(b) Glaucoma, a term comprising a group of diseases characterised by an

increase in intraocular pressure, produces alterations in the visual field.

Glaucoma affects approximately 3% of people over the age of 65 and has

been reported to be associated with increased fall risk in retrospective

and prospective studies [72].

4. Osteoarthritis is a degenerative disease of articular cartilage that mainly af-

fects the major joints of the lower limb, leading to structural deformity and

decreased range of motion [77]. Older people with knee and hip osteoarthri-

tis have difficulty performing the activities of daily life. Several studies have

found osteoarthritis to be an independent risk factor for falling [77].

5. Urinary incontinence is a common problem in older adults, with up to 34% of

older men and 55% of older women suffering from it [77]. Both retrospective

and prospective studies have consistently reported urinary incontinence to be

a strong risk factor for falls in community-dwelling and institutionalised older

people [77].

6. Cognitive and mental factors

(a) Dementia affects between 6 to 10% of community-dwelling older people

and has been reported as a strong risk factor for falls in several studies
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[77]. The mechanisms underlying this relationship are unknown as yet.

However, it has been suggested that the cognitive impairment associ-

ated with dementia limits the person’s ability to deal with environmental

hazards, increasing the risk of falling [77].

(b) Depression is a common mental health condition in later life, with 15% of

community-dwelling older adults reporting significant depressive symp-

toms, while in nursing homes the prevalence can be as high as 25% [77].

Older adults suffering from depression have a 7.5 times higher likelihood

of experiencing a fall than their healthy counterparts [77]. The mecha-

nisms underlying the relationship between depressive symptoms and falls

are not yet fully understood. However, it has been suggested that older

people who suffer are less physically active, which increases their fall risk

due to reduced muscle strength and coordination [76].

Medication. The use of multiple medications is significantly associated with an

increased fall risk [82]. Initially, multiple drug use was understood to be a proxy

measure for poor health. However, there is increasing evidence suggesting that falls

linked to use of medication are the result of adverse reactions to one or more drugs,

harmful drug interactions and incorrect use [82].

Besides, some studies have investigated the associations between an increased

fall risk in older adults and the use of specific drug groups [3, 82]. Among these drug

groups, psychoactive medications (including antidepressants, sedatives/hypnotics,

antipsychotics, and drugs used to treat bipolar disorder and dementia), as well as

cardiovascular medications (including anti-arrhythmics and cardiotonics) are weakly

but significantly associated with fall risk.

Sleep. Healthy ageing is accompanied by a reduced ability to initiate and maintain

sleep, resulting in sleep discontinuities (i.e. sleep fragmentation) and shorter sleep

duration [83]. Some prospective studies have found associations between sleep and

risk of falling in older adults [16–19].

A study of 2,978 community-dwelling older women found that the odds of

having 2 or more falls in the subsequent year was higher for women who slept 5

hours or less per night than for those who slept 7–8 hours per night [17]. Indexes of

sleep fragmentation (i.e. ”interrupted” sleep) were also associated with an increased

risk of falls. For instance, women with poor sleep efficiency (less than 70% of the

time in bed spent sleeping) had a 1.36-fold increased odds of falling compared with

the others [17].
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Similarly, a study of 3,101 community-dwelling older men found that the

odds of having 2 or more falls in the subsequent year was higher for men who slept

5 hours or less per night than for those who slept 7–8 hours per night [18]. Low

sleep efficiency (less than 70%) was also associated with a higher fall risk.

The association between sleep duration and fall risk was confirmed in a sys-

tematic review and meta-analysis of seven observational studies [84]. The meta-

analysis showed that the odds of having one or more falls in the past or subsequent

year was higher for older adults who had shorter sleep durations than for those who

had ”normal” sleep durations.

Additionally, a recent study of 1,071 community-dwelling older adults inves-

tigated the association between subjective sleep quality and risk of falls in older

people [19]. Multivariable analysis revealed that participants reporting worse sub-

jective sleep quality had significantly higher odds of experiencing falls during the

1-year follow-up period. This association was similarly significant in subgroup anal-

yses for older men and women.

The findings above are relevant for fall risk assessment and prevention in

older adults. Still, to the best of the author’s knowledge, sleep has not yet been

included in any fall risk assessment programme.

2.3.3.2 Extrinsic risk factors

Identifiable environmental hazards are not significant risk factors for falling among

older people as a whole. This is particularly the case for older people’s own homes

[85]. However, the interaction between an older person’s physical disabilities and

exposure to environmental stressors does appear to be central in their risk of falling.

Although falling rates are lower in healthy older people than their frailer counter-

parts, environmental hazards have a higher contribution to falls in this group.

The home environment plays an essential role within this category of risks

for falls. For example, poor lighting, slippery floor surfaces and loose rugs may

increase the risk of falls. These factors are more problematic in individuals with

visual impairment [3]. Contrast sensitivity diminishes in older age and may be

further compromised by concurrent ocular disease.

Footwear is another essential extrinsic risk factor, which affects postural sta-

bility and thus influences the incidence of accidental falls [3]. In a systematic review,

Menant et al. reported that older people who wore slippers had a higher falls risk

score than those who walked barefoot or with fastened shoes [86].
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2.4 Assessment of balance control

Multiple methods to assess balance in older adults have been suggested, ranging

from simple questionnaires and functional mobility tests requiring no more than

a stopwatch, to complex techniques relying on force-sensing platforms and optical

motion capture systems, among other items of equipment [4, 8]. These methods

are often used to identify balance impairments and their cause, to assess fall risk

and to assess the effects of interventions meant to improve balance control. The

most common clinical tests assess balance in unperturbed standing (static balance)

or balance in gait or other functional tasks (dynamic balance). In general, these

clinical tests quantify the ability to maintain balance during a particular task or the

quality of the performance of a balance task. Also, there are physiological tests that

assess the functioning of specific subsystems involved in balance in order to identify

potential causes for impaired balance [4]. This section presents the techniques and

methods to assess balance that are relevant to this research.

2.4.1 Subjective assessment of balance problems

Questionnaires are the simplest tool to assess fall risk in older adults. These tools

often explore indicators of prospective falls, such as the individual’s fear of falling

or balance confidence [87]. Fear of falling is defined as the concern that one may fall

while performing daily-life activities. High fear of falling is associated with worse

balance performance in standing and gait [2]. It can be measured with the Falls

Efficacy Scale International (FES-I), a 16-item questionnaire [88], or its shortened

7-item version [89].

A history of falls in the previous year is also a strong predictor of future

falls, thus an important indicator of impaired balance [56]. Hence, clinical fall risk

assessment often starts with the clinician asking the person about her fall history.

Another subjective tool for the assessment of balance impairments is the

Mini-Balance Evaluation Systems Test (Mini-BESTest). This test contains 14 items

in four different domains: anticipatory postural adjustment, reactive postural re-

sponse, sensorial organisation and gait stability. Each item is scored from 0 (abnor-

mal performance) to 2 (normal performance) points, producing a maximum total

score of 28 points [90].

2.4.2 Static balance tests

Static balance tests can be performed by measuring postural sway in unperturbed

standing with a motion capture system, comprising body markers that are placed
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on important body landmarks and infrared cameras that capture the movement of

these markers. Alternatively, wearable inertial sensors can be used to measure the

movement of body segments. In any case, data collected with the cameras or the

inertial sensors are used to estimate the location of the body CoM over time or

CoM excursions. This technique, known as static posturography, allows measuring

the amplitude, velocity, and acceleration of movements of the body CoM in Anterior-

Posterior (AP) and Medial-Lateral (ML) directions [25].

Most frequently, static balance is assessed by measuring Centre of Pressure

(CoP) motion in unperturbed standing. The CoP is the point of application of the

vertical ground reaction force vector and represents a weighted average of all the

pressures over the surface of the area in contact with the ground [1]. It is typically

acquired with a force-sensing platform, which produces a two-dimensional time-

series representing the CoP trajectories in the AP and ML axes. In other words, the

CoP is a bivariate distribution, jointly defined by its AP and ML coordinates [91].

To assess the balance control system in a natural state, subjects are usually

allowed to stand still in a comfortable, self-selected stance, facing towards the pos-

itive AP direction of the force platform [91]. In bidepal standing, the net CoP lies

somewhere between the two feet, depending on the load taken by each lower limb.

Yet, there are separate CoPs for each foot. If one force platform is used then, only

the net CoP is available. Two force platforms are required to quantify the CoP

changes within each foot [1].

The body CoM and CoP are independent, yet there is an interplay between

them. Figure 2.4 illustrates the difference between CoP and CoM. Briefly, the

location of the CoP under the feet is a direct reflection of the neural control of the

ankle and hip muscles in order to maintain the CoM over the BoS, as described in

subsection 2.2.1.

Several manipulations can be introduced during static posturography in order

to assess balance control under different testing conditions. Popular manipulations

are decreasing visual feedback (e.g. eye closure), decreasing proprioceptive feedback

(e.g. standing on a compliant surface) or a combination thereof [25]. Figure 2.5

shows the CoP excursions from a young adult and an older adult during unper-

turbed standing under four different surface-vision testing conditions: eyes open-

rigid surface, eyes closed-rigid surface, eyes open-foam surface and eyes closed-foam

surface.

Analysis of centre of pressure data. Filtering of the signal is usually the first

step in CoP analysis [26]. For the study of unperturbed standing, a fourth-order
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Figure 2.4: Illustration depicting the difference between centre of pressure (CoP)
and centre of mass (CoM) displacements in the anterior-posterior (AP) and medial-
lateral (ML) directions during the quiet standing posture (A) and examples of the
CoP and CoM for a young adult (25 years old) (B) and an older adult (70 years
old) (C). Data sourced from a public dataset [27].

Butterworth low-pass filter with a cut-off frequency of 5–10 Hz has been suggested,

as the components of the CoP signal frequency are below 10 Hz (with most of them

below 5 Hz) [26, 91].

Subsequently, it is a common procedure to remove the mean of the CoP

time-series [26, 91]. The rationale for such a procedure is that the mean position

of the CoP is not of interest, as it is simply dependent on the absolute position of

the subject on the force plate, which is not necessarily controlled. In mathematical

terms, given two time-series of length N , APO and MLO, which represent the CoP

displacement relative to the origin of the force plate coordinate system, the mean
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Figure 2.5: Centre of pressure excursions during quiet standing for (A) a young
adult (25 years old) and (B) an older adult (70 years old) under four different
vision-surface testing conditions: open-rigid, closed-rigid, open-foam and closed-
foam. Data sourced from a public dataset [27].
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position of the CoP is defined by the arithmetic mean of APO and MLO, given by

[91]:

AP =
1

N

N∑
n=1

APO(n) (2.1)

ML =
1

N

N∑
n=1

MLO(n) (2.2)

The AP and ML coordinates of the CoP relative to its mean position are

computed from equations 2.1 and 2.2 as follows [91]:

AP (n) = APO(n)−AP for n = 1, . . . , N (2.3)

ML(n) = MLO(n)−ML for n = 1, . . . , N (2.4)

Finally, the time-series AP and ML are characterised using a number of

quantitative descriptors or measures [91]. These measures can be categorised into

global and structural [8, 26].

Global measures

The starting point of the analysis of CoP time-series is the calculation of their basic

characteristics in the time and frequency domain. This approach assumes that

the balance control system has a linear nature and thus can be characterised by

measures computed over the entire time-series, hence the name global measures [8,

26]. Time-domain global measures include amplitude and standard deviation, while

frequency-domain measures include mean and median frequency of the signal.

The global CoP measures used in later chapters are:

1. Amplitude of displacement (AdCP) is the distance between the maximum and

minimum CoP displacement for each direction [8, 26]:

AdCPAP = max (AP )−min (AP ) (2.5)

AdCPML = max (ML)−min (ML) (2.6)

2. Standard deviation (SD) represents the dispersion of the CoP displacement

around the mean for each direction. Since the time-series AP and ML have a
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mean equal to zero, their standard deviation can be computed by [8, 26, 91]:

SDAP =

√√√√ 1

N − 1

N∑
n=1

AP (n)2 (2.7)

SDML =

√√√√ 1

N − 1

N∑
n=1

ML(n)2 (2.8)

3. Mean velocity (MV) is the average velocity of the CoP in the AP and ML di-

rections and is approximated by dividing the total length of the CoP excursion

in each direction by the duration of the recording, T [91]:

MVAP =
1

T

N−1∑
n=1

|AP (n+ 1)−AP (n)| (2.9)

MVML =
1

T

N−1∑
n=1

|ML(n+ 1)−ML(n)| (2.10)

4. Total length (DOT) quantifies the magnitude of the two-dimensional displace-

ment of the CoP over the BoS, and is approximated by the sum of the distances

between consecutive points of the CoP excursion [91]:

DOT =
N−1∑
n=1

√
[AP (n+ 1)−AP (n)]2 + [ML(n+ 1)−ML(n)]2 (2.11)

5. Total mean velocity (TMV) is the average velocity of the CoP in the AP and

ML directions and is approximated by dividing the total length of the CoP

excursion by the duration of the recording, T [91]:

TMV =
DOT

T
(2.12)

6. Area is an estimate of the dispersion of the CoP data in the AP and ML,

obtained through the computation of the area of the ellipse that contains 95%

of the CoP data points [8, 26]. The most common method to calculate this

area is through the statistical method of analysis of the principal components

suggested by Duarte et al. [26]:

Area = π × prod(2.4478×
√
svd(val)) (2.13)
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where val is a 2–by–2 matrix containing the eigenvectors of the 2–by–2 matrix

obtained from the calculation of the covariance between time-series AP and

ML, svd is an operator that returns the singular values of matrix val, and

prod is the product of the elements in the matrix [26].

The existence of age-related differences in CoP global measures has been

widely acknowledged by researchers and clinicians [8, 26, 91]. Yet, their predictive

value for fall risk is not clear as yet [92]. Therefore, the interpretation of global

measures is still open to discussion.

A limitation of global measures is that they are not sensitive to structural

variations in CoP excursions, a feature which could potentially provide more in-

sights into the mechanisms of balance control. A complementary approach is the

use of measures that are sensitive to structural variation in time-series, i.e. struc-

tural measures.

Structural measures

Nonlinear dynamic time-series analysis has been proposed as a tool to investigate

the characteristics and mechanisms of physiological systems and, in particular, of

the balance control system [8, 26, 29]. The assumption underlying this approach is

the idea that the balance control system must be considered a nonlinear system (i.e.

its reactions are not proportional to the applied stimuli) [20]. In contrast to global

measures, quantitative descriptors of nonlinear dynamics are sensitive to structural

variations within time-series, hence they are often referred to as structural measures

within the balance research community [8, 26].

Unfortunately, the estimation of nonlinear quantitative descriptors or mea-

sures usually requires very long time-series [29]. In practice, the data obtained

experimentally are often short in length. Static posturography, in particular, gener-

ally produces CoP time-series of short duration (i.e. 20-60 seconds), especially when

assessing older adults as it can be challenging for some of them to stand still for one

or more minutes [26, 188]. Therefore, nonlinear CoP time-series analysis needs the

application of nonlinear measures that can be estimated robustly using short data.

Approximate Entropy (ApEn) [110] and Sample Entropy (SampEn) [111] are

nonlinear measures well suited to the analysis of short and noisy data. Thus, they

are extensively used in later chapters for the analysis of CoP time-series. These

methods quantify the regularity or self-similarity of time-series by examining them

for similar epochs or subseries: more frequent, similar subseries lead to lower entropy

values. Thus low ApEn and SampEn values reflect a high degree of regularity or

self-similarity [110, 111]. Regarding CoP time-series analysis, relatively high entropy
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values may be indicative of balance control mechanisms that are too random to

command balance properly, whereas relatively low values may describe a balance

control that is too stiff to cope with situations that require flexibility [21].

The paragraphs below present the mathematical formulation and interpreta-

tion of ApEn and SampEn, as well as a comparison between both algorithms.

Approximate Entropy (ApEn). Given the original time-series 〈u(n)〉 with the form

〈u(n)〉 = u(1), u(2), . . . , u(N)

where N is the total number of data points (i.e. data length), ApEn is defined and

computed by the following step-by-step algorithm [28, 110]:

1. Fix m, an integer, and r, a positive real number. m represents the length

of the epochs or subseries to be compared to each other, and r specifies the

similarity tolerance for accepting matches between subseries.

2. Form a sequence of subseries X(1), X(2), . . . , X(N −m+ 1) such that:

X(i) = [u(i), . . . , u(i+m− 1)] for i = 1, . . . , N −m+ 1 (2.14)

3. For a given X(i), find:

Nm
r (i) = number of d[X(i), X(j)] ≤ ±r × SDu ∀j (2.15)

where d[X(i), X(j)] is the distance between X(i) and X(j), defined as:

d[X(i), X(j)] = max [|x(i+ k)− x(j + k)|] for k = 0, . . . ,m− 1 (2.16)

and SDu is the standard deviation of the original time-series 〈u(n)〉, i.e.,

SDu =

√√√√ 1

N − 1

N∑
n=1

[
x(n)− 1

N

N∑
n=1

x(n)

]2

(2.17)

Then, compute:

Cm
r (i) =

Nm
r (i)

N −m+ 1
(2.18)

This step is performed over all i, i.e. i = 1, . . . , N −m+ 1.

34



4. Calculate

φmr =
1

N −m+ 1

N−m+1∑
i=1

lnCm
r (i) (2.19)

5. Increase the subseries length to m+ 1 and repeat steps 2 to 4 to find φm+1
r

6. Estimate ApEn by computing

ApEn(m, r,N) = φmr − φm+1
r (2.20)

The meaning of ApEn can be intuitively explained with the aid of Figure

2.6, which shows a time-series with 30 points (this example has been adapted from

literature [28]). For m = 2, each X(i) = [x(i), x(i + 1)] is a line segment joining

every two consecutive data points [e.g., when i = 8, X(8) = [x(8), x(9)] is shown

as a thick line in Figure 2.6(A)]. Two horizontal bands I and II, each of width

2 × r × SDu, can be drawn around x(i) and x(i + 1). They are the tolerance

regions that satisfy the requirement d[X(i), X(j)] ≤ 2 × r × SDu. As shown in

Figure 2.6(A), in addition to X(8) itself, there are three other vectors satisfying

the requirement; namely X(15), X(19) and X(24). Thus Nm=2
r (i = 8) = 4 and

Cm=2
r (i = 8) = 4/(N −m + 1) = 4/29 = 0.1379. In other words, Nm=2

r (i) is the

total number of line segments (i.e. two-point subseries) formed by all the consecutive

points in the sequence that are ”close” to X(i) within the tolerance ±r × SDu

and Cm=2
r (i) is the frequency of its occurrence. Thus, φmr represents the average

frequency of all m-point patterns in the sequence being close to each other.

Similarly, when m = 3, X(i) = [x(i), x(i + 1), x(i + 2)] is a three-point

pattern formed by joining every three consecutive data points (for instance, X(8) =

[x(8), x(9), x(10)] is shown in Figure 2.6(B)) and Nm=3
r (i) is the total number of

such three-point patterns X(j) = [x(j), x(j + 1), x(j + 2)] in the time-series that

are close to X(j) within the tolerance ±r × SDu. As shown in Figure 2.6(B),

for the given example, only X(15) and X(19) satisfy the requirement, but X(24)

fails because its third element, x(26), falls outside the tolerance band III of x(10).

In this case, Cm=3
r (i) is the frequency of occurrence of three-point patterns in the

sequence that are close (within the tolerance band) to the three-point patternX(i) =

[x(i), x(i+1), x(i+2)]. Thus, φmr represents the average frequency of all m+1-point

patterns in the sequence being close to each other.

Finally, ApEn(m, r) = φmr − φm+1
r is the difference between the frequency

that all the two-point patterns in the sequence are close to each other and the fre-

quency that all the three-point patterns in the sequence are close to each other.
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Figure 2.6: Graphical interpretation of approximate entropy. Adapted from the
literature [28].

Thus, ApEn(m = 2, r) expresses the degree of new pattern generation when the

dimension m decreases from 3 to 2. A large value of ApEn means that the chance

of new pattern generation is high, so the time-series is irregular (e.g. white noise);

conversely, a small value of ApEn corresponds to a regular time-series (e.g. a peri-

odic signal) [110].

Sample Entropy (SampEn). Given the original time-series 〈u(n)〉 with the form

〈u(n)〉 = u(1), u(2), . . . , u(N)

where N is the total number of data points (i.e. data length), SampEn is defined

and computed by the following step-by-step algorithm [111]:

1. Fix m, an integer, and r, a positive real number. m represents the length

of the epochs or subseries to be compared to each other, and r specifies the

similarity tolerance for accepting matches between subseries.

2. Form a sequence of subseries X(1), X(2), . . . , X(N −m+ 1) such that:

X(i) = [u(i), . . . , u(i+m− 1)] for i = 1, . . . , N −m+ 1
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3. For a given X(i), find:

Nm
r (i) = number of d[X(i), X(j)] ≤ ±r × SDu ∀j 6= i (2.21)

where d[X(i), X(j)] is the distance between X(i) and X(j), defined as:

d[X(i), X(j)] = max [|x(i+ k)− x(j + k)|] for k = 0, . . . ,m− 1 (2.22)

and SDu is the standard deviation of the original time-series (equation 2.17).

Then compute

Bm
r (i) =

Nm
r (i)

N −m− 1
(2.23)

This step is performed over all i; i.e. i = 1, . . . , N −m.

4. Calculate

Bm
r =

1

N −m

N−m∑
i=1

Bm
r (i) (2.24)

5. Increase the subseries length to m + 1 and repeat steps 2 to 3 to find Am
r (i)

for i = 1, . . . , N −m and then compute

Am
r =

1

N −m

N−m∑
i=1

Am
r (i) (2.25)

6. Estimate of SampEn by computing

SampEn(m, r,N) = − ln
Am

r

Bm
r

(2.26)

In the above definition, Bm
r is the probability that two subseries will match

for m points, whereas Am
r is the probability that two subseries will match for m+ 1

points [111]. As a result, SampEn is the negative natural logarithm of the condi-

tional probability that two subseries within a tolerance r×SDu for m points remain

within r × SDu of each other at the next point [111]. Therefore, a lower SampEn

value also indicates more self-similarity or regularity in the time series.

Comparison between ApEn and SampEn

As mentioned above, both ApEn and SampEn quantify the regularity of time-series,

with lower entropy values reflecting a higher degree of regularity. However, a seem-

ingly minor difference in the criterion used by each algorithm to establish similarity
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between subseries leads to a substantial difference between them: ApEn counts

self-matches when comparing subseries X(i) and X(j), whereas SampEn does not.

This difference is made explicit by comparing equations 2.15 and 2.21. In practical

terms, the fact that ApEn counts self-matches inherently produces a bias towards

regularity (i.e. an inflated entropy value).

It has also been mentioned that ApEn and SampEn can be estimated on

short and noisy data. The first feature is related to the fact that both measures are

based on conditional probabilities, which require less data than joint probabilities

to produce a reliable estimate [28]. Nevertheless, SampEn shows a more consistent

behaviour than ApEn over a wider range of data lengths [111]. The second feature

is the result of allowing a tolerance range, given by ±r × SDu (equations 2.15 and

2.21), to establish similarity between subseries in order to account for the presence

of noise in the data [110, 111].

Research gaps

The appropriate selection of parametersm (subseries length), r (similarity tolerance)

and N (data length) is critical. Traditionally, for clinical data, m is to be set at 2 or

3, r is to be set between 0.1 and 0.25 times the standard deviation of the data and N

as equal to or greater than 1000 [110, 111]. However, these recommendations were

based on the analysis of cardiac and respiratory time-series, thus do not always

produce optimal results for all types of data. Therefore, an investigation of the

effects of changing parameter values on the computation of ApEn and SampEn for

specific types of data is needed. A previous study addressed this issue in the context

of spatiotemporal gait measures analysis (i.e. step length, step width and step time)

[112]. However, the issue has not been investigated systematically when dealing with

CoP time-series.

Moreover, the existence of group and testing-condition differences in ApEn

and SampEn values has been proved in previous studies. However, the predictive

value of ApEn and SampEn for fall risk has not yet been formally investigated.

2.4.3 Dynamic balance tests

Dynamic posturography assesses the response to experimentally-induced balance per-

turbations. A first approach is to use a movable support surface (e.g. a movable

force-sensing platform). Movable platforms can produce rapid and brief horizontal

and vertical translations, rotations and a combination thereof. Their use allows

measuring the subject’s ability to maintain or regain balance after perturbations.

An alternative approach is to apply external perturbations aimed directly at upper
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body segments, for example by pushing or pulling the trunk, shoulder or pelvis [25].

Since dynamic posturography was not used during this research, a detailed

description of the methods used to quantify dynamic balance is beyond the scope

of this thesis. Further information on this topic can be found in literature [25].

2.4.4 Functional balance tests

Functional balance tests measure the ability to maintain balance in tasks such

as getting up from a chair, standing, and walking. The Tinetti Balance Test or

Performance-Oriented Mobility Assessment (POMA) [113], the Berg Balance Scale

(BBS) [114, 115] and the Timed-Up-and-Go test (TUG test) [116, 117] are among

the most popular functional balance tests since they are inexpensive and straight-

forward. The outcomes of these functional balance tests are often interpreted in

relation to fall risk. For instance, the TUG test is often used to assess fall risk but

does not differentiate older fallers from non-fallers [118]. Also for the other tests,

there is no or minimal evidence for a predictive value concerning fall risk [119].

Currently, instrumented versions of functional balance tests are developed

and used with the aim of obtaining objective and precise results and achieving a

higher sensitivity to subtle balance impairments [12]. Wearable inertial sensors (e.g.

micro-electronic devices integrating accelerometers and gyroscopes) are among the

most used sensors since they provide kinematic data of movements in a functional

task such as walking and getting up from a chair (Figure 2.7) [10]. However, some

reviews on the topic have acknowledged an issue in the variety of sensor placements,

functional tasks and measured variables that have been used in previous studies

[11, 12]. This heterogeneity hinders a consensus on the optimal wearable inertial

sensor-based protocol for assessing fall risk in older adults.

2.5 Sleep in older adults

2.5.1 Normal sleep and sleep structure

Sleep is a reversible behavioural state of perceptual disengagement from and unre-

sponsiveness to the environment, accompanied by alternating cycles of physiological

processes [120].

Sleep is classified into Non-Rapid Eye Movement (NREM) and Rapid Eye

Movement (REM) sleep, with NREM further divided into stages N1 to N3. NREM

and REM sleep occur in alternating cycles, each lasting approximately 90 to 110

minutes in healthy adults, with approximately 4 to 6 cycles during an average 6 to
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Figure 2.7: Acceleration signals from a lower leg during gait. These signals were
recorded with the accelerometer embedded in a smartphone (Samsung Galaxy Core
Prime) while the subject walked 3-metre long straight course, turned 180 degrees
and walked back. The cyclical nature of gait is apparent from the anterior-posterior
and vertical acceleration signals. AP anterior-posterior axis, ML medial-lateral axis,
VT vertical axis. Data collected by the author.

8 hour sleep period [121]. However, these timings are dependent on many factors,

such as age, use of medication, and physical and mental health.

In healthy young adults, NREM sleep accounts for 75 to 90% of sleep time,

while REM sleep accounts for 10 to 25% of sleep time. NREM sleep comprises 3

to 5% in stage N1, 50 to 60% in stage N2 and 10 to 20% in stage N3. Stages N1

and N2 are known as light sleep and stage N3 as deep sleep or Slow Wave Sleep

(SWS). Cardiovascular activity is at a 24-h low in deep sleep, whereas there is little

difference between REM sleep and wakefulness.

Sleep stages are often interrupted by micro-arousals (1.5 to 3 seconds of

increased physiological activity) and short awakenings (shorter than 15 seconds).

2.5.2 Sleep parameters

Some parameters concerning the quantity and quality of sleep are usually included

in a sleep study report [122]:

1. Sleep Onset Latency (SOL), or sleep latency, is defined as the duration of time

between the moment a person attempts to sleep until he/she falls asleep. SOL

reflects the person’s ability to initiate sleep.

2. Wake After Sleep Onset (WASO) is defined as the cumulative duration of all
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Table 2.2: Summary of sleep parameters usually reported in a sleep study [122]
Parameter Units Definition Interpretation

SOL minutes Duration of time between the
moment a person attempts to
sleep until he/she falls asleep

Ability to initiate sleep

WASO minutes Cumulative duration of all pe-
riods of wakefulness occurring
after sleep onset

Ability to maintain
sleep. A more inter-
rupted or fragmented
sleep is deemed of poor
quality

TST hours Total amount of sleep time,
from sleep onset to sleep off-
set, but excluding WASO

Sleep duration or quan-
tity

SE % Percentage of total time in
bed spent in sleep

A proxy measure of
sleep quantity and qual-
ity

SOL sleep onset latency, WASO wake after sleep onset, TST total sleep time, SE sleep
efficiency

periods of wakefulness occurring after sleep onset. WASO is a measure of sleep

fragmentation and reflects the person’s ability to maintain sleep.

3. Total Sleep Time (TST) is the total amount of sleep time, from sleep onset to

sleep offset, but excluding WASO.

4. Sleep Efficiency (SE) refers to the percentage of total time in bed spent in

sleep. It is a combined reflection of the ability to initiate and maintain sleep.

2.5.3 Age-related changes in sleep

Healthy ageing is accompanied by a reduced ability to initiate and maintain sleep.

