A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/137416

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

THE MOD 2 COHOMOLOGY OF THE ORTHOGONAL GROUPS OVER A FINITE FIELD.
by Corraão de Concini

Introduction.

The purpose of this paper is to generalize the results of Quillen [8] about the cohomology of (the classifying space of) the general linear groups over a finite field to the orthogonal case.

In the whole paper we will restrict ourselves to the study of the cohomology with mod 2 coefficients of (the classifying space of) the orthogonal groups.

We give a complete computation of $\mathrm{H}\left(\mathrm{BO}_{n}(k), Z_{2}\right)$ in the case of split orthogonal groups when k has $q=4 m+1$ elements (Theorem56).

The computation of the mod p cohomology with p odd and different from the characteristic of k, is basically simpler. It had been announced by Quillen in his Nice talk [6], as a consequence of his study of the etale homotopy types of algebraic varietes. He also announced partial results for the mod 2 case. The details have never appeared. The proof that we give here for the mod 2 case applies, with no essential modifications, essentialy by substituting the stiefelWitney classes with the mod p Pontrjagin classes.

The proof that we give follows the general lines of the one given by Quillen for the general linear cased There are in our case some obstacles which did not appear in Quillen's proof, expecially depending by the fact that for a finite group the firgt KO-thecry group
$K O^{1}(B G)$ is not necessarely zero.
This problem does not arise in mod p computations when p is odd, therefore making the computation in this case considerably simpler.

We now give a summary of parts of the paper. In paragraph 1 we define the space $\widetilde{F O} \Psi^{q}$ which is the real analogue of Quillen's $F \Psi$. To construct $\widetilde{F O} \Psi^{4}$ first of all we mimic Quillen and build a space FOY which turns out to be unsuitable for our computations. Therefore we have to change it with $\tilde{F O} \Psi^{9}$, essentialy one of its connected components.

In paragraph 2 we give a rough computation of the cohomology of $\widetilde{F O} \psi^{9}$.

Paragraph 3 deals with a well known technical Lemma.
Paragraph 4 treats the Brauer lifting of orthogonal representation of a finite group over the algebraic closure of k. We show that the Brauer lifting of an orthogonal representation obtained by extension of scalars from an orthogonal representation over k, is left fixed by the action of the Adams operation $\Psi 9$, allowing us to associate to such a representation an element in $\left[B G, \widetilde{F O} Y^{4}\right]$. This is applied to the standard representation of $\theta_{n}(k)$.
 wich will be fundamental in the subsequent computations. Unfortunately their definition depends on the choise of a certain element in $\left[B O(k), \widetilde{F O} \Psi^{4}\right]$ where $O(k)=V_{n} O_{n}(k)$.

In paragraph 6 we consider the u_{i} 's relative to a particular choice and we compute a multiplicative formula for them.

In paragraph 7 we give a complete computation of $H^{*}\left(\widetilde{F O} Y^{4} Z_{2}\right)$ as an algebra.

In paragraph 8 we give an explicit base for $H_{*}\left(\widetilde{F O} Y^{4}, Z_{2}\right)$ and for $\left.\underset{r}{\oplus}{ }_{0} H^{(B)}(k), Z_{2}\right)$, which allows us to show that $H^{*}\left(\widetilde{F} O \Psi^{\natural}, Z_{2}\right)$ constitutes an upper bound for $\mathrm{H}^{*}\left(\mathrm{BO}_{\mathrm{n}}(\mathrm{k})\right.$) in the sense of the introduction of [8]. This together with the fact that $\mathrm{H}^{*}\left(\mathrm{BO}_{2}(k) \times \ldots \times \mathrm{BO}_{2}(k) \times\right.$ $x \mathrm{BZ}_{2}^{\mathrm{e}}, \mathrm{Z}_{2}$) constittes a lower bound for m-times $H^{*}\left(B O_{n}(k), Z_{2}\right)(n=2 m+e(\theta=0,1))$ gives us the total computation of the mod 2 cohomology algebra of (the classifying space of) $O_{n}(k)$.

I wish to express my, thanks to my supervisor G. Lusztig for his constant help and encouragement during my work on this paper; and my admiration to D.Quillen who first studied the cohomology of the classical groups over finite fields by using this methods.

I finally wish to thank C.N.R. for financially supporting me during the course of this research.

By the word space we mean a topological space with the homotopy type of a CW-complex.

Let $B O$ be a classifying space, for example the infinite real grasmanians, for the functor $\widetilde{K O}$ defined on compact spaces, i.e. $\widetilde{K O}(X)=[X, B \bar{O}] \quad$ for X compact.

Let $N\left((\widetilde{K O})^{n}, \widetilde{K O}\right)$ denote the set of natural tran-

We have:
Lemma 1. $N\left((\widetilde{K O})^{n}, \widetilde{K O}\right) \simeq\left[B O^{n}, B O\right]$
Proof. If we take the Grasmanian model, then $(B O)^{n}=\frac{\lim }{m, s}\left(G_{m, s}\right)^{n}$, where $G_{m, s}$ denotes the real
Grasmanian of m-dimensional subspaces of a vector space of dimension $m+s$.

Then, if we consider the Milnor exact sequence
 where $R^{\frac{4}{4}}$ denotes the first derived functor of $\underset{\leftarrow}{\rightleftarrows}$, we must have in order to prove the lemma $R^{1} \underset{m, 8}{\lim \mathrm{KO}^{-1}}\left(\left(G_{m, B}\right)^{\mathrm{n}}\right)=$ $=0$.

Now the real completion theorem [2] implies that the inverse system $K O^{-1}\left(\left(G_{m, s}\right)^{n}\right.$ is isomorphic as a pro-object to the inverse system
 real (resp.complex) representation ring of G and $I(G)$ denotes the real augmentation ideal in $R O(G)$.

It follows that, if we fix m, the inverse system $K O^{-1}\left(\left(G_{m, s}\right)^{n}\right)$ satisfies the Mittag-Leffler condition.

If we make m vary, we notice that it follows from the representation theory of $O_{m},[1]$, that, if m is odd, the restriction map $R O\left(\left(O_{h}\right)^{n}\right) \longrightarrow R O\left(\left(O_{m}\right)^{n}\right)$, for $h \geqslant m$, is onto and this easily implies that the whole system $K O^{-1}\left(\left(G_{m, s}\right)^{n}\right)$ satisfies the Mittag-Leffler condition, which implies, [2],

$$
R^{1} \underset{m, B}{\lim _{m, B}} K O^{-1}\left(\left(G_{m, s}\right)^{n}\right)=0
$$

thus proving the lemma.

Now let q be an odd integer and let

$$
\bar{\square}: \mathrm{BO} \longrightarrow \mathrm{BO}
$$

represent the adams operation ψ^{9} in $\widetilde{K O}$.
We define the homotopy theoretical fixpoint set of $\psi^{\prime 9}$ as the fibre product

where Δ is the map which sends each path to its endpoints.

We want to define a slightly different space from FO ψ^{4} which will be more useful for our purposes.

It is well known that $H^{*}\left(B O, Z_{2}\right) \cong Z_{2}\left[W_{1}, w_{2}, \ldots \ldots\right]$ where the $W_{i}{ }^{\prime \prime} s$ are the universal Stiefel-Witney classes and do, li Kunneth formula we have,

where p_{1} (resp. p_{2}) denote the projection onto the first (resp. the second) factor.

Now let us define B to be the total space of the double covering of BO X BO associated to the element $w_{1}^{\prime}+w_{1}^{n} \in H^{1}\left(B O \times B O, z_{2}\right)$.

We have:

Proposition 1 1.

$$
H^{*}\left(B, z_{2}\right) \cong H^{*}\left(B O X B O, Z_{2}\right)
$$

$$
\frac{\left.z_{2}\right)}{\left(w_{1}^{\prime}+w_{1}^{n}\right)}
$$

Proof. It is clear that the Sere spectral sequence $\left\{E_{r}\right\}$ associated to the libration

collapses at the term E_{2} because the map $G^{*}: H^{*}\left(B, Z_{2}\right) \longrightarrow$ $\longrightarrow \mathrm{H}^{*}\left(\mathrm{BSO} \times \mathrm{BSO}, Z_{2}\right)$ is onto, since the map $\left(\mathrm{I}_{\mathrm{g}}\right)^{*}: \mathrm{H}^{*}\left(\mathrm{BO} \mathrm{X} \mathrm{BO}, \mathrm{Z}_{2}\right) \longrightarrow \mathrm{H}^{*}$ (SO X BOO, Z_{2}) associated to the fibration

where f is the double covering $f: B \longrightarrow B O X B O$, is known to be onto.

So we have that $\mathrm{E}_{\infty} \cong \mathrm{H}_{1}^{*}$ (SO X SO, 2_{2}) $\mathrm{b} Z_{2}[\omega]$, and now the proposition follows from the fact that the map
$d: H^{*}\left(\operatorname{BSC} X B S O, Z_{2}\right) \longrightarrow H^{*}\left(B, Z_{2}\right)$
defined by $d\left((f g)^{*}\left(w_{i}^{\prime(m)}\right)\right)=f^{*}\left(w_{i}^{\prime(m)}\right)$ for $i \geqslant 2$ provides a right inverse for \mathbf{g}^{*} and from [3] . q.e.d.

Now consider the map $\mathrm{BO} \underset{(\sigma, i d)}{\xrightarrow{(\sigma)}} \mathrm{BO}^{2}$. Since q is odd,
we have that 5^{*} is equal to the identity in mod. 2 cohomology, so, we have $(6, i d)^{*}\left(w_{1}^{\prime}+w_{1}^{n}\right)=0$.

This implies that there exists ($\sigma, i d$)'s BO
such that the following diagram

commutes.
Now let us consider the maps $\mathrm{BO} X \mathrm{BO} \longrightarrow \mathrm{C}$ representing the difference operation in $\widetilde{K O}$. Fixing a base point $b \in B O$, we can define d, using the homotopy extension theorem, in such a way that $d(x, x)=b$ and $d(x, b)=d(b, x)=x, \forall x \in B O$.

If we define $m: B O^{I} \longrightarrow \mathrm{BO}^{I} X{ }_{B O}\{b\}$ to be the map wich sends the path p to the path $t \longrightarrow(p(t), p(1))$ which joins $d \Delta(p)=d(p(0), p(1))$ to the base point, we get a diagram

which is commutative and in which all the vertical lines are fibrations with the same fiber Ω BO. So BO^{I} is
homotopy equivalent to $\left(\mathrm{BO}^{I} \mathrm{X}{ }_{\mathrm{BO}}\{\mathrm{b}\}\right) \mathbb{X}_{\mathrm{BO}}(\mathrm{BO} \mathbb{X} \mathrm{BO})$, and we identify $B O^{I}$ with this space.

Now let us consider the universal double covering of BO

We have that, since the map $d \Delta$ is nullhomotopic, $(d \Delta)^{*}\left(w_{1}\right)=0$, this means $d^{*}\left(w_{1}\right) \in$ Ker $\Delta^{*}=\left\{0, w_{1}^{\prime}+w_{1}^{n}\right\}$ since Δ is homotopic to the diagonal.

So $(\mathrm{d} f)^{*}\left(w_{1}\right)=0$ and so there exists a^{\prime} such that the following diagram

commutes.
Now consider the fibre product

where b^{\prime} is chosen such that $k\left(b^{\prime}\right)=b$.

Proposition 2. Z is homotopy equivalent to BO^{I}
Proof. If we consider the two diagrams

and

using k and $d '$ we can easily define a map from the first to the second, so a map $a: Z \longrightarrow B O^{I}$ is defined.

NOW since the map $B O I \xrightarrow{\triangle} B O X B O$ is homotopic to the diagonal, it clearly lifts to a map $B O \xrightarrow{\Delta^{\prime}} B$. In order to have a map $\mathrm{f}: \mathrm{BO} \mathrm{I}^{\text {I_—BSO }} \mathrm{X}_{\mathrm{BSO}}\left\{\mathrm{b}^{\prime}\right\}$ such that the diagram

commutes, we have to prove that, $d^{\prime} \Delta$ ' is nullhomotopic. But now let us choose an homotopy preserving the base points

$$
\mathrm{BO}^{\mathrm{I}} \mathrm{XI} \xrightarrow[\mathrm{H}]{ } \mathrm{BO}
$$

between $d \Delta$ and the constant map.
The obstriction for lifting such a homotopy to a homotopy between d ' Δ ' and the constant map lies in
$H^{1}\left(B O^{I} \times I, B O^{I} X\{O\} \cup B O^{I} X\{q\} \cup\{b\} X I, z_{2}\right) \cong H^{O}\left(B O^{I}, b, z_{2}\right)=0$
So d' ' is homotopic to the constant map and we can lift it to $\mathrm{BSO}^{I} \mathrm{X}_{\mathrm{BSO}}\{b\}$, thus proving the existence of f and getting a map $\tau: B O \xrightarrow{\bar{I}} Z$.

Now it is clear that ac: $\mathrm{BO}^{\mathrm{I}} \longrightarrow \mathrm{Z} \longrightarrow \mathrm{B}$ ס is equal to the identity of $B O^{I}$. Viceversa, for $\tau a: 2 \longrightarrow \mathrm{BO}^{\mathrm{I}} \longrightarrow \mathrm{Z}$, we get $\Delta{ }^{\prime} \tau \mathrm{a} \sim \Delta$ ' by a homotopy T because both are liftings of the same map $h^{2} \Delta^{\prime}$ and, reasoning as before, we have that the obstruction for these maps to be homotopic lies in
$H^{1}(Z X I, Z X\{0\} U Z X\{1\} U\{b a\} X)=0$
where $b^{\prime \prime} \in Z$ is a base-point and all the maps are chosen to be basepoint preserving.

Again if \bar{T} is the homotopy $d^{\prime} T$ then \bar{T} is clearly nullhomotopic as a map $\overline{\mathrm{T}}: 2 \times \mathrm{Z} \longrightarrow \mathrm{BSO}$ so it lifts to $a \bar{T}^{\prime}: Z X I \longrightarrow B X_{B S O} I\{b\}$.

It follows that, using the homotopy extension theorem, we can define $\overline{\mathrm{T}}$ ' in such a way that $\overline{\mathrm{T}} 1 / Z \mathrm{X}\left\{O_{\}} \mathrm{b} \tau\right.$ a and $\bar{T} 1 / Z X\{T\}=$ b. This implies that using the universal properties of fibre producd we c'an define a homotopy $\hat{T}: Z X I \longrightarrow Z$ such that $\hat{\mathbb{T}} / Z X\{0\}=a$ and $\hat{\mathbb{T}} / Z X\{1\}=i d$, thus proving the proposition.
q.e.d.

Note. By abuse of language let us identify, from now on, BOI with Z and, since clearly Δ^{\prime} a $\sim \Delta$ " we also identify Δ^{\prime} with the fibration Δ '。

Definition. FOY ${ }^{9}$ is the fibre product

By Lemma 1 it is clear that we can extend the definition of $\Psi 9$ to the groups $[Y, B 0]$, where Y denotes any space.

Now let Y be a connected space and let $y \in[Y, B O]$ an element such that $Y^{9}(y)=y \quad$ and let $s: Y \longrightarrow B O$ be a map representing y. Choose a basepoint $z \in Y$ such that $g(z)=b$, then have that the map

$$
\mathrm{Y} \longrightarrow \mathrm{BO} \xrightarrow[(\sigma, i d)]{ } \mathrm{B} \xrightarrow[\mathrm{~d}^{\prime}]{ } \mathrm{BSO}
$$

is nullhomotopic by reasoning as in the proof of Proposition 2. So d'($\sigma, i d$)'s lifts to $\mathrm{BSO}^{I} \mathrm{X}$ iSO $\{b\}$ thus defining a map $Y \longrightarrow$ 른

This proves the following: "
Lemma 2. If Y is a connected space and $y \in[Y, B 0]$ is such that $\Psi^{9}(y)=y$, then if $s: Y \longrightarrow B O$

$$
\mathrm{B}: Y \longrightarrow \mathrm{Y} \longrightarrow
$$ represents \bar{y}, there exists

$$
s^{\prime}: Y
$$ $\widetilde{F} O \Psi^{\top}$ such that the diagram

2. A first computation of $\mathrm{H}^{*}\left(\widetilde{\mathrm{FO}} \psi^{4}, Z_{2}\right)$.

From now on, given any space $X, H^{*}(X)$ will denote the mod 2 cohomology of X.

Lemma 3. For a suitable filtration of the ring $H^{*}(\tilde{F O Y Y}$) we have, $g r \mathbb{E}^{*}\left(\tilde{F O} \psi^{4}\right)=\left[z_{2} w_{1}, w_{2} \ldots \ldots\right] \otimes \wedge\left[u_{2}, u_{3}, \ldots \ldots\right]$ with $\operatorname{deg}\left(w_{i}\right)=i \quad$ and $\operatorname{deg}\left(u_{i}\right)=i-1$.

In particular the Poincare series of $\mathrm{E}^{*}\left(\tilde{F O} Y^{\circ}\right)$ is

$$
\prod_{i=1}^{\infty} \frac{1+t^{i}}{1-t^{i}}
$$

Proof. We consider the square

of the proceeding paragraph.
In order to apply the result in [9] assenting that, given a fibre square

were the vertical lines are vibrations and Y is simply connected, there exists a spectral sequence $\left\{E_{I}\right\} \Longrightarrow{ }_{H}{ }^{*}\left(X x_{Y} Z^{2}\right)$
such that $E_{2}{ }^{\text {r }} \operatorname{Tor}^{H^{*}(Y)}\left(H^{*}(Z), H^{*}(X)\right)$, we should have B simply connected; but it is easy to see that the proof in [9] goes over verbatim in the weaker ipothesis that the fibration $X \longrightarrow Y$ is orientable, i.e. if the action of $\pi_{1}(X)$ over the homology of the fiber is trivial.

