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THE MOD 2 COHOMOLOGY OF THE ORTHOGONAL GROUPS OVER
A FINITE FIELD. by Corrado de Concini

Introduction.

The purpose of this paper is to generalize the 
results of Quillen [8] about the cohomology of (the 
classifying space of) the general linear groups over 
a finite field to the orthogonal case.

In the whole paper we will restrict ourselves to 
the study of the cohomology with mod 2 coefficients 
of (the classifying space of) the orthogonal groups.

We give a complete computation of H (BO^ik)^) 
in the case of split orthogonal groups when k has 
q-4-m+l elements (Theorems®).

The computation of the mod p cohomology with p 
odd and different from the characteristic of k, is 
basically simpler. It had been announced by Quillen 
in his Nice talk ¡6] , as a consequence of his study 
of the etale homotopy types of algebraic variétés.
He also announced partial results for the mod 2 case. 
The details have never appeared. The proof that we 
give here for the mod 2 case applies, with no essential 
modifications, essentialy by substituting the Stiefel- 
Witney classes with the mod p Pontrjagin classes.

The proof that we give follows the general lines 
of the one given by Quillen for the general linear case. 
There are in our case some obstacles which did not ap­
pear in Quillen's proof, expecially depending by the 
fact that for a finite group the first KO-thecry group
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AKO (BG) is not necessarely zero.
This problem does not arise in mod p computations 

when p is odd, therefore making the computation in 
this case considerably simpler.

We now give a summary of parts of the paper.
In paragraph 1 we define the space FOY^which is the 
real analogue of Quillen's F Y 4» To construct FOYq 
first of all we mimic Quillen and build a space FOY^ 
which turns out to be unsuitable for our computations. 
Therefore we have to change it with FO Y 1 , essentialy 
one of its connected components.

In paragraph 2 we give a rough computation of the 
cohomology of FO Y ‘( .

Paragraph 3 deals with a well known technical Lemma.
Paragraph 4- treats the Brauer lifting of orthogonal 

representation of a finite group over the algebraic 
closure of k. We show that the Brauer lifting of an 
orthogonal representation obtained by extension of 
scalars from an orthogonal representation over k, is 
left fixed by the action of the Adams operation Y ^ , 
allowing us to associate to such a representation an 
element in jBG,F0Y*3 • This is applied to the standard 
representation of ©n (k). ^

In paragraph 5 we define some elements^in H*i(FO Y**) 
wich will be fundamental in the subsequent computations. 
Unfortunately their definition depends on the choiee of 
a certain element in jBO(k) ,F0 Y^J where 0(k)-UOn(k).



In paragraph 6 we consider the u^'s relative to 
a particular choice and we compute a multiplicative 
formula for them.

In paragraph 7 we give a complete computation of
H^CFOV^) as an algebra.

In paragraph 8 we give an explicit base for
H*(F0Y\Z2 ) and for 0H #($r(k) ,Z2), which allows
us to show that H*(F0Y‘,,Z2) constitutes an upper bound
for H*(BO (k)) in the sense of the introduction of [8j. n ^
This together with the fact that H (BO^Ck) x ... x^BO^Ck) 
x BZ®,Z2 ) constitvfces a lower bound for m-times 
H*(BOn(k),Z2 )(n=2m+e(e=0,1)) gives us the total com­
putation of the mod 2 cohomology algebra of (the 
classifying space of) 0n(k).

I wish to express my,thanks to my supervisor G. 
Lusztig for his constant help and encouragement during 
my work on this paper; and my admiration to D.Quillen 
who first studied the cohomology of the classical groups 
over finite fields by using this methods.

I finally wish to thanlc C.N.R. for financially 
supporting me during the coursé of this research.



1. The space FO

By the word space we mean a topological space 
with the homotopy type of a CW-complex.

Let BO be a classifying space« for example the 
infinite real grasmanians, for the functor KO defined 
on compact spaces, i.e.KO(X)-/X,BO] for X compact.

Let N((KO)n ,KO) denote the set of natural tran­
sformations (K&) ---- }K0.

We have:
Lemma 1. N((KO)n ,KO) ^  [jBOn ,BQ]
Proof. If we take the Grasmanian model, then
(B0)n- lin (G )n , where G denotes the real — —  m ,s m , sm,s
Grasmanian of m-dimensional subspaces of a vector 
space of dimension m+s.

Then, if we consider the Milnor exact sequence

0 ---V l i m K O 1 ((G J n )--- ->̂ 0n ,B0l-- >lim KO((G )n)--- ¿0m,s c fr-zr m *s%,B
where e" denotes the first derived functor of lim,

• < ------------_ > t  nwe must have in order to prove the lemma R lim KO ((G ) )■t ■ m |S_ m,s- 0.
Now the real completion theorem [2] implies that

the inverse system KO-^((G )n is isomorphic asm»s
pro-object to the inverse system

a



RO((oa)n), H((Om)n) B0((0 V )EH
BCC0o)n)

where, for any group G,RO(G)(resp.R(G)) denotea the
real (reap.complex) repreaentation ring of G and 1(G)
denotes the real augmentation ideal in RO(G).

It follows that, if we fix m, the inverse system
KO~1((G )n) satisfies the Mittag-Leffler condition,m ,8

If we make m vary, we notice that it follows from 
the representation theory of 0 , that, if m is odd,
the restriction map ROCCO^)11) ->R0((0a )n), for
h m, is onto and this easily implies that the whole 
system KO'^CCG )n) satisfies the Mittag-Leffler con-

IQ y S

dition, which implies, [2],

R1 lim KO“1((G )n) - 0fe—  m ,sm,s ’
thus proving the lemma. q.e.d..

♦Now let q be an odd integer and let

§ : BO------- ) BO

represent the adams operation Y^ in KO.
We define the homotopy theoretical fixpoint set 

of T as the fibre product
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S’

-»BOXBO
(6 ,id)

where A  is the map which sends each path to its 
endpoints.

We want to define a slightly different space 
from FO Y** which will be more useful for our purposes.

It is well known that HJt,(B0iZ2) - Z2 (w ,w2 ».....^J 
where the w^'s are the universal Stiefel-Witney classes 
and so, by Kunneth formula we have,
H*(BO X BO,Z2) - Z2 [wjj .w.," ,w£......3 with w* (•) -p*(2)(w±),
where p^ (resp.p2 ) denote the projection onto the first
(resp. the second) factor.

Now let us define B to be the total space of the
double covering of BO X BO associated to the element
w! + w» i H 1(BO X BO,Z_ ) .1 1  c , .

We have:
*

Proposition 1. H*(B,Z0) -H*(BO X BO.Z,,)

Proof. It is clear that the Serre spectral sequence ^E^j 
associated to the fibration
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BSO X BSO

I 5B

IBZ_
ftcollapses at the term E2 because the map g :H (B,Z2)-

----- ^ H y(BSO X BS0,Z2 ) is onto, since the map
(fg)*: H^BO X B0,Z2 )----- ^H*(BSO X BSO,Zp ) associated
to the fibration

Z2 ®  Z2

</BSO X BSO 
fs

VBO X BO
->BO X BO, iswhere f is the double covering fjB—  

known to be onto.
So we have that E«^ H (BSO X BSO ,Z5)»Z[w] . and 

now the proposition follows from the fact that the map
d: H (BSO X BSO.Zg)- -^H (B,Z2 )

defined by d ((fg)* (w^<"> )) - f *(w£ ) for i 2
provides a right inverse for g+ and from [3]

• ̂ . 2Now consider the map BO —>B0 • Since q is oddf
v (e ,id)



- 5 -

r ~  *we have that t> is equal to the identity in mod.2 
cohomology, so, we have (6,id) (wjj + ŵ J) -0.

This implies that there exists (e,id)': BO B 
such that the following diagram

(6\id)’
BO-

,B

->B0 X BO
(6 ,id)

commutes.
Now let us consider the maps BO X BO - —->B0 

d/N/representing the diffei'ence operation in KO. Fixing 
a base point b^BO, we can define d, using the homotopy 
extension theorem, in such a way that d(x,x)« b and 
d(x,b) - d (b,x) - x , V  x€BO.

If we define m: B0J -)B0X X BO b̂j to be the 
-- *d(p(t),p(l))map wich sends the path p to the path t 

which joins dA(p)* d(p(0),p(l)) to the base point, we 
get a diagram V . -

80- U w f * 0 ™

which is commutative and in which all the vertical lines 
are fibrations with the same fiberSL BO. So BO* is
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I'

homotopy equivalent to (BO^ X ) X Bq (BO x BO),
and we identify B0X with this space.

Now let us consider the universal double covering 
of BO

BSD 
Is.

BO
We have that, since the map d A  is nullhomotopic, 

(dA)+(w1)-0, this means d*(w^)€.Ker A* + wJjj
since A  is homotopic to the diagonal.

So (d f)*(w ) - 0 and so there exists d' such 
that the following diagram

d'B

VBO X BO

->B30
k

->iio

commutes.
Now consider the fibre product

— — ^b s o 1 x

A"vB-

BSO M

->BSO
where b* is chosen such that k(b')« b. 

Proposition 2. Z is homotopy equivalent to BO1

Proof. If we consider the two diagrams
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Bso1 * b s oM
E

B ----j,--->BSO

and.

BO X BO-

“ > * b o M
h

v>BO

using k and d' we can easily define a map from the
first to the second, so a map a: Z---- ^BO^ is defined»

Now since the map BO?-^— ¿BO X BO is homotopic 
to the diagonal, it clearly lifts to a map BO? —  >B.

