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Abstract

The facile and efficient reaction of graphene oxide (GO) and 2-Ureido-4[1H]-pyrimidinone 

(UPy), an isocyanate terminated 4-site hydrogen-bonding moiety, produces a functionalised 

GO (f-GO) that readily self-assembles into a freestanding nacre-like film using a vacuum 

filtration process. The reaction of UPy with GO occurs predominately via the epoxide and 

hydroxyl groups on the GO which was confirmed from a combination of Fourier-transform 

infrared (FTIR), Raman and X-ray photoelectron spectroscopy (XPS) and 13C Solid State 

Nuclear Magnetic Resonance (SSNMR) measurements. The nacre-like films obtained were 

typically 50µm to 100µm thick, from cross-section scanning-electron microscopy (SEM) 

imaging. The GO d-spacing (X-ray diffraction, XRD) increased with increasing UPy content 

from 0.934nm to 1.45nm, resulting in porous films with reduced tortuosity to oxygen, carbon 

dioxide and water. However, at higher UPy content reduced tortuosity is, balanced with the 

ability of UPy dimers to readily dissociate and exchange with water. The tensile strength and 

tensile toughness of the GO nacre-like film increased by up to 470% and 1100% and the 

maximum strain by a factor of ~2, for the film with the highest UPy content. These 
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improvements are achieved through a mechanism of extension and unfolding of the linear chain 

of six carbon atoms in UPy, enhancing strain under tensile loading permitting the platelets to 

slide more before failure. This work highlights the impact of enhanced interlayer interactions 

via hydrogen bonding in producing polymer-free nacre-like films.

Keywords: Graphene-oxide, 2-Ureido-4[1H]-pyrimidinone, functionalisation, nacre-like films, 

mechanical properties, barrier properties

1. Introduction

Numerous approaches have been employed to functionalise graphene oxide (GO).1-3 Of 

these methods the reaction of GO with isocyanates is arguably the most simplistic,4, 5 as the 

reaction can be completed at room temperature within 24 hours, achieving the functionalised 

GO (f-GO) product in high yield. Despite the ease of the reaction, studies on the 

functionalisation of GO using this approach are few. This may be due to the hazardous nature 

of the isocyanate reagents, however post-reaction the amide, carbamate, and oxazolidone 

products are more benign. Through functionalisation the surface behaviour of GO can be 

tailored to achieve many desirable properties including improved dispersion in polymer 

matrices,1 adsorption/capture of chemicals6 and antifouling behaviour in filter membranes7.

Interest in the production and properties of nacre-mimetic materials (analogous to the shells 

of the mollusc family) has grown dramatically in recent years.8-11 Typically, nacre-mimetic 

materials are constructed via a brickwork arrangement of a nanoplatelet based hard phase, 

infused with a soft, polymer phase that behaves like a glue. In nature, the nanoplatelet phase 

makes up at least 95% by volume of the material with the polymer phase providing the 

remaining 5%.12 Synthetic equivalents have been successfully prepared with a wider range of 

polymer loadings. It is widely recognised that the cooperative effect of the soft and hard phase 

results in remarkable material properties through a range of energy dissipation processes.13, 14 
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GO is a popular choice as a hard phase due to its high mechanical strength, relative ease of 

dispersion in water and the favourable interactions possible with a range of polymer phases.15-18 

Resultant nacre-like films can also be readily reduced with hydroidic acid to greatly improve 

mechanical and electrical properties.18 To date, the focus of research in this field has been 

towards optimising interactions between the polymer (glue) and nanoplatelet (brick). This has 

included targeted covalent8, 15 and non-covalent17, 19 crosslinking of GO through the polymer 

phase towards improved interfacial interactions and in turn an improvement in mechanical 

properties. 

In this work, we report a direct functionalisation approach in which GO is treated with a 4-

site hydrogen-bonding moiety (2-Ureido-4[1H]-pyrimidinone, UPy) via a simple isocyanate 

reaction (f-GO). The resultant f-GO was dispersed in dimethyl sulfoxide (DMSO) before 

undergoing vacuum filtration to produce nacre-like films. This work is, to the best of our 

knowledge, the first example of functionalisation of GO via this isocyanate treatment towards 

application as a nacre-like material.  The initial reaction between GO and the UPy is confirmed 

from Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman 

spectroscopy and the degree of functionalisation studied using X-ray photoelectron (XPS) and 

13C solid state nuclear magnetic resonance (SSNMR) spectroscopy. The structure of the films 

was analysed with scanning-electron microscopy (SEM) and XRD and the tensile mechanical 

and barrier properties (oxygen, water and carbon dioxide) measured.