The fibration $12 O^{I}-\underset{\rightarrow}{\Delta}$ is cleariy orientable since it is induced by the fibration $B S O^{I} X-\frac{B S O}{}\{b\} \longrightarrow B S O$ which has a simply connected base space.

The above discussior implies that we have an Eilenberg-Moore spectral sequence $\left\{\mathrm{E}_{\mathrm{r}}\right\} \Longrightarrow \mathrm{H}^{*}\left(\widetilde{F_{0}} \Psi^{\text {a }}\right.$) with

$$
E_{2}^{\mathrm{B}^{*},} \cong \operatorname{Tor}_{-\mathrm{B}}^{\mathrm{H}^{*}(\mathrm{~B})}\left(\mathrm{H}^{*}(\mathrm{BO}), \mathrm{H}^{*}\left(B O^{I}\right)\right)
$$

From lemma 1 we have $H^{*}(B) \cong z_{2}\left[w_{1}, w_{2}^{\prime}, w_{2}^{n}, \ldots\right]$ with

$$
w_{1}=f^{*}\left(w_{1}^{\prime}\right)=f^{*}\left(w_{1}^{n}\right) \text { and } w_{i}^{\prime}(w)=f^{*}\left(w_{i}^{\prime}(w)\right) \text { for each }
$$ i 2 .

Since q is odd we have already noted that σ^{*} acts as the identity in cohomology and since Δ^{\prime} (resp. $\left(6^{\circ}\right.$, id) ') is a lifting to B of Δ (resp. $(i d, 6)$), we have $(\sigma, i d) \prime^{*}\left(w_{i}^{\prime}\right)=(6, i d) \prime^{\prime *}\left(w_{i}^{n}\right)=\Delta^{\prime}\left(w_{i}^{\prime}\right)=\Delta^{\prime}\left(w_{i}^{n}\right)=w_{i}$ for $i \geqslant 2$ and $(6, i d)^{*}\left(w_{1}\right)-\Delta 0^{*}\left(w_{1}\right)=w_{1}$.
shis means that $(6, i d){ }^{*}$ and $\triangle{ }^{\prime *}$ define the same $H^{*}(B)$ module structure on the two isomorphic groups $H^{*}(B O)$ and $E^{*}\left(B O^{I}\right)$, and that they are both equal, as $\mathrm{H}^{*}(B)$ modules, to the module $\mathrm{H}^{*}(B) / \mathrm{I}$; where I is the
ideal generated by $w_{i}^{\prime}+w_{i}^{\prime \prime}$ for $i \geqslant 2$.
Now let A_{1} and A_{2} be the two subrings of $H^{*}(B)$ generated respectively by $w_{i}^{\prime}+w_{i}^{n}$ for $i \geqslant 2$
w_{1} and w_{i}^{\prime} for $i \geqslant 2$.
We have

$$
\begin{aligned}
& H^{*}(B)=A_{1} \otimes A_{2} \\
& H^{*}(B) / I=A_{2}
\end{aligned}
$$

Then, by the Kunneth formula 5 , we have :

$$
E_{2}=\operatorname{Tor}^{A_{1}^{\otimes} A_{2}}\left(A_{2}, A_{2}\right)=\operatorname{Tor}^{A_{1}}\left(Z_{2}, Z_{2}\right) \otimes A_{2}
$$

Since A_{1} is a polinomial algebra with generators in degrees $2,3, \ldots \ldots$, we have [5]

$$
\operatorname{Tor}^{A}\left(z_{2}, z_{2}\right)=\Lambda\left[u_{2}, u_{3}, \ldots \ldots\right]
$$

with $\operatorname{deg}\left(u_{i}\right)=i-1$.
This implies

$$
E_{2}=z_{2}\left[w_{1}, w_{2}, \ldots \ldots\right] \otimes \wedge\left[u_{2}, u_{3}, \ldots \ldots .\right]
$$

with $w_{i} \in E_{2}^{0, i}$ and $u_{i} \in E_{Q}^{-1, i-1}$. Since E_{2} is. generated by elements in $E_{2}^{0}{ }^{*}$ and $E_{2}^{-1},^{*}$, and on these the differentials are all zero, we get $\mathrm{E}_{2}=\mathrm{E}_{\infty}$ and hence the result.
3. A technical fact.

All the results in this paragraph are reproduced from [8].

Let X and Y be two spaces, and $f: X$ be a map, and let Cyl f be the mapping cylinder of f. Then Cyl f is homotopy equivalent to Y and, if we put $H^{*}(C y l f, X x\{O\}, G)=H^{*}(f, G)$ we get an exact cohomology sequence

$$
\ldots \longrightarrow H^{i-1}(X, G) \longrightarrow H^{i}(f, G) \longrightarrow H^{i}(Y, G) \longrightarrow H^{i}(X, G) \rightarrow \ldots
$$

with G any group of coefficients.
Let us consider now two maps $f: X \longrightarrow Y$ and $f^{\prime}: X \longrightarrow Y^{\prime}$ and a morphism $g: f \longrightarrow f^{\prime}$, ie. a pair $\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right)$ of maps, $\mathrm{g}_{1}: \mathrm{X} \longrightarrow \mathrm{X}^{\mathrm{\prime}}, \mathrm{~g}_{2}: \mathrm{Y} \longrightarrow \mathrm{Y}^{\prime}$, such that the following diagram

commutes.
We get a morphism of exact sequences

This morphism gives rise to a homomorphism

$$
\begin{aligned}
D_{g}:\left\{\text { Ier: } H^{i}\left(Y^{\prime}, G\right)\right. & \left.\stackrel{\left(f^{\prime}, g 2^{*}\right)}{\mid} H^{i}\left(X^{\prime}, G\right) \oplus H^{i}(Y, G)\right\} \\
H^{i-1}(X, G) & I^{*} H^{i-1}(Y, G)+g_{1}^{+} H^{i-1}\left(X^{\prime}, G\right)
\end{aligned}
$$

for each i, obtained by $\delta(D g u)=g^{*} \nabla$ with $j ' v=u$. Now take a ring as a coefficient group for cohomology so that cup products are defined.

Lemma 4.
(i) Dg is an homomorphism of $\mathrm{H}^{\prime \prime}\left(\mathrm{I}^{\prime}\right)$ - modules, i. e. if $v \in H^{i}\left(Y^{\prime}\right)$ and $u \in \operatorname{Ker}\left(f^{1^{*}}, g_{1}^{*}\right)$ we have $D g(v u)=(-1)^{i} f^{*} g_{2}^{*} \forall D g u$
(ii) If u Kerf fin* and $v \in K e r g_{1}^{*}$ then $\operatorname{Dg}(u v)=$.0 .

Proof.
(i) is obvious since all the maps in the diagram (*) are $\mathrm{E}^{*}\left(\mathrm{Y}^{\prime}\right)$ - modules homomorphisms.
(ii) Let x be such that $f^{\prime} x=u$. Then $f^{\prime}(x \quad \nabla)=u \quad \nabla$ and $g^{*}(x, v)=g^{*} x g_{2}^{*} v=0$, so (ii) is clear.

$$
\mathrm{q} \cdot \mathrm{e} \cdot \mathrm{~d} \cdot \mathrm{e}
$$

4. The Braver lifting

Jet E be an aiscbiuic closure of tie fioid with q Glements (q odd) k.

Since is is the union of an cxparaing sequence - よ finite cyclic groups, we can define an embedding $f: \tilde{k}^{*} \longrightarrow C^{*}$ where C is the fiold of complex numbers.

Let G be a finite group and Let us consider a
 Tho modular character of π is coffined ad the complex valued function

$$
x_{\pi}(s)=\sum p\left(\alpha_{i}\right)
$$

where the set $\left\{\alpha_{i}\right\}$ is tho set of eigenvalues counted with multiplocity, of $\pi(8)$.

It is known [4] that tho function $X \pi$ is the character oi a complex virtual representation, ie. $X_{\pi} \in R(G)$, the complex representation ring. X_{π} is called the Brawer lifting of π.

Now let $R-(G)$ be the Grothendiels group of tiv representations of G over \vec{k}. Since the map X which associates to each representation over \vec{I} its Braver lifting is clearly aciitive wo got a - ...ciunphism

$$
\gamma: R_{2}(G) \longrightarrow Z(G)
$$

Now consider an orthogonal representation τ of G. By $[7]$ we have that in this case $X \tau \in R O(G)$, the real representation ring of G. Thus, by reasoning as above, if we denote by $R O_{\bar{k}}(G)$ the Grothendiek group of orthogonal representations of G over \bar{k}, we get a homomorphism

$$
\gamma: R O_{\bar{k}}(G) \longrightarrow R O(G)
$$

Now it is easy to prove that, il Ψ^{r} denotes the roth Adams operation in $R(G)$, ie. the operation which associates to an element $a \in R(G)$ the element $Q_{r}\left(d^{1}(a), \ldots, \lambda^{n}(a)\right)$ where the $\lambda^{4} s$ denote the exterior powers of a and Q_{k} is the Newton polinomial expressing $t_{1}^{k}+\ldots+t_{k}^{k}$ in terms of the elementary symmetric functions, we have

$$
\psi^{\gamma} x_{\pi}(g)=x_{\pi}\left(g^{r}\right)
$$

for any $g G$ and any representation π of G over \bar{k}.
If we consider a representation π of G over k then, by extension of scalars we get a representation $\bar{\pi}$ of G over \bar{E}. since $\bar{\pi}$. comes from π it is clear that the set of eigenvalues $\left\{\alpha_{1}\right\}$ of $\mathbb{A}(g)$ is stable under the action of the Probenius homomorphism $x \longrightarrow x^{q}$, for each g G. So, by the above relation we get

$$
\psi^{q_{n}}=x_{\pi}
$$

This clearly implies that we get a homomorphism

$$
R_{K_{K}}(G) \longrightarrow R(G) \psi q
$$

where by $R(G)^{Y q}$ we denote the subgroup of $R(G)$ which is fixed under the action of ψ^{9}, and by $R_{k}(G)$ the Grothendiek group of representations of G over k.

The same is evidently true for the orthogonal case,tbus giving a homomorphism

$$
\tilde{x}: R O_{k}(G) \longrightarrow R O(G)^{\Psi^{q}}
$$

From now on we shall consider only the orthogonal case.

It is well known that by associating to a: real representation π of a finite group G, the caresponding vector bundle over BG we get a map

$$
\mathrm{RO}(\mathrm{G}) \longrightarrow[\mathrm{BG}, \mathrm{BO}]
$$

This map is clearly a homomorphism and is compatible with the action of Adams operations; so it takes $R O(G) \psi^{q}$ into $[B G, B O]^{\psi^{9}}$. Composing with the homomorphism $\widetilde{X}: R O_{k}(G) \longrightarrow R O(G) \psi^{q}$, we get a homomorphism

$$
\mathrm{RO}_{k}(G) \longrightarrow[\mathrm{BG}, \mathrm{BO}]^{\Psi^{\prime}}
$$

Applying lemma 2 we see that we can associate to an element in $R O_{k}(G)$ a map $B G \longrightarrow \widetilde{F O T}$?

Remark. The above map $B G \longrightarrow \widetilde{F O} \Psi^{\dagger}$ is not uniquely defined up to homotophy as we will show later, and this is the main problem when one tries to extend to the orthogonal case the proof in $[8]$.

Now let $k_{(s)}$ be the finite subfield of \bar{k} with q^{s} elements. We recall $\overline{\mathrm{k}}=\bigcup_{\mathrm{s}} \mathrm{k}(\mathrm{s})^{\text {. }}$

For each s and n let us consider the vector space $k_{(s)}^{n}$ over $k_{(s)}$ together with the bilinear form ${ }^{m}$ and let $O_{n}{ }^{\left(k_{(s)}\right)}$) be the group of isometries of $\sum_{i=1}^{M} x_{i} y_{i}$ $k_{(s)}^{n}$ with respect to this bilinear form. Then, since if $s \leq s^{\prime}$ we have that $k_{(s)}$ is a subfield of $k_{\left(s^{\prime}\right)}$ and since for $n \leqslant n^{\prime}$ we can consider $k^{n}(s)$ as the subspace of $k_{(s)}^{n^{\prime}}$ with the last $n^{\prime}-n$ coordinates equal to zero, we get inclusions $O_{n}\left(k_{(s)}\right) \quad O_{n^{\prime}}\left(k_{\left(s^{\prime}\right)}\right)$ for $n \leqslant n^{\prime}$ and $s \leq s^{\prime}$, which are clearly compatible with one another. Using this inclusions we define

$$
\left.0(\vec{k})=\bigcup_{(n, s)} o_{n}(k, s)\right)
$$

We have,
Proposition $3 \quad[B O(\bar{k}), B O] \cong \underset{s, n}{\underset{~ \lim }{ }\left[\mathrm{BO}_{n}\left(k_{(s)}\right), B 0\right]}$
Proof. We consider the Milnor construction for the classifying space of a topological group G, we have

$$
B G=\cup_{B G}^{(m)} \text {, with } B G^{(m)}=\underbrace{G * G * G *, \ldots * G / G}_{m \text { times }}
$$

and * denotes the join operation.
Now by the definition of $B O(\bar{k})$ we have $B O(\bar{k})=\bigcup_{m, n, s} S_{n, s}(m)$ with $B_{n, s}^{(m)}=\left(\mathrm{BO}_{n}\left(k_{(s)}\right)\right)^{(m)}$.

The Milnor exact sequence in this case gives us
the following exact sequence:

$\longrightarrow 0$.
So, in order to prove the proposition we have to show
(1) $R_{m, n, s}^{1} \underset{n, s}{\lim }\left[B_{n, ~(m)}^{(m)}, \Omega_{0}\right]=0$
(2) $\sum_{\mathrm{m}}^{\lim }\left[\mathrm{B}_{\mathrm{n}, \mathrm{s}}^{(\mathrm{m})}, \mathrm{BO}\right]=\left[\mathrm{BO}_{\mathrm{n}}\left(\mathrm{k}_{(\mathrm{s})}\right), \mathrm{BO}\right]$.

But (1) follows because, if we fix a couple (n, s) we have [2] that the inverse system $\left\{\left[B_{n, s}(m), \Omega \text { BO }\right]\right\}_{\text {m }}$ with only m varying, is isomorphic as a promobject to the inverse system

(we use the notations in [2]), and we have that this inverse system consists of finite groups. So the entire inverse system $\left\{\left[\mathrm{B}_{\mathrm{n}, \mathrm{s}}^{(\mathrm{m})}, \mathrm{BO}\right]\right\}$ is isomorphic to an inverse system of finite groups.
(2) follows from the Minor exact sequence $0 \longrightarrow \mathrm{~B}^{1} \underset{\mathrm{~m}}{\lim }\left[\mathrm{~B}_{\mathrm{n}, \mathrm{s}}^{(\mathrm{m})}, \Omega \mathrm{BO}\right] \longrightarrow\left[\mathrm{BO}_{\mathrm{n}}\left(\mathrm{k}_{(\mathrm{s})}\right), \mathrm{BO}\right] \longrightarrow$ $\longrightarrow \underset{\mathrm{m}}{\lim _{\mathrm{n}, \mathrm{s}}}\left[\mathrm{B}_{\mathrm{m}}^{(\mathrm{m})}, \mathrm{BO}\right] \longrightarrow 0$
for each couple (n, s), using the isomorphism between the system $\left\{\left[B_{n, s}^{(m)}, \Omega \operatorname{Bo}\right]\right\}_{m}$ and the system $\left(* /{ }^{*}\right)$. q.e.d. If we put $O\left(k_{(s)}\right)=\bigcup_{n} O_{n}\left(k_{(s)}\right)$ we get,

Corollary. $\left[\mathrm{BO}\left(\mathrm{k}_{(s)}\right), \mathrm{BO}\right]=\frac{1 \mathrm{im}}{\underset{A}{ }\left[\mathrm{BO}_{n}\left(\mathrm{k}_{(s)}\right), B \overline{]}\right]}$
for each s.

