A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/137386

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

SURMRIT

In the firat part of this theais we prove that any (orfontation preserving)homeomorphim of a (orientable) oomnocted arn of 3-manifolds can be written as a procuot gof where I preserves factors and g is a composition of loop homeomorphisms and pernatations of factors.The method yielde resulte about the higher homotopy eroupa of the apece of automorphisms of a general 3-manifold.

In the seoond part we give a calculus of links to clasaify 4-manifolde similar to Kirby's calculas for 3-matfolds, using link pictures with certain identified links and correspanding allowable moves. Fie also consider a stable classification of 4 -marifolds uaing such link pictures.

AUTOMORPHISMS OF 3-MANIFOLDS

AND

REPRESENTATIONS OF 4-MANIFOLDS
-by-

Eugénia César de Sé

A thesis submitted for the degree of Dootor of Philosophy at the University of Warmick, 1977

Table of contents.

Introduction page 1
Part I - Automorphisms of 3-manifolds :

1. Preliminariespage 3
2. The group of automorphismsof a 2-sphere bundle over s^{1}page 10
3. Homeomorphisms of 3-manifolds page 19
Part II - Representations of 4-manifolds:
4. Stable classification of 4-manifolds page 74
5. A link representation for 4-manifolds page 90
Reforences page 115

Dedicated to TOIL
for
the sunshine I was not able to find in England

Introduction

This thesis is in two parts. In part I we shall consider the structure of the automorphism group of a connected sum of 3 -manifolds and in part II apply some of the results of part I to obtain a simple link calculus to represent 4-manifolds.

Part I starts by reviewing Gluck's computation of the automorphism group of $S^{1} \times S^{2}$ (the automorphism group is the group of isotopy classes of homeomorphisms) and extending the result-to the "twisted" S^{2}-bundle over $S^{1}, S^{1} \times S^{2}$. We then define three types of automorphisms of a connected sum of 3-manifolds, namely "generalised slides", "permutations" and "factor preserving automorphisms". "Generalised Slides" are the equivalent for a connected sum of handle slides in a handlebody - the point is that factors can be slid around as if they were handles.

Our first main theorem (theorem 3.1) proves that the three basic types of automorphisms generate the group of automorphisms (in fact, any automorphism is the compoaition $g \cdot h$ where h preserves factors and g is a composition of slides and permutations). The method of proof is an adaptation of the familiar "ball push" method used by ikilnor in [18]. (Orientation preserving automorphiane in the orientable case)

In order to obtain a canonical verision of the decomposition given by the theorem weed to work with automorphisms fixed on a disc. Indeed we can apply the ".Hatoher' method" [10 to make the process in theorem 3.2 completely canonical and deduce that there is aplit opimorphise from the higher honotopy groups of the opeo of bomeonorphige firing a diso to the direat product of the higher homotopy eroupl of the 日peot of homecmorphian fixing alsc of the factore.

Part I ends with a discussion of special cases. In some cases we can prove that the relative automorphism group (the group of automorphisms fixing a disc) coincides with the absolute one and in some cases it doesn't. We also consider standard fibrations [22] to analyse the higher homotopy groups of the absolute space of automorphisms in general and deduce some results on P^{2}-irreducible sufficiently large 3 manifolds.

Finally, we recover some results due to Laudenbach 17] on the automorphisms of a connected sum of S^{2}-bundles over S^{1} and extend them to an arbitrary connected sum of such with P^{2} - irreducible sufficiently large 3 manifolds.

In part $I I$ we $u 8 e$ theorem 3.1 in the case of a connected sum of S^{2} bundles over S^{1} to prove that a 4-manifold is determined, up to homeomorphism, by its full 2-handles. Then we can use the Kirby link pictures [5] to give a calculus of links to classify orientable 4manifolds. We then give a calculus for non-orientable 4 manifolds by allowing "twists"on passing through certain identified couponents of the link. We also consider the problem of stable classification of 4manifolds (under connected sum with an S^{2}-bundle over S^{2}).

I would like to thank Eg Eupervieor Colin Rowrke for his help and encouragement and also the Inctituto Nacional de Inventigacão Cientifion, (Portugal), for ita financial eupport.

I vould also like to thank David Epstein for helpful ocmente on a provious version of part I of the thesif, in particular he mugented an improvement to theorea 2.2 (from an isotopy olasaifioation of homeon morphiems to a homotopy olanelfication)The proof of this inoluded in the present veraion 1s due to Colin Rourize.

1. PRELIMINAIRES

We assume the reader is familiar with basic works such as [21]. We work in the pl. category. All manifolds are compact and connected and can be with or without boundary. The boundary of a manifold M will be denoted by ∂M, the interior by int M.
I^{n} denotes the n-cube i.e. the subset of points $\left(t_{1}, \ldots, t_{n}\right)$ of R^{n} with $0 \leq t_{i} \leq 1$ for $i=1,2, \ldots, n$.

We now give some definitions and results which will prove useful later on (this is hy no means an exhaustive list but only a list of some probably not so well known results).
1.1 A p.1. n-isotopy of M in Q (M, ? are manifolds) is a p.l. embedding $F: M \times I^{n} \longrightarrow Q \times I^{n}$ which commutes with the projections onto the second factor.

So for any $t \in I^{n}$, there is an embedding $F_{t}: M \longrightarrow$ Q s.t F is given by $F(x, t)=\left(F_{t}(x), t\right)$ for all $x \in M$. We say F is a level preserving embedding.

A l-isotopy is just called an isotopy. Two emberdings are n-isotopic if there is an n-isotopy between them.
1.2 An ambient pl n-isotopy of 0 is a level preserving p.1.homeomorphism $H: Q \times I^{n} \rightarrow Q \times I^{n}$ s.t. $H_{0}: Q \longrightarrow Q$ is the identity (O is the origin in R^{n}).
1.3 An n-isotopy F of M in Q is fixed on X if X is a subset of M and $F_{t / X}=F_{0 / X}$ for all $t \in I^{n}$.

We say F has support in U if F fixes $M-U$, F is mod X or relX if it fixes X .
1.4 We say the ambient n-isotopy $H: Q \times I^{n} \longrightarrow Q^{n} I^{n}$ covers or extends $F: M \times I^{n} \longrightarrow Q^{n} I^{n}$ if the diagram

commates, i.e. $F_{t}=H_{t}{ }^{\circ} F_{0}$, all $t \in I^{n}$
1.5 Alexander's trick [1] Any homeomorphism of a ball keeping the boundary fixed is isotopic to the identity keeping the boundary fixed.
1.6 (i) Let B^{n}, C^{n} be balls and h_{0}, h_{1} homeomorphisms $B^{n} \rightarrow C^{n}$ which agree on ∂B^{n}. Then h_{0}, h_{1} are ambient isotopic mod ∂B^{n}.
(ii) If M is a manifold with compact boundary then any nisotopy of ∂M extends to one of M with support in a collar of дм.
1.7 A p.1. n-isotopy F of M^{m} in Q^{P} is allowable if for some p.1. ($m-1$) sub-manifold N of $\partial M, F^{-1}(\partial Q)=N$ for all $t \in I^{n}$. N may be empty or it may be the whole of ∂M. $A^{t} p .1$. embedding $f: M^{m} \hookrightarrow Q^{p}$ is allowable if $f^{-1}(\partial Q)$ is a pl. (m-1) sub-manifold of ∂M.

1.8 n-isotopy extension theorem [13]

If $F: M \times I^{n} \longrightarrow Q^{n} I^{n}$ is an allowable n-isotopy (fixed on YcM), M compact, and F is locally unknotted then there is an ambient n-isotopy of Q with compact support (fixed on Y) extending F.
1.9 Any two collars of ∂M in M are canonically ambient isotopic
1.10 Let $h_{i}: B \xrightarrow{q^{n}} C^{q^{n}}, i=1,2$, be homeomorphisms between ball pairs that agree on $\partial B^{q n}$. Then h_{1} is ambient n-isotopic to h_{2} rel $\partial B^{, n}$.

1.11 Light bulb trick [8]

Let $*: \in S^{2}$ be a base point in S^{2}. Then any tame arc properly embedded in $S^{2} \times I$ which connects $\{*\} \times\{0\}$ to $\left.\{*\} \times f 1\right\}$ is ambient isotopic to $\{*\} \times I$ by an ambient isotopy keeping $s^{2} \times\{0,1\}$ fixed.

1.12 Aut M denotes the automorphism group of M i.e. the group of homeomorphisms of the manifold M factored out by the normal subgroup of those which are pl-isotopic to the identityme will see later(1.14) that Aut $\hat{M}=\Pi_{0}$ (PL (M) ,where PL (M)IE the space of plhomeomorphisms of Mosiemente of Aut M are called automoxphismm.

If M is orientable we denote by Aut $^{+}{ }^{+}$the subgroup of AutM consisting of the isotopy classes of the orientation preserving homeomorphisms.

1.13 Connected sums and prime decompositions of 3-manifolds

We quote some results on 3 -manifolds. For proofs and details see [11]. All manifolds are assumed to be compact and connected.

Let M_{1}, M_{2} be n-manifolds, $B_{i} \subset$ intM ${ }_{i}$ r-cells in $M_{i}, i=1,2$, . Let M be the space obtained from M_{1}, M_{2} by removing the interior of B_{i} and identifying ∂B_{1} with ∂_{2} by a homeomorphism which in the case M_{1}, M_{2} oriented we require to be orientation reversing . M is called the connected sum of M_{1}, M_{2} and denoted by $M_{1} M_{2}$. Connected sum is a well defined associative and commutative operation in the category of oriented n-manifolds and orientation preserving homeomorphisms. For both oriented or non-oriented case there are at most two homeomorphism types for $M_{1} M_{2}$ and only one, if one of M_{1}, M_{2} admits a self-homeomorphism which fixes some point and reverses the orientation of a neighbourhood of this point [11].

A 3-manifold M is prime if $M=M_{1} M_{2}$ implies one of M_{1}, M_{2} is a 3sphere. It is irreducible if each 2-sphere in its interior bounds a 3 cell. Clearly irreducible manifolds are prime. A prime manifold is either irreducible or a 2-sphere bundle over s^{1} (There are only two 2-spheres bundles over S^{1} : the trivial or "untwisted"one, $S^{1} \times S^{2}$, and the non-trivial or "twisted" one which we denote by $S^{1} \times S^{2}$). Connected summing with $S^{1} \times S^{2}$ or $S^{i} \times S^{2}$ to a manifold M has the same effect as "adding a hollow handle" : choose two disjoint 3 cells in M, remove their interiors and match the resulting boundaries under an orientation reversing homeomorphism in the first case, an orientation preserving homeomorphism in the second case.

Let F be a surface in M (2 sided properly embedded) or in $\partial M, F$ not being the 2 -sphere. Then we say F is incompressible if $\operatorname{Ker}\left(\pi_{1} F \longrightarrow \pi_{1} M\right)=0$. An irreducible manifold which is not a ball is
sufficiently large if and only if there exists an incompressible surface in M.

A 3 -manifold M is said to he p^{2}-irreducible if it is irreducible and contains no 2-sided projective plane.

Milnor showed that there exists a unique prime decomposition (under *) of oriented 3 manifolds up to homeomorphism and order of factors [18]. Proof of existence was given by Kneser [16]. In the non orientable case although the factorization always exists it is not unique since for any non orientable manifold $M, M * S^{1} \times s^{2} \underset{\sim}{\tilde{\sim}} M S^{1} \underset{\sim}{x} S^{2}$ (for a proof see Hempel [11]). From this is follows that we oan replace any factorization $M=M_{1} * \ldots M_{n}$ by one satisfying the following conditions ${ }^{5}$ at beast one of the M_{i} is $S^{1} \times S^{2}$ then M is orientable. Such a factorization is called normal. Hempe 1 [11] proved the uniqueness decmposition for normal factorizations. Putting together all these results we get the following:

THFOREM [11]

For any compact connected 3 manifold (closed or not*) there exists a finite normal decomposition into prime manifolds. Given any two normal factorizations $M, \ldots M_{1} \ldots \ldots M^{\prime}$ then $n=n^{\prime}$ and after possible reordering, M_{i} is homeomorphic to M_{i} ' (orientation preserving homeomorphism in the oriented category).

* If \hat{M} denotes the manifold obtained from M by oapping off each 2sphere component of ∂M with a 3 cell B and $\hat{M}=M_{1} \ldots M_{9}$ is a prime decomposition of $M_{\text {, then }} M_{1} \| \ldots M_{q} \not B^{3} * \ldots B^{3}$ is a prime decomposition of \hat{M} where there are as many factors of β^{3} as the number of 2-spheres in ∂M.

The bounded conneciad sum
If M_{1}, M_{2} are two n manifolds with boundary the bounded connected sum $M_{1}+M_{2}$ is defined as follows:

Consider the p.1. half disc $H=n^{n-1} \times[0,1]$ where $n^{n-1}=[-1,1]^{n-1} \subset R^{n-1}$ so that D^{n-1}.is contained in ∂H_{-}^{n}. Find embeddings $\left(H_{i}{ }^{n}, n_{i}{ }^{n-1}\right) \notin\left(M_{i}{ }^{n}, \partial M_{i}\right)$ $i=1,2$ and define ($M_{i}{ }^{0}, \partial M_{i}{ }^{0}$), $i=1,2, D^{0}$, to he respectively $\left(\bar{M}_{i}-H_{i} \bar{n}^{\prime},{\overline{\partial M_{i}}{ }_{i}{ }_{i}}^{n-1}\right), i=1,2,{\overline{\partial H^{n}-D^{n-1}}}^{n}$. Then $M_{1}{ }^{\partial} * M_{2}$ is, by definition, $M_{1} \mathcal{Z M}_{2}{ }^{0}$ with $D_{1} \& \partial M_{1}$, identified with $D_{2}{ }^{0}\left\langle M_{2}^{0}\right.$ by a homeomorphism which we require to be orientation reversing if both M_{1} and M_{2} are oriented.
$M_{1} \partial_{M_{2}}$ is then a $p .1$ n-manifold, orientable if both M_{1}, M_{2} are, and $\partial\left(M_{1} \not M_{2}\right) \cong \partial M_{1} * \partial M_{2}$.

1.14 (or [22])

Let Y be a submanifold of the manifold M, Σ the standard $k-E i m p l e x$ in $\mathbb{R}^{\mathbf{k}}$.
(i) $\mathrm{PL}(\mathrm{M}, \mathrm{I})$ is defined to be the semi-mimplicial complex whose \mathbf{k}-aimplices are p.1. homeomorphisme $\Delta^{k} x_{M} \longrightarrow \Delta^{\mathbf{k}} x M$ which oommate with projeotion onto Δ^{k} and such that the restriction to $\Delta^{k} x Y$ is the identity. It has the obvious bowndary and degeneracy maps.

If Yob we write PL(M).If M is orientable SPL(M,Y) denotes the mbcomplex of oriontation preserving homeomorphimas. If 0 denotes the origin in $\mathbf{R}^{\mathbf{k}}, \mathrm{PL}\left(\mathbf{R}^{\mathbf{k}}, 0\right)$ is acoally denoted by PL_{L} -
(ii) Let $1: \mathrm{Y}^{\boldsymbol{n}} \longrightarrow \boldsymbol{N}^{\mathbf{m}}$ be the inclusion map, z a locally flat submanifold of Y.Y is also a locally flat submanifold of M.
$\mathrm{Emb}_{\mathrm{z}}\left(\mathrm{I}_{\mathrm{n}}^{\mathrm{n}}, \mathrm{M}^{m}\right)$ is defined to be the seai-aimplicial complex
 projection onto Δ^{k} and euch that
(1) $f\left|\Delta^{k} \times z=(1 d \times 1)\right|\left(\Delta^{k} \times z\right)$
(ii) $f^{-1}\left(\Delta^{k} \times \partial M\right)=\Delta^{k} \times 1^{-1}(\partial M)$
(1ii) given $(t, y) \in \Delta^{k} \times I$ there is a olosed neighbourhood U of t in Δ^{k}, a olosed neighbourhood V of J in T, and an cmbedding $\alpha: 0 \times V \times D^{m-n} \rightarrow \Delta^{k} \times M$ E.t. the image of α is a olosed noighbourhood of $f(t, 5)$ in $\Delta^{k} \times M$ and the following diagran comwaten, where π, π l are the projections onto the firat factors

(This is a looal flatnene condition)
 we write $\operatorname{Emb}\left(X_{,} M\right)$. If M is oriented $S \mathbb{m} b_{Z}(\hat{X}, \hat{M})$ is the euboomplex of

 armone.
2. THF GROUP OF AUTOMORPHISMS OF A 2-SPHERE BINDJE OUFR \mathbf{S}^{1}
(1) We consider first the trivial bundle $S^{1} \times S^{2}$.

THEORFM 2.1
Aut $S^{1} \times s^{2}-Z_{2} \oplus \mathrm{z}_{2} \oplus \mathrm{Z}_{2}$.

Proof

This was proved by Gluck [87. We give a "geometric idea" of his proof:

Regard S^{2} as the unit sphere in 3 space and S^{1} as the space of complex numbers modulo 1.

A homeomorphism of $S^{1} \times S^{2}$ induces an automorphism of $H_{1}\left(S^{1} \times S^{2} ; 2\right)-2$ and an automorphism of $H_{2}\left(S^{1} \times s^{2} ; 2\right)=2$ each of which depends only on the isotopy class of the homeomorphism. $\Lambda s Z_{2}$ is the group of automorphisms of 2 we get a homomorphism $\phi:$ Aut $s^{1} \times S^{2} \longrightarrow Z_{2} \oplus Z_{2}$. Let $r: s^{2} \rightarrow s^{2}$ denote the antipodal map and $s: S^{1} \longrightarrow S^{1}$ the complex conjugation. $\mathrm{Z}_{2} \mathrm{NZ}_{2}$ is the subgroup of Aut $S^{1} \times S^{2}$ consisting of the isotopy classes of
 this subgroup determined by the condition $\phi \rho=1$ (1-id). Then ϕ splits. We will show that ker $\phi=Z_{2}$ As a normal subgroup of order two is central and ϕ splics we get that Aut $S^{1} \times S^{2}=\operatorname{Ker} \phi \oplus Z_{2} \oplus z_{2}=Z_{2} \oplus Z_{2} \oplus Z_{2}$ 。 Let feKer ϕ.
(a) We first deform $f\left(\{0\} \times s^{2}\right)$ isotopically until $f /\{0\} \times S^{2}$ is the identity.
(1) By general position assume $f\left(\{0\} \times s^{2}\right)$ intersects $\{0\} \times S^{2}$ in a finite number of simple disjoint closed curves. We show how to isotope $f\left(\{0\} \times S^{2}\right)$ so as to reduce the number
2. THF GROUP OF AUTOMORPHISMS OF A 2-SPHERE BINDIPE OYER S^{I}
(1) We consider first the trivial bundle $S^{1} \times S^{2}$.

THEORFM 2.1

Aut $S^{1} \times S^{2}=Z_{2} \oplus Z_{2} \oplus \mathrm{I}_{2}$.

Proof

This was proved by Gluck [87. We give a "geometric idea" of his proof:

Regard S^{2} as the unit sphere in 3 space and S^{\prime} as the space of complex numbers modulo 1.

A homeomorphism of $S^{1} \times S^{2}$ induces an automorphism of $H_{1}\left(S^{1} \times S^{2} ; 2\right)=2$ and an automorphism of $H_{2}\left(S^{1} \times S^{2} ; 2\right)=2$ each of which depends only on the isotopy class of the homeomorphism. As \mathbf{z}_{2} is the group of automorphisms of 2 we get a homomorphism $\phi:$ Aut $s^{1} \times S^{2} \longrightarrow Z_{2} \oplus Z_{2}$. Let $r: S^{2} \rightarrow S^{2}$ denote the antipodal map and $s: S \xrightarrow{l} \longrightarrow S^{\prime}$ the complex conjugation. $Z_{2}{ }^{-Z_{2}}$ is the subgroup of Aut $S^{1} \times S^{2}$ consisting of the isotopy classes of
 this subgroup determined by the condition $\phi \rho=1$ (1-id). Then ϕ splits. We will show that fer $\phi=Z_{2}$ As a normal subgroup of order too is central and ϕ splits we get that Aut $S^{1} \times S^{2}=$ Ker $\phi \oplus Z_{2} \oplus Z_{2}=Z_{2} \oplus Z_{2} \oplus Z_{2}$. Let $f \in \operatorname{Ker} \phi$.
(a) We first deform $f\left(\{0\} \times s^{2}\right)$ isotopically until $f /\{0\} \times S^{2}$ is the identity.
(1) By general position assume $f\left(\{0\} \times S^{2}\right)$ intersects
$\{0\} \times s^{2}$ in a finite number of simple disjoint closed curves. We show how to isotope $f\left(\{0\} \times s^{2}\right)$ so as to reduce the number
of intersections. After a finite number of stages $f\left(\{0\} \times s^{2}\right)$ is disjoint from $\{0\} \times s^{2}$.

Let C be an innermost curve in $f\left(\{0\} \times S^{2}\right)$ in the intersection of $f\left(\{0\} \times s^{2}\right)$ with $\{0\} \times S^{2}$. Then C bounds a disc E in $f\left(\{0\} \times S^{2}\right)$ with no more intersection curves. C also bounds a disc E' in $\{0\} \times S^{2}$ s.t. E $\mathrm{U}_{\mathrm{O}} \mathrm{F}$ is a sphere which separates. Hence F 'UF hounds a 3 ball D in $\mathrm{S}^{1 \times S^{2}}$ as $s^{1} \times s^{2}$ is prime.

Let D^{\prime} be a ball neighhourhood of D in $S \times s^{2}$. Then there exists an isotopy of D^{\prime} which is the identity on the houndary that "pushes" $f\left(\{0\} \times S^{2}\right)$ across the ball D eliminating the intersection curve C (1.10). Extending the isotopy to M by the identity shows what we want .

Remark

This process of eliminating intersection curves is a special case of a general procedure to be used later on.
(2) As after stage (1) the two spheres are disjoint, we can isotope one into the other as now the region between them is an annulus (cut $S^{i} \times S^{2}$ along one of the spheres to get a ball with 2 holes. Now the region between the two spheres becomes a regular neighbourhood of one of the holes hence an anmalus by the regular neighbourhood collaring theorem. Gluing the holes back again doesn't affect.it.)
(3) Now we have $f \mid\{0\} \times s^{2\{0\} \times S^{2}-\Rightarrow} \neq\left\{S^{2}\right.$, and as fekerp is a c degree one map,this restriction is isotopic to the identity.
(b) We can now interpret f, by cutting $S^{1} \times S^{2}$ along $\{0\} \times S^{2}$, as a map of $I \times S^{2}$ onto itself being the identity on boundary components.