Some of the changes in sleep architecture that are observed from the fifth decade

and beyond are [83]:

1. earlier bedtimes and rise times

2. longer sleep latency (i.e.SOL)

3. shorter sleep duration (i.e. TST)

4. increased sleep fragmentation (i.e. less consolidated sleep with more awaken-

ings, arousals, or transitions to lighter sleep stages)

41



5. more fragile sleep (i.e. higher likelihood of being woken by external sensory

stimuli)

6. reduced amount of deeper sleep

7. increased time spent in lighter NREM stages 1 and 2

8. shorter and fewer NREM-REM sleep cycles

9. increased time spent awake throughout the night

Furthermore, sleep disorders are especially prominent in later life [83].

2.5.4 Assessment of sleep

2.5.4.1 Subjective assessment of sleep

The Pittsburgh Sleep Quality Index (PSQI) is a self-reported 19-item questionnaire

that assesses sleep quality over the past 1-month time interval [30]. This instru-

ment measures several aspects of sleep, producing seven component scores and one

composite score. The component scores consist of subjective sleep quality, sleep

latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping

medication and daytime dysfunction. Each item is weighted on a 0 to 3 interval

scale. The global PSQI score is then calculated by totalling the seven component

scores, providing an overall score ranging from 0 to 21, where lower scores denote a

healthier sleep quality. A global PSQI greater than five is interpreted as indicative

of poor sleep [30].

A sleep diary provides the means to record daily sleep habits and disturbances

over several days (e.g. bed and wake-up times, number and length of awakenings

during the night). A standardised sleep diary, called the Consensus Sleep Diary

(CSD), has been proposed by collecting, analysing and compiling sleep diaries from

25 sleep experts [31]. The information reported by the user in the sleep diary allows

to estimate traditional sleep parameters (e.g. SOL, WASO and TST), as well as a

score for subjective sleep quality, for each night.

The Epworth sleepiness scale (ESS) is a questionnaire designed to measure

daytime sleepiness [123]. The responder is asked to score his or her propensity to fall

asleep in eight situations involving different levels of stimulation (e.g. sitting and

reading, watching TV and sitting and talking to someone). Significant differences

in ESS scores have been observed between controls and patients suffering from sleep

disorders characterised by excessive daytime sleepiness (e.g. narcolepsy and hyper-

somnia) [123]. However, ESS scores have been found to be uncorrelated with all
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sleep parameters but one (namely, SOL) [123]. Therefore, this scale was discarded

for the studies herein, since they focussed on sleep quantity and quality at night,

not on daytime sleepiness.

2.5.4.2 Objective assessment of sleep

Polysomnography. Polysomnography (PSG) is the “gold standard” modality for

sleep studies. As a minimum, it incorporates Electroencephalogram (EEG), Elec-

trooculogram (EOG) and submentalis Electromyogram (EMG) recordings. These

signals are then used to label 30-sec epochs into sleep stages (NREM stages N1 to

N3 and REM) from which all other sleep parameters are calculated [33, 34]. Other

physiological variables can be collected if needed (e.g., respiration, heart rate, tibialis

muscle movement, oximetry).

Sleeping naturally while wearing a large number of sensors and wires is vir-

tually impossible. Moreover, PSG studies are expensive and require specialised

facilities and staff to score the data. There are many home sleep recording systems

on the market which aim to reduce the financial cost per patient and reach a larger

population. However, the patient has to place the sensors in the correct positions

without the guidance of a specialist, which often leads to poor-quality data [121].

Actigraphy. Actigraphs are electronic devices that can measure and store limb

or body accelerations over periods lasting from a few hours to days or even weeks.

The data collected are displayed on a computer and analysed in wake-sleep based

on activity levels for individual epochs. Actigraphy is thus based on the fact that

during sleep little or no movement occurs, whereas during wake an increase in move-

ment frequency and amplitude is observed. Actigraphy is much less expensive and

unobtrusive than PSG [32].

Modern actigraphs are the size of a wristwatch and collect digitised data.

Physical movement is generally sampled several times per second and stored in 1-

minute epochs. The three primary ways in which signals can be digitised are the

threshold or Zero Crossing Mode (ZCM), Time Above Threshold (TAT) mode and

Proportional Integrating Mode (PIM) [124].

In the ZCM, the signal voltage from the accelerometer is compared with the

reference voltage, and each zero crossing generates an activity count; each movement

above the reference signal generates 2 zero crossings since the signal eventually

recedes below the threshold. The frequency of zero crossings is measured for every

epoch.

In the TAT mode, the signal voltage is compared with the reference voltage
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Figure 2.8: Electrocardiogram with highlighted R-R intervals. Data collected by
the author.

and a count is generated and stored in memory every 10th of a second while the

signal voltage remains above the threshold. The TAT mode is mostly used for

daytime activity monitoring because it is thought to be indicative of the vigour of

measured activity.

In the PIM, the area under the rectified analogue signal is measured for each

epoch, and the accumulated count is stored. The PIM measures movement intensity

by summing the deviations from 0 V every 10th second.

For clinical use, once the data are digitised, computer algorithms automat-

ically score wake and sleep and provide the user with summary statistics. These

computer algorithms generally supply information on sleep latency, sleep duration,

sleep efficiency, wake after sleep onset time, number of awakenings and time between

awakenings [32].

Heart rate variability analysis. Heart Rate Variability (HRV) analysis has

been proposed as a tool to explore autonomic cardiac modulation during sleep [35].

HRV is the variation over time of the interval between consecutive heartbeats (or

similarly in the instantaneous Heart Rate (HR)) due to autonomic neural regulation

of the heart and the circulatory system (Figure 2.8).

HRV is controlled by the activity of the Autonomic Nervous System (ANS).

The ANS connects the body’s nervous system to the main physiological systems,

regulating virtually all of the unconscious mechanisms of the human body, includ-

ing the heart beat [125]. The ANS has two components: the sympathetic and the

parasympathetic branches. Sympathetic stimulation causes an increase in HR by

increasing the firing rate of pacemaker cells in the hearts sino-atrial node. Parasym-

pathetic activity decreases the firing rate of pacemaker cells and the HR, providing a

regulatory balance in physiological autonomic function. The individual regular con-
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tributions from sympathetic and parasympathetic autonomic activity regulate the

heartbeat intervals (R-R intervals) of the QRS complex in the Electrocardiogram

(ECG) (Figure 2.9), at distinguishable frequencies. Sympathetic activity is related

to the low-frequency range (0.04-0.15 Hz) while parasympathetic activity is related

to the high-frequency range (0.15-0.4 Hz) of modulation frequencies of the HR. This

difference in frequency ranges allows HRV analysis to separate sympathetic and

parasympathetic contributions evident [126].

Figure 2.9: ECG waveform. Image marked as public domain.

HRV analysis is the ability to assess overall cardiac health and the state of

ANS responsible for regulating cardiac activity [126].

HRV is a useful signal for understanding the status of the ANS. The balanc-

ing action of the sympathetic nervous system and parasympathetic nervous system

branches of the ANS controls the HR. Increased sympathetic activity or diminished

parasympathetic activity results in cardio-acceleration. Conversely, a low sympa-

thetic activity or a high parasympathetic activity causes cardio-deceleration [126].

Therefore, the degree of variability in the HR provides information about the func-

tioning of the nervous control on the HR.

A higher parasympathetic tone has been observed during NREM, particularly

during deep sleep; in contrast, a higher sympathetic tone has been observed during

wake intervals, REM and sleep arousals [35].

Variations in HR are characterised using several quantitative descriptors or

measures, which are classified in three different categories: time-domain, frequency-

domain analysis and nonlinear analysis [126]. A summary of the HRV measures

used in this research is presented in Table 2.3. These measures were selected based

on the relevance they have for sleep studies [35].

Time-domain measures are the simplest to calculate, thus require less compu-
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tational power. Yet, they do not provide relevant information for sleep studies since

they lack the ability to differentiate between sympathetic and para-sympathetic

activity contributions to HRV. Therefore, they are not included in this thesis.

Frequency-domain measures are obtained from the spectral analysis of the

sequence of NN intervals in the ECG recording. NN intervals are normal R-R

intervals, thus excluding abnormal R-R intervals such as those produced by ectopic

beats. Two main spectral components are distinguished in a spectrum calculated

from ECG recordings in sleep studies: Low-Frequency (LF) and High-Frequency

(HF) components. Measurement of LF and HF components is usually made in

absolute values of power (ms2), yet can also be measured in normalised units (n.u.).

The details for the computation of these normalised measures can be found in Table

2.3. HF power describes the parasympathetic activity, whereas LF power describes

both parasympathetic and sympathetic activity. Thus, the relationship between

both branches usually is explored with the normalised frequency values and the

LF/HF ratio. Broadly speaking, HRV analyses also include the Very Low-Frequency

(VLF) component (i.e. <0.04 Hz) [127]. However, its association with autonomic

activity is much less understood, especially in the context of sleep studies [35, 127].

Therefore, this component was not included in the studies herein. Wavelet-based

methods for HRV analysis have been put forward as an alternative to overcome

the limitations of conventional methods of spectral analysis based on the Fourier

transform when dealing with non-stationary time-series [126]. Unfortunately, the

relationship between sleep stages and wavelet-based features is not well understood

as yet [35]. Alternatively, trend removal may be applied to the R-R interval time-

series without affecting the components of interest for sleep studies (i.e. LF and

HF) [127].

Nonlinear measures in HRV analyses are drawn from recent developments

in the theory of nonlinear dynamics. It is generally accepted that these nonlinear

techniques can improve the characterisation of biosignals. Two of these nonlinear

measures that are of particular interest for HRV analysis in sleep studies are ApEn

and SampEn, which have been described earlier. These entropy measures represent

an index of complexity in the cardiac signal. An increase in complexity (i.e., an

increase in the entropy measure) is associated with parasympathetic modulation,

and its decrease is interpreted as the result of an increased sympathetic tone.
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Table 2.3: Selected heart rate variability measures. HF power describes parasympa-
thetic activity, whereas LF power describes both parasympathetic and sympathetic
activity. The relationship between both branches is explored with the LF/HF ra-
tio. Entropy measures represent an index of complexity in the cardiac signal. An
increase in entropy is associated with parasympathetic modulation and a decrease
with an increased sympathetic tone [126].

Frequency-domain measures
LF ms2 Power in the low-frequency range (0.04–0.15 Hz)

LF norm n.u.
LF power in normalised units
LF norm = LF/(LF + HF) x 100

HF ms2 Power in the high-frequency range (0.15–0.4 Hz)

HF norm n.u.
HF power in normalised
LF norm = HF/(LF + HF) x 100

LF/HF Ratio LF [ms2] / HF [ms2]

Nonlinear measures
ApEn A measure of the regularity in the NN time-series
SampEn An improved measure of the regularity in the NN time-series

ApEn approximate entropy, SampEn sample entropy

2.6 Conclusions

This chapter has introduced balance control and falls in older adults (sections 2.2

and 2.3). Balance arises from the dynamic interaction of the sensory, motor and

control systems. Impairment in any of these systems produces a deficit in balance

control, which in turn increases the risk of falling. Falls are one of the most common

and severe consequences of balance deficits in older age, with one in three adults

over the age of 65 experiencing a fall each year.

Falls are associated with several risk factors, which are usually classified into

two categories: intrinsic and extrinsic. Intrinsic risk factors comprise age-related

changes to the balance control system (i.e. a decline in sensory and neuromotor

control functions), some medical conditions and behavioural factors (e.g. multiple

medications and short sleep duration). Extrinsic risk factors refer to environmental

hazards, such as slippery surfaces and inadequate footwear.

Balance assessment is an essential component of fall prevention in older

adults. This chapter has also introduced the methods and techniques for assess-

ing balance control, emphasising those that are relevant to this thesis (section 2.4).

Balance in standing is usually assessed via posturography; that is, the measurement

of the body’s CoP motion using a force-sensing platform or other instrumented sur-

face (e.g. pressure-sensing insoles). Besides, balance in gait is usually performed
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using an optical camera system. Furthermore, the diffusion of wearable inertial

sensors is enabling novel ways of assessing balance in standing and gait.

A critical reading of the background literature in the sections above revealed

some research gaps regarding the assessment of balance and fall risk in older adults.

The first research gap concerns the use of wearable inertial sensors for instrumenting

traditional functional balance tests (e.g. TUG test). These sensors can potentially

provide an objective and accurate fall risk assessment, by producing detailed infor-

mation on the timing and execution of functional tasks (e.g. standing and walking).

However, some reviews on the topic have acknowledged an issue in the variety of

sensor placements, functional tasks and measured variables that have been used in

previous studies. This heterogeneity hinders a consensus on the optimal wearable

inertial sensor-based protocol for assessing fall risk in older adults. Therefore, the

identification of an optimal protocol requires further research. This gap motivated

the study presented in chapter 3.

The second research gap concerns the methods used to characterise pos-

turography data, specially CoP time-series. For decades, global measures of CoP

displacement have been used (e.g. total length, amplitude and standard deviation),

which represents a linear analysis of the data. However, the diffusion of the dynam-

ical systems theory within the biomedical research community has inspired the use

of various quantitative descriptors of nonlinear dynamics. Among them, ApEn and

SampEn have been proposed as a measure of body sway (ir)regularity. However,

their ability to discriminate between groups with different fall risk and the suitable

selection of the input parameters needed for their computation, have not yet been

formally investigated. This gap motivated the study presented in chapter 4.

The third research gap is more concerned with the philosophy underlying

current practices in fall risk assessment and prevention. As seen in this chapter,

these practices focus on the occasional assessment of risk factors and changes in

the balance control system that may lead to a fall (e.g. limited functional mobility

and reduced visual acuity). Nevertheless, the dissemination of wearable technology

is enabling the continuous monitoring of physiological and behavioural variables

(e.g. heart rate and sleep patterns, respectively), which can be potentially used to

infer health status and behaviours linked to impaired balance and increased risk

of falling. Hence, these technologies could drive a shift to a new approach to fall

prevention in vulnerable populations, i.e. one which includes the continuous mon-

itoring and detection of short-lived factors that might result in an imminent fall.

In particular, wearable technology offers new opportunities for in-home continuous

sleep monitoring in a wider population (e.g. older adults living in long-term care
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institutions). It is potentially relevant for fall prevention, given that chronic sleep

disturbances and poor sleep quality are associated with future falls in older people.

Hence, if short-lived sleep disturbances and poor sleep quality have a similar effect

on balance control, continuous sleep monitoring would be relevant for fall preven-

tion programmes in frail populations and sleep disturbance-inducing scenarios (e.g.

hospital wards). Therefore, the potential association between day-to-day variations

in sleep quality and balance control deficits warrants investigation. This gap moti-

vated the study presented in chapter 5. Accordingly, the present chapter has also

introduced the basic principles of sleep and its assessment, highlighting those that

are relevant to this thesis (section 2.5).

The next chapters present the studies performed to address the above re-

search gaps. As an ensemble, these studies aimed to expand the body of knowledge

regarding the use of wearable sensors and nonlinear signal analysis methods for

balance and fall risk assessment in older adults.
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Chapter 3

Wearable Inertial Sensors for

Fall Risk Assessment in Older

Adults: a Systematic Review

and Meta-Analysis

3.1 Chapter overview

Wearable inertial sensors can potentially provide an objective and accurate fall risk

assessment based on detailed information on the timing and execution of functional

tasks (e.g. standing and walking). However, some reviews on the topic have acknowl-

edged an issue in the variety of sensor placements, movement tasks and measured

variables that have been used in previous studies. This heterogeneity hinders a con-

sensus on the optimal wearable inertial sensor-based protocol for assessing fall risk

in older adults. Therefore, the identification of an optimal protocol requires further

research. This chapter presents a systematic review and meta-analysis performed

in order to identify such a protocol, including optimal sensor placement, task and

measured variables or features.

3.2 Introduction

Wearable inertial sensors are microelectronic devices that integrate accelerometers

and gyroscopes in a small unit, enabling the continuous quantification of movements

of the user during the execution of functional tasks (e.g. walking). More specifically,

these sensors measure the linear acceleration and angular velocity of body segments,
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from which a vast number of quantitative descriptors, or features, can be computed.

In the last two decades, the use of wearable inertial sensors for fall risk

assessment has been on the rise. Researchers have used these sensors with the

aim of producing instrumented functional balance tests [10, 12]. In their studies,

subjects were asked to perform one or more movement tasks while wearing one or

more inertial sensors on different body landmarks. Moreover, subjects at high risk of

falling were identified based on retrospective fall history (i.e. self-reported previous

falls), prospective fall occurrence, clinical assessment (e.g. a Timed-Up-and-Go test

(TUG test)) or a combination thereof. This information and the features extracted

from the recorded signals were later used to develop mathematical or statistical

models for predicting future fall occurrence or classifying subjects into fall risk

categories.

Some reviews on the topic have revealed a considerable heterogeneity between

studies regarding the sensor placement, movement task, features and models used

for the development of sensor-based fall risk assessment tools [10–12]. This hetero-

geneity precludes any firm conclusions on the optimal wearable inertial sensor-based

protocol for assessing fall risk.

This chapter presents an original systematic review and meta-analysis per-

formed to synthesise the empirical evidence related to the use of inertial sensors for

fall risk assessment and prediction in generally healthy older adults (≥60 years old

with no medical history of neurological, neurodegenerative, cognitive or motor prob-

lems), in order to identify the optimal combination of sensor placement, movement

task and measured variables or features. The identification of such a protocol should

contribute to closing the gap between research studies and clinical applications, by

enabling the evidence-based design of new studies and real-life applications. The

contents of this chapter have been published elsewhere [128].

3.3 Methods

3.3.1 Search strategy

Potentially relevant articles were identified through a literature search in PubMed,

EMBASE, IEEEXplore, Cochrane Central Register of Controlled Trials (CENTRAL),

ClinicalTrials.gov and the World Health Organization (WHO) International Clinical

Trials Registry Platform electronic databases.

Articles were searched using Boolean combinations of the following keywords

or equivalent Medical Subject Heading (MeSH) terms: accidental falls AND (risk

assessment OR prediction) AND (sensor OR device OR wearable OR technology).
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Additional papers were identified from the references of relevant review ar-

ticles previously published [10, 11, 54].

Papers were considered suitable for this review if they met these inclusion

criteria:

1. Original peer-reviewed journal articles published between January 2006 and

December 2016;

2. Studies in which the subjects were labelled as fallers and non-fallers (alterna-

tively, high and low fall-risk), based on retrospective fall history, prospective

fall occurrence, clinical assessment (e.g. TUG test) or a combination thereof;

3. A sample of at least ten subjects with an average age of 60 or over;

4. Body-worn inertial sensors were used to characterise a functional task (e.g.

walking) by extracting features from the recorded signals, and;

5. Group statistics, specifically mean and standard deviation, for sensor-based

features, as well as the statistical significance level for the difference between

groups were reported.

Papers were excluded if they reported studies focused on patients suffering

from neurological, neurodegenerative, cognitive or motor problems (e.g. stroke,

Parkinson’s disease, dementia and osteoarthritis, respectively), since this review

was focussed on generally healthy older adults.

3.3.2 Paper selection and data extraction

Database records responding to the selected keywords were identified following the

search strategy described above. After excluding duplicates (i.e. titles indexed

in more than one database), studies were shortlisted based on the inclusion and

exclusion criteria by screening titles, abstracts and full-texts.

Subsequently, relevant data were extracted from the shortlisted studies; namely:

first author and year of publication; number of participants and proportion of fallers;

subject labelling method with details (e.g. the duration of follow-up period when

prospective fall occurrence was used); type, quantity and placement of inertial sen-

sors; functional task or test characterised using sensor-based features (e.g. walking

or the TUG test, respectively).

Finally, a listing of features reported in the shortlisted studies was compiled

to enable further statistical analysis. For each feature the following items were

included: name and category (i.e. linear acceleration, angular velocity, temporal,
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spatial, frequency, or nonlinear features [10]), units, mean and standard deviation for

each group (i.e. on-fallers and fallers), and trend of the difference between groups.

A trend was represented with two arrows, ↓↓ (or ↑↑), if the mean value of a feature

significantly (p-value<0.05) decreased (increased) for fallers compared to the mean

value for non-fallers. Similarly, one arrow, ↓ (or ↑), was used if the mean value of

a feature non-significantly (p-value>.05) decreased (increased) for fallers compared

to the mean value for non-fallers. Sensor placement and functional task for each

feature were also included in the listing.

3.3.3 Statistical analysis of sensor-based features

Standard methods for the analysis of categorical data were applied on the fea-

ture listing with two objectives [129, 130]: 1) to investigate the level of association

between trend significance status (i.e. non-significant or significant) and feature

category, sensor placement and task, and; 2) to identify optimal triads of feature

category, sensor placement and task.

Firstly, Pearson’s chi-squared tests were performed in order to prove the

association between trend significance status (dependent variable) and feature cat-

egory, sensor placement and task (covariates). In other words, the aim was to prove

that significant feature trends are dependent on feature category, sensor placement

and task. A p-value<0.05 was accepted as statistically significant evidence of a

nonrandom association. Moreover, Pearson’s Contingency (C) and Cramer’s (V)

coefficients were computed in order to quantify the level of association between

each covariate and trend significance status. A C (V) coefficient of 0.1 (0.1), 0.287

(0.3) and 0.447 (0.5) was considered as evidence of small, medium and large level of

association, respectively [131].

Secondly, significant triads of feature category, sensor placement and task

were identified as follows. A three-way contingency table containing the covariates

above was created using the subset of features containing only significant trends.

Pearson’s residuals were computed for each triad in the table and used to charac-

terise the strength (value) and nature (sign) of association for each triad. Large

positive residuals are obtained when the observed frequency of significant features

is substantially higher than the expected frequency, which would suggest signifi-

cant features were more likely to arise from that specific triad. Conversely, large

negative residuals are obtained when the observed frequency of significant features

is substantially lower than the expected, which would suggest significant features

were less likely to arise from that specific triad. For interpretability, the following

representation was used to report the results (instead of numerical values): two ar-
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rows, ↓↓ (or ↑↑), if the residuals were smaller (or larger) than -4 (or +4), revealing

strong associations; one arrow, ↓ (or ↑), if the residuals were smaller (or larger)

than -2 (or +2), revealing medium-associations, and; a dash, -, for residuals greater

than or equal to -2 but smaller than or equal to +2, revealing weak associations.

These thresholds are customarily used in the interpretation of Pearson residuals as

a measure of the strength of association [130]. A Pearson’s chi-squared test of inde-

pendence was performed to confirm the statistical significance of those associations

(p-value<0.05).

The software R version 3.2.3 was used to perform this analysis. The source

code can be found in Appendix A.

3.3.4 Meta-analysis of sensor-based features

A meta-analysis of the features extracted from the shortlisted studies was conducted

to calculate the pooled difference between groups (fallers - non-fallers), as well as

the statistical significance of these differences. Features were included in the meta-

analysis if [the feature was reported in at least two studies] AND [the feature was

computed for the same task/subtask] AND [the sensor placement and type were the

same across studies OR feature was independent of the sensor placement and type

(e.g. number of steps or stride time)]. Standard methods for combining and report-

ing continuous outcomes were employed to pool the features [132]: pooled sample

size, Mean Difference (MD) with Confidence Interval at 95% (CI), and statistical

significance level (p-value). MD and CI were considered significant if the p-value <

0.05.

Random or fixed effect models were selected based on the heterogeneity be-

tween studies, assessed using the Q-statistic (computed via a Chi-squared test) and

the I2 statistic. A significant Q-statistic is indicative of dissimilar effect sizes across

studies; a threshold significance level of 0.1 was selected as statistically significant

value as suggested in [132]. The I2 statistic indicates the percentage of the vari-

ability in effect sizes due to heterogeneity across studies, and not due to sampling

error within studies. An I2 value from 30% to 60%, 50% to 90% and 75% to 100%

represent moderate, substantial and considerable heterogeneity, respectively.

The R package meta 4.8-4 was used to perform the meta-analysis [133]. The

default options for both fixed and random effects models were used; i.e. the inverse

variance method for study weighting and the DerSimonian-Laird estimate for the

random effects model [134]. The source code can be found in Appendix A.
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3.3.5 Quality appraisal of selected studies

The methodological quality of the selected studies was assessed using the checklist

provided in Appendix B. This checklist was adapted from [135]. It contains 15

questions that are scored yes or no/unclear. These questions are organised in 3

dimensions:

• Reporting (11 items) which assessed whether the information provided in the

paper was clear and sufficient to replicate the study and appraise its validity.

• External validity (2 items) which addressed the extent to which the findings

of the study could be generalised to a broader population and context.

• Internal validity (2 items) which assessed whether the evidence at hand sug-

gests that the study was designed and conducted to minimise bias and con-

founding.

A summary of the main findings is provided below in an attempt to reveal

the methodological issues that future studies in the field should address in order to

produce more robust scientific evidence.

3.4 Results

Based on the search strategy described above, 481 records were identified through

a database search and 18 through a linear search. After removing 51 duplicates,

448 titles were screened by title and 257 were excluded as they did not meet the

inclusion/exclusion criteria. From the remaining 191 titles, 127 were removed af-

ter screening the abstract against inclusion/exclusion criteria, which left 64 papers

to be read in full-text. After reading the full-texts, 51 were excluded due to the

inclusion/exclusion criteria. Therefore, 13 studies were shortlisted for this review

[136–148]. A flowchart of the study selection process is shown in Figure 3.1.

Importantly, there were some papers among the excluded ones which are

noteworthy for the novelty of their approach to the problem, but that failed to meet

inclusion criterion 5. In particular, the studies by Toebes et al. [55] and Riva et

al. [149] found significant associations between fall risk and nonlinear descriptors

of gait dynamics (e.g. Multi-scale Entropy (MSE) and Recurrence Quantification

Analysis (RQA) measures). Moreover, Rispens et al. [150] and van Schooten et

al. [56, 151] found significant associations between fall risk and ambulatory gait

measures of quantity and quality.
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Figure 3.1: Flowchart of study selection. The 13 selected papers were original
peer-reviewed journal articles published between January 2006 and December 2016.
These papers reported studies with a minimum sample size of 10 subjects (mean
age ≥ 60 years), who were labelled as fallers and non-fallers based on retrospective
fall history, prospective fall occurrence, clinical assessment or a combination thereof.
Body-worn inertial sensors were used to characterise a functional task (e.g. walking),
and the mean and standard deviation for each sensor-based measure was reported.
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3.4.1 Characteristics of selected studies

The 13 studies enrolled from 17 to 349 subjects each (mean ± standard deviation:

93.15 ± 86.18 subjects), for a cumulative population of 1,211. Overall, the studies

included 565 faller subjects, i.e. 47% of the cumulative population. However, this

proportion ranged from 14 to 71% across the 13 selected studies. The majority of

studies (92%) enrolled both men and women, except for one study which enrolled

only women [139]. Subjects were enrolled in a clinic as part of a larger clinical

research project in 4 studies [138, 141, 142, 145], in a community centre in one

study [146], in a hospital’s physiotherapy service in one study [137], and via a letter

sent to members of the community in one study [139]; details about the recruitment

process were not provided in six studies [136, 140, 143, 144, 147, 148]. Additional

details about the shortlisted studies are reported in Table 3.1.

Subjects were labelled as (non-)fallers using retrospective fall history in ten

studies, with a recall period of one year for eight studies and five years for two stud-

ies; prospective fall occurrence through a one-year follow-up period in two studies;

and a clinical assessment (i.e. the Tinetti scale [76]) in one study.

Tri-axial accelerometers and gyroscopes were the only types of inertial sensor

used in 10 studies and one study respectively; a combination of sensors was used in

two studies. In seven studies only one sensor was used, in five studies two sensors

were used, and one study used four sensors.

The most common sensor placement was the lower back (i.e. approximately

on the L3 vertebra) with ten studies, followed by shins (i.e. frontal middle point

between the knee and the foot) and feet (i.e. dorsal part of the foot) with two

studies each. Other placements were knee, ankle, thigh, sternum and upper back

(i.e. approximately on the C7 vertebra), with one study each. When grouping

placements into upper body (trunk) and lower body (lower limbs), there were eleven

(91.7%) and seven (58.3%) studies, respectively.

Inertial signals were acquired during the following tasks: walking other than

a standardised test (7 studies), unperturbed standing (three studies), the TUG test

(two studies), the 10-Meters-Walking test (10MW test) (one study), and the Five-

Times-Sit-to-Stand test (FTSS test) (one study). A brief description of these tasks

is presented in table 3.2; for a more detailed description, the reader may refer to the

referenced paper.

