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A NOTE ON THE EXACT SIMULATION OF SPHERICAL BROWNIAN MOTION

ALEKSANDAR MIJATOVIĆ, VENO MRAMOR, AND GERÓNIMO URIBE BRAVO

Abstract. We describe an exact simulation algorithm for the increments of Brownian motion on a sphere
of arbitrary dimension, based on the skew-product decomposition of the process with respect to the standard
geodesic distance. The radial process is closely related to a Wright-Fisher diffusion, increments of which can
be simulated exactly using the recent work of Jenkins & Spanò (2017) [JS17]. The rapid spinning phenomenon
of the skew-product decomposition then yields the algorithm for the increments of the process on the sphere.

Keywords. exact simulation; skew-product decomposition; spherical Brownian motion; Wright-Fisher dif-
fusion

1. Introduction

Brownian motion (BM) can be viewed as a continuous time random walk with symmetric increments
and is as such of fundamental importance in physics and other natural sciences. In applications one is
often interested in the BM on curved surfaces and other manifolds, see e.g. [KDPN00] and [LTT08] for the
modelling of the fluorescent marker molecules in cell membranes and the motion of bacteria or any other
diffusing particles, respectively. Often Monte Carlo simulation algorithms for such models on curved spaces
are constructed using approximate tangent plane methods, which are accurate only for very small time steps,
making the algorithms computationally expensive. Algorithms allowing simulation over longer time steps
are hence of particular interest in the physics literature. For example, [NEE03] gives a simulation algorithm
for the BM on the three-dimensional sphere, based on its quaternionic structure. This algorithm is neither
exact nor does it generalise easily to other dimensions. In [CEE10] it is applied to design an approximate
simulation algorithm for the BM on the two-dimensional sphere. A further approximate algorithm for the
simulation of BM on the two-sphere is given in [GSS12]. All the aforementioned algorithms are based on an
approximation of the transition density of the BM on the relevant sphere.

In contrast, for any dimension d ≥ 3, Algorithm 1 simulates exactly the increments of the BM Z on the
sphere Sd−1 :=

{
z ∈ Rd ; |z| = 1

}
. It is based on two facts established in Section 2: the radial part of Z

(with respect to the standard metric on Sd−1) can be transformed to a Wright-Fisher diffusions and, due to
the rapid spinning of the skew-product decomposition of Z, its angular component is uniform on Sd−2.

Algorithm 1 Simulation of the increment of Brownian motion Z on Sd−1 over any time interval

Require: Starting point z ∈ Sd−1 and time horizon t > 0

1: Simulate the radial component: X ∼WF0,t

(
d−1
2 ,d−12

)
. Algorithm 2 in Appendix A

2: Simulate the angular component: Y uniform on Sd−2

3: Set u := (ed − z)/ |ed − z| and O(z) := I − 2uu>

4: return O(z)(2
√
X(1−X)Y >,1− 2X)>

The vectors in Algorithm 1 are column vectors of appropriate dimension, ed := (0, . . . ,0,1)> ∈ Sd−1

denotes the north pole of the sphere and O(z) is the reflection of Rd across the hyperplane through the origin
1
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with the normal u. Algorithm 2 is the exact simulation algorithm for the increment of the Wright-Fisher
diffusion given in [JS17, Alg. 1] (see Eq. (A.1) below for a definition of Wright-Fisher diffusions). Step 2 in
Algorithm 1 consists of simulating a vector N in Rd−1 with independent standard normal components and
setting Y = N/ |N | (we denote the standard Euclidean norm by |·| throughout).

The key property of the orthogonal matrix O(z) ∈ Rd ⊗ Rd in Algorithm 1 is O(z)ed = z. In fact, any
orthogonal matrix in Rd ⊗ Rd with this property would lead to an exact sample from the increment of BM
on Sd−1. Indeed, if O1(z),O2(z) ∈ Rd⊗Rd are two such orthogonal matrices, then the product O−11 (z)O2(z)

fixes ed and is given by an orthogonal transformation Õ(z) ∈ Rd−1 ⊗ Rd−1 on the orthogonal complement
{ed}⊥ in Rd. Hence O2(z)(2

√
X(1−X)Y >,1− 2X)> = O1(z)(2

√
X(1−X)(Õ(z)Y )>,1− 2X)> implying

O2(z)(2
√
X(1−X)Y >,1− 2X)>

d
= O1(z)(2

√
X(1−X)Y >,1− 2X)>,

where d
= denotes equality in law. The formula for O(z) in Algorithm 1 is chosen due to its simplicity.