Proof. It follows immediately by repeating the proof of Proposition 3, considering the system $\left\{\left[B_{\square}^{(m)}, B 0\right]\right\}$ instead of the system $\left\{\left[B_{n, s}^{(m)}, B O\right]\right\}(m, n, s)$

If we consider the canonical n-dimensional orthogonal representation over $k_{(s)}$ of $O_{n}\left(k_{(s)}\right)$ we have already shamed how to associate to such a representation an element of $\left[\mathrm{BO}_{n}\left(k_{(s)}\right), B O\right]$, let us call it $\pi_{n}^{(s)}$. Further, if we consider the inclusion $O_{n}\left(k_{s}\right) C$ $\subset O_{n^{\prime}}{ }^{(k}\left(s^{\prime}\right)$) for $n \leqslant n^{\prime}, s \leq s^{\prime}$, we car associate to this inclusion an element in $\left[\mathrm{BO}_{\mathrm{n}}\left(\mathrm{K}_{(\mathrm{s})}\right), \mathrm{BO}_{\mathrm{n}}\left(\mathrm{K}_{\left(\mathrm{s}^{\prime}\right)}\right)\right]$, let
(2) follows from the Minor exact sequence

$$
\begin{aligned}
& \left.0 \longrightarrow R^{1} \underset{m}{\lim }\left[\mathrm{~B}_{\mathrm{n}, \mathrm{~s}}^{(\mathrm{m})} \Omega \mathrm{BO}\right] \longrightarrow\left[\mathrm{BO}_{\mathrm{n}}^{(\mathrm{k}}(\mathrm{s}) \mathrm{n}\right), \mathrm{BO}\right] \longrightarrow \\
& \longrightarrow \lim _{\mathrm{m}}\left[\mathrm{~B}_{\mathrm{n}, \mathrm{~s}}^{(\mathrm{m})}, \mathrm{BO}\right] \longrightarrow 0
\end{aligned}
$$

for each couple (n, s), using the isomorphism between the system $\left\{\left[B_{n, s}^{(m)}, \Omega \mathrm{BO}\right]\right\}_{m}$ and the system $(*)$. If we put $O\left(k_{(s)}\right)=\bigcup_{n} O_{n}\left(k_{(s)}\right)$ we get,
 for each s.

Proof. It follows immediately by repeating the proof of Proposition 3, considering the system $\left\{\left[B_{n, s}^{(m)}, B 0\right]\right\}(m, n)$

If we consider the canonical n-dimensional orthogonal representation over $k_{(s)}$ of $O_{n}\left(k_{(s)}\right)$ we have already showed how to associate to such a representation an element of $\left[B O_{n}\left(k_{(s)}\right), B O\right]$, let us call it $\pi_{n}^{(s)}$. Further, if we consider the inclusion $O_{n}\left(k_{13}\right) C$ $\subset O_{n},\left(k_{\left(s^{\prime}\right)}\right)$ for $n \leq n^{\prime}, s \leq s^{\prime}$, we can associate to this inclusion an element in $\left.\left[\mathrm{BO}_{n}\left(\mathrm{k}_{(s)}\right), \mathrm{BO}_{n}\left(\mathrm{k}_{(\mathrm{s}},\right)\right)\right]$, let
us call it $\pi\left(\begin{array}{l}\left(\mathrm{s}, \mathrm{s}^{\prime}\right) \\ \left(\mathrm{n}, \mathrm{n}^{\prime}\right)\end{array}\right.$. It follows immediately, by computing the modular chracters, that we have:

$$
\pi_{(n)}^{(s)}=\pi_{\left(n, n^{\prime}\right)}^{\left(s, s^{\prime}\right)} \pi_{\left(n^{\prime}\right)}^{\left(s^{\prime}\right)}
$$

$$
\text { as elements of }\left[\mathrm{BO}_{n}\left(\mathrm{k}_{(\mathrm{s})}\right), \mathrm{BO}\right]
$$

Lemma 5 (i) The sequence $\left\{\begin{array}{l}(\mathrm{s}) \\ (\mathrm{n})\end{array}\right\}_{(\mathrm{mm}, \mathrm{s})}$ defines a unique element $\pi \in[B O(\bar{\Sigma}), B O]$ (ii) The sequence $\left\{\pi \begin{array}{l}(s) \\ (n)\end{array}\right\}(n)$ defines a unique element $\pi_{(s)} \in\left[B O\left(k_{(s)}\right), B 0\right] \psi^{4 s}$ for each s.

Proof. (i) is clear by Proposition 3
(ii)follows from the Corollary and the fact that $\pi \underset{(\mathrm{s})}{(\mathrm{s})} \in\left[B O_{n}\left(\mathrm{k}_{(\mathrm{s})}\right) \text {, } B 0\right]^{4^{q / s}}$ for each n.
q.e.d.

Note. It is clear by unicity that if $\Pi^{(s)} \in\left[B O\left(k_{(s)}\right), B O(\bar{k} \bar{y}]\right.$ denotes the element associated to the inclusion $O\left(k_{(s)}\right) \subset O(\bar{k})$, we have $\pi_{(s)}=\pi^{(s)} \pi$.

5. The elements u_{i}

In this paragraph k is again a field with 9 elements.
It is clear that our definition of $O_{n}(k)$ allows us to identify $O_{n}(k)$ with the group consisting of $n \times n$ invertible matrices with entries in k, with the property $T^{-1}=\widetilde{T}$ where \widetilde{T} indicates the transpose of a matrix T.

Under this identification let $Q(n)$ be the sugroup. of diagonal matrices in $O_{n}(k)$. Thus $Q(n)$ is the subgroup consisting of matrices with entries 1 or -1 on the diagonal, and O elsewhere. Thus $Q(n)$ is a 2 elementary abelian group of rank n.

If we consider the canonical inclusion $i_{n}{ }_{n}(n) \operatorname{CO}_{n}(k)$ as a representation of $Q(n)$ and we compute its modular character (i.e. the modular character of the representation of $Q(n)$ over \bar{k} we can define by extension of scalars starting from i_{n}) it is easy to see that such a modular character is equal to the character of the corresponding inclusion \bar{i}_{n} of $Q(n)$ in $O_{\bar{L}}$ as the subgroup of diagonal matrices.

Thus it is clear that the map
$\chi: \mathrm{RO}_{\mathbf{k}}(\mathrm{Q}(n)) \longrightarrow[\mathrm{BQ}(\mathrm{n}), \mathrm{BO}]$ carries i_{n} into the element j_{n} of $[B Q(n), B O]$ which corresponds to the n-dimensional vector bundle associated to \bar{i}_{n}.

Now by Lemma 5(ii) we can choose an element
$\pi \in\left[B O(k), \widetilde{F O} \psi^{9}\right]$ such that $\left[\varphi^{\prime}\right] \pi=\pi_{(1)}$
as elements of $[B O(k), B O]$. It is clear from the above that, if \bar{j}_{n} is the element in $[B Q(n), B O(k)]$ associated to the composition of inclusions $Q(n) \subset O_{n}(k) \subset O(k)$ we have

$$
\left[\varphi^{\prime}\right] \pi \bar{j}_{n}=j_{n}
$$

In consideration of these facts we get:

Lemma 6

(i) The homomorphism $\varphi^{\prime *}: H^{*}(B O) \longrightarrow H^{*}(F O)$ is into. (ii) Let the symmetric group on n letters \mathcal{E}_{n} act on the subgroup of diagonal matrices $Q(n)$ by permuting the entries. Then, if $\mathrm{H}^{*}(B Q(n))^{\Sigma n}$ denotes the subring of $H^{*}(B Q(n))$ of invariants under the induced action of Σ_{n} on cohomology, the homomorphism
$\left(\pi j_{n}\right)^{*}: H^{*}\left(\widetilde{F O} \Psi^{\prime}\right) \longrightarrow B^{*}(B Q(n))$ maps $H^{*}\left(\widetilde{F O} \psi^{i}\right)$ onto $H^{*}(B Q(n))^{E n}$, for each η.

Proof. (i) Since j_{n} comes from the representation $j X$ \bar{i}_{n} it is well know that $j_{n}^{*}: H^{t}(B O) \longrightarrow H^{t}(B Q(n))$ is infective for $t \leqslant n$ for each n. Since for each n we have $\left[\varphi^{\prime}\right]$ ir $j_{n}=j_{n},(i)$ follows.
(ii) It is known that for each $n j_{n}^{*}$ maps $H^{*}(B O)$ onto $H^{*}(\mathrm{BQ}(n))^{E \mu}$ so it will be sufficient to prove

$$
\operatorname{Im}\left(\bar{\pi} \bar{j}_{n}\right)^{*} C H(B Q(n))^{\varepsilon_{n}}
$$

But this follows at once because, if $N(Q(n))$ denotes the normalizer of $Q(n)$ in $O_{n}(k)$, we have $N(Q(n)) / Q(n) \approx \varepsilon_{n}$ and \sum_{n} acts on $Q(n)$ exactly by permuting the entries in the diagonal.
q.e.d.

Let us consider now, for each $t \geqslant 2$ the elements $\left\{w_{t}^{\prime}+w_{t}^{n}\right\}$ in $H^{*}(B)(B$ has the same meaning as in paragraph 1). We have $\left(w_{t}^{\prime}+w_{t}^{n}\right) \in \operatorname{Ker}\left((\sigma, i d) 0^{*}, \Delta^{*}\right)$ so by paragraph 3, we can define, by considering the couple of maps ($\left.\gamma^{\prime},(\sigma, i d)^{\prime}\right)$ in the square

as a map $\Gamma: \varphi^{\prime} \longrightarrow \bigwedge^{\prime}$, the element
\| $\tilde{u}_{t}{ }^{1=D_{\Gamma}}\left(w_{t}^{\prime}+w_{t}^{\prime \prime}\right) \quad H^{t-1}\left(\tilde{F O} \psi^{q}\right) / \varphi{ }_{H}^{b *}(B O)$,
since it follows from the fact that $\Delta^{\prime *}$. and $\left.(6, i d)\right)^{*}$ are onto that $\operatorname{Im} \varphi^{\prime \prime}=\operatorname{Im} \gamma^{\prime *}$.

But it is clear by Lemma 6 that there is only one element in the lateral class u_{t} which is in the kernel of $\left(\mathbb{\pi} j_{t}\right)^{*}$.

So we can give the following, Definition For each the elements $\pi_{t} \in \mathrm{H}^{t-1}\left(\widetilde{F O} \psi^{q}\right)$, $t \geqslant 2$, are defined as the unique elements in the lateral classes \tilde{u}_{t} such that $\left(\frac{1}{\pi} j_{t}\right)^{k}\left(u_{t}\right)=0$.

Remarks
(1) It is obvious to verify that, for each $t^{\prime} \geqslant t$, $\bar{\pi} u_{t} \in \operatorname{Ker}\left(\pi j_{t}\right)^{*}$ and that $\pi_{t} u_{t}$ is the unique element in the class u_{t} with this property.
(2) By putting a subscript $\bar{\pi}$ under \widetilde{u}_{t} we want to enfasize the fact that the construction of the $\left\{\pi u_{t}\right\}$ depends on the choice of $\bar{\pi}$.
(3) We have defined the $\left\{\pi^{u_{t}}\right\}$ in $H^{*}\left(F O \psi^{i}\right)$ only when q is the order of a finite field of. odd character fistic (i.e.q=p for some odd prime p). The case of any odd integer can we treated in the same way since the role of $O(k)$ in the above discussion is irrelevant, because we could have studied directly the elements in $\left[B Q(n), \tilde{F O} \psi^{q}\right]$, which again are not uniquely defined, that arise in any case from $j_{n} \in[B Q(n), B O], j_{n}$ depending only by the diagonal representation of $Q(n)$ in $O(n)$.
6. Multiplicative formulas.

Again let k be the field with q elements and let \bar{K} be its algebraic closure.

Let $O_{n}(\overline{\bar{K}})$ be the n-th orthogonal group of the vector space \bar{k}^{n} with bilinear form $\sum_{i=1}^{N} x_{i} y_{i}$

If $k_{(s)}$ are defined, for each s, as in paragraph 4 we clearly have $O_{n}(\bar{k})=\bigcup_{s=1}^{\infty} O_{n}(k, s)$.

Let $x \longrightarrow x^{q}$ be the q-th Frobenius automorphism in \bar{k}, and let $\vec{F}_{n}: O_{n}(\bar{F})$ be the automorphism of $O_{n}(\bar{k})$ defined by

$$
\bar{F}_{n}\left(a_{i j}\right)=\left(a_{i j}^{q}\right)
$$

where $\left(a_{i j}\right)=A$ denotes an $n x n$ matrix in $O_{n}(\bar{k})$.
If $G_{n} \subset O_{n}(\bar{k}) \times O_{n}(\bar{k})$ is the kernel of the homomorphism $d: 0_{n}(\bar{k}) \times O_{n}(\bar{k}) \longrightarrow\{-1,1\}$ defined as $a(A, B)=\operatorname{det} A \operatorname{det} B, \operatorname{let} \bar{\Delta}_{n}: O_{n}(\bar{k}) \longrightarrow G_{n}$ be the homomorphism defined as $\bar{\Delta}_{n}^{n}(A)=(A, A)$, and let $\bar{F}_{n}^{\prime}: O_{n}(\bar{k}) \longrightarrow G_{n}$ be the homomorphism defined as $\bar{F}_{n}^{\prime}(A)=\left(\bar{F}_{n}(A), A\right)$.

Now let us consider a map $\Delta_{n}: B O_{n}(\bar{k}) \longrightarrow B G_{n}$ (resp. $F_{n}: B O_{n}(\bar{k}) \longrightarrow B G_{n}$) representing the element in $\left[B O_{n}(\bar{k}), B G_{n}\right]$ associated to $\bar{\Delta}_{n}\left(\right.$ resp. $\left.\bar{F}_{n}^{\prime}\right)$. Further, since Δ_{n} is an inclusion let us choose Δ_{n} to be a fibration with fiber $G_{n} / O_{n}(\bar{k})$.

We define X_{n} to be the fibre product

Proposition 4. $\pi_{i}\left(X_{n}\right)=0$ if if $\pi_{1}\left(X_{n}\right)=0_{n}(k)$. Thas X_{n} is a classifying space for $O_{n}(k)$.

Proof. Let us take basepoints in $\mathrm{BO}_{n}(\overline{\mathrm{~K}})$ and $B G_{n}$ so that F_{n} and Δ_{n} are based maps (this is possible since we can vary F_{n} up to homotopy).

It follows that also φ_{n} and γ_{n} can be considered as basepoint preserving maps.

Now since Δ_{n} is a fibration we have that the map $\delta: \pi_{1}\left(B G_{n}\right) \longrightarrow \pi_{0}\left(G_{n} / O_{n}(\bar{K})\right)$ is just the map which assigns to an element $n(A, B) \in G_{n}=\pi_{1}\left(B G_{n}\right)$ its left lateral class modulo $O_{n}(\bar{k})$.

But, given an element $(A, B) G_{n}$, we have that

$$
\delta(A, B)=\delta\left(A B^{-1}, 1\right)
$$

So δ factors through the map $\hat{\delta}: G_{n} \longrightarrow S_{n}(\bar{k})$, which assigns to each $(A, B) \in G_{n}$ the element $A B^{-\mathcal{Z}} \mathcal{S O}_{n}(\bar{k})$ and the map $\delta: \mathrm{SO}_{n}(\overline{\mathrm{~K}}) \longrightarrow \mathrm{G}_{\mathrm{n}} / \mathrm{O}_{n}(\overline{\mathrm{~K}})$ which assigns to each $A \in S O_{n}(\bar{K})$ the lateral $n_{c l a s s}[(A, \mathcal{1})] \in G_{n} / O_{n}(\bar{k})$.

The map δ is clearly bijective.
Now let us consider the map of nomotopy exact sequences

We have $F_{n} \#=\bar{F}_{n}: \overparen{T}_{q}\left(B O_{n}(\bar{k})\right) \cong O_{n}(\bar{k}) \longrightarrow \pi_{q}\left(B G_{n}\right)=G_{n}$.

Since $\varphi_{n_{\#}}$ is infective, we have that $\pi_{1}(x)$ is isomorphic to the subgroup of $O_{n}(\bar{k})$ which is mapped by \bar{F}_{n} into the kernel of δ. But this is exactly the subgroup of matrices $A \in O_{n}(\bar{k})$ such that $F_{n}(A)=A$ ie. the subgroup of the matrices with entries in $k, o_{n}(k)$.

So we have proved $\pi_{1}\left(x_{n}\right) \cong o_{n}(k)$.
Since we have $\delta^{\prime}=\partial F_{n \#}$ and since $\partial \Rightarrow \underline{\partial}$ and $\underline{\underline{\partial}}$ is bijective it is sufficient to prove that $\bigcup \mathcal{P}_{n_{\#}}: O_{n}(\bar{k}) \rightarrow$ $\longrightarrow \mathrm{SO}_{\mathrm{n}}(\overline{\mathrm{k}})$ is onto.

We have

$$
\delta_{F_{\#}}(A)=A^{F_{A}} A^{-1}
$$

and $\partial_{n} F_{n}$ is onto since, by the Lang isomorphism $[6]$, the restriction of $\quad \frac{\partial}{n_{n}}{ }_{n_{\#}}$ to $S O_{n}(\bar{k})$ is onto.

So we have proved $\pi_{0}\left(x_{n}\right)=0$.
Now $\pi_{i}\left(X_{n}\right)=0$ for $i \geqslant 2$ follows from the homotopy exact sequence of the fibration

since $\pi_{i}\left(G_{n} O_{n}(\bar{k})\right)=0$ for $i \geqslant 1$ and $\pi_{i}\left(B O_{n}(\bar{k})\right)=0$ for $i \geqslant 2$.
denote it by $\mathrm{BO}_{n}(k)$.
Now let us consider the groups $O(\bar{k}), O(k)$ which have already been defined, and $G=\bigcup_{N} G_{n}$. Clearly $O(\bar{k})=\bigcup_{m} O_{n}(\bar{k})$. Since the F_{n}^{\prime} s are compatible we can define an homomorphism $\tilde{F}: O(\bar{k}) \longrightarrow O(\bar{k})$ by taking $\tilde{F}=\bigcup_{n}^{\prime} \bar{F}_{n}$ and also an homomorphism $\bar{F}:: O(\bar{K}) \longrightarrow G$ which is the union of the $\left\{\bar{F}_{n}^{\prime}\right\}$. Similarly we can define the homomorphism $\bar{\Delta}=\bigcup_{N} \bar{\Delta}_{m}: O(\bar{k}) \rightarrow$ $\longrightarrow G$. Now let us denote by $\Delta: B O(\bar{K}) \longrightarrow B G$ the fibration induced by $\bar{\Delta}$ with fiber $G / O(\bar{k})$, and let $\mathrm{F}: \mathrm{BO}(\overline{\mathrm{K}}) \longrightarrow \mathrm{BG}$ a map in the homotopy class $\left.{ }^{[B O}[\overline{\mathrm{K}}), \mathrm{BG}\right]$ induced by F'.