2. Experimental

2.1 Materials

GO was purchased from Abalonyx, Norway in powder form and used with no further 

purification. 2-amino-4-hydroxy-6-methylpyrimidine and DMF were purchased from Fisher 

Scientific and, hexamethylene diisocynate (HDI) was purchased from VWR International. 
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Dichloromethane (DCM) and DMSO were purchased from Merck. All chemicals were used as 

received. Hydrophilic poly(tetrafluoroethylene) PTFE membranes were purchased from 

Merck.

2.2.  Synthesis Methods

2.2.1. Synthesis of 2-Ureido-4[1H]-pyrimidinone (UPy)

2-amino-4-hydroxy-6-methylpyrimidine (4.38 g, 35.0 mmol) was combined with an excess of 

HDI (38.0 cm3, 237 mmol), and heated at 100 °C for 24 hours. A white precipitate formed and 

was filtered under vacuum. The resulting solid (Figure S1) was washed multiple times with n-

pentane achieving a white powder in excellent yield (10.17 g, 34.7 mmol, 99%).

2.2.2. Reaction of UPy with GO

Functionalisation of GO with UPy was achieved using the method outlined by Stankovich et 

al.4 Typically GO (≈1.5 g) was combined in solid form with UPy at a weight ratio of GO:UPy 

= 1:1, 1:0.1 and 1:0.01 and will be referred to as GO.UPy.50.50, GO.UPy.90.10 and 

GO.UPy.99.1, respectively. Anhydrous DMF (75 cm3) was added and the mixture degassed 

with N2 for 1 hour, then stirred for 24 hours. The resultant dispersion was coagulated in DCM 

(≈200 cm3) filtered under vacuum and washed with DCM. The brown powder obtained was 

dried overnight at 40 °C under vacuum.

2.2.3. Production of GO.UPy films

GO.UPy films were produced using a vacuum filtration method in which GO.UPy (≈500 mg) 

was dispersed in DMSO (50 cm3). Numerous attempts were made with other solvents to 

prepare stable dispersions, see Table S1. The mixture was then stirred for 2 hours before being 

filtered through a hydrophilic PTFE membrane with a pore size of 0.22 µm. The films obtained 

(Figure S2) were dried overnight at 40 °C before being peeled from the membrane.
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5

2.2.4. Characterisation

Fourier-transform infrared (FTIR) spectra of all materials were recorded on a Bruker 

Spectrometer in a scan range from 500 cm-1 to 4000 cm-1.

Scanning Electron Microscopy (SEM) micrographs were obtained using a Zeiss Sigma 

instrument using an InLens detector at 10kV. The samples imaged were sputter coated using 

an Au/Pd target. 

Raman spectra were collected on a Renishaw inVia Raman microscope instrument, using a 532 

nm laser in the wavenumber range 100 cm-1 and 3200 cm-1 with a 10-second exposure time, 15 

accumulations with the laser power set at 10%.

X-ray Photoelectron Spectroscopy (XPS) was carried out using a Kratos Axis Ultra DLD 

Spectrometer at RT and with a base pressure of 2 x 10-10 mbar, using a monochromated Al kα 

X-ray source. In order to prevent surface charging the data was collected while the sample was 

exposed to a flux of low energy electrons from the charge neutralizer built in to the 

hemispherical analyser entrance, with the binding energy scale retrospectively calibrated to the 

sp3 C-C peak at 284.6 eV. The data was analysed with CasaXPS software, using Shirley 

backgrounds and mixed Gaussian-Lorentzian (Voigt) line shapes and asymmetry parameters 

where appropriate. For compositional analysis, the analyser transmission function was 

determined using clean metallic foils to determine the detection efficiency across the full 

binding energy range.

XRD measurements were performed on a 3rd generation Malvern Panalytical Empyrean 

instrument equipped with multicore (iCore/dCore) optics and a Pixcel3D detector operating in 

1D scanning mode. A Cu tube was utilised giving Cu Kα1/2 radiation (1.5419 Å) and a beam 

knife to reduce air scatter at the low angles. Scans were recorded in the range 4° to 30° 2θ with 

a step size of 0.0263° and a counting time of ~ 130 s/step. Using the measured diffraction angle, 
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2θ, the interlayer spacing (d) was calculated using Bragg’s Law, nλ = 2dsinθ (where λ = 1.541 

Å).