Algorithm 1 exploits the symmetry of both the geometry of Sd−1 and the law of spherical BM to reduce
the simulation problem in any dimension to the simulation of an increment of a one-dimensional diffusion.
Unlike the simulation methods in [NEE03, CEE10, GSS12], Algorithm 1 depends on the dimension d only
through the value of the mutation parameters in the Wright-Fisher diffusion. As discussed in [JS17, Sec. 4],
Algorithm 2, which simulates exactly from the law of the increment of the Wright-Fisher diffusion, is
numerically stable for the time intervals of length t ≥ 0.05. This is essentially because, when t is very small,
the modulus of the summands in the alternating series [JS17, Eq. (5)] is increasing as a function of the index
for large values of the index, before it starts to decrease monotonically. Conversely, Algorithm 2 (and hence
Algorithm 1) becomes more efficient with increasing time horizon t (for small t, a normal approximation
can be used to obtain a fast approximate algorithm substituting Algorithm 2, see [JS17, Thm 1] and the
comments therein). Dimension d does not affect the performance of Algorithm 1, cf. Appendix A.

Algorithm 1 above and the Markov property of the BM Z on the sphere Sd−1 yield an exact sample from
any finite-dimensional marginal of Z. Moreover, as the BM on S1 ⊆ C can be represented as Z = exp(iW ),
where i2 = −1 and W denotes a standard BM on R, the assumption d ≥ 3 in Algorithm 1 is not restrictive.

Our main technical result (Proposition 2.1 below) states that the spherical BM Z enjoys a skew-product
decomposition in which the last component of Z is independent of the normalized and suitably time-changed
remaining components. Its main application in the present paper consists of establishing the validity of
Algorithm 1. The proof of Proposition 2.1 is analogous to that of [MMU18, Thm 1.5]. However, we note
that Proposition 2.1 is not a corollary of [MMU18, Thm 1.5], as the quoted theorem implies only the
independence of the modulus of the last component (but not of its sign). This difference makes the claim of
Proposition 2.1 more general than [MMU18, Thm 1.5] and (we hope) of independent interest.

The classical skew-product decomposition of Brownian motion ζ in Rd, started away from the origin,
features the BM Z on Sd−1 as follows: Zt = ζCt/|ζCt |, where the increasing process (Ct)t≥0 is the inverse
of the additive functional

∫ ·
0 |ζu|

−2du of ζ. Moreover, the process Z and |ζ| are independent of each other.
It is tempting to try to use the above representation to obtain a sample from Zt. One would first need to
simulate Ct , then get a sample from the conditional law of ζCt , given Ct, and finally normalise this sample to
get an Sd−1-valued random element identically distributed as Zt. We stress however that this does not yield
an approximate simulation algorithm for the increments of Z, let alone an exact one. Even if one is able to
simulate Ct, which is in itself non-trivial and can to the best of our knowledge only be done approximately,
the key obstacle is the fact that the process ζ is not independent of the time Ct. More precisely, since Ct
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depends on the trajectory of ζ up to Ct, the conditional law of ζCt , given Ct, is intractable, so the second
step of the proposed sampling procedure cannot be achieved.

Finally, we note that Algorithm 1 yields an algorithm for the exact simulation of the increments of the
BM on the real RPn, complex CPn and quaternionic HPn projective spaces (for any integer n). These
are Riemannian manifolds of the (real) dimension n, 2n and 4n, respectively, with canonical Riemannian
metrics described in Appendix B. The Riemannian submersion π (mapping Sn → RPn, S2n+1 → CPn and
S4n+3 → HPn) by Lemma B.1 below projects the BM Z on the relevant sphere to the BM π(Z) on the
projective space. Since π(z) = [z] only converts the standard coordinates of the point z on the sphere to
the homogeneous coordinates [z] in the projective space, the random element

π
(
O(z)(2

√
X(1−X)Y >,1− 2X)>

)
,

where matrix O(z) and random variables X,Y are the same as in Algorithm 1, gives the exact sample of the
increment of the BM on the projective space, started at [z], over the time horizon t > 0.