In order to have a map f :B0?-----BSO XgS0 'j suoh
that the diagram

BO -¿BSO1 X

A'
v/B

BSO H

d' -¿•BSO
commutes, we have to prove that _ d' is nullhomotopic. 
But now let us choose an homotopy preserving the base 
points

BO1 X I H ->B0

between d A  and "the constant map.
The obstruction for lifting such a homotopy to a 

homotopy between d'A* the constant map lies in
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(BO1 X I,BO1 X^Oj U BO1 x{ljujb]x I,Z2) - H°(B0I,b,Z2)- 0
So d' ' is homotopic to the constant map and 

we can lift it to BSO1 X „0/Jbj « thus proving theBSCK
existence of f and getting a map T  :B0* 

Now it is clear that ar : BO1 --->Z
aequal to the identity of BO

>Z.

Viceversa, for
is

Ta: Z -^B0J Z, we get A  'ta/v A' by a
homotopy T because both are liftings of the same map 
h2A  ' and, reasoning as before, we have that the 
obstruction for these maps to be homotopio lies in
h1(z X I,Z x[o|u Z xjiju|b°jx I) - 0
where b"e Z is a base-point and all the maps are chosen 
to be basepoint preserving.

Again if 5 is the homotopy d'T then T is clearly
nullhomotopic as a map T:Z X I----- ^BSO so it lifts
to a T' :Z X I ------- ^BSO X ^ I ^ b j  .

It follows that, using the homotopy extension 
theorem, we can define 5 ’ in such a way that T'/Z xjo|=bT a 
and T ’/Z Xjlj- b. This impiies that using the universal 
properties of fibre producd we c'an define a homotopyA A ^
5: Z X I ----- >Z such that 5/Z x£o}- a and 5/Z X^lJ- id,
thus proving the proposition.

QeOede
Note« By abuse of language let us identify, from now 
on, BO1 with Z and, since clearly A' a/v/ Z\" also 
identify A' with the fibration A"»

1 '■ 7i
■

« [
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Definition. F0Ys is the fibre product

f6^~ ->B0

A
4̂BO •V

(ff,id)* > B

By Lemma 1 it is clear that we can extend the 
definition of f^ to the groups |y ,B<̂  , where Y
denotes any space.

Now let Y be a connected space and let ye[Y,BO]
an element such that and let s:Y---- ^BO
be a map representing y. Choose a basepoint z€.Y 
such that s(z)-b, then have that the map

r ----— > B° - ^7idT^B — .— »m o

is nullhomotopic by reasoning as in the proof of 
Proposition 2. So d ’CSjidVs lifts to BSO1 X Bs0^j
thus defining a map Y --- ------

This proves the following: *
Lemma 2. If Y | is a connected space and ye [Y,BO]
is such that » y, then if s:Y------¿BO
represents y, there exists s’:Y-------■^FO'f^such
that the diagram

commutes

v



2. A first computation of H^CFOV^.Z^)'2'*
From now on, given any space X,H*(X) will denote 

the mod 2 cohomology of X.

Lemma 3. For a suitable filtration of the ring 
we have,

gr H^CFOY1) -jz2 wltw2.... 3 ® A ^ 2 .«3*.....3
with deg(w.)-i and deg(u.)-i-1.A  ̂ ^ /V

In particular the Poincar6 series of H (FOMO is

1+t'if - U. 1. 1-ti

Proof. We consider the square
F o V 1-----^BO1

1/0, ?
-VBO

A'

C^,id)
&->B

of the proceeding paragraph.
In order to apply the result in' [$J asseting 

that, given a fibre square

X X ? Z

VZ

^ X

were the vertical lines are fibrations and Y is simply 
connected, there exists a spectral sequence |Eij = ^ H  (Xx^Z)
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such that E2 «¡'Tor3 ^Y\ h *(Z) ,H*(X)), we should have
B simply connected; but it is easy to see that the
proof in [9] goes over verbatim in the weaker ipobhesis
that the fibration X------>Y is orientable, i.e. if
the action of /TTJ.(X) over the homology of the fiber is 1
trivial.

The fibration BOI à ->3 is clearly orientable
BSOisince it is induced by the fibration BSO^ X- 

which has a simply connected base space.
The above discussion implies that we have an 

Eilenberg-Moore spectral sequence j E^j--- ^H*(FO Y*’)

->BSO

with
E?*-2 -s (h^Cb o J.h^Cb o1)).

From lemma 1 we have H*(B) ^  [ŵ  ,w£,. . J]

with w^-f^CwJj)- f*(w^j) and w.! I") - f*(w|i"^) for each 
i 2.

Since q is odd we have already noted that €" acts 
as the identity in cohomology and since A  (resp.(6,id)') 
is a lifting to B of A  (reap.(id,6 )), we have ,
(s,id)*ir(wp - (©.idi'^cwp - A ; ( w p  -A'<wP  “ wi
for i >  2 and (S,id) ** (w^)-A '*(»., ) ■ w^.

This means that (6,id)'* and A ’** define the same 
H*(B) module structure on the two isomorphic groups

 ̂ TH*(BO) and H (BO ), and that they are both equal, as 
H^ B )  modules, to the module H*(B)/I; where I is the

1
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ideal generated by w! + w? for i ̂  2.
^  -jit-

Now let and A„ be the two subrings of H (B) 1 2
generated respectively by w| + w? for i^2

w^ and w| for i> 2

We have
H*(B) - A1® A 2 
H*(B)/I - A2

Then, by the Kunneth formula 5 , we have :
A ® A A

E2 - Tor 1 2(A2 ,A2 ) - Tor 1(Z2 ,Z2 )«> A2*

Since A^ is a polinomial algebra with generators in 
degrees 2,3,.•••••» we have [fj]

Tor 1(Z2 ,Z2) -/\ [u2 ,u3 ,.... ^
with degCu^ ■ i—1«
This implies

V  z2 [“f “2 ..... 3® A  [ v uj ..... 3
with w^€ E2 »̂  and u ^ E g 1 ’1-1. Since E2 is.generated 
by elements in E^»* and E”  ̂** , and on these the 
differentials are all zero, we get E2-Eqq and hence 
the result.

*ci •

)/
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■This morphism gives rise to a homomorphism

Dg : jKeriH^Y' ,G) ©  H^Y.G)]

(Y,G)+g1Hi"1(X*,G)
for each i, obtained by & (Dg u) ■ g* v with j' v - u. 
Now take a ring as a coefficient group for cohomology 
so that cup products are coined.

Lemma 4-.
(i) Dg is an homomorphism of H*(Y') - modules, 

i. e. if t GH ^ Y ' )  and u£Ker(f'*,g*) we have
Dg(vu) - (-1)1 f g* v Dg u

(ii) If u Ker f*and vGKer g* then Dg(uv-) - 0.

Proof.
(i) is obvious since all the maps in the diagram

are H*(Y') - modules homomorphisms.
. - -

(ii) Let x be such that j'x-u. Then j'(x v)«u v 
and g^(x v)- g*x g* v - 0, so (ii) is clear.

Q • 6 «cL
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4. The 3rauer lifting

Let 2 be an algebraic closure or the field with, 
q elements (q odd) k.

Since k is the union of an expanding sequence 
of finite cyclic groups, we can define an embedding

¡0 : 2 —____ > 0 ^ where C is the field of complex
numbers.

Let G be a finite group and let us consider a
'ir of G over 2.

is defined ad the
finite dimensional representation 

The modular character of TT 
complex valued function

where the set is the set of eigenvalues counted
with multiplocity, of IfCs)«

It is known ^V] that the function is the
character of a complex, virtual representation, i.e.

<£. H(G), the complex representation ring. 7̂-c* 
is called the Brauer lifting of Tlr. .

Nov/ let R,-(G) be the Grothendieklgroup of tho 
representations of G over 2. Since the map 7̂  which 
associates to each representation over k its Brauer 
lifting is clearly additive we got a 1- nomorphism

----y e (g )

J



Now consider an orthogonal representation "G of 
G. By ĵ 7j we have that in this case <£RO(G),the
real representation ring of G. Thus, by reasoning as 
above, if we denote by KOg(G) the Grothendiek group 
of orthogonal representations of G over £, we get a 
homomorphism

: RC^CG)--------- >RO(G).
KNow it is easy to prove that, il y  denotes the 

r-th Adams operation in R(G), i.e. the operation 
which associates to an element a£ R(G) the element 
Q (/-VCa)»»**, /-0(a)) where then's denote the exterior
powers of a and Q, is the Nauton polinomial expressingv v *t +...+t, in terms of the elementary symmetrxc functions1 k
we have

^( g )  *» ^  (gr)
for any g G and any representation of G over k.

If we consider a representation of G over k 
then, by extension of scalars we get a representation 
TT of G over k. Since “ft*. pomes from 'ft' it is clear 
that the set of eigenvalues of ft" (g) is stable
under the action of the Frobenius homomorphism x-----^xq
for each g G. So, by the above relation we get

This clearly implies that we get a homomorphism

V G> >RCG)«
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where by R(G)^q we denote the subgroup of R(G) which 
is fixed under the action of , and by R^CG) the 
Grothendiek group of representations of G over k.

The same is evidently true for the orthogonal 
case ,thus giving a homomorphism

^  • ROk(G)------- > RO(G)SJ<1
From now on we shall consider only the orthogonal 

case.
It is well known that by associating to a; real 

representation T  of a finite group G, the corre­
sponding vector bundle over BG we get a map

RO(G)------>[BG,BÓ]
This map is clearly a homomorphism and is compatible 
with the action of Adams operations; so it takes 
RO(G)^ into ¡BG,B0]'̂  . Composing with the homomorphism 
\ :R0. (G)----^.ROCG)^, we get a homomorphism

ROk(G)----->  [BG,BO]T .
. 9

Applying lemma 2 we see that we can associate 
to an element in RO^(G) a map BG---- ^FOy .