Tensile testing was completed using an Instron 5800R machine equipped with a 500N load cell 

and a loading rate controlled at 1 mm/min. Test specimens were cut into bars of width 10 mm 

and, length 40 mm using a razor blade. (Thicknesses were determined from cross-sectional 

SEM analysis and the average taken from 10 measurements). The RT tensile mechanical 

properties were determined from an average of at least five (5) specimens. The Young’s 

modulus was calculated from the gradient of the linear region of the stress-strain curve and 

tensile toughness calculated from the area under the stress-strain curves.

All solid state nuclear magnetic resonance measurements were performed at 9.4 T using a 

Bruker Avance-400 spectrometer operating at 1H and 13C Larmor frequencies (νo) of 400.13 

and 100.59 MHz, respectively. Single pulse 13C (direct detection) experiments facilitating a 

quantitative analysis of the carbon speciation  were performed using a Bruker 4 mm HX probe 

which enabled a magic-angle-spinning (MAS) frequency of 12 KHz to be implemented. Pulse 

length calibration was performed using solid alanine from which a π/2 pulse time of 3 μs was 

measured. All 13C MAS NMR experiments were implemented using a π/2 nutation angle and 

a relaxation delay of 60 s between excitation pulses. For all experiments, 100 kHz of 1H 

decoupling was applied during, the acquisition of all FIDs. All 13C chemical shifts were 

externally referenced against the IUPAC recommended primary reference of Me4Si (1 % in 

CDCl3, δ = 0.0 ppm), via the secondary solid alanine reference (δ = 20.5 ppm).20 

The gas (oxygen and carbon dioxide) and water vapour barrier properties of the films were 

assessed using a Totalperm permeability analyzer (Extrasolution Srl, Pieve Fosciana, Italy) 

equipped with both an electrochemical sensor (for oxygen) and an infrared sensor (for carbon 

dioxide and water vapour). Specimens of approximately 2 cm x 2 cm were sandwiched between 

two aluminium-tape masks, exposing a surface of 2.01 cm2 for the permeation of the 
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7

gas/vapour molecules. The oxygen and carbon dioxide transmission rate (O2TR and CO2TR) 

in cm3 m‒2 24h‒1) were determined according to ASTM FD3985 and ASTM F2476, at 23° C 

and 0% relative humidity (RH). Water vapour transmission rate (WVTR, expressed in g m‒2 

24h‒1) was determined according to ASTM F1249 at 38° C and 90% RH. All the tests were 

carried out with a carrier flow (N2) of 10 mL min‒1 and at 1 atm partial pressure difference (for 

O2 and CO2) and, 59.04 mbar vapour partial pressure difference (for WVTR) on the two sides 

of the specimen. To reset any difference in the transmission rate (TR) values possibly arising 

from different thicknesses, TR values were used to determine a permeability coefficient (P′O2, 

P′CO2 and P′WV) using the following equation:

 (1)𝑃′𝐺 = 𝑃𝐺 × 𝑡 =
𝐺𝑇𝑅
∆𝑝 × 𝑡

where, P′G is the gas (or vapour) permeability coefficient (cm3 mm m-2 24h-1 atm-1), PG, is the 

permeance (defined as the ratio of the GTR to the difference between the partial pressure of the 

gas on the two sides of the film, Dp), and t is the total thickness of the material.

3. Results and Discussion

The surface of GO has a relatively high abundance of functional groups that can be used for 

chemical reactions.21 The simple and effective reaction of the carboxylic acid, hydroxyl and 

epoxide groups present on the surface of GO with a free isocyanate is exploited to achieve 

surface functionalised GO. The reaction of a carboxylic acid and an isocyanate has been known 

for many years22 and proceeds via a condensation reaction in which CO2 is released.22, 23 The 

initial step of the reaction proceeds through an attack of the carboxylate ion on the 

electropositive sp carbon of the isocyanate group. Following this, the anhydride intermediate 

produced undergoes an intramolecular rearrangement to expel CO2. This ultimately forms an 

amide species that is detectable by FTIR. Theoretically, the hydroxyl and epoxide groups of 

GO can also undergo a similar attack of the isocyanate carbon that results in a carbamate 
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species and an oxazolidone.24 Example mechanisms are available in the supporting information 

(Scheme S1).