We define X to be the fiber product

It follows immediately from Proposition 4, by passing to the limit that X is a, classifying space for $O(k)$. In view of this we shall denote X by $B O(k)$.

Now let us considered the element $\pi \in[B O(K), B O]$ defined in paragraph 5. We have

Theorem (Quillen)7.
$E^{*}(B O(\bar{x})) \cong z_{2}\left[\bar{w}_{1}, \bar{w}_{2}, \ldots\right]$ where $\bar{w}_{i}=\pi^{*}\left(w_{i}\right)$.
Using this theorem we get:

Proposition 5.

$$
H^{\star}(B G) \simeq H^{*}(B O(\bar{k}) \times B O(\bar{k}))
$$

$$
\left(\bar{w}_{1}^{i}+\bar{w}_{1}^{n}\right)
$$

whith $\bar{w}_{i}^{1(n)}=p r_{1(2)}\left(\bar{w}_{i}\right)$, where $p r_{i}$ is the projection of $B O(\bar{k}) \times B O(\bar{k})$ on the i-th factor (i=1,2).

Proof. It follows verbatim from the proof of Proposition 1. Now let us consider the element $M \in\left[B G, B O \times \frac{\mathrm{BO}}{\mathrm{O}}\right]$ defined as $\bar{\eta}=(\pi \times \pi) \alpha$ where $\alpha \in[B G, B O(\bar{k}) \times B O(\bar{k})]$ denotes the element associated to the inclusion of G into $O(\bar{k}) \times O(\bar{k})$.

If we take a map $\overline{\mathrm{e}}: \mathrm{BG} \longrightarrow \mathrm{BO} \times \mathrm{BO}$ in the homotopy class $\bar{\eta}$ the proposition gives us the existence of $e: B G \longrightarrow B$ such that the diagram

where f denotes as in paragraph 1 the double covering, commutes.

It also follows, since the Brauer lifting is aditive, that, if we consider the composite map $\Theta \Delta: B O(\bar{K}) \longrightarrow B$, then there exists a map $a: B O(\bar{K}) \longrightarrow B^{I}$ such that the following diagram

Λ^{\prime} being the fibration with fiber Ω BSO, commutes. Thus we can define the following commutative diagram

Now let K be a finite group and let ε be an n-dimensional orthogonal representation of K over \bar{k}. By using the same notations of paragraph 4, it is easy to see, by direct computation,

$$
\psi^{q} \chi_{\varepsilon}(\delta)=\left\{_{F_{\underline{n}}} \varepsilon(\tilde{\delta})\right.
$$

for any $g \in K$. This and Proposition 3 clearly imply that

$$
[\theta F]=[(\sigma, i d) \pi]
$$

as elements of $[B O(\bar{K}), \bar{B}]$. Thus we can choose a homotopy $\mathrm{H}_{t}: \mathrm{BO}(\overline{\mathrm{K}}) \times \mathrm{I} \longrightarrow \mathrm{B}$ such that $\mathrm{H}_{0}=e \mathrm{~F}$ and $\mathrm{H}_{1}=(6, i d){ }^{\prime}$ where \widetilde{T} is a representative for the class $\mathbb{T} \in[B O(\bar{K}), B O$.

If we apply H_{t} it follows, by the covering homotopy theorem that there exists a homotopy $\mathrm{H}_{t}^{\prime}: B O(k) \times I \longrightarrow B O^{I}$ such that $H_{0}^{\prime}=a \gamma$ and H_{t}^{\prime} covers H_{t} for each $t \in I$. At the end of these homotopies the diagram (*) will be transformed into the diagram

in fact it follows immediately by the universal property
of fiber product that H_{1}^{\prime} factors through γ^{\prime}.
It follows from lemma 5 and the note under it, that using the notation of paragraph $4,\left[\varphi^{\prime \widetilde{\pi}}\right]=[\widetilde{\pi} \varphi]=\pi_{(1)}$

So we have that we can define the elements $\left.{ }_{\text {[}}^{\sim}\right]_{i} u_{i}$ $H^{i-1}\left(\widetilde{F O} \psi^{9}\right)$, for each $i \geqslant 2$.

Note. Since from now on we shall consider only the elements τu_{i} with $\tau=[\widetilde{\pi}]$ we shall put ${ }_{[\pi]}^{u_{i}}=u_{i}$.

Now let us take up the notations of paragraph 5, we have:
Lemma 7.
(i) the homomorphism $\varphi^{*}: H^{*}(B O(\bar{k})) \longrightarrow H^{*}(B O(k))$ is into.
(ii) The homomorphism $j_{n}^{*}: H^{*}(B O(k)) \longrightarrow H^{*}(B Q(n))$ maps $H^{*}(B O(k))$ onto $H^{*}(B Q(n))^{\Sigma n^{n}}$.

Proof. By the theorem, the proof proceeds exactly as the proof of Lemma 6.
q.e.d.

Now, by reasoning as in paragraph 5 we can define, for each $t \geqslant 2$, the elements $\bar{u} t \in H^{t-1}(B O(k)$) as the unique elements in the lateral class $D_{\Gamma}\left(\bar{w}_{t+1}^{\prime}+\bar{w}_{t+1}^{\prime \prime}\right)$ such that $j_{t}^{*}\left(\bar{u}_{t}\right)=0$, where we put $\Gamma: \varphi \rightarrow \Delta \Delta$ equal to the couple of maps (γ, F).

Since from the construction of $\widetilde{\pi}$ and from the fact that Dg clearly depends on tie homotopy class of g, it follows that $D_{-} e^{*}=\widetilde{\pi}^{*} D_{\Gamma^{\prime}}$ as maps from $\operatorname{ker}\left((\sigma, i d)^{{ }^{*}}, \Delta^{*}\right)$ to Corer (φ^{*}).
Lemma 8: $\quad \widetilde{\pi^{*}}\left(u_{t}\right)-\bar{u}_{i}$.

Proof. The lemma is an immediate consequence of the definition of the $u_{t}{ }^{\prime} s$ and $\bar{u}_{t}^{\prime} s$ and of the relation $D_{r} e^{*}=\widetilde{\|}^{*} D_{r}$ 。
q.e.d.

Now let us consider the homomorphism m:O($\bar{k}) \times O(\bar{k}) \longrightarrow$ $\longrightarrow O(\bar{k})$ defined as the union of the direct sum homomorphism $\mathbb{m}_{(n, t)}: 0_{n}(\bar{k}) \times O_{t}(\bar{k}) \longrightarrow 0_{n+t}(\bar{k})$. By the definition of G_{n} we have that, if we consider the restriction $v_{(n, t)}$ of the homomorphism $m(n, t)^{x m}(n, t)^{\text {: }}$ $\left.: O_{n}(\bar{k}) \times O_{t}\left(\frac{k}{k}\right)\right) \xrightarrow{2}\left(O_{n+t}(\bar{k})\right)^{2}$ to the subgroup $G_{n} \times G_{t}$ we get $I_{m} V_{(n, t)} C_{G_{n+t}}$.

Further it is immediate to verify that the following
diagram

commutes.
So this implies that the diagram

where V:G x G
G is defined as the union of the ${ }^{v}(n, t)^{\prime} s$, commutes.

By taking representatives for the homotopy classes of maps induced by the homomorphisms in the above diagram we get a diagram

which is commutative up to homotopy.
Similarly we get the homotopy commutative diagram

Since in this case we have chosen $\dot{\Delta}$ to be a fibration we can make (τ_{2}) into a commutative diagram by the covering homotopy theorem. So, from now on we fix \tilde{m} and \tilde{v} in such a way that $\left(\tau_{\ell}\right)$ is computative.

Now let us consider the diagram

which is commutative by the above discussion; and let
us choose a homotopy $H_{t}: B O(\bar{k}) \times B O(\bar{k}) \times I \longrightarrow B G$ such that $H_{0}=\tilde{v}(F \times F)$ and $H_{1}=F \tilde{m}$. By the covering homotopy theorem there exists a homotopy $I_{t}: B O(k) x$ $\mathrm{x} \mathrm{BO}(\mathrm{k}) \mathrm{xI} \longrightarrow \mathrm{BO}(\overline{\mathrm{K}})$ covering H_{t}. SO, at the end of these homotopies, the above diagram will be transformed in the commutative diagram

where $I_{1}=\gamma / \sim$ by the universal property of fibre product.
Lemma 9. $\mu: B O(k) \times B O(k) \longrightarrow B O(k)$ represents the homomorphism defined as the union of the direct sum homomorphism $\mu_{(n, t)} ; 0_{n}(k) \times O_{t}(k) \longrightarrow 0_{n+t}(k)$. Proof. Since $\varphi \mu=\tilde{m}(\varphi \times \varphi)$ and we have seen that φ represents the inclusion $O(k) \subset O(\bar{k})$ we must have that μ must represent' the restriction to $O(k) \times O(k)$ of the homomorphism m, thus'proving the lemma.

Let us return to the diagrams $\left(\Omega_{1}\right)$ and $\left(\Omega_{2}\right)$. Since, as we have already noticed, the homomorphism D_{g} depends only by the homotopy class of g, we have

$$
\text { (*) } \mu^{*} D_{\Gamma}=D_{\Gamma} x^{r^{*}} .
$$

Now let us consider the canonical projections of the square

onto the square

If we denote by $x \otimes 1$ (resp. $1 \otimes x$) the image of an element of $H^{*}(X), X$ is any space in the above square, in $\mathrm{E}^{*}(\mathrm{X} \times \mathrm{X})$ under the cohomology homomorphism induced by the first (resp.the second) projection, we get, by the functoriality of D_{g}, that $D_{\Gamma^{2}}(y)=D_{\Gamma}(y) \otimes 1$ for $y \in H^{*}(B G)$, and similarly for $1 \otimes y$.

Lemma 10.

$$
\begin{aligned}
& D_{\Gamma^{2}}\left(\left(\bar{w}_{i} \otimes \bar{w}_{j}\right) \cdot \prime+\left(\bar{w}_{i} \dot{\otimes} \bar{w}_{j}\right)^{n}\right)= \\
= & \left(D_{\Gamma}\left(\bar{w}_{i}^{\prime}+\bar{w}_{j}^{n}\right)\right) \otimes\left(\varphi^{*} \bar{w}_{j}\right)+\left(\phi^{*} w_{i}^{\prime}\right) \otimes\left(D_{r}\left(\bar{w}_{j}^{\prime}+\bar{w}_{j}^{n}\right)\right) \\
= & \text { for } i, j>2 \\
= & 0
\end{aligned} \quad \text { for } j=1, i \geqslant \overline{\left.\left.w_{i}^{\prime}+\bar{w}_{i}^{\prime \prime}\right)\right) \otimes\left(\varphi^{*} \bar{w}_{1}\right)} \quad \begin{array}{ll}
\text { for } j=i=1
\end{array}
$$

Proof. From what we have noticed above, it follows

$$
\begin{aligned}
& D_{\Gamma}^{2}\left(\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{n}\right) \otimes 1\right)=\left(D_{\Gamma}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{n}\right)\right) \otimes 1 \\
& \text { and similarly for } 1 \otimes\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{\prime \prime}\right) .
\end{aligned}
$$

Since

$$
\begin{array}{r}
\left(\bar{w}_{i} \otimes \bar{w}_{j}\right)^{\prime}+\left(\bar{w}_{i} \otimes \bar{w}_{j}\right)^{\prime \prime}=\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{\prime \prime}\right) \otimes \bar{w}_{j}^{\prime}+\bar{w}_{i}^{\prime \prime} \otimes\left(\bar{w}_{j}^{\prime}+\bar{w}_{j}^{\prime \prime}\right) \\
\\
\text { for } i, j \geqslant 2,
\end{array}
$$

we have by Lemma 4:
$D_{\Gamma^{2}}\left(\left(\bar{w}_{i} \otimes \bar{w}_{j}\right) \cdot+\left(\bar{w}_{i} \otimes \bar{w}_{j}\right) n\right)=\left(D_{\Gamma}\left(\bar{w}_{i}^{n}+\bar{w}_{i}^{n}\right)\right) \otimes \bar{w}_{j}^{i}+$
$+\bar{w}_{i}^{n} \otimes\left(D \quad\left(\bar{w}_{j}^{\prime}+\bar{w}_{j}^{n}\right)\right)=\left(D_{i}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{n}\right)\right) \otimes\left(\varphi^{*} \bar{w}_{j}\right)+$
$+\left(i p^{*} \bar{w}_{i}\right) \otimes\left(D_{r}\left(\bar{w}_{j}^{i}+\bar{w}_{j}^{u}\right)\right)$.
Now suppose $j=1 \quad i \geqslant 2$.
Then by Proposition 5, $\bar{w}_{1}^{1}=\bar{w}_{1}^{\prime \prime}=\bar{w}_{1} \cdot$ So, $\left(\bar{w}_{i} \otimes \bar{w}_{1}\right)^{\prime}+\left(\bar{w}_{i} \otimes \bar{w}_{1}\right)^{\prime \prime}=\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}{ }^{n}\right) \otimes \bar{w}_{1}$, then by Lemma 4: $D_{r}^{2}\left(\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{\prime \prime}\right) \otimes \bar{w}_{1}\right)=\left(D_{r}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{\prime \prime}\right)\right) \otimes \varphi^{*}\left(\bar{w}_{1}\right)$.

Finally if $i=j=1$,

$$
\left(\bar{w}_{1} \otimes \bar{w}_{1}\right)^{\prime}=\left(\bar{w}_{1} \otimes \bar{w}_{1}\right)^{\prime \prime}
$$

and so the proof of the Lemma is complete.

$$
q \cdot e \cdot d
$$

Let us recall that the Brauer lifting defines a $\operatorname{map} \mathrm{RO} \overline{\mathrm{K}}_{\mathrm{K}}(\mathrm{G}) \longrightarrow[\mathrm{BG}, \mathrm{BO}]$, for each finite group G. This, together with the definition of $m: O(\bar{k}) x O(\bar{k}) \longrightarrow O(\bar{k})$ and Proposition 3 implies that the square

Where s is a map representing addition in $\widetilde{K O}$, is homotopy commutative.

This implies:
Proposition 6. $\quad \tilde{m}^{*}\left(\bar{w}_{i}\right)=\sum_{k+j=i} \bar{w}_{k}^{\prime} \otimes \bar{w}_{j}^{\prime \prime}$.
Proof. By the know multiplicative formulas for Stiefel-Witney classes we have

$$
s^{*}\left(w_{i}\right)=\sum_{k+j=i} w_{k} w_{j} \text {, }
$$

and by the above diagram

$$
\tilde{m}^{*}\left(\bar{w}_{i}\right)=\tilde{m}^{*}\left(\pi^{*}\left(w_{i}\right)\right)=(\pi x \pi)^{*}\left(s^{*}\left(w_{i}\right)\right)
$$

So, we have

$$
\tilde{m}^{*}\left(\bar{w}_{i}\right)=(\pi x \pi)^{*}\left(\sum_{k+j=i} w_{k} \otimes w_{j}\right)=\sum_{k+j=i} \bar{w}_{k} \otimes \bar{w}_{j} .
$$

We are now ready to prove:

Proposition 7

$$
\mu^{*}\left(\bar{u}_{i}\right)=\sum_{a+b=i} \bar{u}_{a} \otimes\left(\varphi^{*} \bar{w}_{b}\right)+\left(\varphi^{*} \bar{w}_{a}\right) \otimes \bar{u}_{b}
$$

for each $i \geqslant 2$, where we put $u_{1}=u=0$.
Proof. If we consider the inge of $\mu^{*}\left(\bar{u}_{i}\right)$ modulo $\operatorname{Im}(\varphi x \varphi)^{*}$ we get:
$\mu^{*}\left(\bar{u}_{i}\right)=\mu^{*}\left(D_{\Gamma}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{n}\right)\right)=D_{\Gamma^{2}}\left(\tilde{v}^{*}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{n}\right)\right)$
by (*).
But,
$D_{\Gamma^{2}}\left(\tilde{v}^{*}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{\prime \prime}\right)\right)=D_{\Gamma^{2}}\left(\left(\sum_{a+b=i}\left(\bar{w}_{a} \otimes \bar{w}_{b}\right)^{\prime}\right)+\left(\sum_{a+b=i}\left(\bar{w}_{a} \otimes \bar{w}_{b}\right)^{n}\right)=\right.$

$$
\begin{aligned}
& =D_{\Gamma^{2}}\left(\sum _ { a + b = i } \left(\left(\bar{w}_{a}\left(8 \bar{w}_{b}\right) \cdot+\left(\bar{w}_{a} \otimes \bar{w}_{b}\right) n\right)=\right.\right. \\
& \sum_{a+b=i}\left(\left(D\left(\bar{w}_{a}^{\prime}+\bar{w}_{a}^{n}\right)\right) \otimes\left(\varphi^{k} \bar{w}_{b}\right)+\left(\varphi^{*} \bar{w}_{a}\right) \otimes \otimes\left(D_{\Gamma}\left(\bar{w}_{b}^{\prime}+\bar{w}_{b}^{n}\right)\right)\right),
\end{aligned}
$$

by Lemma 9, whith $D_{r}\left(\bar{w}_{a}^{\prime}+\bar{w}_{a}^{\prime \prime}\right)=0$ when $a=0,1$.
Now by the definition of \bar{u}_{i} it follows that $\mu^{*}\left(\bar{u}_{i}\right)$ must be the only element in the lateral class $D_{r^{2}}\left(\tilde{v}^{*}\left(\bar{w}_{i}^{\prime}+\bar{w}_{i}^{n}\right)\right)$ which lies in $\operatorname{Ker}\left(j_{i} \times j_{i}\right)^{*}$; in fact it is clear that $\nabla\left(j_{i} \times j_{i}\right)$ is homotopic to $j_{2 i}$. But this element is clearly just

$$
\sum_{a+b=i}\left(u_{a} \otimes\left(\varphi^{*} \bar{w}_{b}\right)+u_{b} \otimes\left(\varphi^{F} \bar{w}_{a}\right)\right) \text { with } u=u_{1}=0
$$

thus proving the proposition
q.e.d.