Regard $I \times S^{2}$ as the space in between two 2-spheres in 3 space and denote by N the north pole. identity:

We now deform, rel $\partial\left(I \times S^{2}\right),\left.f\right|_{(I\{N\})}$ till $\left.f\right|_{(I \times\{N\})}$ is the (20tilns
$\mathrm{f}(\mathrm{I} \times\{\mathrm{N}\}$ is an arc from $\{0\} \times\{\mathrm{N}\}$ to $\{1\} \times\{\mathrm{N}\}$ that can have little knots. By the light bulb trick (1.11), we can unknot them, (the idea is to regard the central ball - see picture - as very small so that the arc and the ball can he regarded as a piece of string and then the knots can be slid off the end) and make $f(I \times\{N\})=I \times\{N\}$ by an isotopy rel $\partial\left(I \times S^{2}\right)$. But as ficker $\phi, f \mid I \times\{N\}$ must be orientation
preserving, hence isotopic to the identity. As the isotopies used clearly extend to an isotopy of $S^{1} \times s^{2}$ fixed on $\{0\} \times s^{2}$ we have the required result.
(c) Let C be a small circle on s^{2} about the north pole N. The union of $I \times C$ with the two discs around respectively $\{0\} \times\{N\}$ and $\{1\} \times\{N\}$ bounded by C hounds a regular neighbourhood of $I \times\{N\}$ in $I \times S^{2}$. By the regular neighbourhood theorem we can then deform isotopically f by an isotopy rel $\partial\left(I \times S^{2}\right)$ s.t fakes $I \times C$ onto itself. But a homeomorphism of $I \times C$ onto itself is isotopic rela to a standard n-tuple twist

(parametrize C by the angle β mod 2π. Then $f \mid I \times C$ is isotopic to one of the maps $f_{n}(t, B)=(t, R+2 \pi n t)$.
(d) We continue to deform funtil $f \mid I \times C$ is either the identity on a standard 1-twist according to n is even or odd (see pictures).

(Pictures shows how to get rid of two twists. Then result follows after a finite number of stages.)

Again all the isotopies fix $\{0\} \times S^{2} \cup\{1\} \times S^{2}$ hence extend to $S^{1} \times S^{2}$.
(e) Let z denote the homeomorphism of $s^{1} \times s^{2}$ determined by $r(t, x)=\left(t, \phi_{t}(x)\right)$ where ϕ_{α} denotes a rotation of S^{2} about a diameter through the north and south poles, through an angle of $2 \pi \alpha$ in some fixed direction. Let $K=\{0\} \times S^{2} U\{1\} \times S^{2} U I \times C$. Up to this point we nave deformed f until f is the identity on $\{0\} \times S^{2} y\{1\} \times S^{2}$ and is \mathcal{C} or the identity on $I \times C$. (Both z,id Ker ϕ and are the identity on $\{0\} \times S^{2} u\{1\} \times S^{2}$).

LEMMA 2.1
Let f and g he two homeomorphisms of $I \times S^{2}$ whose restrictions to the boundary are the identity and which agree on $I \times C$. Then f and g are isotopic rel $\partial\left(I \times S^{2}\right)$.

Proof

$f^{-1} g \mid K$ is the identity. $I \times S^{2}$ consists of two disjoint open 3-cells whose boundaries are non-singular and contained in K. But since $f^{-1} \mathbf{g}_{8}$ cannot interchange these 3 cells, the restriction to each cell is a howeomorphism which is the identity on the boundary and hence isotopic to the identity rel $\partial\left(I \times S^{2}\right)$. Hence f and g are isotopic rel $\partial\left(I \times S^{2}\right) . \square$
(f) It remains to prove that id, e are not isotopic. Gluck uses Pantrjagin homotopic classification of maps of $S^{1} \times S^{2}$ onto S^{2} to prove that they are not homotopic, hence not isotopic. In fact we will give a direct geometric proof that they are not thomofopic in the next section.

Two immediate corollaries of the theorem are the following:

COROLLARY 2.1

Two homeomorphisms of $S^{1} \times S^{2}$ are isotopic iff they are homotopic.

COROLLARY 2.2
Any home omorphism of $S^{1} \times S^{2}$ extends to $S^{1} \times B^{3}$.
(2)

$s^{1} x s^{2}$

Consider $S^{1} \times S^{2}$, the twisted S^{2}-bundle over S^{1}, as the space obtained from $[-1,1] \times S^{2}$ by identifying $\left.f 1\right\} \times S^{2}$ with $\{1\} \times S^{2}$ by an orientation reversing homeomorphism whose square is the identity (e.g.the antipodal map).

Any homeomorphism of $S_{\sim}^{1} \times S^{2}$ induces an automorphism of $H_{1}\left(S^{1} \times S^{2} ; Z\right)=2$ which depends only on the isotopy class of the homeomorphism. As the automorphism group of Z is Z_{2} we get a homomorphism $\phi:$ Aut $S^{1} \times S^{2} \rightarrow Z_{2}$. Let ${ }_{x}$ be the subgroup of Aut $S^{1} \times S^{2}$ generated by the isotopy classes of (id,id) and ($3,1 d$). $\mathcal{Y}=\frac{2}{2}$
(i) To see that (s,id) is not isotopic to the identity consider the maps

If $f=(s, i d) \quad \Psi$ has degree -1
$f=(i d, i d) \quad \Psi$ has degree 1
hence they are not isotopic.
(ii) To see that (1, r) is isotopic to the identity lift the map to the universal cover $R \times S^{2}$ to get a map $(\tilde{1, r}): R \times S^{2} \longrightarrow R \times S^{2}$. If id denotes the lift of the identity obtained by choosing the same base point upstairs then $(\tilde{1 d})=\tilde{\tau}_{j} \in(\tilde{1, r})$ where $\sigma_{1}: R \times S^{2} \rightarrow R \times S^{2}$ is the covering translation $z_{1}(t, x)=(t+1, x)$. Hence ($1, r$) is isotopic to the identity in $S_{N}^{1} \times S^{2}$.
 the condition $\phi \rho=1$. Then ϕ splits. ϕ is onto. We show that Ker $\phi=Z_{2}$ and hence that Aut $S^{1} \times S^{2}=\operatorname{Ker} \phi \subset Z_{2}=Z_{2} \operatorname{CZ}_{2}$ 。

THEOREM 2.2
Aut $S_{\sim}^{l} \times S^{2}=Z_{2} \oplus Z_{2}$

Proof:

It remains then to show that Ker $\phi=\boldsymbol{R}_{\boldsymbol{z}}$ The proof is essentially the same as in the orientable case and we only point out the differences.

Let h be a homeomorphism of $S^{1} \underset{\sim}{x} S^{2}$. h can be deformed isotopically until $h\left(\{0\} \times s^{2}\right)=\{0\} \times s^{2}$ as in the orientable case. Then $h /\{0\} \times s^{2}$ is either orientation preserving or orientation reversing. In the latter case apply the above to make it orientation preserving (h/\{0\} \mathbf{S}^{2} up to isotopy is either the identity or the antipodal map) hence isotopic to the identity. Then cutting $S_{N}^{1} \times S^{2}$ along $\{0\} \times S^{2}$ we can think of h as a homeomorphism of $I \times S^{2}$ which is the identity on the boundary. Then, as before, h is either isotopic to the id or to E in $S^{1} \times S^{2}$.

It remains to prove that 5 , id are not isotopic:

We prove that they are not homotopic, hence not isotopic.
Let $q: S^{2} \rightarrow S^{2}$ be the reflection in a great circle through north and south poles Think of $S^{1} \times S^{2}$ as obtained from $I \times s^{2}$ by identifying $\left\{0 \mid \times s^{2}\right.$ with $\{1\} \times s^{2}$ by q. Let C be the circle which is the image of $I \times\{n\}$ in $S^{1} \underset{\sim}{\sim} S^{2}\left(n\right.$ denotes the north pole of $\left.S^{2}\right)$ and let be the image of $\left\{0\left\{x\{n\}\right.\right.$. Let z be the self homeomorphism of $s^{1} \times s^{2}$ which rotates s^{2} about the north and mouth poles once during I.Aseume w.l.o.g. that the rotation is the identity near 0 and 1.

LEMAN 2.2
द ie not homotopic to the identity.

Prog if
Suppose that x_{i} and id were homotopio and v.1.0.g. assume that the homotopy is fixed near 0 and 1. Let $\mathrm{F} \mathrm{S}^{1} \times \mathrm{S}^{2} \times I \longrightarrow \mathrm{~S}^{1} \underset{S^{2}}{ }$ be the given homotopy, $F_{0}=i d, F_{j}=r_{0}$ By the relative transversality theorem deform F to be transverse to C keeping fixed a neighbourhood of the level: 0 and 1. Let T be $F^{-1}(C)$ which is a surface in $S^{1} \times S^{2} \times I$ with two boundary component e (the copies of C in levels 0 and 1).

Now deform F further until P / T is transverse to in C and let C_{0} be $\mathrm{F}^{-1}(*)$ which is a system of olrolen and ares on T (in fact one are
and n other circles). Let T_{0} be T out along C_{0}. Then T_{0} is a surface with $2 n+1$ boundary oomponentsione \square corresponding to the two copies of C and the arc, and othere which come in pairs $\left(Q_{i}, P_{1}\right)$ corresponding to the oir cles whioh vere out.

Let Q be the universal cover of $S^{1} \times S^{2} \times I$. We oan regard Q as a abset of $\mathbb{R}^{4}\left(\mathbb{R} \times S^{2} \subset \mathbb{R}^{3}\right.$ as a collar on S^{2} and hence $\mathbb{R} \times S^{2} \times I \subset \mathbb{R}^{3} \times I \subset \mathbb{R}^{4}$) and hence $\tau(Q)$ (the tangent bundle of Q) has atandard framing.
T_{0} can be lifted to a aurface \tilde{T}_{0} in Q (binoe the only obstruction
 cut at ${ }^{*}$, which is mull homotopic). We now olaim that ${\underset{T}{0}}^{\sim}$ can be framed so that the framing agrees with the following framing near \square :

first vector normal, second tangent- amooth at corners as shown.
and agrees up to an even number of twiste with the ounard-normed, fingent fin ning near the other componenta (aseume w.l.0.g. $n \neq 0$). This follows by an eary argument by induotion on the genue of the surface.

C out at ${ }^{*}$ has a framing given by ohoosing two perpendicular vectorw at n in S^{2} and this pulls back by F to give a nozal franing on T_{0} in $s^{1} \times S^{2} \times I$ and hence on ${\underset{T}{0}}^{\sim}$ in Q.Thic framing together with the ohosen Ireming on \tilde{T}_{0} gives a framing of $Z(Q)$ near T_{0}. W e now have two frantnge--this one and the atandard one. The oomparison map is a map $\lambda_{8} \tilde{T}_{0} \rightarrow 80_{4}$. We clain that $\lambda / \tilde{\partial}_{0}$ represente the non trivial eleaent of $\mathrm{H}_{1}\left(\mathrm{SO}_{4}\right)=\varepsilon_{2}$ (and this is imposeible since $\overline{\mathcal{V}} \tilde{T}_{0}$ is then a homolog of this to sero).

Step $1 \lambda / \square$ represents the non zero element.
Since we have assumed F and τ to be the identity neax 0 and 1 , everything is standard near the corners of \square and so we oan think of \square as made of four pieces and measure the contribuitions aeparatelys
λ / a gives one twist on the normal framing by definition of z and therefore represents 1 in H_{2} (note that $\mathrm{H}_{1}\left(\mathrm{SO}_{4}\right)$ is generated by the image $\Pi_{1}\left(\mathrm{SO}_{2}\right)=$ circle group $)$.
λ / b gives no twist.
$\lambda / 0$ and λ / d are related by covering translation(expanaion of $\mid R^{4}$ plus a reflection) which differ by multiplication by a oonatant element of SO_{4},hence they give the same elerent in H_{1}.

Stop 2: $\lambda / Q_{1}=\lambda / P_{1}$

As in the proof of stop 1 if we had chosen the normal-tangent framing near Q_{i} and P_{i} then λ / Q_{i} and λ / P_{i} would give the same el encmet of H_{1}, but the actual framing ohosen differs from the normal-tangent framing by an eren number of twists, henoe they still represent the eame element of $\mathrm{H}_{1}\left(\mathrm{SO}_{4}\right)$ 。

Hence $\lambda / \partial \tilde{T}_{0}$ represents the non zero element of $\mathrm{H}_{1}\left(\mathrm{SO}_{4}\right)$.Contradiotion.

As in the orientable case the nert two corollaries follom imediatly. $s^{1} \times B^{3}$ denoten the twisted 3 -disc bundle over s^{1}.

COROLTARI 2.3

Any hosecmorphise of $s^{1} x^{s^{2}}$ extends to $s^{1} \times x^{3}$.

COROLTARY 2,4

Two honeonomph man of $s^{1} x^{2}{ }^{2}$ are homotopto if and onis if therener isotopio.

3. HONEOMORPHISMS OF 3-MANIFOLDS

 normal factorization [11] of M into prime manifolds where $P_{1} \ldots P_{s}$ are irreducible, $P_{s+1} \ldots P_{n}$ are 2 sphere hundles over s^{\prime}. Our aim is to study the group of homeomorphisms of M. For simplicity we consider M closed although the techniques used are true for M with boundary with minor changes. So, unless otherwise stated, manifold will mean closed manifold.

We first need some preliminaries lemmas:

LEMMA 3.1

A parallelization of an orientable 3 manifold determines a choice of a standard disc neighbourhood of each point of M.

Proof

The tangent microbundle of M is defined to be the microbundle

where $\boldsymbol{\Delta}$ denotes the diagonal map [19]. Thus the "fibre" over a point $x_{0} \in M$ is the set of pairs (y_{ρ}, x_{0}) where y ranges over an arbitrary neighbourhood of x_{0} in M. It is known that for orientable 3 manifolds the tangent microbundle is trivial.
i.e. there exist neighbourhoods F_{0} of $\Delta(M)$ in $M \times M$ and E_{0}^{\prime} of $\{0\} \times M$ in $\mathbf{R}^{3} \times \mathrm{M}$ and a homeomorphisms h from E_{0} to F_{0}^{\prime} making the following diagram commutative

We can them choose $E_{0} \mathrm{D}^{\mathrm{D}} \times \mathrm{M}$ for a small enough diso D^{3} neighbourhood of the origin in \mathbb{R}^{3}.Thus the parallelization(i.e.the choice of a particular hemomorphic h) deterninen a choice of a diso for mok point of M.For each point x_{0} in M the fibre in $D x i l$ is a diso $D_{x_{0}}{ }^{D_{D}}$. $p_{1}\left(D_{x_{0}}\right)$ is the required disc neighbourhood of x_{0} in $M\left(p_{1}\right.$ is the projection on the first fector).

We will say that a ohoice of something is canoniang (o.g. a ohoice of a homeomorphism satiafying certain conditions,a choioe of a diso, oto) if the apace of choicen is contraotible i.e. a choice is defined up to an isotopy which in twen is defined up to an isotopy, which in in torn defined up to an isotopy and so on.

A unique choice is canonical.

Suppose given an parallelisation of K if M is orientable, a parallelization of the oricenteble double oover otherwise.

COROMABY 3.1
Given an aro in M and an orientation on one end,there existe a canonicel exteneion to en isotopy of embeddinge of a 3-diec in M and a homoto py rel ends between any two mach aros extende canonioally to a honotopy rel cods between the two ieotopiee of enbeddings.

Proof:
If M is orientable, define $\overline{\Gamma_{j}} \mathrm{DxI} \longrightarrow \operatorname{MxI}$ by $\bar{\alpha}\left(D_{x}|t|\right)=\left(D_{\alpha}(t), t\right)$ where
$\alpha: I \rightarrow M$ is the aro. If M is non orientable, lift the aro to the orienta ble donble cover, choosing a lift of one end according to the orientation given.T. can then as before, ohoose in a contimous vay a disc for each point of the are.Then project into M.Second pert of the corollayy is afrilare

We rmack that if the aro is an orientation preserving loop ve will end up with the mane diso we have started off Fith, sirce we will and up in the seme mheet upataire, heno the lift is soop.

13xM2 3.2

There are omlr two ohoices of extensions of an aro to en fatopr of embeddinge of a diso in M up to isotopy mel endsithe canoniogh one def1ned br corollaxt 3.1 and the triated aned given an orientation of ane end).

Proof:
 and h (DxI) deternine two nomal bandies of an aro α in MxI (trivial, of course). Bat an ends are fired, we think of any two such choicen as two trivialisaticas of a nomal bondle of s^{1} in MxI (4menifold). As ruch trivialisations are claceified by $T_{1}\left(O_{3}\right)=\pi_{2}$ the leman followe.

Lempa 3.3
Given an imotopy of emedding of a dimo D in M etarting Fith the inoluaion there in a onontonl catension to an arbient isotory H_{t} of M AHence the final homonorphian" H_{1}, Fhich is vell derised up to imotopy Fel D, is omantoal.
 the final homeonorphime(here $I^{n}=[0,1]^{n}, 1 \in I^{n}$ is the point $(1, \ldots, 1)$).

Progi:
Let $h_{t}: D \rightarrow M$ be the isotopy of embeddinge. By the isotopy exteneion theore there is an extenaion to an isotopy of $M, H_{t}{ }^{s} \rightarrow M$ ruoh that $R_{0}=1 d$. This proves the firet part of the lemen.

We now show that moh an extension is oanonical:
Suppose them that $H^{\prime}-\left(H_{t}^{\prime}\right)_{t \in I}$, is another extension of $h_{t}, H_{0}{ }_{0}=1 d$.
 sapping

$M \times I \times\{O\}$	into $M \times I \times\{O\}$	by H
$M \times I \times\{1\}$	into $M \times I \times\{1\}$	by Hi
$M \times\{O\} \times I$	into $M \times\{O\} \times I$	by id
$D \times I^{2}$	into $D \times I^{2}$	by $h \times i d$

$\left(h=\left(h_{t}\right)_{t \in I}, H=\left(H_{t}\right)_{t \in I}\right)$
This is possible sinoe both H and $H *$ are axtenaions of h.

By the 2-isotopy extension theoren $\varepsilon^{(2)}$ extends to a 2- isotopy
 topy rel D between H_{1} and H_{1}.Henoe H_{1} is well defined up to isotopy rel $\mathrm{D}_{\text {. }}$
$G^{(2)} / M \times I \times\left\{s^{(2)}\right.$ defines an isotopy $G_{B}^{(2)}$ between the two extemsions H and H^{\prime}, through extensions (i.e. each $G_{(2)}^{(2)}$ is an extension of h)

It remains thus to show that any two such isotopies $G^{(2)}$ and $G^{(2)}$, between the extensions H and H^{\prime} are isotopio through such isotopies
 by mapping

$\mathrm{MCI} \mathrm{I}^{2} \times \mathrm{O} 0$	into	$\mathrm{MXI} \mathrm{I}^{2} \times\{0\}$	by $G^{(2)}$
MxII $\times\{1\}$	into	$\mathrm{MuxI}^{2} \times\{14$	by $0^{(2)}$
M \times Y $04 \times I$	into	Mrefotx	by id
DxI ${ }^{3}$	1nto	DxI ${ }^{3}$	by hxid

This is possible since both $G^{(2)}$ and $G^{(2)}$ agree on $D x I^{3}$. Again by the 2-iectopy exteasion theoren $g^{(3)}$ extends to a 3-18otopy $G^{(3)}$ of M ith $G(3)$-id. $G(3)=G^{(3)} / M \times I^{2} \times$ gives an isotopy betwean the two isotopies $G^{(2)}$ and $G^{(2) '}$ through such isotopies.

We then carry on in the mam way.

We suppose given parallelisations of the factore or double oovere of the faotort, acoording as they are oriemtable or not, tor thet dises ends of handles or dises ueed to form the oomeoted eun are the. atomdard onen in the anse of lemen 3.1. From now on omleas otherwise stated, Thenever we talk about conncoted ouse ve asoune that we have used atandard dieos.

We now described certain types of honecmorphimen that om oocur in a 3-manifold.

(1) The gemeralised sliden

We comsider two cases although they are essentially the mane(in faot the seoond one is a particular case of the first one).
(i) Suppose $\mathrm{Mm} \mathrm{M}_{\boldsymbol{F}} \mathrm{M}_{2}$ and $\mathrm{D}\left(\mathrm{i}_{\mathrm{k}} ; \mathrm{D} \longrightarrow \mathrm{M}_{\mathrm{k}}, \mathrm{K}=1,2\right)$ is the embedded diso used to form the oonnected sun, i.e. $M-\overline{M_{1}-1_{1}(D)} \cup \overline{M_{2}-I_{2}(D)}$ (if no confusion arises we will often write $\overline{M_{k}-i_{k}(D)}$ as $\overline{M_{k}-D}, k=1,2$). Slide the diso in one of the factore M_{1}, say, along an aro α. This deternines an isotopy of embeddings h_{t} of a disc in M_{1}.

Let H_{t} be an extension of the isotopy to M_{1}. For each $t \in[0,1]$ the $\operatorname{map} f_{t}$ defined by H_{t} in $\overline{M_{1}-h_{t}(D)}$ and by id on $\overline{M_{2}-I_{2}(D)}$ definer a honeonorphicm between M and $\overline{M_{1}-h_{t}(D)} y_{h_{t}} \overline{M_{2}-I_{2}(D)}$ where $\partial\left(\overline{M_{1}-h_{t}(D)}\right)$ is identified with $\partial\left(\overline{M_{2}-i_{2}(D)}\right)$ by' h_{t}. This me ns ,for instance in the orientable oase, if $r: D \rightarrow D$ is the standard orientation reveraing homeomorphism such that $1_{1}(D)$ is identified with $i_{2}(D)$ by $i_{2} \circ r \circ \mathcal{I}_{1}^{1} / i_{1}(D)$ then $h_{t}(D)$ is identified with $i_{2}(D)$ by $i_{2} \bullet r h_{t}^{-1} / h_{t}(D)$.

 f_{t} is well dofined up to isotopy by lema 3.3 and depends only on the homotopy olese of $W[0, t]$ rel ende and on an element of \mathbb{Z}_{2} (corollary 3.1 and lema 3.2)

In general f_{t} is not a aelf homeomorphism of M, but if α is an orientable loop then as h_{t} starts and ends with the inclusion, f_{f} is a self homeomorphism of M. We then say that I_{1} is a loop homeomorphism.

Also note that if MP MMM, a loop homensompis on Mextende to a loop homeomoxphise on M by the identity on N, as ve oan alway anmu the homed morphime on M to be the identity on the dise where we form the comeated sur with I.Sane conaiderations for aro honeonorphises.

If the extemans of the are or loop to an isotopy of embeddinge are the canomical ones we thall call an aro or loop homeonophien, reapeotively, a partial or gencralised alideqand wo shall aonotimes refer to the partial or gemeralised elides ae the atandard aro or loop honeomorphiser (also we shall sometimes omit the word generalised).

Hote that once given the (orientable)loop or the are, a gemerelined or pactial slide is canonical by leama 3.3.

Remark:

If α is a nom orientable loop at the and of the isotopy h_{t}, D will have ite orientation reversed.We can muppose , $=1.0 \cdot g \cdot$, that the map $h_{1}^{-1} \cdot i_{1}$ is the standard orientation reverabis hameomorphiam I .Then if M_{2} admited a self homeomorphism which is r on $D_{0} R$, say, ve could glue R and H_{1} together aloge OD to get a self-homeomorphism of M. However this will not be needed in what followi.
(ii) The second case is obtained by sliding one end of the hollow hande orfentable

 vith the two ephere conponents capped off with 3 balls, is aloep in $\tilde{\mathrm{H}}^{\wedge}$ etarting at the centre point of one of those 3 balla and not intersecting the other.As before there is an isotopy H_{t} of \tilde{M}^{N} that drage the diso D corremponding to that and (see piotare)around the loop aturting and ending with the identity on that dise.