The reactivity between the aromatic and aliphatic carboxylic acids and isocyanates has been 

shown to be less for the aromatic species.22 The functional groups used for this reaction are 

close to sp2 carbons, where the graphene-like structure has been oxidised to form sp3 

hybridisation and therefore has lost much of its aromaticity. As a result, a successful and rapid 

reaction occurred at room temperature within 24 hours (Scheme 1). This is confirmed from the 

FTIR spectra recorded (Figure 1 a)). GO displays two key peaks between 1000 and 2000 cm-1, 

one at 1618 cm-1 corresponding to the O-H bend of trapped water and the other at 1722 cm-1 

which can be assigned to the C=O stretching of carboxylic acid and ketonic groups.25 New 

peaks are observed following the reaction with the isocyanate and can be assigned to amide 

and carbamate groups at 1643 cm-1 and 1560 cm-1 produced via the reaction outlined in scheme 

1. The peak at 1643 cm-1 corresponds to an amide-carbonyl stretching vibration, otherwise 

referred to as the Amide-I vibrational stretch. The shoulder observed at 1560 cm-1 can be 

assigned to the coupling of a C-N stretch with the CNH deformation vibration with an amide 

(known as the Amide-II vibration) but can also be observed in carbamate esters.4
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Scheme 1. Reaction mechanism for functionalisation of GO with the 4-fold hydrogen-

bonding group, UPy. The hydrogen-bonding sites are displayed as arrows on the UPy 

structure where, red = acceptor sites and blue = donor sites.

Figure 1. a) FTIR spectra of GO and GO.UPy between 2000 cm-1 and 1000 cm-1 and b) 

Raman spectra of GO and GO.UPy between 500 cm-1 and 3000 cm-1.

The Raman spectra of the GO based materials displays two main peaks at approximately 1355 

cm-1 (D band), and close to 1600 cm-1 (G band). The D band corresponds to an in-plane 

vibration of sp2 carbons in close proximity to a sp3 region. The G band is a primary in-plane 

vibration assigned to pristine sp2 domains.26 Determining the ratio of the intensity of these two 

peaks (ID/IG) provides information on the concentration of defects present within the GO 

material. A change in intensity of the D and G bands of the GO post-functionalisation is 

obtained, see Figure 1 b). On addition of the UPy (isocyanate), the ID/IG ratio increases, see 

Table 1. This is representative of an increase in the sp3 domain within the GO. The change in 

intensity ratio observed is relatively small and so suggests the functionalisation has a minimal 

effect on the structure of the GO. This is expected due to the reaction sites being carboxylic 

acid, hydroxyl and epoxide groups that are already present in defect-rich domains. The change 
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10

observed is however significant and provides further evidence for successful chemical 

modification of the surface of the GO.

Table 1. ID/IG ratios for GO and GO.UPy materials

Sample GO GO:UPy.99.1 GO.UPy.90.10 GO.UPy.50.50

D band (cm-1) 1355 1354 1353 1352

G band (cm-1) 1600 1597 1597 1597

ID/IG ratio 0.848 0.874 0.871 0.919

XRD was performed to determine changes in the interlayer spacing within the GO and 

GO.UPy powder samples (Figure 2 a)). The dominant peak in the neat GO spectrum at 2θ = 

10.84 corresponds to a d spacing of 0.816 nm. Following reaction with UPy, this peak shifts 

towards lower 2θ values, i.e. larger d-spacing. Addition of increasing concentration of UPy 

results in a corresponding increase in the interlayer spacing, up to 1.144 nm for GO.UPy.50.50. 

This shift in 2θ and increase in d-spacing supports successful grafting of UPy onto GO.
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11

Figure 2. XRD diffractograms of GO and GO.UPy samples, a) in as synthesized powder 

form and b) as nacre-like films.