2. The skew-product decomposition and Algorithm 1

Brownian motion Z = (Zt)t≥0 on the sphere Sd−1 is a Feller process generated by the Laplace-Beltrami
operator corresponding to the Riemannian metric on Sd−1 induced by the ambient Euclidean space Rd,
see [Hsu02]. There are a number of different ways of representing BM on a sphere. The most useful for our
purposes is the Stroock representation of Z, given (in Itô form) by SDE (2.1) on Rd,

(2.1) dZt = (I − ZtZ>t )dBt −
d− 1

2
Ztdt, Z0 ∈ Sd−1,

which possesses the unique strong solution, where B is a BM on Rd and I denotes the identity matrix of
appropriate dimension (cf. [Hsu02, Ch.3, §3, p.83]). However, as (2.1) and other representations of Z alluded
to above are non-constructive, we cannot use them directly for the exact simulation of the increments of Z
in dimension d ≥ 3.

As explained in the introduction, the key idea is to identify the skew-product decomposition of Z and
exploit the rapid spinning phenomenon of the angular component at the starting point Z0, together with the
symmetries of the sphere Sd−1 and the law of the spherical BM Z to obtain Algorithm 1. Let D = (Dt)t≥0

be the geodesic distance Dt := dis(Zt) ∈ [0,π] between Zt and some fixed point w ∈ Sd−1. In [IM96, p. 269]
and [PR88], the authors show that D satisfies the SDE dDt = dβt + d−2

2 cot(Dt)dt, where β is a scalar BM.
Since dis(z) = arccos(〈z,w〉) for any z,w ∈ Sd−1, the natural transformation X̃ := cos(D) leads to the Jacobi
diffusion (see e.g. [WY98] and the proof of Proposition 2.1 below) satisfying the SDE

(2.2) dX̃t =

√
1− X̃ 2

t dβ̃t −
d− 1

2
X̃tdt, X̃0 = 〈Z0,w〉,

where β̃ = −β is a standard scalar BM. This simple (and in our context crucial) observation has to the best
of our knowledge not been made in the literature so far. Note that X̃t = 〈Zt,w〉. We henceforth fix w = ed

and obtain X̃t = Zdt , making X̃ the process considered in [MMU18, Proposition 1.1] for n = 1 and ` = d−1.
A linear transformation Xt := 1−X̃t

2 yields the SDE

(2.3) dXt =
√
Xt(1−Xt)dβt +

(
d− 1

4
(1−Xt)−

d− 1

4
Xt
)

dt, X0 =
1− Zd0

2
,

making X a Wright-Fisher diffusion with mutation parameters θ1 = d−1
2 = θ2, see (A.1) below.
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A weak form of the skew-product decomposition (on the level of generators) of the BM on the sphere has
been established in [PR88], see also [IM96, p. 269]. In order to give a path-wise skew-product representation
of Z, note first that for d ≥ 3 the Wright-Fisher diffusion X visits neither 0 nor 1. We may thus introduce
the following time-changes: for 0 ≤ s ≤ t define Ss(t) :=

∫ t
s

1
4Xu(1−Xu)

du, satisfying lim
t→∞

Ss(t) = ∞ (see
proof of Proposition 2.1 below), and its inverse Ts : [0,∞)→ [s,∞). We now state our main result.

Propositon 2.1 (Skew-product decomposition of the BM on Sd−1). Let d ≥ 3 and Z be a solution of
SDE (2.1). Pick s ∈ [0,∞) and assume that either s > 0 or s = 0 and Z0 6= ed. Let U = (Z1, . . . ,Zd−1)>

denote the first d − 1 components of Z. Then |U | = 2
√
X (1−X ) and the process V̂ = (V̂t)t≥0, given

by V̂t := UTs(t)/
∣∣UTs(t)∣∣ is a BM on the sphere Sd−2, started at V̂0 = Us/ |Us|, independent of X . Hence

we obtain the skew-product decomposition Zt = (2
√
Xt(1−Xt)V̂ >Ss(t)

,1 − 2Xt)> for t ≥ s. Furthermore, if

Z0 = ed (i.e. U0 = 0), then V̂t is uniformly distributed on Sd−2 for any t > 0 and subsequently evolves as a
stationary BM on the sphere.