Note that ve can avold the poasibility of one end of the handle. kicking the other by ohroaing mall enough standard disas 1.e. by choosing a mitable trivialisation of the tangent miorobondle.

Final homeonorphism H_{1} is well defined up to imotopy rel D and there are at moft two choices as before. As the loop only meete the hollow handie at one and we can assuse thet H_{t} is the identity on the other disc correspording to the other and. Then f_{1} derised by H_{1} an \tilde{H} and the identity on $I A^{2}$ definee a self homecnorphien of M vileh in the onse the choice of the isotopy of embeddinge of the dise in $\tilde{M}^{\hat{N}}$ is the omnomionl one we oall generelined slide. Hote that there ian't aelf homeonorphime of Ixs ${ }^{2}$ which is the identity an one and and x an the other, henee ve couldn't get a self homoomorphien if ve sif aromd a non orientable loopowe could thongh obtain a partial alide. (Sindlarly to oafe (i) we have partial slidee and given the loop or aro the genemelled or partial aliden ase cenonionl.

If A goes around amother hendie then I_{f} is a (hollow)handie elide. Ageln as overfthing asn be asmued to be the identity outelde ocmaot set a silde in a fector of M exteade by the identity to a mide an .

Some remarks

(1) In case (ii) we are only interested in olides around orientable loops $\boldsymbol{F} \boldsymbol{\alpha}$ tere non orientable we would get a homeomorphisi between

(2) In the orientable case all slides are orientation preserving homeomorphisms.
(3) Any two different choices of homeomorphisms obtained by sliding one end of a handle around a loop differ by the homeomorphism σ defined in section 2 .
(2) Homeomorphisms preserving factors

These are the homeomorphisms that when restricted to each factor define a self homeomorphism of the factor (In fact the restriction defines

If in a decomposition $P_{1}{ }^{\#} \ldots \# P_{n}, P_{i} \cong P_{j}, i \neq j$, and the homeomorphism sends $\tilde{\mathrm{P}}_{\mathrm{i}}$ to $\tilde{\mathrm{P}}_{\mathrm{j}}\left(\tilde{\mathrm{P}}_{\mathrm{i}}\right.$ denotes P_{i} with the interior of a cell removed), \tilde{P}_{j} to $\widetilde{\mathbf{P}}_{i}$ and \tilde{P}_{k} to $\widetilde{\mathrm{P}}_{k}$ for $k \notin i, j$ we say the homeomorphism sends factor to factor. Same thing for any composition of these.

(3) Permutations of factors

Suppose M is given as obtained by attaching the different factors to disjoint cells in S^{3}. Suppose furthermore that there are some repeated factors in the decomposition. We consider homeomorphisms which interchenge such factors.

Permutations are generated by homeomorphisms which interchange only two factors and can be defined as follows:

Suppose $P_{i}{ }_{W_{j}}, i \neq j$ and $l_{\text {et }} \Sigma_{i}, \Sigma_{j}$ be the respective separating spheres. Denote by M^{\prime} the manifold before connecting $P_{i}, P_{j}, \Sigma_{i}, \Sigma_{j}$ bound 3 balls B_{i}, B_{j} in M^{\prime}. Let α be a path between them in the sphere part of M^{\prime} intersecting the balls only in Σ_{i}, Σ_{j} in its end points. Consider a ball D regular neighbourhood of $B_{i} \cup B_{j} \cup \alpha$ in the sphere part of M^{\prime}.

Then there is an isotopy s_{t} of M^{\prime} which is the identity outside D s.t. s_{1} interchanges the two balls. $s_{1} / M^{\prime}-\left(i n t B_{i} U\right.$ int B_{j}) extends to a homeomorphism which interchanges the two factors. If the arc homeomorphism thus determined (B_{i} is slid along α and B_{j} along $\bar{\alpha}\left(\cong \alpha^{-1}\right.$, see picture) is the standard one we say the homeomorphism thus determined is a permutation. Permatations are well defined up to 1motops.

We now show that these three types of homeomorphisms generate the group of homeomorphisms of the manifold:

THEOREM 3.1
Any (orientation preserfing) homeomorphiam of a(orientable) 3-manifold M can be obtained ,up to isotopy, as a composition of the following homeomorphismaz
(a) Homeomorphi ams preserving factors:
(b) Permatations of factors;
(c) Genoralisec slides.

Proof:
We give here the proof for the orientable case.For the non orientable case the proof will foilow as a corollery of a relative version of the theorem(Theoren 3.2), where we consider homeomorphisms fixed on a diso-any homeomorphism of a nor orientable manifold can be assumed, up to ieotopy the identity on a disc.

Thus from now on, onless otherwise stated, homeomorphism will mean orientation preserving homeomorphism, manifold will mean orientable manifold.

We shall show that given any homeomorphism f of M then we can find another homeomorphicm h (not necessarily unique) suct that hoif sende faotors to factora and hence, composing with some permataitions we shall get a homeomorphism preserving factors.As h is obtained, up to isotopy, by a composition of homeomorphiame of types (a) and (c) this will prove the theorem.

Choosing separating apherea $Z_{1} \ldots \Sigma_{n}\left(M_{m} P_{1} \# \ldots P_{n}\right)$ so that each Σ_{j} divides M into two parta one of which homeomorphic to $\overline{P_{j}-3-b e l l, ~ w h i c h ~}$ we denote by \tilde{P}_{j} (i.e. attech the manifolds P_{j} to n disjoint standard dises in s^{3}). Regard the $P_{i}, i \geqslant a+1$ as(hollow) handies h_{i} attached.Denote by $\mathrm{s}_{\mathrm{s}+1} \ldots \mathrm{~s}_{\mathrm{n}}$ the belt apherea of these handlea and let S be $\left\{\sum_{1} \sum_{s}, S_{s+1} \ldots S_{n}\right\}$

Cutting M along S ve obtain a non connected manfold with ($8+1$) componemte B_{i} where $B_{i} \tilde{P}_{i}$ for $1 \leqslant$ and B_{s+1} is a 3-aphere with $2 n-a$ holea(oonsidar B_{i} with boumdary). Let T be ane of the eeparating apheres. .Then $f(T)$ is a aphere that acparates.By general position and transersality $f(T) n s$ conaiate of a finite maber of aimple cloced curves.

The idea of the proof is as followsin

If $f(T)$ ns $\neq \phi$ we firat ahow how to reduce the number of intersectione.
 be to make the separating epheres go to separating apheres.In both aases ve deform M (and hence f) by a eeries of isotopies, partial and gemeralised sildes.Ae partial silides are not aelf-haneomorphims of M,in general, after each atep we ahall probebly have moved to a homeomorphic copy of M , 3y may. After heving the aeparating spheres back in eeparating apheres we are in M again.

The fect that during the process we move to a hameomorphic copy of M will be irrelevant in the and an we aball and up with the aare copy of M and show later that those partial slides can be put togethar to give generalised slides. Them the theorem will follow.

Sone remartas

As alromd quoted during the prooese ve move to a homeonorphic eoPJ of M obtained by inductively gluting the fectore P_{i} choosing disen lying either in s^{3} or inalde one of the ocaponents Eiready glued in. We oall mach a oopy Me (bearing in mind that it is not always the mane copy.We will often say "...by a homeomorphism of M"..." meening "....by
 adventage of simplifying considerably the notation) and write P_{i} for the factor correaponding to P_{i} (notice that P_{i} might be gined to a diso
 morphian $\mathrm{H} \rightarrow \boldsymbol{\mathrm { HEL }}$.

Here is a typical pioture of $\mathrm{H}^{*} \mathrm{z}$

We want this, as the basic process will be to eliminate intersection curves of $f(T) N S$ and a typical situation will be for instance, the one pictured below where to eliminate an intersection the factor P_{i} will ham moved
ve to be into P_{2} (the other situations are similar).

For example, suppose $M=A \neq B$ and A is moved along a loop that goes through B.Then the picture for the process will bes

Finally as all the homeomorphiame and isotopien oan be assumed to keep the manifold fixed outside aome compact set, we oan always auppose, if necessary, that one doesn't destroy the offeot of the previous onesthia will become clear in the proof.It will alwaya be assumed that whet should be kept fixed will be,although sometimes it is not explicitly mentioned.Also,for simplicity, we will atil oall f the deformed homeomorphism.
(1) Among the intersections of $f(T)$ with S choose an innernost ourve C in $f(T)$. Then C bounds a 2 cell E, say, in $f(T)$ oontaining no more intersection curves. ECB_{j}, some j.
(a) Suppose first $C \in s_{\mathcal{P}}^{2}$, some l. Then $\mathrm{j}-\mathrm{s+1}$.

Pinally as all the homeomorphisme and isotopies oan be assured to keep the manifold fixed outside sone compact set, we oan alway mppose, If necessary, that one doen't destroy the effect of the previous onesthis will become clear in the proof.It $w 111$ always be ascumed that what should be kept fixed will be, although sometimes it is not explioitly mentioned.Also,for simplioity, we will atll call if the deformed homeonorphian.
(1) Anong the interseotions of $f(T)$ with S choose an innernont ourre C in $f(T)$. Then C bounds a 2 cell E,say, in $f(T)$ oontaining no more intersection ourves.ECB ${ }_{j}$, some \mathcal{J}.
(a) Suppose firat $\mathrm{Ccs}_{\mathrm{p}}^{2}$, some ℓ. Then $\mathrm{j}=\mathrm{B+1}$.

C divides $S_{\hat{\ell}}$ into two 2 discs $E^{\prime}, E^{\prime \prime}$. Both $E^{\prime} U_{\partial}, E^{\prime} U E$ are 2 spheres By the Schoenflies theorem both of them divide B_{s+1} into 3 balls with possibly some balls removed. Choose $E^{\prime \prime}$ or E^{\prime} s.t. the component of $B_{8+i}-\mathrm{EmE}_{\partial}$ (or $B_{9+i}-E^{\prime} U_{a}$) bounded by $E^{\prime \prime} U_{2}\left(F^{\prime \prime} U_{F}\right)$ does not contain the "other hole "corresponding to h_{ℓ}. Suppose we have chosen E'and denote by A the component satisfying the required condition.

A is a 3 cell with possibly some balls removed

Let \hat{B}_{B+1} denote B_{s+1} with these holes capped off with 3 cells. Then there is an isotopy q_{t} in $\hat{B}_{s+1}(1.10)$ which takes picture (I) to picture (II) and is the identity outside a 3 ball D neighbourhood of A. Then q_{1} / \hat{B}_{0+1}

Remark extends to a composition of partiel elldee Q,saj, (as it has the same offcot as oliding one factor at atine-w.l.0.g. through onnonical disen by the Alerander's triok-and then pashing the bell eoroas) owoh that $Q(f(T))$ ns hat leas interseotion ourres.

In the special case where A is a 3 cell, after an isotopy identity outside a 3 ball neighbourhood of A vereplace $f(T)$ by another sphere with less intersection curves with s_{ℓ}^{2}. (c.f. Theorem 2.1.).

(b) If $\mathrm{CC} \Sigma_{\mathrm{j}} \mathrm{j} \leq s$ we proceed as follows:

Let $E^{\prime}, E^{\prime \prime}$ be the 2 cells in Σ_{j} bounded by C. We consider two cases
(i) EcB_{s+1}

Then E'UE, say, bounds a 3 ball in B_{a+i} with possibly some points removed. As before by partial slides

we reduce the number of
intersection curves.
(ii) $E \in B_{m} m \leq s$

As $B_{m} \tilde{P}_{m} \tilde{P}_{m}$ where P_{m} is an irreducible zanifold one of the 2-spheres E'UE, E'UE bounds a 3-ball with possibly some holes.Then proceed an before to get $f(T) \cap \Sigma_{j}$ with lese interseotion curven.

Thus after a finite number of stages $f(T)$ lies in int B_{j}^{*}, some j (recall we still denote by f the resulting homeomorphism $M \rightarrow M^{*}$). If $T=\Sigma_{k}$, say, by choice of separating spheres $f(T)$ divides M^{*} into two components one of which is homeomorphic to $\tilde{\mathrm{P}}_{\mathrm{k}}$.

We now try to make $f(T)=T$.
(i) $\quad f(T)$ int $B_{j}^{*}, j \leq s$

Then $T=\Sigma_{k}$ for $k \leqslant s$. It follows from the fact that P_{j} is prime and irreducible that $f(T)$ divides $\tilde{P}_{\mathbf{j}}^{*}$ into two components one of them homeomorphic to $\widetilde{\mathrm{P}}_{\mathbf{j}}$ and the other a collar on $\partial \tilde{P}_{j}^{*}=\Sigma_{j}^{*}$.

Hence we can isotope $f(T)$ so as
 to coincide with $\Sigma_{j}{ }^{*}$.
(We can assume the isotopy fixed outside a collar of Σ_{j}^{*} in $\overrightarrow{M-\vec{P}}{ }_{\mathbf{j}}{ }^{*}$).
(ii) $\quad f\left(T\right.$ int B_{s+1} and $T=\sum_{j}, j \leq s$

Br the Sohoenflies theorem $f(T)$

divides $\mathrm{B}_{\mathrm{s}+1}^{*}$ into two components each of which is a 3 bal with holes and one of them has only one hole on it ie. it is an annulus. Then if Σ_{h}^{*} is the boundary of that hole we isotope f so as to make $f(T)=\Sigma_{h}^{*}$ (Hence $\left.P_{h}{ }^{2} P_{j}\right)$. We can assume the isotopy
(iii) $\underline{f(T) \subset \text { int } B_{s+1}^{*} \text { and } T-\Sigma_{j}, j>s}$

As $T=\sum_{j} j>g_{\text {, one }}$ of the components bounded by $f(T)$ in B_{s+1}^{*} is a ball with two
holes corresponding to
the handle h_{ℓ} say (Then
$\left.{ }_{P}{ }_{\ell}{ }^{Z_{P}}{ }_{j}\right)$. Then after a partial
slide $f(T)=\Sigma_{\ell}^{*}$.

At this stage we have $f: M \rightarrow M^{*}$ where $M^{*}=\# P_{i}^{*}$ and $f\left(\tilde{P}_{i}^{\prime}\right)=\widetilde{P}_{j}^{*}$, $f\left(\Sigma_{i}\right)=\Sigma_{j}^{*}$. By further partial slides, we can also assume $f\left(B_{s+1}\right)=B_{s+1}^{*}$:

(i.e. we make the holes go to the corresponding holes)

Both B_{s+1}, B_{s+1}^{*} are 3 spheres with holes and $\Sigma_{j}^{*} \subset B_{k}$ some K. (This follows from the proof). If $k \leq s$ we make, as before, $\Sigma_{k}=\Sigma_{j}^{*}$ by an isotopy.

Now $\widehat{B}_{3+1} \simeq \hat{B}_{s+1}^{*}$ where \wedge denotes the manifold after uapping off ite aphere components.

Them by a composition of partial slides we oan make Σ_{j}^{*} go to Σ_{j} (making the holes correaponding to the handlee go to the corresponding holee in aase j>s).

The oases to consider are mhow in the ploture. (Thie followe frim the proar).

[^0]Finally after a finite number of atages I will send \tilde{P}_{s} to \tilde{P}_{i} and Σ_{y} to Σ_{i} i.e. we are in M again. Then compoaing with a mitable pernatation the homeomorphien will preserve faotors, i.e. $f\left(\tilde{P}_{1}\right)=\widetilde{P}_{1}$ and $f\left(\Sigma_{1}\right)=\Sigma_{1}$.

It remains to prove that all partial slides can be put together to Give generalised alidea(as in the final stage Σ_{1} is mapped to Σ_{1})i.e. that we can "permute" the partjal slides in such a may so that we obtain the same effect as if we slid one factor at a time around a loop. Once the separating apheres are already disjoint or coincident eith their imeges, clearly the order in whioh we make them coinoide is irrelovant ae each horecaorphism can be asmumed to be the identity on either the other meparating spheres or their images.There are similar considerations for the permutations.So let's look closely at stage(1)

We have already quoted that the effect of such atage is a composi tion of partial sildes.

isotopy

We could have slid one factor at a time. As a partial side can be assumed to be the identity outside the track of the factor , the order in which we elide is irrelevant (see the picture e above).

How consider one factor A,say.Again if the next stage is the dentits on A we can interchange the two stages. If not it is because A has been moved into another factor B, Bay, and the next stage moves B (or it has been moved out of B. Proof is the same) But this clearly has the game effect as moving B first and then A into B (see pictures below).

Hence the theorem is proved.

Remarks
(a) In the non orientable case, the non orientable handles must be slid, in the end, around an orientable loop as we end up with the same factorization (for if we slide a non orientable handle over an orientation reversing handle the handle will become orientable and $s^{1} \times S^{2} \not \subset S_{\sim}^{1} \times S^{2}$) although in intermediate stages we will probably have to use different fact orizations.
(b) It follows from the last remark that we don't need to consider normal factorizations. If we start with a certain factorization we will end up with the same factorization by choice of separating spheres : orientable handles must go to orientable handles and non orientable handles to non orientable handles.
(c) Also as already observed in the beginning the theorem is true for the bounded case. If for instance we consider homeomorphisms fixed on the boundary the theorem will follow with the "obvious" changes using the uniqueness of normal factorizations for 3 manifolds with boundary.

COROLLARY 3.2
Any homeomorphism of $S^{1} \times S^{2}, S^{1} \times S^{2}$ or $\# S^{1} \times S^{2} \# S^{1} \times S^{2}$ extend s_{2} reapectively, to a homeonorphism of ${ }_{i}^{\#} S^{1} \times B^{3}, \#_{i} S^{1} \times B^{3}$ or ${ }_{i}^{j} S^{1} \times B^{3}{ }^{2} S^{1} \times B^{3}$. Proof

This follows inmediately from the facts that any homeomorphism of either $S^{1} \times S^{2}$ or $S^{1} \times S^{2}$ extends, handle slides and isotopies extend and also from the fact that any homeomorphism of $S_{(\sim)}^{1} \times S^{2}$ extends uniquely to a home omorphism of $s_{(\sim)}^{i} \times s^{2}$ by the Alexander trick.

This result has also been obtained by Laudenbach [17]. In fact we shall recover some more general results of Laudenbach later on.
II. The Case of homeomorphisms fixed on a disc

We now recast the theorem in a canonical form. We do this by working relative to a disc.

Let $A u t(M, D)$ denote the group of isotopy classes of homeomorphisms of M which are the identity on a fixed disc, $D C$ int M, and also the isotopies are fixed on D. Call an isotopy mod D a D-isotopy and denote by \sim_{j} the D-isotopy equivalence relation, $\left.\Gamma\right]_{n}$ the $D-i \operatorname{sotopy}$ classes. Similarly define $S(M, D), P(M, D)$ respectively the D-isotopy classes of generalis?d slides and permutations (whenever possible).

Let $M=P_{i}$ where, as before, for $i \leq s P_{i}$ are irreducible and for i>s P_{i} is $a^{n} 2$ sphere bundle over S^{1}. \tilde{P}_{i} will denote the closure of P_{i}-3diso.Given $D \longrightarrow M$ choose separating spheres Σ_{i} satisfying the following conditions $\underset{n}{(} \mathrm{P}_{\mathrm{i}}$ denotes the connected sum of n prime manifolds P_{i}):

Consider S^{3} as the union of two 3 -balls $D_{4}^{3} D_{-}^{3}\left(D^{3}=D\right)$ along their common boundary. On D_{+}^{3} choose $n-d i s j o i n t ~ 3$ balls B_{j} with boundary $\partial B=D_{j}^{2} U D_{j}^{2-}$ where D_{j}^{2-} is a $2-$ disc in ∂D_{-}^{3} and $D_{j}^{+} C D_{+}^{3}$. Then for $j>s$ form the connected sum using these balls i.e. $\partial B_{j}=\Sigma_{j}$.

Choose parallel separating aphere $\tilde{\Sigma}_{i} \subset B_{i}$ (i.e. the region between $\tilde{\Sigma}_{i}$ and $\Sigma_{i}=\frac{2}{D_{i}^{\prime}}{ }^{2} D_{i}$ is an annulus in B_{i}) and for $i \leqslant s$, attach P_{i} by
 $\tilde{\Sigma}_{i}$ (Clearly we can also think of

$$
\left.P_{i} \text { attached by } \Sigma_{i}\right)
$$

Suppose also that we choose parallelizaticns of the fectors or double coFers of the factors, according an they axe arientable of not, wo thet inge ende of handles or disos bounded by $\tilde{\Sigma}_{1}$ to both the sphece or in the fectore are the canonical cnes in the sense of Lemes 3.1.

Let $X_{i}\left(A u E P_{i}, D\right)$ denote the D-isotopy classes of homeomorphisms of M obtained by glutag up isotopy classes of homeomorphisms of factors which fix a disc (and isotopies fixing a disc). For each factor Aut (P_{i}, D) means B_{i} - isotopy classes of homeomorphisms of P_{i} fixing B_{i}. (For iss think of P_{i} attached by the Σ_{i}). A typical element is denoted by f_{i} where f_{i} बAut $\left(P_{i}, D\right)$. The notation $X\left(A u t P_{i}, D\right)$ is justified as this group is clearly isomorphic to the direct product of the (Aut P_{i}, D).

We now show that theorem 3.1 generalises to this case and that it can even be strengthened as we will be able to find a well defined D-isotopy class $[g]_{D}$ where g is a composition of slides and permutations for every D-isotopy clase $[f]_{D} \in A u t(M, D)$..t. gef preserves factors. This will allow us to compute $A u t(M, D)$ in terms of $P(M, D) S(M, D)$ and $X\left(\right.$ Aut $\left.P_{i}, D\right)$.

Choose a parallel separating sphere $\tilde{\Sigma}_{i} C B_{i}$ (i.e. the region between $\tilde{\Sigma}_{i}$ and $\Sigma_{i}=D_{i}^{2} U D_{i}^{2}$ is an annulus in B_{i}) and for $i \leqslant s$, attach P_{i} by
 $\tilde{\Sigma}_{i}$ (Clearly we can also think of P_{i} attached by Σ_{i})

Suppose also that we ohoose parallelizations of the factors or double covers of the factors, according an they are orlemtable or not, so that aseos ends of handlee or disce bounded by $\tilde{\Sigma}_{i}$ in both the aphere or in the factors are the canonical cnes in the sense of Lemma 3.1.

Let $X\left(A u t P_{i}, D\right)$ denote the D-isotopy classes of homeomorphisms of M obtained by glutag up isotopy classes of homeomorphisms of factors which fix a disc (and isotopies fixing a disc). For each factor Aut ($\left.P_{i}, D\right)$ means B_{i} - isotopy classes of homeomorphisms of P_{i} fixing B_{i}. (For iss think of P_{i} attached by the Σ_{i}). A typical element is denoted by $\underset{i}{\#_{i}} f_{i}$ where f_{i} ©Aut $\left(P_{i}, D\right)$. The notation $\left.\underset{i}{X(A u t} P_{i}, D\right)$ is justified as this group is clearly isomorphic to the direct product of the (Aut $\mathrm{P}_{\mathrm{i}}, \mathrm{D}$).