Remark. The above map B G--- ^ FO ¥  ̂ is not uniquely
defined up to homotophy as we will show later, and 
this is the main problem when one tries to extend to 
the orthogonal case the proof in [V].
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the following exact sequence:
0 ------> R1 l io  [b (n* l A  ------> [bO(E) ,Bo]-------lim (V “ >

m,n,s m >n,s

----- >0.
So, in order to prove the proposition we have to show

(1) B-1 lim . 0
m ,n,s

m l
S \  °But (1) follows because, if we fix a couple (n,s) 

we have [V) that the inverse system | Jm witil
only m varying, is isomorphic as a pro-object to the 
inverse system

inverse system consists of finite groups. So the entire 
inverse system is isomorphic to an inverse
system of finite groups.
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(2) follows from the Milnor exact sequence

0 --- >B1 ---->|?0n<k(a)5, ---- >

» b°] — >
m

for each couple (n,s), using the isomorphism between 
the system Bo]j and the system w  •

If we put 0 ( k ^ ) - U  °n(k(s)) we get,

Corollary. L?0(k (s)^’B2f * lim jBO^Ck^^) ,B^
n

for each s.

Proof. It follows immediately by repeating the proof
of Proposition 3, considering the system) ,BO)/(p -*i Cu n i8 J(/
instead of the system ¿lB£ tS»B0J

Q • G * d «

If we consider the canonical n-dimensional orthogonal 
representation over of °n(k(a)) we Bave already 
shawed how to associate to such a representation an 
element of (BOnC^(s)). 2°] . let us cal1 it:

Further, if we cqnsider the inclusion Oa(ksj)C 
C. °n i(k(si)), for n U 1 ,s£s' , we can associate to this 
inclusion an element in [BO^Ck^^) ,B0q , (k^, ))] *

* t CjU v
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(2) follows from the Milnor exact sequence

0 --- >B1 l i m [ B ^ ^ B 0 j ---->[?0n(k(8)), Be] ---- >
m

-----“ ] ---------------------
m

for each couple (n,s), using the isomorphism between 
the system j [B^m  ̂,0. Bojj and the system w  •

m q.e.d.

If we put O C k ^ J - U  °nik(s)) we 6et*

Corollary. [B0(k^sj),B^ - lim ¡B0^(k^^)tB^
n

for each s.

Proof. It follows immediately by repeating the proof
of Proposition 3, considering the system) [B^m \B0]/i r (m') l “ t8
instead of the system ^LB̂ iS.B0Jj

Q • 6 »Cl •
*If we consider the canonical n-dimensional orthogonal 

representation over of O^Ck^^) we kave already 
shawed how to associate to such a representation an 
element of jBO^Ck^^), us ca^  ^

Further, if we cqnsider the inclusion O ^Ck^JC 
C  0 (k, tN) for n l n 1 ,$¿8' , we can associate to this
inclusion an element in [B0a(k^sj)tB0al (k^fll ))J , let

: I

 ̂ t  Cj

im W 9 J
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us call it 'Tiy/S,S1x. It follows immediately, by Qn,n )
computing the modular chracters, that we haves

)
-  /rj. CS ,8 '  )  - j .  ( S ' )  \V (n) (nfn.) U (n,

as elements of |BOn(k^s^),Bo| .

Lemma 5 (i) The sequence $ 'ft’ x } defines a unique
------  r - -i l •*)element £  |_BO(k) ,BOj .

(ii) The sequence |lT defines a unique
element (B)^ i?°^k(s)^’

K)' 
for each s.

Proof. (i) is clear by Proposition 3
(ii)follows from the Corollary and the fact

that ^  (n)G (?°n^k(sP* B°l̂ 'ifor each n*
q#e#d#

Note. It is clear by unicity that if Tf ̂ ¿ - ^ B OCk^) ,BO(kjf 
denotes the element associated to the inclusion 
0(k^s^ ) C  0(2), we havel^ (s )“T ^ S^TT . .
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5. The elements u.------------  i
In this paragraph k is again a field with elements. 
It is clear that our definition of C>n(k) allows us 

to identify 0Q(k) with the group consisting of n x n 
invertible matrices with entries in k, with the property
-A f\J .T « T where T indicates the transpose of a matrix T.

Under this identification let Q(n) be the sugroup. 
of diagonal matrices in 0n(k). Thus Q(n) is the subgi-oup 
consisting of matrices with entries i or -1 on the 
diagonal, and 0 elsewhere. Thus Q(n) is a 2 elementary 
abelian group of rank n.

If we consider the canonical inclusion î rQCn) c^O^Ck) 
as a representation of Q(n) and we compute its modular 
character (i.e. the modular character of the represen­
tation of • Q(n) over k we can define by extension of 
scalars starting from iQ ) it is easy to see that such 
a modular character is equal to the character of the 
corresponding inclusion i of Q(n) in 0 as the sub-¿A
group of diagonal matrices. *Thus it is clear that the map

: BOk(Q(n))----- >  ¡BQ(n),Boj
carries iQ into the element of [BQ(n),Boj which cor­
responds to the n-dimensional vector bundle associated
to I .n

Now by Lemma 5(ii) we can choose an element
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as elements of jBO(k),BO] . It is clear from the above 
that, if 3n is the element in jBQ(n),BO(k)J associated 
to the composition of inclusions Q ( n ) C  0^(k)C 0(k) we

In consideration of these facts we get:

Lemma 6
(i) The homomorphism :H*(BO)---- ^H*(FO ) is

into. (ii) Let the symmetric group on n letters o. act 
on the subgroup of diagonal matrices Q(n) by permuting 
the entries. Then, if H (BQ(n)) denotes the subring 
of H*(BQ(n)) of invariants under the induced action of 
jF on cohomology, the homomorphism

3n)*:H*(F6Y')---- >H*(BQ(n)) maps onto
H*(BQ(n))SAV , for each i\.

♦

Proof, (i) Since comes from the representation j /

jyj'TT - dn> (i) follows.
(ii) It is known that for each n maps H 

onto H*(BQ(n))E ”/so it will be sufficient to prove

ï it is well know that jj :H (BO) n n
injective for t^n for each n. Si

■^H^(BQ(n)) is
Since for each n we have



Im(1t 3nf  C  H (BQ(n))£ ~
But this follows at once because, if N(Q(n)) denotes 
the normalizer of Q(n) in On(k),we have N(Q(n))/Q(n)= 
and acts on Q(n) exactly by permuting the entries 
in the diagonal. q.e.d.

Let us consider now, for each t ^ 2  the elements 
W ' + w" f in H r(B) (B has the same meaning as inL X XJ Hr lY
paragraph 1 ). We have (w£ + w^)€. Ker((or,id)' ,/\ ) so 
by paragraph 3* we can define, by considering the
couple of maps (^',(6,id)') in the square

as a map /
■Dr(w'

?■

(e,id)*
t ^be element

p ut r + w»> H ^ C Î O ^ ) 'Ht_1(BO),
Since it follows from the fact that A  . and (6,id)' are

Ifr !*■onto that Im(j? ** Im ̂
But it is clear by Lemma 6 that there is only one 

element in the lateral class u^ which is in the kernel 
of

So we can give the following,
Definition Bor each t the elements /ft. ut£. H (BOV ), 
t>2. are defined as the unique elements in the lateral^  /V/ V  *classes û . such that (if- (û .) - 0.

»

4_A
Mva

an



Remarks
(1) It is obvious to verify that, for each t t ,

ut6 KerC^j^, ̂  and that is the unique element
in the class u. with this property.

”  ____  / V(2) By putting a subscript qv under u^ we 
want to enfasize the fact that the construction of 
the ^  u ^  depends on the choice of Tr .

(5) We have defined the j ^ u ^ j  in only
when q is the order of a finite field of. odd characte 
ristic (i.e.q=pa for some odd prime p).
The case of any odd integer can we treated in the same 
way since the role of 0(k) in the above discussion is 
irrelevant, because we could have studied directly the 
elements in jj3Q(n) ,FO »which again are not -uniquely 
defined, that arise in any case from |jBQ(n),Bof , 
depending only by the diagonal representation of Q(n)
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6. Multiplicative formulas.
Again let k be the field with q elements and 

let k be its algebraic closure.
Let 0_(k) be the n-th orthogonal group of the0 ( «

-nvector space kn with bilinear form <1. ^ i
If k/ \ are defined, for each s, as in paragraph 4 \S) oo

we clearly have 0 (k) - 0 (k, %)•
Let x ____ be the q-th Frobenius automorphism

in k, and let F :0 (k)?jbe the automorphism of (> (k)’ n n ii
defined by

F (a. .)nv io
where (a.^)»*A denotes an n x n matrix in On(k).

If G C  0 (k) x 0 (k) is the kernel of the homo- n n n _ ~
morphism d:On(3E) x On(k)j----- ?"( defined as
d(A,3)= det A det B, let_ A n :0n(£)—  
homomorphism defined as A. n(A)*«(A,A), and let

_>G
S  E

be the

F':0 (k) n n -> G' n be the homomorphism defined as
F'(A)-(F (A),A).H ^ x —Now let us consider e, map J\ BOQ(k)----^ BGn
(resp.Fn:BOn(k) — ---^BGq) representing the element
in jBOn(k),BG^] associated to A n(resp.F^). Further, 
since is an inclusion let us choose /\n to a 
fibration with fiber Gjy/o (k).

We define X to be the fibre product n
-> BOnC£)y n

l̂w.
BO„(k)-

n -^BGn

tINIVFRSITV OF WARWICK l_J6F.A»T
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Proposition 4. .(Xn )«0 if i/1 /n'1(Xn)**On(k).
Thas Xq is a classifying space for 0Q(k).