57



T
a
b
le

3
.1

:
C

h
a
ra

ct
er

is
ti

cs
o
f

se
le

ct
ed

st
u
d
ie

s

S
tu

d
y

S
u
b

je
ct

s
A

g
e,

y
ea

rs
F

a
ll

a
sc

er
ta

in
m

en
t

m
et

h
o
d

T
y
p

e
o
f

se
n
so

r
Q

u
a
n
ti

ty
P

la
ce

m
en

t
T

a
sk

(F
a
ll
er

s)
M

ea
n

(S
D

)

[1
3
6
]

1
5
3

(2
2
)

7
1
.0

(7
.7

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

1
L

ow
er

b
a
ck

W
a
lk

in
g

[1
3
7
]

1
7

(1
2
)

7
7
.0

(7
.5

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

1
L

ow
er

b
a
ck

S
ta

n
d
in

g

[1
3
8
]

3
4
9

(2
0
7
)

7
2
.4

(7
.4

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

G
y
ro

sc
o
p

e
2

S
h
in

s
T

U
G

te
st

[1
3
9
]

9
7

(5
4
)

6
8
.7

(7
.1

)
P

ro
sp

ec
ti

v
e

fa
ll
s

A
cc

el
er

o
m

et
er

2
F

ee
t

W
a
lk

in
g

[1
4
0
]

4
1

(2
3
)

7
8
.2

(6
.2

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

1
L

ow
er

b
a
ck

T
U

G
te

st

[1
4
1
]

4
0

(1
9
)

7
1
.4

(7
.3

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

&
g
y
ro

sc
o
p

e
2

L
ow

er
b
a
ck

&
sh

in
s

S
ta

n
d
in

g
&

W
a
lk

in
g

[1
4
2
]

1
2
0

(6
5
)

7
3
.7

(5
.8

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

&
g
y
ro

sc
o
p

e
1

L
ow

er
b
a
ck

S
ta

n
d
in

g

[1
4
3
]

3
0

(7
)

7
5
.0

(5
.7

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

4
L

ow
er

b
a
ck

,
k
n
ee

,
fo

o
t

W
a
lk

in
g

[1
4
4
]

1
0
0

(5
0
)

7
6
.5

(5
.7

)
C

li
n
ic

a
l

a
ss

es
sm

en
t

A
cc

el
er

o
m

et
er

1
L

ow
er

b
a
ck

W
a
lk

in
g

[1
4
5
]

3
9

(1
9
)

7
1
.5

(6
.6

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

2
U

p
p

er
le

g
&

st
er

n
u
m

F
T

S
S

te
st

[1
4
6
]

7
3

(1
6
)

8
0
.7

(7
.8

)
P

ro
sp

ec
ti

v
e

fa
ll
s

A
cc

el
er

o
m

et
er

2
L

ow
er

&
u
p
p

er
b
a
ck

1
0
M

W
te

st

[1
4
7
]

7
1

(3
2
)

7
8
.4

(4
.7

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

1
L

ow
er

b
a
ck

W
a
lk

in
g

[1
4
8
]

8
1

(3
9
)

7
8
.4

(4
.8

)
R

et
ro

sp
ec

ti
v
e

fa
ll
s

A
cc

el
er

o
m

et
er

1
L

ow
er

b
a
ck

W
a
lk

in
g

T
U

G
te

st
ti

m
ed

u
p

a
n
d

g
o

te
st

,
1

0
M

W
te

st
1
0
-m

et
re

w
a
lk

te
st

,
F

T
S

S
te

st
fi
v
e-

ti
m

es
-s

it
-t

o
-s

ta
n
d

te
st

,
S

D
st

a
n
d
a
rd

d
ev

ia
ti

o
n

58



Table 3.2: Description of tasks
Task Description

Walking Participants were instructed to walk:

• 8–10 steps at comfortable and maximum speeds along
a straight course [136]

• 7 minutes at self-selected speed around a continuous
walking circuit [139]

• 3 metres at comfortable speed along a straight course
[141]

• 10 metres at a self-selected speed along a straight
course which included stepping over six obstacles sep-
arated by 1.5 metres [143]

• 20 metres at self-selected speed on a straight course
and back to the starting point [144]

• 1 minute or longer walking bouts during daily life ac-
tivities [147]

• 1 minute under three different conditions: 1) baseline,
usual walk; 2) baseline, usual walk with harness; 3) an
obstacle course walk with harness [148]

Unperturbed standing Participants were instructed to stand still:

• 30 seconds on a rigid surface with eyes open and eyes
closed, as well as on a mat with eyes open and closed
[137, 141]

• 40 seconds with eyes open in a semi-tandem stance
and 30 seconds with eyes closed [142]

TUG test Participants were instructed to rise from a chair, walk 3
metres at a comfortable speed on a straight course, turn
around, walk back to the chair and sit down [138, 140]

10MW test Participants were instructed to walk at comfortable speed
along a 10-metres straight course [146]

FTSS test Participants were instructed to keep their arms folded across
their chest for the duration of the test and to fully stand up
and sit back down five times as quickly as possible [145]

TUG test timed up and go test, 10MW test 10-metre walk test, FTSS test five-times-
sit-to-stand test
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3.4.2 Sensor-based features and their trends

The full listing of features extracted from the inertial sensors that were reported

in the 13 selected papers was published elsewhere as supplementary material [128].

Green et al. [138] reported features for all of the subjects included in their analysis as

well as for some subgroups separately (i.e. males, females < 75 years old and females

≥ 75 years old). However, only the results for all the subjects were included in this

review. Moreover, Doheny et al. [141] performed an instrumented gait assessment

four times in the same day. However, only the results of the first assessment (between

9:00 and 9:30 a.m.) were included in the review.

In summary, 93 distinct features were identified in the selected studies and

categorised as suggested elsewhere [10]: linear acceleration (15 features, 16.1%),

angular velocity (28 features, 30.1%), spatial (four features, 4.3%), temporal (24

features, 25.8%), frequency (21 features, 22.6%) and nonlinear (one feature, 1.1%).

These features were reported 175 times in the selected studies out of which

for 84 times (48%) they exhibited a significant trend. Table 3.3 summarises the fre-

quency of features per task, sensor placement and feature category for the complete

listing of features and the subset of features showing significant trends.

3.4.3 Statistical analysis of sensor-based features

The results from the Pearson’s chi-squared tests and the measures of association

revealed statistically significant associations between feature significance and feature

category, sensor placement and task (Table 3.4).

Furthermore, the computed Pearson’s residuals for the three-way table con-

taining feature category, task and sensor placement as covariates revealed strong

to very strong associations for nine triads. Table 3.5 summarises these results.

As an example, the double arrow, ↑↑, for the triad ‘angular velocity-walking-shins’

means that significant features are much more likely to arise from this combination.

Conversely, the single arrow, ‘↓’, for the triad ‘angular velocity-walking-lower back’

means that significant features are less likely to arise from this combination. The

‘-’ symbol indicates that the significance of a feature is not particularly affected by

its category, sensor placement or task.

3.4.4 Meta-analysis of sensor-based features

Based on the selection criteria for the meta-analysis, 20 features were pooled using

the methods described above. Table 3.6 shows the trend and values for those fea-

tures, as well as the number of subjects in each group. It also shows the task and
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Table 3.3: Frequency table for features by task, sensor placement and feature cate-
gory. The first two columns are the frequency and percentage of features per task,
sensor and category for all the sensor-based features reported in the selected stud-
ies. The second two columns are the frequency and percentage of features per task,
sensor and category for features that showed differences between non-fallers and
fallers.

All features Significant features
(n = 175) (n = 84)

Count % Count %

Task
Walking a 110 62.9 61 72.6
Unperturbed standing 48 27.4 15 17.8
Sit-to-stand/Stand-to-sit b 14 8 5 6
TUG test 3 1.7 3 3.6

Sensor placement
Lower back 98 56 49 58.3
Shins 60 34.3 33 39.3
Foot 7 4 0 0
Sternum 4 2.3 0 0
Upper back 3 1.7 2 2.4
Knee 3 1.7 0 0

Feature category
Linear acceleration 48 27.4 20 23.8
Temporal 45 25.7 19 22.6
Frequency 42 24 16 19
Angular velocity 32 18.3 25 29.8
Spatial 7 4 4 4.8
Nonlinear 1 0.6 0 0

a Including the walking part of a functional test (e.g. TUG test)
b Including sit-to-stand/stand-to-sit transitions being part of a functional test
(e.g. TUG test)
TUG test timed up and go test
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Table 3.4: Measures of association between feature significance and covariates. The
level of association describes the extent to which the significance of the difference
between non-fallers and fallers depends on the task, sensor placement and feature
category.

Covariate χ2 p-value C V Association level a

Task 11.94 <0.01 0.253 0.261 Medium
Sensor placement 14.68 0.01 0.278 0.29 Medium
Feature category 15.82 <0.01 0.288 0.301 Medium

χ2 Pearson’s chi-squared statistic for the association test in which the null hypothesis
is no association, C Pearson’s contingency coefficient, V Cramer’s coefficient.
a A C (V) of 0.100 (0.1), 0.287 (0.3) and 0.447 (0.5) are considered as evidence of
small, medium and large association, respectively

Table 3.5: Association trend. The association trend describes the extent to which
the significance of the difference between non-fallers and fallers depends on a specific
combination of task, sensor placement, and feature category. Combinations produc-
ing double upward arrows should be favoured in sensor-based fall risk assessment
protocols.

Task

F
e
a
tu

re
c
a
te

g
o
ry

Unperturbed
standing

FTSS test TUG test Walking

Angular
velocity

- - - ↓ LB
- - - ↑↑ Shins
- - - - UB

Frequency
- - - ↑ LB
- - - ↓ Shins
- - - ↑ UB

Linear
acceleration

↑↑ ↑↑ - - LB
- - - ↓ Shins
- - - - UB

Spatial
- - - - LB
- - - - Shins
- - - - UB

Temporal
- - - - LB
- - ↑ - Shins
- - - - UB

S
e
n

so
r

p
la

c
e
m

e
n
t

FTSS test five-times-sit-to-stand test, TUG test timed up and go test, LB lower back,
UB upper back
↓↓ (↑↑): substantially stronger negative (positive) association for a specific triad of
feature category, task and sensor placement
↓ (↑): strong negative (positive) association for a specific triad of feature category,
task and sensor placement
-: non-significant association for a specific triad of feature category, task and sensor
placement
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the sensor placement for each feature.

Linear acceleration features included in the meta-analysis were: Root Mean

Square (RMS) value (expressed in g-force units) of the acceleration signal in the

Medial-Lateral (ML) direction assessed at the lower back during unperturbed stand-

ing with both eyes open and eyes closed (ML RMS of acceleration). This feature is

related to postural stability during standing.

Spatial features included in the meta-analysis were: the number of steps

during the TUG test, and step length estimated from inertial signals measured

during the walking stage of the TUG test or another walking task.

Temporal features included in the meta-analysis were: cadence (i.e. steps per

minute); gait speed; step time; stance time; swing time; stride time; total time to

complete the TUG test; single and double support time, i.e. the time during which

only one foot and both feet are in contact with the walking surface, respectively,

expressed as a percentage of a gait cycle; and the Coefficient of Variation (CV) for

step, stance, swing, stride, single and double support times. The CV is the ratio of

the standard deviation to the mean for a given feature, expressed as a percentage;

hence, it is a standardised measure of dispersion of the distribution of feature values.

All the spatial and temporal features included in the meta-analysis are widely

used in clinical gait analysis [53].

One frequency feature was included in the meta-analysis: the Harmonic Ra-

tio of trunk acceleration in the vertical direction. The Harmonic Ratio has been

defined as the ratio of even to odd signal harmonics extracted from the spectrum

of the acceleration signal and has been suggested as a measure of the stability and

smoothness of trunk movement during gait [146].

Neither angular velocity nor non-linear features were included in the meta-

analysis, as none of them met the criteria to be pooled; i.e. either they were reported

only in one study or they were measured during different tasks or at different sensor

body placements.

The relative pooling weight of each study is reported in Table 3.6. The results

of the pooling are reported in Table 3.7, where also the trend of the pooled features

is shown.

Four out of twenty pooled features showed a statistically significant difference

between fallers and non-fallers. Namely, fallers exhibited:

• A higher RMS value for the ML acceleration during unperturbed standing

with eyes closed (MD: 0.01 g; CI: 0.006–0.014; p<0.01)

• A higher number of steps to complete the TUG test (MD: 1.638 steps; CI:
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0.384–2.892; p=0.01)

• A longer time to complete the TUG test (MD: 2.274 seconds; CI: 0.531–4.017;

p<0.01)

• A longer step time during walking (MD: 0.053 seconds; CI: 0.012–0.095; p=0.01)

3.4.5 Quality appraisal of selected studies

All the studies reported the aim of the study, experimental protocol (i.e. task,

sensor quantity and placement), technical specifications of the sensor, methods for

signal processing, feature extraction and statistical analysis, and features’ summary

statistics per group (non-fallers and fallers). However, only seven studies reported

actual p-values (e.g. 0.035 rather than <0.05) for the differences between groups

[137, 140, 144–148].

Moreover, only seven studies reported inclusion and exclusion criteria of par-

ticipants and the distribution of potential confounders per group (e.g. age and

comorbidities) [139, 140, 142, 144, 146–148]. Therefore, the internal validity of six

studies remains unclear, since unreported (or unobserved) variables could explain

feature differences between fallers and non-fallers.

Finally, external validity was found for all shortlisted studies, since their

samples were representative of the population under investigation and the task was

representative of clinical fall-risk assessment protocols or daily-life activities.
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3.5 Discussion

This study analysed the scientific literature focusing on the use of wearable inertial

sensors for the risk of fall assessment and prediction, exploring the sensitivity of

sensor-based features to sensor placement, functional task and feature category.

The statistical analysis of features reported in the 13 shortlisted studies re-

vealed significant, very strong, positive associations in three different triads of fea-

ture category, task, and sensor placement:

• Angular velocity - Walking - Shins

• Linear acceleration - Unperturbed standing - Lower back

• Linear acceleration - Stand to sit/Sit to stand - Lower back

These results suggested that these are optimal combinations when using in-

ertial sensors to discriminate between fallers and non-fallers. Other potentially

suitable combinations, given their strong, positive associations are:

• Frequency - Walking - Lower back

• Frequency - Walking - Upper back

• Temporal – TUG test - Shins

Conversely, the findings suggest that the use of the following combinations

should be avoided as they are less discriminative of fall risk:

• Angular velocity - Walking - Lower back

• Frequency - Walking - Shins

• Linear acceleration - Walking - Shins

Further multivariate analyses can potentially reveal optimal combinations

that include other factors, such as age and gender of the subjects. However, this

would require more studies to be included in the analysis.

Moreover, the results of the meta-analysis demonstrated that four features

are significantly higher in fallers than in non-fallers (p<0.05): the RMS acceleration

in the medial-lateral direction during unperturbed standing with eyes closed (MD:

0.01 g; CI: 0.006–0.014); the number of steps (MD: 1.638 steps; CI: 0.384–2.892) and

total time (MD: 2.274 seconds; CI: 0.531–4.017) to complete the TUG test; and the
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step time (MD: 0.053; CI: 0.012–0.095) during walking. These results suggest that

these combinations of task and features may be more suitable for fall risk assessment.

Additionally, five features exhibited a consistent trend across the selected

studies. These features were: step time, CV for step time, CV for stride time and

CV for single support time, which showed a higher value in fallers than in non-

fallers; and double support time, which showed a lower value for fallers. However,

these trends were not found to be statistically significant when pooled in the meta-

analysis. This may be explained by the high values of standard deviation reported in

the study by Green et al. [138], which was included in the pooling of these features.

No clear explanation for such variability within that study can be inferred from the

paper.

In contrast, seven features showed an inconsistent trend across the selected

studies: step length, cadence, gait speed, harmonic ratio in the vertical direction, CV

for stance time, CV for swing time, and CV for double support time. Importantly,

in four features the methods used to classify subjects as (non-)fallers were also

inconsistent between studies: step length and cadence were pooled from [140] and

[144], in which the classification methods were retrospective fall history and clinical

assessment, respectively. Although both studies scored high in terms of quality,

there is additional evidence supporting the results provided by Weiss et al. [140].

Namely, in a study by Kwon et al. a significantly shorter step length was observed

in fallers [152]. Gait speed was pooled from [140, 144, 146], with the latter adding

prospective fall occurrence to the diversity of classification methods. Nevertheless,

both Weiss et al. and Doi et al. reported a similar trend (i.e. a significantly lower

gait speed in fallers), which renders their results more reliable [140, 146]. Finally, the

harmonic ratio in the vertical direction was also pooled from [144, 146], combining

subjects labelled as fallers using two different methods. Both studies scored high in

terms of quality. Nevertheless, the study by Kwon et al. also provides supporting

evidence to the significantly lower harmonic ratio reported by Doi et al. [146, 152].

The potential sources of between-study heterogeneity, revealed by the above trend

inconsistencies, can potentially be further explored using quantitative approaches

(e.g. subgroup analysis by study and patient characteristics). Unfortunately, the

low number of studies reporting on the same feature rendered it unfeasible to apply

these approaches.

Moreover, five features showed an ambiguous trend across the selected stud-

ies, as they were reported with no mean difference between non-fallers and fallers

in one study while exhibiting a trend (significant or not) in another study. These

features were: the RMS value of the acceleration in the medial-lateral direction with

71



eyes open, and stance time, swing time, stride time, and single support time during

walking.

Altogether, the evidence synthesised in this review suggests that the instru-

mented TUG test is a suitable tool for discriminating non-fallers and fallers, provided

that the inertial sensors are placed on the shins and angular velocity, temporal (e.g.

total time and step time) and spatial (e.g. number of steps) features are computed.

Additionally, the triad linear acceleration - unperturbed standing - lower back seems

to be a suitable choice as well.

Nevertheless, it should be stressed that these results are limited, as they are

based only on features reported in the 13 papers included in the review. Hence, they

are unable to provide a representative inference of all features used and all studies

published, but not included in the review. This means that there might be some

other sensor-based features that are discriminant between non-fallers and fallers

but which were not included in this systematic review as they were not reported as

required by the inclusion criteria. This may be the case for some of the features

reported in [55, 56, 149–151]. Relaxing the inclusion criteria could have increased

the number of studies included in this study (e.g. including studies focused on falls

in neurological patients as well) but at the risk of increasing the between-study

heterogeneity.

Finally, a comment regarding heterogeneity in hit rate (i.e. the ratio of all

features to significant features expressed as a percentage) reported in the selected

studies is deemed relevant to this study. In some studies reporting a relatively high

number of features (i.e. 28 or more) a hit rate ranging from 25 to 66% was achieved

[138, 141, 142]. In contrast, some studies reporting a low number of features (i.e.

seven or less) achieved hit rates above 85%, with two studies reporting a surprising

100% [144, 146, 148]. From these studies, it was not clear if the authors investigated

a low number of features or if they investigated a large number of features but only

reported the most significant ones. Even if reporting bias (a.k.a. selective reporting)

should not be concluded from this finding, it should at least arise awareness of the

potential presence of this practice in the biomedical engineering field. This practice

could undermine the findings of future studies, making it more difficult to converge

to meaningful conclusions.

3.6 Conclusions

This chapter presented an original systematic review and meta-analysis performed

to synthesise the empirical evidence related to the use of inertial sensors for fall risk
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assessment and prediction, in order to identify the optimal combination of sensor

placement, movement task and measured variables or features.

The evidence collected in this study produced a comprehensive inventory of

the sensor-based features that have been used for assessing the risk of falling in

older adults and reported in the literature, including the difference between groups

(non-fallers and fallers) and the statistical significance of these differences.

The statistical analysis of features above demonstrated that the combination

‘angular velocity-walking-shins’ has more discriminative power between non-fallers

and fallers than other combinations. Moreover, the meta-analysis demonstrated

that four features are significantly different between non-fallers and fallers. However,

most features were not included in the meta-analysis because they were not reported

with sufficient homogeneity in at least two studies, suggesting that future studies

are required to produce more evidence that allows conducting a more comprehensive

meta-analysis.

Overall, the results of this study suggest that the instrumented TUG test

is a suitable tool for discriminating non-fallers and fallers, provided that the iner-

tial sensors are placed on the shins and angular velocity, temporal (e.g. total time

and step time) and spatial (e.g. number of steps) features are computed. These

findings should contribute to closing the gap between research studies and clini-

cal applications, by enabling the evidence-based design of new studies and real-life

applications.

Nevertheless, these results are based on data extracted from a limited number

of studies. Hence, there might be some other sensor-based features that are discrim-

inant between non-fallers and fallers but were not included in this systematic review

as they were not reported as required by the inclusion criteria.

This study led to the identification of an optimal inertial sensor-based proto-

col for fall risk assessment in older adults, thus answering the first research question

underlying this thesis (see chapter 1). The study presented in the next chapter in-

vestigates whether quantitative descriptors of nonlinear system dynamics are more

sensitive than linear measures to differences in balance control due to ageing and

fall risk, thus addressing the second research question.
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Chapter 4

Approximate Entropy and

Sample Entropy for Fall Risk

Assessment in Older Adults

4.1 Chapter overview

The diffusion of nonlinear dynamical systems theory into the biomedical research

community has inspired the use of quantitative descriptors of nonlinear dynamics for

assessing balance control. In particular, Approximate Entropy (ApEn) and Sample

Entropy (SampEn) have been proposed as measures of body sway regularity during

unperturbed standing. However, their ability to discriminate between groups with

different fall risk and the suitable selection of the input parameters needed for their

computation, have not yet been formally investigated. This chapter presents a study

performed to investigate whether ApEn and SampEn are more sensitive than linear

measures to differences in balance control due to ageing and fall risk, as well as to

identify the optimal way to apply them (e.g. signal pre-processing, selection of input

parameters, etc.).

4.2 Introduction

Centre of Pressure (CoP) time-series have been mostly characterised using linear

measures, which describe the magnitude of CoP excursions in the time and frequency

domains (e.g. path length and mean frequency of CoP motion, respectively). Age-

related differences in these measures have been widely recognised, with older adults

(≥60 years old) showing generally larger CoP sways than young adults (18–59 years
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Figure 4.1: Representative centre of pressure (CoP) trajectories for (A) a young
adult (27 years), (B) a non-faller (68 years) and (C) a faller (61 years). Older
adults show generally wider CoP displacements than young adults. In contrast,
CoP excursions from older adults with different fall risk are similar in terms of
amplitude, making global measures inadequate to discriminate between them. Data
sourced from the public dataset used in this study [27].

old) [2]. These differences are evident even through the visual inspection of CoP

traces, as can be seen in Figure 4.1 panels A and B. In contrast, CoP excursions

from older adults with different fall risk are similar in terms of amplitude, as can be

seen in Figure 4.1 panels B and C.

Structural measures are sensitive to the structural variation in the time-

series, thus they represent a potential alternative for describing differences in CoP

excursions of a different nature. Entropy measures have been used for assessing

the regularity of CoP time-series in different testing conditions and experimental

groups [21, 95–109]. For instance, Cavanaugh et al. used ApEn to evaluate the

effect of performing a secondary cognitive task on postural control in a sample of

healthy young adults (n=30), as compared to performing a single task (i.e., posture

control plus cognitive task versus posture control only) [97]. The authors observed

generally higher ApEn values in the anterior-posterior CoP time-series during a dual

task than during a single task. However, no significant differences in ApEn values for

the medial-lateral direction were observed. In another study, Borg and Lax̊aback

investigated the differences in SampEn values between young adults (n=45) and

older adults (n=91) [21]. Significant differences between groups were observed for

the Anterior-Posterior (AP) axis with higher values for older adults than for young

adults. However, the ability of ApEn and SampEn to discriminate between groups of

older adults with different risks of falling has not been investigated (e.g. non-fallers

versus fallers).

A detailed definition of ApEn and SampEn is presented in section 2.4. Briefly,
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given a time-series of length N , ApEn(m, r,N) is the difference between the fre-

quency that all the m-point subseries in the time-series are close to each other

(within a tolerance given by ±r times the standard deviation of the time-series) and

the frequency that all the m+ 1-point subseries in the time-series are close to each

other (again, within a tolerance given by ±r times the standard deviation of the

time-series). Importantly, the ApEn algorithm counts each subseries as matching

itself. As a consequence, the ApEn algorithm inherently produces a bias towards

regularity. In order to counteract this shortcoming, the SampEn algorithm does

not count self-matches. SampEn(m, r,N) is the negative natural logarithm of the

conditional probability that two subseries similar for m points remain similar for

m + 1 points, where self-matches are not included in calculating the probability.

In addition to eliminating self-matches, it has been shown that SampEn is mostly

independent of the data length and shows more consistent behaviours than ApEn

[111].

The appropriate selection of parameters m (subseries length), r (similarity

tolerance) and N (data length) is critical. Traditionally, for clinical data, m is to

be set at 2 or 3, r is to be set between 0.1 and 0.25 times the standard deviation

of the data and N as equal to or greater than 1000 [110, 111]. However, these

recommendations were based on the analysis of cardiac and respiratory time-series,

thus do not always produce optimal results for all types of data. Therefore, an

investigation of the effects of changing parameter values on the computation of

ApEn and SampEn for specific types of data is needed. Nevertheless, the issue has

not been investigated systematically when dealing with CoP time-series.

This chapter presents an original study performed: (1) to determine the abil-

ity of ApEn and SampEn to discriminate between experimental groups, especially

between non-fallers and fallers; and, (2) to examine the effect of changing the value

of the parameters m, r and N on ApEn and SampEn values in CoP time-series

(e.g. signal pre-processing and selection of input parameters). The contents of this

chapter have been published elsewhere [153].

ApEn and SampEn were selected among other nonlinear measures given that

they are well suited to the analysis of short and noisy data. As mentioned above,

these methods quantify the regularity or self-similarity of time-series by examining

them for similar epochs or subseries: more frequent, similar subseries lead to lower

entropy values. Thus low ApEn and SampEn values reflect a high degree of reg-

ularity or self-similarity [110, 111]. Regarding CoP time-series analysis, relatively

high entropy values may be indicative of a balance control mechanisms that are too

random to command balance properly, whereas relatively low values may describe a

76



balance control that is too stiff to cope with situations that require flexibility [21].

This study was motivated by the promising results obtained in a preliminary

study, in which the issue of the adequate selection of ApEn and SampEn parameter

values for CoP time-series analysis was partially addressed [154]. However, the

present study represents a more comprehensive investigation of this issue, as it covers

a broader range of parameter values, included the Medial-Lateral (ML) direction in

addition to the AP direction and compared the ability of ApEn and SampEn to

discriminate between experimental groups to that of traditional measures of CoP

displacement. Therefore, the methods and results in the present study should be

considered more robust and informative for future studies.

4.3 Methods

4.3.1 Dataset description

This study made use of an open dataset of human balance evaluations [27]. The

dataset contains static posturography data from 163 participants. A detailed de-

scription of this protocol, the data pre-processing methods and the resulting dataset

can be found elsewhere [155]. Briefly, CoP time-series were recorded while subjects

were standing still for 60 seconds in four different conditions: with eyes open on a

rigid surface, with eyes open on a foam mat, with eyes closed on a rigid surface, and

with eyes closed on a foam mat. Three trials per condition were recorded, producing

1,930 trials in total (the authors reported 26 trials from 5 subjects as missing due to

the inability of those subjects to complete the tasks). During the trials, 3D ground

reaction forces and moments were recorded using a force platform with a sampling

frequency of 100 Hz and were later used to compute the CoP position in the AP and

ML axes. Importantly, the authors reported having smoothed the signals using a

fourth-order zero-lag Butterworth low-pass filter with a cut-off frequency of 10 Hz.

Previous studies have investigated the effects of digital filtering (specifically using a

second-order dual-pass Butterworth low-pass filter) on linear and entropy measures

of CoP displacement (Standard Deviation (SD)/Root Mean Square (RMS) value

and sample entropy, respectively) [156, 157]. While digital filtering did not affect

traditional measures [156], a decrease in sample entropy was reported for filtered

data compared to unfiltered data [156, 157]. Therefore, should the present data

analysis be replicated on unfiltered CoP data, higher entropy values would be ex-

pected to come out from it. Figure 4.2 shows representative CoP time-series taken

from this dataset.

Additionally, the dataset contains sociodemographic, anthropometric, and
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Figure 4.2: Representative centre of pressure time-series (CoP) for an older adult (61
years old) who experienced a fall within the past 12 months: (A) anterior-posterior
(AP) and medial-lateral (ML) time-series versus time, and (B) medial-lateral versus
anterior-posterior. Data sourced from the public dataset used in this study [27].

health status data for each participant (e.g. age, height, weight, morbidities and

disabilities), as well as their history of falls (i.e.number of non-intentional falls in

the past 12 months) and scores for other evaluations related to balance, fear of

falling, physical activity and cognitive function. Age and history of falls were used

to label subjects as Young, Non-Fallers and Fallers as described in subsection 4.3.3.

Reported disabilities were used to discard subjects with physical disabilities from

the data analysis.

This open dataset was collected by researchers from the Laboratory of Biome-

chanics and Motor Control at the Federal University of ABC (São Bernardo do

Campo, Brazil) following a research protocol approved by the local ethics commit-

tee of the University (#842529/2014) [155].

4.3.2 Data processing

Besides m, r and N , the ApEn and SampEn algorithms allow adjusting a fourth

parameter known as the time delay (τ) in the computation of entropy values. Gen-

erally speaking, by adjusting the time delay to a specific value of τ , the time-

series used for the computation of ApEn/SampEn would be made of the first

sample and then every τ th sample after the first. In more formal terms, for a

time-series X of length N , X = {x(1), x(2), x(3), . . . , x(N)}, the computation of

ApEn/SampEn with a time delay of τ would be performed on the time-series given

by X ′ = {x(1), x(1 + τ), x(1 + 2τ), . . . , X(N − τ + 1)}. In a previous study, Kaf-

fashi et al. [158] showed that, for time-series generated by non-linear dynamics that

have a long-range autocorrelation (e.g. a slowly decaying Autocorrelation Function

(ACF), such as those observed for CoP time-series), using a unity delay (τ = 1)
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would solely measure the linear autocorrelation properties of the signal. This would

mask the ability of the ApEn/SampEn approach to quantify the regularity in the

time-series resulting from long-range non-linear features. Therefore, the choice of

the value of τ is crucial. For this type of data, using a higher time-delay value has

been suggested [158]. Ideally, the choice of time delay must correspond to either

the first minimum or zero-crossing of the ACF. However, an exploratory analysis of

the CoP data used in this study revealed that these conditions were met for very

large values of τ , which would leave a number of data points far below the minimum

required to compute ApEn and SampEn. Therefore, τ was set to 5, as a compromise

between data length and an acceptable reduction in ACF. This was implemented

computationally by downsampling the CoP time-series by a factor of 5, indirectly

adjusting the time delay (τ = 5) in the computation of ApEn and SampEn [158].