Single pulse 13C MAS NMR measurements were also used to confirm the 

functionalisation of GO with the isocyanate group. The 13C MAS NMR data from unreacted 

GO (see Figure 3 a)) shows characteristic resonances for surface terminated oxygen functional 

groups including epoxide (δ = 61.8 ppm), hydroxyl  (δiso= 70.2 ppm) and carbonyl groups (δiso 

= 166.1 ppm). The sp2 graphitic region can also be observed as a broad peak centring at δiso = 

121.4 ppm (Table S3). The assignment of these resonances has been established in previously 
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reported studies.27, 28 Following functionalisation with UPy, evolution of new resonances in 

addition to those ascribed to unreacted GO are observed (see Figures 3 b) - d)). These new 

resonances appear at chemical shifts of δ = 31.8 ppm and 37.5 - 39.1 ppm, and can be assigned 

to carbon species within the six-membered UPy group. In the spectra for the GO.UPy.50.50 

samples, a further seven resonances are observed. It is likely these peaks are not observed in 

GO.UPy.99.1 and GO.UPy.90.10 as the concentration of UPy in both of these samples is too 

small to resolve the carbon environments. This could also be due to unreacted UPy adsorbed 

to the GO surface as suggested from the XPS analysis.

As observed from Figure 3, the intensity of the GO hydroxyl and epoxide resonances 

decrease upon functionalisation with UPy. The intensity for epoxide resonance at δ = 60.9 - 

61.8 ppm decreases monotonically 13.4, 12.0, 6.1 and 4.1 % as measured from the GO, 

GO.UPy.99.1, GO.UPy.90.10 and GO.UPy.50.50 systems, respectively. Although the trend for 

the hydroxyl groups at δ = 70.2 - 71.0 ppm is observed to initially increase in intensity when 

comparing the unreacted GO to the GO.UPy.99.1 preparations, the subsequent trend for this 

species decreases from 7.4% to 5.9% to 3.4% with increasing UPy incorporation in the reaction 

mixture. These findings confirm that the isocyanate groups readily react with both the epoxide 

hydroxyl species on the GO surface; however, it should be noted there is no apparent resonance 

intensity trend measured from the carbonyl resonance located at δ = 131.7 - 132.0 ppm. The 

predominance of the UPy reactivity with the surface hydroxyl and epoxide species on the 

unreacted GO surface, with minimal affinity towards the carboxyl moieties, corroborates the 

reaction mechanism outlined in Scheme S1 where the carboxylic acid group must be converted 

to a carboxylate ion before reaction with isocyanate can occur.22 Due to the acidic nature of the 

GO surface, it is expected that the protonated carboxylic acid will dominate within the reaction 

media, thus blocking the reaction from proceeding. An acidic environment is unlikely to have 
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a negative impact on the reactivity of hydroxyl and epoxide groups and therefore, the UPy 

groups react more readily with these groups.

Figure 3. Solid state 13C MAS NMR data acquired from the a) unreacted GO, b) 

GO.UPy.99.1, c) GO.UPy.90.10 and d) GO.UPy.50.50 sample.

XPS analysis of the GO reveals only carbon and oxygen signals with trace amounts of 

sulphur and chlorine (the latter likely a result of reagents used in the synthesis of the GO nano-

platelets). The nitrogen content determined by this method is 0% as expected for neat GO. 

Following the reaction of GO with UPy, the elemental composition of the products is found to 

contain nitrogen (Table S1). The nitrogen content also increases with higher isocyanate 

loading, which would be expected in the case of successful grafting of the isocyanate groups 

to the GO surface and, can be observed in the XPS survey (Figure 4a)) by the appearance of 

the N1s peak (≈400 eV). From the de-convoluted spectra (Figure 4 b)-f)), the C1s spectrum of 
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neat GO shows four peaks that can be attributed to binding energies for C-C (284.5 eV), C-O 

(286.4 eV), C=O (287.2 eV) and O=C-O (288.5 eV). Following the reaction with UPy, the C1s 

spectrum is de-convoluted into eight peaks with new peaks that are assigned to C-N (285.6 

eV), O=C-N (288.1 eV) and N-(C=O)-N (290.1 eV). The C-C peak is also split into peaks for 

both the sp2 (284.1 eV) and sp3 (284.8 eV) domains. The development of these nitrogen-

containing peaks confirms successful reaction of the UPy with GO. This is further supported 

by, the development of the N1s peak that is not present for neat GO. The N1s peak for both 

GO.UPy.99.1 and GO.UPy.90.10 can be de-convoluted into two peaks that can be assigned to 

C-N (399.8 and 400.2 eV) and N-H (401.3 and 401.7 eV) repectively.29 In the case of 