Corollary.

$$
(\widetilde{\pi} v)^{*}\left(u_{i}\right)=\sum_{a+b=i}\left(\bar{u}_{a} \otimes\left(\varphi^{*} \bar{w}_{b}\right)+u_{b} \otimes\left(\varphi^{*} \bar{w}_{a}\right)\right)
$$

7. The algebra $H^{*}\left(\widetilde{F O} \psi^{\mathcal{R}}\right.$

From now on we put $\bar{w}_{i}=\varphi^{\prime \pi}\left(\bar{w}_{i}\right)$ and $w_{i}=\varphi^{\prime \prime}\left(w_{i}\right)$, for each i.

So we can write the multiplicative formulas of the proceeding paragraph as

$$
\begin{aligned}
& \mu^{*}\left(\bar{w}_{i}\right)=\sum_{a+b=i} w_{a} \otimes w_{b} \\
& \mu^{*}\left(\bar{u}_{i}\right)=\sum_{a+b=1}\left(\bar{u}_{a} \otimes \bar{w}_{b}+\bar{w}_{a} \otimes \bar{u}_{b}\right)
\end{aligned}
$$

$$
\text { with } u_{1}=u=0
$$

Now let us introduce indeterminate t, s with $s^{2}=0$. If we put

$$
\bar{w}_{t s}=1+\sum_{i \geqslant 1} \bar{w}_{i} t^{i}+\bar{u}_{i} t^{i+1} s \quad\left(u_{1}=0\right)
$$

we can rewrite our multiplicative formulas as

$$
\mu^{*}\left(\bar{w}_{t s}\right)=\bar{w}_{t s} \otimes \bar{w}_{t s}
$$

Now let k be the field with q elements with the restriction $q=4 m+1$, and let us consider the group $\mathrm{O}_{2}(\mathrm{k})$.

It is easy to see that this group is a diedral group with $2(q-1)$ elements and it is known [7] that

$$
E_{1}^{*}\left(C_{2},(x)\right) \cong z_{2}\left[x_{1}, x_{2}, 1\right] /\left(1^{2}+1 x_{1}\right)
$$

with deg $x_{1}=\operatorname{deg} 1=1$ and $\operatorname{deg} x_{2}=2$, and with $\rho_{2}\left(\bar{w}_{i}\right)=x_{i}, i=1,2$.

Proposition 8. If $f \in\left[\mathrm{BO}_{2}(k), B O(k)\right]$ is the homotopy class associated to the canonical inclusion of $\mathrm{O}_{2}(\mathrm{k})$ in $O(k)$ then:
(i) If A is the subalgebra of $H^{*}\left(O_{2}(k)\right)$ generated by $x_{1}, x_{2}, f^{*}\left(\bar{u}_{2}\right)$, we have $A=E^{*}\left(O_{2}(k)\right)$. In particular $f^{*}\left(u_{2}\right) \neq 0$.
(ii) $f^{*}\left(\bar{w}_{i}\right)=f^{*}\left(\bar{u}_{i}\right)=0$, for $i \geqslant 3$.

Proof.
£ (i) Let us consider the two squares

and

where the second is defined in exactly the same way as the corresponding square for $O_{2}(k), \bar{F}$ denotes a map induced by the homomorphism $\mathrm{F}: \mathrm{SO}_{2}(\overline{\mathrm{~K}}) \longrightarrow \mathrm{SO}_{2}(\overline{\mathrm{k}})$ defined using the Frobenius homomorphism.

By using the same methods of the proceeding paragraph, it is easy to see that, if $f \in\left[\mathrm{BSO}_{2}(k), \mathrm{BO}(k)\right]$ denotes the homotopy class corresponding to the canonical inclusion
 the homotopy class corresponding to the canonical inclusion of $\mathrm{SO}_{2}(\overline{\mathrm{~K}}) \times \mathrm{SO}_{2}(\overline{\mathrm{~K}})$ in G , we have:
where $\Gamma_{2}=\left(X_{2},(\bar{F}, i d)\right)$ and $\Gamma^{D_{1}}$ has its usual meaning. Now it is know $\mathrm{SO}_{2}(\overline{\mathrm{~K}}) \cong \overline{\mathrm{k}}^{*}$ and, since $\overline{\mathrm{k}}^{*}$ is a union of an expanding sequence of finite cyclic groups of order prime to char \bar{k} and since the relevant Bocksteins are all zero $\mathrm{H}^{*}\left(\mathrm{SO}_{2}(\bar{k}), C\right) \cong \mathrm{C}[\mathrm{x}]$ with deg $x=2$, where C is any finite cyclic group of order prime to char \bar{E}. In particular if $C=Z_{2}$, it follows impmediately from the theorem in paragraph 6 that, if $\overrightarrow{\mathrm{f}} \in\left[\mathrm{BSO}_{2}(\overline{\mathrm{~K}}), \mathrm{BO}(\overline{\mathrm{k}})\right]$ is the homotopy class induced by, the canonical inclusion of $\mathrm{SO}_{2}(\bar{k})$ in $O(\bar{k})$, then $x=\vec{f}^{*}\left(\bar{W}_{2}\right)$.

Now let us take coefficients in $\mathrm{Z} / \mathrm{h}(\mathrm{q}-1)$, where $\mathrm{h} \geqslant 1$ is an integer prime to $\mathrm{q}-1$ and to char \bar{k}, and let us consider the following map of exact sequences: $\cdots \longrightarrow \mathrm{H}^{4}\left(\mathrm{BSO}_{2}(\overline{\mathrm{~K}}), \mathrm{Z} / \mathrm{h}(\mathrm{q}-1)\right) \xrightarrow{\delta} \mathrm{H}^{2}(\underset{2}{ }, \mathrm{z/h}(\mathrm{q}-1)) \xrightarrow{\tau} \mathrm{H}^{2}\left(\left(\mathrm{BSO}_{2}(\overline{\mathrm{k}})\right), \mathrm{z/h}(\mathrm{q}-\right.$ $\left\|_{\bar{\gamma}_{1}}{ }^{*},\right\|_{2}^{*}$ $V^{(F, i d)^{*}}$ $\cdots \rightarrow H^{1}\left(\mathrm{BSO}_{2}(k)^{Y}, \mathrm{z/h}(q-1)\right) \xrightarrow{\partial} \mathrm{H}^{2}\left(\underset{2}{, \quad, \mathrm{~V} / \mathrm{h}(\mathrm{q}-1)) \xrightarrow{\tau^{\prime}} \mathrm{H}^{2}\left(\mathrm{BSO}_{2}(\overline{\mathrm{k}}), \mathrm{z/h}(\mathrm{q}-1)\right.}\right.$

We have that, if we put $x^{\prime} n=p r_{1(2)}(x)$ where $p r_{i}$ ($i=1,2$) denotes the i-th canonical projection $\mathrm{BSO}_{2}(\bar{k}) \times \mathrm{BSO}_{2}(\bar{K}) \longrightarrow \mathrm{BSO}_{2}(\sqrt{k}), \Delta_{2}\left(x^{\prime}+x^{n}\right)=0$. This implies that there is an element $z \in H^{2}\left(\Lambda_{2}, z / h(q-1)\right)$ such that $\tau(z)=x^{\prime}-x^{\prime \prime}$ 。

Now let us consider $\Gamma_{2}^{*}(z)=z^{\prime}$. Since, if we consider the homomorphism $2 / h(q-1)$ which sends 1 to 1 and the corresponding homomorphism $J: H^{2}\left(\mathrm{BSO}_{2}(\overline{\mathrm{~K}}), \mathrm{z} / \mathrm{h}(\mathrm{q}-1)\right) \longrightarrow \mathrm{H}^{2}\left(\mathrm{BSO}_{2}(\overline{\mathrm{~F}}), \mathrm{Z}_{2}\right)$, we get that $\bar{J}(x)=\bar{f}\left(w_{2}\right)$, so by the definition of $D g$ and the fact that $\underset{\sim}{\sim} D_{r}=D_{r_{2}} \tilde{f^{*}}$ we get that, in order to prove that $\widetilde{f}^{*}\left(u_{2}\right) \neq 0$, it i^{2} sufficient to prove that there is no element $\bar{z} \in H^{2}\left(\varphi_{2}, z / h(q-1)\right)$ such that $2 \bar{z}=z^{\prime}$. Now, since $4 / q-1$ it is easily seen that $S O_{2}(k) \cong k^{*}=\mathrm{Z} /(q-1)$

Since h is prime to $q-1$ it follows from the universal coeffients exact sequence that $H^{2}\left(\mathrm{SO}_{2}(k), z / h(q-1)\right) \cong z /(q-1)$ and we can choose $\varphi_{2}^{*}(x)$ as a generator. Since $(F, i d)^{*}\left(x^{\prime}-x^{\prime \prime}\right)=(q-1) x$ we have $\tau^{\prime}\left(z^{\prime}\right)=(q-1) x$ so if we suppose that there exists \bar{z} such that $2 \bar{z}=z^{\prime}$ we have $\bar{\tau}^{\prime}(\bar{z})=\frac{q-1}{2} x$.

But, by exactness $\dot{\varphi}_{2}^{+} \tau^{\prime}(\bar{z})=0=\frac{q-1}{2} \varphi_{2}^{*}(x)$ which is absurd since $\varphi_{2}^{*}(x)$ is a generator of $H^{2}(B S O(k), z / h(q-1)) \cong$ $=z / q-1$.

Now, since if we consider the homotopy class $h \in\left[\mathrm{BSO}_{2}(k), \mathrm{BO}_{2}(k)\right]$, induced by the canonical inclusion, we clearly get

$$
\widetilde{f}=f h^{\prime}
$$

and since we have proved $\tilde{f}^{*}\left(u_{2}\right) \neq 0$ while it is known $\widetilde{f}^{*}\left(\bar{w}_{1}\right)=0$, we have that $f^{*}\left(u_{2}\right) \neq f^{*}\left(w_{1}\right)$. So, by the structure of $\mathrm{H}^{*}\left(\mathrm{BO}_{2}(k)\right)$ we have that $\mathrm{f}^{*}\left(u_{2}\right)=1$ or $f^{*}\left(u_{2}\right)=1+f^{*}\left(w_{1}\right)$. In either case it is immediate to see that $f^{*}\left(w_{1}\right), f^{*}\left(W_{2}\right)$ and $f^{*}\left(u_{2}\right)$ generate the whole
$\mathrm{H}^{*}\left(\mathrm{BO}_{2}(\mathrm{k})\right)$.
So (i) is proved
(ii)follows immediately from the relation

$$
\widetilde{f}{ }^{\mathcal{D}}=D_{r_{(2)}} \widetilde{\tilde{f}} *
$$

and the theorem in paragraph 6.
q-e.d.

Remark. Given a finite group G and an orthogonal representation \mathcal{X} of G over k, if $\tilde{\mathscr{L}} \in[B G, B O(k)]$ corresponds to \mathcal{H}, we can consider the elements $\tilde{K}^{*}\left(w_{i}\right), \tilde{K}^{*}\left(u_{i}\right)$ as characteristic classes for the representation H and the class

$$
w_{t s}(\mathcal{X})=1+\sum_{i \geqslant 1} \tilde{\mathcal{H}}\left(w_{i}\right) t^{i}+\tilde{\mathcal{H}}^{*}\left(u_{i}\right) t^{i-1} s
$$

as a total cohomology characteristic class for x. With these notations, Proposition 7 asserts that if \mathcal{H} is the canonical two dimensional representation of $\mathrm{O}_{2}(\mathrm{k})$, then:

$$
w_{t s}(x)=1+f^{*}\left(\bar{w}_{1}\right) t+f^{*}\left(\bar{w}_{2}\right) t^{2}+f^{*}\left(u_{2}\right) t s
$$

and the coefficients of the non constant terms' of the above polinomial in t and s, generate $H^{*}\left(\mathrm{BO}_{2}(k)\right)$.

We have the following (we suppose $q=4 m+1$):
Theorem 1. The monomials

$$
\begin{gathered}
\text { The monomials } \\
\alpha_{1} \\
w_{1}
\end{gathered} w_{2}, \ldots \ldots u_{2}^{\beta_{1}} u_{3}^{\hat{\beta}_{2}}
$$

where d $\geqslant 0,0 \leq P_{i} \leq 1, \nabla i$ and $\alpha_{i}=P_{i}=0$ for all but a finite number of i's, form a basis for the algebra $\mathbb{A}^{*}\left(\widetilde{F O} \boldsymbol{T}^{\prime}\right)$.

Proof. let us consider the map

defined by induction in the following way:

$$
\tilde{h}_{1}=f \quad \tilde{b}_{n}=\mu\left(\tilde{h}_{n-1} \times \tilde{h}_{1}\right)
$$

We putir $\widetilde{h}_{n}=h_{n}$, where $\widetilde{\pi}: B O(k) \longrightarrow \widetilde{F O} \psi^{q}$ is
the map defined in paragraph 6.
Now let us define an homomorphism F from $H^{*}\left(O_{2}(k) \cong z_{2}\left[h_{1}^{*}\left(\bar{w}_{1}\right), h_{1}^{*}\left(\bar{w}_{2}\right), h_{1}^{*}\left(u_{2}\right)\right]\right.$

$$
\frac{\left(h_{1}^{*}\left(u_{2}\right)^{2}+h_{1}^{*}\left(u_{2}\right) \times h_{1}^{*}\left(w_{1}\right)\right)}{}
$$

$=A$ to the algebra $z_{2}\left[x^{\prime}, x^{\prime \prime}, y\right] /\left(y^{2}+y\right)=B$
by $F\left(h_{1}^{*}\left(w_{1}\right)\right)=x^{\prime}+x^{\prime \prime}, F\left(h_{1}^{*}\left(w_{2}\right)\right)=x^{\prime} x^{n}, F\left(h_{1}^{*}\left(u_{2}\right)\right)=\left(x^{\prime}+x^{\prime \prime}\right) y$.
It is clear that F is injective.
Consider the homomorphism:
$F^{\otimes n}: A \theta_{0} \ldots \otimes A$
n times
$\underbrace{B Q \in B B}=z_{2}\left[x_{1}^{1}, x_{1}^{n}, \ldots x_{n}^{1}, x_{n}^{n}, y_{q}, \ldots \bar{y}_{n}\right]$
n times
$\left(\dot{y}_{1}^{2}+y_{1}, \ldots y_{n}^{2}+y_{n}\right)$

Since $\mathrm{H}^{*}\left(\mathrm{O}_{2}(\mathrm{k}) \mathrm{x}\right.$
n times
$\left.\times O_{2}(k)\right) \cong$

by Kunneth formula, we immediately get from the Corallay to Proposition 8, Proposition 8 and the definition of $F^{8 n}$ that

$$
F^{\otimes n_{n}} n_{i}^{*}\left(w_{i}\right)=\sigma_{i}
$$

where σ_{i} denotes the i-th elementary symmetric
function in $\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots x_{n}^{\prime}, x_{n}^{n}\right)$ for $i \leqslant 2 n$;

$$
F_{i}^{\otimes n_{n} *}\left(w_{i}\right)=0 \quad \text { for } i \geqslant 2 n ;
$$

and also

$$
\begin{aligned}
& F^{8} n_{h_{n}^{*}}^{\left(u_{i}\right)=\sum_{k=1}^{n} \sigma_{i-2}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots \hat{x}_{k}^{\prime}, \hat{x}_{k}^{n}, \ldots, x_{n}^{\prime}, x_{n}^{n}\right)\left(x_{k}^{\prime}+x_{k}^{\prime \prime}\right) y_{k}} \begin{array}{l}
\text { for } i \leqslant 2 n \\
F^{\otimes n_{h_{n}}^{*}\left(u_{i}\right)=0, \quad \text { for } i>2 n .}
\end{array} . l
\end{aligned}
$$

Now we want to prove that the elements

$$
F_{b_{n} y_{n}^{*}}\left(w_{1}^{\alpha} \ldots w_{2 n}^{\alpha n} u_{2}^{\beta_{1}} \ldots u_{2 n}^{\beta_{2 n}}\right) \text { with }
$$

$\alpha_{1}, \ldots \alpha_{2 n} \quad 0,0 \leq \beta_{1}, \ldots, \beta_{n} \leq 1$ are independent in $\frac{B \otimes \ldots . \otimes_{n} B}{n \text { times }}=B^{\otimes n}$

It is readily seen that we can consider $B^{\sqrt{9 n}}$ as a quotient of the algebra

$$
z_{2}\left[x_{1}^{\prime}, x_{1}^{n}, \ldots, x_{n}^{\prime}, x_{n}^{n}, y_{1}^{\prime}, y_{1}^{n}, \ldots, y_{n}^{\prime}, y_{n}^{\prime \prime}\right] \mid\left(y_{1}^{2}+y_{1}^{\prime}, y_{1}^{n^{2}}+y_{1}^{n}, \ldots, y_{n}^{n 2}+y_{n}^{\prime \prime}\right) \quad,
$$

over the ideal generated by the elements $\bar{J}_{1}^{\prime}+y_{1}^{\prime \prime}, \ldots, J_{n}^{\prime}+J_{n}^{n}$ Let us call q the quotient homomorphism.