Consequently, the downsampled data had an effective frequency of 20 Hz, resulting

in a length of N = 1200 data points (20 Hz x 60 s).

To examine the effect of the choice of input parameters m, r and N , each

CoP time-series was subjected to ApEn and SampEn calculation for all possible

combinations of m = 2, 3, 4, 5, r = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 and

N = 600, 1200 (i.e., 30 and 60 seconds, respectively). These ranges of input pa-

rameter values are more comprehensive than the ones adopted in previous studies,

in which values of m equal to 2, 3 or 5 and r from 0.1 to 0.3 have been used [21,

95–98, 100–103, 107–109]. This choice was motivated by our interest in exploring

the behaviour of ApEn and SampEn for a range of input parameters extending be-

yond the traditional values. A detailed description of the methods used to compute

ApEn and SampEn was presented in section 2.4. As mentioned above, these meth-

ods quantify the regularity or self-similarity of time-series by examining them for

similar epochs or subseries: more frequent, similar subseries led to lower entropy

values. Thus low ApEn and SampEn values reflect a high degree of regularity or

self-similarity [110, 111]. Regarding CoP time-series analysis, relatively high en-

tropy values may be indicative of balance control mechanisms that are too random

to command balance properly, whereas relatively low values may describe a balance

control that is too stiff to cope with situations that require flexibility [21].

Additionally, CoP displacement linear measures were also computed as de-

scribed in section 2.4: total length of displacement, the amplitude of displacement

in the AP and ML axes, the standard deviation in the AP and ML axes, mean

velocity in the AP and ML axes, total mean velocity and area covered by the dis-

placement. These measures were computed for detrended CoP time-series (i.e. mean

value subtracted) of length N = 1200, i.e. 60-second recordings (in line with the
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latest recommendations [188]) at an effective frequency of 20 Hz (that is, twice the

frequency of the CoP signal, in line with the Nyquist theorem).

A block diagram depicting the steps followed for data processing is shown in

Figure 4.3. The scripts for data processing were written in MATLAB R2017b (The

Mathworks, Inc., Natick, MA, USA). The source code can be found in Appendix A.

4.3.3 Data analysis

4.3.3.1 Effects of changing input parameters on approximate and sample

entropy

A three-way Analysis of Variance (ANOVA) was conducted to determine the effect

of changing m, r and N on ApEn and SampEn values. As described before, there

were four levels of m (i.e., 2, 3, 4, 5), nine levels of r (i.e. 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45, 0.5) and two levels of N (i.e. 600 and 1200). A significant three-

way interaction between m, r, and N (p-value<0.05) indicated that entropy values

changed significantly for one or more combinations of m, r and N . Otherwise, a

significant two-way interaction indicated that entropy values changed significantly

for one or more combinations of those two parameters, yet entropy values were not

significantly different across the values for the third parameter. These analyses were

performed including ApEn and SampEn values for all CoP time-series, regardless of

testing condition (i.e. all trials per testing condition were included).

Additionally, the contributions of each factor (i.e. main factors m, r and N ,

and their interactions) to the variation of ApEn and SampEn values were quantified

by the partial eta-squared measure, η2p, which is computed as follows:

η2p =
SumSqfactor

SumSqfactor + SumSqerror
(4.1)

where SumSqfactor is the variation attributable to the factor and SumSqerror

is the error variation [159], as derived from the three-way ANOVA. The higher the

η2p value, the stronger the contribution of a factor is to the variation of ApEn and

SampEn [159].

4.3.3.2 Ability of approximate and sample entropy to discriminate be-

tween non-fallers and fallers

Firstly, subjects were grouped based on their age and history of falls in the past

12 months: young adults (Young, age<60), older adults (age≥60) without falls in

the last 12 months (Non-Fallers) and older adults (age≥60) who experienced one or
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more falls in the last 12 months (Fallers). Subjects with reported physical disabilities

were excluded from the analysis.

Subsequently, ApEn and SampEn group mean and standard deviation values

by group for all combinations of m, r and N were computed, regardless of testing

condition. To determine the effects of group on ApEn and SampEn, a mixed-design

ANOVA was conducted. It consisted of one between-subjects factor (i.e., group)

and three within-subjects factors (i.e., m, r and N). There were three levels of

group (i.e. Young, Non-Fallers and Fallers); the levels for the within-subject factors

have been introduced above. A significant four-way interaction between group,

m, r and N indicated that the entropy values were different between at least two

groups for one or more combinations of m, r and N . These combinations were

identified by performing a post hoc analysis of the differences between groups for

each combination of m, r and N using the Tukey’s honest significant difference

procedure. A p-value<0.05 was accepted as evidence of statistical significance.

In addition, the statistical significance of differences in linear measures be-

tween groups was also determined using a one-way ANOVA and a post hoc analysis

(Tukey’s honest significant difference procedure). These latter analyses were per-

formed in order to compare the ability of ApEn and SampEn to discriminate between

different groups to that of the more standard methods.

4.3.3.3 Behaviour of sample entropy in different testing conditions

Additionally, the behaviour of SampEn in different testing conditions was also in-

vestigated. Namely, SampEn mean and standard deviation values by group for

all combinations of m, r and N were computed separately for each testing con-

dition: Eyes open on a rigid surface (OR), Eyes closed on a rigid surface (CR),

Eyes open on a foam mat (OF) and Eyes closed on a foam mat (CF). For each

testing condition, a one-way ANOVA with group as a factor, as well as a post hoc

analysis (Tukey’s honest significant difference), was performed for each parameter

combination. These analyses were carried out in order to determine whether a spe-

cific testing condition might boost the sensitivity of SampEn to differences between

groups (e.g. more parameter combinations produced significant differences between

groups). These analyses were performed only on SampEn values from CoP time-

series in the anterior-posterior direction, as the analyses described earlier revealed

that these were more sensitive to differences between groups, especially between

Non-Fallers and Fallers.

All statistical analyses were performed in MATLAB R2017b.
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4.4 Results

4.4.1 Effects of changing input parameters on approximate and

sample entropy

For ApEn in the anterior-posterior direction, the three-way ANOVA with m, r, and

N as factors revealed statistically significant main effects of m, r and N . These main

effects were qualified by an interaction between m, r and N (Table 4.1). For ApEn in

the medial-lateral direction, the three-way ANOVA revealed statistically significant

main effects of m, r and N . These main effects were qualified by an interaction

between m, r and N (Table 4.1). The existence of significant three-way interactions

suggests that ApEn values changed significantly for different combinations of m, r

and N .

For SampEn in the anterior-posterior direction, a three-way ANOVA with

m, r, and N as factors revealed a main effects of m, r and N . These main effects

were qualified by interactions between m and r, between m and N and between

r and N . The interaction between m, r, and N was not significant (Table 4.2).

For SampEn in the medial-lateral direction, the three-way ANOVA revealed a main

effects of m, r and N . These main effects were qualified by interactions between

m and r, m and N , and r and N . The interaction between m, r, and N was not

significant (Table 4.2). The existence of significant two-way interactions suggests

that SampEn values changed significantly for one or more combinations of these two

parameters, yet entropy values were not significantly different across the values for

the third parameter.

These findings are illustrated in Figure 4.4, where ApEn and SampEn for

the AP component are presented as a function of m, r and N . It can be observed

that the shape of ApEn as a function of r was different for different combinations of

m and N (top panels). As for SampEn, its values tended to decrease as r increased,

yet its shape was consistent across different combinations of m and N (bottom pan-

els). Interestingly, subplots c) and d) in Figure 4.4 suggest a reciprocal relationship

between r and SampEn. ApEn and SampEn showed a similar behaviour for the ML

component of the CoP time-series (see Figure S1 in Appendix C).
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Table 4.1: Effects of input parameters on approximate entropy: three-way ANOVA
summary table.

A) Anterior-posterior direction
Source Sum Sq. d.f. Mean Sq. F p η2p

m 209.58 3 69.862 8195.1 < 0.001 0.1504
r 1327.60 8 165.952 19467 < 0.001 0.5286
N 0.22 1 0.220 25.8 < 0.001 0.0002

m ∗ r 193.92 24 8.080 947.8 < 0.001 0.1407
m ∗N 6.05 3 2.016 236.5 < 0.001 0.0051
r ∗N 25.22 8 3.152 369.7 < 0.001 0.0209

m ∗ r ∗N 2.62 24 0.109 12.8 < 0.001 0.0022
Error 1184 138888 0.009
Total 2949.20 138959

B) Medial-lateral direction
Source Sum Sq. d.f. Mean Sq. F p η2p

m 224.69 3 74.896 13287 < 0.001 0.223
r 1284.3 8 160.537 28481 < 0.001 0.6213
N 1.04 1 1.036 183.78 < 0.001 0.0013

m ∗ r 175.31 24 7.305 1295.9 < 0.001 0.183
m ∗N 6.28 3 2.092 371.18 < 0.001 0.008
r ∗N 22.98 8 2.873 509.64 < 0.001 0.0285

m ∗ r ∗N 2.02 24 0.084 14.9 < 0.001 0.0026
Error 782.87 138888 0.006
Total 2499.5 138959

Sum Sq. type III sum of squares, d.f. degrees of freedom, Mean Sq. mean square, F
F-statistic, p p-value, η2p partial eta-squared
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Table 4.2: Effects of input parameters on sample entropy - three-way ANOVA sum-
mary table

A) Anterior-posterior direction
Source Sum Sq. d.f. Mean Sq. F p η2p

m 43.13 3 14.3753 1195.4 < 0.001 0.0252
r 2463.90 8 307.9882 25612 < 0.001 0.5960
N 17.04 1 17.0362 1416.7 < 0.001 0.0101

m ∗ r 20.04 24 0.8351 69.4 < 0.001 0.0119
m ∗N 0.71 3 0.2357 19.6 < 0.001 0.0004
r ∗N 0.36 8 0.0455 3.8 < 0.001 0.0002

m ∗ r ∗N 0.08 24 0.0034 0.3 1 0
Error 1670.2 138888 0.012
Total 4215.4 138959

B) Medial-lateral direction
Source Sum Sq. d.f. Mean Sq. F p η2p

m 59.34 3 19.7808 2561.1 < 0.001 0.0524
r 2199.40 8 274.9212 35595.0 < 0.001 0.6722
N 21.01 1 21.0063 2719.8 < 0.001 0.0192

m ∗ r 28.42 24 1.1841 153.3 < 0.001 0.0258
m ∗N 0.94 3 0.3133 40.6 < 0.001 0.0009
r ∗N 0.42 8 0.0521 6.7 < 0.001 0.0004

m ∗ r ∗N 0.10 24 0.0041 0.5 0.969 0.0001
Error 1072.70 138888 0.0077
Total 3382.30 138959

Sum Sq. type III sum of squares, d.f. degrees of freedom, Mean Sq. mean square, F
F-statistic, p p-value, η2p partial eta-squared
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Figure 4.4: Approximate entropy (ApEn) and sample entropy (SampEn) as a func-
tion of m, r and N for the anterior-posterior (AP) component of the centre of
pressure displacement during unperturbed standing: a) ApEn for N = 600, b)
ApEn for N = 1200, c) SampEn for N = 600, and d) SampEn for N = 1200
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4.4.2 Ability of approximate and sample entropy to discriminate

between non-fallers and fallers

4.4.2.1 Participant grouping and characteristics

The CoP data from four participants were discarded from this analysis due to phys-

ical disabilities (namely, poliomyelitis and cerebral palsy), leaving 159 participants

(115 females, 44 males) for the analysis: 85 subjects were young adults (Young),

56 subjects were older adults without falls in the last 12 months (Non-Fallers), and

18 subjects were older adults with one or more falls in the last 12 months (Fallers).

Table 4.3 shows the mean value (standard deviation) for participant characteristics

by group: age, height, weight and Body Mass Index (BMI). Moreover, it shows re-

sults from a one-way ANOVA and post hoc comparisons between groups carried out

using the Tukey’s honest significant difference procedure. No significant differences

were observed between the Non-Fallers and Fallers groups, suggesting homogeneity

between them concerning age and anthropometric variables (thus discarding those

characteristics as potential confounders).

4.4.2.2 Approximate entropy

A significant four-way interaction between group, m, r and N was found [Anterior-

Posterior: F (6.96, 6601) = 16.3, p < 0.001, η2p = 0.17; Medial-Lateral: F (6.99, 6624) =

5.43, p < 0.001, η2p = 0.006]. This indicated that the ApEn values were different be-

tween at least two groups for one or more combinations of m, r and N . Importantly,

the p-values reported above were produced by applying the Greenhouse-Geisser pro-

cedure, since the data violated the assumption of sphericity imposed by the mixed-

ANOVA test (i.e. Mauchly’s test with a p < 0.001 for both anterior-posterior and

medial-lateral CoP). The term sphericity refers to the condition where the variances

in the differences between all possible pairs of factors (i.e. group, m, r and N) are

equal. If this assumption is violated, then the mixed-ANOVA test results in an

inflated F-statistic and thus deflated p-values. The Greenhouse-Geisser correction

adjusts the degrees of freedom in the mixed-ANOVA so that a valid F-statistic can

be obtained [160].Therefore, the reported p-values represent a more conservative

approach and thus the results can be considered more valid.

Young versus Older adults (Non-Fallers and Fallers). For N = 1200 (i.e. 60

seconds) in the AP direction, Fallers and Non-Fallers showed generally higher ApEn

mean values than Young adults (Figure 4.5). There was only one exception to this

trend (namely, for ApEn(m = 5, r = 0.1)) for which Fallers had a slightly lower
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ApEn mean value than Young adults (a behaviour hereon referred to as “trend flip”

or “crossover”). Statistical testing revealed that those differences were significant

(p < 0.05) for all combinations of m and r (Table 4.4). In the ML direction, Fallers

had lower ApEn mean values than Young adults for all combinations of m and r

(see Figure S2 in Appendix C). However, statistical testing revealed that only one

combination of m and r produced significant differences between groups (see Table

S2 in Appendix C). The differences between Young adults and Non-Fallers did not

exhibit a consistent trend.

For N = 600 (i.e. 30 seconds), in the AP direction, similar trends to those

for longer data lengths (N = 1200) were observed. Namely, older adults showed

generally higher ApEn mean values than young adults, with a decreased consistency

in trend (3 trend flips for N = 600 versus one trend flip for N = 1200) (see Figure

S3 in Appendix C). These differences were statistically significant (p < 0.05) for all

but one combination of m and r (see Table S3 in Appendix C). In the ML direction,

Fallers generally showed lower ApEn mean values than Young adults, in partial

agreement with the results obtained for N = 1200 (see Figure S4 in Appendix

C). The dissimilarities observed were that, in contrast to the trend observed for

N = 1200, the trend observed for N = 600 was not consistent for all combinations

of m and r (i.e. some flips appeared for shorter data length) and was found to be

statistically significant for some combinations of m and r (see Table S4 in Appendix

C). As for the differences between Non-Fallers and Young adults, no consistent trend

was observed, in agreement with the results for a data length of N = 1200.

Older adults, Non-Faller versus Fallers. For N = 1200 (i.e. 60 seconds) in the

AP direction, Fallers showed generally higher ApEn mean values than Non-Fallers

(Figure 4.5). Some exceptions to this trend were found: ApEn(m = 4, r = 0.1)

and ApEn(m = 5, r = {0.1, 0.15}). However, statistical testing revealed significant

differences only for specific parameter combinations (Table 4.4). In the ML direction,

Fallers exhibited lower ApEn mean values than Non-Fallers for all combinations of

m and r (see Figure S2 in Appendix C). However, statistical testing revealed that

only two combinations of m and r produced significant differences between groups

(see Table S2 in Appendix C).
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Figure 4.5: Approximate entropy (ApEn) mean value (bars) and standard deviation
(error lines) by group as a function of r for m = 2, 3, 4, 5 and N = 1200 (i.e.
60 seconds) for the anterior-posterior (AP) component of the centre of pressure
displacement during unperturbed standing: a) m = 2, b) m = 3, c) m = 4, and d)
m = 5

90



T
a
b
le

4
.4

:
A

p
p
ro

x
im

a
te

en
tr

o
p
y

in
th

e
a
n
te

ri
o
r-

p
o
st

er
io

r
d
ir

ec
ti

o
n

a
s

a

fu
n
ct

io
n

o
f
r

a
n
d
m

fo
r

a
d
a
ta

le
n
g
th

o
f
N

=
1
2
0
0

(i
.e

.
6
0
-s

ec
o
n
d
s)

.

O
n
e-

w
ay

A
N

O
V

A
D

es
cr

ip
ti

v
e

st
a
ti

st
ic

s
b
y

g
ro

u
p

P
o
st

-h
o
c

Y
o
u
n
g

(Y
)

N
o
n
-F

a
ll
er

s
(N

F
)

F
a
ll
er

s
(F

)
N

F
-

Y
F

-
Y

F
-

N
F

r
F

p
-v

a
lu

e
M

ea
n

S
D

M
ea

n
S
D

M
ea

n
S
D

M
D

p
-v

a
lu

e
M

D
p
-v

a
lu

e
M

D
p
-v

a
lu

e

m
=

2

0
.1

1
0
5
.4

5
<
0
.0
0
1

0
.6

2
8

0
.1

2
9

0
.7

0
5

0
.1

0
8

0
.7

2
3

0
.1

3
8

0
.0

7
8

<
0
.0
0
1

0
.0

9
5

<
0
.0
0
1

0
.0

1
7

0
.1

7
8

0
.1

5
1
1
9
.3

1
<
0
.0
0
1

0
.5

1
5

0
.1

3
4

0
.5

9
9

0
.1

0
4

0
.6

1
3

0
.1

3
1

0
.0

8
4

<
0
.0
0
1

0
.0

9
9

<
0
.0
0
1

0
.0

1
5

0
.2

9
8

0
.2

1
2
4
.5

8
<
0
.0
0
1

0
.4

2
4

0
.1

3
6

0
.5

1
2

0
.1

1
0

0
.5

2
7

0
.1

3
3

0
.0

8
8

<
0
.0
0
1

0
.1

0
3

<
0
.0
0
1

0
.0

1
5

0
.2

8

0
.2

5
1
2
6
.9

0
<
0
.0
0
1

0
.3

5
1

0
.1

3
1

0
.4

3
8

0
.1

1
3

0
.4

5
5

0
.1

3
3

0
.0

8
7

<
0
.0
0
1

0
.1

0
4

<
0
.0
0
1

0
.0

1
8

0
.1

7
6

0
.3

1
2
6
.8

0
<
0
.0
0
1

0
.2

9
3

0
.1

2
1

0
.3

7
4

0
.1

1
0

0
.3

9
4

0
.1

2
9

0
.0

8
1

<
0
.0
0
1

0
.1

0
1

<
0
.0
0
1

0
.0

1
9

0
.0

9
3

0
.3

5
1
2
5
.8

8
<
0
.0
0
1

0
.2

4
7

0
.1

0
9

0
.3

2
1

0
.1

0
4

0
.3

4
1

0
.1

2
2

0
.0

7
4

<
0
.0
0
1

0
.0

9
4

<
0
.0
0
1

0
.0

2
0

0
.0
4
9

0
.4

1
2
4
.5

1
<
0
.0
0
1

0
.2

1
1

0
.0

9
8

0
.2

7
7

0
.0

9
6

0
.2

9
7

0
.1

1
3

0
.0

6
6

<
0
.0
0
1

0
.0

8
6

<
0
.0
0
1

0
.0

2
0

0
.0
2
4

0
.4

5
1
2
3
.4

6
<
0
.0
0
1

0
.1

8
2

0
.0

8
7

0
.2

4
1

0
.0

8
7

0
.2

6
0

0
.1

0
4

0
.0

5
9

<
0
.0
0
1

0
.0

7
8

<
0
.0
0
1

0
.0

2
0

0
.0
1
4

0
.5

1
2
2
.4

7
<
0
.0
0
1

0
.1

5
9

0
.0

7
7

0
.2

1
1

0
.0

7
9

0
.2

2
9

0
.0

9
4

0
.0

5
2

<
0
.0
0
1

0
.0

7
0

<
0
.0
0
1

0
.0

1
9

0
.0
0
9

m
=

3

0
.1

1
1
1
.2

9
<
0
.0
0
1

0
.5

2
6

0
.1

0
9

0
.5

9
7

0
.0

9
4

0
.6

0
0

0
.1

1
4

0
.0

7
1

<
0
.0
0
1

0
.0

7
4

<
0
.0
0
1

0
.0

0
3

0
.9

3
9

0
.1

5
1
1
8
.4

6
<
0
.0
0
1

0
.4

4
1

0
.1

1
3

0
.5

1
6

0
.1

0
3

0
.5

3
1

0
.1

2
8

0
.0

7
4

<
0
.0
0
1

0
.0

9
0

<
0
.0
0
1

0
.0

1
6

0
.1

7
0

0
.2

1
1
7
.9

4
<
0
.0
0
1

0
.3

7
4

0
.1

0
6

0
.4

4
1

0
.0

9
3

0
.4

5
9

0
.1

1
7

0
.0

6
8

<
0
.0
0
1

0
.0

8
5

<
0
.0
0
1

0
.0

1
7

0
.0

8
0

0
.2

5
1
2
1
.9

8
<
0
.0
0
1

0
.3

2
0
.0

9
9

0
.3

8
4

0
.0

8
5

0
.4

0
0

0
.1

0
7

0
.0

6
4

<
0
.0
0
1

0
.0

8
0

<
0
.0
0
1

0
.0

1
6

0
.0

7
3

0
.3

1
2
3
.2

7
<
0
.0
0
1

0
.2

7
7

0
.0

9
4

0
.3

3
8

0
.0

8
1

0
.3

5
3

0
.0

9
9

0
.0

6
1

<
0
.0
0
1

0
.0

7
6

<
0
.0
0
1

0
.0

1
5

0
.0

8
8

0
.3

5
1
2
5
.3

7
<
0
.0
0
1

0
.2

4
2

0
.0

8
9

0
.3

0
0

0
.0

7
8

0
.3

1
4

0
.0

9
4

0
.0

5
8

<
0
.0
0
1

0
.0

7
3

<
0
.0
0
1

0
.0

1
4

0
.0

8
4

0
.4

1
2
5
.8

7
<
0
.0
0
1

0
.2

1
2

0
.0

8
4

0
.2

6
7

0
.0

7
5

0
.2

8
2

0
.0

8
9

0
.0

5
5

<
0
.0
0
1

0
.0

7
0

<
0
.0
0
1

0
.0

1
4

0
.0

6
4

0
.4

5
1
2
5
.4

1
<
0
.0
0
1

0
.1

8
7

0
.0

7
8

0
.2

3
9

0
.0

7
2

0
.2

5
3

0
.0

8
4

0
.0

5
2

<
0
.0
0
1

0
.0

6
6

<
0
.0
0
1

0
.0

1
4

0
.0

5
7

0
.5

1
2
4
.9

2
<
0
.0
0
1

0
.1

6
6

0
.0

7
3

0
.2

1
4

0
.0

6
8

0
.2

2
8

0
.0

7
9

0
.0

4
8

<
0
.0
0
1

0
.0

6
2

<
0
.0
0
1

0
.0

1
4

0
.0
4
3

91



T
a
b
le

4
.4

c
o
n
ti
n
u
e
d

fr
o
m

p
re

v
io
u
s
p
a
g
e

O
n
e-

w
ay

A
N

O
V

A
D

es
cr

ip
ti

v
e

st
a
ti

st
ic

s
b
y

g
ro

u
p

P
o
st

-h
o
c

Y
o
u
n
g

(Y
)

N
o
n
-F

a
ll
er

s
(N

F
)

F
a
ll
er

s
(F

)
N

F
-

Y
F

-
Y

F
-

N
F

r
F

p
-v

a
lu

e
M

ea
n

S
D

M
ea

n
S
D

M
ea

n
S
D

M
D

p
-v

a
lu

e
M

D
p
-v

a
lu

e
M

D
p
-v

a
lu

e

m
=

4

0
.1

8
8
.7

8
<
0
.0
0
1

0
.4

4
9

0
.0

7
2

0
.4

9
1

0
.0

5
2

0
.4

7
7

0
.0

6
4

0
.0

4
2

<
0
.0
0
1

0
.0

2
8

<
0
.0
0
1

-0
.0

1
4

0
.0

1
3

0
.1

5
1
2
4
.4

8
<
0
.0
0
1

0
.4

0
4

0
.0

9
9

0
.4

7
2

0
.0

8
6

0
.4

7
7

0
.1

0
5

0
.0

6
8

<
0
.0
0
1

0
.0

7
3

<
0
.0
0
1

0
.0

0
5

0
.7

8
5

0
.2

1
2
1
.7

9
<
0
.0
0
1

0
.3

4
8

0
.1

0
0

0
.4

1
5

0
.0

9
1

0
.4

2
8

0
.1

1
1

0
.0

6
7

<
0
.0
0
1

0
.0

8
0

<
0
.0
0
1

0
.0

1
3

0
.2

0
3

0
.2

5
1
2
1
.3

7
<
0
.0
0
1

0
.3

0
1

0
.0

9
4

0
.3

6
2

0
.0

8
5

0
.3

7
8

0
.1

0
6

0
.0

6
2

<
0
.0
0
1

0
.0

7
7

<
0
.0
0
1

0
.0

1
6

0
.0

7
5

0
.3

1
2
1
.0

1
<
0
.0
0
1

0
.2

6
2

0
.0

8
7

0
.3

1
9

0
.0

7
8

0
.3

3
4

0
.0

9
7

0
.0

5
7

<
0
.0
0
1

0
.0

7
2

<
0
.0
0
1

0
.0

1
5

0
.0

5
4

0
.3

5
1
2
2
.1

4
<
0
.0
0
1

0
.2

3
1

0
.0

8
0

0
.2

8
3

0
.0

7
3

0
.2

9
8

0
.0

8
9

0
.0

5
2

<
0
.0
0
1

0
.0

6
7

<
0
.0
0
1

0
.0

1
5

0
.0
4
5

0
.4

1
2
3
.0

8
<
0
.0
0
1

0
.2

0
5

0
.0

7
5

0
.2

5
4

0
.0

6
8

0
.2

6
8

0
.0

8
2

0
.0

4
9

<
0
.0
0
1

0
.0

6
3

<
0
.0
0
1

0
.0

1
4

0
.0
4
1

0
.4

5
1
2
2
.9

1
<
0
.0
0
1

0
.1

8
2

0
.0

7
0

0
.2

2
8

0
.0

6
4

0
.2

4
1

0
.0

7
6

0
.0

4
6

<
0
.0
0
1

0
.0

5
9

<
0
.0
0
1

0
.0

1
3

0
.0
4
1

0
.5

1
2
3
.1

7
<
0
.0
0
1

0
.1

6
3

0
.0

6
6

0
.2

0
6

0
.0

6
0

0
.2

1
9

0
.0

7
1

0
.0

4
3

<
0
.0
0
1

0
.0

5
5

<
0
.0
0
1

0
.0

1
3

0
.0
3
6

m
=

5

0
.1

1
5
.4

1
<
0
.0
0
1

0
.3

6
5

0
.0

4
6

0
.3

7
2

0
.0

4
5

0
.3

5
2

0
.0

5
4

0
.0

0
7

0
.0
0
9

-0
.0

1
3

<
0
.0
0
1

-0
.0

2
0

<
0
.0
0
1

0
.1

5
1
1
9
.4

9
<
0
.0
0
1

0
.3

6
4

0
.0

7
6

0
.4

1
5

0
.0

5
8

0
.4

1
0

0
.0

7
1

0
.0

5
1

<
0
.0
0
1

0
.0

4
6

<
0
.0
0
1

-0
.0

0
5

0
.6

3
4

0
.2

1
2
6
.0

2
<
0
.0
0
1

0
.3

2
6

0
.0

8
8

0
.3

8
6

0
.0

7
6

0
.3

9
3

0
.0

9
3

0
.0

6
0

<
0
.0
0
1

0
.0

6
6

<
0
.0
0
1

0
.0

0
6

0
.6

0
4

0
.2

5
1
2
4
0

<
0
.0
0
1

0
.2

8
6

0
.0

8
7

0
.3

4
5

0
.0

7
8

0
.3

5
7

0
.0

9
6

0
.0

5
9

<
0
.0
0
1

0
.0

7
0

<
0
.0
0
1

0
.0

1
2

0
.1

9
2

0
.3

1
2
2
.7

7
<
0
.0
0
1

0
.2

5
2

0
.0

8
3

0
.3

0
7

0
.0

7
5

0
.3

2
0
.0

9
3

0
.0

5
5

<
0
.0
0
1

0
.0

6
8

<
0
.0
0
1

0
.0

1
3

0
.0

9
7

0
.3

5
1
2
2
.0

5
<
0
.0
0
1

0
.2

2
3

0
.0

7
7

0
.2

7
4

0
.0

7
1

0
.2

8
7

0
.0

8
6

0
.0

5
1

<
0
.0
0
1

0
.0

6
4

<
0
.0
0
1

0
.0

1
4

0
.0

6
1

0
.4

1
2
2
.1

0
<
0
.0
0
1

0
.1

9
8

0
.0

7
2

0
.2

4
6

0
.0

6
6

0
.2

5
9

0
.0

8
0

0
.0

4
7

<
0
.0
0
1

0
.0

6
0

<
0
.0
0
1

0
.0

1
3

0
.0
4
5

0
.4

5
1
2
1
.4

2
<
0
.0
0
1

0
.1

7
8

0
.0

6
7

0
.2

2
1

0
.0

6
2

0
.2

3
4

0
.0

7
4

0
.0

4
4

<
0
.0
0
1

0
.0

5
6

<
0
.0
0
1

0
.0

1
3

0
.0
3
6

0
.5

1
2
1
.5

4
<
0
.0
0
1

0
.1

6
0

0
.0

6
2

0
.2

0
0

0
.0

5
8

0
.2

1
3

0
.0

6
9

0
.0

4
1

<
0
.0
0
1

0
.0

5
3

<
0
.0
0
1

0
.0

1
2

0
.0
2
9

F
F

-s
ta

ti
st

ic
,

S
D

st
a
n
d
a
rd

d
ev

ia
ti

o
n
,

M
D

m
ea

n
d
iff

er
en

ce

B
o
ld

va
lu

es
in

d
ic

a
te

si
g
n
ifi

ca
n
t

d
iff

er
en

ce
s

92



For N = 600 (i.e. 30 seconds) in the AP direction, the relative consistency

of ApEn and its ability to discriminate between Non-Fallers and Fallers were chal-

lenged. Firstly, more trend flips were observed for shorter time-series (N = 600)

than for longer ones (N = 1200) (see Figure S3 in Appendix C). Also, statistical sig-

nificance was only observed for combinations of m and r producing trend flips, thus

casting doubt on its legitimacy (see Table S3 in Appendix C). In the ML direction,

similar trends in group differences were observed for shorter data lengths (N = 600)

compared to longer data length (N = 1200). Namely, Fallers showed generally lower

ApEn mean values than Non-Fallers, with a slightly less consistent trend (1 trend

flips for N = 600 versus any flip for N = 1200) (see Figure S4 in Appendix C).