GO.UPy.50.50, a third peak is detected that is attributed to C=N (399.0 eV). This is most likely 

a result of unreacted isocyanate adsorbing onto the GO surface through hydrogen bonding 

between the GO and the isocyanate molecule. On the assumption the C=N is derived from 

unreacted isocyanate, the C-N percentage can be corrected, providing a more accurate 

indication of the degree of functionalisation. The ratio of the intensity of the C-N and N-H 

peaks changes following addition of greater UPy content. The intensity of both peaks should 

increase but at an equal rate, the ratio of N-C to N-H increases. The high UPy content materials 

more readily form dimers via hydrogen bonding due to an increase in the availability of 

neighbouring UPy groups and following dimerization, the UPy groups migrate between the 

layers. From XRD the interlayer distances of the higher UPy content f-GO is larger, confirming 

the presence of functional groups between the layers. XPS is a surface technique so is unable 

to detect the interlayer chemistry of the GO.UPy samples. The 13C MAS NMR data confirmed 

the reactivity of the hydroxyl groups, detected by XPS and, are most likely to be concentrated 

on the edges of the GO. As a result, the formation of the C-N bond is detected at all loadings 

due to its permanent positioning on the edges of the f-GO. At high UPy loading, the N-H bonds 

present in the UPy structure cannot be detected as they migrate between the f-GO layers 
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following dimerization and consequently, the ratio of detected C-N increases as the volume of 

N-H that can be detected is reduced.

Figure 4. a) Survey spectra and b)-f) de-convoluted XPS spectra for GO and GO.UPy 

samples, b) C1s spectrum for neat GO, c) C1s spectrum for GO.UPy.50.50, d) N1s spectrum 

for GO.UPy.99.1, e) N1s spectrum for GO.UPy.90.10 and f) N1s spectrum for GO.UPy.50.50.
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Nacre-mimetic materials can be prepared using a number of methods.8, 10, 18, 30 The 

functionalised GO produced in this work was found only to be stable as a dispersion in DMSO 

following testing in a range of solvents (Table S2). Due to the high boiling point and low room-

temperature volatility of DMSO, techniques such as solvent casting are not viable without long 

drying times or the application of high temperature. As a result, the dispersions of GO.UPy in 

DMSO were filtered through a hydrophilic PTFE membrane under vacuum. This technique has 

been widely used in the literature previously and proven to be effective at producing nacre-

mimetic layered structures.18, 19, 31-33 The stand alone nacre-like films produced were smooth 

and could be peeled with ease from the membrane (Figure S2). 

SEM was used to image cross sections of the films produced (Figure 5). The uni-

directional layered arrangement of the f-GO sheets is seen in each example thus, proving the 

nacre-mimetic structure of the films. It is interesting to observe the formation of larger ‘brick-

like’ structures within the GO.UPy.50.50 material. These structures are most likely formed 

from the more densely packed highly functionalised GO, producing strongly bound groups of 

sheets. Once the filtration is completed, these structures self-assemble to form a layered 

structure due to the complementary interactions between the GO surface functional groups and 

those present on the rest of the f-GO sheets. This ‘brick-like’ structure is a result of high 

isocyanate content, as the same phenomena are not observed for the GO.UPy.99.1 and 

GO.UPy.90.10 films.
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Figure 5. Cross-sectional SEM images of the GO.UPy films, a) GO.UPy.99.1, b) 

GO.UPy.90.10, c) GO.UPy.50.50 and d) GO.UPy.50.50 with examples of large ‘brick-like’ 

structures outlined in yellow.

Figure 2 b) shows the XRD spectra for GO and the GO.UPy ‘nacre-like’ films. For the 

neat GO film, a peak is obtained at 2θ = 9.48° corresponding to an interlayer distance of 0.934 

nm. This value is greater than that obtained for the same GO sample in powder form (0.816 

nm) confirming the GO is packed more densely when in powder form. Upon reaction with 1 

wt% UPy, the d spacing decreased to 0.921 nm where 2θ = 9.63°. This effect is most likely due 

to the improved hydrogen bonding facilitated by the UPy group improving packing. Upon 

addition of higher isocyanate content, the interlayer distance increases. For GO.UPy.90.10, 2θ 

= 9.37° corresponding to an interlayer distance of 0.943 nm and for GO.UPy.50.50, 2θ = 9.29° 
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corresponding to an interlayer distance of 0.959 nm. This suggests that for the lowest UPy 

concentration interlayer interactions increase and more dense packing of the f-GO sheets in the 

nacre-like film structure results. Upon addition of >10 wt% isocyanate, the steric effects of the 

bulky UPy group begin to outweigh any enhancement in interlayer interactions and forces the 

sheets to separate, hence larger d-spacing obtained. Indeed, for the GO.UPy.50.50 sample 

further peaks evolve, including at lower 2θ = 6.13° corresponding to a d spacing of 1.44 nm, 

clear evidence the GO layers are further separated on addition of the highest UPy concentration.  