Lemma 11. The following identity holds

$$
\begin{aligned}
& F^{\prime n} h_{n}^{*}\left(u_{i}\right)=q\left(\sum _ { S = 1 } ^ { n } \left(\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots, \hat{x}_{s}^{\prime}, x_{S}^{n}, \ldots, x_{n}^{n}\right) y_{S}^{\prime}+\right.\right. \\
& \left.+\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots, \hat{x}_{s}^{n}, \ldots, x_{n}^{n}\right) y_{s}^{n}\right) .
\end{aligned}
$$

Proof. We can write:

$$
\text { Now let us put for } 2 \leq i \leq 2 n \text {, }
$$

$$
v_{i}=\sum_{s=1}^{n}\left(\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots, \hat{x}_{s}^{\prime}, \ldots, x_{n}^{n}\right) y_{s}^{\prime}+\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots, \hat{x}_{s}^{n}, \ldots,\right.\right.
$$

$$
\left.\left.=\cdots, x_{n}^{n}\right) y_{s}^{n}\right),
$$

and $\nabla_{1}=\dot{J}_{1}^{\prime}+Y_{1}^{\prime \prime}+\cdots+Y_{n}^{\prime}+Y_{n}^{\prime \prime}$.

Lemma 12. The monomials

$$
\nabla_{1}^{\beta} \ldots v_{2 n}^{\beta}
$$

$$
0 \leq \beta_{1}, \ldots, \beta_{2} \leq 1
$$

are linearly independent over $z_{2}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots x_{n}^{\prime}, x_{n}^{\prime \prime}\right)$, the field of fractions of $z_{2}\left[x_{1}^{\prime}, x_{1}^{n}, \ldots, x_{n}^{\prime}, x_{n}^{n}\right]$.

Proof. Suppose we have an expression

$$
\sum a_{I} v_{I}=0 \quad \text { where } a_{I} \in z_{2}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime}, x_{n}^{\prime \prime}\right) \quad \text { and }
$$

$$
\begin{aligned}
& (\alpha) \quad \begin{array}{l}
\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots \hat{x}_{s}^{\prime}, \ldots, x_{n}^{n}\right)=x_{s}^{n} \sigma_{i-2}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots \hat{x}_{s}^{\prime}, \hat{x}_{s}^{n}, \ldots, x_{n}^{n}\right)+ \\
+\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots, \hat{x}_{s}^{\prime}, \hat{x}_{s}^{n}, \ldots, x_{n}^{n}\right) .
\end{array} \\
& \text { We have: } \\
& q\left(\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots, \hat{x}_{s}^{\prime}, \ldots, x_{n}^{n}\right) y_{s}^{\prime}+\sigma_{i-1}\left(x_{1}^{1}, x_{1}^{n}, \ldots, \hat{x}_{s}^{\prime \prime}, \ldots, x_{n}^{n}\right) y_{s}^{n \prime}\right)= \\
& =\left[\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots, \hat{x}_{s}^{\prime}, \ldots, x_{n}^{\prime \prime}\right)+\sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{\prime \prime}, \ldots, \hat{x}_{s}^{\prime \prime}, \ldots, x_{n}^{n}\right)\right] y_{s} . \\
& \text { Introducing the relations we get, for each } s \leqslant n \text { : } \\
& \sigma_{i-1}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots, \hat{x}_{s}^{\prime}, \ldots, x_{i}^{n}\right)+\sigma_{i-i}\left(x_{1}^{1}, x_{1}^{n}, \ldots, \hat{x}_{s}^{n}, \ldots, x_{n}^{n}\right)= \\
& =\left(x_{s}^{\prime}+x_{s}^{n}\right)\left(G_{i-2}\left(x_{1}^{\prime}, x_{1}^{n}, \ldots, \hat{x}_{s}^{\prime}, \hat{x}_{g}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)\right. \text { which proves the } \\
& \text { lemma. } \\
& \text { q.e.d. }
\end{aligned}
$$

$v_{I}=v_{i_{1}} \ldots v_{i_{k}}$ for some subset $I=\left(i_{1}, \ldots, i_{k}\right) \subset(1, \ldots, 2 n)$.
Suppose that for some of the I 's, $a_{I} \neq 0$ and let I be a set of maximal order among those. We can suppose $\mathrm{a}_{\mathrm{I}}=1$ 。

Let J be the complement of \bar{I} in ($1, \ldots, 2 n$).
We have

$$
\left(\sum_{I} a_{I} \nabla_{I}\right) \nabla_{j}=0
$$

But now, by maximality, only the term $a_{i} \bar{V}_{\bar{T}} V_{J}$ can contain a monomial of type $b \Psi_{1}^{\prime} X_{1}^{\prime \prime} \cdots \cdot \bar{J}_{n}^{\prime \prime}$. So we must have b $y_{1}^{\prime} y_{1}^{\prime \prime} \cdots y_{n}^{\prime \prime}=0$.
Since $a_{\bar{I}}=1$ we have that b is equal to the coefficient of $y_{1}^{1} J_{1}^{\prime \prime} \cdots \nabla_{n}^{\prime \prime}$ in $v_{1} \cdots v_{2 n}$. So b comes to be equal to the determinant of the Jacobian matrix:

$$
\left|\begin{array}{cccc}
1 & \cdots & \cdots & 1 \\
\sigma_{1}\left(\hat{x}_{1}^{1}, \ldots, x_{n}^{n}\right) & \cdots & \sigma_{1}\left(x_{1}^{1}, \ldots, \hat{x}_{n}^{n}\right) \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\sigma_{2 n-1}\left(\hat{x}_{1}^{1}, \ldots, x_{n}^{n}\right) & \cdots & \sigma_{2 n-1}\left(x_{1}^{1}, \ldots, \hat{x}_{n}^{n}\right)
\end{array}\right|
$$

which is different from zero by the algebraic independance of the elementary symmetric functions. So, also b $y_{1}^{\prime} y_{1}^{n} \cdots \cdot y_{n}^{n} \neq 0$ and this implies that $a_{\bar{I}}=0$ thus giving a contradiction.
q.e.d.

Now for any two by two partition p of the set
$\left(y_{1}^{\prime}, \ldots, y_{n}^{n}\right)$, let us consider the corresponding algebra Q_{p} given by taking the quotient of the algebra

$$
z_{2}\left(x_{1}^{\prime}, \ldots, x_{n}^{n}\right)\left[y_{1}^{\prime}, \ldots, y_{n}^{n}\right], \tilde{R}_{2}^{n}
$$

obtainea by identifying, two by two, the elements coupled in the partition p.

Let us take the vector space over $\widetilde{K}=Z_{2}\left(x_{1}^{\prime}, \ldots, x_{n}^{n}\right)$ given by $\Theta_{p \in T} Q_{p}$ where I is the set of two by two partitions of $(1, \ldots, 2 n)$, and $G: R \longrightarrow \not \longrightarrow \underset{P \in T}{\oplus} Q_{p}$ the vector space homomorphism which is the quotient defined above on each factor.
We want to prove $\operatorname{dim}($ Ker $G)=2^{n-1}$.
In order to do so let us prove the following,

Lemma 13. Let K be any field and

$$
R=K\left[y_{1}, \ldots, y_{2 n}\right] \quad \frac{\left(y_{1}^{2}+y_{1}, \ldots, y_{2 n}^{2}+y_{2 n}\right) .}{}
$$

Let us consider, for each element p of the set T of two by two partitions of the set ($1, \ldots, 2 n$), the quotient Q_{p} defined as above. And let $G: R \longrightarrow n_{n-1}{ }_{P}^{\oplus} \in T Q_{p}$ also be defined as above. Then, $\operatorname{dim}(\operatorname{Im} G) \geqslant 2^{n-1 p}$.

Proof. Let R^{\prime} be the subalgebra of R generated by $\bar{J}_{1}, \ldots, \bar{y}_{2 n-1}$. It will be sufficient to prove R $^{\prime} \cap \operatorname{Ker}(G)=0$.

Now suppose $G\left(\sum a_{I} y_{I}\right)=0$, where $a_{I} \in K$ and $y_{I}=y_{i_{1}} \ldots y_{i_{k}}$ with $I=\left(i_{1}, \ldots, i_{k}\right) \subset(1, \ldots, 2 n-1)$. Clearly a $\phi=0$; so we can make induction on the order of I and suppose $a_{I}=0$ for $|I| \angle m$.

Consider any element $a_{I} y_{i_{1}} \ldots y_{i_{m}}$ and suppose m to be even.
Now take any partition p containing the couples (i_{1}, i_{2}),.. $\ldots,\left(i_{m-1}, i_{m}\right)$ and consider the image of $y_{i_{i}} \ldots y_{i_{m}}$ in Q_{p}. It is clear that there is no set J with $|J| \geqslant|I|$ such that y_{J} and J_{I} are mapped to the same element in Q_{p}, so this implies $a_{I}=0$.

If I is odd, consider any p containing (i_{2}, i_{3}),.. $\ldots,\left(i_{m-1}, i_{m}\right),\left(i_{1}, 2 n\right)$ and also in this case one proves readily that $a_{I}=0$.
q.e.d.

If we go back to \widetilde{K}, then Lemma 12 and Lemma 13 imply that a basis for $\operatorname{Ker}(G)$ is given by the elements

$0 \leqslant \beta_{2}, \ldots, \beta_{2 n} \leqslant 1$.
Now let us restrict to the subring $\overline{\mathrm{A}} \mathrm{R}$ generated by the elementary symmetric functions $\sigma_{i}\left(x_{1}^{\prime}, \ldots, x_{n}^{n}\right)$ and by the V_{i} 's.

It is clear that an element $x \in \overline{\bar{R}} \cap \operatorname{Ker}(G)$ if and $\sim \sim \operatorname{lnly}$ if $x \in\left(G_{p}\right) \cap \bar{R}$ where G_{p} denotes the quotient $\widetilde{R} \longrightarrow Q_{p}$ relative to any partition $p \in T$. If we consider the partition $\bar{p}:\left(y_{1}^{\prime}, y_{1}^{\prime \prime}\right), \ldots,\left(y_{n}^{\prime}, y_{n}^{\prime \prime}\right)$ the above implies that the elements $G_{p}\left(v_{2}, \ldots, v_{2 n}^{\beta_{2 n}^{n}}\right), 0 \leqslant \beta_{2}, \ldots, \beta_{2 n} \leqslant 1$ are
linearly independent over $Z_{2}\left(\sigma_{1}, \ldots, \sigma_{2 n}\right)$ with
$\sigma_{i}=\sigma_{i}\left(x_{1}^{1}, x_{1}^{\prime \prime}, \ldots, x_{n}^{\prime \prime}\right)$.
In particular the elements

$$
\sigma_{1}^{\alpha_{1}} \cdots \sigma_{2 n}^{\alpha_{i n}} G_{p}\left(v_{2}^{\beta_{2}}\right) \ldots G_{p}\left(v_{2 n}^{\beta_{2 n}}\right)
$$

$\alpha_{1}, \ldots, \alpha_{2 n} \geqslant 0, \quad \alpha=\beta_{2}, \ldots, \beta_{2 n} \leqslant 1$, are linearly independent over z_{2}. Since we know that $\sigma_{i}=F^{* n} h_{n}^{*}\left(w_{i}\right)$ and, by Lemma 11, $G_{p}\left(v_{j}\right)=F^{\& n} h_{n}^{*}\left(u_{j}\right)$, for $j \geqslant 2$, we have that the monomials:

$$
w_{1}^{\alpha_{1}} \ldots \ldots w_{2 n}^{\alpha_{2 n}} u_{2}^{\beta_{2}} \ldots . u_{2 n}^{\beta_{2 n}} \quad \alpha_{1}, \ldots, \alpha_{2 n} \geqslant 0,0 \leq \beta_{2}, \ldots, \beta_{2 n} \leq 1
$$

are linearly independent in $\mathrm{H}^{*}\left(\widetilde{\mathrm{FO}} \psi^{9}\right)$.
Applying this for larger and larger n we get that the w_{i} 's and u_{i} 's generate a subalgebra of $\mathrm{H}^{*}\left(\widetilde{F O} \psi^{i}\right)$ with Poincare series

$$
\frac{(1+t)\left(1+t^{2}\right) \ldots \ldots \ldots . . .}{(1-t)\left(1-t^{2}\right) \ldots \ldots \ldots \ldots}
$$

but this, by Lemma 3, is just the Poincare series of $H^{*}\left(F O \Psi^{q}\right)$ and the Theorem follows.

Given a group G, we say that a family $\left\{N_{i}\right\}_{i \in I}$ of subgroups of G detects the (mode) cohcwology of G when, if we consider the elements $j_{N_{i}} \in\left[B N_{i}, B G\right]$ for each $i \in I$, associated to the inclusions of the $\mathbb{N}_{i}{ }^{\prime} s$ in G, the homomorphism $\prod_{i \in I J_{N}^{*}}^{*}: H^{*}(B G) \longrightarrow \prod_{i \in I^{H}}{ }^{*}\left(B N_{i}\right)$ is injective.

It is known [7] that the cohomology of $\mathrm{O}_{2}(\mathrm{k})$ is
detected by its family of maximal elementary abelian 2-subgroups.

Since there are just two conjugacy classes of maximal elementary abelian 2-subgroups, one of which containing the subgroup of diagonal matrices $Q(2)$, by taking a representative V for the class not containing $Q(2)$, we have that the cohomology of $O_{2}(k)$ is detected by $Q(2)$ and V (both $Q(2)$ and V have rank 2).

By the definition of u_{2} we have $j_{Q(2)}^{*}\left(h_{1}^{*}\left(u_{2}\right)\right)=0$, so we must have $j_{V}^{*}\left(h_{1}^{*}\left(u_{2}\right)\right) \neq 0$. Since the center c of $O_{2}(k)$ has order 2 , by maximality C is contained in both $Q(2)$ and V. Let us take polinomial generators $x, y(r e s p \cdot \bar{x}, \bar{y})$, for $H^{* *}(B Q(2))\left(r e s p \cdot H^{*}(B V)\right)$ with the property that the kernel of the homomorphism $H^{*}(B Q(2)) \longrightarrow H^{*}(B C)\left(r e s p \cdot H^{*}(3 V) \longrightarrow H^{*}(B C)\right)$ induced by inclusion, is the ideal $(x+y)$ (resp. $(\bar{x}+\bar{y})$).

We get:

$$
\begin{aligned}
& j_{Q(2)}^{*}\left(h_{1}^{*}\left(w_{1}\right)\right)=x+y \\
& j_{Q(2)}^{*}\left(h_{1}^{*}\left(w_{2}\right)\right)=x y \\
& j_{V}^{*}\left(h_{1}^{*}\left(w_{2}\right)\right)=\bar{x} \bar{y} \\
& j_{V}^{*}\left(h_{1}^{*}\left(w_{1}\right)\right)=j_{V}^{*}\left(h_{1}^{*}\left(u_{2}\right)\right)=\bar{x}+\bar{y} .
\end{aligned}
$$

$$
(*) \quad \begin{aligned}
& j_{Q(2)}^{*}\left(h_{1}^{*}\left(w_{2}\right)\right)=x y \\
&
\end{aligned}
$$

This follows for the w_{i} 's because the two subgroups $Q(2)$ and V are conjugate in $O_{2}(\bar{k})$ and for u_{2} by the defriction of \bar{x} and \bar{y} and by the fact that $C=Q(2) \cap \mathrm{V}$.

It follows from the above properties that the coho-
mology of $\underbrace{O_{2}(k) x \ldots O_{2}(k)}_{n-t i m e s}$ is detected by the subgroups of type $E_{1} \times \ldots .$. E_{i} can be equal to $Q(2)$ or V.