Moreover, in agreement with results for N = 1200, only specific combinations of m

and r produced statistically significant trends (see Table S4 in Appendix C).

4.4.2.3 Sample entropy

A significant four-way interaction between group, m, r and N was found [Anterior-

Posterior: F (4.82, 4571 = 6.71, p < 0.001, partial η2 = 0.007; Medial-Lateral:

F (6.7, 6354) = 2.18, p = 0.035, partial η2 = 0.002]. This indicated that the SampEn

values were different between at least two groups for one or more combinations of

m, r and N . Once again, the reported p-values are the corrected ones using the

Greenhouse-Geisser procedure, given that the compound symmetry assumption was

violated (Mauchly’s test with a p < 0.001 for both anterior-posterior and medial-

lateral CoP time-series).

Young versus Older adults (Non-Fallers and Fallers). For N = 1200 (i.e.

60 seconds) in the AP direction, Fallers and Non-Fallers showed higher SampEn

mean values than Young adults for all combinations of m and r (Figure 4.6). Those

differences were found statistically significant with a p < 0.001 (Table 3). In the ML

direction, Non-Fallers had higher SampEn mean values than Young adults for all

combinations ofm and r (see Figure S5 in Appendix C). In contrast, Fallers generally

had lower values compared to Young adults. However, all those differences between

Young and Non-Fallers/Fallers were found not statistically significant (see Table S5

in Appendix C).

For N = 600 (i.e. 30 seconds) in the AP direction, the relative trend con-

sistency of SampEn and its ability to discriminate between Young adults and older

adults (both Fallers and Non-Fallers) were preserved. Namely, Non-Fallers and Fall-

ers showed higher SampEn mean values than Young adults for all combinations of

m and r (see Figure S6 in Appendix C). Those differences remained statistically sig-
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nificant with p−value < 0.001 (Table S6 in Appendix C). In the ML direction, some

combinations of m and r produced statistically significant differences between Young

adults and Fallers (see Table S7 in Appendix C), an unexpected result considering

that no significant differences between groups were observed for longer time-series

(N = 1200). More specifically, Fallers showed lower SampEn mean values than

Young adults (Figure S7 in Appendix C). On the other hand, the relative trend

consistency in differences between Young adults and Non-Fallers was challenged,

corrupting the consistent trend observed for longer time-series (N = 1200) for which

Non-Fallers showed higher SampEn values than Young adults for all combinations

of m and r.

Older adults, Non-Faller versus Fallers. For N = 1200 (i.e. 60 seconds) in

the AP direction, Fallers exhibited higher SampEn mean values than Non-Fallers

for all combinations of m and r (Figure 4.6). However, statistical testing revealed

significant differences only for specific parameter combinations (Table 3). In the

ML direction, Fallers exhibited lower SampEn mean values than Non-Fallers for all

combinations of m and r (see Figure S5 in Appendix C). No significant differences

were found between Non-Fallers and Fallers (Table S5 in Appendix C).

For N = 600 (i.e. 30 seconds) in the AP direction, the ability of SampEn

to discriminate between Non-Fallers and Fallers was challenged. Namely, no statis-

tically significant differences between Non-Fallers and Fallers were observed (Table

S6 in Appendix C), even if a consistent decrease was preserved (Figure S6 in Ap-

pendix C). In the ML direction, two combinations of m and r produced statistically

significant differences between Non-Fallers and Fallers (Table S7 in Appendix C),

with Fallers showing lower SampEn mean values than Non-Fallers (Figure S7 in Ap-

pendix C). These results differ from the results obtained with longer CoP time-series

(N = 1200), where no significant differences were observed.

4.4.2.4 Linear measures

Both Fallers and Non-Fallers exhibited higher mean values than Young adults for

all linear measures of CoP displacement. These differences were found statistically

significant with a p < 0.001. Moreover, Fallers exhibited higher mean values than

Non-Fallers for all linear measures. However, those differences did not reach statis-

tical significance (Table 4.6).
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Figure 4.6: Sample entropy (SampEn) mean value (bars) and standard deviation
(error lines) by group as a function of r for m = 2, 3, 4, 5 and N = 1200 (i.e.
60 seconds) for the AP component of the CoP displacement during unperturbed
standing: a) m = 2, b) m = 3, c) m = 4, and d) m = 5
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4.4.3 Behaviour of sample entropy under the different testing con-

ditions

For any given parameter combination, the mean SampEn value by group increased

across the four testing conditions (vision-surface): OR < CR < OF < CF. Older

adults showed higher mean SampEn values than young adults across all testing con-

ditions, with Fallers consistently exhibiting higher mean values than Non-Fallers.

The differences between older and young adults were found to be significant for

all parameter combinations across testing conditions (Tables S8 to S11 in Appendix

C). However, significant differences between Non-Fallers and Fallers were only found

under the OF condition for two parameter combinations (see Table S10 in Appendix

C). To illustrate these findings, Figure 4.7 shows the SampEn mean value and 95%

confidence interval by group and testing condition for three selected parameter com-

binations, one of which produced significant differences between Fallers and Non-

fallers (m = 2, r = 0.1, N = 1200).

4.5 Discussion

The use of ApEn and SampEn to characterise the regularity of CoP trajectories

is still relevant. While previous studies have achieved promising results regarding

the use of these entropy measures to discriminate between experimental groups and

testing conditions, the adequate selection of input parameter values for the analysis

of CoP time-series has not yet been formally investigated. This study aimed (1)

to examine the effect of changing the values of parameters m, r and N on ApEn

and SampEn values in CoP time-series, and (2) to determine the ability of ApEn

and SampEn to discriminate between experimental groups. It was expected that

ApEn and SampEn values would change significantly as functions of m, r and N ,

yet that SampEn would maintain consistent behaviour across different parameter

value combinations (e.g. young adults showing consistently either higher or lower

entropy values than older adults) [112]. Moreover, it was expected that significant

differences in entropy values between young and older adults would be observed

and that some parameter value combinations would potentially reveal significant

differences between non-fallers and fallers.
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Firstly, the results confirm that the ApEn and SampEn algorithms are very

sensitive to input parameter choice. Consequently, researchers and clinicians should

be cautious when comparing studies using different parameters, even in similar pop-

ulations and testing conditions: a direct comparison of entropy values (e.g. mean

and range) should be completely avoided. However, the analyses in this study al-

low observation of the behaviour of ApEn and SampEn mean values over a wide

range of input parameters, which might be useful for other studies. Namely, for

a chosen m, both ApEn and SampEn tended to decrease as r increased, except in

the case of ApEn for low values of r in combination with high values of m. The

decreasing trend showed steeper slopes for lower values of m. Similarly, for a chosen

r, ApEn and SampEn tended to decrease as m increased (Figure 4.4). In other

words, CoP time-series exhibited more regularity (i.e. lower entropy values) for

higher similarity tolerances and higher subseries lengths. The increase in regularity

for higher values of r is an expected result, as it is a reasonable assumption that

a higher number of subseries will meet the similarity criterion for a more relaxed

tolerance. The increase in regularity for higher values of m suggests that patterns

in CoP time-series are observed at larger time-scales rather than at smaller time-

scales (e.g. in our study, m = 5 would correspond to a 0.25 to 0.3-second pattern

and m = 2 to a 0.1 to 0.15-second pattern). This could presumably be linked to

the well-known fact that for unperturbed standing posture the main components of

the CoP signal are below 10 Hz [26]. As for the effects of data length, our results

confirmed that ApEn is more dependent on this parameter than SampEn [111].

This claim is supported by the lower ApEn values observed for shorter time-series

(N = 600) than for longer time-series (N = 1200). This situation is particularly

evident for higher m values and lower r values. For instance, see Figure 4.4 and

compare ApEnAP (m = 5, r = 0.1) for N = 600 (top left pane) to N = 1200

(top right pane); then compare SampEnAP (m = 5, r = 0.1) for N = 600 (bottom

left panel) to N = 1200 (bottom right panel). Whereas a difference in the ApEn

value between longer and shorter time-series is evident, the difference in the Sam-

pEn value is barely noticeable. These initial findings already tipped the scales in

favour of SampEn when dealing with CoP time-series, in line with previous studies

that had suggested their use for the analysis of cardiac inter-beat interval, gait and

brain activity time-series [111, 112, 161]. Otherwise, they allow narrowing down the

number of potentially useful input parameter combinations in case of using ApEn,

discarding combinations of m = {4, 5} and r = {0.1, 0.15, 0.2}.
Secondly, the results highlight issues with the relative consistency in CoP

time-series for ApEn, as observed by the change in the direction of differences be-
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tween groups (known as “flip” or “crossovers”) for some combinations of m and

r. For instance, in the AP direction older adults with falls in the last 12 months

(Fallers) showed generally higher ApEn mean values than young adults, but the

opposite trend was observed for ApEn(m = 5, r = 0.1). This issue was still more

evident when comparing older adults with and without falls in the last 12 months

(i.e. Non-fallers and Fallers, respectively) as more combinations of m and r pro-

duce crossovers. Moreover, the issue with relative consistency was accentuated for

shorter time-series (N = 600). Importantly, these issues were observed for higher

values of m and lower values of r, which once again suggest that these values are not

an optimal choice for CoP time-series analysis based on ApEn. In contrast, Sam-

pEn showed relative consistency, as no crossovers between groups were observed.

This feature has been highlighted as one of the advantages of SampEn over ApEn

for other types of biological data analysis as well [111, 112, 161]. This is an addi-

tional reason why researchers and clinicians should favour SampEn over ApEn for

analysing CoP time-series.

Additionally, the results suggest that ApEn and SampEn are more sensitive

than linear CoP displacement measures to differences between groups: ApEn and

SampEn were able to discriminate between older adults with and without falls in

the past 12 months (Tables 4.4 and 4.5), whereas linear measures were not (Table

4.6). In other words, while Non-fallers and Fallers exhibited commensurable CoP

displacements in terms of magnitude (i.e. total length, amplitude and area), vari-

ability (i.e. standard deviation) and velocity (for instance, see Figure 4.1), they

manifested differences in CoP time-series structure (more specifically, in regular-

ity). Nevertheless, the results also revealed that the selection of input parameters in

the computation of ApEn and SampEn is critical in the identification of significant

differences between groups. Indeed, ApEn and SampEn were able to discriminate

with ease between two highly heterogeneous groups, i.e. young and older adults,

for a wide range of m, r and N values. However, only a subset of combinations

revealed significant differences between more homogeneous groups; i.e., older adults

with and without falls in the last 12 months. Those differences between groups were

mainly observed for CoP time-series in the anterior-posterior direction with longer

length (N = 1200, equivalent to a 60-second duration). Moreover, SampEn revealed

significant differences for a higher number of combinations than ApEn. Therefore,

it is suggested that researchers and clinicians aim to collect at least 60 seconds of

posturography data and focus on the analysis of the anterior-posterior component

of the CoP displacement using SampEn. However, it is appreciated that sustaining

a quiet standing posture for more than 60 seconds can be challenging for some older
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adults.

Furthermore, a more in-depth analysis of SampEn behaviour under four dif-

ferent testing conditions revealed that, while SampEn can discriminate with ease

between two highly heterogeneous groups (i.e. young and older adults) for a wide

range of testing conditions, some specific conditions might boost its sensitivity to

differences between more homogeneous groups (i.e. older adults with and without

falls in the last 12 months). Namely, older adults show significantly higher mean

values than young adults across all testing conditions. However, significant differ-

ences between Non-Fallers and Fallers were only found for one condition; namely,

the eyes open-foam surface condition (OF). Certainly, this was the case only for

two parameter combinations. However, this fact might be explained by the imbal-

ance in the dataset: there were 85 (53.5%) young adults, 56 (35.2%) non-fallers and

only 18 (11.3%) fallers. These numbers have an important impact on inferential

statistics: with a particularly low number of subjects in the Fallers group, the 95%

confidence interval for the mean (Confidence Interval at 95% (CI)) of the group is

expected to be wide, thus overlapping with the CI of the Non-fallers group. This

situation is illustrated in 4.7, where SampEn mean values and CI by group and

condition are shown for three selected parameter combinations. It can be observed

that the 95%CIs for the Non-fallers and Fallers groups in the OF condition only

partially overlap, suggesting that given a higher number of subjects in the Fallers

group its CI would shrink, potentially producing non-overlapping CIs between those

two groups. In contrast, the Non-Fallers and Fallers CI for other testing conditions

are totally or almost overlapping, suggesting that they would remain so even if the

size of the former group were higher. Similar results were observed across all values

of m considered in the present study. Thus its choice seems to play a minor role

in this specific aspect of analysis. However, the results suggest that the choice of

r is critical, as higher values of r (e.g. r = 0.5) seem to distort the potentially

distinctive profile line that each group shows for lower values (e.g. r = 0.1) when

SampEn mean values are plotted across testing conditions. This observation allows

narrowing further down the options of potentially useful values of r to somewhere

in the middle of the range (e.g. r = {0.25, 0.3, 0.35}).
From the clinical perspective, the results provide researchers interesting in-

sights. The first has to do with the direction of the difference in entropy values be-

tween the experimental groups in this study (i.e. young adults and older adults with

and without recent falls). In the anterior-posterior direction, older adults (both fall-

ers and non-fallers) exhibited significantly higher entropy values than young adults

for most combinations of m, r and N . Moreover, Fallers exhibited generally higher
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SampEn values than Non-Fallers (although that difference was significant only for

some combinations of input parameters). Therefore, these findings conflict with the

traditional interpretation of entropy values, which suggest that older adults should

exhibit generally lower entropy values as a consequence of the loss of physiological

complexity due to ageing and ill-health [162]. This conflict is solved by bearing in

mind that entropy cannot be directly linked to complexity: a smaller entropy value

does not mean less complexity, it only indicates more regularity based on one partic-

ular timescale [110, 111]. Therefore, if CoP entropy values observed in healthy young

adults are to be taken as a reference, then the higher values found in older adults

(especially in Fallers) may be indicative of posture control mechanisms that are too

random to command balance properly. In other words, the irregularity observed

in older adults might be associated with an unstructured system which becomes

less sustainable [21]. As for CoP entropy values in the ML direction, the observed

results resist a straightforward interpretation, as no significant differences between

groups were found. However, the generally lower entropy values observed in Fallers

compared to Young adults and Non-Fallers may suggest posture control mechanisms

that are too stiff (too regular), which could be problematic when coping with exter-

nal factors demanding an adaptable balance control. A second insight relates to the

sensitivity of entropy measures to differences between groups compared to that of

traditional measures. While the traditional measures were only able to discriminate

between highly heterogeneous groups (young adults versus older adults), entropies

could also discriminate between more homogeneous groups (non-fallers versus fall-

ers). This suggests that Fallers suffer from balance impairments of a different nature

to those produced by normal ageing. However, the elucidation of the specific nature

of those impairments was beyond the scope of this study. A third insight relates

to the conditions that seem to accentuate the differences in balance control mecha-

nisms between the experimental groups. The findings suggest that neither the least

nor the most challenging testing conditions (vision-surface: open-rigid and closed-

foam, respectively) enable the discrimination of differences between Non-fallers and

Fallers: both groups seem to cope similarly with those conditions. In contrast, a

testing condition of intermediate complexity (i.e. open-foam) seems to better reveal

those differences.

Finally, it must be acknowledged that there are more recent developments in

the field of nonlinear analysis that could potentially improve the sensitivity when

looking for differences between groups. In particular, the development of multiscale

entropy and multivariate Multi-scale Entropy (MSE) have offered new perspectives

for the analysis of biological time-series [163–166]. A few studies have already ap-
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plied these approaches to the analysis of CoP time-series [99, 105, 107]. Briefly, these

approaches rely on the computation of sample entropy values at different time-scales

and produce a two-dimensional plot (time-scale versus sample entropy) depicting a

profile line for each experimental group/condition. An overall entropy ‘score’ can

be computed by adding the entropy values at specific time-scales [105]. While these

new approaches represent an interesting tool to explore the level of regularity con-

tained at different time-scales, they cannot avoid the issue of the adequate selection

of input parameters. Since MSE and its variations are based on SampEn, the re-

searchers and clinicians that opt for these newer approaches face essentially the

same problem that those who opt for ‘single-scale’ entropy measures when it comes

to input parameter selection. Hopefully, the present work will aid them in their

choices or at least inspire them to adopt a systematic approach to the identification

of the optimal parameters.

4.6 Conclusions

This chapter presented the secondary analysis of a public dataset of CoP time-

series performed to investigate whether nonlinear descriptors, specially ApEn and

SampEn, are more sensitive than linear measures to differences in balance control

due to ageing and fall risk, as well as to identify the optimal way to apply them

(e.g. signal pre-processing, selection of input parameters).

In summary, the results suggest that SampEn represents a better choice for

the analysis of CoP time-series given its relative consistency and ability to discrim-

inate between experimental groups. Nevertheless, the selection of input parameter

values proved to be critical in the identification of significant differences between

groups, in particular when those groups a presumably close to each other (in par-

ticular, older adults with and without falls in the last 12 months).

In particular, significant differences were mostly observed in CoP time-series

in the AP direction of 60-s duration (N = 1200). Therefore, future studies using

these entropy measures should favour longer CoP recordings (e.g. ≥ 60 seconds)

over shorter CoP recordings (e.g. 30 seconds), as well as focus the analyses on AP

time-series.

Additionally, significant differences between groups with a consistent trend

were mostly observed for sample entropy. Hence, future studies should favour the use

of the latter over approximate entropy. More specifically, when analysing the data re-

gardless of testing condition, significant differences were observed for SampEn(m =

2, r = {0.4, 0.45, 0.5}) and SampEn(m = {4, 5}, r = {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}).
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Nevertheless, when analysing the data for specific testing conditions, higher values

of r (≥ 4) distorted the seemingly distinctive pattern that each group showed when

plotting SampEn mean values across testing conditions.

Finally, researchers and clinicians working on the analysis of CoP time-

series are recommended: 1) to use SampEn with input parameters m = {4, 5}
and r = {0.25, 0.3, 0.35}, 2) to focus the analysis on the AP component, and 3) to

further explore the ‘eyes open-foam surface’ testing condition as a potential booster

of differences between groups.

This study led to the identification of optimal combinations of input param-

eters leading to discrimination between non-fallers and fallers using SampEn, thus

answering the second research question underlying this thesis (see chapter 1). The

study presented in the next chapter investigates potential associations between day-

to-day variations in sleep quantity and quality, monitored using wearable devices,

and balance in unperturbed standing. Hence, the study addresses the third research

question.
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Chapter 5

Day-to-Day Variations in Sleep

Quality and Balance in

Standing: the Role of Wearable

Sensors

5.1 Chapter overview

Wearable devices are offering new opportunities for in-home continuous sleep mon-

itoring in the broader population. They are potentially relevant for fall preven-

tion, given that chronic sleep disturbances and poor sleep quality are associated

with future falls in older people. Hence, if short-lived sleep disturbances and poor

sleep quality have a similar effect on balance control, continuous sleep monitor-

ing would be relevant for fall prevention programmes in frail populations and sleep

disturbance-inducing scenarios (e.g. hospital wards). Therefore, the potential asso-

ciation between day-to-day variations in sleep quality and balance control deficits

warrants investigation. This chapter presents a study that aimed to investigate the

associations between day-to-day variations in sleep quality, measured via wearable

devices, and balance in standing. Namely, this study investigated the potential

use of wearable devices for monitoring day-to-day variations in sleep quantity and

quality, as well as the sensitivity of the balance control system to these variations.
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5.2 Introduction

Acute sleep deprivation is associated with alterations in posture control during quiet

standing [167–177]. Balance deficits after intervals of 24 to 48 hours of sleep depriva-

tion are reflected by wider [168, 171, 174–176], more fluctuating [167, 170, 172, 173]

and faster [169] Centre of Pressure (CoP) displacements in the Anterior-Posterior

(AP) axis. Moreover, vision plays a substantial role in static balance after 24 hours

of sleep deprivation, as suggested by wider and more fluctuating CoP displacements

observed when subjects are tested with eyes closed than when they are tested with

eyes open [173]. After 26 hours of sleep deprivation, subjects also showed higher

body sway under a single-task condition and lower body sway under a dual-task con-

dition, suggesting that cognitive load also plays an essential role in balance control

under sleep deprivation. These findings suggest that the effects of sleep deprivation

on postural steadiness found under no cognitive load are compensated with a freez-

ing strategy under cognitive load condition [175]. Moreover, older adults (≥60 years

old) suffer more sleep deprivation effects on balance than young adults (18–59 years

old) [176]. This finding may be relevant in the context of fall prevention in senior

citizens, especially in hospitalised older adults. Therefore, all these studies agreed

that long periods of sleep deprivation (≥24 h) are associated with deteriorations in

static balance, especially in senior subjects.

More recently, the effects of chronic sleep restriction due to sleep debt and

social jet lag have been studied [178, 179]. Chronic low sleep quality (i.e. higher sleep

fragmentation and lower sleep efficiency) was found to affect balance control causing

higher postural instability [178]. Moreover, social jetlag (i.e. the misalignment of

the biological driven and socially dictated sleep times) was also found to deteriorate

balance control [179], as suggested by posture control performance being consistently

better on Mondays (after two of days of higher-quality sleep) than on Fridays (after

a week of restricted sleep).

This chapter presents an experimental study performed to investigate the

associations between day-to-day variations in sleep and balance. More specifically,

this study investigates the potential use of wearable devices for monitoring day-to-

day variations in sleep quantity and quality, as well as the sensitivity of the balance

control system to these variations. The contents of this chapter have been published

elsewhere [180].
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5.3 Materials and methods

5.3.1 Study participants

Participants were recruited using e-mail advertising sent to postgraduate students

from the School of Engineering of the University of Warwick. Exclusion criteria

included having a medical history of sleep disorders, neurological or physical dis-

abilities and having pharmacological treatment potentially affecting sleep patterns

and postural control (e.g. anti-depressants, hypnotics and stimulants).

Baseline characteristics, such as age, height, weight, general health status

and use of medications, were collected during a baseline assessment and briefing

session. Participants were also asked to complete the Pittsburgh Sleep Quality

Index (PSQI) instrument [30]. The PSQI questionnaire provided a global score

computed from nineteen self-rated questions related to sleep quality, sleep latency,

sleep duration, sleep efficiency, sleep disturbances, use of sleeping medication and

daytime dysfunction. The PSQI global score was used to compare baseline sleep

quality over the past month between groups.

All subjects provided informed consent before participating in the study. The

research protocol was approved by the Biomedical and Scientific Research Ethics

Committee of the University of Warwick (REGO-2014-1039 AM01).

5.3.2 Equipment

Sleep monitoring was performed using the Zephyr BioHarness 3.0 (Medtronic, Inc.,

Annapolis, MD, USA), a wearable device that measures tri-axial trunk acceleration

and one-lead Electrocardiogram (ECG) signals at a sampling frequency of 100 Hz

and 1 kHz, respectively, at a resolution of 12 bits per sample (Figure 5.1). The

device is attached to chest over the xiphoid process (i.e. the bone structure located

at the centre to the chest, below the lower part of the sternum) using a pair of pre-

gelled, disposable electrodes. This device uses proprietary algorithms to calculate

the user’s activity level and posture based on acceleration signals. Activity level is

reported in gravitational force units (i.e. g-force or simply g, where 1g = 9.806m/s2)

within a range of 0 to 16 g and is computed as

Activity =
√
x2 + y2 + z2 (5.1)

where x, y and z are the average acceleration for the vertical, medial-lateral

and anterior-posterior axes, respectively, over 1-second, non-overlapping windows.

Posture is the wearer’s angle of deviation from the vertical axis, where 0◦=subject
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Figure 5.1: Wearable device used for sleep monitoring

vertical, 90◦=subject prone (face down) and -90◦=subject supine (face up) Activity

and Posture time-series are reported with a frequency of 1 sample per second. More-

over, this device performs R peak detection on the ECG waveform and reports R-R

intervals in milliseconds. Raw three-axial accelerations, ECG signals, R-R interval

time-series, and a summary file containing the activity and posture time-series are

stored in the internal memory of the device during use and can be downloaded for

further processing. The validity and reliability of the Zephyr BioHarness are strong

to very strong for heart rate, acceleration and posture monitoring at low to moder-

ate physical activity levels [181, 182]. Figure 5.2 shows representative activity and

posture signals during sleep.

Balance assessment was performed using the Tekscan F-Scan system (Tekscan,

Inc., South Boston, MA, USA), a plantar pressure measurement and analysis sys-

tem. This system is based on a pair of ultra-thin (0.15mm) instrumented insoles

with a spatial resolution of 3.9 pressure-sensing elements per cm2. Bi-plantar pres-

sure data were collected at a rate of 200 frames per second. Based on pressure

data, the F-Scan Research 7 software computes the foot CoP location for each

frame. CoP displacement is stored as a time-series of numerical data in the AP

and Medial-Lateral (ML) axes in relation to the orientation of the subject. Fig-

ure 5.3 shows a representative bi-plantar pressure distribution map during quiet

standing and the resulting centre of pressure displacement trajectory. According

to the manufacturer’s recommended procedures, the F-Scan system was calibrated

for each participant following the point calibration routine, the suggested method

for standing balance trials. This calibration procedure requires each sensor to be

individually calibrated by having the subject standing on a single foot at a time for

a few seconds (≈5 seconds). Hsiao et al. emphasised the importance of calibrating

the system in actual experimental conditions before use [183]. Providing that the

proper calibration procedure is followed, the accuracy of the F-Scan system has been

found to be satisfactory (i.e., with a measurement error of less than 6%) when the
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Figure 5.2: Activity (top) and posture (bottom) signals during sleep for a participant
that reported poor sleep quality. Activity level is expressed in gravitational force
units with a range from 0 to 16 g (1 g = 9.806 m/s2). Posture is the wearer’s angle
of deviation from the vertical axis, where 0◦=subject vertical, 90◦=subject prone
(face down) and -90◦=subject supine (face up). Data collected by the author as
part of this study.

sensors are subjected to static loads (e.g. during quiet standing) and the pressure

applied during the protocol is comparable with that used during calibration [183].

These considerations are worth mentioning, as some studies have questioned the

validity and reliability of the Tekscan F-Scan system, when utilised with dynamic

loads (i.e. walking [184]) or when the sensors were calibrated using two pressure

values and tested over a broader range [185].

5.3.3 Study protocol

A schematic of the study protocol is depicted in Figure 5.4. After baseline assess-

ment, participants underwent sleep and balance assessment for two consecutive days.

For sleep assessment, they were asked to wear the BioHarness during sleep; i.e., to

apply it at the time of usual bedtime and to take it off after the final awakening.

Additionally, subjects were required to complete the Consensus Sleep Diary (CSD)

every morning immediately after getting out of bed during their participation in

the study [31]. Participants were invited to stick to their regular sleep schedule and

habits (i.e. no intervention was applied).

Balance was assessed in two morning sessions starting at the same time of the

day (9:00 or 10:00 a.m.) for any given participant. Previous studies have suggested
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Figure 5.3: Plantar pressure map and centre of pressure (CoP) trajectory. Left:
Representative bi-plantar pressure map during quiet standing. The black and white
circle represents the foot CoP computed from pressure distribution data. Right:
Representative centre of pressure trajectory (left foot) for a 20-second window. Data
collected by the author as part of this study.