However, the interlayer spacing at around 2θ = 9.3° for both GO.UPy.90.10 and GO.UPy.50.50 

films are smaller than the equivalent samples when in powder form. Clearly, the presence of 

the 4 sites for hydrogen bonding in UPy (see Scheme 1) at higher loading promotes packing of 

the f-GO platelets when self-assembled in an unidirectional material. This behaviour is not 

observed for neat GO and GO.UPy.99.1 suggesting improved platelet packing in a random 

orientation. This is likely a result of the steric properties of the UPy group disrupting platelet 

packing, as the GO sheets are unable to align as effectively. When produced in an ordered 

arrangement (i.e. ‘nacre-like’ film), the UPy aids the self-assembly process and so promotes 

tighter platelet packing.

The tensile mechanical properties of the ‘nacre-like’ GO.UPy films were measured 

(Figure 6) and the Young’s modulus (E), tensile strength (σ), maximum strain and tensile 

toughness values determined and listed in Table S4. Overall, the reaction of UPy with GO has 

a positive effect on the mechanical properties of the stand-alone GO films. The improvements 

in tensile strength are expected due to the improved interlayer interactions facilitated by the 4-

fold hydrogen bonding dimers. In traditional nacre-mimetic materials, the main failure 

mechanisms are platelet fracture or yielding of the soft interfaces.34 The GO and GO.UPy films 

have no soft phase and so failure proceeds via platelet fracture or yielding at the interface 

between the platelet layers. By improving the interactions between the platelet layers, the 
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overall energy necessary to overcome interfacial interactions increases. As a result, the tensile 

strength of the GO nacre-like film increases significantly with increased UPy loading, by up to 

470% compared with the neat GO film. The maximum strain also improves by a factor of two 

(~2) with the introduction of UPy, probably due to the structure of the UPy backbone. The six-

carbon chain connecting the GO and the UPy groups (Figure S1) forms dimers (i.e. 12 carbon 

chains) and can extend and, unfold under applied load. This in turn allows the sheets to slide 

further over each other before reaching the extensibility of the UPy chains. Figure 7 provides 

a schematic illustration of our physical interpretation of the mechanism by which the 

mechanical properties of the stand-alone nacre-like GO.UPy films are enhanced relative, to the 

neat GO equivalent. With increasing concentration of UPy groups, the sliding of GO platelets 

is promoted and thus improving the maximum strain. The value of E also increases with 

increasing UPy concentration and follows a similar trend to both tensile strength and maximum 

strain. The E modulus is proportional to the ability of the matrix to transfer loads to the 

reinforcement via shear stresses. Here, the UPy plays the role of the matrix that enables load 

transfer to GO. This is the case when the UPy content is 10 and 50, but this mechanism is 

significantly reduced when the amount of GO is large (~99), or when there is only ‘pure’ GO 

platelets,  i.e. no ‘matrix’ available to transfer the loads. Most interestingly there is an 1100% 

improvement in tensile toughness of the GO.UPy.50.50 film relative to the neat GO film. UPy 

functionalisation of GO resulted in a significant improvement in mechanical properties. 
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Figure 6. Tensile mechanical properties of nacre-like GO and GO.UPy films, a) Young’s 

modulus, b) tensile strength, c) maximum strain and d) tensile toughness.
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Figure 7. Schematic illustration of the improved extensibility observed for GO.UPy samples 

relative to neat GO.