Since the proof of Theorem 1 implies that the homomorphism

$$
h_{n}^{*}: H^{i}\left(\widetilde{F O} \psi^{q}\right) \longrightarrow H^{i}(\underbrace{(B Q(k) x \ldots x B Q(k)}_{n-t i m e s})
$$

is infective for i $\leq 2 n-1$, we have that the homomorphism

$$
\left.(\oiint)\left(j_{E_{1}} x \ldots x j_{E_{n}}\right)^{*}\right) h_{D}^{*}: H^{i}\left(\widetilde{F O} \psi^{3}\right) \longrightarrow \oplus H^{i}\left(B E_{1} \times \ldots x B E_{n}\right)
$$

where the sum is taken over the number of different subgroups of type $E_{1} x \ldots x E_{n}$, is injective for i $2 n-1$. By definition

$$
h_{n}=\widetilde{\pi} \tilde{h}_{n}
$$

\tilde{h}_{n} being induced by the canonical inclusion of $\underbrace{O_{2}(k) x \ldots x O_{2}(k)}_{n-t i m e s}$ in $O(k)$. Since in $O(k)$ any two subgroups $E_{i} \times \ldots \times E_{n}$ and $E_{i} \times \ldots \times E_{n}^{i}$ with the same number of $E_{i}^{\prime} s$ and $F_{j}^{\prime \prime}$ s equal to $Q(2)$, are conjugate, we get that the homomorphism.

$$
\begin{aligned}
& A_{n}^{m}:\left(\sum_{m=0}^{n}\left(j_{Q(2)} x \ldots x j_{Q(2)_{m}}^{x} j_{V_{1}} x \ldots x j_{V_{n-m}}\right)^{*}\right) h_{n}^{*}: \\
& : H^{i}\left(\widetilde{F O} \psi^{q}\right) \longrightarrow \tilde{m}_{m=0}^{n} H^{i}\left(B Q(2)_{1} x \ldots x B Q(2)_{m} x B V_{1} x \ldots x B V_{n-m}\right) \\
& \text { is infective for } i \leq 2 n-1 \text {. }
\end{aligned}
$$

Theorem 2. In $H^{*}\left(\widetilde{F O} \psi^{9}\right)$

$$
u_{k}^{2}=\sum_{a+b=2 k-1} w_{a} u_{b}
$$

$$
\text { for each } k \geqslant 2 \text {. }
$$

Proof. It follows from the above discussion that it is sufficient to prove, for any fixed $n \geqslant k$

$$
\lambda_{n}^{m}\left(u_{k}^{2}\right)=\lambda_{n}^{m}\left(\sum_{\substack{a+b=2 k-1 \\ b \geqslant 2}}^{w_{a}} u_{b}\right)
$$

for each $0 \leqslant m \leqslant n$.
Let us fix such an n and let us put for simplicity

$$
\lambda_{n}^{m}\left(w_{i}\right)=w_{i} \text { and } \lambda_{n}^{m}\left(u_{i}\right)=u_{i} .
$$

First of all suppose $m=n$. Then, by the definition of the u_{i} 's, we have

$$
0=\lambda_{n}^{n}\left(u_{k}^{2}\right)=\lambda_{n}^{n}\left(\sum_{\substack{a+b=2 k-1 \\ b \geqslant 2}} w_{a} u_{b}\right)
$$

Now suppose $m=0$. We have the following relations: if g is odd

$$
\lambda_{n}^{0}\left(u_{g}\right)=0
$$

if g is even

$$
\begin{array}{ll}
\lambda_{n}^{0}\left(u_{g}\right)=w_{g-1} & \text { for } g\lfloor 2 n \\
\lambda_{n}^{0}\left(u_{g}\right)=0 & \text { for } g>2 n
\end{array}
$$

To prove this, let us make induction on n, for $n=1$
the above relations follow from proposition 7 and the relations (*). Suppose they are true for $n-1$ and let us put $\lambda_{n-1}^{0}\left(w_{i}\right)=w_{i}^{\prime}, \lambda_{n-1}^{0}\left(u_{i}\right)=u_{i}^{\prime}, \lambda_{1}^{0}\left(w_{i}\right)=w_{i}^{n}, \lambda \lambda_{1}^{0}\left(u_{i}\right)=u_{i}^{n}$.

Using the multiplicative relations and the induction ipothesis we have:
$\lambda_{n}^{0}\left(w_{t, s}\right)=\left(1+\sum_{i=0}^{2(n-1)} w_{i}^{\prime} t^{i}+\sum_{\substack{j=1 \\ j=0 d d}}^{2(n-1)-1} w_{j}^{\prime} t^{j} s\right)\left(1+w_{1}^{n i t} t+w_{2}^{n t} t^{2}+w_{1}^{n t s}\right)$.
This implies if f is odd and $g \downharpoonright 2 n-1$,

$$
u_{g}=w_{g-2}^{\prime} w_{1}^{\prime \prime}+w_{g-2}^{\prime} w_{1}^{\prime \prime}=0
$$

if $g \geqslant 2 n+1$

$$
u_{g}=0
$$

If g is even and $g \leqslant 2 n$

$$
u_{g}=w_{g}^{\prime}-2_{1}^{w_{1}^{\prime \prime}+w_{g}^{\prime}-3^{w_{2}^{\prime \prime}+w_{g-1}^{\prime}}=w_{g-1}}
$$

if $g>2 n$

$$
u_{g}=0,
$$

so the above relations are proved.
They implie,if k is odd,
$\lambda{ }_{n}^{0}\left(\sum_{a+b=2 k-1} w_{a} u_{b}\right)=\sum_{e+f=2 k-2}^{f E 0 d d} w_{f}^{w_{f}}=0=\lambda_{n}^{0}\left(u_{k}^{2}\right)$,
if k is even
$\lambda_{n}^{0}\left(\sum_{a+b=2 k-1} w_{a} u_{b}\right)=\sum_{e+f=2 k-2}^{f=0 d d} w^{w_{1} f^{=}=w_{k-1}^{2}=\lambda_{n}^{0}\left(u_{k}^{2}\right) . ~}$
Finally suppose $0<m<n$.
Let us put $w_{j}^{i}=f_{m}^{m}\left(w_{j}\right)$ and $w_{j}^{\prime \prime}=\int_{n-m}^{0}\left(w_{j}\right)$.

The above relations and the multiplicative formulas implie:

$$
\begin{aligned}
& \lambda \sum_{n}\left(\sum_{a+b=2 k-1} w_{a} u_{b}\right)=\sum_{a+b=2 k-1} w_{a}\left(\sum_{e+f=b-1}^{f=0 d d} w_{e}^{\prime} w_{f}^{n}\right)= \\
& =\sum_{a+b=2 k-1}\left(\left(\sum_{u+v=a} w_{u}^{\prime} w_{v}^{n}\right)\left(\sum_{e+f=b-1}^{f=0 d d} w_{e}^{\prime} w_{f}^{n}\right)\right) .
\end{aligned}
$$

Take any $4-p l e(e, f, u, v)$ with f odd, $(e, f) \neq(u, v)$, $e+f+u+v=2 k-2$. For this 4-ple we get the element

$$
w_{e}^{1} w_{f}^{u} w_{u}^{1} w^{\prime \prime}
$$

in the above sum.
We separate two cascs:

1) If v is odd we get four 4-ple

$$
(e, f, u, v),(u, v, e, f),(e, v, u, f),(u, f, e, v)
$$

which give the same element in the above sum (clearly if $e=u$ or $f=v$ the four $4-p l e$ reduce to two).
2) if u is even we get two $4-\mathrm{ple}$
$(e, f, u, v),(u, f, e, v) \cdot$
which give the same element in the above sum.
Now it is clear that in either cases the elements associated to those 4 ple cancel two by two.

So, we are left with the case e=u, fav.
This implies
$\lambda_{n}^{m}\left(\sum_{a+b=2 k-1} w_{a} u_{b}\right)=\left(\sum_{h+s=2 k-2}^{s=0 d d} w_{h}^{\prime} w_{s}^{n}\right)^{2}=\lambda_{n}^{m}\left(u_{k}^{2}\right)$
where the second equality follows from the multiplecative relations.

Thus

$$
\lambda_{n}^{m}\left(\sum_{a+b=2 k-1} w_{a} u_{b}\right)=\lambda_{2}^{m}\left(u_{k}^{2}\right) \quad \text { for each } \quad 0 \leqslant m \leqslant n
$$ and the Theorem is proved.

q.e.d.

Remark. Just by using diedral groups and a multiplicative relation which can be easily defined for $H^{*}\left(\widetilde{F O} \psi^{9}\right)$ one could prove similar results to Theorems 1 and 2 without the restrictions $q=|k|, k$ a finite field with $4 \mathrm{~m}+1$ elements.

8. The algebras $H^{*}\left(O_{n}(k)\right)$.

In this paragraph we suppose that $q=4 m+1$ and that k is a field with q elements.

Let Q^{\prime} and V^{\prime} two proper subgroups of the groups $Q(2)$ and V considered in the preceeding paragraph, which are both different from C. Since both Q^{\prime} and V^{\prime} are elementary abclian 2-subgroups of rank $1, H_{i}\left(Q^{\prime}\right) \cong$ $\cong H_{i}\left(V^{\prime}\right) \cong Z_{2}$ for each $i \geqslant 0$, where by H_{i} we denote the i-th homology group with coefficients in Z_{2}.
$\left.\operatorname{Let} \bar{\xi} i^{(r e s p} \cdot \bar{M}_{i}\right)$ the unique non zero element in $H_{i}\left(Q^{\prime}\right)\left(r e s p . H_{i}\left(V^{\prime}\right)\right)$ for $i \geqslant 1$.

Let $R=M_{1} \times \ldots \times M_{n}$ any subgroup of $O_{2}(k) \times \ldots \times O_{2}(k$ n-times
which is the product of copies of Q^{\prime} and V^{\prime}.
For each R we get the homomorphism
$\left(h_{n} j_{R}\right)_{*}: H_{i}^{*}(B R) \longrightarrow H_{*}\left(\widetilde{F O} \psi^{4}\right)$.
We $p u \xi_{i}=\left(h_{n} j_{Q^{\prime}}\right) \xi_{i}$ and $\eta_{i}=\left(h_{n} j_{V},\right)_{*} \bar{M}_{i}$.
Now let $x, y \in H_{*}\left(\widetilde{F O} \Psi^{i}\right)$ be such that $\tau=\left(h_{n}, j_{D^{\prime}}\right)(\bar{\tau})$ and $K=\left(h_{n^{\prime \prime}} j_{R^{\prime \prime}}\right)_{*}(\bar{X})$ far two subgroups R^{\prime} and $R^{\prime \prime}$ of the type described above. We can define $\tau 火=\left(h_{n \prime}^{\prime \prime}+n^{n j} \mathcal{R}^{\prime} \times R^{n}\right) *(\tau \otimes K)$ by using the Kunneth formula.

Theorem 3. $H_{*}\left(\widetilde{F O} Y^{9}\right)$ has a basis formed by the monomials
Theorem 3. $H_{*}(F O Y)$ has a basis formed by the monomials
with $\alpha_{i} \geqslant 0,0 \leq \beta_{i} \leqslant 1$ and all but a finite number of
α_{i} 's and P_{i} 's equal to zero.
Further $\left(\eta_{i}+\xi_{i}\right)^{2}=0$

Proof. Let $t_{1}, \ldots, t_{N} ; s_{1}, \ldots, s_{N}$ be indeterminate with $s_{j}^{2}=0$ for each $1 \leq j \leq N$. We define the homomorphism

$$
T_{N}: H_{A}\left(\tilde{F O} \psi^{q}\right) \longrightarrow Z_{2}\left[t_{1}, \ldots, t_{N}\right] \otimes \Lambda\left[s_{1}, \ldots, s_{N}\right]
$$

by

$$
m_{N}(z)=\left\langle z, \prod_{j=1}^{N} w_{t_{j}}{ }_{j}\right\rangle
$$

where by \rangle we mean the canonical pairing between homology and cohomology.

$$
\text { Now Let } \tilde{\zeta}_{i}=I_{N}\left(\zeta_{i}\right) \text { and } \widetilde{\eta}_{i}=T_{N}\left(M_{i}\right)
$$

The multiplicative relations and the definition of Q^{\prime} and V^{\prime} clearly implie that, if $x \in H^{1}\left(B Q^{\prime}\right)\left(r e s p . y \in H^{1}\left(B V^{\prime}\right)\right)$ is the one dimensional polinomial generator of $H^{*}\left(B Q^{\prime}\right)$ (resp. $H^{*}\left(B V^{\prime}\right)$),

$$
\tilde{\xi}_{i}=\left\langle\bar{\xi}_{i}, \prod_{j=1}^{N}\left(1+x t_{j}\right)\right\rangle
$$

and

$$
\widetilde{m}_{i}=\left\langle\bar{n}_{i}, \prod_{j=1}^{N}\left(1+y\left(t_{j}+\tilde{S}_{j}\right)\right)\right\rangle
$$

and that, given two elements $\tau, x \in H_{*}\left(\widetilde{F O} \psi^{\circ}\right)$ for which is defined

$$
T_{N}(\tau X)=T_{N}(\tau) T_{N}(X)
$$

The above relations give:

$$
\xi_{i}=\sigma_{i}\left(t_{1}, \ldots, t_{N}\right)
$$

$$
\left.\tilde{\eta}_{i}=i_{i}\left(\left(t_{1}+s_{1}\right), \ldots,\left(t_{N}+s_{N}\right)\right)\right)
$$

where by σ_{i} we mean the elementary symmetric function of the variables in brackets.
We also have

$$
\begin{aligned}
& \tilde{\xi}_{i} \tilde{\eta}_{i}=\sigma_{i}\left(s_{1}, \ldots s_{N}\right)+\sum_{h=1}^{N} G_{i-1}\left(s_{1}, \ldots, \hat{s}_{h}, \ldots, s_{n}\right) t_{h}+ \\
& \ldots+\sum_{h=1}^{N} s_{h} \sigma_{i-1}\left(t_{1}, \ldots, \hat{t}_{h}, \ldots, t_{N}\right) .
\end{aligned}
$$

(*) $T_{N}\left(\xi_{i}+\eta_{i}\right)^{2}=\left(\widetilde{S}_{i}+\tilde{\eta}_{i}\right)^{2}=0$.
Finally we can filter $z_{2}\left[t_{1}, \ldots, t_{N}\right] \otimes \Lambda\left[s_{1}, \ldots, s_{N}\right]$ by powers of the ideal (s_{1}, \ldots, s_{N}); then under this filtration, the leading term of $\underset{\sum_{S}+\frac{\tilde{S}}{S}}{i}$ is

$$
\sum_{h=1}^{N} s_{h}\left(\sigma_{i-1}\left(t_{1}, \ldots, t_{h}, \ldots, t_{N}\right)\right)
$$

If we consider $z_{2}\left[t_{1}, \ldots, t_{N}\right] \otimes \Lambda\left[s_{1}, \ldots, s_{N}\right]$ as a De Sham complex with $d t_{i}=s_{i}$ we get that

$$
\sum_{i=1}^{N} s_{h}\left(\sigma_{i-1}\left(t_{1}, \ldots, t_{h}, \ldots, t_{N}\right)\right)=d \sigma_{i}\left(t_{1} ; \ldots, t_{N}\right) .
$$

We apply the following:
Lemma $14[8]$. The ring homomorphism
$z_{2}\left[\sigma_{1}, \ldots, \sigma_{N}\right] \otimes \Lambda\left[a \sigma_{1}, \ldots, a \sigma_{N L}\right] \rightarrow z_{2}\left[x_{1}, \ldots, x_{N}\right]^{\otimes}$
$\otimes \Lambda\left[d x_{1}, \ldots ., d x_{N}\right]$
defined in the obvious way is injective.

We clearly get from the above Lemma that the monomials
$\tilde{\xi}_{i}^{\alpha_{1}} \cdots \xi_{N}^{\alpha_{N}} \tilde{\eta}_{1}^{\beta_{1}} \ldots \tilde{\eta}_{N}^{\beta_{N}}$ with ${ }_{i} \geqslant 0, \quad 0 \leq \beta_{i} \leq 1$ are linearly independent. Thus by applying this result for larger and larger N to-gether with Lemma 3, we get the first part of the Theorem.

The second follows from (*) and the fact that $T_{N} / H_{i}\left(\tilde{F O} \psi^{q}\right)$ is injective for $i \leqslant N$.
q.e.d.

Remarks

1) The same remark of the end of Paragraph 7 is valid in the case of this theorem.
2) Lemma 14 is essentialy Lemma 12.
3) It comes out from the proof of Theorem 3 that we can define a ring structure on $H^{*}\left(\widetilde{F O} \Psi^{q}\right)$. With this ring structure $H_{*}\left(\tilde{F O} \psi^{4}\right) \cong Z_{2}\left[\xi_{1}, \xi_{2}, \ldots\right] \otimes$ $\otimes \Lambda\left\{\xi_{i}+\eta_{1}, \xi_{2}^{+i} \eta_{2}, \ldots\right]$.

No: let us consider the group $\underset{r \geqslant 1}{\oplus} \mathrm{H}_{* k}\left(\mathrm{BO}_{r}(k)\right)$. The direct sum homomorphism $O_{n}(k) \times O_{m}(k) \longrightarrow O_{n+m}(k)$ clearly induces a multiplication in $\underset{r}{\oplus} H\left(\mathcal{B O}_{r}(k)\right)$ which is associative and commutative.

Let ε be the generator of $\mathrm{H}_{0}\left(B O_{q}(k)\right)$, then ε^{r} will be the generator of $\mathrm{H}_{0}\left(\mathrm{BO}_{r}(k)\right)$.

By its definition we can choose Q^{\prime} to be $O_{1}(k)$ under the canonical inclusion in $\mathrm{O}_{2}(k)$. Taus let us consider
the elements

$$
\begin{array}{ll}
\xi_{i} \in H_{i}\left(B O_{1}(k)\right), & \forall i \geqslant 1 \\
\eta_{i}=j_{\nabla_{*}}\left(\bar{\eta}_{i}\right) \in H_{i}\left(B O_{2}(k)\right), & \forall i \geqslant 1 .
\end{array}
$$

We have:

Theorem 4. Ir, for each $n G_{n} \in\left[B O_{n}(k), B O(\Omega)\right]$ is the homotopy class associated to the canonical inclusion of $O_{n}(k)$ in $O(k)$, then the homomorphism:

$$
\left.\widetilde{\pi} \tilde{U}_{n}\right)_{*}: H_{*}\left(\mathrm{BO}_{n}(k)\right) \longrightarrow H_{*}\left(\widetilde{\mathrm{FO}} \Psi^{9}\right)
$$

is injective.