We now show that theorem 3.1 generalises to this case and that it can even be strengthened as we will be able to find a well defined D-isotopy clase $[g]_{D}$ where g is a composition of alides and permutations for every D-isotopy class [f] $]_{D} \in A u t(M, D)$ a.t. gof preserves factors. This will allow us to compute Aut (M, D) in terms of $P(M, D) S(M, D)$ and $\left.\underset{i}{X(\text { Aut }} \mathrm{P}_{\mathrm{i}}, \mathrm{D}\right)$.

Choose a parallel separating sphere $\tilde{\Sigma}_{i} \subset B_{i}$ (i.e. the region between $\tilde{\Sigma}_{i}$ and $\Sigma_{i}=D_{i}^{2} u D_{i}^{2-}$ is an annulus in B_{i}) and for $i \leqslant s$, attach P_{i} by
 $\tilde{\Sigma}_{i}$ (Clearly we can also think of P_{i} attached by Σ_{i})

Suppose also that we choose parallelizations of the faotors or double covers of the factors, according as they are orientable or not, so that dison ends of handles or dison boomded by $\tilde{\boldsymbol{\Sigma}}_{i}$ in both the ephere or in the factors are the canonicul ones in the sense of Lenims 3.1.

Let $\left.\underset{i}{X(A u t} P_{i}, D\right)$ denote the D-isotopy classes of homeamorphisms of M obtained by glutgg up isotopy classes of homeomorphisms of factors which fix a disc (and isotopies fixing a disc). For each factor Aut (P_{i}, D) means B_{i} - isotopy classes of homeomorphisms of P_{i} fixing B_{i}. (For iss think
 f_{i} ©Aut $\left(P_{i}, D\right)$. The notation $X\left(A u t P_{i}, D\right)$ is justified as this group is clearly isomorphic to the direct product of the (Aut $\mathrm{P}_{\mathrm{i}}, \mathrm{D}$).

We now show that theorem 3.1 generalises to this case and that it can even be strengthened as we will be able to find a well defined D-isotopy class $[g]_{D}$ where g is a composition of slides and permutations for every D-isotopy class $\lceil f]_{D} \in A u t(M, D)$..t. gof preserves factors. This will allow us to compute Aut (M, D) in terms of $P(M, D) S(M, D)$ and X(Aut $\mathrm{P}_{\mathrm{i}}, \mathrm{D}$). i

This undquenfes is orycial for the proof of atatement (2) of the

 theorem.(b) Having already made $\mathrm{r}\left(\mathrm{IntD}_{\mathrm{i}}^{2+}\right)$ disjoint from the belt apheres s_{j} \therefore of the handles and from the separating apheres \sum_{1} of the irreducible factore, we now need to make $f\left(D_{i}^{2+}\right)=D_{i}^{2+}$.

At thia atage we are in a homeomorphic copy of M demoted by M* (of theorem 3.1).As before, we make $\tilde{\Sigma}_{i}^{*}$ coincide with $\tilde{\Sigma}_{j}$,some $1, j$, and holes corremponding to the hollow handies in M* go to oorresponding holen in W.We have to oonsider the following oases pictured below (the fact that these are the only cases follows from the proof).

(I)

(III)

Case I mows dieos a, z which are ends of a handle and ende b^{*}, b^{*} of a probably different handle in M^{*}.We make them ooinoide by a partial slide.cases II and III show a separating aphore $\tilde{\Sigma}_{1}$ of an ixreduoible feotor and the two posaible positons of a probebly differmat separating aphere, $\tilde{\Sigma}_{j}^{*}$, in M^{*}. In oase II we use a partial slide, in cam ce III an isotopy(the region between $\tilde{\Sigma}_{i}$ and $\tilde{\Sigma}_{j}^{n}$ ie a collar).

Let $\stackrel{\sim}{B}$ denote B with the 2 sphere \tilde{r}_{i} capped off with a 3 ball. Then $D_{i}^{+}, f\left(D_{i}^{+}\right)$bound (resp) 3 balls G_{1}, G_{2} with either $G_{1} \subset G_{2}$ or $G_{2} C G_{1}$. Also ∂G_{1} n $_{2} G_{2}=n_{i}^{2}$.
Then as a regular neighbourhood of $G_{1} U_{2}$ is a 3 ball, there exists an isotopy of \tilde{B} rel $\partial \tilde{B}$ taking $f\left(\bar{D}_{i}\right)$ to $D_{i}^{2_{+}}$which is the identity outside that hall and on n_{-}^{3}. By
a further isotopy, we can also make

$\tilde{\Gamma}_{i}$ go canonically to $\vec{\Gamma}_{i}$. This extends to a homeomorphism of M and again choices are unique. up to isotopy. In fact it ia canonical by the Alexander's trick.
$f / \mathrm{D}_{\mathrm{i}}^{+}$an orientation preserving self-homeomorphism which is the identity on the boundary hence isotopic to the identity (Alexander's trick).
(b)
$i>s$

(I)

(III,

Again we have to consider two subcases (see pictures). After a permutation we are reduced to subcase I. The only difference is that now \tilde{B} is B with the two holes corresponding to the hollow handles capped off with balls. $\Pi_{1}(\tilde{B})=\Pi_{1}(B)=0$ hence any two choices of arcs are homotopic, thus the homeonorphimer are unique
np to isotopy.

Thus, in the end, we will have a homeomorphism fixed on D which will preserve factors. Also as on $\partial\left(\bar{D}_{+}^{3}-\bar{B}_{i}\right)=S^{2}$, fis the identity, by a further D -isotopy we make f to be the identity on $\overline{\mathrm{S}}^{\mathbf{3}} \overline{-B}_{\mathrm{B}}$ (Alexander's trick). The proof of statement (1) is now complete as g is well defined by all the uniqueness referred relative to choices of homeomorphisms (g is the composition of slides and permutations obtained through the proof s.t. gof preserves factors.) Clearly it also follows that [g] is well defined.

For the proof of statement (2) we refer the reader to the proof of Proposition 1 of [10]. The method of proof follows immediatly for $k=1$, as all our ohoices are unique up to isotopy. The choice of atandard are homemorphismi is crucial here to get a coherent choice all along the isotopy.We remark that in the non orientable case, as we are working rel D, the factors mast be slid, in the end, along orientable loops, and also that in lemma 1 of [10] we need to choose the intervals I_{i} small enough so that"nearby curves behave aimilarly'" as we want to eliminate intersections in a standard way for all $t \in I_{i}$.

For examples
The aituation showed in the pic-
 ture is not sllowed for $t_{1}, t_{2} \in I_{i}$, some i, since $E_{t_{2}}^{\prime} U E_{t_{2}}$ bounds disc with a hole in it while $E_{t_{1}} U E_{t_{1}}$ doenn't, and hence in the first case we should have to use first an arc homeosorphisn or a partial slide which it would not be the case in the second one.

Clearly we can always assume thia.Hence the theorem ia proved.

We now give sone corollaries to the theorem,

COROLLARY 3.3

There is a well defined map ϕ : Aut $(M, D) \longrightarrow \frac{X}{1}$ Aut $\left(P_{f}, D\right)$ defined bir $\phi[f]_{D}=\left[g^{\circ} f\right]_{D} \cdot \phi$ is onto and splits by the inclusion.

Proof

ϕ is well defined by the theorem. The facts that ϕ is onto and splits by the inclusion are clear.

Infortunately ψ is not a homomorphism in general: take for instance, $M=\# s^{1}{ }_{\times S}{ }^{2}, f_{1}$ a permutation, $f_{2}=a_{1}{ }^{*} a_{2}$, where a_{i}, $i=1,2$, are homeomorphismes of Aut ($\left.S^{1} \times S^{2}, n\right)$ with $\left\lceil a_{1}\right\rceil_{n} \neq\left\lceil a_{2}\right]_{n}$. Then

$$
\phi\left\lceil\mathrm{f}_{1}\right\rceil_{\mathrm{D}}=\lceil\mathrm{id}\rceil_{\mathrm{D}} \#\lceil\mathrm{id}\rceil_{\mathrm{D}}
$$

$$
\phi\left\lceil f_{2}\right\rceil_{D}=\left\lceil a_{1}\right\rceil_{D} \#\left\lceil a_{2}\right\rceil_{D}
$$

and

$$
\phi\left\lceil f_{2} \circ f_{1}\right\rceil=\left\lceil a_{2}\right\rceil \#\left\lceil a_{1}\right\rceil_{D} \neq\left(\phi\left\lceil f_{2}\right]_{D}\right) \circ \phi\left(\left\lceil f_{1}\right]_{D}\right)=\left\lceil a_{1}\right\rceil_{D} \#\left\lceil a_{2}\right\rceil_{D}
$$

But ϕ as a map of pointed sets (basepoint being the identity in both cases) has a kernel K . It follows from the proof of theorem 3.2 that K is the suhgroup of $\operatorname{Aut}(M, D)$ generated by the generalised slides and permutations.

LEMMA 3.4

K is the semi-direct product of $P(M, N)$ and $S(M, n)$.

Proof

(1) $S(M, D)$ is a nomal subgroup of K : It is enough to prove that the composition (permutation) slide (permutation) ${ }^{-1}$ is a (probably different slide).

If we denote by T_{ik} the slide obtained by sliding either the factor
P_{i}, if P_{i} is irrenucible, or the end of the "handle" of P_{i}, if P_{i} is a 2 -sphere bundle over s^{\prime}, along the factor $P_{k}, k \neq i$, and by $P_{j \ell}, j \neq \ell$, the permutation interchanging $\mathrm{P}_{\mathbf{j}}$ with $\mathrm{P}_{\boldsymbol{l}}$ (if possible) then it follows from the definitions that
(1) $\quad P_{i k}{ }^{\mathrm{U}}{ }_{\mathbf{i k}}=\mathrm{U}_{\mathrm{ki}} \mathrm{P}_{\mathrm{ik}}$
(2) $\mathrm{P}_{\mathrm{ij}}{ }^{\mathrm{U}}{ }_{\mathrm{jk}}=\mathrm{N}_{\mathrm{jk}} \mathrm{P}_{\mathrm{i} . \mathrm{j}}$
(3) $\quad P_{i}{ }_{j}{ }^{\|}{ }_{k i}=\|_{k j} P_{i j}$
(4) $\quad{ }^{P_{i \ell}}{ }^{\mathrm{v}}{ }_{\mathbf{j k}}=\mathrm{V}_{\mathbf{j k}}{ }^{\mathrm{P}} \mathrm{i} \ell, \quad \mathrm{i} \neq \mathrm{j} \neq \mathrm{k} \neq \ell$
proving (1).
(2) We therefore hive a split exact sequence

$$
\Omega \longrightarrow S(1, n) \xrightarrow{i_{1}} K_{\leftarrow} \stackrel{p}{i_{2}} P(M, n) \longrightarrow 0 .
$$

where i_{1}, i_{2} are the inclusions and p is the auotient map

$$
K \xrightarrow{P} K / S(M, D)=P(M, D)
$$

i.e. K is the semi-direct product of $P(M, D), S(M, D)$. (Note that $P(M, D)$ is not a normal suhgroup in general. For example take $M=\#_{2}^{\#} s^{1} \times s^{2}$ and let $P_{1,2}$ be the permutation that interchanges the two factors and h the homeomorphism obtained by sliding the first handle over the second. Then $h^{-1} P_{1,2} h$ is not a permutation. Look at map induced on Π_{1}.

Remarks

(1) We cannot do the same with the sequence of maps

$$
0 \longrightarrow K \longrightarrow \text { Aut }(M, n) \longrightarrow \operatorname{XAut}_{i}\left(P_{i}, D\right) \longrightarrow 0
$$

as neither K nor $\underset{i}{\operatorname{XAut}}\left(\mathrm{P}_{\mathrm{i}}, \mathrm{D}\right)$ are normal subgroups (in general) of Aut (M, D). K is not normal from the above. To see $\underset{i}{\operatorname{XAut}\left(P_{i}, D\right)}$ is not always a normal suhgroup, consider $M={ }_{2}^{*} s^{1} \times s^{2}$, h a homeomorphism which is the identity on one factor and on the other interchanges the two ends of the handle. Then if f is a generalised slide which
slides the second factor along the first one, $g^{-1} \cdot h \cdot g \notin Y$ Aut $\left(P_{i}, D\right)--$ look at the map induced on $\Pi_{1}\left(\Pi_{1}\right.$ is not abelian).
(2) If $M-P_{i}$ there all P_{i} are irreducible then $X \operatorname{Ant}\left(P_{i}, D\right)$ is a normal
 of $x \operatorname{Ant}\left(P_{i}, D\right)$ and K, i.e.

$$
0 \rightarrow \frac{x}{2} \operatorname{Ant}\left(P_{i}, D\right) \underbrace{\stackrel{\Phi}{-}}_{i} \operatorname{Ant}\left(\# P_{i}, D\right)_{i} \frac{P}{i} K \rightarrow 0
$$

is a aplit exact sequence. (i is the inclusion, p the projection
$\left.\operatorname{Aut}\left(\#_{i} P_{i}, D\right) \longrightarrow \operatorname{dict}\left(\# \#_{i}, D\right) / x \operatorname{Aut}\left(P_{i}, D\right)\right)$.

From theorea 3.2 we can also get ame information abnut the higher homotopy groups of Fi(M, D).The deformation described gives a well defined $\operatorname{map} \phi_{k} \Pi_{k} P L(M, D) \rightarrow \prod_{i} \Pi_{k} P L\left(P_{i}, D\right)(i n f a c t$ for $k=0$ we have ϕ of corollary 3.3) defined by $\phi_{k}([f])=\left[g_{D} f\right]_{D}\left(X \pi_{k} P L\left(P_{i}, D\right)\right.$ means the obvious thing).

THEOREM 3.3

$$
\phi_{k}: \Pi_{k} P L(M, D) \rightarrow \underset{i}{ } \Pi_{\underline{k}} P L\left(P_{j}, D\right) \text { is a split epimorphism for } k>1
$$

Proof:
The procese, described in the theorem 3.1, of taking a homeomorphian of M and possibly compoaing it with sides and permutations till it preserves factors is , actually, canopionl when the homeomorphism is isotopio to the identity ae non-irivial permutations cannot be involved. We can thus appeal to Proposition 1 of[10$]$ to show that the doformation deacribed induce an epinorphian $\phi_{k} \Pi_{k} P L(M, D) \longrightarrow \underset{i}{ } \Pi_{k} P L\left(P_{i}, D\right) \quad$ Clearly ϕ_{k} aplite by the inclusion.

Remart:

The deformation faile to be an imotopy of one apaoe into another becanee of ellden of the type desoribed in pioturee(III/af pages 41 and 42.

III Comparing Aut (M,D) with Aut M

There is a natural map $A u t(M, N) \longrightarrow A u t(M)$ which, in the orientable case, factors through two other maps induced by inclusions

By the disc theorem i, is onto in the orientable case, i is onto in the non orientable case. A natural question is to ask if, these homomorphisms are into i.e. if Aut $^{+}(M)=$ Aut (M, D), in the orientahle case, or if Aut $M=\operatorname{Aut}(M, N)$ in the non orientable case.

We first consider the particular cases where M is a 2 sphere bundle over S^{1} and show that the answer is affirmative. Then we consider the general case and reduce the problem to one involving exact sequences of two fibrations.
(1) M is a 2-sphere bundle over s^{\prime}

THFORFM 3.4

$$
\text { Aut }\left(s^{1} \times s^{2}, D\right)=\operatorname{Aut}^{+}\left(s^{1} \times s^{2}\right)
$$

Proofi

$i_{i}: \operatorname{Aut}\left(S^{1} \times S^{2}, D\right) \longrightarrow \operatorname{Aut}{ }^{+}\left(S^{1} \times S^{2}\right)$ is onto by the disc theorem. We show $\operatorname{Rer} \mathrm{i}_{1}=\{i d\}_{\mathrm{D}}$.

Let $[f]_{D} \in \operatorname{Aut}\left(S^{1} \times S^{2}, n\right)$ s.t f id (~ mean isotopic to)

By the same sort of arguments as in theorem 3.2 we can assume rel D, that f sends the helt sphere to the belt sphere. As the inclusion $\bar{S}^{1} \overline{X S}^{2}-\bar{D} \longrightarrow S^{1} \times S^{2}$ induces an isomorphism on H_{1} and H_{2} and $f \sim i d, f / b e l t$ sphere $: S^{2} \longrightarrow S^{2}$ is a degree one map hence isotopic to the id. Fxtend the isotopy to a n-isotopy of $s^{1} \times s^{2}$. Then cutting $S^{1} \times S^{2}$ along the belt sphere and along n we can think of f as a map from a 3-disc B with two holes into itself heing the identity on houndary components.

Now as in Gluck's proof (Theorem 2.1) we can assume, rel $\partial \mathrm{B}_{\mathrm{g}}$, that f is the identity on an arc α hetween the two holes (see pictures ahove) and in the neighbourhoor of that arc it is ε or id.

Denote by N a regular neighbourhood of α in B. N is homeonorphic to $D_{1}^{2} \times I$ and we can assume that N only meets : ∂B in $D_{1}^{2} \times\{0\} U D_{1}^{2} \times\{1\}$ where D_{1}^{2} a disc in the (previous) belt sphere.

Let X be the 2-sphere obtained hy removing these 2 -discs $D_{1}^{2} \times\{0\}, D_{1}^{2} \times\{1\}$ from the two sphere components of ∂B different from $a D$, and adding $\partial D_{1}^{2} \times I$ along their common houndary (see picture).

f / X extends uniquely up to isotopy to the 3 ball B^{3} hounded by X on $s^{1} \times s^{2}$.

By the disc theorem there is an isotopy rel ∂^{3} s.t the extension is the identity on D i.e. the isotopy class of f in Aut ${ }^{+} S^{1} \times S^{2}$ is determined by f / X. But by hypothesis f is isotopic to the identity.

Hence $f / X=i d$, up to isotopy. (note that f / X is orientation preserving).

Thus, up to D-isotopy, f defines a map $\bar{f}: I \times S^{2} \longrightarrow I \times S^{2}$ which is the identity on the boundary, \vec{f} being orientation preserving.

But by Gluck [8] Aut ${ }^{+}\left(I \times S^{2}, \partial\right)=z_{2}$ and f is either z or id in a neighbourhood of an arc $R=I \times\{\star\}\left(* \epsilon S^{2}\right)$.

If it is the identity we are done because extending the isotopies trivially to $S^{1} \times S^{2}$ defines a D-isotopy of f to the identity.

If not, we know that f restricted to a neighbourhood of the arc B twists a parallel curve once around it and its isotopy class is completely determined by this fact.

Now rotating the inside sphere (see pictures) once around its axis (through *) has the effect of undoing the twist.

It is clear that we can always choose α, β i.t. we can think of $S^{-1} \bar{x} S^{2} \overline{-D}$ as the space ohtained by identifying the two spheres E, F as shown in the following picture.

Numbers in the inside sphere show how to identify F, F to get $\bar{S}^{-1} \overline{x S}^{2}-\bar{D}$. As the rotation inside is compatible with the identifications and the isotopy in the identity on ∂D^{3}, the isotopy of $I \times S^{2}$, rel ∂, defines an isotopy of $s^{1} \times S^{2}$, rel D.

Hence $f \underset{\sim}{\sim}$ id as required. This i_{1} is an isomorphism and

$$
\text { Aut }\left(s^{1} \times s^{2}, n\right)=A u t^{+}\left(s^{1} \times s^{2}\right)
$$

THEOREM 3.5

$$
\operatorname{Aut}\left(S_{\sim}^{1} \times s^{2}, D\right)=\operatorname{Aut}\left(S_{\sim}^{1} \times s^{2}\right)
$$

Proof:
As already said i.t remains to prove that Ker $i=\{i\}_{h}$. Let $[r]_{D} \in \operatorname{Aut}\left(S_{\sim}^{1}{ }_{\sim} S^{2}, D\right)$ s.t. f~id. Again as in the previous theorems we can assume, rel D, that f sends the belt sphere to the belt sphere. By homology arguments $f /$ helt sphere $: S^{2} \longrightarrow S^{2}$ is isotopic to the identity. But in $s^{1} \times S^{2}$ the antipodal map on $\{0\} \times S^{2}$ is isotopic to the identity on $\{0\} \times s^{2}$. That is not the case in \sim_{D} for if we cut $S_{\sim}^{1} \underset{\sim}{S^{2}}$ along S^{2} we would get a homeomorphism of $I \times S^{2}$ into itself which was orientation reversing and the identity on a disc, which is aboard as $I \times S^{2}$ in orientable. Hence $f / b e l t$ sphere $i s$ D-isotopic to the identity.

Remaining of the proof is an in the orientable cases
(2) The general case

As already mer ioned the problem will be reduced to a problem of exact sequences of certain fibrations. Ve consider separately the orientable and the non orientable cases.
(a) Orientable case

Let M he an orientable 3 manifold, n a 3 disc in int M. We have already considered the commutative diagram

where $i_{,} i_{1}, i_{2}$ are the natural maps and i_{1} is onto by the disc theorem. Corresponding diagram without considering isotopies is

as
Aut $M=\pi_{0}$ (ILI(M))
$\operatorname{Aut}(M, n)=\pi_{0}(\operatorname{PL}(M, n))$
$A U t^{+} M=\pi_{0}(S P L(M, n))$

The natural map SPL(M) $\longrightarrow \mathrm{S}$ Fmb (n, M) defined therestion is a fibration ($c f[22]$) with fibre $\mathrm{PL}(\mathrm{M}, \mathrm{N})$. Hence we get a long exact sequence of homotopy groups:

$$
\begin{equation*}
\cdots \xrightarrow{\partial} \pi_{n} \operatorname{PL}(M, D) \longrightarrow \pi_{n} \operatorname{SPL}(M) \longrightarrow \pi_{n}(S \operatorname{Fmb}(D, M)) \longrightarrow \ldots \tag{1}
\end{equation*}
$$

ending up with

$$
\longrightarrow \pi_{1} S \operatorname{Emh}(n, M) \xrightarrow{\partial} \operatorname{Aut}(M, n) \xrightarrow{i_{1}} \text { Aut }^{+} M \longrightarrow 0
$$

as $\pi_{0}(S$ Fmb $(D, M))=0$ by the disc theorem. We also have another fibration (cf [22])

$$
\begin{equation*}
\mathrm{SPL}_{3}^{c} \xrightarrow{\mathbf{j}} \operatorname{SFmh}(\mathrm{D}, \mathrm{M}) \xrightarrow{\mathbf{f}} M \tag{2}
\end{equation*}
$$

coming from the fibration

$$
S \operatorname{Fmb}_{\star}(n, M) \longrightarrow S \operatorname{Fmb}(D, M) \xrightarrow{\dot{\xi}} \operatorname{Fmh}(\star, M)
$$

where $\overline{\mathbf{f}}$ is the map chat associates to an emhedding of D in M the image of the centre point of the disc and using the facts that $M \sim E m b(*, M)$ and as M is a 3 -manifold, S Fmb $_{\star}(D, M) \simeq S \operatorname{Fmh}_{\star}\left(D_{0} R^{3}\right) \simeq$ SPL $_{3}$.