Proof. Let us take basepoints in BO (k) and BG_ so ■ ■ ■■■■■■ n n
that Fq and /\ ̂  are based maps (this is possible since 
we can vary Fn up to homotopy).

n X  nand can be consideredIt follows that also 
as basepoint preserving maps.

Now since A  n is a fibration we have that the map
which 

left—  ' " n i ’ n-
lateral class modulo 0 (k).

WOW Since L\ n 13 a Xioravion we nave ouao one i
b :1T1(BGn)---- > % < Gn/0 ^2 )̂ is just the map whi<
assigns to an element n (A,B)£.Gji-'iT'<)(BGn ) its i

But, given an element (A,B) Gq ,we have that
G> (A,B) - b (AB-1,1) .

So b factors through the map n -̂ > son(k),
which assigns to each (A,B)£ G^ the element AB SO^Ck)
and the map b :SOQ(k)----5 Gn/o (£) which assigns
to each A^SO^Ck) the lateral nclass ^(A.I^J ̂  G /Q

I n
The map b- is clearly bjjective.
Now let us consider the map of homotopy exact se-

quences

V

(X.:n>----> V B O n(E))----
îf/yv*/

ó -- > ^ <,(BOn( k ) ) ^ ( B G n )
'Av*

We have F &-F í'ÍT (BO(k)) ^  0 (k) ■ n n  ̂ n n -MV^CBGn) “ Gn *
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denote it by BOQ(k).

Now let us consider the groups O(k), 0(k) which 
have already been defined, and G= U  G . Clearly/W XX
0(k)=U 0 (k). Since the F 's are compatible we cann aj 2 _ /V i _define an homomorphism F:0(k)-- -̂ .O(k) by taking F**l/F
and also an homomorphism F':0(k)____G which is the
union of the  ̂F ^  . _ _
Similarly we can define the homomorphism /\ ~ ^  :0(
---- ^ G. Now let us denote by :BO(k)--- ^.BG the
fibration induced by A  with fiber G/^g) , aa<l let
F:BO(k)—-- ^BG a map in the homotopy class^jBOCk) ,BGj
induced by F'.

We define X to be the fiber product
„ y

B^Ck)

BO(k)

A
vj/— >BG

It follows immediately from Proposition 4, by passing
to the limit that X is a;classifying space fpr 0(k).
In view of this we shall denote X by BO(k).*

Now let us considered the e l e m e n t j B O ( k )  tBoJ 
defined in paragraph 5« We have
Theorem (Quillen)7.
H*(BO(k)) ^  Z2 [wv w2 ,...j where

Using this theorem we get:
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Proposition 5.
H*(BG) ?  H*(B0(k) x B0(k))

(wjj + w-)

whith wK") = pr-i(2)^i^* wilere pri tlie projection 
of BO(k) x BO(k) on the i-th factor (i = 1,2).

Proof. It follows verbatim from the proof of Proposition 1,
Q•6*de

Now let us consider the elementsé. [BG,B0 x Boj 
defined as /Y| = (ti xTi“)CX where c/\6.jBG,B0(k) x B0(k)j
denotes the element associated to the inclusion of G 
into 0(k) x 0(k).

If we take a map e:BG----- ^BO x BO in the homotopy
class rvî the proposition gives us the existence of 
e:BG— — — ^.B such that the diagram

_ B

B G --“-- >B0 x BOe
where f denotes.as in paragraph 1 the double covering, 
commutes. ,

It also follows, since the Brauer lifting is additive,
that, if we consider the composite map eA:B0(k)---- }B ,
then there exists a map a:B0(k)--- -^BO1 such that the

n
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A  being the fibration with fiber BSO, commutes. 
Thus we can define the following commutative diagram

*
BO(k)■

?
BO(k)■

-^BO(k)
A

\y->BG — vy_ > B

Now let K be a finite group and let £ be an 
n-dimensional orthogonal representation of K over k.
By using the same notations of paragraph 4, it is easy 
to see, by direct computation,

t~\ _ -x _

for any g £  K. This and Proposition 3 clearly imply thatj e F ]  -  [ ( G , i d ) J
as elements of ^BO(k) ,b] . Thus we can choose a homotopy
H :BO(k) x I ^  B such that Hq =6F and H^»(G,id)'
where vT\r is a representative for the classic jBO(k) ,BĈ .

If we apply H it follows, by the covering homotopy "C
theorem that there exists a homotopy H£:BO(k) x I- 
such that 3^°a ̂
At the end of thèse homotopies the diagram (jjr) will
be transformed into the diagram

U
N

IV
E

R
S

IT
Y

 
O

F
 

W
A

R
W

IC
K

 
L

IB
R

A
S

r



- 32 -

of fiber product that HJj factors through ̂  •.
It follows from lemma 5 and the note under it, 

that using the notation of paragraph 4-, iff' IT 3 ~ cf~\ ~ 
So we have that we can define the elements ^u. 

E ^ C P O f 9), for each i^,2. ^
Note. Since from now on we shall consider only the
elements __u. with T-l-fr'l we shall put u. *> u..■C x °  L" J  ̂ pTj x x

Now let us take up the notations of paragraph 5» 
we have:
Lemma 7.

(i) the homomorphism Cj> :H (BO(k))--- ^¿^(BOCk)) is
into.

(ii) The homomorphism jn :H (BO(k))- 
H^(BO(k)) onto H*(BQ(n))£;>v.

-̂ ■H (BQ(n)) maps

Proof. By the theorem, the proof proceeds exactly as 
the proof of Lemma 6.

q.e.d.
Now, by reasoning as in paragraph 5 we can define, 

for each t^-2, the elements ut6H (BO(k)) as the unique 
elements in the' lateral class Df (w^+yJ+w||+1) such that 
j't(ut )=0, where we put l equal to the couple
of maps (^,F).

Since from the construction of TP and from the fact 
that Dg clearly depends on tje homotopy class of g, it 
follows that D_ e =TT D_i as maps from kerCC^id)' ) to
Coker (*■f ).

Lemma 8:
-Jk.

Tr C O  -  ù . .

■VNIVFR8ITY OF WAHWIOK LiBZAsr
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Proof. The lemma is an immediate consequence of the
definition of the u,'s and Ù.'s and of the relation

* Crw * tD_ e D' .
1 q.e.d.

Now let us consider the homomorphism m:0(k) x 0(k)—  
__ >> 0(k) defined as the union of the direct sum homo-

> ° n +t(£)* By th®morphism m^n ^iO^Ck) x 
definition of Gn we have that, if we consider the re­
striction v, .% of the homomorphism m(n,t)X m(n,t)S

-^(0n (k)) to the subgroup: 0Q(k) x 0t(k))
Gn x Gt we ®et Im v(n,t)C G n+t *

Further it is immediate to verify that the following
“(At)diagram

0n(k) x 0t(k)

F' x F' n t

*°n*t<k>

n+t

> Gn+t
VCn,t)

commutes. «
So this implies that the, diagram

0(k) x 0(k) m
F*

G Ì
where v:G x G G is defined as the vmion of the
v, .v *s• commutes. (n,t) *

ar
m 

jo
 j
u.



By taking representatives for the homotopy classes 
of maps induced by the homomorphisms in the above 
diagram we get a diagram

BO(E) x  BO(k) 

F x F

VXBG x BG

----- ^BO(k)

^ r ->BG

which is commutative up to homotopy.
Similarly we get the homotopy commutative diagram

BO(k) x BO(k)---- ------>BO(k)

A* A A

BG x BG ^ ---->BG

Since in this case we have chosen ¿\ to be à 
fibration we can make ( ) into a commutative diagram
by the covering homotopy theorem. So, from now on we 
fix'm and "v in such a way that ( T  ̂ ) is commutative.

Now let us consider the diagram AX
BO(k) x BO(k) --y x y_>BO(k) x BO(k) --- ---- >BO(k)

q> xcf

BO(k) x BO(k)

A x A
t

—K*---p---BG x BG -F x F X

A
V

~*r
-_*>BG

which is commutative by the above discussion; and let
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us choose a homotopy H^.:BO(k) x BO(k) x I ------ ^BG
such that Hq= "v (F x  F) and P'm. By the covering 
homotopy theorem there exists a homotopy L^jBOCk) x
x BO(k) x I -----^ BO(k) covering H^. So, at the
end of these homotopies, the above diagram will be 
transformed in the commutative diagram

BO(k) x BO(k) J*. ^ BO(k) ~z>BO(k)

H xf ?
'V

A-

BO(k) x BO(k)-- ¡j-^BO(E) --- — >BG

where ŷA~ by the universal property of fibre product.

--^BO(k) represents the
homomorphism defined as the union of the direct sum
Lemma 9. yW:BO(k) x BO(k)

homomorphism x °t^k  ̂ ---- n+t 00.

Proof. Since <̂> yw - m (cj? xĉ ? ) and we have seen that 
represents the inclusion 0(k)C0(k) we must have 

that y» must represent’the restriction to 0(k) x 0(k) 
of the homomorphism m, thus’proving the lemma.

q.e.d.

Let us return to the diagrams CiZ^) and ( S2. 
Since, as we have already noticed, the homomorphism D 
depends only by the homotopy class of g, we have

U )  1 r Dr ■ D r x r v *

s

-i



Now let us consider the canonical projections of 
the square

BO(k) x BO(k)-------XJLX-----^  BO(k) x BO(k)

c( x<p 
nK

BO(k) x BO(k)

onto the square 
BO(k)

A x A

P X  P -> BG x BG

->BO(k)

BO(k)
A

BG
If we denote by x ® 1  (resp.1<22x) the image of an 

element of H*(X), X is any space in the above square, 
in HX(X x X) under the cohomology homomorphism induced 
by the first (resp.the second) projection, we get, by
the functoriality of D , that Dfi (y 1)-Dr (y)<2>1 for

* 6 ' y ^ H  (BG), and similarly for 1<Sy.