Figure 5.4: Schematic diagram of the study protocol. Sleep monitoring was per-
formed using a wearable device that records acceleration and electrocardiogram
signals. Balance assessment was performed using a plantar pressure measurement
and analysis system based on a pair of instrumented insoles.
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that CoP measures vary throughout the day, allegedly following a circadian pattern

[168–170]. By starting both sessions at the same time of the day, the influence of

time of day on CoP measures was discarded as a potential confounder. At each

session, participants were asked to complete four quiet standing trials with eyes

open. Namely, they were instructed to stand quietly on the foot pressure sensors

with arms hanging naturally at their sides and eyes staring at a fixed point on

the wall in front of them. The sensors were attached to the floor side-by-side in

a comfortable position for each participant (about shoulder width). The duration

of each trial was 30 seconds and a brief resting interval (≈15 seconds) was allowed

between trials. Participants wore socks but no shoes during the session.

5.3.4 Data processing

Data collected via the sleep diary, the BioHarness and the Tekscan system were

processed as follows in order to compute a set of sleep and balance measures (see

Table 5.1 for a summary of those measures with their definitions).

5.3.4.1 Sleep diary measures

Five sleep measures were extracted from the sleep diary: 1) Sleep Onset Latency

(SOL); 2) Wake After Sleep Onset (WASO), a measure of sleep fragmentation;

3) Total Sleep Time (TST) or sleep duration; 4) Sleep Efficiency (SE), and; 5)

Subjective Sleep Quality (SSQ). The definition of these measures can be found in

Table 5.1.

5.3.4.2 Sleep activity level measures

Activity level signals were processed to compute six measures of activity during sleep

(Figure 5.5). Firstly, raw signals were trimmed based on posture data to discard

activity data outside the sleep period (i.e. before getting into and after getting

out of bed). Then, the signals were segmented into continuous, non-overlapping

1-minute epochs and activity counts were computed for each epoch using the zero-

crossing mode, described in section 2.5; i.e., the activity level was compared with

the reference activity level, and each threshold crossing generated an activity count

[124]. The threshold was set to 0.1 g for high sensitivity. This generated a time-series

〈ACT (n)〉 with the form

〈ACT (n)〉 = ACT (1), ACT (2), . . . , ACT (N)
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where ACT (i) is the number of activity counts for the 1-minute ith 1-minute

epoch and N is the total number of 1-minute epochs.

Subsequently, an inactive interval was defined as a sequence of two or more

consecutive epochs whose number of activity counts is equal to zero. Based on this

definition, the 〈ACT (n)〉 was examined to determine the number and duration of

inactive intervals, which produced a time-series 〈I(m)〉 of the form

〈I(m)〉 = I(1), I(2), . . . , I(M)

where I(j) is the duration (minutes) of the jth inactive interval and M is the

total number of inactive intervals.

Finally, six activity measures were computed (Table 5.1):

1. Mean activity counts per epoch

ACTmean =
1

N

N∑
i=1

ACT (i) (5.2)

2. Standard deviation of activity counts per epoch

ACTsd =

√√√√ 1

N − 1

N∑
i=1

[
ACT (i)− 1

N

N∑
i=1

ACT (i)

]2

(5.3)

3. Activity index, defined as the percentage of epochs that the participant was

active (i.e. activity counts>0)

AI =
number of ACT (i) > 0

N
× 100 ∀i (5.4)

4. Fragmentation index, defined as the percentage of inactive intervals with du-

ration of less than or equal to 5 minutes

FI =
number of I(j) ≤ 5

M
× 100 ∀j (5.5)

5. Duration of the longest inactive interval

Imax = max I(i) (5.6)
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6. Mean duration of the inactive intervals

Imean =
1

M

M∑
j=1

I(j) (5.7)

These measures were computed using in-house written scripts in MATLAB

R2017b (The Mathworks, Inc., Natick, MA, USA). The source code can be found

in Appendix A.

5.3.4.3 Heart rate variability measures

Heart Rate Variability (HRV) measures were computed from R-R time-series in

order to characterise autonomic cardiac modulation during sleep (Figure 5.5). As

mentioned in section 2.5, a higher parasympathetic tone has been observed during

Non-Rapid Eye Movement (NREM) sleep, especially during deep sleep; in contrast,

a higher sympathetic tone has been observed during wake intervals, Rapid Eye

Movement (REM) sleep and sleep arousals [35]. Therefore, the HRV analysis pro-

vided with an indication of the presence of wake intervals and arousals, as well as

of shorter deep sleep periods.

Firstly, the R-R series were segmented based on posture data to discard

heartbeats outside the sleep period. Subsequently, the software HRVanalysis was

used to correct R-R time-series and compute four HRV measures from them: two

frequency-domain measures (Low-Frequency (LF) and High-Frequency (HF) power)

and two nonlinear measures (Approximate Entropy (ApEn) and Sample Entropy

(SampEn)) [186]. The automatic R-R interval correction algorithms involve two

steps. First, spurious R-R intervals are detected based on the relative variation in

successive intervals: R-R intervals with a variation of +32.5% or -24.5% are consid-

ered to be spurious and thus discarded [187]. Second, discarded R-R intervals are

recalculated as follows: if the number of successive false R-R intervals is 3 or less,

these are recalculated by cubic spline interpolation; otherwise, they are replaced by

copying the same number of previous valid R-R intervals [186]. In addition, three

frequency-domain measures were computed using in-house written scripts in MAT-

LAB R2017b: LF normalised, HF normalised and LF/HF ratio. The meaning of

these HRV measures has been widely described in literature [126, 127]. In the con-

text of sleep assessment, those features are associated with specific sleep stages and

other relevant phenomena (e.g. arousals) [126]. In the frequency-domain, HF power

describes the parasympathetic activity, whereas LF power describes both parasym-

pathetic and sympathetic activity. Thus, the relationship between both branches
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usually is explored with the normalised frequency values and the LF/HF ratio. A

higher LF/HF ratio reflects a higher HRV. Finally, entropy measures represent an

index of regularity in the cardiac signal. An increase in regularity (i.e., an increase

in the entropy measure) is associated with parasympathetic modulation, and its

decrease is interpreted as the result of an increased sympathetic tone.

5.3.4.4 Balance measures

A block diagram depicting the steps followed for the CoP data processing is shown

in Figure 5.6. CoP time-series were segmented to discard the initial and last 5

seconds of each trial in order to account for the adaptation phase of the participant

to the quiet standing task and the effects of fatigue or lack of attention associated

with a sustained task, respectively [188]. Subsequently, the CoP time-series were

passed through a fourth-order, zero-phase Butterworth low-pass digital filter with a

cut-off frequency of 5 Hz in order to remove acquisition noise. This cut-off frequency

was selected since most of the components of CoP signals are below this frequency

[189]. Afterwards, they were detrended (i.e., subtraction of the mean value from the

time-series). Hence, the analysis of the CoP displacement was carried out relative

to its mean position and not to the origin of the sensors’ coordinate system. Finally,

three CoP displacement measures were computed as described in detail in section

2.4: area, amplitude and standard deviation. These measures were computed for left

and right feet independently. Additionally, the measures for left and right feet were

averaged. Amplitude and standard deviation were computed in the AP axis only, as

previous studies have shown that it is mainly on this axis that balance alterations

are observed [171, 173, 175, 176]. The definition of these measures is presented in

Table 5.1.

Scripts for CoP data processing were also written in MATLAB R2017b. The

source code can be found in Appendix A.
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5.3.5 Statistical analysis

Participants were grouped based on the sleep quality scores they reported in the

sleep diary (i.e. SSQ). Participants who reported no variation in sleep quality over

two consecutive nights were assigned to the Control group. Participants who re-

ported a variation in sleep quality over two consecutive nights (e.g. good sleep

quality in one night and poor sleep quality in the other) were assigned to the Case

group. The validity of self-reported sleep quality was tested by running pairwise

comparisons for all other sleep measures within each group. By definition, no differ-

ences over consecutive nights were expected for the Control group, while significant

differences were expected for the Case group. Two-sided Wilcoxon paired tests with

a significance level set at 0.05 were used for these comparisons, given that most sleep

measures exhibited a non-normal distribution (Table 5.2).

Subsequently, a repeated measures Analysis of Variance (ANOVA)-type rank

test for factorial designs was performed in order to test the main effects and the in-

teraction effects of Group and Session on balance measures [190]. This test was

developed for experimental designs where subjects are stratified in several groups,

as well as observed at different time points (i.e., mixed designs). Importantly, these

tests are robust to outliers and small sample sizes. The computational implemen-

tation of this test provided by the authors via the R package nparLD version 2.1

was used [191]. The main effects and interaction effects of Group and Session were

tested for all balance measures. A p-value < 0.05 was accepted as indicative of sta-

tistical significance. This analysis was performed in R version 3.4.1 (R Foundation

for Statistical Computing, Vienna, Austria).

Finally, differences in balance measures between sessions were investigated for

each group (i.e. post hoc comparisons): for the Control group, pairwise comparisons

were always made between Session 2 and Session 1, given that by definition for this

group sleep quality was equally rated in both sleep opportunities; for the Case group,

pairwise comparisons were made between the session with the poorest sleep quality

and the session with the best sleep quality, regardless of the chronological order in

which they were presented. Two-tailed Wilcoxon paired tests were performed given

the non-normal distribution of most balance measures (Shapiro-Wilk test with a p-

value < 0.05). A p-value < 0.05 was accepted as indicative of statistical significance.

These tests were conducted in MATLAB R2017b.
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Table 5.2: Normality test on sleep measures. A Shapiro-Wilk test of normality
was performed on the sleep measures. P-values < 0.05 (bold) suggest that there is
evidence that the data tested were not normally distributed.

Measure W-statistic p-value

Sleep diary measures
SOL 0.66 0
WASO 0.59 0
TST 0.97 0.351
SE 0.92 0.011

Activity level measures
ACTmean 0.87 0.001
ACTsd 0.93 0.020
AI 0.85 0
FI 0.97 0.491
Imax 0.94 0.056
Imean 0.98 0.741

HRV measures
LF 0.87 0.001
HF 0.67 0
LF normalised 0.95 0.103
HF normalised 0.95 0.103
LF/HF ratio 0.89 0.003
ApEn 0.99 0.938
SampEn 0.98 0.547

SOL sleep onset latency, WASO wake after sleep onset, TST total sleep time, SE sleep
efficiency, HRV heart rate variability, LF low-frequency power, HF high-frequency
power, ApEn approximate entropy, SampEn sample entropy
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5.4 Results

5.4.1 Participants baseline characteristics and stratification

Twenty volunteers (12 females and 8 males) participated in this study. The sample

had an overall mean (standard deviation) age of 28.8 (5.7) years, height of 170.8

(8.3) cm, mass of 68.7 (13.2) kg, body mass index of 23.4 (3.4) kg/m2, heart rate at

rest of 63.1 (8.7) beats/minute, PSQI score of 5.1 (2.4) and average sleep duration

of 7 (1) hours during the past month. No significant differences were found between

groups for these characteristics (Table 5.3).

Six participants reported no variation in sleep quality over two consecutive

nights (Control group), whereas 14 participants reported a variation in sleep quality

over two consecutive nights (Case group). No significant differences were found in

sleep measures over the two consecutive nights for the Control group. Conversely,

the Case group exhibited significant differences for some sleep measures (Table 5.4).

Namely, for the poorest sleep quality night (i.e., the lowest-rated) the Case group

exhibited:

• Longer WASO (p=0.043) and shorter TST (p=0.038), as self-reported in the

sleep diary.

• Higher mean and standard deviation of activity counts per epoch (p=0.033

and p=0.048, respectively), higher activity index (p=0.033) and shorter mean

duration of the more extended inactive interval (p=0.041) as computed from

the trunk acceleration signals.

• Lower heart rate variability, as reflected by lower power in the HF band

(p=0.033) and lower ApEn and SampEn (p=0.021 and p=0.006, respectively).

5.4.2 Group and Session main effects and interaction effects on

balance measures

The main effects of Group and Session were not significant for any CoP displacement

measure (Table 5.5). However, two CoP displacement measures showed significant

Group*Session interaction effects:

• Area of displacement for the right foot (p=0.025)

• Standard deviation (AP axis) for the right foot (p=0.017)
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Table 5.3: Baseline characteristics of study participants. Mean and standard
deviation for all subjects, subjects without day-to-day variation in sleep quality
(Control group) and subjects with variation in day-to-day sleep quality (Case
group). P-values from two-tailed paired t-tests are also shown.

All Control group Case group
(n = 20) (n = 6) (n = 14)

Variable Mean SD Mean SD Mean SD p-value

Age (years) 28.8 5.7 29.5 5.7 28.4 5.9 0.711
Mass (kg) 68.7 13.2 64.3 11.3 70.6 13.9 0.339

Height (cm) 170.8 8.3 167.6 6.8 172.1 8.8 0.279
BMI (kg/m2) 23.4 3.4 22.8 3.7 23.7 3.4 0.608

HR (bpm) 63.1 8.7 63.4 8.2 63.0 9.2 0.925
PSQI 5.1 2.4 5.0 1.7 5.1 2.7 0.908

TST (hours) 7.0 1.0 7.2 1.0 7.0 1.1 0.727
SD standard deviation, BMI body mass index, HR heart rate at rest, PSQI Pittsburgh
Sleep Quality Index, TST total sleep time for the past month

5.4.3 Pairwise comparisons for balance measures

As reported in Table 5.6, eight CoP displacement measures exhibited significant

differences after sleep deterioration (Case group). Namely, after the lowest-rated

sleep participants showed a less stable balance as reflected by:

• an increase in the area of displacement for left and right feet, as well as for

the averaged measure (p=0.049, p=0.011 and p=0.035, respectively)

• an increase in the amplitude of displacement (AP axis) for left and right feet, as

well as for the averaged measure (p=0.025, p=0.013 and p=0.020, respectively)

• an increase in standard deviation (AP axis) for the right foot and the average

for both feet (p=0.035 and p=0.042, respectively)

Conversely, no significant CoP displacement measure variations were ob-

served in the Control group (i.e., subjects presenting no sleep quality variations).

Figure 5.7 illustrates the observed results for the feet-averaged CoP displacement

measures.

5.5 Discussion

This study investigated the potential use of wearable devices for monitoring day-

to-day variations in sleep quantity and quality, as well as the sensitivity of the

124



balance control system to these variations. The hypothesis was that balance in

unperturbed standing, measured by foot CoP displacement, may be affected by

changes in sleep quantity and quality over two consecutive nights. Firstly, the study

explored whether day-to-day self-reported sleep quantity and quality was confirmed

by instrumented sleep assessment using wearable devices. Therefore, participants

were divided into two groups based on whether or not they reported a shift in sleep

quality over two consecutive nights. Importantly, reported changes in sleep quality

were not artificially induced; they were instead the consequence of spontaneous sleep

disturbances experienced during the lowest-rated sleep opportunity (e.g. the need

to use the toilet, an uncomfortable room temperature and involuntarily waking up

in the middle of the night or early in the morning for no apparent reason, among

the most referred disturbances). Subjects reporting a shift in sleep quality reported

significantly higher sleep fragmentation (WASO) and significantly lower sleep dura-

tion (TST) for the lowest-rated sleep opportunity. They also showed higher levels

of activity and shorter inactive intervals as measured via body acceleration signals,

suggesting a less quiet and more fragmented sleep. These results suggest that self-

reported sleep quality was indeed associated with a shorter, more discontinuous and

less quiet sleep, in line with the study by Furtado et al. [178], in which higher WASO

and activity levels were observed in subjects with low-quality sleep over one week.

Moreover, in the present study, subjects reporting a variation in sleep quality also

exhibited higher sympathetic activity (i.e., lower heart rate variability) during the

sleep opportunity, which according to existing literature suggests the presence of

more wake intervals and/or arousals, and fewer and/or shorter deep sleep intervals

[35]. All these differences confirmed that the subjective sleep quality appraisal that

participants made via the sleep diary reflected actual variations in objective sleep

measures. Therefore, wearable devices can be used to detect day-to-day variations

in sleep quantity and quality.
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The main effects and the interaction effects of Group and Session on balance

measures were tested. No significant Group or Session main effects were found

for any CoP measure, confirming the overall homogeneity in balance performance

between groups and sessions. Conversely, two CoP displacement measures showed

significant Group*Session interactions, confirming the hypothesis that day-to-day

variations in balance are associated with variations in sleep quantity and quality

over consecutive nights.

The Group*Session interaction effects above were found to be attributable

to subjects that exhibited a variation in sleep quantity and quality over consecutive

nights. The group of subjects reporting and exhibiting worsening in sleep measures

over two consecutive days also exhibited larger CoP displacements (i.e., amplitude

and area) and fluctuations (i.e., standard deviation), particularly in the anterior-

posterior axis. These results are in line with previous studies, which have also

found larger, more fluctuating and faster CoP displacements in the anterior-posterior

axis as a result of 24 to 48 hours of sleep deprivation [167–176]. This suggests

that the alterations in postural control observed after a day-to-day deterioration

in sleep quality have similar manifestations (direction) to those produced by more

extended periods of sleep deprivation. These alterations could potentially increase

(in magnitude) in older adult populations, as suggested by a previous study where

the effects of sleep loss on balance measures were found to be modulated by age,

with older adults showing an increase in CoP speed more than twice higher than

younger adults after sleep deprivation [176]. However, this observation requires

further investigation.

Altogether, these results confirm that day-to-day variations in sleep quality

are associated with variations in static balance among healthy young adults. The

fact that no differences were found in the group of participants that reported and

exhibited no differences in sleep quality over two nights supports this conclusion.

The neurophysiological mechanisms behind the observed alterations in pos-

tural control need to be elucidated. It is known that both vigilant attention and

the visual system are affected by sleep deprivation [192–195]. Both have also been

found to play an essential role in postural control [40, 196–199]. Future studies could

further investigate the effects of day-to-day variations in sleep quantity and quality,

and standing balance by observing its modulation by available attentional resources

(e.g. cognitive plus postural task versus only postural task) and visual conditions

(e.g. eyes open versus eyes closed).

Although the effects of acute total sleep deprivation [167–176], chronic low

sleep quality [178] and social jetlag [179] on postural control had been previously
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Figure 5.7: Centre of pressure displacement measures. Mean (bars) and standard
error of the mean (error lines) by group and session. The Control group comprises
subjects without day-to-day variations in sleep quality; the Case group comprises
subjects with variations. AP anterior-posterior, p p-value from two-tailed paired
Wilcoxon tests
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investigated, the novelty of this study is that it focused on whether or not spon-

taneous variations in sleep quantity and quality over two consecutive nights may

affect static balance. The findings suggest that a deterioration in sleep quantity and

quality over two consecutive nights is associated with balance during unperturbed

standing characterised by the centre of pressure displacement.

This finding may be relevant in the context of fall prevention, as previous

studies have found significant associations between CoP displacement measures and

risk of falling (although a consensus has not yet been reached on what are the key

balance outcome measures for fall prediction) [10, 92, 200, 201]. Importantly, the

findings presented in this chapter are based on the analysis of a small sample of

young adults. Therefore, further research is required to confirm them in a larger

sample of older adults.

An additional limitation of the present study relates to the fact that only two

consecutive nights of sleep monitoring were considered. Further studies should con-

sider a longer period (i.e. one week) in order to investigate longitudinal associations

between sleep and balance.

5.6 Conclusions

This chapter presented a study performed to investigate the potential use of wearable

devices for monitoring day-to-day variations in sleep quantity and quality, as well

as the sensitivity of the balance control system to these variations.

Firstly, the results of this study suggest that wearable devices can be used

for detecting day-to-day variations in sleep quantity and quality. In particular, the

duration of rest periods and the presence of sleep disturbances can be estimated

from acceleration and electrocardiogram signals.

Moreover, the results of the study suggest that day-to-day variations in sleep

quantity and quality affect balance control during unperturbed standing. This sit-

uation can potentially expand the prevailing paradigm in fall prevention, from the

current one focusing on the occasional assessment of risk factors and changes in the

balance control system to a new one including also the continuous monitoring and

detection of short-lived factors that might result in an imminent fall.

This study investigated the associations between day-to-day variations in

sleep quantity and quality, monitored using wearable devices, and balance in unper-

turbed standing, thus answering the third research question underlying this thesis

(see chapter 1). The study presented in the next chapter investigates whether quan-

titative descriptors of nonlinear dynamics are more sensitive than linear measures
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to differences in balance control due to day-to-day variations in sleep quantity and

quality. Hence, the study addresses the fourth research question.
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Chapter 6

Day-to-Day Variations in Sleep

Quality and Balance in

Standing: the Role of Nonlinear

Signal Analysis

6.1 Chapter overview

This chapter presents a study performed to investigate further the associations be-

tween day-to-day variations in sleep and balance observed in the previous study

(chapter 5). Additionally, this study investigated whether nonlinear measures, es-

pecially Sample Entropy (SampEn), are sensitive to the differences in balance control

produced by day-to-day variations in sleep quantity and quality.

6.2 Introduction

The study presented in chapter 5 investigated the potential use of wearable devices

for monitoring day-to-day variations in sleep quantity and quality, as well as the sen-

sitivity of the balance control system to these variations. The results suggested that

wearable devices can be used for detecting day-to-day variations in sleep quantity

and quality. Moreover, the results of that study also suggest that these variations

in sleep affect balance control during unperturbed standing.

Moreover, the study presented in chapter 4 compared the sensitivity of linear

and nonlinear measures to differences in balance control due to ageing and fall risk.

The results of the study suggested that measures of nonlinear dynamics can reveal
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differences in balance control that linear measures do not reveal.

This chapter presents a study performed to confirm and extend the findings

of the studies mentioned earlier. Namely, the present study investigated further the

associations between day-to-day variations in sleep and balance. As in the previous

study (chapter 5), wearable devices were used for in-home sleep monitoring in order

to confirm their potential use for capturing daily variations in sleep quantity and

quality. Moreover, the study investigated further the association of those variations

in sleep with variations in balance control. In contrast with the previous study,

the present study explored the sensitivity of SampEn to the differences in balance

control produced by day-to-day variations in sleep quantity and quality, based on

the findings presented in chapter 4. Some preliminary results of this study were

presented elsewhere [202].

6.3 Materials and methods

6.3.1 Study participants

Participants were recruited using e-mail advertising sent to postgraduate students

from the School of Engineering, University of Warwick. Exclusion criteria included

to have a medical history of sleep disorders, neurological or physical disabilities

and to be in a pharmacological treatment potentially affecting sleep patterns and

postural control (e.g. anti-depressants, hypnotics and stimulants).

Baseline characteristics, such as age, height, weight, general health status

and use of medications, were collected during a baseline assessment and briefing

session. All subjects provided informed consent before participating in the study.

The research protocol was approved by the Biomedical and Scientific Research Ethics

Committee of the University of Warwick (REGO-2014-1039 AM02).

6.3.2 Equipment

Sleep monitoring was performed using the Zephyr BioHarness 3.0 (Medtronic, Inc.,

Annapolis, MD, USA), a wearable device that measures and records tri-axial trunk

acceleration and one-lead Electrocardiogram (ECG) signals at a sampling frequency

of 100 Hz and 1 kHz, respectively, at a resolution of 12 bits per sample (Figure 6.1).

The device is attached to chest over the xiphoid process (i.e. the bone structure

located at the centre to the chest, below the lower part of the sternum) using a

pair of pre-gelled, disposable electrodes. The device uses proprietary algorithms

to calculate the user’s activity level and posture based on the acceleration signals.
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Figure 6.1: Wearable device used for sleep monitoring

Activity level is expressed in gravitational force units (i.e. g-force or simply g, where

1 g = 9.806 m/s2) with a range from 0 to 16 g and is computed a

Activity =
√
x2 + y2 + z2 (6.1)

where x, y and z are the average acceleration for the vertical, medial-lateral

and anterior-posterior axes, respectively, over 1-second, non-overlapping windows.

Posture is the wearer’s angle of deviation from the vertical axis, where 0◦=subject

vertical, 90◦=subject prone (face down) and -90◦=subject supine (face up). Activity

level and Posture time-series are reported with a frequency of 1 sample per second.

Moreover, this device performs R peak detection on the ECG waveform and reports

R-R intervals in milliseconds. Raw three-axial accelerations, ECG signals, R-R in-

terval time-series, and a summary file containing the activity and posture time-series

are stored in the internal memory of the device during use and can be downloaded

for further processing. The validity and reliability of the Zephyr BioHarness are

strong to very strong for heart rate, acceleration and posture monitoring at low to

moderate physical activity levels [181, 182]. Figure 6.2 shows representative activity

and posture signals during sleep.

Balance testing was performed using a tri-axial force platform (Advanced

Mechanical Technology, Inc., Watertown, MA, USA) at a sampling frequency of 1

kHz. Based on force data, the Vicon Nexus 1.4.116 software (Vicon Motion Systems

Ltd., Oxford, UK) computes the net Centre of Pressure (CoP) location for each

frame. CoP displacement is stored as time-series of numerical data in the Anterior-

Posterior (AP) and Medial-Lateral (ML) axes in relation to the orientation of the

subject orientation. Figure 6.3 shows a participant standing quietly on the force

plate and the corresponding CoP displacement trajectory.
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Figure 6.2: Activity (top) and posture (bottom) signals during sleep for a participant
who reported very poor sleep quality. Activity level is expressed in gravitational
force units with a range from 0 to 16 g (1 g = 9.806 m/s2). Posture is the wearer’s
angle of deviation from the vertical axis, where 0◦=subject vertical, 90◦=subject
prone (face down) and -90◦=subject supine (face up). Data collected by the author
as part of this study.

Figure 6.3: Balance assessment: (A) Participant standing quietly on the force plate
and (B) Centre of pressure trajectory. AP anterior-posterior, ML medial-lateral.
Data collected by the author as part of this study.
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Figure 6.4: Schematic diagram of the study protocol. Sleep monitoring was per-
formed using a wearable patch-type device that records acceleration and electrocar-
diogram signals. Balance testing was performed using static posturography.

6.3.3 Study protocol

A schematic of the study protocol is shown in Figure 6.4. After baseline assessment,

participants underwent sleep and balance assessment for two consecutive days. For

sleep assessment, they were asked to wear the BioHarness during sleep; i.e., to

apply it at the time of usual bedtime and to take it off after the final awakening.

Additionally, subjects were required to complete the Consensus Sleep Diary (CSD)

every morning immediately after getting out of bed during their participation in

the study [31]. Participants were invited to stick to their regular sleep schedule and

habits (i.e. no intervention was applied).

Balance was assessed in two morning sessions starting at the same time of

the day (9:00 or 10:00 a.m.) for any given participant. Previous studies have sug-

gested that CoP measures change throughout the day, allegedly following a circadian

pattern [168–170]. By starting both sessions at the same time of the day, the in-

fluence of time of day on postural control measures was discarded as a potential

confounder. At each session, participants were asked to complete six quiet standing

trials, three with Eyes Open (EO) and three with Eyes Closed (EC). For the EO

trials, they were instructed to stand quietly on the force platform placing the feet in

a comfortable position (about shoulder width), letting the arms hang naturally at

their sides and stare at a point on the wall in front of them. For the EC, subjects

were instructed to close their eyes once they had stepped on the force plate, set the

feet in a comfortable position, and leave their arms to hang naturally. The duration

of each recording was 30 seconds and a brief resting interval (≈15 seconds) was al-

lowed between trials. Participants wore socks but no shoes during data acquisition,

in order to discard spurious differences in balance due to footware (e.g. additional

support and altered foot sole sensation) [188, 203].
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6.3.4 Data processing

Data collected via the sleep diary, the BioHarness and the force platform were

processed as described in the following subsections in order to compute a set of

sleep and balance measures. A summary of those measures is shown in Table 6.1.

6.3.4.1 Sleep diary measures

Five sleep measures were extracted from the sleep diary (Table 6.1): 1) Sleep Onset

Latency (SOL); 2) Wake After Sleep Onset (WASO), a measure of sleep fragmen-

tation; 3) Total Sleep Time (TST) or sleep duration; 4) Sleep Efficiency (SE), and;

5) Subjective Sleep Quality (SSQ).

6.3.4.2 Sleep activity level measures

Activity level signals were processed to compute six measures of activity during sleep

(Figure 6.5). Firstly, raw signals were trimmed based on posture data to discard

activity data outside the sleep period (i.e. before getting into and after getting

out of bed). Then, the signals were segmented into continuous, non-overlapping

1-minute epochs and activity counts were computed for each epoch using the zero-

crossing mode, described in section 2.5; i.e., the activity level was compared with

the reference activity level, and each threshold crossing generated an activity count

[124]. The threshold was set to 0.1 g for high sensitivity. This generated a time-series

〈ACT (n)〉 with the form

〈ACT (n)〉 = ACT (1), ACT (2), . . . , ACT (N)

where ACT (i) is the number of activity counts for the 1-minute ith 1-minute

epoch and N is the total number of 1-minute epochs.

Subsequently, an inactive interval was defined as a sequence of two or more

consecutive epochs whose number of activity counts is equal to zero. Based on this

definition, the 〈ACT (n)〉 was examined to determine the number and duration of

inactive intervals, which produced a time-series 〈I(m)〉 of the form

〈I(m)〉 = I(1), I(2), . . . , I(M)

where I(j) is the duration (minutes) of the jth inactive interval and M is the

total number of inactive intervals.

Finally, six activity measures were computed as described in chapter 5 (equa-

tions 5.3.4.2 to 5.7). These measures were computed using in-house written scripts
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in MATLAB R2017b (The Mathworks, Inc., Natick, MA, USA). The source code

can be found in Appendix A.

6.3.4.3 Heart rate variability measures

Heart Rate Variability (HRV) measures were computed from R-R interval time-

series in order to characterise autonomic cardiac modulation during sleep (Figure

6.5). A higher parasympathetic tone has been observed during Non-Rapid Eye

Movement (NREM), particularly during deep sleep; in contrast, a higher sympa-

thetic tone has been observed during wake intervals, Rapid Eye Movement (REM)

and sleep arousals [35]. Therefore, the HRV analysis provided with an indication of

the presence of wake intervals and arousals, as well as of shorter deep sleep periods.