From the fibration we get a long exact sequence of homotopy groups

$$
\cdots \rightarrow \pi_{n} \mathrm{SPL}_{3} \xrightarrow{\mathrm{j}_{4}} \pi_{n} \mathrm{~s} \operatorname{Fmh}(D, M) \xrightarrow{\mathrm{f}_{*}} \pi_{n} M \longrightarrow \cdots
$$

Actually we can show more as lemma 3.1 says: $\frac{\text { A parallelization of }}{f}$

Thus, for all n, the sequence

$$
\begin{equation*}
0 \longrightarrow \pi_{n} \operatorname{sPL}_{3} \xrightarrow{j_{j}} \pi_{n} \operatorname{SFmb}(n, M) \underset{\underset{s_{n}}{\stackrel{f_{j}}{\longrightarrow}} \pi_{n} M \longrightarrow 0}{ } \tag{3}
\end{equation*}
$$

is exact and splits. Therefore

$$
\begin{equation*}
\pi_{n} \operatorname{sFmb}(n, M)=\pi_{n} \operatorname{SPL}_{3} \times \pi_{n} M \tag{4}
\end{equation*}
$$

Replacing in (1) we get:

$$
\begin{equation*}
\cdots \longrightarrow \pi_{n}(M) \times \dot{\pi}_{n} S^{S P I} ._{3} \longrightarrow \pi_{n-1} \text { PL }(M, n) \longrightarrow \pi_{n-1}(\operatorname{SPL}(M)) \longrightarrow \ldots \tag{5}
\end{equation*}
$$

In particular for $n=1$ as $\pi_{1} \mathrm{SPL}_{3}=\mathrm{Z}_{2}\left(\pi_{i} \mathrm{SPL}_{3}=\pi_{i} \mathrm{SO}_{3}\right.$ for $\left.\mathrm{i} \leq 3\right)$, we have

$$
\begin{equation*}
\cdots \longrightarrow{ }_{1} M_{Z_{2}} \xrightarrow{\partial} \text { Aut }(M, n) \xrightarrow{i_{1}} \text { Aut }^{+} M \longrightarrow 0 \tag{6}
\end{equation*}
$$

We already know that i_{i} is onto. Our problem was to know Ker i_{i}. From this sequence Yer $i_{1}=$ ima by exactness. We look at ima.

A geometric incerpretation of ∂

A loop in $S \operatorname{Fmb}(n, M)$ is an isotopy of embedrings h of a disc in M starting and ending with the inclusion. Fxtend the isotopy to an isotopy H_{t} of M. Then $\partial(\lceil h\rceil)=\left\lceil H_{1}\right\rceil_{n}$. From lemenas 3.2, 3.3, ∂ is well defined and depends only on the homotopv class of the loop and on an element of z_{2} which is precisely what says the following diagram obtained by combining sequences (1) and (3).

∂ is completely determined by ∂s_{*} and $\partial_{j_{*}}$. The first one is the canonical automorphism determined hy sliding a disc around a loop, the latter is the one determined by rotating the disc once around its axis.

Some particular cases

4. For $M=\#_{n}^{\#} s^{1} \times S^{2}$, in $d t=0$

(I)

(I)

Consider \# $S^{1} \times S^{2}$ as obtained by attaching the handles to S^{3} $\left(-D_{+}^{3} \partial_{-} D_{-}^{3}\right)\left(n_{-}^{3^{n}}=n\right)$ along the symmetry axis of D (see picture I). We can also think of \# $S^{1} \times S^{2}$ as in picture II where the boundary of the holes n are to be identified as shown. But now we can easily see that the rotation of the disc once around its axis is compatible with the identifictions hence it extends to an ambient isotopy of $\underset{n}{ } S^{1} \times S^{2}$, Thus ind $y_{n}=$ -0 and in e min am
2. For $M={\underset{n}{*} s^{1} \times s^{2}, n>1, i n \partial \theta_{+0} \neq 0}^{n}$

Let \tilde{M} denote M with the interior of D removed. $\pi_{1} M$ is a free product of n copies of 2 and is generated by the loops that go once around each handledsume the base point is some poirtin D_{3} for instance its centre point, and denote by $\alpha_{1}, \ldots, \alpha_{n}$ the generators of π_{1}.

Generators for $\pi_{2} \tilde{M}$ are the belt spheres of the handles $\beta_{1} \ldots \beta_{n}$ and a sphere γ parallel to ∂D in \tilde{M} (we confound homotopy classes with their representatives if no confusion arises). If $\Gamma_{1} \ldots \ldots \Sigma_{n}$ denote the homotopy classes of the separating spheres, γ is clearly isotopic in \tilde{M} to $\Sigma_{1}+\ldots+\Sigma_{n}$.

neighbourhood of the arcs is c or id (in the D-isotopy class). Then make (as in th 3.4) the homeomorphism to be the identity on the shaded region (we are still in the D-isotopy class which is now completely determined as what is
left in a ball - i.e. the D-isotopy class of the homeomorphism is completely determined by the restriction of the homeomorphism to the regular neighbourhoods of the arcs α_{i})

If f is such a homeomorphism with at least one $\phi_{i}=\Sigma$ (i.e. $[f]_{D}\left\{[i d]_{D}\right)$ then as clearly $[f]_{D}$ in $\partial s_{\neq}, f$ is not isotopic to the id.
4. THEOREM 3.7

For M orientable irreducible sufficiently large Aut (M,D) $\neq A i t^{+}{ }^{+}$.

Proof

We show that $\partial j_{*} \neq 0$. Let D be the disc, ϕ the automorphisu obtained
 by rotating the disc once around íts axis. Let $\Sigma=\partial D$ and let $U=\sum \times[0,1]$ be a collar on $\sum\left(\sum=\sum \times\{0\}\right)$. Now the effect on U of the rotation is to rotate $\{*\} \times[0,1]\}$ where * is any point in Γ. different from the poles, once around the axis keeping end points fixed, i.e. we get Σ (cf theorem 2.1) on the collar. But Hendriks [12] showed that for . $\mathbf{P}^{\mathbf{2}}$-irreducible sufficiently large manifolds (orientable or not) this is never D-isotopic to the id. Hence $\partial j_{*} \neq 0$.

Remarks

(1) We shall be able to prove Hendifics result quoted above later on.
(2) Hendrife calls z a rotation parallel to a sphere ($($. in this case).
(b) The non orientable case

If M is non orientable in order to study the map $A u t(M, D) \xrightarrow{i}$ Aut M we consider, similarly to the orientable case, two fibrations, but in this case it makes no sense to talk about orientation preserving homeomorphisms. Corresponding fibrations are:

$$
\begin{align*}
& \mathrm{PL}(\mathrm{M}, \mathrm{D}) \longrightarrow \mathrm{PLM} \longrightarrow \mathrm{Fmb}(\mathrm{D}, \mathrm{M}) \tag{7}\\
& \mathrm{PL}_{3} \xrightarrow{j} \operatorname{Emb}(\mathrm{D}, \mathrm{M}) \xrightarrow{\mathrm{f}} \mathrm{M} \tag{8}
\end{align*}
$$

given long exact sequences of homotopy groups:

$$
\begin{align*}
& \ldots \longrightarrow \pi_{n}(\operatorname{Emb}(D, M)) \xrightarrow{\partial} \pi_{n-1}(P L(M, D)) \xrightarrow{i_{n}} \pi_{n-1}(P L(M)) \rightarrow \pi_{n} P_{L_{3}} \xrightarrow{j_{*}} \pi_{n}(\operatorname{Emb}(D, M)) \xrightarrow{f_{*}} \prod_{n} M \longrightarrow(9) \\
& \ldots \longrightarrow \tag{10}
\end{align*}
$$

Consider the first sequence:

As $\pi_{0}(\operatorname{Emb}(n, M\rangle)=0$ by the disc theorem and from the fact that M is non orientable we get:

$$
\begin{equation*}
\ldots \rightarrow \pi_{1} \operatorname{Emb}(D, M) \xrightarrow{\partial} \text { Aut }(M, n) \xrightarrow{i} \text { Aut } M \longrightarrow 0 \tag{11}
\end{equation*}
$$

For the second sequence as $\pi_{0} \mathrm{PL}_{3}=\mathrm{Z}_{2}$ we have

$$
\begin{equation*}
\ldots \rightarrow \mathbf{z}_{2} \xrightarrow{\mathbf{j}_{k}} \pi_{1}(\operatorname{Emb}(\mathrm{D}, \mathrm{M})) \xrightarrow{\mathbf{f}_{*}} \pi_{1} M \xrightarrow{\delta} \mathbf{Z}_{2} \rightarrow 0 \tag{12}
\end{equation*}
$$

where δ is the orientation homomorphism. Let $\pi_{1}{ }^{+} M=\operatorname{Ker} \delta . \pi_{1}{ }^{+} M$ is the subgroup of $\pi_{1} M$ of homotopy classes of orientable loops. Then $f_{*}: \pi_{1}(\operatorname{Emb}(D, M)) \longrightarrow \pi_{1}{ }^{+} M$ is onto and splits by corollary 3.1.Thus we cet the following commitative diagram:

Particular cases

1. For $M=\# S_{n}^{1} \times S^{2}$ in $\partial j_{N}=0$

Proof is essentially the same as in orientable case

Boundary of the holes arc identified as shown. The identification is compatible with the rotation of the disc once around its axis.
2. For $M=S_{n}^{n} \times s^{2}, n>1$, in $\partial s, \notin 0$

Proof is a little hit different as the α_{i} are non orientable.
For aimplioity we use $2 \alpha_{1}$ instead.
Using the same notation as in the orientable case we see that $H_{1}{ }^{2 \alpha_{1}}\left(\beta_{1}\right) \sim \beta_{1}+2 \gamma$ which is not n-isotopic to β_{1} for $n>1$.

Remark

For no this is not the case

Hence we get
THEOREM 3.8
3. Again from lendriks 「12] we get the following.

Remark

For $n=1$ this is not the case

（五）
ロ
Hence we get

THFOREM 3.8

3．Again from Hendriks 「12］we get the following：

THEOREM 3.9
For any non orientable p^{2}-irreducible sufficiently large 3 manifold
$M, \operatorname{Aut}(M, D) \neq \operatorname{Aut}(\mathrm{Ki})$.

IV Some results for P^{2}-irreducible sufficiently large 3-manifolda

Let M be a P-imreducible sufficiently large 3-manifold. Hatcher shoued [10] that if $\partial M-\phi, T_{k} P L(M)=0$ for $k \geqslant 2$, and if $\partial M \notin \phi, T_{k} P L(M, D)=0$ for $k \geqslant 1$. 1 lso ae M is a $K(\Pi, 1), \pi=\Pi_{1} M$, ve heve for $k \geqslant 2, \Pi_{k} k \cdot 0$.

Suppose for simplicity that M is closed and consider the exact serguace

$$
\ldots \longrightarrow \Pi_{n} M \oplus \Pi_{n} P L_{3} \xrightarrow{\partial} \Pi_{n-1} P L(M, D) \longrightarrow \pi_{n-1} P L(M) \quad \ldots(n>1)
$$

(T, is abelian for $n>1$, hence we heve direct sums).
For manifolds with boundary conaider honoomorphima keeping the boundary fixed. 1 so consider $n>1$ so that orientation hag no offect on the equanoe.

Then frow the above we get

$$
\begin{equation*}
\pi_{n+1} \mathrm{PL}_{3} \simeq \Pi_{n} P L(M, D) \text { for } n \geqslant 2 \tag{13}
\end{equation*}
$$

We now try to calculate $\Pi_{n} P L(M, D)$ for $n<2$. For simplicity of notation we consider M orientable and without boundary (see remark above). The reaulta follow for the other casen with minor ohangen.

Denote by $G(M)$ the (simplioial) epace of homotopy equivalences of $M_{0} G\left(M_{1} X_{0}\right)$ is the subspace of the ones that IIx a point X_{0} in M_{o} If M has bounday then $G(M, \partial M)$ denotes the space of homotopy equivalenoes of M whioh restriot to the
 theory to determine the honotopy type of $G(M), G\left(M, x_{0}\right)$ at least when $\partial M=\delta$. One finds that

$$
\Pi_{0} G\left(\mu, X_{0}\right)=\Delta u t \pi_{1}\left(M, x_{0}\right)
$$

(we write $\Pi_{1} M$ for $\left.\Pi_{1}\left(M, X_{0}\right)\right)$.

$$
\begin{aligned}
\Pi_{0} G(M) & =\operatorname{lut} \Pi_{1} M / \text { inner autonorphi ans of } \Pi_{1} M \\
& =\text { Oat } \Pi_{1} M \text {, the outer autonoxphime Group of } T_{1} M_{0} \\
\Pi_{1} G(M) & =\text { ountre of } \Pi_{1} M_{0}
\end{aligned}
$$

and the higher homotopy groupa readeh.

Hatcher [10] proved that the incluaion is $P L(M) \longrightarrow G(M)$ (or $P L(M, \partial M) \longrightarrow G(M, \partial M)$) is a homotopy equivalence. It follows then that $11: P L\left(M, x_{0}\right) \longrightarrow G\left(M, x_{0}\right)$ is also a homotopy equivalmoe.
(Consider the commentative diagran

where 1,1 are the inclusions, f is the restriotion to a point x_{0} in M and the horizontal lines are fibrations. Then if $\pi \pi_{k} \operatorname{PL}\left(M, x_{0}\right) \longrightarrow \pi_{k} G\left(M, x_{0}\right)$ is an inomorphisin by the five lemes).

Repleoing in the resulte above we get

$$
\begin{array}{ll}
\pi_{0} \operatorname{PL}\left(M, x_{0}\right) & =\operatorname{sut} \pi_{1} M \\
\pi_{0} \operatorname{PL}(M) & =\operatorname{Out} \pi_{1} M \\
\pi_{1} \operatorname{PL}(M) & =\text { centre of } \pi_{1} M
\end{array}
$$

Now consider again the fibration

$$
\mathrm{PL}\left(M, X_{0}\right) \longrightarrow \operatorname{PL}(M) \xrightarrow{f} M
$$

We get a lang aract sequence

which we oan write as
$\ldots 0 \rightarrow \Pi_{1} \operatorname{PL}\left(M, x_{0}\right) \rightarrow$ oentre of $\Pi_{1} M \rightarrow \Pi_{1} M \rightarrow \operatorname{ut} \Pi_{1} M \xrightarrow{P}$ Out $\Pi_{1} M \rightarrow \Pi_{0}^{M}$
The map contre of $\Pi_{1} M \rightarrow \Pi_{1} M$ is, in fect, the inolusion. Thic follows fram the definitions of I and of the isomorphien oeatre $\Pi_{1} M=\Pi_{1} P L(M)$. Also piAnt $\Pi_{1} M \rightarrow$ Out $\Pi_{1} M$ 10 onto as it is the quotient mp. Agadn thie follows from the definitione of the iscmorphiman $P \mathrm{PL}\left(M, X_{0}\right)=A u t \Pi_{1} M$ and $\Pi_{O} P L(M)=O u t \Pi_{1} M_{0}$

Hence ve get

$$
\begin{gather*}
\Pi_{1} \operatorname{PL}\left(K, x_{0}\right)=0 \tag{16}\\
0 \longrightarrow \text { contre of } \Pi_{1} M \rightarrow \Pi_{1} M \rightarrow \Delta u t \Pi_{1} M \rightarrow \mathrm{Out}_{1} M \rightarrow 0 \quad \text { is ermot. }
\end{gather*}
$$

Also as for $k \geqslant 2, \pi_{k} M=0$

$$
\begin{equation*}
\pi_{\mathbf{k}} P L\left(M, X_{0}\right)=\Pi_{\mathbf{k}} P L(M)=0 \tag{17}
\end{equation*}
$$

We also have another fibration

$$
\begin{equation*}
\operatorname{PL}(M, D) \longrightarrow P L\left(M, X_{0}\right) \xrightarrow{f} F_{X_{0}}(D, M) \tag{18}
\end{equation*}
$$

giving long axnot sequence of honotopy groups :

$$
\begin{equation*}
\cdots T_{k+1} \mathrm{PL}_{3} \longrightarrow \pi_{k} \mathrm{PL}(\mathrm{M}, \mathrm{I}) \longrightarrow \pi_{k} \mathrm{PL}\left(\mathrm{M}, x_{0}\right) \longrightarrow \pi_{\mathbf{k}} \mathrm{PL}_{3} \longrightarrow \cdots \tag{19}
\end{equation*}
$$

as $\mathrm{Emb}_{\mathrm{I}_{0}}(\mathrm{D}, \mathrm{M}) \simeq \mathrm{PL}_{3}(\mathrm{Cf}[22])$. Hence for $\mathrm{k}<2$ we get

Thus,

$$
\begin{gather*}
\Pi_{1} P L(M, D)=0 \\
\left.0 \longrightarrow Z_{2} \xrightarrow{j} \Pi_{0} P L M, D\right) \xrightarrow{P} \pi_{0} \operatorname{sPL}\left(M, x_{0}\right) \rightarrow 0 \quad \text { is exaot } \tag{20}
\end{gather*}
$$

 we shall note by $4 u t^{+} M_{1} M$. In this partioular case (i.e. M closed orientable) Aut $\Pi_{1} M=\Pi_{0} \operatorname{SPL}\left(M, x_{0}\right) \quad$ (21).

Surmazing all the realte we get for M cloaed, orientable, P^{2}-imreduoible auficiantly large:

$$
0 \longrightarrow Z_{2} \longrightarrow{ }_{0}^{F} P L(M, D) \longrightarrow A u t^{+} I_{1} M \longrightarrow 0 \text { is ersot }
$$

and as $\Pi_{2} \mathrm{PL}_{3}=0=\prod_{1} \mathrm{PL}(\mathrm{M}, \mathrm{D})$,

$$
\pi_{n} P L(n, D)=\Pi_{n+1} P L_{3} . \quad \text { for } n \geqslant 1
$$

The following table compares the homotopy eroups of $\mathrm{PL}(\mathrm{M}, \mathrm{D}), \mathrm{PL}\left(\mathrm{K}, \mathrm{I}_{0}\right)$ and $\mathrm{PL}(\mathrm{M}):$

	PI (M, D)	$\mathrm{PL}\left(\mathrm{M}, \mathrm{X}_{0}\right)$	PL(N)
Π_{0}	$0 \rightarrow \pi_{2} \rightarrow \pi_{0}$ PLIM. is $) \rightarrow$ exact $^{\text {ant }} \Pi_{1} M \rightarrow 0$	AutT $M_{1} M$	Out $H_{1} \mathrm{M}$
π_{1}	0	0	Centre of $\Pi_{1} M^{M}$
π_{2}	I	0	0
π_{3}	$\pi_{4} \mathrm{PL}_{3}$	0	0
!	!	:	!
Π_{n}	$T_{n+1} \mathrm{PL}_{3}$	0	0
\vdots	\cdots	:	!

Remarkn:

(1) For M non-orienteble the only difference is that (21) does not hold (and in other places replece SPL by PL). Ant ${ }^{+} \Pi_{,} M$ \#ill consiat of the antonarphicen mhioh rempect the orfentation homomorphise.
(2) For M rith boundary we consider homeomorphimen fixed on the boundery and as $W_{n} P L(M, \partial K)$ of for $D \geqslant 1$, we get

$$
\begin{gathered}
\pi_{n} P L(M, D O M)=\pi_{n+1} P L_{3} \quad \text { for } n>1 \\
0 \rightarrow Z_{2} \rightarrow \pi_{0} P L(H, D O M) \rightarrow \pi_{0} P L\left(M, X_{0} U D M\right) \rightarrow 0 \quad \text { is exset. }
\end{gathered}
$$

V - Comparing Aut (M, D) with Aut $\pi_{1}(M)$

Laudenbach [17] has shown that there is an exact sequence

$$
0 \rightarrow \boldsymbol{z}_{2} \rightarrow \underset{\mathrm{p}}{\left.\pi_{0} \mathrm{SPL}_{\left(\# \mathrm{~S}^{1} \times \mathrm{S}^{2}\right.}, \quad \mathrm{x}_{0}\right) \xrightarrow{\pi} \underset{\mathrm{p}}{\operatorname{Aut}(* \mathbb{Z})} \rightarrow 0}
$$

We first show that this result follows from theorem 3.2 and then give a generalization for connected sums of $S^{1} \times S^{2 \prime} s$ with P^{2}-irreducible sufficiently large 3 manifolds.

For simplicity we consider Moried with Aut π_{1} M. (In the non orientable case we have to consider only the subgroup of Aut $\pi_{1} \mathrm{M}$ of automorphisms which respect the orientation homomorphism. We then obtain the same results).

Remark
Aut $\left.{ }^{+} \underset{p}{\left(H s^{1}\right.} \times S^{2}, x_{0}\right)=\operatorname{Aut}\left(\underset{p}{\left(n S^{1}\right.} \times S^{2}, D\right)$ (cf sequence (6) and the result obtained for $\# s^{1} \times s^{2}$ - i.e. $\partial j_{*}=0$).
p
(i) The automorphism group of a free product

We start by looking at Aut $\pi_{1} M$. As $M=\# P_{i}$ where all P_{i} are prime. - $\pi_{1} M$ is a free product $G=A_{1} * \ldots * A_{m} * A_{m+1} * \ldots * A_{n}$ where each A_{i} is irreducible and $A_{1} \ldots A_{m}$ are infinite cyclic.

This group has been studied by Fuchs-R0binovitch [6] [7]. The particular case where all the groups are infinite cyclic has been studied by Nielsen [20]. They give a system of generators and relations for the group.

Let $a_{i}{ }^{(k)} e_{i}, i=1, \ldots, n$, denote a typical element. Let $A_{1}=\left\{a_{1}\right\} \ldots A_{m}=\left\{a_{m}\right\}$ so that $a_{i}{ }^{(k)}=a_{i}{ }^{k}$ for $i \leq m$.