__  % ^Lemma 10.
D ^ C C w ^  Wj).' + <*,•*)-) -

“ (Dp (w|+w±" ) ) ®  (<f Wj)+(cf w^ ^ C D hCw' + w p )  fo r  i , j > 2  
-(D r  (w^+wV))<S>(ft'w^j) fo r  j - l , i > 2

- 0

Proof.

for j=i«»yl

From what we have noticed above, it follows
DpK(w[+wp<» 1) - (Dr (w| + wp ) &  1 

and similarly for 1<g> (jj| + w1.’) .
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Since
(w.<&w.)' + (w^w.)" « (w! + w'.')<2>w' + wV® (w'.+w") X J X X J X ¿J J

for i,3>2,
we have by Lemma 4:
Dpi((w.<20 w . ) ' + (wj® w .)") ■ (DpCwî+w'.'))® w'. +1 1 0 ^ J * i  i  0
+ w?®(D (w'.+w1!)) = (D (w!+w?))$ (q>* w ) +x ü 0 i x x l 0
+ (if w,)®(Dr (w'+w'!)).I X J d

Now suppose 3=1 i ̂ 2.
Then by Proposition 5, wJJ = wjj = w^ . So,
(w.<g> w )'+(w.<8 w )" = (w! + w.")g>w , then by Lemma 4; X i Î i X X
D^((w^ + wV)(S w^) = (Dp (w. + wp)&>

Finally if i=3=1»

and so the proof of the Lemma is complete.
q.e.d.

Ï-!

Let us recall that the Brauer lifting defines a
map ROr-(G)-----xfBG.Bo] , for each finite group G.
This, together with the definition of m:0(k)x 0(k)----¿>0(k)

♦and Proposition 3 implies that the square
BO(k) x BO(k)

'îtV'fr
BO x BO BO

where s is a map representing addition in KO, is homotopy 
commutative.
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This iiqiies; 
Proposition. 6. m (w. ;. / - w' S> w" .

1 fa-i-i k i

Proof. By the know multiplicative formulas for 
Stiefel-Witney classes we have

s* (w.) = <E
k+j=i V s wo ’

and by the above diagram
,m i|i(w;L)=m',t(#(wi)) - OrrxTr)* (s^Cw ^ )  .

So, we havem ^ C S . )  -  ( i r  X  I t “) *  (  E  W .»  W )  - S  w ® w
1 k + d -i 0 k + j - i  *  J

ç•g »d •

We are now ready to prove;

Proposition 7
.)-£ IIa(0(u? wb) + (f+ wa)<0^

/ x a+b=i
for each i.̂ ,2, where we put u^-u -0.

o
Proof, if we consider the iihage of ^  (up modulo 
Im(t| x c p *  we get;
y VJfrCu.)-/A^(DrC w U w p )  - Dr2(v*(w^ + w p )

by (*- ).
But,
D r^*(S!+w?)) = D i((S (w<0w )')+(£ < V 9 w b>")
I 1 1  I a+b=i a+b-i
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D i(^. ((w <» w )• + (wa (giwb)“)
a+b=i
C(D (w^+w^))@(c^wb)+(c|Twa)(g<Dr(w^+w^))) ,

a+b*=i
by Lemma 9» whith Di-Cw'+w")=0 when a=0,1.

Now by the definition of iL it follows that/w (u^)
must be the only element in the lateral class
Dj-l(v*(w^ + w?)) which lies in Ker(j\ x J^) ; in
fact it is clear that v(j^ x j^) is homotopic to
But this element is clearly Just
£. (ua®  cef wb ) + ub®(cf»Fwa)) 
a+b=i

with u 0,

thus proving the proposition 

Corollary»
C? vf (u.)=<E, (uap(<4> wb) + UjC2(Ĉ  wa))

a+b-i

q •e »d•
i.

w  J (■ 'w >:



- 40

7. The algebra
From now on we put w^-^Cw^) and ŵ «(̂ > (w^)» for 

each i.
So we can write the multiplicative formulas of 

the preceeding paragraph as
A *  (w.) - SI wa®  wb 
/ a+b-i

(ü.) - S I  ( Û ®  wb + wa®
J 1 a+b=1

with u^ = u » 0.
Now let us introduce indeterminates t,s with s -0. 

If we put
^t - 1 + S- w± ti+ui t^+f1s (û  - 0)

we can rewrite our multiplicative formulas as 
^ t s 5 " "ta®"ts *

Now let k be the field with q elements with the 
restriction q - 4m+1, and let us consider the group
o20 0 . , •

It is easy to see that this group is a diedral 
group with 2(q-1> elements and it is known J?J that

¡¡*(02(k))-Sf Z2 [*.,,*2 >3 ̂ ¿ 2
a ‘ * I*,)

with deg x^-deg 1 - 1  
CP2 <Wi>«i. i“1.2.

and deg x2 - 2, and with
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Proposition 8. If fé-jBO^Ck) ,BO(k)J is the homotopy 
class associated to the canonical inclusion of C>2(k) in 
0(k) then:

(i) If A is the subalgebra of H (02 (k)) generated 
by ,x2 ,f#r(u2 ) ,we have A=H*(02 (k)). In particular 
f^(u2 ) / 0.

(ii) f (w^)«f*(iL )«0 ,for i^5.

Proof.
(i) Let us consider the two squares

and

B0(k)-

V.B0(k)

bso;

r

BS02(k)

P

X î

■»BO(k)

A
M/->BG

->BS0(k)

M k ) ^  BÇ0„(k) xBSO (k)

where the second is defined in exactly the same way as 
the corresponding square for 02(k),yF denotes a map
induced by the homomorphism F:SC>2 (k)-- — ^S02(k) defined
using the Frobenius homomorphism.

By using the same methods of the proceeding paragraph, 
it is easy to see that, if f£  ]BS02(k) ,B0(k)j denotes 
the homotopy class corresponding to the canonical inclusion

i
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—.
of S02(k) in O(k) and ££ |BS02(k) x BS02(k),BGj denotes 
the homotopy class corresponding to the canonical in­
clusion of S02(k) x S02(k) in G, we have:

/V̂f+ D = D r f
r~ _ r '1 rwhere | =(y ,(F,id)) and l has its usual meaning.

_  _  ^  ^  yp - ■ - ^Now it is known S02(k)= k and, since k is a 
union of an expanding sequence of finite cyclic groups 
of order prime to char k and since the relevant 
Bocksteins are all zero H*(S02(£),C) /= C jxj with 
deg x = 2, where C is any finite cyclic group of order 
prime to char k. In particular if C*»Z2> it follows im­
mediately from the theorem in paragraph 6 that, if 
f£jBS02 (k) ,BO(k)J is the homotopy class induced by^ 
the canonical inclusion of S02(k) in 0(k), then x=f(w2).

Now let us take coefficients in Z/h(q-l), where 
ĥ .'l is an integer prime to q-1 and to char k, and 
let us consider the following map of exact sequences:

-> H l(BS0?(k),Z/h(q-'!))^->H2( 2 , Z/h ( q-1) ) ̂ >  H2 ( ( BS02 ( k )5 , Z/h ( q-;

Hn(BSO (k)

t.
V

rr
V/ r l yt,Z/h(q-1»^->H2 C ’,Z/h(q-l))^H2(BS02(k),Z/h(q-l)

We have that, if we put x' " ** Pr^(2)^X  ̂wiiere pri 
,2) denotes the i-th canonical projection

BS02 (£) x BS02 (E)------ >BS02(£),/\ 2(x '/ x") - 0. This
implies that there is an element z € H 2(/^,Z/h(q-l)) such 
that r  (z)-x'- x".
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Now let us consider ]~2(z)“Z'.
Since, if we consider the homomorphism Z/h(q-l) 
which sends 1 to 1 and the corresponding homomorphism
Z  :H2 (BS02(k) ,Z/h(q-1))-------> H^BSO^k) .Zg) ,

we get that O'(x)=f (w2), so by the definition of Dg 
and the fact that 'f *D_ - D_ ?  *we get that, in order to 
prove that f 0, it is sufficient to prove that
there is no element zCH2^,Z/h(q-1)) such that 2z=z'.
Now, since 4/q-l it is easily seen that SOgCk) ^ k = Z/(q-l) 

Since h is prime to q—  ̂ it follows from the universal 
coeffients exact sequence that H2(S02(k),Z/h(q-'l)) ~  Z/(q-l) 
and we can choose cj? 2(x) as a generator.
Since (F,id)*(x,-x")*s(q-'l)x we have T ' (z' )=»Cq-1 )x so 
if we suppose that there exists z such that 2z=z' we have

•(z) = -Sri—  x.X  2 i|k | _ ijr
But, by exactness cj’gC C z ) “©« —2^— c^Cx) which is 

absurd since C^Cx) is a Senera‘tor o£ H^(BSO(k),Z/h(q-l))
= Z/q-1.

Now,since if we consider the homotopy class
h£ [bS02 Ch) ,B02(k)j , induced by the canonical inclusion,
we clearly get ^  ,

f - fh/V* . . . .and since we have proved £ (u^) £ 0 while it is known 
) - 0, we have that f*(u2 ) / f * ^ ) .  So, by the 

structure of H5K(B02(k)) we have that f*(u2)«l or 
f*(u ) = l+f^‘(w1). In either case it is immediate to 
see that f*(w>]) ,f ,r(w2 ) and f*(u2 ) generate the whole



2 00).
So (i) is proved

(ii)follows immediately from the relation

fa)
' Vf *

and the theorem in paragraph 6.
q • e . d •

Remark. Given a finite group G and an orthogonal re­
presentation \C of G over k, if [BG,B0(k)J corresponds 
to yC , we can consider the elements *(w±), iT(u.) 
as characteristic classes for the representation VC and 
the class

) = 1 + <E yctw.) t1 + >c*(u.) ti_1 s
i»1 1 1

wts
as a total cohomology characteristic class for X. .