Firstly, the R-R series were segmented based on posture data to discard

heartbeats outside the sleep period. Subsequently, the software HRVanalysis was

used to correct R-R time-series and compute four HRV measures from them: two

frequency-domain measures (Low-Frequency (LF) and High-Frequency (HF) power)

and two nonlinear measures (Approximate Entropy (ApEn) and SampEn) [186]. The

automatic R-R interval correction algorithms involve two steps. First, spurious R-R

intervals are detected based on the relative variation in successive intervals: R-R

intervals with a variation of +32.5% or -24.5% are considered to be spurious and

thus discarded [187]. Second, discarded R-R intervals are recalculated as follows: if

the number of successive false R-R intervals is 3 or less, these are recalculated by

cubic spline interpolation; otherwise, they are replaced by copying the same number

of previous valid R-R intervals [186]. In addition, three frequency-domain measures

were computed in MATLAB R2017b: LF normalised, HF normalised and LF/HF

ratio. The meaning of these HRV measures has been widely described in literature

[126, 127]. In the context of sleep assessment, those features are associated with

specific sleep stages and other relevant phenomena (e.g. arousals) [126]. In the

frequency-domain, HF power describes the parasympathetic activity, whereas LF

power describes both parasympathetic and sympathetic activity. Thus, the rela-

tionship between both branches usually is explored with the normalised frequency

values and the LF/HF ratio. A higher LF/HF ratio reflects a higher HRV. Finally,

entropy measures represent an index of regularity in the cardiac signal. An increase

in regularity (i.e., an increase in the entropy measure) is associated with parasym-

pathetic modulation, and its decrease is interpreted as the result of an increased

sympathetic tone.
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6.3.4.4 Balance measures

A block diagram depicting the steps followed for CoP data processing is shown in

Figure 6.6. Firstly, CoP time-series were passed through a fourth-order zero-phase

Butterworth low-pass digital filter with a cut-off frequency of 10 Hz in order to

replicate the initial specifications of CoP time-series used in the study described in

chapter 4. Then, the resulting signals were processed differently as required for the

computation of CoP linear measures and sample entropy.

Linear measures. CoP time-series were downsampled by a factor of 10 to achieve

an effective sampling frequency of 100 Hz. Subsequently, the CoP time-series were

detrended (i.e., subtraction of the mean value from the time-series). Finally, six CoP

displacement linear measures were computed as described in section 2.4: Amplitude,

Standard deviation, Mean velocity, Total length, Total mean velocity and Area.

Amplitude, Standard deviation and Mean velocity were computed independently

for the AP and the ML axes, producing a value for each displacement direction. By

definition, Total length, Total mean velocity and Area are composite measures of

displacement that consider the CoP displacement in both directions.

Sample entropy. CoP time-series were downsampled by a factor of 50 to achieve

an effective sampling frequency of 20 Hz, thus replicating the specifications of the

time-series in the study described in chapter 4. Then, SampEn was computed using

m = 5, r = 0.1 and N = 600 data points (20 Hz x 30 s).

Scripts for CoP data processing were also written in MATLAB R2017b. The

source code can be found in Appendix A.

6.3.5 Statistical analysis

Participants were grouped according to the sleep quality scores they reported in

the sleep diary (SSQ). Those who reported no variation in sleep quality over two

consecutive nights were assigned to the Control group. Participants who reported

a variation in sleep quality over two consecutive nights (e.g. good sleep quality in

one night and poor sleep quality in the other) were assigned to the Case group. The

validity of self-reported sleep quality was tested by running pairwise comparisons for

all other sleep measures within each group. By definition, no differences over consec-

utive nights were expected for the Control group, while significant differences were

expected for the Case group. Two-sided Wilcoxon paired tests with a significance

level set at 0.05 were used for these comparisons, given that most sleep measures

exhibited a non-normal distribution (Shapiro-Wilk test with a p-value < 0.05).
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Subsequently, a repeated measures Analysis of Variance (ANOVA)-type rank

test for factorial designs was performed in order to test the main effects and the in-

teraction effects of Group and Session on balance measures [190]. This test was

developed for experimental designs where subjects are stratified in several groups,

as well as observed at different time points (i.e., mixed designs). Importantly, these

tests are robust to outliers and small sample sizes. The computational implementa-

tion of this test provided by the authors through the R package nparLD version 2.1

was used [191]. The main effects and interaction effects of Group and Session were

tested for the CoP linear measures and SampEn. A p-value < 0.05 was accepted as

indicative of statistical significance. This analysis was performed in R version 3.4.1

(R Foundation for Statistical Computing, Vienna, Austria).

Finally, differences in CoP linear measures and SampEn between sessions

were investigated for each group: for the Control group, pairwise comparisons were

always made between Session 2 and Session 1, given that by definition for this group

sleep quality was equally rated in both sleep opportunities; for the Case group,

pairwise comparisons were made between the session with the poorest sleep quality

and the session with the best sleep quality, regardless of the chronological order in

which they were presented. Two-tailed Wilcoxon paired tests were performed given

the non-normal distribution of most balance measures (Shapiro-Wilk test with a p-

value < 0.05). A p-value < 0.05 was accepted as indicative of statistical significance.

These tests were conducted in MATLAB R2017b.

6.4 Results

6.4.1 Participants baseline characteristics and stratification

Thirty-one healthy volunteers (14 females and 17 males) participated in this study,

from which seven also participated in the study reported in chapter 5. The sample

had an overall mean (standard deviation) age of 28.8 (4.7) years, height of 172.1

(10.6) cm, mass of 72.3 (14.8) kg and body mass index of 24.2 (3.2) kg/m2. No

significant differences were found between groups for these characteristics (Table

6.2).

Seven participants reported no variation in sleep quality over two consecutive

nights (Control group), whereas 24 participants reported a variation in sleep quality

over two consecutive nights (Case group). No significant differences were found in

sleep measures over the two consecutive nights for the Control group. Conversely,

the Case group exhibited significant differences for some sleep measures (Table 6.3).

Namely, for the poorest sleep quality night (i.e., the lowest-rated) the Case group
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Table 6.2: Baseline characteristics of study participants. Mean and standard
deviation for all subjects, subjects without day-to-day variation in sleep quality
(Control group) and subjects with variation in day-to-day sleep quality (Case group).

All Control group Case group
(n = 31) (n = 7) (n = 24)

Variable Mean SD Mean SD Mean SD p

Age (years) 28.8 4.7 29.7 5.2 28.5 4.6 0.557
Mass (kg) 72.3 14.8 69.3 16.3 73.2 14.6 0.551

Height (cm) 172.1 10.6 169.9 12.3 172.8 10.2 0.534
BMI (kg/m2) 24.2 3.2 23.7 3.5 24.3 3.1 0.678
SD standard deviation, BMI body mass index, p p-values from two-tailed paired t-tests

exhibited:

• Longer WASO (p=0.004), shorter TST (p<0.001) and lower SE (p=0.039), as

self-reported in the sleep diary.

• Shorter mean duration of the longest inactive interval (p=0.016), as computed

from the trunk acceleration signals.

• Lower heart rate variability, as reflected by a lower power in the HF band

(p=0.007) and lower ApEn and SampEn (p=0.020 and p=0.036, respectively).

6.4.2 Group and Session main effects and interaction effects on

balance measures

6.4.2.1 Linear measures

The main effects of Session were found significant for one CoP displacement measure

under the EC testing condition Table 6.4.

No significant Group*Session interactions were found for CoP displacement

measures under the EO testing condition. Conversely, two CoP displacement linear

measures showed significant Group*Session interaction effects under the EC testing

condition:

• Standard deviation in the ML direction (p=0.044)

• Mean velocity in the ML direction (p=0.037)

6.4.2.2 Sample entropy

Neither main nor interaction effects were found significant for CoP sample entropy

(Table 6.5).
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6.4.3 Pairwise comparisons for balance measures

6.4.3.1 Linear measures

No significant differences in linear measures were observed for CoP displacements

under the EO testing condition, neither for subjects in the Control group nor for

those in the Case group. As for CoP displacements in the EC testing condition,

three linear measures exhibited significant differences after sleep deterioration (Case

group) (Table 6.6). Namely, after the lowest-rated sleep participants showed a stiffer

balance control as reflected by:

• a decrease in the total length of displacement (p=0.012)

• a decrease in the total mean velocity of displacement and mean velocity in the

ML direction (p=0.012 and p=0.013, respectively)

Conversely, no significant CoP displacement measure variations were ob-

served in the Control group (i.e., subjects presenting no sleep quality variations)

under the EC testing condition.

6.4.3.2 Sample entropy

No significant differences in CoP sample entropy were observed under the EO testing

condition, neither for participants in the Control group nor for those in the Case

group. Under the EC testing condition, participants in the (Case group) showed a

significantly lower CoP sample entropy (Table 6.7).
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Table 6.5: Main effects and interactions effects of Group and Session on centre of
pressure sample entropy.

Factor / Interaction Group Session Group*Session
Measure Fn p Fn p Fn p

Eyes open 3.623 0.057 0 0.986 0.119 0.730
SampEn, AP 0.114 0.736 0.984 0.321 0.004 0.952
SampEn, ML

Eyes closed
SampEn, AP 1.942 0.163 0.447 0.504 0.820 0.365
SampEn, ML 0.381 0.537 0.529 0.467 0.033 0.856

SampEn sample entropy, AP anterior-posterior, ML medial-lateral, Fn ANOVA-type statis-
tic, p p-values from ANOVA-type non-parametric two-tailed paired tests.
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Table 6.7: Day-to-day differences in centre of pressure displacement sample entropy.
Median difference and its interquartile range for subjects without day-to-day varia-
tion in sleep quality (Control group) and subjects with variation in day-to-day sleep
quality (Case group).

Control group (n = 7) Case group (n = 24)
Measure MD IQR p MD IQR p Trend

Eyes open
SampEn, AP -0.038 0.137 0.813 0.001 0.139 0.733 ↑
SampEn, ML -0.047 0.257 0.813 -0.018 0.127 0.249 ↓

Eyes closed
SampEn, AP 0.008 0.133 1 -0.033 0.139 0.131 ↓
SampEn, ML -0.081 0.236 0.813 -0.029 0.057 0.042 ↓↓

SampEn sample entropy, AP anterior-posterior, ML medial-lateral, MD median difference,
IQR interquartile range, p p-values from two-tailed paired Wilcoxon tests
Bold values indicate significant differences
↓↓: significantly lower or poorer sleep quality night
↓: lower for poorer sleep quality night

6.5 Discussion

This study was based on the findings presented in chapters 4 and 5. Firstly, the

study aimed to investigate further whether day-to-day self-reported sleep quality was

confirmed by instrumented sleep assessment. Therefore, participants were divided

into two groups based on whether or not they reported a shift in sleep quality over

two consecutive nights. As in the previous study, reported changes in sleep quality

were not artificially induced; they were instead the consequence of natural sleep

disturbances experienced during the lowest-rated sleep opportunity (e.g. the need to

use the toilet and an uncomfortable room temperature). Subjects reporting a shift in

sleep quality reported significantly higher sleep fragmentation (WASO), shorter sleep

duration (TST) and lower sleep efficiency (SE) for the lowest-rated sleep period.

They also showed shorter inactive intervals measured from body acceleration signals,

suggesting a less quiet and more fragmented sleep. Moreover, subjects reporting

a variation in sleep quality also exhibited higher sympathetic activity (i.e., lower

heart rate variability) during the lowest-rated sleep opportunity, which suggests the

presence of more wake intervals and arousals, as well as fewer and shorter deep sleep

intervals [35]. Generally speaking, these results are in agreement with those reported

in chapter 5. Moreover, these results confirmed that wearable devices could be used

to detect day-to-day variations in sleep quantity and quality.

The interaction effects of Group and Session on balance measures were

tested. Two CoP displacement linear measures showed significant Group*Session

interactions (Table 6.4), suggesting that day-to-day variations in balance are asso-
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ciated with variations in sleep quantity and quality over consecutive nights.

The Group*Session interaction effects above were found to be attributable

to subjects that exhibited a variation in sleep quantity and quality over consecutive

nights. The group of subjects reporting and exhibiting worsening in sleep over

two consecutive days exhibited shorter, slower and more regular CoP displacements

under the EC testing condition, particularly in the ML axis. In contrast with the

results obtained in the previous study, no significant differences were observed for

any CoP measure in the AP axis under the EO condition. Nevertheless, shorter and

slower CoP motion in the ML direction has been observed in healthy subjects tested

under high cognitive load conditions (e.g. dual-task) [175]. Also, more regular ML

CoP time-series were observed for older adults at higher risk of falling in the study

presented in chapter 4 [153].

Altogether, the results from this study also suggest that a shorter and more

fragmented sleep affects balance control in unperturbed standing.

6.6 Conclusions

This chapter presented a study performed to confirm and extend the findings of the

studies mentioned earlier. Namely, this study investigated further the associations

between day-to-day variations in sleep and balance. The results confirmed the po-

tential of wearable devices for in-home sleep monitoring with the aim of capturing

daily variations in sleep quantity and quality.

Moreover, the study investigated further the association of those variations

in sleep with variations in balance control. Interestingly, both linear measures and

SampEn were able to capture the differences in balance control resulting from day-

to-day variations in sleep quantity and quality.

This study investigated whether quantitative descriptors of nonlinear dynam-

ics are more sensitive than linear measures to differences in balance control due to

day-to-day variations in sleep quantity and quality, thus addressing the fourth and

final research question underlying this thesis (see chapter 1). The next chapter sum-

marises the main conclusions of this research and provides some recommendations

for further work based on the identified limitations and opportunities.
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Chapter 7

Conclusions and Further Work

7.1 Chapter overview

This chapter presents the main conclusiond of this thesis. Section 7.2 restates the

scope, aim and objectives of this work. Section 7.3 recapitulates the research gaps

and questions that motivated this work and summarises the work done and the

main findings. Section 7.4 provides recommendations for further work, based on the

limitations and opportunities identified in this research. Section 7.5 presents some

final remarks.

7.2 Scope, aim and objectives

The spread of wearable technology is empowering innovative ways of assessing bal-

ance and risk of falling in older adults. Wearable inertial sensors are a promising

complement to clinical balance assessment tools since they potentially provide an

objective and accurate quantification of the timing and kinematics of functional

tasks.

Moreover, wearable devices also enable the ambulatory monitoring of phys-

iological and behavioural variables, which can be used to infer health status and

health-related behaviours linked to impaired balance and fall risk. This situation

could conceivably enrich the prevailing paradigm in fall prevention, from the current

one mainly involving the occasional assessment of risk factors to a novel paradigm

also including the continuous monitoring and detection of short-lived factors that

might result in an imminent fall.

Additionally, the diffusion of dynamical systems theory and methods within

the medical research community are stirring a new approach to the study of ageing
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and balance in older adults. In particular, nonlinear signal analysis methods could

potentially provide further information on the underlying control mechanisms in

ageing and produce more sensitive measures of fall risk.

Despite the advantages that this can provide, there are several challenges in

the adoption of wearable technologies and nonlinear analysis methods for balance

and fall risk assessment, which still preclude a firm conclusion on their scientific and

clinical value. This research aimed to advance the knowledge and methods related

to the use of wearable sensors and nonlinear signal analysis for the assessment of

balance and fall risk, both in research and clinical settings and ambulatory moni-

toring of health status and behaviours linked to impaired balance.

Accordingly, the main objectives of this research were:

Objective 1: To identify the optimal wearable inertial sensor-based protocol for

assessing fall risk in older adults, including sensor placement, movement task and

measured variable(s).

Objective 2: To determine whether quantitative descriptors of nonlinear dynam-

ics are more sensitive than linear measures to differences in balance control due to

ageing and fall risk.

Objective 3: To determine whether day-to-day variations in sleep quantity and

quality, monitored using wearable devices, are associated with balance control vari-

ations.

Objective 4: To determine whether quantitative descriptors of nonlinear dynam-

ics are more sensitive than linear measures to differences in balance control due to

day-to-day variations in sleep quantity and quality

7.3 Research questions and answers

The objectives above were derived from a set of research questions identified through

a review of the literature (chapter 2). These questions are restated below, each

followed by the research gap on which it is based, a summary of the work carried

out to address them and the main findings.
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Research question 1: What is the optimal wearable inertial sensor-based pro-

tocol for assessing fall risk in older adults, given the variety in sensor placements,

movement tasks and measured variables that these devices allow?

In the last two decades, the use of wearable inertial sensors for fall risk

assessment has been on the rise. Researchers have used these sensors with the

aim of producing instrumented functional balance tests [10–12]. In their studies,

subjects were asked to perform one or more movement tasks while wearing one or

more inertial sensors on different body landmarks. Moreover, subjects at high risk of

falling were identified based on retrospective fall history (i.e. self-reported previous

falls), prospective fall occurrence, clinical assessment (e.g. Timed-Up-and-Go test

(TUG test)) or a combination thereof. This information and the features extracted

from the recorded signals were later used to develop mathematical or statistical

models for predicting further fall occurrences or classifying subjects into fall risk

categories. Some reviews on the topic have revealed a considerable heterogeneity

between studies regarding the sensor placement, movement task, features and models

used for the development of sensor-based fall risk assessment tools [10–12]. This

heterogeneity hinders any firm conclusions on the optimal wearable inertial sensor-

based protocol for assessing fall risk in older adults [11, 12].

Chapter 3 presented an original systematic review and meta-analysis per-

formed in order to identify the optimal wearable inertial sensor-based protocol for

assessing fall risk in older adults, including sensor placement, movement task and

measured variables (or features). A data set of 175 wearable inertial sensor-based

features extracted from 13 studies was analysed in order to identify an optimal pro-

tocol. Namely, studies that used wearable inertial sensors for discriminating fallers

from non-fallers were systematically reviewed. Standard methods for the analysis

of categorical data were used to identify optimal combinations of sensor placement,

movement task and features. Additionally, standard methods for the meta-analysis

of continuous variables were used to identify significant features for discrimination

between fallers and non-fallers.

The results of the analyses above suggest that the instrumented TUG test is

a suitable tool for discriminating non-fallers and fallers, provided that the inertial

sensors are placed on the shins and angular velocity, temporal (e.g. total time and

step time) and spatial (e.g. number of steps) features are computed. Additionally,

the evidence also suggests that an additional sensor placed on the lower back could

potentially provide relevant measures derived from accelerations during sit-to-stand

and stand-to-sit transitions. The study has been published elsewhere [128].
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Research question 2: Are quantitative descriptors of nonlinear dynamics more

sensitive than linear measures to differences in balance control due to ageing and

fall risk? If so, what is the optimal way to apply them (e.g. signal pre-processing,

selection of input parameters)?

The diffusion of nonlinear dynamical systems theory in the biomedical re-

search community has inspired the use of quantitative descriptors of nonlinear dy-

namics for assessing balance control. In particular, Approximate Entropy (ApEn)

and Sample Entropy (SampEn) have been proposed as a measure of body sway regu-

larity during unperturbed standing. However, their ability to discriminate between

groups with different fall risk and the suitable selection of the input parameters

needed for their computation, have not yet been formally investigated.

Chapter 4 presented a study performed to investigate whether ApEn and

SampEn are more sensitive than linear measures to differences in balance control

due to ageing and fall risk, as well as to identify the optimal way to apply them

(i.e. signal pre-processing and selection of input parameters). A public dataset of

Centre of Pressure (CoP) time-series from 163 subjects was used [27]. Subjects were

grouped into young adults (age<60, n=85), and older adults (age≥60) with (n=18)

and without (n=56) falls in the previous year (therefore, having a higher and lower

risk of falling, respectively). After signal pre-processing, ApEn and SampEn were

calculated using 72 different combinations of input parameters. Standard methods

for the statistical analysis of continuous data were used in order to (1) investigate the

effects of changing input parameters on ApEn and SampEn on ApEn and SampEn

values; (2) determine the ability of ApEn and SampEn to discriminate between

groups, in particular between young adults, non-fallers and fallers; and, (3) identify

specific combinations of input parameters revealing significant differences between

groups.

The results of this study suggest that SampEn represents a better choice

for the analysis of CoP time-series given its relative consistency and ability to dis-

criminate between experimental groups. However, the selection of input parameter

values proved to be critical in the identification of significant differences between

older adults with and without falls in the last 12 months (i.e. fallers and non-fallers,

respectively). In particular, significant differences were mostly observed in CoP

time-series in the Anterior-Posterior (AP) direction of 60-s duration (N = 1200).

Therefore, further studies using these entropy measures should favour longer CoP

recordings (e.g. ≥ 60 seconds) over shorter CoP recordings (e.g. 30 seconds), as well

as focus the analyses on AP time-series. Researchers and clinicians working on the
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analysis of CoP time-series are recommended to use SampEn with input parameters

m = {4, 5} and r = {0.25, 0.3, 0.35}. The study has been published elsewhere [153].

Research question 3: Are there any associations between day-to-day variations

in sleep quality, as measured via wearable sensors, and balance control?

Research question 4: What is the optimal method to capture variations in bal-

ance control due to day-to-day variations in sleep quality, linear or nonlinear mea-

sures?

Wearable devices offer new opportunities for in-home continuous sleep mon-

itoring in the broader population. It is potentially relevant for fall risk assessment,

given that chronic sleep disturbances and poor sleep quality are associated with

further falls in older people. Hence, if short-lived sleep disturbances and poor sleep

quality have a similar effect on balance control, continuous sleep monitoring would

be relevant for fall prevention programmes in frail populations and sleep disturbance-

inducing scenarios (e.g. hospital wards). Therefore, the potential association be-

tween day-to-day variations in sleep quality and balance control deficits warrants

investigation.

Chapter 5 presented a study performed to investigate the potential use of

wearable devices for capturing day-to-day variations in sleep quantity and quality,

as well as the sensitivity of the balance control system to these variations. A sample

of 20 young volunteers with no history of sleep disorders or balance impairments

participated in the study. Sleep and balance were assessed over two consecutive

days. Sleep quantity and quality variations were assessed using a sleep diary, actig-

raphy and Heart Rate Variability (HRV) measures. Sleep was monitored at home

using an unobtrusive wearable device. Balance was assessed in a gait lab using

foot CoP displacement during unperturbed standing. Subjects with a day-to-day

deterioration in sleep quantity and quality (i.e., decreased duration and increased

fragmentation, increased nocturnal activity and decreased HRV) exhibited signifi-

cant changes in balance (i.e., larger CoP area, amplitude and standard deviation).

Conversely, subjects with no significant alterations in sleep quantity and quality

showed no significant changes in CoP displacements. Firstly, the results of this

study suggest that wearable devices can be used for detecting day-to-day variations

in sleep quantity and quality. In particular, the duration of rest periods and the

presence of sleep disturbances can be estimated from acceleration and Electrocar-

diogram (ECG) signals. Moreover, the results suggest that day-to-day variations in
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sleep quantity and quality affect balance control during unperturbed standing. This

study has been published elsewhere [180].

In addition, chapter 6 presented a study performed to confirm and extend

the findings of the studies mentioned earlier. Namely, this study investigated fur-

ther the potential use of wearable devices for capturing day-to-day variations in

sleep quantity and quality, as well as the sensitivity of the balance control system

to these variations, in a sample of 31 young healthy volunteers, from which seven

also participated in the study reported in chapter 5. As in the study above, sleep

quantity and quality variations were assessed using sleep diary, actigraphy and HRV

measures, the last two derived from an unobtrusive wearable device. Balance was

assessed using net CoP displacement during unperturbed standing. In contrast with

the previous study, the present study explored the sensitivity of SampEn to the dif-

ferences in balance control produced by day-to-day variations in sleep quantity and

quality. Subjects with a day-to-day deterioration in sleep quantity and quality (i.e.,

decreased duration and increased fragmentation, increased nocturnal activity and

decreased HRV) exhibited significant changes in balance (i.e., slower and more reg-

ular CoP motion, in particular in the Medial-Lateral (ML) direction under the Eyes

Closed (EC) testing condition). Conversely, subjects with no significant alterations

in sleep quantity and quality showed no significant changes in CoP displacements.

Firstly, the results of this study confirmed that wearable devices could be used for

detecting day-to-day variations in sleep quantity and quality. Moreover, the results

confirmed that day-to-day variations in sleep quantity and quality affect balance

control during unperturbed standing. Both linear and nonlinear measures of CoP

displacement captured these variations. Preliminary results of this study were pre-

sented elsewhere [202].

Overall, both studies show that wearable devices can be used to capture day-

to-day variations in sleep quantity and quality, which in turn produce variations in

balance. In particular, both studies show that self-reported sleep quality is associ-

ated with a sleep of short duration and higher fragmentation (i.e. interrupted sleep).

However, the effects of poor sleep on balance control differ from one study to the

other. In study 3 (chapter 5) the effects are observed on the AP direction, whereas

in study 3 the effects are apparent on the ML direction. This heterogeneity has

been previously in previous studies, which has precluded a firm conclusion about

the optimal CoP measures for fall risk assessment in older adults [92]. Notwith-

standing, both studies reveal a deterioration of balance control after poor sleep,

with study 4 showing that both linear and nonlinear CoP measures are sensitive to

this deterioration. This last observations provides a higher relevance to study 4.
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7.4 Limitations and further work

This thesis and the studies herein produced relevant contributions to the body of

knowledge related to the adoption of wearable sensors and nonlinear signal analysis

methods for balance and fall risk assessment in older adults. However, due to time

and resources constraints, this research presents some limitations, which provide the

basis for a sketch of further work.

Firstly, the study presented in chapter 3 identified an optimal protocol for

fall risk assessment in older adults using wearable inertial sensors, including opti-

mal sensor placement, functional task and measured variables. Nevertheless, these

results are based on data extracted from a limited number of studies. Hence, they

are unable to provide a representative inference of all features used and all studies

published, but not included in the review. This means that there might be some

other sensor-based features that are discriminant between non-fallers and fallers but

which were not included in this systematic review as they were not reported as re-

quired by the inclusion criteria. Further studies could validate the optimal protocol

for fall risk assessment suggested in this thesis and explore further those features

which have shown a consistent trend across different studies, but that were not found

significant possibly due to the low number of studies pooled in the analysis and the

heterogeneity between studies in terms of design (see Table 3.6).

Moreover, among the studies not included in the review, there are some

whose focus is of interest to this research. Namely, some studies used wearable iner-

tial sensors for collecting data related to gait quantity and quality during daily-life

activities [56, 150, 151]. Moreover, some studies have reported significant associa-

tions between fall risk and nonlinear descriptors of gait dynamics (e.g. Multi-scale

Entropy (MSE) and Recurrence Quantification Analysis (RQA) measures) [55, 149].

Although there is not enough evidence to support a firm conclusion, the results of

these studies suggest that ambulatory gait monitoring combined with nonlinear de-

scriptors of gait is a promising approach to fall risk assessment. Further research on

this line is warranted.

The study presented in chapter 4 confirmed the ability of ApEn and Sam-

pEn to discriminate non-fallers from fallers and identified the optimal usage of these

nonlinear measures. However, it must be acknowledged that there are more recent

developments in the field of nonlinear analysis that could potentially improve the

sensitivity when looking for differences between groups. In particular, the develop-

ment of multiscale entropy and multivariate MSE have offered new perspectives for

the analysis of biological time-series [163–166]. A few studies have already applied
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these approaches to the analysis of CoP time-series [99, 105, 107]. Briefly, MSE relies

on the computation of sample entropy values at different time-scales and produces

a two-dimensional plot (time-scale versus sample entropy) depicting a profile line

for each experimental group/condition. An overall entropy ‘score’ can be computed

by adding the entropy values at specific time-scales [105]. While MSE represents an

interesting tool to explore the level of regularity contained at different time-scales,

it cannot avoid the issue of the adequate selection of input parameters. Since MSE

and its variations are based on SampEn, researchers that opt for MSE face essen-

tially the same problem faced when ‘single-scale’ entropy measures are used; i.e. the

adequate selection of input parameters. Further studies could investigate the ability

of MSE to discriminate non-fallers from fallers, leveraging on the findings presented

in this thesis regarding optimal parameter selection or at least the adoption of a

systematic approach to the identification of optimal parameters.

The studies presented in chapters 5 and 6 confirmed the ability of wearable

devices for capturing day-to-day variations in sleep quantity and quality. However,

the methods related to sleep assessment used in this research require further devel-

opment to produce sleep parameters more relevant for the user and clinician (e.g.

time in light and deep sleep). This was not possible due to the lack of annotated

data (e.g. knowing the actual sleep stage for each epoch). Therefore, further studies

should consider collecting chest actigraphy, ECG and polysomnography data con-

currently, in order to develop novel sleep staging algorithms based on activity and

HRV measures [36]. Moreover, future studies should also investigate whether the

actual wearing of body-attached sensors alters sleep quantity and quality in older

adults. This and other aspects (e.g. perceived usefulness and social influence) are

considered as potential determinants of wearable technology acceptance among older

adults and thus warrant further investigation [204].

Finally, the studies in chapters 5 and 6 also confirmed the sensitivity of the

balance control system to day-to-day variations in sleep quantity and quality. How-

ever, the neurophysiological mechanisms behind the observed alterations in postural

control cannot be elucidated from the data collected. Also, these studies enrolled

young adults, yet the primary interest is on fall risk assessment in older adults.