Autg is generated as follows:

(a) \emptyset_{i} the automorphism group of each A_{i} - we have automorphisms ϕ_{i} s.t $\phi_{i} a_{i}{ }^{(k)}=\bar{\phi}_{i} a_{i}{ }^{(k)}, \phi_{i} a_{j}{ }^{(k)}=a_{j}{ }^{(k)} j \neq i, \bar{\phi}_{i} \in \phi_{i}$.
(b) For each ordered pair (i, j) $i \not \not \neq j, j>m, 1 \leq i, j \leqslant n$, we have a group of automorphisms isomorphic to A_{i} given by conjugation of A_{j} by A_{i}, fixing the other factors. If

$$
\begin{aligned}
a_{i}{ }^{(k)} \in A_{i} \quad & \alpha_{i j}^{(k)} a_{l}^{(m)}=a_{l}^{(m)}(\ell \neq j) \\
& \alpha_{i j}^{(k)} a_{j}^{(m)}=a_{i}^{(k)-1} a_{j}^{(m)} a_{i}^{(k)}
\end{aligned}
$$

(c) For $i \notin j, j \leq m, 1 \leq i \leq n$, we have the automorphisms

$$
\begin{aligned}
& B_{i j}^{(k)}=\left\{\begin{array}{l}
B_{i j}^{(k)} a_{l}^{(p)}=a_{\ell}^{(p)} \quad \ell \neq j \\
\beta_{i j}^{(k)} a_{j}^{(p)}=a_{j}^{(p)} a_{i}^{(k)}
\end{array}\right. \\
& \gamma_{i j}^{(k)}=\left\{\begin{array}{l}
\gamma_{i j}^{(k)} a_{\ell}^{(p)}=a_{\ell}^{(p)}, \ell \neq j \\
\gamma_{i j}^{(k)} a_{j}^{(p)}=a_{i}^{(k)} a_{j}^{(p)}
\end{array}\right.
\end{aligned}
$$

(d) Split the indices $1,2 \ldots n$ into blocks $I_{1}, I_{2}, \ldots, I_{t}$ where for all $i \in I_{j}$, the A_{i} are i somorphic (For example $I_{1}=\{1 \ldots m\}$ corresponds to the infinite cyclic factors). Then we have the symuetric group on each block as group of automorphisms: If $\mathbf{A}_{\mathbf{i}}{ }^{*} \mathbf{A}_{\mathbf{j}}$ then we have automorphism $\omega_{i j}$ defined by

$$
\begin{aligned}
& \omega_{i j} a_{i}^{(k)}=a_{i j}^{(k)} \\
& \omega_{i j} a_{j}^{(k)}=a_{i}^{(k)} \\
& \omega_{i j} a_{\ell}^{(m)}=a_{\ell}^{(m)} \quad(\ell \neq i, j)
\end{aligned}
$$

(we suppose that the iscomorphism $A_{i} \rightarrow A_{j}$ is given by $a_{i}^{(k)} \longrightarrow a_{j}^{(k)}$).
The group is thus generated by permutations (d), proper automorphisms of the components (a), elementary conjugations (b) and Nielsen
transformations (c).

For a set of defining relations see [7]. For ism the group of automorphisms ϕ_{i} are known. They are groups of order 2 , generated by elements σ_{i} which take a_{i} into $a_{i}{ }^{-1}$.
(ii) Consider the homomorphism

$$
\text { Aut }(M, D) \xrightarrow{\pi} \text { Aut } \pi_{1} M
$$

that associates to a homeomorphism the induced automorphism on π_{1}. (Centre point of D is the base point). We now show that in certain cases π is onto i.e. that we can realise all the automorphirms of π_{1} by automorphisms fixing a disc.

We first remark that the automorphisms (b) (c) (d) correspond respectively to generalised slides when the whole factor is slid along a curve in another factor, generalised slides when the end of a handle is slid. along a curve in another factor and. permutations of factors (all homeomorphisms can be assumed to be fixed on a disc). Hence to prove π is onto we only have to see if the automorphism groups of the fundamenical groups of the factors correspond to homeomorphisms in the manifold. We also know by theorem 3.2 that the homeomorphisms of M are generated by generalised slides, permutations and homeomorphisms of the factors. Hence the problem will be to see if the automorphisms of the fundamental group of the factors can be realised by homeomorphisms of the factors. We shall show that is the case if M isf $S^{1} \times S^{2}, n \geqslant 1$, and that the kernel is a direot an of $Z_{2}^{\prime \prime}$ (one for each factor) and them give a generalisation for a ${ }_{c} P_{i}$ or $\#_{i} P_{i}^{\#} S^{1} \times S^{2}$ where P_{i} is irreducible gufficiently large.

In general we have a diagram

where K is the semi-direct product of $P(M, D)$ and $S(M, D), M=\# P_{i}, i_{1}, i_{2}$ are the inclusions.
$\pi_{0} i_{1}$ is 1-1. This follows by looking at the relations [8] (all the relations between slides and permutations can be realised geometrically).

Hence astogether K and $\underset{i}{X}\left(A u t P_{i}, D\right)$ generate $A u t\left(\# P_{i}, D\right)$ Ker $\pi=\operatorname{Ker} \pi_{0} i_{2}$

We now consider some particular cases:
(1) $M=S^{1} \times s^{2}$
$\pi_{1}\left(S^{1} \times S^{2}\right)=2$ and Aut $\pi_{1}\left(S^{1} \times S^{2}\right)$ is generated by taking the generator x to x^{-1}. This is realised by the homeomorphism that interchanges the two ends of the handle (see picture). x can be represented by a loop that goes once around the handle.

Hence π is onto and Aut $\left(S^{1} \times S^{2}, D\right)=Z_{2} \oplus$ Aut $\pi_{1}\left(S^{1} \times S^{2}\right)$ as π splits (cf th. 2.1.).
(2) $\underline{M}=\frac{T_{p}}{s^{1} \times S^{2}}$

Again π is onto as we only have to see that the automorphisms defined by

$$
\left\{\begin{array}{l}
x_{k} \longmapsto x_{k}^{-1} \\
x_{\ell} \longmapsto x_{\ell} \quad \ell \notin k
\end{array}\right.
$$

are realised by homeomorphisms where $x_{1} \ldots x_{p}$ are the generators of * Z, (Each one can be represented by the loop that goes once p
around a handle), and as in case (1) they correspond to interchange the two ends of a handle.

We then have

$\operatorname{Ker} \pi=\operatorname{Ker}\left(\pi_{\cdot} i_{2}\right)$. But Aut $\pi_{1}\left(s^{1} \times S^{2}\right.$ maps injectively into Aut $(* \pi)$. The Z_{2} part corresponds to a rotation parallel to the belt sphere of the handle (τ) which induces the identity on π_{1}. Hence we have a \mathbf{Z}_{2} coming from each factor i.e. $\operatorname{Ker} \pi=\underset{p}{\oplus} \mathbf{Z}_{2}$. Thus we recover Laudenbach's exact sequence

$$
0 \longrightarrow \underset{\mathrm{p}}{\mathrm{CZ}} \mathrm{Z}_{2} \longrightarrow \mathrm{Aut}\left(\stackrel{+}{\mathrm{p}} \mathrm{~s}^{1} \times \mathrm{s}^{2}, \mathrm{D}\right) \xrightarrow[\mathrm{p}]{\mathrm{H}} \underset{\longrightarrow}{\text { Aut }(\star 2)} \longrightarrow 0
$$

(3) The general case

For an arbitrayy 3-manfold $M-P_{i}$ we do not know if Ant(M,D) mape onto Aut π_{1} H. We bave a diacran

As before KerTh=Ker $\pi_{0} i_{2}$ and from (i) and reancis in (ii) we can prove by a similar method to (2) the following:

THEOREM 3.10

Let $M=P_{i}$ and for each $P_{i} \xrightarrow{\text { let }} K_{P_{i}} \longrightarrow \operatorname{Aut}\left(P_{i}, D\right) \Longrightarrow Q_{P_{i}}$ be the short eract
 aract soquence

Where G is the subgroup of Aut $\Pi_{1} M$ genarated by (b), (o), (d) and by $Q_{P_{i}}$ in factors.
He now consider certain cases where we know $K_{P_{i}}, Q_{F_{i}}$
(4) M is a P^{2}-irreducible oufficiently large 3-manifold

We already know that we have an exact sequence

$$
0 \longrightarrow \mathrm{Z}_{2} \longrightarrow \operatorname{Aut}(M, D) \xrightarrow{\pi} \text { Aut }^{+} \Pi_{1} M \longrightarrow 0
$$

(5) M-FP P_{i} where all P_{i} are P^{2}-irreducible sufficiently large 3-manifolds Π mape onto the aubgroup G of $A u t \Pi_{1}\left(* P_{i}\right)$ generated by $(b),(o),(d)$ and Aut ${ }^{+} \Pi_{1} P_{i}$ on factors by (3) and (4).
 correapond to rotations parallel to the separating apheres which clearly induce the identity on lut $\Pi_{1}\left({ }_{i} P_{1}\right)$.

Hence we get the exnct sequence

$$
0 \rightarrow \oplus_{i} \mathbb{Z}_{2} \longrightarrow \operatorname{Aut}\left(\eta_{i} P_{i}, D\right) \xrightarrow{T} 0 \rightarrow 0
$$

(6) From the results above we get:

THPOREM 3.11
 orientable 3 -manifold or $S^{1} \times s^{2}$, then the sequence

$$
0 \rightarrow \oplus_{i} Z_{\hat{z}} \rightarrow \operatorname{Aut}\left(\# P_{i}, D\right) \xrightarrow{\pi} G \rightarrow 0
$$

is aract where G is the gubgroup of Aut $\Pi_{1} M$ generated by (b), (o), (d), Aut $\Pi_{1} \Gamma_{1}$ if P_{i} is P^{2}-irroducible suffioiently large and Aut $\pi_{1}\left(s^{1} \times s^{2}\right)=Z_{2}$ on factoris. Each Z_{2}-factor in the kernel of Π comes either from a rotation parallel to the eppareting : sphere of an irreducible factor or from a rotation parallel to the belt sphere of a handle.

Unless otherwise stated, all manifolds are assumed to clond

1. STABLE CLASSIFICATION OF 4-MANIFOLDS

Let $S^{2} \underset{\sim}{x} S^{2}$ denote the non trivial S^{2} - bundle over s^{2}.

DEFINITION 1.1

We say that two 4 -manifolds M_{1}, M_{2} are stably equivalent if

$$
M_{1} \# t_{1}\left(S^{2} \times S^{2} ; \# s_{1}\left(S^{2} \times s^{2}\right) \cong M_{2} \# t_{2}\left(S^{2} \times S^{2}\right) \# s_{2}\left(S^{2} \times S^{2}\right)\right.
$$

for some $t_{i}, s_{i} \geq 0, i=1,2$.

Denote by $\tilde{s}^{\text {s }}$ the stable equivalence relation. It follows immediately from Van Kampen's theorem and from the fact that $\pi_{1}\left(S^{2} \times S^{2}\right)=\pi_{1}\left(S_{\sim}^{2} \underset{\sim}{x}{ }^{2}\right)=0$ that a necessary condition for M_{1}, M_{2} to be stably equivalent is that $\pi_{1} M_{1}=\pi_{1} M_{2}$.
(a) The orientable case

We consider first oriented manifolds.
For any CW X^{n} with fundamental group π there is a natural inclusion $X \hookrightarrow K(\pi, 1)$ for we can build up a model for $K(\pi, 1)$ by attaching cells to X to kill higher homotopy groups. Denote by $\eta(X)$ the class in $\tilde{H}_{n}(\pi)=\tilde{H}_{n}(K(\pi, 1))$ defined by that inclusion. In particular, if X is an n-manifold that inclusion defines a natural class $\lceil X\rangle_{B}$ in $\Omega_{n}(\pi)=\Omega_{n}(K(\pi, l))$ the oriented m-bordism group of $K(\pi, 1)$.

We want to relate $\Omega_{4}(i)$ with stable equivalence classes of oriented 4 -manifolds with fundamental group π. We need some preliminary results.

LEMMA 1.1
If X, Y are oriented homotopy equivalent n-circuits with same orientation
homomorphism and \longrightarrow fundamental group π then $\eta(X)=n(Y)$ in $\tilde{H}_{n}(\pi)$.

Proof.

As X, Y are n-circuits, $H_{n}(X)=2$ generated by the homology class of $X,[X]$, $\tilde{H}_{n}(Y)=\mathbf{2}$ generated by 「Yา. Furthermore, if X, Y are homotopy equivalent and if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{g}: \mathrm{Y} \rightarrow \mathrm{X}$ are such that $\mathrm{fg} \simeq_{\mathrm{id}}^{\mathrm{Y}}, \mathrm{g} \mathrm{f} \simeq \mathrm{id} \mathrm{X}$ then

$$
\begin{aligned}
& f_{\star}[X]=r\lceil Y\rceil \quad, r \in Z \\
& g_{\star} f_{\star}\lceil X]=g_{\star}(r[Y\rceil)=r \cdot g_{\star}[Y] \\
&=i d_{\star}[X]=[X]
\end{aligned}
$$

hence, $r= \pm 1$. Similarly, $g_{\star}\lceil\mathbf{Y}\rceil= \pm[x]$.
Thus, if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a homotopy equivalence we can assume, w.l.o.g., that $\mathrm{f}_{\star}[\mathrm{X}]=[\mathrm{Y}]$ (i.e. the homotopy equivalence conmutes with orientation homomorphisms We say that X, Y have same orientation homomorphism.

Then the diagram

.where, λ, μ are the natural inclusions, conmutes up to homotopy and hence

$$
n(X)=\lambda_{\star}\lceil X\rceil=(\mu f)_{\star}\lceil X\rceil=\mu_{\star} f_{\star}\lceil X\rceil=\mu_{\star}\lceil Y\rceil=n(Y) \quad \text { as required. }
$$

COROLLARY 1.1

If X, Y are homotopy equivalent n-manifolds with homeomorphic bounderies, same orientation homomorphism and the homotopy equivalence extends an orientation preserving homeomorphiam of the boundaries_ then $\eta_{\partial}\left(X_{\partial}(-Y)\right)=0$ in $\tilde{H}_{n}(\pi)$ where $\pi=\pi_{1} X=\pi_{1} Y$.

Proof.

Let f be the homotopy equivalence extending h, an orientation preserving homeomorphism of the boundazies. We then have commutative diagrams

μ, λ as before.

Identify $K\left(\pi_{1}(X), 1\right)$ with $K\left(\pi_{1}(Y), 1\right)$ (up to homotopy) using f_{*} and glue up the two natural maps together to obtain a map

$$
\rho: X \underset{\partial}{u}(-T) \longrightarrow K(\pi, 1)
$$

Hence there is a 5 -cycle W^{5} ith $\partial^{5}-(X U \quad(-Y)) 0 \partial_{0}^{2}(X \times I)$ and mep $W^{5} \rightarrow T(\pi, 1)$ extending the map on the boundary.

Earm $F^{5}=W^{5} u X \times I$. Then
$\partial F^{5}=X \underset{\partial}{u}(-Y)$ and as it follows
from Van Rampen's theorem that there
is a map $F^{5} \rightarrow K(\pi, 1)$ extending p,
$\eta(X \underset{\partial}{u}(-Y))=0$ in $\tilde{H}_{n}(\pi)$ as required.

When $\eta(X)=\eta(Y)$ in $\tilde{H}_{n}(\pi)$ we say X, Y are homologous over π.

$$
\text { We now consider the case of } 4 \text {-manifolds. }
$$

THEOREM 1.1

If M_{1}, M_{2} are oriented 4 -manifolds with
enandamental group π, then they are stably equivalent iff they define the same class in $\Omega_{4}(\pi)$.

Remarks : (1) by the 'class defined by M 'we mean the natural class defined above.
(2) If M_{1}, M_{2} define the same class in $\Omega_{4}(\pi)$ we say they are bordant over π.
(3) The proof of the theorem will use arguments from 「57.

Proof:

(a) Suppose first that $\left\lceil M_{1}\right\rceil_{s}=\left\lceil M_{2}\right\rceil_{s}$ in $\Omega_{4}(\pi)$. Then there exists a a 5-manifold W^{5} with boundary $\partial W^{5}=M_{1} \cup M_{2}$ (disjoint union) and a map $W^{5} \xrightarrow{\rho} K(\pi, 1)$ extending the natural maps $M_{i} \xrightarrow[K_{i}]{ } K(\pi, 1) i=1,2$. We then hàve a commutative diagram

where j_{1}, j_{2} are the inclusions.

Then $\rho_{*}: \pi_{1} W^{5} \rightarrow \pi=\pi_{1} M_{1}=\pi_{1} M_{2}$ splits $j_{i *}: \pi_{1} M_{i} \rightarrow \pi_{1} W^{5} \quad i=1,2$.
Let $s_{i}: \pi_{1} W^{5} \rightarrow \pi_{1} M_{i}$ be the split map.

Perform surgery on W^{5} to make $j_{1 \star}$, $j_{2 *}$ isomorphisms (i.e. kill the normal subgroup Ker $s_{1}=\operatorname{Ker} s_{2}$ of $\pi_{1} w^{5}$. The normal subgroup in question is the normal closure of a finite number of elements) to get a new cobordism, W^{5} between M_{1}, M_{2} with $\pi_{1} W^{5}=\pi$. Consider a handle decomposition of W^{15}. By connectedness assume there are no 0,5 handles and cancel 1,4 handles using the fact that $\pi_{1}\left(W^{\prime}, M_{i}\right)=0 「 217$. We can thus assume that $W^{\prime 5}$ has only 2,3 handles. As $\pi_{1} M_{1} \rightarrow \pi_{1} W^{\prime}$ is an isomorphism it follows that the 2 -handles must be attached by null homotopic curves in M_{1} and, as $\operatorname{dim} M_{1}=4$. the effect of adding these handles to M_{1} is to change it to
$\bar{M}=M_{1} \# t_{1}\left(S^{2} \times S^{2}\right) \# s_{1}\left(S_{\sim}^{2} \underset{\sim}{s}{ }^{2}\right)$ some $t_{1}, s_{1} \geqslant 0$.

As 3-handles are dual 2-handles, \bar{M} can also be obtained from M_{2} by attaching 2-handles by null homotopic curves. Hence

$$
\bar{M}=M_{1} \# t_{1}\left(S^{2} \times S^{2}\right) \# s_{2}\left(S^{2} \times S^{2}\right) \cong M_{2} \# t_{2}\left(S^{2} \times s^{2}\right) \# s_{2}\left(S^{2} \times s^{2}\right)
$$

some $s_{i}, t_{i} \geq 0$, as required.
(b) For the converse, it is enough to show that adding $S^{2} \times S^{2}$ or $S^{2} \times S^{2}$ to M_{1}, say, doesn't change its cobordism class.

We can assume w. lo.g. that $M_{1} \xrightarrow{K_{1}} K(\pi, 1)$ maps a ball B to the base point * in $K(\pi, 1)$. We use this ball to form the connected sum and map the whole of $S^{2} \times S^{2}$ (or $S^{2} \underset{\sim}{x}{ }^{2}$) to *

This defines a map $\bar{K}_{1}: M_{1} * S_{(\underset{\sim}{x})}^{2} s^{2} \longrightarrow K(\pi, 1)\left(S_{(\underset{\sim}{x})}^{2} s^{2}\right.$ means either $S^{2} \times S^{2}$
 in $\Omega_{4}(\pi)$. We construct a cobordism R^{5} between M_{1} and $M_{1} * s_{(\underset{\sim}{x})}^{2} S^{2}$ and a map $F: R^{5} \rightarrow K(\pi, 1)$ s.t. $F / M_{1}=K_{1}, F / M_{1} \# S_{(\underset{\sim}{\sim})}^{2} S^{2}=\bar{K}_{1}$.

Let $R=M_{i} \times I$ u 2-handle, attached to B
Then $\partial R=-M_{1} \times \cap \cup M_{1} \# S_{(\sim)}^{2} S^{2}$. Map all
the region $B \times I \quad \frac{U}{\partial}\left(S_{(\sim)}^{2}\right)^{B^{3}-4}$ ball) to *. This extends clearly to the required F.

If M_{1}, M_{2} are oriented closed 4-manifolds with fundamental group π,
and homologous over π we can resolve the homology
to have only a finite number of points of singularities (as oriented bordism groups $\Omega_{1}, \Omega_{2}, \Omega_{3}$ are all zero) each of which has for a link an orientable 4-manifold. $A s \Omega_{4}=2$ is detected by the index and index $\mathbb{C P}{ }^{2}=1$, we can resolve the singularities by adding some copies of CP^{2} or $-\mathrm{CP}^{2}$ to the links :

Denote by X the homology and by M_{0}, M with a ball removed.

Then cutting out tubes from the 1 inks to $M_{1} \subset \partial x^{5}$ and replactng them by $\left(\mathrm{CP}_{2}\right)_{0} \times \mathrm{I}$ or $\left(-\mathbb{Q} \mathrm{C}_{2}\right)_{0} \times I$, we can kill the obstruction index and resolve the homology to a 5 -minifold. Also, every time we have links with opposite sign,instead of piping them to the boundary, we can pipe them together away from the boundary. Clearly π_{1} is not affected and the 5 manifold then obtained

gives a cobordism of $M \underset{i}{\#} \pm \mathbb{C} \mathbb{P}^{2}$ to M_{2} over π

THEOREM 1.2

If M_{1}, M_{2} are homotopy equivalent oriented closed 4-manifolds (with same orientation homomorphism) then they are stably equivalent.

Remark
This result was suggested by Kirby, without proof, in a private communication.

Proof.

Let $\pi=\pi_{1} M_{1}=\pi_{1} M_{2}$. By lemma $1.1 \eta\left(M_{1}\right)=\eta\left(M_{2}\right)$ in $H_{4}(\pi)\left(\tilde{H}_{4}(T)\right)$ Hence by the above, $M_{1} \#_{i} \pm \mathbb{P}{ }^{2}$ is bordant to M_{2} over π. But as M_{1}, M_{2} are homotopy equivalent, index $M_{1}=$ index M_{2} and so we must have an equal number of $\boldsymbol{e P}{ }^{2}$'s and $-\operatorname{CP}^{2}{ }_{5}$. Then we can resolve all, the singularities away from the boundary of the homology to get a cobordism over π between M_{1}, M_{2} as required. \square

COROLLARY 1.2

Two homotopy equivalent oriented 4 -manifolds with homeomorphic. boundaries same orientation homomorphism and the homotopy equivalence extending an orientation preserving homanmpitym oll the boundaries, are stably equivalent.

Proof.

Same as above using co:ollary 1.1 instead of lema 1.1.

THEOREM 1.3

For any group π

$$
\Omega_{4}(\pi)=2 \oplus H_{4}(\pi)
$$

Proof.

(If π is, for instance, any finitely presented group, then there is a 4-manifold with fundamental group $\pi_{\text {. }}$)

It follows from what we have said before that there is an exact sequence of abelian groups (note that we don't need to have M^{4} with fundamental group π but M^{4} and a map $M^{4} \rightarrow K(\pi, 1)$).

where j is the natural map and \underline{i} is defined by sending 1 to the class of
C^{2} with the trivial map to $K(\pi, 1)$. As index $\mathbb{C P}{ }^{2}=1$ and $\mathbb{C P}{ }^{2}$ doesn't bound $i(1)$ is non-zero and therefore $i m i=2$. i splits by the index map. Hence i is onto. Also \mathbf{j} is onto as there are no obstructions to resolve a 4 -homology to a 4 -manifold (an algebraic argument can be found in Conner and Floyd "Differentiable periodic maps" Springer, Berlin 1964). Hence we have in fac̣t a split exact sequence

$$
0 \longrightarrow \mathbb{Z} \frac{i}{\leftarrow-\cdots} \Omega_{4}(\pi) \xrightarrow{j} H_{4}(\pi) \longrightarrow 0
$$

Thus

$$
\Omega_{4}(\pi)=2 \oplus H_{4}(\pi) \quad \text { as required. }
$$

In particular, for any oriented 4 -manifold M with $\pi_{1}=\pi$ its stable equivalence class is determined by the index and the natural class $\eta(M)$ in $H_{4}(\pi)$.
(b) The non-orientable case

In this case we have to work in the category of spaces over $K\left(z_{2}, 1\right)$ and consider bordism and homology with "twisted coefficients" which can be defined as follows:

Let M be an n-manifold. $M_{M}: \pi_{1} M \longrightarrow Z_{2}$ its orientation homomorphism. Considering then the diagram

where $\pi=\pi_{i} M$, and defining two such diagrams to be bordant or homologous respectively by the "obvious things" we get resp. the bordism groups
$\Omega_{n}^{t}(\pi)$ or the homology groups $H_{n}^{t}(\pi)$ with twisted coefficients. Geometrically, these groups can be interpreted as bordism or homology classes, resp, of singular n-circuits in $K(\pi, 1)$ where both the circuits, bordisms and the homologies are locally orientable and the orientation homomorphisms commute with

Denote again by $\eta(M)$ the natural class in $H_{n}^{t}(\pi, M)$. The corresponding results in this case are :

LEMMA 1.1'
If X, Y are non-orientable homotopy equivalent over $\mathbf{Z}_{2} \underline{n}$-circuits with
fundamental group π and same orientation homomorphism then $\eta(x)=\eta(Y)$ in $H_{n}^{t}(\pi)$.