With these notations, Proposition 7 asserts that 
if ^  is the canonical two dimensional representation 
of O^Ck), then:

wts(lC) = l+f^(w-1)t+flir(w2)t2+f’"Cugjts,
and the coefficients of the non constant terms of the 
above polinomial in t and s, generate H*(B02 (k)).

We have the following (we suppose q=4m+l):

Theorem -1. The monomials
cm <*i P* pa.
W1 W2 *"*':** U2 U3 (h*.......

whereof ^-0, Oî. p. ,v> and (X ; *»|yC =0 for all but a
^  *  V  ✓ 'v/ , •?finite number of i’s,form a basis for the algebra H (FCt ).
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Proof. let us consider the map 
h^: BO^k) x ... x B02(k) 

n times
defined by induction in the following way:

^  - £ hn = A (hn-1 X V *
We putii hn= hQ , where ^  :BO(k)-----is

the map defined in paragraph 6.
Now let us define an homomorphism P from 

H*(02(k) - Z2 [h^(w1),h*(w2),h*(u2 )J
'th^(u2 )2+h^(u2)x h^(w^))

* A to the algebra Z2 jx*»x" ^ (y2 + y ) “ B
by P(h*(Wl)) - x'+x", F(h^(w2 ))-x*xn, F(h*(u2))-(x'+x") y.
It is clear that F is injective.

Consider the homomorphism: 
if1n :, A®. . . yB-S)| . . . i8B  ̂1

n times n times

.Jr  .

n times n times
by Kunneth formula, we immediately get from the Corol­
lary to Proposition 7, Proposition 8 and the definition
of F&û that

r v * c w . )  - e .n x x
where <q  . denotes the i-th elementary symmetricil/ V / . . v • /

A

' rH I M AAJ’iVS IVCOD



0
function in (xjj ,xj|, ... x^>x£) ior i4-2 n ;

^n, k, for i> 2 n ;

and also
n

k='l
for i 4 2n

ii3’nlî (ui) - °* for i>2n.
Now we want to prove that the elements

®EL*/ ow Ok'Vv ^S’ h_(w„ ... w0„ u0 ... u2n ) withn 1 2n
0( ,...0^n 0, 04;^,..., ¡^¿-1 are independent in
B<S> .<8> B B&n

n times
It is readily seen that we can consider 

quotient of the algebra

?n as a

Z2 LXjl ,X1 ‘ * * * ‘XA ’xn ’yi *yi’....7n ’y£J
(yĵ -yj| .ŷ ,2+y;. • • • .y£2+y£)

over the ideal generated by the elements yjj+yjj,. . . ,y^+y£- 
Let us call q the quotient homomorphism.

Lemma 1-1. The following identity holds

SI1 hn(ui)mq( <E (®i-1Caci»x1 .... x^ ‘xs* —  ’x£)y£ +s-1
+ 6 «X!|' »••• »Xg»*** >x^)yg)*

Proof. We can write



r -
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<ò. „(x! ,x",.. i-1 1 ’ 1 ’ • K .... x£> = xs & i-2(xi*xï»''**^s,Xs ’**"*xiP
+s: Cxj ,x**,...i-i 1*1* ,xs’xs»*** ,xiP*

We have:
qC6i_i(x* ,x̂ ',.. " K .... Xn ^ s +^L-1 ̂ X1 *X1 * * *• • .* 2 .... ■*s>y;>
- F  „ ( x ' x " .  Ll-1 1 1 .. ,x^,. . • *x^ +^__^ (xJj >x ĵ * * • *-*xs .... Xn 3 7s*

Introducing the relations we get, for each s^n: 
(xjj ,x^,. . . ,x^,. . . ix^)+ ^_.* (x.- *x |̂ »* • * >xg »* • • *xxP =

A

= (x'+xn)(^. -(x',x",...,x',x",...,x") which proves the s s 1-2 1 1  * s ’ s’ n
lemma. q . e « d .

Now let us put for 2L;i£.2nt 
vi° £  C6i-1 (xi *xi' * * *‘ ’xs ’ * *‘ >*nn K +S±-l <xi *xï ’ ' « » 's=1

and v^ = JJj+ŷ ' + ... + y£ + y£
,x»)yp,

Lemma 12. The monomialjs
P &V1***V2n Oé&i •. —  •lt^f1/YV

are linearly independent over Z2(xjj ,x”,.. .x^,x£) , the 
field of fractions of Z2 L^l,Xi * * * *,Xn»xn"l *

Proof. Suppose we have an expression

aIvI - 0  where ai^ Z2^xî ,X1 * * * * ,xn ’xiP and



vT = v. ... v. for some subset I=(i ,... ,i, )C (1,... ,2n), j- 3-1 XjC n K
Suppose that for some of the I's, â . / 0 and let

I be a set of maximal order among those. We can suppose
a- = 1.

Let J be the complement of I in (l,...,2n).
We have , _

I ai V  V °
But now, by maximality, only the term a^VjVj can contain 
a monomial of type b y'yjj . ..y^ • So we must have
b yjjy^...y£ = o.
Since aj = 1 we have that b is equal to the coefficient 
Of yjjyjj • • ,y£ in v̂
the determinant of the Jacobian matrix:

v„ . So b comes to be equal to 2n

e  Cx’ .2n-l l V

.x"),* n « 0 ■ v ,x") ’ n

’xn )v * ’ 6 2n-lCxi ****’xn)
which is different from zero by the algebraic indepen­
dence of the elementary symmetric functions. So, also 
b y^yjj.-.y^ / 0 and this implies that aj = 0 thus 
giving a contradiction.

q.e.d.

Now for any two by two partition b of the set



(y',...,y^), let us consider the corresponding algebra 
Qp given by taking the quotient of the algebra

Z2(x<| jyj,-..,y^j B

Cyjp +yj;,...,y"2+y“)'n n
obtained by identifying, two by two, the elements 
coupled in the partition p. y%.Let us take the vector space over K=Z2(xJj,... ,x£)
given by where T is the set of two by two par-'P6T %
titions of (l,...,2n), and G:S— — p̂® rQp the vector 
space homomorphism which is the quotient defined above 
on each factor.
We want to prove dim(Ker G)=2 .
In order to do so let us prove the following,

Lemma ij. Let K be any field and 

72iE-Klyv ...,y2 Ĵ

(y1+71 t..-.72+ y2n^ *

Let us consider, for each element p of the set T of*
two by two partitions of the set (,1,...,2n), the quotient

defined as above. And let G:S-------  ̂©_GL also be
defined as above. Then, dim(Im G)^-2

Proof. Let E ’ be the subalgebra of B generated by
'-l »*** ,<y2n-1 ' It will be sufficient to prove R’O Ker(G)=0.
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Now suppose G(^_ aTyT)*=0, where ax<2K and y =y. ...
X  X  X  JL X-̂

with I=(i^ ,...,ik)c(i, ,2n-l).
Clearly a ^  = 0; so we can make induction on the order 
of I and suppose a^^O for |l|Z_m.

Consider any element axy. .-L ii .y. and suppose m to
be even.
Now take any partition p containing the couples (i^,i2),..
..,(i .,i )* m-15 m and consider the image of y,. ...y,- in Q^.X̂  X*V
It is clear that there is no set J with )J(^- |l| such 
that yj and ŷ . are mapped to the same element in Q^, so 
this implies 0^=0.

If I is odd, consider any p containing (i2 ,i^),.
,(i _,i ),(i,,2n) and also in this case one proves m-1 m 1

q.e.d.
readily that a^=0.

If we go back to K, then Lemma 12 and Lemma 13 
imply that a basis for Ker(G) is given by the elements

^ ? »* * * » P 1 •
ra.

V1V2***'V2n
Now let us restrict to the subring R R generated 

by the elementary symmetric functions &^(x^,...,x^) 
and by the v^'s.

It is clear that an element x£ § 0  Ker(G) if and
only if x£ Ker(G }f) R where G denotes the quotientP Prelative to any partition p<£T. If we consider 
the partition p:(y',y"),...,(y',y") the above implies

/vR

■ ’ 1a/ ' fin’ n n fs rthat the elements G^(v2 ,... .v^)^ 04̂  P2,. .. , p 2n h--, are
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linearly independent over ’ * * *’®2n^
<5 • “6. (x‘ ,x" ,. .. ,x"), i i 1 * 1 ’ * n'

In particular the elements 
2»,

•®2n G5(V2 ) —  Gp(T2n >
* • •• G * ^ ^ 2  *** * ’ ?2n^~^ ’ are linearly independent

over Z0. Since we know that <3 . =P^n h*(w.) and, by 2 ft n iLemma 11, G-(v.)=E h (u.), for j>2, we have that the P 0 <3monomials:
<*A„ .... w ^ u ! 1 .... u ? ~  * .... 0L >0. 04ft,,...fe.... 2n 2 .... 2n -I* ’ 2n^ ’ 2* 'r2n

fa«

are linearly independent in H*(PO'+><* ) .
Applying this for larger and larger n we get that 

the w^'s and u^'s generate a subalgebra of H*(P0 V ‘) 
with Poincare series

(l+tXl+t ),
(l-t)(l-t2).

but this, by Lemma 3, is just the Poincare series 
of H*(PC and the Theorem follows.

q •e #d •

Given a group G, we say that a family ¿<c j
of subgroups cf G detects the (mod.2) cohcmology of G 
when, if we consider the elements Jn 6[BN^,BgJ for each 
i6l, associated to the inclusions of the N. ’s in G, 
the homomorphism 
injective.

ifc I NjN : H*(BG)----->i^!H (BM±) is

It is known that the cohomology of C>2 (k) is
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detected by its family of maximal elementary abelian 
2-subgroups.