Since time changing a stationary process by an independent time-change does not affect the marginal
distributions of the process, the second part of the theorem immediately yields Corollary 2.2, which in turn
justifies Algorithm 1 for the exact simulation of the increments of BM on the sphere Sd−1.

Corollary 2.2. Let d ≥ 3 and Z be the BM on Sd−1 started at Z0 = ed. Additionally, let W be the
unique strong solution of SDE (A.1) with mutation parameters θ1 = d−1

2 = θ2, started at W0 = 0, and Y a
uniformly distributed random vector on Sd−2, independent of W. Then for each t ≥ 0, the random vectors
Zt and (2

√
Wt(1−Wt)Y

>,1− 2Wt)
> are identically distributed.

It may appear that the skew-product decomposition in Proposition 2.1 can be applied directly to simulate
the increments of the spherical BM started at any point in Sd−1. Since the increment of the Wright-Fisher
diffusion can be simulated exactly using Algorithm 2 below, Proposition 2.1 appears to reduce the problem
to the simulation of the increment of the BM on Sd−2. Recursively, this would reduce the problem to the
simulation of the BM on S1, where the algorithm is trivial. Unfortunately, for this direct approach to work
we would need to obtain a sample from law of the pair (Xt,

∫ t
0

1
4Xu(1−Xu)

du), which at the time of writing we
do not know how to do. As stated in Corollary 2.2, this problem disappears when the BM Z starts at the
north pole ed. Since for any orthogonal matrix A ∈ Rd⊗Rd the process AZ solves the SDE in (2.1) started
at AZ0, Corollary 2.2 and the orthogonal matrix O(z) in Algorithm 1 circumvent the need to simulate from
the law of the pair (Xt,

∫ t
0

1
4Xu(1−Xu)

du) for an arbitrary starting point z ∈ Sd−1.

Remark 2.3. It is not difficult to see that the Brownian motion Z̃ = (Z̃t)t≥0 on the sphere of radius R > 0

in Rd satisfies the following SDE with a unique strong solution (see e.g. [GMW18, Lem. 3.6(e)]):

dZ̃t = (I − Z̃tZ̃>t /|Z̃t|2)dBt −
d− 1

2
Z̃t/|Z̃t|2dt, |Z̃0| = R.

Thus we may define the BM Z̃ by Z̃t = RZt/R2 , where Z is the BM on Sd−1 satisfying the SDE in (2.1),
and Algorithm 1 can be applied to produce the exact sample of the increments of Z̃.

Proof of Proposition 2.1. In order to apply [MMU18, Thm 1.5], let n = d − 1, ` = 1 and set γ ≡ 1,
g ≡ d−1

2 . Then the process U in Proposition 2.1 equals the process X considered in [MMU18, Thm 1.5]. In
particular, the processes |U | and R are equal implying that the time-changes Ss(t) and Ts(t) used in both
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Proposition 2.1 and [MMU18, Thm 1.5] coincide. Moreover, since [MMU18, Lem. 2.3] holds in the current
setting the time-changes are well-defined. We finally note that |U | = 2

√
X (1−X ).

As mentioned in the introduction, the only thing left to prove is the independence of V̂ and X = (1−Zd)/2.
The argument is analogous to the one that yielded the independence of V̂ and R in the proof of [MMU18,
Thm 1.5], but the statement does not follow directly from [MMU18, Thm 1.5]. Let V := U/ |U | and note
that, as in the proof of [MMU18, Thm 1.5], Itô’s formula applied to V yields the following dVt = |Ut|−1 (I−
VtV

>
t )dB̃t− |Ut|−2 d−22 Vtdt, where B̃ = (B1, . . . ,Bd−1)>. By [MMU18, Prop. 1.1] (with n = 1, ` = d− 1) we

have that X̃ = Zd satisfies SDE (2.2) above with X̃0 = Zd0 . Moreover, as in the proof of [MMU18, Prop. 1.1],
the scalar BM β̃ in (2.2) is given by dβ̃t = −(1−2Xt)V >t dB̃t+ |Ut|dBd

t . Consequently, X satisfies SDE (2.3)
with X0 =

1−Zd
0

2 and the scalar BM β = −β̃. Since V̂ = VTs(·), the change-of-time formulae [RY99, Ch. V,
§1] for the Itô and the Lebesgue-Stieltjes integrals imply that V̂t − V̂0 =