Proof.
Let $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Y}$ be a homotopy equivalence over \mathbf{Z}_{2}. This means we have

a homotopy commutative diagram where
g is the homotopy inverse and also
the homotopies are homotopies over
$K\left(\mathbf{Z}_{2}, 1\right)$.
In particular, X anci Y are homotopy equivalent in the usual sense. Then the same proof as in the oriented case ($H_{h}\left(X ; K\left(Z_{2}, 1\right)\right)=2$) working in the category of spaces over $K\left(Z_{2}, 1\right)$ gives the result.

COROLLARY 1.1'
If X, \underline{Y} are non-orientable homotopy equivalent (over \mathbf{Z}_{2}) n-manifolds with
homeomorphit boundaries same orientation homomorphisms and the homotopy equivalence extends a homeomorphisn of the boundaries, then

$$
n(X \cup Y)=0 \text { in } H_{n}^{t}(\pi) \text { where } \pi=\pi_{1} X=\pi_{1} Y .
$$

Proof.

As before with the obvious changes.

Case of non-orientable 4-manifolds
For non-orientable 4 -manifolds there is a bordism invariant - the reduction mod 2 of the Euler chavacteristic denoted by X_{2}.

$$
\text { As } \begin{aligned}
\chi(M)=\operatorname{dim} H_{0}\left(M ; \mathbf{Z}_{2}\right) & -\operatorname{dim} H_{1}\left(M ; Z_{2}\right)+\operatorname{dim} H_{2}\left(M ; Z_{2}\right)-\operatorname{dim} H_{3}\left(M ; \mathbb{Z}_{2}\right) \\
& +\operatorname{dim} H_{4}\left(M ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

where $H_{i}\left(M ; \mathbf{Z}_{2}\right)$ is considered as a vector space over \mathbf{Z}_{2} it follows from Duality that $X(M)=\operatorname{dim} H_{2}\left(M ; Z_{2}\right) \bmod 2$.

THEOREM 1.1^{\prime}
If M_{1}, M_{2} are non-orientable 4 -manifolds with fundamental group π and same orientation homomorphisms then they are stably equivalent iff they define the same class in $\Omega_{4}^{t}(\pi)$.

Proof.

As in the orientable case but working in the category of spaces over $K\left(z_{2}, 1\right)$.

THEOREM 1.2'

If M_{1}, M_{2} are homotopy equivalent over X_{2}, non-orientable closed 4-manifolds with same orientation homomorphisms then they are stably equivalent.
$\eta(X \cup Y)=0$ in $H_{n}^{t}(\pi)$ where $\pi=\pi_{1} X=\pi_{1} Y$.

Proof.

As before with the obvious changes.
D

Case of non-orientable 4-manifolds

For non-orientable 4-manifolds there is a bordism invariant - the reduction mod 2 of the Euler chavacteristic denoted by X_{2}.

$$
\text { As } \begin{aligned}
X(M)=\operatorname{dim} H_{0}\left(M ; Z_{2}\right) & -\operatorname{dim} H_{1}\left(M ; Z_{2}\right)+\operatorname{dim} H_{2}\left(M ; Z_{2}\right)-\operatorname{dim} H_{3}\left(M ; Z_{2}\right) \\
& +\operatorname{dim} H_{4}\left(M ; Z_{2}\right)
\end{aligned}
$$

where $H_{i}\left(M ; \mathbf{Z}_{2}\right)$ is considered as a vector space over Z_{2} it follows from Duality that $X(M)=\operatorname{dim} H_{2}\left(M ; \mathbb{Z}_{2}\right) \bmod 2$.

THEOREM 1.1^{\prime}

If M_{1}, M_{2} are non-orientable 4-manifolds with fundamental group π and same orientation homomorphisms then they are stably equivalent iff they define the same class in $\Omega_{4}^{t}(\pi)$.

Proof.

As in the orientable case but working in the category of spaces over $K\left(2_{2}, 1\right)$ 。

THEOREM 1.2 ${ }^{\prime}$

If M_{1}, M_{2} are homotopy equivalent over Z_{2}, non-orientable closed 4-manifolds with same orientation homomorphisms then they are stably equivalent.

Proof.
Let $\pi=\pi_{1} M_{1}=\pi_{1} M_{2}$. By lemma $1.1^{\prime} \eta\left(M_{1}\right)=\eta\left(M_{2}\right)$ in $H_{4}^{t}(\pi)$. As the classes are all locally orientable and the singularities appearing in a homology are all local, we can resolve a homology between M_{1}, M_{2} at the expenses of introducing some $\pm \mathrm{CP}^{2}{ }_{s}$ as before. But as for M non-orientable, $M \neq \mathbb{C P}{ }^{2} \cong M *\left(-\mathbb{C} \mathbf{P}^{2}\right.$) (slide $\mathbb{C P}{ }^{2}$ along a non-orientable curve) we get after resolving the homology, that either $M_{1} \# \mathbb{\#}{ }^{2}$ is bordant to M_{2} over π or M_{1}, M_{2} are bordant over π. (If there are an even number of singularities we pipe them together in pairs away from the boundary. If not, we pipe all except one away from the boundary).

As $M_{1} \simeq M_{2}, \operatorname{dim} H_{2}\left(M_{1}\right)=\operatorname{dim} H_{2}\left(M_{2}\right)$, hence $X_{2}\left(M_{1}\right)=X_{2}\left(M_{2}\right)$. But as $X_{2}\left(M_{1} \# \mathbf{c P}^{2}\right)=x_{2}\left(M_{1}\right)+1 \neq x_{2}\left(M_{2}\right), M_{1} \# \mathbb{C P}^{2}, M_{2}$ cannot be bordant over π. Hence M_{1}, M_{2} are bordant over π as required.

Similarly we get :

COROLLARY 1.2'
Two homotopy equivalent over \mathbb{Z}_{2} non-orientable 4 -manifolds with homeomorific boundaries, same orientation homomorphisms and the homotopy equivalence extending a homeomorphism on the boundaries are stably equivalent.

THEOREM 1.3'
For any group π and for every non-trivial homomorphism $\pi \longrightarrow \mathbf{z}_{2}$ we have

$$
\Omega_{4}^{t}(\pi)=\mathbf{z}_{2} \Theta \mathrm{H}_{4}^{\mathrm{t}}(\pi) .
$$

Proof.

It follows from the discussion above that there is an exact sequence

$$
z_{2} \xrightarrow{i} \Omega_{4}^{t}(\pi) \xrightarrow{i} H_{4}^{t}(\pi)
$$

defined similarly to the orientable case, $i(1)$ is the class determined by UP^{2}. Hence $\operatorname{im} f^{2}=Z_{2}$. Also, as before, j is onto and as we have an exact sequence of abelian groups

$$
0 \longrightarrow Z_{2} \xrightarrow{\mathbf{i}} \Omega_{4}^{t}(\pi) \longrightarrow H_{4}^{t}(\pi) \longrightarrow 0
$$

As mod 2 reduction of the Euler characteristic defines a split map

we get

$$
\Omega_{4}^{t}(\pi)=\mathbf{Z}_{2} \oplus H_{4}^{t}(\pi)
$$ as required. ロ

This result together with theorem $1 . l^{\prime}$ prove the following:

Stable equivalence classes of non-orientable 4-manifolds with fundamental group π are in $1-1$ correspondence with the elements of $\Omega_{4}^{t}(\pi)$ and are determined by the reduction mod 2 of the Euler characteristic and by a
"natural" 4-dimensional homology class with twisted coefficients.

SOME REMARKS AND EXAMP ES.
(1) We need at most one $S^{2} \times S^{2}$ in the stable equivalence as $s^{2} \times s^{2} \not S^{2} \underset{\sim}{x} S^{2} \cong s^{2} \underset{\sim}{x} s^{2} * s^{2} \underset{\sim}{x} S^{2}$

Proof : we use the language of 「15 1. To a framed 1 ink in \mathbf{S}^{3} we can associate a 1 -connected 4 -manifold with boundary by attaching 2 handles on the boundary of B^{4} along the framed link. Components of the framed link represent 2 spheres corresponding to the second homology classes of the 4-manifold. Hence there is a l-1 correspondence between framed links in S^{3} and 1 -connected 4 -manifolds with boundary which admit handle
decompositionswith only handles of index. 2 . We also say that the link represents the boundary of the 4 -manifold. In cases where the boundary is S^{3}, capping off with a 4 -ball we may also say that the link represents the closed 4 -manifold thus obtained. Both $S^{2} \times S^{2}$ and $S^{2} \underset{\sim}{x} S^{2}$ are such cases and their link pictures are

$s^{2} \underset{\sim}{x} s^{2}$

A link picture for $S^{2} \times S^{2} \# S^{2} \times S^{2}$ is then given by

We now prove that they are equivalent by Kirby's band moves - band moves correspond in the 4-manifold to 2 -handle slides and hence the 4 -manifold is not affected, up to homeomorphism.

[^1](2) Cappell and Shaneson found a homotopy $\mathbb{R} P^{4}, H P^{4}$, s.t. there is no $t^{\prime}, t>0$ s.t. $H P^{4} \# t\left(S^{2} \times S^{2}\right)=\mathbb{R} P^{4} \# t^{\prime}\left(S^{2} \times S^{2}\right)$. We know in fact from theorem 2^{\prime} and from the first remark that for some t, t^{\prime}
$$
H P^{4} \# t\left(S^{2} \times S^{2}\right) \# S^{2} \times S^{2} \cong R^{4} \# t^{\prime}\left(S^{2} \times S^{2}\right) \# S^{2} \underset{\sim}{x} S^{2}
$$
(3) If M, N are homologous over π and index $M=$ index $N+k, k \geq 0$
then N, M \# $k\left(-P^{2}\right)$ are mordant over π.

Proof:
We first show that $G P^{2} \#\left(-\llbracket P^{2}\right) \#\left(-G P^{2}\right) \cong S^{2} \underset{\sim}{S} S^{2} \#\left(-C P^{2}\right) \cong S^{2} \times S^{2} \#\left(-\llbracket P^{2}\right)$, using link pictures (another proof in $\mathrm{r}^{2} \mathbf{2 4}^{7}$). A link picture for $\mathbb{C P}^{2}$ is given by $\Omega^{1}\left(-\mathbb{C} \mathrm{P}^{2}\right.$ with -1$)\left(母^{1}\right.$ also represents s^{3}).
$C P^{2} \neq\left(-C P^{2}\right)\left(-\llbracket P^{2}\right)=$

$S^{2} \times S^{2} \#\left(-\mathbb{C P}{ }^{2}\right)=$

\square^{-1}
$=$

$=0-1$
$s^{2} \times s^{2} \#\left(-c P^{2}\right)=0^{-1}$

Now the result follows immediately.
(4) We give some examples where stable equivalence classes are determined by the index for oriented manifolds.
(a) $\pi_{1}=0 \Longrightarrow \Omega_{4}(\pi)=Z$ as $H_{4}(\pi)=0$.

This is, in fact, Wall's, result「23 that any two simply connected oriented 4-manifolds with same quadratic form (and hence the same index) are stably equivalent. Wall proves also that no $S_{\sim}^{2} \underset{\sim}{x} S^{2}$ are needed. For simply connected oriented 4 manifolds to have isomorphic quadratic forms is equivalent to say that they are homotopy equivalent. Wall showed then that they are, in fact, h-cobordant and it follows from this fact that there are no $S^{2} \underset{\sim}{x} S^{2}$ in the stable equivalence.
(b) For $\pi_{1}=7$ or $\pi_{1}=Z_{p}$ as $H_{4}(\pi)=0$ in both cases, we have $\Omega_{4}(\pi)=2$. For $\pi,=\pi, K(\pi, 1)=S^{1}$ and $H_{4}\left(S^{1}\right)=0$. For $\pi_{1}=\pi_{p}$. homology is periodic of period 2 and hence $H_{i}\left(Z_{p}\right)= \begin{cases}\pi_{p} & i \text { odd } \\ 0 & i \text { even }\end{cases}$ $i>0 \quad p>1$ 「117.

Then (a) , (b) and theorem 3 give the following result:

Two oriented closed 4 manifolds with $\pi_{1}=0,2$ or Z_{p} are stably equivalent iff they have the same index.

2. A LINK RFPRESENTATION FOR 4-MANIFOLDS.

As already quoted there is a $i-1$ correspondence between framed links in \mathbf{s}^{3} and 4 manifolds with boundary which admit ${ }^{2}$ given de decomposition with only handles of index 2. In this section we try to generalise this result to arbitrary 4 manifolds and give a 'link representation' of any closed 4 manifolds. We then define a series of "allowable moves" in the link picture that will enable us to see when two different link pictures represent the same 4 manifold. Finally, we consider the stable case.

We assume the reader is familiar with 「15 'and refer to it for definitions and details. We will deal with the orientable and non-orientable cases separately.

The orientable case

1. Let M^{4} be a closed oriented 4 manifold with a given nice handle decomposition H_{1} which, w.l.o.g. : we can assume to have only one $\underline{0}$ and one 4 handle (Recall all our manifolds are connected.) If we remove from M^{4} the $0,1,3,4$ handles we obtain a cobordism \bar{M} between a connected sum of $\underset{i}{ }$ copies of $s^{1} \times s^{2}\left(i \geq 0\right.$ - In the case $i=0, S_{0}^{1} \times S^{2}$ denotes S^{3}, by convention) where $\underset{i}{ }$ is the number of 1 -handles of \mathscr{H}_{1}, and a connected sum of j copies of $S^{4} \times S^{2}(j \geq 0)$ where j is the number of 3 -handles in ${ }^{7} \boldsymbol{f}_{1}$. The cobordism \bar{M} has then only 2 hand es $\partial \bar{M}=\partial_{+} \bar{M} u \partial_{-} \bar{M}$ where $\partial_{+} \bar{M}=\sum_{j}^{\#} \times S^{2}$ $\partial_{-} \bar{M}=\underset{i}{\#} S^{4} \times S^{2}$.

Conversely given \bar{M} i.e. given only the full 2-handles (a full handle is the cobordism associated to the attaching of the handle) we can recover M uniquely up to homeomorphism:

LEMMA 2.1

For any orientable closed 4 manifold given only the cobordism formed by the full 2-handles we can recover the manifold uniquely up to (orientation preserving) homeomorphism.

Proof.

The union of (0,1) har. 1 les (respect. union of 3,4 handles) is homeomorphic to \# ${ }_{i}^{2} S^{4} \times B^{3}$ (resp. ${ }^{2} S^{2} \times B^{3}$). To prove the lemma it is enough to show that if we i $\quad \partial \quad j \quad \partial$ give $\underset{i}{\stackrel{\partial}{\#}} S^{i} \times B^{3}$ and $\underset{j}{\#} S^{i} \times B^{3}$ back again by two different homeomorphisms on their boundaries we get the same manifold up to homeomorphism. But this follows immediately from the fact that any homeomorphism on $H^{4} \times S^{2}$ extends to a nomeomorphism of $\underset{k}{\frac{\partial}{\#}} S^{1} \times B^{3}$ 。
k

Remark: We will see later that a sort of converse holds.
2. A link picture for M^{4} with a given handle decomposition.
(a) We suppose, w.l.o.g., given an oriented closed 4 manifold M^{4} with a nice handle decomposition \mathscr{H}_{1} with only one \underline{n} and $\underline{4}$ handles.

Suppose given a certain link picture of a $\overline{1}$-connected 4 -manifold with boundary. Components of the framed link represent 2 -spheres corresponding to the second homology classes of the 4 manifold. Surgering the $\mathbf{2 - s p h e r e s}$ corresponding to an unknotted circle with o-framing, corresponds to trading a 2-handle in for a l-handle, hence changing the 4 manifold (but not the boundary). We can then think of representing a l-handle ($\cong S^{4} \times B^{3}$) by putting a dot on such a circle; this means that we first attach a 2 handle with o-framing onto B^{4} along the unknot and get $B^{2} \times S^{2}$, then surger S^{2} from this manifold. (Another way of picturing this is by pushing the interior of the spanning disc D^{2} of
the unknot in S^{3} into B^{4}, and by removing an open tubular neighbourhood of D^{2} from B^{4}. For instance, a connected sum of $S^{4} \times B^{j_{1}}$ can be represented by disjoint unknotted dotted circles in S^{3} (disjoint means separated in S^{3} by embedded 2-spheres), meaning that first we attach 2 -handles along the curves with 0 -framing to get ${ }_{4} S^{2} \times B^{2}$ then we surger the 2 spheres. Clearly we can either surger one at a time or allat the same time as we can always do one surgery so that doesn't affect the others.

Hence, given M, \mathscr{O}_{1}, we consider only the $0,1,2$ handles to get a manifold M_{1} with $\partial M_{1}=\underset{j}{*} S^{1} \times S^{2}$ (which by 1 emma 2.1 determines M uniquely). Then we trade all 1 -handles for 2 -handles and get another 4 -manifold with boundary ∂M_{1}, with the property of being l-connected. Following Kirby, we'Il then have a framed link representation of it where disjoint unknotted circles with 0 -framing will appear. Surger the 2 -spheres corresponding to those unknotted circles trading the handles back again - In the picture put a dot on such circles. Ther we get a "1ink picture" L_{1} of M_{1} and hence of M, associated to the hande decomposition \mathcal{F}_{1}. This link picture determines M uniquely up to homeomorphismby lemma 2.1. Converse is not true: for two different handle decomposition give different link pictures. We call such a link a special framed link. From now on every time we talk about link pictures we mean special framed link pictures. We can also consider the undotted curves as a framed link in $\# S^{1} \times S^{2}$. By a framed link L in a closed 3 manifold M we mean a finite collection of disjoint PL embeddings of $S^{4} \times D^{2}$. Any image of $S^{4} \times\{0\}$ will be called a component of L and the associated image $s \notin x\}, x \neq 0$, a parallel curve. Firamings are determined by the parallel curves. (If $H_{1}(M)=0$ then the parallel curves are determined by linking numbers). Hence, in our case, when having a numbered link this will
tell us how to attach the 2 -handles to S^{3} after trading the 1 -handles into 2-handles and then trading them back again to get the original manifold. In this sense, the effects on framings obtained by Kirby moves on undoted circles are as in 「 15 \%. Otherwise they are determined by the effect on parallel curves.

Also think of the link pictures as either representing the closed 4 -manifold or the boundary of the manifold obtained by removing the 3,4 handles.

We now take a closer look at the trading process which will prove useful later on.
(b) Trading a 1-handl- for a 2-handle in an orientable 4-manifold. Let M^{3} be an oriented 3 -manifold. Remove two disjoint 3 balls from M^{3} and identify the resulting koundaries by an orientation reversing homeomorphism. The resulting manifold M^{\prime} is said to be obtained from M^{3} by adding an orientable 1 -handle or by surgering an S°.

Corresponding to this surgery there is an elementary cobordism W with only one handle:

Form $M \times I$. Instead of removing $S^{0} \times D^{3}$ from $M \times 1$ we glue a 4 ball $D^{4} \times D^{3}$ to $M \times I$. $D^{4} \times D^{3}$ has boundary $S^{0} \times D^{3}{\underset{\partial D}{ }}^{1} \times S^{2}$. We then giue $S^{0} \times D^{3}$ in $\partial\left(D^{4} \times D^{3}\right)$ to $S^{0} \times D^{3}$ in $M \times 1$ to obtain a 4 -manifold W whose boundary is the disjoint union $M \cup M^{\prime}$ where M is identified with $M \times 0$.

We now show how to replace this cobordism by another cobordism between M, M^{\prime} with only a 2-handle :

$$
s^{o} \times\{p\} \subset s^{0} \times s^{2}=\partial\left(s^{0} \times s^{3}\right) \text { bounds an arc } D_{0}^{1} \text { in } M
$$

The arc may wander around in
the 3 -manifold.

The attaching sphere of the 1 -handle $h^{1} . S^{0} \times S^{2}$, can be expressed as the union $S^{0} \times D_{1}^{2} y_{\partial} S^{0} \times D_{2}^{2}$ (see picture)

The cells $D^{1} \times\{p\}$ and D_{0}^{\dagger} joined along their boundaries form a sphere S^{1} in M^{\prime}. By orientability and by the regular neighbourhood theorem, S^{1} has a regular neighbourhood of the form $D^{4} \times D_{1}^{2} u_{\partial} D_{i}^{3}$ where $D^{1} \times D_{1}^{2}$ is a neighbourhood of $D^{4} \times\{p\}$ in $D^{1} \times S^{2}, D_{0}^{3}$ is a neighbourhood of D_{0}^{1} in M-int $\left.\left(S^{0} \times\right)^{3}\right)$.

Now if we perform surgery on the 1 -sphere S^{1}, thus obtained, we recapture M. This is because the associated cobordism W^{\prime} has a 2-handle h^{2} attached by this S^{4} and as h^{2}, h^{4} are then complementary handles, the effect of doing these two surgeries is cancelled, i.e. $W \mathcal{W} W^{\prime}$ is the trivial cobordism $M \times I$.
M^{\prime}

Considering the situation dually, M^{\prime} is obtained from M by a 1 -surgery and W^{\prime} gives a cobordism between M, M^{\prime} with only a 2 hande h_{*}^{2} (the dual hande to h^{2} in W^{\prime}).

The shaded region in the picture can be considered as either the attaching tube of h^{2} or the belt tube of the dual handle h_{*}^{2}.

Thus M^{\prime} is obtained from M by surgery along the curve ∂D_{1}^{2} which is an unknotted circle (with 0 -framing, if $M=S^{3}$).

Note that we have changed the cobordism. We say we have traded a l-handle bv a 2 -handle (represented by that unknotted circle).

For simplicity we consider the case when $M=S^{3}$ and then try to see the effect of trading on the picture of M^{\prime}.