Nacre-mimetic materials have been shown in the literature to offer enhanced gas barrier 

properties,17, 35, 36 although the literature to date only describes the gas barrier properties of 

nacre-mimetic films that are typically supported on polymer films and, not as stand-alone films 

as in this study. The barrier properties of the GO and GO.UPy nacre-like films were tested for 

oxygen (O2TR), carbon dioxide (CO2TR) and water vapour transmission rate (WVTR), Figure 

8, the corresponding gas barrier transmission curves are shown in Figure S3. To the best of our 

knowledge, there are no reports on the barrier properties of freestanding, polymer-free 

unidirectional 2D nanomaterial films in the literature. It can be seen that the functionalisation 

of GO with 1 wt% UPy has a beneficial effect on the barrier properties of the films for all the 

gases analysed. Upon addition of higher isocyanate content, the barrier performance decreases, 

and the gas transmission rate is higher than that for the neat GO film, as expected. The 
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interlayer spacing (XRD) between platelets is greater with increasing concentration of UPy 

groups, so the barrier to gas diffusion is less tortuous. Gas barrier properties strongly depend 

on the tortuosity of the pathway the gases must travel to permeate through the film.37 An 

increase in interlayer spacing will increase the volume of the pathway and as a result reduce 

the resistance to diffusion during permeation. 

Interestingly, the WVTR for the GO.UPy.50.50 film is less than that for GO.UPy.90.10, 

behaviour associated with the binding of water molecules by the UPy. The four sites for 

hydrogen bonding on UPy are able to bind to water molecules, preventing them from 

permeating, as UPy dimers can readily dissociate and exchange with water.38 The dissociated 

UPy group can hydrogen bond with the water during transmission and slow the permeation rate 

through the film. The neat GO film has reduced hydrogen-bonding potential (i.e. no UPy) but 

the interlayer distances are smaller and this is more dominant than water capture by the UPy. 

As the interlayer spacing is the smallest for the GO.UPy.99.1 film, it has the most tortuous 

pathway for the water to permeate. This, combined with a small potential for water capture, 

results in this film being the best barrier of the four compositions. GO.UPy.90.10 and 

GO.UPy.50.50 have larger interlayer distances that results in an increase in water transmission 

when compared to GO and GO.UPy.99.1. The potential for water capture is higher in these 

materials. Water capture predominates over the reduction in the tortuous pathway at high UPy 

loading and thus results in improved barrier performance for GO.UPy.50.50.

The O2TR and CO2TR observed for these films are significantly lower than GO based 

nacre-mimetic films that include a polymer phase.36, 39 The WVTR is also lower than that 

reported for other nacre-mimetic materials in the literature.40 This could be explained by an 

increase in porosity as reported by Medina et al.41 for other 2D nanomaterials. Using 

weight/volume calculations, the authors were able to determine that a 100 wt% nanoclay 

material was significantly more porous than the same nanoclay with 20 wt% or more polymer 
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content. The porosity was due to imperfect nanoplatelet stacking resulting in ‘pile-up’ and 

ultimately holes or voids in the structure. It is likely this phenomenon is also present in these 

nacre-like GO and GO.UPy samples. An increase in porosity will dramatically reduce the 

brick-wall effect, creating routes for the gas to penetrate and permeate through the film. 

Figure 8. Barrier properties of GO and GO.UPy films towards different gases, a) oxygen 

transmission, b) CO2 transmission and c) water vapour transmission rate.
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4. Conclusions

The facile reaction of GO with UPy yielded a functionalised GO (f-GO) species which was 

used to produce freestanding ‘nacre-like’ films using a vacuum filtration process. The binding 

of UPy to GO was confirmed through the shift in the C=O stretch in the FTIR spectrum, shifts 

in the GO D and G bands in the Raman spectra, changes in elemental composition determined 

from XPS measurements and from the changes in the hydroxyl and epoxide peak intensities in 

solid state NMR studies of the GO.UPy materials. The uni-directional layered morphology of 

the nacre-like films was observed from cross-sectional SEM imaging. The spacing between 

GO layers increased with increasing UPy content resulting in the films becoming more porous. 

The barrier properties of the freestanding GO.UPy films to O2 and CO2 are determined by the 

tortuosity of the permeation pathways only, whilst H2O transmission is also retarded due to 

disassociation of UPy and exchange with water. The increased interfacial interactions, via UPy 

hydrogen bonding sites, between f-GO platelets resulted in a significant increase in the tensile 

strength (470%), tensile toughness (1100%) and by a factor of two the maximum strain of the 

GO nacre-like films. The increase in maximum strain is derived from, the ability of the platelets 

to slide more before failure via hydrogen bonding between UPy molecules. This work has 

demonstrated the potential for nacre-like materials making use of similar hydrogen bonded f-

GO species.
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