Therefore, further studies should enrol older adults and evaluate balance under

more testing conditions in order to detect and identify underlying mechanisms.
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7.5 Final remarks

Wearable sensors and nonlinear signal analysis methods are empowering innovative

ways of assessing balance and fall risk in older adults. However, their adoption in

research and clinical practice poses some challenges. This thesis and the studies

herein addressed some of those challenges and provided some insights concerning

their optimal use.

Indeed, wearable inertial sensors offer the means for developing instrumented

versions of clinical balance assessment tools, producing objective and accurate quan-

titative descriptors on the timing and execution of functional tasks. However, this

research proved that selecting an adequate combination of sensor placement, move-

ment task and measured variable is crucial for discriminating subjects at a higher

risk of falling. An optimal protocol for assessing fall risk based on wearable inertial

sensors was identified.

Additionally, wearable devices offer the means for continuously monitoring

physiological and behavioural variables, which can be used to infer outcomes linked

to impaired balance and increased risk of falling. This research proved that wearable

devices could be used to capture day-to-day variations in sleep quantity and quality,

which in turn produce variations in balance. This situation can potentially expand

the prevailing paradigm in fall prevention, from the current one focusing on the

occasional assessment of risk factors and changes in the balance control system to a

new paradigm including also the continuous monitoring and detection of short-lived

factors that might result in an imminent fall.

Finally, this research proved that quantitative descriptors of nonlinear dy-

namics are more sensitive than linear measures to differences in balance control due

to ageing and risk of falling (e.g. non-fallers and fallers). However, it was also shown

that the adequate selection of the input parameters required for their computation

is of paramount importance to achieve positive results. This thesis provided some

recommendations for the parameter selection.

Collectively, the findings of this research confirm that wearable sensors and

nonlinear signal analysis methods can improve and extend current tools and prac-

tices in balance and fall risk assessment.
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Appendix A

Source codes listings

Listing A.1: R script for the statistical analysis of the inertial sensor-based features

1 #Prepar ing the environment

2 r e q u i r e ( dplyr )

3 r e q u i r e ( vcd )

4

5

6 # Loading and prepar ing data

7 f e a t u r e s = read . csv ( ” f e a t u r e s . csv ” ) ;

8 f e a t u r e s $ S i g n i f i c a n c e = as . f a c t o r ( f e a t u r e s $ S i g n i f i c a n c e ) ;

9 s f e a t u r e s = f i l t e r ( f e a tu r e s , f e a t u r e s $ S i g n i f i c a n c e == ” S i g n i f i c a n t ” ) ;

10

11 # Getting f a m i l i a r with the data

12 summary( f e a t u r e s ) ;

13 summary( s f e a t u r e s ) ;

14

15

16 # Count and proport ion o f f e a t u r e s per fami ly / task / senso r placement /

study

17 summary( f e a t u r e s $ Category )

18 round ( prop . t a b l e ( summary( f e a t u r e s $ Category ) ) ∗ 100 ,1)

19

20 summary( f e a t u r e s $Task )

21 round ( prop . t a b l e ( summary( f e a t u r e s $Task ) ) ∗ 100 ,1)

22

23 summary( f e a t u r e s $ Sensor . placement )

24 round ( prop . t a b l e ( summary( f e a t u r e s $ Sensor . placement ) ) ∗ 100 ,1)

25

26 summary( f e a t u r e s $Study )

27 round ( prop . t a b l e ( summary( f e a t u r e s $Study ) ) ∗ 100 ,1)

28

29 summary( s f e a t u r e s $ Category )
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30 round ( prop . t a b l e ( summary( s f e a t u r e s $ Category ) ) ∗ 100 ,1)

31

32 summary( s f e a t u r e s $Task )

33 round ( prop . t a b l e ( summary( s f e a t u r e s $Task ) ) ∗ 100 ,1)

34

35 summary( s f e a t u r e s $ Sensor . placement )

36 round ( prop . t a b l e ( summary( s f e a t u r e s $ Sensor . placement ) ) ∗ 100 ,1)

37

38 summary( s f e a t u r e s $Study )

39 round ( prop . t a b l e ( summary( s f e a t u r e s $Study ) ) ∗ 100 ,1)

40

41 # Tests and measures o f a s s o c i a t i o n f o r 2−way cont ingency t a b l e s

42 task . s i g n i f = xtabs ( ˜Task + S i g n i f i c a n c e , data = f e a t u r e s ) ;

43 addmargins ( task . s i g n i f ) ;

44 summary( a s s o c s t a t s ( task . s i g n i f ) ) ;

45

46 placement . s i g n i f = xtabs ( ˜ Sensor . placement + S i g n i f i c a n c e , data =

f e a t u r e s ) ;

47 addmargins ( placement . s i g n i f ) ;

48 summary( a s s o c s t a t s ( placement . s i g n i f ) ) ;

49

50 category . s i g n i f = xtabs ( ˜ Category + S i g n i f i c a n c e , data = f e a t u r e s ) ;

51 addmargins ( category . s i g n i f ) ;

52 summary( a s s o c s t a t s ( category . s i g n i f ) ) ;

53

54 study . s i g n i f = xtabs ( ˜Study + S i g n i f i c a n c e , data = f e a t u r e s ) ;

55 addmargins ( study . s i g n i f ) ;

56 summary( a s s o c s t a t s ( study . s i g n i f ) ) ;

57

58

59 #Second step

60 s f e a t u r e s = d r o p l e v e l s ( s f e a t u r e s ) ;

61

62 task . placement = xtabs ( ˜Task + Sensor . placement , data = s f e a t u r e s ) ;

63 addmargins ( task . placement ) ;

64 summary( a s s o c s t a t s ( task . placement ) ) ;

65 round ( ( task . placement−independence t ab l e ( task . placement ) ) / s q r t (

independence t ab l e ( task . placement ) ) , 1) ;

66 as soc ( task . placement , shade = TRUE) ;

67

68 task . category = xtabs ( ˜Task + Category , data = s f e a t u r e s ) ;

69 addmargins ( task . category ) ;

70 summary( task . category ) ;

71 round ( ( task . category−independence t ab l e ( task . category ) ) / s q r t (

independence t ab l e ( task . category ) ) , 1) ;

72 as soc ( task . category , shade = TRUE) ;
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73

74 category . placement = xtabs ( ˜ Category + Sensor . placement , data =

s f e a t u r e s ) ;

75 addmargins ( category . placement ) ;

76 summary( a s s o c s t a t s ( category . placement ) ) ;

77 round ( ( category . placement−independence t ab l e ( category . placement ) ) / s q r t (

independence t ab l e ( category . placement ) ) , 1) ;

78 as soc ( category . placement , shade = TRUE) ;

79

80

81 three . way . t ab l e = xtabs ( ˜ Category + Task + Sensor . placement , data =

s f e a t u r e s )

82 s t r u c t a b l e ( three . way . t a b l e )

83 summary( three . way . t a b l e )

84 round ( ( three . way . tab le−independence t ab l e ( three . way . t ab l e ) ) / s q r t (

independence t ab l e ( three . way . t ab l e ) ) , 1 )

85 as soc ( three . way . tab le , shade = TRUE)
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Listing A.2: R script for the meta-analysis of the inertial sensor-based features

1 ## Loading r equ i r ed packages

2 r e q u i r e ( XLConnect )

3 r e q u i r e ( meta )

4

5 # Loading f e a t u r e s data from f i l e

6 wb = loadWorkbook ( ” f e a t u r e s . x l sx ” )

7 N = length ( ge tSheet s (wb) ) ;

8

9 # Running a n a l y s i s

10 pooled = data . frame (Outcome = charac t e r ( ) , I2 = numeric ( ) , Q = numeric

( ) ,

11 p = numeric ( ) , Model = charac t e r ( ) , Sub jec t s =

numeric ( ) ,

12 MD = numeric ( ) , CI lower = numeric ( ) , CI upper =

numeric ( ) ,

13 pvalue = numeric ( ) )

14 mdl type = matrix ( nrow = N, nco l = 1)

15

16 f o r ( i in 1 :N) {
17

18 outcome = readWorksheet (wb, shee t = i )

19 mdl = metacont (F .N, F . Mean , F .SD, NF.N, NF. Mean , NF.SD, data =

outcome ,

20 s tud lab = Study , l a b e l . e = ” F a l l e r s ” , l a b e l . c = ”Non

−F a l l e r s ” )

21 I2 = round ( mdl$ I2 ∗ 100 ,1)

22 Q = round ( mdl$Q, 2)

23 p = round ( pch i sq ( mdl$Q, mdl$ df .Q, lower . t a i l = FALSE) , 4)

24

25 pooled [ i , 2 ] = I2

26 pooled [ i , 3 ] = Q

27 pooled [ i , 4 ] = p

28 pooled [ i , 6 ] = sum( mdl$n . e )+sum(mdl$n . c )

29

30 i f ( I2 < 60 | | p > 0 . 1 ) {
31 mdl type [ i ] = ” Fixed ”

32 pooled [ i , 7 ] = round (mdl$TE. f ixed , 4)

33 pooled [ i , 8 ] = round (mdl$ lower . f i xed , 4)

34 pooled [ i , 9 ] = round (mdl$upper . f i xed , 4)

35 pooled [ i , 10 ] = round ( mdl$ pval . f i xed , 4)

36 }
37 e l s e {
38 mdl type [ i ] = ”Random”

39 pooled [ i , 7 ] = round (mdl$TE. random , 4)

40 pooled [ i , 8 ] = round (mdl$ lower . random , 4)

180



41 pooled [ i , 9 ] = round (mdl$upper . random , 4)

42 pooled [ i , 10 ] = round ( mdl$ pval . random , 4)

43 }
44

45 }
46

47 pooled $Outcome = getShee t s (wb)

48 pooled $Model = mdl type

49

50 # Disp lay ing and p r i n t i n g pooled f e a t u r e s data . frame

51 View ( pooled )

52 pr in t ( pooled )

53

54 # Writing pooled f e a t u r e s to CSV f i l e

55 wr i t e . csv ( pooled , f i l e = ” pooled . csv ” )

56

57 # Cleaning environment

58 rm( l i s t=l s ( ) )
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Listing A.3: MATLAB function for CoP time-series preprocessing

1 f unc t i on [ CPap , CPml ] = preprocess ingCoP (CPap , CPml , f s , f c )

2 % preprocess ingCoP

3 % Appl ies p r e p r o c e s s i n g ope ra t i on s to cent r e o f p r e s su r e (CoP)

4 % time−s e r i e s : f i l t e r i n g and detrend ing (mean value s u b s t r a c t i o n )

5 %

6 % INPUTS: CPap= input 1dim array conta in ing the raw CoP time−s e r i e s

f o r

7 % the ante r i o r−p o s t e r i o r d i r e c t i o n ; CPml= input 1dim array conta in ing

the

8 % raw CoP time−s e r i e s f o r the medial− l a t e r a l d i r e c t i o n ; f s= o r i g i n a l

9 % sampling f requency o f the CoP time−s e r i e s ; f c= cut−o f f f requency o f

the

10 % f i l t e r

11 %

12 % OUTPUTS: CPap= output 1dim array conta in ing the proce s sed CoP

13 % time−s e r i e s f o r the ant e r i o r−p o s t e r i o r d i r e c t i o n ; CPml= output 1dim

14 % array conta in ing the proce s sed CoP time−s e r i e s f o r the medial−
l a t e r a l

15 % d i r e c t i o n

16

17 %% F i l t e r i n g : 4th−order Butterworth low−pass f i l t e r

18 [ z , p , k ] = butte r (4 , (2∗ f c ) / f s , ’ low ’ ) ;

19 [ sos , g ] = zp2sos ( z , p , k ) ;

20

21 % Zero phase f i l t e r i n g

22 CPap = f i l t f i l t ( sos , g , CPap) ;

23 CPml = f i l t f i l t ( sos , g , CPml) ;

24

25 %% Detrending : Mean value s u b s t r a c t i o n

26 CPap = CPap − mean(CPap) ;

27 CPml = CPml − mean(CPml) ;

28

29 end
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Listing A.4: MATLAB functions for global CoP measures calculation.

1 f unc t i on globalCoPtbl = globalCoP (CPap , CPml , f s )

2 %% globalCoP

3 % Calcu l a t e s f e a t u r e s f o r the g l o b a l a n a l y s i s o f the Center o f

Pressure

4 % (CoP) as de s c r ibed in :

5 %

6 % Duarte , M. , & Fre i ta s , S . M. (2010) . Rev i s ion o f posturography

based on

7 % f o r c e p l a t e f o r ba lance eva lua t i on . B r a z i l i a n Journal o f Phys i ca l

8 % Therapy , 14(3) , 183 1 9 2 .

9 %

10 % INPUTS: CPap= input 1dim array conta in ing the CoP time−s e r i e s f o r

the

11 % ante r i o r−p o s t e r i o r d i r e c t i o n ; CPml= input 1dim array conta in ing the

CoP

12 % time−s e r i e s f o r the medial− l a t e r a l d i r e c t i o n ; f s= sampling

f requency o f

13 % the CoP time−s e r i e s

14 %

15 % OUTPUTS: globalCoPtbl= 1x9 t a b l e conta in ing computed g l o b a l CoP

16 % measures

17

18

19 %% Computing f e a t u r e s c a l l i n g to s p e c i f i c f u n c t i o n s ( below )

20 dot = DOT(CPap , CPml) ;

21 [ SDap , SDml ] = SD(CPap , CPml) ;

22 [ AdCPap, AdCPml ] = AdCP(CPap , CPml) ;

23 [TMV, MVap, MVml] = MV(CPap , CPml , f s ) ;

24 area = Area (CPap , CPml) ;

25

26 %% Creat ing output t a b l e

27 FeatureNames = { ’DOT’ , ’SDap ’ , ’SDml ’ , ’AdCPap ’ , ’AdCPml ’ , . . .

28 ’TMV’ , ’MVap ’ , ’MVml ’ , ’ Area ’ } ;

29 globalCoPtbl = t ab l e ( dot , SDap , SDml , AdCPap, AdCPml, TMV, MVap, MVml,

area , . . .

30 ’ VariableNames ’ , FeatureNames ) ;

31

32 end

33

34

35 %% DOT, Total l ength

36 f unc t i on DOT = DOT(CPap , CPml)

37

38 DOT = sum( s q r t ( d i f f (CPap) .ˆ2 + d i f f (CPml) . ˆ 2 ) ) ;

39
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40 end

41

42

43 %% Standard dev i a t i on

44 f unc t i on [ SDap , SDml ] = SD(CPap , CPml)

45

46 SDap = std (CPap) ;

47 SDml = std (CPml) ;

48

49 end

50

51

52 %% Amplitud o f d i sp lacement

53 f unc t i on [ AdCPap, AdCPml ] = AdCP(CPap , CPml)

54

55 AdCPap = abs (max(CPap)−min (CPap) ) ;

56 AdCPml = abs (max(CPml)−min (CPml) ) ;

57

58 end

59

60

61 %% Mean v e l o c i t y : AP (MVap) , ML (MVml) and t o t a l (TMV)

62 f unc t i on [TMV, MVap, MVml] = MV(CPap , CPml , f s )

63 %t : Length o f CoP s i g n a l ( seconds )

64 t = length (CPap) / f s ;

65

66 %Calcu la t i on o f the t o t a l CoP v e l o c i t y

67 TMV = sum( s q r t ( d i f f (CPap) . ˆ2 + d i f f (CPml) . ˆ 2 ) ) / t ;

68

69 %Calcu la t i on o f CoP v e l o c i t y in the ML d i r e c t i o n

70 MVml = sum( s q r t ( d i f f (CPml) . ˆ 2 ) ) / t ;

71

72 %Calcu la t i on o f CoP v e l o c i t y in the AP d i r e c t i o n

73 MVap = sum( s q r t ( d i f f (CPap) . ˆ 2 ) ) / t ;

74

75 end

76

77

78 %% Area

79 f unc t i on Area = Area (CPap , CPml)

80

81 [ vec , va l ] = e i g ( cov (CPap ,CPml) ) ;

82 Area = pi ∗prod (2 .4478∗ s q r t ( svd ( va l ) ) ) ;

83

84 end
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Listing A.5: MATLAB function for approximate entropy (ApEn) computation

1 f unc t i on ApEn = ApEn(u , m, r )

2 %% ApEn

3 % Estimates approximate entropy (ApEn) from a time−s e r i e s as de s c r ibed

in :

4 %

5 % Pincus , S . M. , Gladstone , I . M. , & Ehrenkranz , R. A. (1991) . A

r e g u l a r i t y

6 % s t a t i s t i c f o r medical data a n a l y s i s . Journal o f C l i n i c a l Monitoring

and

7 % Computing , 7 (4) , 335 3 4 5 .

8 %

9 % INPUTS: u= input time s e r i e s ; m= s u b s e r i e s l ength ; r= s i m i l a r i t y

10 % t o l e r a n c e

11 %

12 % OUTPUT: ApEn= ApEn value

13

14 N = length (u) ;

15 phi = ze ro s (1 , 2 ) ;

16

17 f o r i t e r = 1 :2

18 dim = m+i t e r −1;

19 C = ze ro s (1 , N−dim+1) ;

20 X = ze ro s (dim , N−dim+1) ;

21

22 % Form s u b s e r i e s X(1) , X(2) , . . . , X(N) :

23 i f dim == 1

24 X = u ;

25 e l s e

26 f o r i = 1 : dim

27 X( i , : ) = u( i :N−dim+i ) ;

28 end

29 end

30

31 % For each X( i ) , f i n d C:

32 f o r i = 1 :N−dim+1

33 % Distance between s u b s e r i e s

34 i f dim == 1

35 d = abs (X − repmat (X( : , i ) , 1 , N−dim+1) ) ;

36 e l s e

37 d = max( abs (X − repmat (X( : , i ) , 1 , N−dim+1) ) ) ;

38 end

39

40 % Check i f d i s t a n c e s are l e s s than the t o l e r a n c e l e v e l

41 bool = any (d < r ∗ std (u) , 1) ;

42
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43 % Calcu la t e C

44 C( i ) = sum( bool ) /(N−dim+1) ;

45 end

46

47 % Calcu la t e phi

48 phi ( i t e r ) = mean( log (C) ) ;

49 end

50

51 %Estimate ApEn

52 ApEn = phi (1 ) − phi (2 ) ;

53

54 end
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Listing A.6: MATLAB function for sample entropy(SampEn) computation

1 f unc t i on SampEn = SampEn(u , m, r )

2 %% SampEn

3 % Estimates sample entropy (SampEn) from a time−s e r i e s as de s c r ibed in :

4 %

5 % Richman , J . S . , & Moorman , J . R. (2000) . P h y s i o l o g i c a l time−s e r i e s

6 % a n a l y s i s us ing approximate entropy and sample entropy . American

Journal

7 % of Physiology−Heart and Ci r cu l a to ry Physiology , 278(6) , H2039 H2049 .

8 %

9 % INPUTS: u= input time s e r i e s ; m= s u b s e r i e s l ength ; r= s i m i l a r i t y

10 % t o l e r a n c e

11 %

12 % OUTPUT: SampEn= SampEn value

13

14 N = length (u) ;

15 B A = ze ro s (1 , 2 ) ;

16

17 f o r i t e r = 1 :2

18 dim = m + i t e r −1;

19 X = ze ro s (dim , N−dim+1) ;

20 N matches = ze ro s (1 , N−dim ) ;

21

22 % Form s u b s e r i e s X(1) , X(2) , . . . , X(N) :

23 i f dim == 1

24 X = u ;

25 e l s e

26 f o r i = 1 : dim

27 X( i , : ) = u( i :N−dim+i ) ;

28 end

29 end

30

31 % Find Ni

32 f o r i = 1 :N−dim

33 % Distance between s u b s e r i e s

34 i f dim == 1

35 d = abs (X − repmat (X( : , i ) , 1 , N−dim+1) ) ;

36 e l s e

37 d = max( abs (X − repmat (X( : , i ) , 1 , N−dim+1) ) ) ;

38 end

39 % Check i f d i s t a n c e s are l e s s than the t o l e r a n c e l e v e l

40 bool = (d <= r ∗ std (u) ) ;

41 % Find number o f d < r ∗ SD u minus 1 to d i s ca rd s e l f −match

42 N matches ( i ) = (sum( bool )−1) ;

43 end

44
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45 % Calcu la t e Bi (when i t e r =1) and Ai (when i t e r =2)

46 Bi Ai = N matches /(N−dim−1) ;

47 % Calcu la t e B (when i t e r =1) and A (when i t e r =2)

48 B A( i t e r ) = mean( Bi Ai ) ;

49 end

50

51 %Estimate SampEn

52 SampEn = −l og (B A(2) /B A(1) ) ;

53

54 end
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Listing A.7: MATLAB function for Zero Crossing Mode implementation

1 f unc t i on ZCM data = ZCM(VMU data)

2 % ZCM

3 % Calcu l a t e s a c t i v i t y counts f o r 1−minute epochs us ing the Zero−
Cross ing

4 % Mode (ZCM) as de s c r ibed in :

5 %

6 % Jean−Louis , G. , Kripke , D. F . , Mason , W. J . , E l l i o t t , J . A. , &

7 % Youngstedt , S . D. (2001) . S leep e s t imat i on from wr i s t movement

8 % q u a n t i f i e d by d i f f e r e n t a c t i g r a p h i c m o d a l i t i e s . Journal o f

Neurosc ience

9 % Methods , 105(2) , 185 1 9 1 .

10 %

11 % INPUT: VMU data= input a c c e l e r a t i o n data , f s =1Hz ,

12 %

13 % OUTPUT: ZCM data= a c t i v i t y counts f o r 1−min epochs

14

15 Nepochs = f l o o r ( l ength (VMU data) /60) ; % Number o f epochs to be

generated

16 T = 0 . 1 ;

17

18 f o r i = 0 : Nepochs−1

19 counter = 0 ;

20 index1 = i ∗60 + 1 ;

21 index2 = i ∗60 + 60 ;

22

23 f o r j = index1 : index2 − 1

24 i f ( ( VMU data( j )<T & VMU data( j +1)>T) | (VMU data( j )>T &

VMU data( j +1)<T) )

25 counter = counter +1;

26 end

27 end

28

29 ZCM data ( i +1) = counter ;

30

31 end

32

33 end
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Listing A.8: MATLAB function for Activity measures calculation

1 f unc t i on ACTmeasures = ACT(ZCM data , Posture )

2 % ACT

3 % Calcu l a t e s a c t i v i t y measures from a c t i v i t y counts (1−min epochs )

and

4 % posture data

5 %

6 % INPUTS: ZCM data= 1−dim array o f l ength N conta in ing a c t i v i t y

counts

7 % f o r N 1−min epochs ; Posture= posture data as repor ted by the Zephyr

BH3

8 %

9 % OUTPUT: ACTtbl= 1x6 ta b l e conta in ing a c t i v i t y measures

10

11 % Prepar ing Posture data

12 Posture = downsample ( Posture , 60) ; % Downsampling to 1 sample/minute

13 Posture = Posture ( 1 : l ength (ZCM data ) ) ;

14

15 % Finding Bed Time (BT) and and Out−of−Bed Time (OBT)

16 [BT OBT] = findBedTime ( Posture , 50 , 15) ;

17

18 % Segment s i g n a l : Time in Bed

19 ZCM data TIB = ZCM data (BT:OBT) ;

20

21 % Computes a c t i v i t y measures by c a l l i n g s p e c i f i c f u n c t i o n s ( below )

22 ACTmeasures (1 ) = mean( ZCM data TIB ) ; %ACT mean

23 ACTmeasures (2 ) = std ( ZCM data TIB ) ; %ACT sd

24 ACTmeasures (3 ) = AI( ZCM data TIB ) ; %AI

25 [ ACTmeasures (4 ) ACTmeasures (5 ) ACTmeasures (6 ) ] = FI ( ZCM data TIB ) ;

26

27 ACTmeasures = ar ray2 tab l e ( ACTmeasures , ’ VariableNames ’ , . . .

28 { ’ACT mean ’ , ’ACT sd ’ , ’ACT AI ’ , ’ACT FI ’ , ’ACT I max ’ , ’ ACT I mean ’ }) ;

29

30 end

31

32

33 f unc t i on [BT OBT] = findBedTime ( Posture data , Angle , Window)

34 %% findBedTime

35

36 % I f s u b j e c t i s f a c i n g up/down then Pbin = 0 ; ( upr ight ) e l s e Pbin = 1

37 Posture b in = abs ( Posture data ) < Angle ;

38

39 % Finding Bed Time

40 f o r i = 1 : l ength ( Posture b in )

41 i f ( Posture b in ( i : i + Window) == 0)

42 BT = i ;
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43 break ;

44 end

45 end

46

47 % Finding Out−of Bed Time (OBT)

48 f o r i=length ( Posture b in ) :−1:1+Window

49 i f ( Posture b in ( i−Window : i ) == 0)

50 OBT = i ;

51 break ;

52 end

53 end

54

55 end

56

57 f unc t i on a i = AI( data )

58 %% Act iv i ty Index

59 a i = (sum( data>0)/ l ength ( data ) ) ∗100 ;

60 end

61

62 f unc t i on [ f i I max I mean ] = FI ( data )

63 %% Fragmentation Index

64

65 RestBouts = ze ro s (720 ,1 ) ;

66 counter = 1 ;

67 f o r i =2: l ength ( data )

68 i f ( data ( i )==0)

69 i f ( data ( i −1)˜=0)

70 counter = counter + 1 ;

71 RestBouts ( counter ) = RestBouts ( counter ) + 1 ;

72 e l s e

73 RestBouts ( counter ) = RestBouts ( counter ) + 1 ;

74 end

75 end

76 end

77

78 RestBouts = RestBouts ( RestBouts˜=0) ;

79

80 f i = (sum( RestBouts<=5) / length ( RestBouts ) ) ∗100 ;

81 I max = max( RestBouts ) ;

82 I mean = mean( RestBouts ) ;

83

84 end
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Document S1. Checklist for Study Quality Appraisal

Study identification (include author(s), title, year of publication, journal title, pages)

Yes=1               

No/Unclear=0

Reporting

Aim/Objective

1) Is the hypothesis/aim/objective of the study clearly described?

Materials & Methods

2) Are study participants' inclusion/exclusion criteria clearly stated?

3) Is the experimental protocol clearly described? The experimental protocol must include at least a description of the way

in which subjects were labelled as fallers and non-fallers, the task(s) they were requiered to perform and the number and

placement of sensors used during the experiments.

4) Are sensors' technical specifications provided? Alternatively, product name, model and manufacturer must be provided.

5) Are the main methods for signal preprocessing clearly described or properly referenced?

6) Are the main methods for feature extraction clearly described or properly referenced?

7) Are the statistical analysis clearly described and appropiate?

Results

8) Is the age of participants included in both groups clearly stated?

9) Are the distributions of principal confounders (other than age; e.g. BMI, medication, comorbidities, etc) in each group

of subjects to be compared clearly described?

10) Are summary statistics (mean and standard deviation) provided for all features described in the methods? 

11) Have actual probability values been reported (e.g. 0.035 rather than <0.05) for the main outcomes except where the

probability value is less than 0.001?

External validity

12) Were study participants representative of the population under investigation?

13) Was the activity assessed representative of clinical fall risk assessment protocols or the daily life activities?

Internal validity - Bias & Confounding

14) Were the subjects in different groups (non-fallers and fallers) recruited from source populations that are comparable in

all aspects other than fall status and over the same period of time? 

15) Was the study designed and conducted to minimise the risk of bias and confounding and to establish a relationship

between measures and fall status?

SUM

193



Appendix C

Supplementary materials for

study 2

194



 

 

 

  

 

Fig. S1 Approximate entropy (ApEn) and sample entropy (SampEn) as a function of m, r and N for the medial-

lateral (ML) component of the centre of pressure displacement during quiet standing. 
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Fig. S2 Approximate entropy (ApEn) mean value (bars) and standard deviation (error lines) by group as a 

function of r for m = {2, 3, 4, 5} (from top to bottom) and N = 1200 (i.e. 60 seconds) for the medial-lateral (ML) 

component of the centre of pressure displacement during quiet standing. 
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Fig. S3 Approximate entropy (ApEn) mean value (bars) and standard deviation (error lines) by group as a 

function of r for m = {2, 3, 4, 5} (from top to bottom) and N = 600 (i.e. 30 seconds) for the anterior-posterior 

(AP) component of the centre of pressure displacement during quiet standing. 
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Fig. S4 Approximate entropy (ApEn) mean value (bars) and standard deviation (error lines) by group as a 

function of r for m = {2, 3, 4, 5} (from top to bottom) and N = 600 (i.e. 30 seconds) for the medial-lateral (ML) 

component of the centre of pressure displacement during quiet standing. 
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Fig. S5 Sample entropy (SampEn) mean value (bars) and standard deviation (error lines) by group as a function 

of r for m = {2, 3, 4, 5} (from top to bottom) and N = 1200 (i.e. 60 seconds) for the medial-lateral (ML) component 

of the centre of pressure displacement during quiet standing. 
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Fig. S6 Sample entropy (SampEn) mean value (bars) and standard deviation (error lines) by group as a function 

of r for m = {2, 3, 4, 5} (from top to bottom) and N = 600 (i.e. 30 seconds) for the anterior-posterior (AP) 

component of the centre of pressure displacement during quiet standing. 
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Fig. S7 Sample entropy (SampEn) mean value (bars) and standard deviation (error lines) by group as a function 

of r for m = {2, 3, 4, 5} (from top to bottom) and N = 600 (i.e. 30 seconds) for the medial-lateral (ML) component 

of the centre of pressure displacement during quiet standing. 
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