The two balls are to be removed and their boundaries identified by an orientation reversing homeomorphism

We first note that all the curves attaching spheres of the 2-handles that pass through the 1 -handle can be assumed to pierce only D_{1}^{2}. We can also assume that the orientation reversing homeomorphismathat identifies the boundaries of the balls maps D_{1}^{2} to D_{1}^{2} (for instance, the reflection through the equatorial plane of $\mathrm{D}^{3}-$ see picture).

Then when replacing this 1 -handle by a 2 -handle the curves that pass through the handle are completed along the path D_{0}^{1} and ringed by a small curve labelled 0.

A homomorphism between $M^{+}=M^{-} U^{4} U^{2}{ }^{2}$ and M^{-}is obtained by shelling first h^{4} frotn $D^{4} \times D_{2}^{2}$ (D^{4} core of 1 -handle) to $D^{4} \times D_{1}^{2}$ and then shelling h^{2} onto $\mathrm{D}_{0}^{4} \times \mathrm{D}_{1}^{2}$. (See pictures.)

Choice of arc D_{0}^{1} determines the trading but, no matter which choice, the end result is always the same as we can suppose that D_{0}^{1} doesn't have little knots and is unlinked from other curves attaching spheres of 2-handles by sliding around $i^{t} \mid \times S^{2} \subset S^{0} \times S^{2}$ (this is in fact the reason why sliding over an unknotted curve labelled 0 removes the 1 inking and knotting as any such curve introduces a 2-sphered.

Also by band moves using the circle labelled $\underline{0}$ introduced we unknot and unlink the other curves to get the following pictures

Remark : for the general case when $M \neq S^{3}$ see「5 7. The proof is essentially the same : only for the unknotting a certain curve has to represent 0 in π_{1})
(c) l-handle slides and slides of dotted curves.

We have seen, so far, how a 1-handle can be represented by a dotted curve coming from the belt sphere of a complementary 2-handle. We now try to see the effect of a l-handle slide on the dotted curves and we will show that a l-handle slide corresponds to a slide of the dotted circles in the opposite direction with a change of sign.
(c_{1}) First we see that a l-handle slide in two complementary pairs has the
same effect as a 2 -handle slide.
[A -handle with a cancelling 2-handle can pictured as in the following picture:
the 2-balls are to be removed and
 their boundaries identified. The arc D becomes a circle, attaching sphere of the 2-handle.

Of course, this is a simplified picture, the arc D may wander around and have little knots. The same comment for the pictures that follow. However, as this doen't affect the proof we picture the simpliest case.J.

Proof. (of [5])

1 -hanalle slide

$\left(c_{2}\right)$ Next we see how the dual circles of the 2-handles are slid in the opposite direction.

If the 2-handle is represented by its attaching sphere a the dual circle a*, the attaching sphere of the dual handle, (i.e. our dotted curve) is represented by a simple curve a* linking a only once

Then the effect of the slide on the dual circles can be pictured as follows.

(...) means image of (...) after the slide.
(c_{3}) Another picture of what happens without considering the complementary 2-handles in the following:
I.

II.

II.

IV.

Remark : as the dimensions are wrong, pictures can be misleading. It
actually shows the slices of the disc bounded by the dotted circle.
(d) Link pictures and presentations of the fundamental group.

Given a link picture of a 4 manifold M^{4} we can then read off from the link
a presentation for $\pi_{1}\left(M^{4}\right)$ as follows:

Orient the curves of the link. Each l-handle gives a generator which can be represented by an oriented unknotted circle linking the dotted circle once

Attaching spheres of the 2 -handles determine the relations. They can be read off from the picture ar suggested below:

Tietze moves and handle moves.

Given two finite presentations of a group it is known that by a sequence of moves - the Tietze moves - one can pass from one presentation to the other.

Tietze moves are the following:
(I) add a generator and a relation which expresses that generator as a word in other generators
(I) ' inverse
(II) add a relation which is a consequence of other relations
(II)' inverse.

Some of these moves can be done by handle moves. However, cancellation is not always possible as the following counter-example shows:

I

II

Picture I represents the Mazur Manifold M. M is contractible and $\left\{a: a^{2} a^{-1}=1\right\}$ is a fresentation for π_{1} (Here we have the link pictures representing manifolds with boundary). Picture II is a link picture for Lhe 4-ball B^{4}. A presentation for $\pi_{1}\left(B^{4}\right)$ is given by \{a: $\left.a=1\right\}$. If it were possible to pass from one representation to the other by handle moves this would lead to $M^{4} \subseteq B^{4}$ which is false $\left(\pi_{1}\left(\partial M^{4}\right) \notin 0\right)$.

Remarks : Cancellation can be done when homotopy implies isotopy.

Move II can be done by introducing a complementary (2,3) pair and then sliding the 2 -handle over other 2 -handles till we get the relation - this is possible since the new relation is a consequence of the other relations of the presentation.

Move I replaces a presentation $(x ; r)$ by ($x, y ; r, y w(x)^{-1}$) where y is a generator not in x (x denotes the generators, r the relations) expressible as a word $w(x)$ in the generators x. It can be done by handle moves in the link pictures as follows:
(a) Introduce a complementary (1,2) pair. This changes ($x ; r$) to ($x, y: r, y$).

1 can be assumed to be in a 1 -connected part, hence can be numbered otherwise take

(b) Slide the new 1 -handle over the other 1 -handles according to the word m . In the picture dotted circles slide in the opposite directions and with a change of sign
egg. if $y=x_{1} x_{2}$

2 . Slich over x_{2}

3. Relation between the links pictures given by two handle decompositions.

We have so far, associated a link picture to M^{4} for a given handle decomposition. The next natural question is to ask if there is any relation between the links pictures associated with two different handle decompositions.

Let, then δ_{2} be another nice handle decomposition which as before has only one 0,4 -handles and L_{2} the associated link picture.

We now define an equivalence relation on the link pictures associated to a manifold M generated by the following Γ - moves:
(a) Trivial slides of the dotted curves over the dotted curves, i.e. slides of this type

(b) Slides of undotted curves over dotted curves
(c) Slides of undotted curves over undotted curves
(d) Introducing or deleting
(e) Introducing or deleting

 this appears)
(f) Isotopies of the link picture in \mathbf{s}^{3}.
(d) Link pictures and presentations of the fundamental group.

Given a link picture of a 4 manifold M^{4} we can then read off from the link

- presentation for $\pi_{f}\left(M^{4}\right)$ as follow:

Orient the curves of the link. Each handle gives a generator which cen be represented by an oriented unknot ed circle linking the doted circle once

Attaching spheres of the 2 -handles determine the relations. They can be read off from the picture egested below:

Tietze moves and handle moves.

Given two finite presentations of a group it is known that by a sequence of moves - the Tietze moves - one can pass from one presentation to the other.

Tietze moves are the following:
(I) add a generator and a relation which expresses that generator as a word in other generators
(I)' inverse
(II) add a relation which is a consequence of other relations
(II)' inverse.

Some of these moves can be done by handle moves. However, cancellation is not always possible as the following counter-example shows:

I

III

Picture I represents the Mazur Manifold M. M is contractible and $\left\{a: a^{2} a^{-1}=1\right\}$ is a fresentation for π_{1} (Here we have the link pictures representing manifolds with boundary). Picture II is a link picture for the 4 -ball B^{4}. A presentation for $\pi_{1}\left(B^{4}\right)$ is given by $\{a: a=1\}$. If it were possible to pass from one representation to the other by hande moves this would lead to $M^{4} \subseteq B^{4}$ which is false $\left(\pi_{1}\left(\partial M^{4}\right) \neq 0\right)$.

Remarks : Cancellation can be done when homotopy implies isotopy.

Move II can be done by introducing a complementary (2,3) pair and then sliding the 2 -handle over other 2 -handles till we get the relation - this is possible since the new relation is a consequence of the other relations of the presentation.

Move I replaces a presentation $(x ; r)$ by $\left(x, y ; r, y w(x)^{-1}\right.$) where y is a generator not in x (x denotes the generators, r the relations) expressible as a word $w(x)$ in the generators x. It can be done by handle moves in the link pictures as follows:
(a) Introduce a complementary (1,2) pair. This changes ($x ; r$) to ($x, y: r, y$).

1 can be assumed to be in a l-connected part, hence can be numbered otherwise take \rightarrow parallcl curve).
(b) Slide the new 1 -handle over the other 1 -handles according to the word m. In the picture dotted circles slide in the opposite directions and with a change of sign
e.g. if $y=x_{1} x_{2}$

2. Slich over x_{2}

3. Relation between the links pictures given by two handle decompositions.

We have so far, associated a link picture to M^{4} for a given handle decomposition. The next natural question is to ask if there is any relation between the links pictures associated with two different handle decompositions.

Let, then K_{2} be another nice handle decomposition which as before has only one 0,4 -handles and L_{2} the associated link picture.

We now define an equivalence relation on the link pictures associated to a manifold M generated by the following Γ - moves:
(a) Trivial slides of the dotted curves over the dotted curves,

> i.e. slides of tris type

(b) Slides of undotted curves over dotted curves
(c) Slides of undotted curves over undotted curves
(d) Introducing or deleting

(e) Introducing or deleting

(same comment whenever this appears)
(f) Isotopies of the $1 i n k$ picture in S^{3}.

Moves (a-e) correspond, respectively, to l-handle slides (in the opposite direction), isotopy of the attaching sphere of the 2-handle (dotted curves bound discs), 2-handle slides, introducing or cancelling (1,2) complementary pairs and introducing or cancelling complementary (2,3) pairs. Move (f) corresponds to an isotopy of the attaching curves of the handles. (Note move (c) is a particular case of (f)). Thus wereof them changes the (orientation preserving)homeomorph1sm dlass of. M.

If two link pictures are related by Γ-moves we say they are Γ-equivalent. We now show that L_{1}, L_{2} are Γ-equivalent:
(a) First we will see that at the expenses of some handle moves any bomeomorphism $h: M \longrightarrow M$, up to isotopy, preserves the 3 and 4 •handles.

By the disc theorem, we can assume that the 4 -handle in \mathscr{f}_{1} goes to the 4 handle in P_{2}. ConsiJering then the dual decompositions, 3,2 handles give a presentation for π_{1}. Let $\left\{x_{1} \ldots x_{n} ; r\right\}\left\{y_{1} \ldots y_{q} ;\right.$ s\} be the

 pairs and sliding handles) so that the new presentation has generators $x_{1} \ldots x_{n}, y_{1} \ldots y_{q}$, Similarly as $x_{i}=w_{i}^{\prime}(y)$ we change \forall_{2} so as to get a new presentation with generators $y_{1} \ldots y_{q}, x_{1} \ldots x_{n}$ (Relations can be different 1).

We denote still by L_{1}, L_{2} the new link pictures, \mathcal{G}_{1}, H_{2}, the new handlebody

Let $F_{i}, i=1,2$, be the union of the 4,3 handles. Both $F_{1} F_{2}$ are homeomorphic to the same connected sum (along the boundary) of $\mathrm{s}^{1} \times \mathrm{B}^{3} \cdot \mathrm{~s}$, but the way this connected sum is embedded in M might be different. However, there is no problem, in our case, as we have already made sure that the 3 handles give (by reading off in the dual decomposition) the same elements of π_{1}, and as in dimension 4, homotopy implies"(ambient) isotopy, there is an ambient isotopy of M which carries the cocore of the 3 handles in " ${ }_{1}$ to the cocore of the 3 handles in \mathbb{X}_{2}. Then by the regular neighbourhood theorem there is also an ambient isotopy of M which carries F_{1} onto F_{2} as required. Thus we can assume h pressrves the 4,3 handles.

$$
\text { Then } \overline{M-F}_{1} \underset{h_{l}}{\cong} \overline{M-F}_{2}
$$

(b) Let $W_{i}=\overline{M-F}_{i} \quad i=1,2$ and let $W \cong W_{i}, i=1,2$.
W_{1}, W_{2} give two handle decompositions of W with associated link pictures L_{1}, L_{2}. Using the basic -sarting theorem of Cerf theory 「31 3 (transfer to the smooth category and use transversality), we can assume that the two handle decompositions are related by a sequence of the following moves:
(1) Births and deaths of complementary handle pairs.
(2) Handle slides.

We note the following :
(i) As the two handle decompositions have only $0,1,2$ handles we will have to introduce and cancel the same number of $(2,3)$ and $(3,4)$ complementary pairs.
(ii) We can assume all the births take place first all the deaths last move (f).
(iii) We can eliminate 0 -handles (and dually 4-handles) at the expenses of some 1 (resp.3) handle slides (move (a)). So we are reduced to:
(1) Introducing and cancelling complementary (1,2) and (2,3) pairs.

In the link picture ; introduce or cancel

(2) 2-handle slides - these correspond to slides of undotted curves - move (c)
(3) I handle slides - move (a)
(4) 3 handle slides - we don't see them in the link picture and by remark (i) all 3 handes disappear in the end.
i.e. L_{1}, L_{2} are equivalent by Γ-moves.
(Recall we are always working up to-isotopy hence move(b) is allowed).

As Tietze move I can be done by Γ-moves (e) and slidings of 3 -handles don't affect the link picture we have proved the following :

THEOREM 2.1

Orientation preserving homeomorphism classes of oriented closed 4-manifolds correspond bijectively to equivalence classes of "special framed links" in s^{3}, where ${ }^{\text {Thequivalence }}$ class is generated by $\bar{\Gamma}$-moves.
4. Stable equivalence and link pictures.

We now "stabilise" our result by allowing connected summing with $\mathrm{S}^{2} \times \mathrm{s}^{2}$ or $\mathrm{S}^{2} \times \mathrm{S}^{2}$.

The stable equivalence relation on the special framed link pictures is then generated by Γ-moves and by introducing or deleting
 (corresponding, resp. to connected summing with $\mathrm{S}^{2} \times \mathrm{S}^{2}$ or $\mathrm{S}^{2} \times \mathrm{S}^{2}$). If two link pictures are in the same class we will say that they are Γ_{s}-equivalent. Hence we have :

THEOREM 2.2

Orientation preserving stable homeomorohismclasses of oriented closed
4-manifolds correspond bijectively to Γ_{s}-equivalence classes of special
framed links in \mathbf{s}^{3}.

In particular, if π is the fundamental group of an oriented closed 4 -manifold certain Γ_{s}-equivalence classes of special framed links in S^{3} are in $1-1$ correspondence with the elements of $\Omega_{4}(\pi)$.

The non-orientable case
Let M^{4} be a non-orientable closed 4 -manifold, H_{1} a nice handle decomposition of it with only one 0,4 handles. As in the orientable case as any homeomorphism of $\underset{k}{\#} s^{4} \times s^{2} \underset{j}{\#} s^{4} \times s^{2}$ extends, the cobordism formed by the full 2 -handles determines the manifold uniquely up to homeomorphism.

We would like to associate, as in the orientable case, a special framed link picture to (M^{4}, X_{1}) and then define an equivalence class on such pictures so that homeomorphismclasses of non-orientable manifolds are in l-1 correspondence with such equivalence classes.

The main problem is that unlike the orientable case, we cannot trade a non-orientable l-handle for a'2-handle (recall that in the orientable case this fact was used to represent a l-handle by an unknotted dotted curve). However, we will show that a "certain similarity" between the two cases will enable us to choose an "unknotted curve" to "represent" non-orientable 1 handlef.

Once we have the link pictures for a certain handle decomposition we relate the pictures given by two different handle decompositions. As in the orientable case (proof is the same) we can assume that the 3 and 4 -handles are embedded in the same way and thus we only have to interpret on the pictures the moves that relate the decomp sitions : slides and births and deaths of complementary pairs.

Finally we will consider the stable case.

1. Representing the non-orientable 1-handles.

We first note that we cannot trade a non-orientable 1-handle into a 2 -handle as $S^{4}=D^{4} \times(p t) \underset{\partial}{u} D_{0}^{4}$ (cf notation of orientable case) is a non-orientable curve and so it cannot be the attaching sphere of a 2-handle.

But we still can assume that D_{0}^{1} doesn't have little knots in it and that two handles do not link our S^{4} by sliding around one of the ends of the handlef.

Think of attaching a non-orientable l-handle to a manifold as removing two 3-balls from it and identifying their boundaries along an orientation preserving map (e.g. the identity).

Consider a meridian and let $\mathrm{D}_{1}^{2}, \mathrm{D}_{2}^{2}$ be the 2-discs into which it divides s^{2}. Clearly we can assume that all the curves attaching spheres of the 2-handles that pass through the handle pierce only one of the discs, D_{1}, say.
vai and thear beundarues
-donity ferd by an reantation proserviro
We can therefore think of replacing picture I by the following:

Picture II

(a_{1}) As any curve attaching sphere of a 2-handle passing between the two ends of the l-handle can be unlinked from other curves, as already mentioned, we allow trivial slides over the double dotted curve to unlink and unknot things (trivial types of slides with no effect on the framings). Move (a_{1}) is therefore

$$
\begin{aligned}
& \text {-any } 2 \text { handle can slide over without alteration } \\
& \text { of framing. (as it corresponds to an isotopy of attaching curve): }
\end{aligned}
$$

$\left(\mathrm{a}_{2}\right)$ As we pass through the 1 handle the space twists : a left hand twist in one side becomes a right hand twist in the other and vice versa.

i.e. these two pictures are equivalent.

The bent way to vinulise this is to coneider the disc D bounded by the dotted curve ; then as we pans through the disc from ane aide to another the epace twiate.
2. A spocial t-framed link picture for a non-orientable closed 4-manifold and a relation between any two soch link pictures.

Given M^{4} non-cFicotable oloned 4-manifold vith a nioe hande decomposition
Te represent orientable 1-handles and 2-handles as in the orientable came (no differenoe in the argumente). Ion-orientable 1-handles are represemted
as just described with conventions $\left(a_{1}\right),\left(a_{2}\right)$. We then have what we call a "special t-framed link" (t is for twisted). Framings on the undotted curves are given by parallel curves. As in the orientable case we only need to represent 1,2 handles in the 1 ink picture, and also we can assume that the link pictures of two different handle decompositions are related by slides of $1,2,3$ handles and introducing and cancelling complementary (1,2) or $(2,3)$ pairs.
(i) 1-handle slides.

Whenever a 1 -handle slides over a non-orientable hardle it becomes either orientable or non-orientable if it was respectively non-orientable or orientable before the slide. We claim that again, l-handle slides correspond to slides of the dotted and double dotted circles in the opposite direction. To see this look at (c_{3}) (cf orientable case) where it was shown that the dotted circles slide in opposite direction without using the complementary handles (which we cannot use for the non-orientable handles since they do not exist). Same proof works for non-orientable handles.

Thus l-handle slides can be pictured as follows:

(ii) 2-handle slides and isotopies of attaching curves.

2-handle slides are the same as in the orientable case and as already said any 2 handle can slide over
 or
 with no alteration on framings (effects of slides on framings are determined by parallel curves.)
(iii) 3-handle slides - again we don't see them in the pictures.
(iv) Introducing or deleting complementary (1,2) pairs - in the picture : introducing or deleting

(v) Introducing or deleting complementary (2,3) pairs - in the picture : introducing or deleting

Call C_{t}-moves the Γ-moves together with $a_{1}-a_{6}$ but with move (f) replan ced by isotopies of the link picture sabject to (a_{2}) . Γ_{t}-mover generete an equivalence relation in special frased t-link pictures and as none of then changee the homeomorphiam claas of the manifold,from the above we get: THEOREM 2.3.

Homeomorphian classes of non-orientable 4 -manifolds are in $1-1$ correspondence with equivalence classes of special framed t-link pictures in s^{3} where the equivalence class is generated by Γ_{t} moves.

3. The stable case

Again, as in the orientsble case, if we allow introducing or deleting
or 22 and define Γ_{t}^{S} moves to be Γ_{t} moves plus these we get:

THEOREM 2.4

Stable momeonorphimeclasses of non-orientable closed 4-manifolds are in
1-1 correspondence with $\Gamma_{t}^{\text {S }}$-aquivalence classes of special framed t-link pictures in s^{3}.

REFERENCES

[1] ALEXANDER, "On the deformation of an n-cell," Proc. Nat. Acad. Sci. (USA) 9, (1923), 406-407
[2] S.E. CAPPEILL and J.L. SHANESON, "On 4-dimensional surgery and applications," Comm. Math. Helv. 46 (1971), 500-528
.. CERF, "La stratification naturelle des espaces de fonctions differentiables reelles et le théorème de la pseudo-isotopie", Publ. Math. I.H.F.S. 39 (1970)
[4] E. CÉSAR de SÁ', " 3 manifolds as numbered links", MsC dissertation, Warwick University (1975)
R. FENN and C.P. ROURKF, "On Kirby's Calculus of Links" (to appear)
D.I. FUCHS and RABINOVITCH, "On the Automorphism Group of Free Products I", Math. Shomik 50 (NS8) (1940), 265-276
D.I. FUCHS and RAbINOVITCH, "On the Automorphism group of Free Products II", Math. Sbornik 9 (1941), 183-220
H. GLUCK, "The Embeddings of 2-spheres in the 4-sphere", Trans. Am. Math. Soc. 104 (1962), 308-333
A. haEflicer and v. puenaru, "La classification des immersions combinatoires '", Publ. I.N.E.S. 23 (1964), 75-91.
[10] A. HATCHFR, "Homeomorphisms of sufficiently large P^{2}-irreducible 3 manifolds", Topology $15 \mathrm{~m}^{8} 4$. (1976), 343-348.
J. HEMPEL, "3-Manifolds", Annals of Math. Studies 86, Princeton (1976)
h. henmarks, "Applications de la théorie d'obstruction en dimension 3, C.R. Acad. Sci. Paris, t.276, série A. (1973), 1101-il04.
[13] J. HIDSON, "Extending Piecewise Linear Isotopies". Proc. London Math. Soc. (3) 16 (1966) 651-663.
[14] J. HUDSON and F.C. ZEEMAN, "On Combinatorial Isotopy" Pub. I.H.E.S. 19 (1964), 69-94
[15] R. KIRBY, "A Calculus for Framed Links" (to appear)

「161 H. KNFSER, "Geschlossen Flachen in dreidimensionalen Mannifaltigkeiten", Jahresbericht der Deutschen Mathematiker Vereimigung, 38 (1929), 248-260
[17] F. LAUDENBACH, "Topologie de la dimension trois : homotopie et isotopie" Asterisque 12, Soc. Math de France
[18] J. MILNOR, "A unique decomposition theorem for 3-manifolds", Amer. J. Math. 84 (1962), 1-7.
[19] J. MILNOR, "Microbundles - Part I", Topology 3 suppl. (1964) 53-80
[20] J. NIELSFN, "Die Isomorphismengruppe der frein Gruppen", Math Axn. 91 (1924)

- [21] C.P. ROURKF. and R.J. SANDERSON, "Introduction to Piecewise Linear Topology", Springer-Verlag 69 (1972)
[22] G.P. SCOTT, "Some problems in Topology", Ph.D Thesis, Warwick University (1969)
C.T.C. WALL", On simply connected 4-manifolds, Journal London Math. Soc. 39 (1964), 141-149
[24] C.T.C. WALL, "Diffeomorphisms of 4-manifolds" Journal London Mnth. Soc. 39 (1964), 131-140

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

[^0]: Caser to conaider

[^1]: Another proof can be found in 「24 7.