Since there are just two conjugacy classes of 
maximal elementary abelian 2-subgroups, one of which 
containing the subgroup of diagonal matrices Q(2),by 
taking a representative V for the class not containing 
Q(2), we have that the cohomology of 02(k) is detected 
by Q(2) and V (both Q(2) and V have rank 2).

By the definition of u2 we have 3q (2)^-i û2 ^ “°* 
so we must have j*(h*(u2)) f 0. Since the center C of 
02(k) has order 2, by maximality C is contained in 
both Q(2) and V. Let us take polinomial generators 
x,y(resp.x,y), for H*(BQ(2)) (resp.H^(BV)) with the 
property that the kernel of the homomorphism
h*(b q (2))----^ H*(BC)(resp.H*(3V)----»H*(BC)> induced
hy inclusion, is the ideal (x+y) (resp.(x+y)).

We get: "  X+7
d » 2>>

= 4(h*(u2 )) = X+y.
This follows for the w^'s because the two subgroups 

q (2) and V are conjugate in C>2(k) and for u2 by the de­
finition of x and y and by the fact that C=Q(2)n V.

It follows from the above properties that the coho-
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mology of 0o(k) x .....  x O^Ck) is detected by the
n-times

E„ x .... x S where each1 asubgroups of type 
E^ can be equal to Q(2) or V.

Since the proof of Theorem 'i implies that the ho­
momorphismi* A rsS H

h :H (FOH')- a

is injective for i4r2n-l ,we have that the homomorphism
(<$>(jE x ... x jv )*) h*: H^POY*)-----> © H i(BE,,x...xBEjt!n^  ~n
where the sum is taken over the number of different
subgroups of type E^ x ... x En , is injective for i 2n-l.

n

By definition
/ N , S\j

h being induced by the canonical inclusion, of
0^(k) x ..... x^OgQc) in 0(k). Since in 0(k) any two 

n-times
subgroups E. x ... x E^ and E x  ... x E ‘ with then i n
same number of E. 1 s and 's equal to Q(2), are conjugatd,r 0 - - »-
we get that the homomorphism_

. m n * #-
A  n :( m^0CdQ(2) /  * * X dQ(2) X ^  X *** X 5n-m

: E ^ F O Y ) --- ^ ^ H i(BQ(2)1x...x BQ(2)mxBV ac.. .x BVn_m )
m=0

is injective for i L- 2n-1.

k k,k V



Theorem 2« In H*(p6f‘? )

a+b=2k-1
*¿2

for each k ^ 2

Proof. It follows from the above discussion that it 
is sufficient to prove, for any fixed n̂ . k

for each
Let us fix such an n and let us put for simplicity

First of all suppose m=n. Then, by the definition 
of the u . ' s , we have

0 = A n < 4 >  =An< ~  wa V *a+b=2k-l
b^2

Nov/ suppose m=0. We have the following relations: 
if g is odd ‘ *

To prove this, let us make induction on n, for n=-i

if g is even

for g >  2n
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tiie above relations follow from proposition 7 and the 
relations (^ ). Suppose they are true for n-1 and
let us P u t A  (w± ) , A  (u ± > - u £ . A  ) -w £ , A  ° ( u ± ) -u "

Using the multiplicative relations and the induction 
ipothesis we have:
i 0f w  2l n-1> i 2(n-l)-1
'Vn(wt,s)=(l+^ ' 0 "i* + ST. w *.t Js )(1 +w"t+w"t%w^ts ).

j =odd
This implies if g is odd and g 4 2n-l,

/

=w «.wjj+w1 " =0
if g^2n+1

g-2 1 g-2 1
0.ug

If g is even and g 42n

U =w’ _w"+w* „wi’+w* „ ■g g-2 1 g-p 2 g-1 wg-1
if g>2n

g 0,
so the above relations are proved

They implie,if k is odd,
( o C~ f^odd ,A S < £  V b > -a+b=2k-1 
if k is even

e+f=2k-2
w w„=0< e f A»cuJ) ,

A  A 4
f=odd

n —  ov waV "  ¿A Wew£"wk-l“^ n (uk) * a+b=2k-i e+f=2k-2 1 K ‘ n ^
Finally suppose 02-nwln.

Let us put w' = i“ (w.) and w‘!-/-\0 (w.),ü 'to 0 n ' 'n-m a
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The above relations and the multiplicative formulas 
implie:

Take any 4— pie (e,f,u,v) with f odd,(e,f)^(u,v), 
e+f+u+v=2k-2. For this 4-ple we get the element

w
in the above sum.

We separate two cases:
1) If v is odd v/e get four 4—pie

(e,f,u,v),(u,v,e,f),(e,v,u,f),(u,f,e,v)
which give the same element in the above sum (clearly 
if e=u or f=v the four 4—pie reduce to two).
2) if u is even we get two 4-ple

Nov/ it is clear that in either cases the elements 
associated to those 4-pie cancel tv/o by tv/o.

So, we are left with the case e=u, f=v.
This implies

f=odd

a+b=2k-1 u+v=a e+f=b-1

(e,f,u,v),(u,f,e,v)’
which give the same element in the above sum.



where the second equality follows from the multipli­
cative relations.
Thus _

V m(2l_ w u, ) = Â “(uJ) for each Q ^ m L n
-K OV y, a ° a ka+b=2k-l

and the Theorem is proved.
q.e.d.

Remark. Just by using diedral groups and a multipli­
cative relation which can be easily defined for 
H (FO Y  ) one could px-ove similar results to Theorems 
1 and 2 without the restrictions q=jkj , k a finite 
field with 4m+1 elements.



8. The algebras H*(On(k)).
In this paragraph we suppose that q=4m+1 and that 

k is a field with q elements.
Let Q' and V* two proper subgroups of the groups 

Q(2) and V considered in the preceeding paragraph, 
which are both different from C. Since both Q' and V ’ 
are elementary abelian 2-subgroups of rank *1 , H^(Q')/* 
JL(V') ^  for each i^O, where by IL we denote the 

i-th homology group with coefficients in Z^.
Let^ ^(resp./vj^) the unique non zero element in 

H±CQ* Xresp.iLCV )) for i^-1.
Let H=My) x ... x any subgroup of 0^(k) x 0?(k

n-times
which is the product of copies of Q' and V'.

For each R v/e get the homomorphism

< V A  S CBE)---- > >-
tie jmt| ana •

Now let x,y^ H^CFO Y^) tie such that X, 'Chn i J2 . ) ("? ) 
and J-C =CbnlIds„)^ (X) fQr two subgroups S' and R" of 
the type described above. Wq can define

T k “ ^ nl+rind2 i X R"^ Ct <2 VC) by using the Kunneth formula.
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oi. 1 s and 
Further

^i' s equal to zero.

Proof. Let t^,...,t^; ,..•, ŝ T be indeterminatesN

“̂ Z2 1̂ 1 ’ * * * ^  El * * * * ,SN J

with s.=0 for each 1 L~ j L N. We define the homomorphism 
J ~

TN:H^(FOfq)---

b7 . JLT..(z) = /- z, .W w \h ** t .s. f0 0
where by we mean the canonical pairing between
homology and cohomology.

Now let y t ^
S  * V 5  > and ' V V ' V -i i

The multiplicative relations and the definition of Q' 
and V ’ clearly implie that,if x^H^CBQ' )(resp.y£ H^CBV')) 
is the one dimensional polinomial generator of H (BQ1) 
(resp.H*(BV')).—  N

and N

and that,given two elements X  »YiH^CFOY' ) for which 
is defined

tn C^^) = TN (r ) TN (iO.
The above relations give:



where by S' ̂  we mean the elementary symmetric function
of the variables in brackets.
We also havê N

P i ^ j i  ■50i (s1 <Si _/](s<l, . . . , s h, . . . , s n) t
— * XIs* i

N
*•* + S  sh *h=l

So v.
{*) TH^.*"ii>2- 5 i +Rii>2-0-

Finally we can filter ^ f a , . . . ,t^®/\ f a .... sNj
by pov/ers of the ideal (s^ ,... ,s,,) ; then under this
filtration, the leading term of is
JS S ^ S 2-
h i ^ h ^ i - l ^ l  ’***’ih»***»tN ^ *

If we consider Zg ( ^ .... ,t^j®/\ as a
De Rham complex with dt.=s. we get that 
N 1 1

<H^1Sh^5 i-1 ’*** ’̂ h’*** ,-tN ^  ” »•••
We apply the following:«

Lemma 14 Jjb] . The ring homomorphism

Z 2 l ? 1  ’ * * * ’&  n J ®  A  [_d < S " 1 » •  ♦ • * d ®  If] - - - ^ z 2 { x ^  , .  . . , x ^  ®
®  A [ ^ .... dv|
defined in the obvious way is injective.

We clearly get from the above Lemma that the monomials



w <3(v withoi ^^0, 0 ^ ^  4-1 are linearly
independent. Thus by applying this result for larger 
and larger N to^gother with Lemma 3» we get the first 
part of the Theorem.

The second follows from ) and the fact that 
T^/HfCPO t'<? ) is injective for i^N.

q.e.d.