Proof. It is clear that $\widetilde{\pi} g_{2}=h_{1}$, so we have that $\approx G_{2}$ takes the M_{5} is into the elements denoted by the same name in $H_{*}\left(\vec{F} \sigma \psi^{9}\right)$.

It also follows from the multiplicative relations that each monomial in the $\bar{\zeta}_{i}^{\prime}$'s and M_{i} 's in $\Theta_{r \geqslant 1} H_{*}\left(B_{r}(k)\right)$ goes into the corresponding monomial in the $S i$ is and $\eta_{i}{ }^{\prime} s_{y}$ in $H_{*}\left(\widetilde{F O} \Psi^{9}\right)$.

In order to prove the Theorem we need some Lemmas.

Lemma 15 (Quillen) [6]. The cohomology of $o_{n}(k)$ is detected by its elementary abelian 2-subgroups.

Lemma 16. If $n=2 m+e(e=0,1)$, then the cohomology of $O_{n}(k)$ is detected by the subgroup which is the image
of $\underbrace{O_{2}(k) \times \ldots \ldots O_{2}(k)}_{\text {m-times }} \times Z_{2}^{e}$ under the canonical inclusion

Proof. By Lemma 15, it is sufficient to prove that each elementary abelian 2-subgroup of $O_{n}(k)$ is conjugate to a subgroup of $\underbrace{\mathrm{O}_{2}(k) \times \ldots . . \times \mathrm{O}_{2}(k)}_{\text {m-times }} \times \mathrm{z}_{2}^{\mathrm{e}}$.

Since given such a subsroup $A \subset O_{n}(k)$, we can consider k^{n} as an orthogonal n-dimensional representation of A, it is sufficient to prove that any orthogonal representation of A can be decomposed as a sum of 1 and 2dimensional representations.

Since for 1 -dimensional representations this is trivial we suppose, by induction, that any m-dimensional representation of A can be written as a sum of 1 and 2-dimensional representations for $m<n$.

Let us consider an -dimansional orthogonal representation $: \%$ of A, and let L an irreducible invariant subspace for this representation. Since the exponent of A divides $q-1, I$ is of dimension 1. We divide two cases:

1) if L^{\perp} is not an isotropic subspace, then $W \cong I \oplus I^{\perp}$ where L is the space orthoronal to I, and by applying induction for $\mathcal{L}^{\perp} w$ can be written as a sum of 1 and 2-dimensional representations.
2) If L is an isotropic subspace, then,by choosing an invariant subspace which is complementary to L^{\perp} (this exists because the order of A is prime to the
characteristic of k), we write W as a direct sum of an iperoolic orthogonal representation and an n-2 dimensional representation. Thus also in this case the induction ipothesis implies that W can be written as a sum of 1 and 2-dimensional representations, and the Lemma is proved.

$$
q \cdot \theta \cdot d
$$

We are now ready to prove Theorem 4.
Let us consider the group $V C O_{2}(k)$ of the preceeding paragraph and let V^{\prime} and $V^{\prime \prime}$ the two proper subgroups of $O_{2}(k)$ which are different from the center of $\mathrm{O}_{2}(k)$. We have $\mathrm{H}_{*}(B V)=\mathrm{E}_{*}\left(B V^{\prime}\right) \otimes_{H^{\prime}}\left(B V^{\prime \prime}\right)$ by the Kunneth formula.

Since V^{\prime} and $V^{\prime \prime}$ are clearly conjugate in $O_{2}(k)$ it follows that if $\overline{\bar{\eta}}_{i} \in H_{i}\left(B V^{\prime \prime}\right)$ denotes the generator of $H_{i}\left(B V^{\prime \prime}\right)$, for each $i \geqslant 1, j_{V}\left(M_{i} \otimes \varepsilon^{\prime \prime}\right)=j_{V}\left(\varepsilon^{\prime} \otimes \eta_{i}\right)=\eta_{i}$, where \mathcal{E}^{\prime} (resp. $\mathcal{C}^{\prime \prime}$) is the generator of $H_{0}\left(B V^{\prime}\right)$ (resp. $H_{0}\left(B V^{\prime}\right)$),

Now, if we consider the two subgroups of $O_{4}(k)$ obtained one by composing the inclusion of V in $\mathrm{O}_{2}(\mathrm{k})$ with the canonical inciusion, of $O_{2}(k)$ in $O_{4}(k)$, the other by composing the product inclusion of $V^{\prime} x V^{\prime}$ in $O_{2}(k) \times O_{2}(k)$ with the direct sum homomorphism $\mathrm{O}_{2}(k) \times \mathrm{O}_{2}(k) \longrightarrow \mathrm{O}_{4}(\mathrm{k})$, it is easy to see, by direct computation that the two subgroups are conjugate by a conjugation which is the identity on their intersection and takes the subgroup which is the image of $V^{\prime \prime}$ under the first inclusion into the subgroup which is the image
of $\{9\} \times V^{\prime}$ under the second.
This cleanly implies that in $\mathrm{H}_{\mathrm{N}}\left(\mathrm{FO}^{(19}\right)$
$\left(\widetilde{\tilde{T}} \tilde{V}_{2}\right)_{*}\left(j_{V *}\left({\overline{m_{p}}}_{j} \otimes \overline{\bar{m}}_{k}\right)\right)=\eta_{j} \eta_{k} \forall i, k \geqslant 1$
since $\widetilde{\pi} \sigma_{2}=h_{1}$ it follows from Proposition 8 that $\left(\tilde{\pi} \tilde{y}_{2}\right)$ is infective so, by (τ) and Theorem 3 we get:

$$
j_{V_{*}}\left(\bar{m}_{i} \otimes \bar{m}_{i}\right)=\xi_{i}^{2} \quad \forall i \geqslant 1
$$

(τ) also implies that the elements $\prod_{j, k}=$ $=j_{V_{k}}\left(\bar{\eta}_{j} \otimes \bar{\eta}_{z}\right), 0 \leq j \angle k$, where we put $\eta_{0, k}=j_{V_{*}}\left(\varepsilon^{\prime} \& \overline{\bar{\eta}}_{k}\right)=$ $=j_{V_{r}}\left(\bar{M}_{k} \otimes \varepsilon "\right)$ and the elements $\xi_{j} \xi_{k}, 0 \leqslant j \leqslant h$, where we put $\xi_{0}=\varepsilon$, are Iinearly independent, thus they generate a submodule of $\mathrm{H}_{*}\left(\mathrm{BO}_{2}(k)\right)$ with Poincare series $\frac{1+t}{(1-t)\left(1-t^{2}\right)}$. But, by the known structure of $\mathrm{H}^{*}\left(\mathrm{BO}_{2}(\mathrm{~K})\right)$, this is just the Poincare series of $\mathrm{H}_{*}\left(3 \mathrm{O}_{2}(\mathrm{~K})\right)$.

Thus the above elements for $\mathrm{H}_{*}\left(\mathrm{BO}_{2}(k)\right)$.
Now Lemma 16 implies that, if $n=2 m+e(e=0,1)$, the homomorpiaism

induced by inclusion, is onto. Thus we get that the elements

where only a finite number of α_{i} 's and $\beta_{i k}{ }^{\prime} s^{i}$ are different from zero, form a set of generators over z_{2} for $\underset{r}{\oplus} \geqslant \mathrm{H}_{n}\left(\mathrm{O}_{r}(k)\right.$).

If, or each $m \geqslant 2$ v consider the subgroup if of

 $\underbrace{\mathrm{O}_{2}(k) \times \ldots \mathrm{O}_{2}(k)}_{m-t+c}$ in $\mathrm{O}_{2 \mathrm{~m}}(\mathrm{k})$ it is known that if $\mathbb{N}(\mathbb{K})$ denotes the normalizer of , in $\mathrm{O}_{2 \mathrm{~m}}(\mathrm{~K})$ then $\mathbb{N}(K) / K=$ $=\sum_{2 m}$, the symmetric group on $2=$ letters, and an element $s \in \sum_{2 m}$ acts on $H(B K)$ by seniti the element in $\bar{\eta}_{i} \otimes \overline{\bar{\eta}}_{i-} \otimes \ldots \otimes$ $\otimes \overline{\bar{\eta}}_{i_{1 m}}$ to the element $\bar{\eta}_{s(11)} \otimes \otimes \bar{\eta}_{s\left(i i_{m}\right)}$,wi ae $\left(i_{1}, \ldots, i_{2 m}\right)$ is any set of 2 m integers with $i_{j} \geqslant 0$ (we put $\bar{\eta}_{0}=\varepsilon^{\prime \prime} \quad \overline{\bar{\eta}}=\varepsilon^{\prime \prime}$) This clearly implies that
(A) $\eta_{\left(t_{1} t_{2}\right)} \cdot \eta_{t_{2 m-1} t_{2 m}}=\eta_{s\left(t_{1}\right) s\left(t_{2}\right)} \cdots \eta_{s\left(t_{2 m-1}\right) s\left(t_{2 m}\right)}$ where $\left(t_{1}, \ldots, t_{2 m}\right)$ is any set of integers with $t_{j} \geqslant 0$, $t_{2 j-1}<t_{2 j}$ and $s \in \sum_{2 m}$, in the ring $\oplus_{r \geqslant 1} H_{m}\left(O_{r}(k)\right)$. Thus (Δ) together with (H) and the fact that $\eta_{j j}=\xi_{j}^{2}$ implies that the elements
 with $\alpha, \alpha_{1} \geqslant 0,0 \leqslant \beta_{i}, k \leq 1$, if $\eta_{i, k}$ compares on the left of $\eta_{i \prime}{ }^{\prime}, k^{2}$ and $\beta_{i, k}=\beta_{i \prime}, k^{\prime}=1$, then $i \angle k<i^{\prime}<k^{\prime}$ and only a finite number of $\alpha_{1}^{\prime \prime}$'s and $\beta_{i, k}$'s are different from zero, form a set of generators over z_{2} for
$r \geqslant 1_{1}{ }^{H}\left(\mathrm{BO}_{r}(k)\right)$.
Now, if for such a monomial A we define

$$
\operatorname{deg}(A)=\alpha+\sum_{i} \alpha_{i}+\sum_{i, k} \sum_{i, k}
$$

We have that $A \in H_{H}\left(O_{r}(k)\right)$ if and only if deg (A)=r; so, in order to prove our theorom,it is sufficient to provet that the monomials oi f a fixed degree are mapped by ($\tilde{\pi} \sigma_{n}$) to independent monomials.
We have from the above,
$\left.\widetilde{\pi}_{n}\right)_{*}\left(\varepsilon^{\alpha} \xi_{1}^{\alpha_{1}} \ldots . \xi_{m}^{\alpha} \ldots . \eta_{0, i}^{\beta_{0,1}} \ldots . . M_{1 k}^{\beta_{1, k}}\right)=$

which by theorem 3 clearly implies that the monomials satisfying (τ^{\prime}) oi the same decree are mapped to independent monomiais by ($\left(\tilde{\pi} O_{n}\right)_{*}$.
q.e.d.

Theorem 5. $H^{*}\left(E U_{i}(K)\right)$ is generated as an algebra by elements $\bar{w}_{1}, \ldots, \bar{w}_{n} ; \bar{u}_{2}, \ldots, \bar{u}_{n}$, with der o $\left(\bar{w}_{i}\right)=i$, $\operatorname{deg}\left(\bar{u}_{i}\right)=i-1$, subject to tie following relations

$$
\bar{u}_{i}^{2}=\sum_{a+b=2 i} \bar{W}_{a} \vec{u}_{b}, \quad \text { where } \bar{w}_{0}=1
$$

$$
b \geqslant 2
$$

Proof. It follows by theorems that the homomorphism $\left(\underset{\mathrm{H}}{ }{I_{n}}_{n}\right)^{*}: \mathrm{H}^{*}\left(\widetilde{\mathrm{FO}} \psi^{q}\right) \longrightarrow \mathrm{H}^{*}\left(\mathrm{BO}_{n}(\mathrm{k})\right)$
is onto for each $n \geqslant 1$; and we known, by Lemma 16 that, if $n=2 m+e(e=0, \eta)$, the homomorphism

$$
\delta_{n}^{*}: H^{*}\left(\mathrm{BO}_{n}(\mathrm{k})\right) \longrightarrow \mathrm{H}^{*}(\underbrace{\mathrm{BO}_{2}(\mathrm{k}) \times \ldots \mathrm{BA}_{2}(\mathrm{k})}_{\text {m-times }} \times \mathrm{BZ}_{2}^{e})
$$

induced by inclusion, is into.

If $n=2 m$, then ($\left.\tilde{\pi} O_{n} \delta_{n}\right)=h_{n}$, so the Theorem follows from the proof of Theorem 1 and racorem 2 by taking $\bar{w}_{i}=\left(\tilde{\pi}_{\tilde{\pi}}^{v_{n}}\right)_{k}\left(u_{j}\right)$ and $\bar{u}_{i}=\left(\tilde{\tilde{\pi}} \mathscr{Y}_{n}\right)_{\pi}\left(u_{i}\right)$.

If $n=2 m+1$, we have that, by definition the inclusion of $\underbrace{\mathrm{O}_{2}(k) \times \ldots \mathrm{O}_{2}(k)}_{\text {m-times }} \times \mathrm{Z}_{2}$ in $\mathrm{O}_{n}(k)$ is obtained by composing the inclusion of $\mathrm{O}_{2}(k) \times \ldots \ldots \times \mathrm{O}_{2}(k) \times \mathrm{Z}_{2}$ m-times
in $O_{n-1}(k) \times\left(z_{2} \cong 0_{1}(k)\right)$ with the direct sum homomorphism $\mathrm{O}_{\mathrm{n}-1}(\mathrm{k}) \times \mathrm{O}_{1}(\mathrm{k}) \longrightarrow \mathrm{O}_{\mathrm{n}}(\mathrm{k})$; thus by the multiplicative relations and the result for $0_{n-1}(k)$, we get $\left(\widetilde{\tilde{\pi}} \sigma_{n} S_{n}\right)^{*}\left(w_{t s}\right)=\left(1+\sum_{i=1}^{n-1} \bar{w}_{i}^{i} t^{i}+\sum_{j=2}^{n=1} \bar{u}_{j}^{\prime} t^{j-1} s\right) \otimes(1+x t)$ where $\bar{w}_{i}^{\prime}=h_{n-1}^{*}\left(w_{i}\right), \bar{u}_{j}^{i}=h_{n-1}^{*}\left(u_{j}\right)$ and $:\left\{\in H^{1}\left(B Z_{2}\right)\right.$ is the one dimensional polinomial generator of $\mathrm{E}^{*}\left(\mathrm{~B} Z_{2}\right)$.

Thus we get $\left(\tilde{\pi} G_{n} S_{n}\right) *\left(w_{i}\right)=0$ and $=\left(\right.$ 分 $\left._{n} S_{n}\right)\left(u_{i}\right)=$ $=0$ for $i>n$.
This means that the ideal corcratea by $w_{n+1}, w_{n+2}, \ldots \ldots, u_{n+1}$ $u_{n+2}, \ldots \ldots$ lies in the kernel of $\left(\widetilde{\pi} \mathcal{G}_{n}\right)^{n}$.

Since by the proof of Theorem 4 the Poincare series of $H^{*}\left(\mathrm{BO}_{n}(k)\right)$ is

$$
\frac{(1+t) \ldots \cdot \cdot\left(1+t^{n-1}\right)}{(1-t) \ldots \ldots\left(1-t^{n}\right)}
$$

and since also the algebra $\mathrm{H}^{*}\left(\widetilde{F O} \psi^{*}\right)$

$$
\left(w_{n+1}, w_{n+2}, \ldots, u_{n+1}, u_{n+2}, \ldots\right.
$$ has this Poincare series, the Theorem follows also for n=2m+1, because of ($\left(\tilde{T}_{n}\right)^{*}$ being onto by putting $\bar{w}_{i}=\left(\widetilde{\pi} \tilde{J}_{n}\right)^{*}\left(w_{i}\right)$ and $\bar{u}_{i}=\left(\tilde{\pi}_{\pi}^{\pi} V_{M}\right)^{*} u_{i}$.

BIBLIOGRAPFEY
[1] J.F.Adams, Lectures on Lie Groups, Benjamin, New York, 1969.
[2] M.F.Atiyah, G.E.Segal, Equivatiant K-tineory and Completion, Jour. of Diff. Geom. 1 (1969), 1-18.
[3] A.Borel;
Sur I'Lomologie et la cohomolofje des groupes de Lie compact connexes, Amer. J. Math. 76 (1954), 273-342.
[4] J.A.Green,
[5] S.Mc Iane,
[6] D.Quilien,
[7] D.Quillen,
The Adams Conjecture, Topology, 10 (1971), 67-80.
[8] D.Quillen,
On the cohomology and K-theory of the genoral linear groups over a finite field. Ann. of Math. 96(1972),552-586.

$$
\text { - } 70-
$$

[9] L.Smith, Homological Algebra, and the EilenbergMoore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93.