Remaries
1) The same remark of the end of Paragraph 7 is 

valid in the case of this theorem.
2) Lemma 14- is essentialy Lemma 12.
3) It comes out from the proof of Theorem 3 that 

lie can define a ring structure on H (FO ̂  )• With this 
ring structure H ( F O ^ )  -Z it, Vp ,...l ®

Now let us consider the group ®  H ,(B0 (k))., * r!2-1 + r
The direct sum homomorphism 0 (k) x 0 (k)----0 Ck)n m n+m
clearly induces a multiplication in ¡& H (k)) which

r^ 1  r
is associative and commutative.

Let L be the generator of H0(B0^(k)), then £ r will 
be the generator of H^CBO^Ck)).

By its definition we can choose Q* to be O^Ck) under 
the canonical inclusion in 02(k). Thus let us consider
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the elements
H.CBo^Ck)), \/i?/i,

^i=d7 , H.(B02(k)),^i^1.
We have:

Theorem 4. If, for each n £  \ BO (k) ,BO(k)j isn u n
the homotopy class associated to the canonical inclusion 
of O^(k) in O(k), then the homomorphism:

^ nV  :H^(BOn(k))-----
is injective.

Prooi It is clear thatTi S° We iiave ^ a t
^  V  takes the M .!s into the elements denoted by the U °2 ■ 4same name in H ^ C fÔH7 Y*

It also follows from the multiplicative relations that 
each monomial in the^^'s and /Yj ̂  ,'s i “ 
goes into the corresponding monomial in th e ^  ^'s and 
Aj i ,s, in H^CFOy^).

In order to prove thetTheorem we need some Lemmas.

Lemma 16 (Quillen) j_6j. The cohomology of C>n(k) is
detected by its elementary abelian 2-subgroups.

Lemma 16. If n=2m+e(e=0,1), then the cohomology of 
O^Ck) is detected by the subgroup which is the image

’
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of x Z. under the canonical inclusion
m-times

Proof. By Lemma it is sufficient to prove that 
each elementary ahelian 2-subgroup of 0n(k) is conju-

of A, it is sufficient to prove that any orthogonal re­
presentation of A can be decomposed as a sum of 'l and 2- 
dimensional representations.

Since for 1-dimensional representations this is 
trivial we suppose! by induction, that any m-dimensional 
representation of A can be written as a sum of 1 and 
2-dimensional representations for mZ^n.

Let us consider an -dimensional orthogonal repre­
sentation W of A, and let L an irreducible invariant 
subspace for this representation. Since the exponent 
of A divides q-1, L is of dimension 1. • We divide two 
cases: ,

if L^is not an isotropic subspace, then W ̂  L ®  L̂ ~ 
where L is the space orthogonal to L, and by applying 
induction for h W can be written as a sum of 1 and 
2-dimensional representations.

2) If L is an isotropic subspace, then,by choosing 
an invariant subspace which is complementary to L'i"
(this exists because the order of A is prime to the

e
2

m-times
Since given such a subgroup AC 0n(k), we can 

consider kn as an orthogonal n-dimensional representation



characteristic of k), we write W as a direct sum of 
an iperbolic orthogonal representation and an n-2 di­
mensional representation. Thus also in this case the 
induction ipothesis implies that W can be written as 
a sum of 1 and 2-dimensional representations, said the 
Lemma is proved.

Q.e *d.

We are now ready to prove Theorem 4.
Let us consider the group VC 0^(k) of the procee­

ding paragraph and let V* and V" the two proper sub­
groups of O^Ck) which are different from the center 
of 0 (k). We have H#(BV)-H*(BV,)#H^(BV") by the 
Kunneth formula.

Since V' and V" are clearly conjugate in O^Ck) it 
follows that if Hi(BV") denotes the generator of
ILCBV"), for each i^1, jyOVjxa ¿‘)«d7(£‘
where (resp.<f") is the generator of Hq CBV') (resp.H0(BVn)'

Now, if we consider the two subgroups of 0^(k) 
obtained one by composing the inclusion.of V in 02(k) 
with the canonical inclusion of O^Ck) in 0^(k), the 
other by composing the product inclusion of V 1 x V* in 
O^Ck) x 02 (k) with the direct sum homomorphism
02 (k) x 02 (k)-----> 0^(k), it is easy to see, by direct
computation that the two subgroups are conjugate by a 
conjugation which is the identity on their intersection 
and takes the subgroup which is the image of V" under 
the first inclusion into the subgroup which is the image
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of \l- x V ’ under the second.
L JThis clearly implies that in H ^ P O  T )

Since it follows from Proposition 8 that
CfrD̂ ) is injective so, by (t O  and Theorem 3 we get:

V * u ®  ^ ¿ m l l  V 1 ^ 1*
(X ) also implies that the elements ^  jtk =

= ^ k). 0 ^ j ^ k > where we put ̂  Qjk = k
= j 8") and the elements ^  ^ h »°4:0-ih »
where we put ^ Q= £, , are linearly independent, thus 
they generate a submodule of H^BO^k)) with Poincare
series 1±£----~  . But, by the known structure of

(i-tXi-t^)
H*(B02 (k)),this is just the Poincare series of H^(302(k;;. 

Thus the above elements for H^CBC^Ck)).
Now Lemma *16 implies that, if n=2m+e(e=0,1), the 

homomorphism
dn :H^(02Ck) ....... x 02(k) x z|)------

m-times
induced by inclusion, is onto. v Thus we get that the 
elements • „„L.. ^  ®

7/°
PiK ?/°

O -C L K
where only a finite number of cX ̂ *3 and ^ik's are 
¿Afferent from zero, form a set of generators over Z2

for rf.1H*COr(k))*

CX4 y VI

$7 “  “

¡Yj y ♦ - ♦ 1

il V

>y
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2d

If, or each m^.2 v. consider the subgroup K of 
(k) oh iined by compo .g the inclusion of V :c...... x V

m-times
a the inclusion of

D-'jimes
x 02 (k) in 02Jj Lt is known that ifOp(k) x • »-

m-t a.. j s
N(K) denotes the normalizer of -I in 02n(k) then N(K)/K =

, the symmetric group on 2 letters, and an element
s < i ^  acts on H (BK) by sending the element,^-& ' * *  ®  2m - ___ —  '
to the elementally ‘ 64 ^ s ^ ^ w h  ~e (i^ ,... ji^) is any 
set of 2 m integers with i.. ̂ ,0 (we put /Yj0 ~ £ ¡y\ - £. )
This clearly implies that

a / * W w " '
where (t^,...,t^ ) is any set of integers with t .>/ 0,

*** s e ^ m ’ in the rinS r §  1 H*COr(k)). ^ 
Thus (A) together with ( H  ) and the fact that/v%.-J >

implies that the elements po l , £ A If. Oi.'W/ m  •. • • • #\ .
. V 0-1 I <-.

with d . c t ^ O ,  0̂ f>ijk6l, if ^ ijk compares on the
left of.oqitjk, and fa. >k.“ 1 * tken i^ k<li,Ck‘
and only a finite number ofcX^'s and k 's are differed
from zero, form a set of generators over Z2 for

©  H (BO (k)). r ̂/\ * rNow, if for such a monomial A we define
S r t . S  ,P> .kdeg(A) » ^ + f ° i + ?,k2 ' i,]



- 67 -

we have that Aé H^(0^(k)) if and only if deg(A)=r; so, 
in order to prove our theorem,it is sufficient to pro­
ve that the monomials of a fixed degree are mapped hy 
(IV 0 J) to independent monomials.n
We have from the above, &oU f - " u :«J o ^  /Vv A

. M1 t
O' ro,i ' T

" L  ^ H

which by theorem 3 clearly implies that the monomials 
satisfying ( T ) of the same degree are mapped to in­
dependent monomials by •

q.e.d.

Theorem 5. H*(BG (¡0) is generated as an algebra■ a
by elements w^,....,^; with deg(w^)=i,
deg(ui)=i-1, subject to the following relations

*i“ £b«2i ? a V  wher° "0=1* 
b?2 i

Proof. It follows by theorem'4 that the homomorphism 
Cfr ^)*:H *(FO ^  ) ------- > H^BO^k))

is onto for each n^3 1; and we known, by Lemma 16 that, 
if n=2m+e(e=0,l), the homomorphism

£fn :H*(BOnOO)---------.^ ( B O ^ O O j ^ ^ ^  x BZ

m-times
induced by inclusion, is into.

o oj
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If n=2m, then (fV 3" A )=h , so the Theorem followsn w n n
from the proof of Theorem 'i and Theorem 2 by taking

If n=2m+1, we have that, by definition the inclusion

Thus we get 9"n S ®  and- = ^  ̂ "n ̂ n ^ Ui^a 
=0 for i>n.
This means that the ideal generated by wn+^»wn+2 ’ *’* " ’un+l'
u „ ........ lies in the kernel of 9"n+2 nSince by the proof of Theorem 4- the Poincare series
of H*"(B0 (k)) is , ^

has this Poincaré series, the Theorem follows also for

w±=( u  S^^Cw^,) and ui=(r>3"n>Jr (u±).

m-times
composing the inclusion of O^Ck) x .....  x O^Ck) x Z.

m-times

0^ ^(k) x 0^ (k)-----^ 0^(k) ; thus by the multiplicative
relations and the result for 0^ „(k), we get

where w^=h* ^(w^), ul=h*_^ (u^ ) and a G (BZ^) iwhere vîî=h* (w.), u !.=h* (u.) and (BZ„) is the
one dimensional polinomial generator of H (BZ^).

and since also the algebra S*

0-i-t)...... Ĉ -i-t )
(1-t)..... (l-tn)

/•. j o_

n=2m+1 , because of (xt 9”n) being onto by putting 
w . = 0 tv iT  ) * ( w . )  and u.=(^ u..X II J- -k xx -i. Q • 0 • d. •
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