∫ t
0 (I − V̂uV̂ >u )dW̃u −

∫ t
0
d−2
2 V̂udu,

where W̃t =
∫ Ts(t)
s |Uu|−1 dB̃u is a standard BM on Rd−1 by Levy’s characterization. This implies that V̂

solves the SDE in (2.1) in dimension d− 1, making it a BM on Sd−2.
In order to conclude that X and V̂ are independent, we assume without loss of generality that the

underlying probability space with filtration (Ft)t≥0 supports a further scalar (Ft)-BM ξ, independent of B.
Define the continuous local martingale W = (Wt)t≥0 in Rd−1 by

Wt =

∫ Ts(t)

s

1

|Uu|
(I − VuV >u )dB̃u +

∫ Ts(t)

s

Vu
|Uu|

dξu.

Since (I − VuV >u )(I − VuV >u ) = I − VuV >u , it follows easily from the independence of B and ξ that the
components of its quadratic covariation W are given by 〈W i,W j〉t =

∫ Ts(t)
s δij |Uu|−2du = δijt for any

i,j ∈ {1, . . . ,d − 1}. Hence, by Levy’s characterisation, the process W is a standard (Gt)-BM, where the
filtration (Gt)t≥0 is defined by Gt := FTs(t) for all t ≥ 0. Moreover, since

(I − VuV >u ) ·
[

1
|Uu|(I − VuV

>
u ), Vu

|Uu|

]
=
[

1
|Uu|(I − VuV

>
u ), 0

]
we can apply the change-of-time formulae for the stochastic and Lebesgue-Stieltjes integral [RY99, Ch. V,
§1] to obtain V̂t − V̂0 =

∫ t
0 (I − V̂uV̂ >u )dWu −

∫ t
0
d−2
2 V̂udu.

Since SDE in (2.1) in dimension d− 1 has a unique strong solution, the independence of V̂ and X follows
from the independence of the driving BMs W and β. Since W and β run on different time scales, we
first note that the Markov property of W implies that W depends on G0 = Fs only through its position
at time zero, i.e. W0 = 0, making it independent of Fs. In particular, W is independent of (βt)t∈[0,s].
Therefore it is sufficient to prove that W is independent of (βu+s − βs)u≥0. For any t ∈ [0,∞), define
ηt := βTs(t) − βs =

∫ Ts(t)
s (1 − 2Xu)V >u dB̃u −

∫ Ts(t)
s |Uu| dBd

u so that η is a (Gt)-local martingale. Simple
calculations show that 〈W i,η〉t = 0 for any component W i of W and the quadratic variation 〈η〉t = Ts(t)−s
satisfies 〈η〉Ss(u+s) = u for all u ≥ 0. By Knight’s Theorem (also known as the multidimensional Dambis-
Dubins-Schwarz Theorem [RY99, Ch. V, Thm 1.9]) we have that W and (ηSs(t+s))t≥0 = (βs+t − βs)t≥0 are
independent BMs. This concludes the proof of the proposition. �

Appendix A. Algorithms for simulation of Wright-Fisher diffusion

We recall the algorithm for the exact simulation of the marginals of Wright-Fisher diffusions. This
appendix is taken from [JS17, Section 2]. Fix parameters θ1,θ2 ≥ 0 and consider the SDE

(A.1) dWt =
√
Wt(1−Wt)dBt +

1

2
(θ1(1−Wt)− θ2Wt)dt, W0 = x ∈ [0,1].
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Its unique strong solution is know as the Wright-Fisher diffusion with mutation parameters θ1 and θ2.1

Algorithm 2 Exact simulation from the law WFx,t(θ1,θ2)

Require: Mutation parameters θ1 and θ2, starting point x ∈ [0,1] and time horizon t > 0

1: Simulate M d
= Aθ∞(t) . Use [JS17, Alg. 2]

2: Simulate L ∼ Binomial(M,x)

3: Simulate Y ∼ Beta(θ1 + L,θ2 +M − L)

4: return Y

The random variable Aθ∞(t) in step 1 is integer-valued with the mass function {qθm(t);m = 0,1, . . .}, where
θ = θ1 +θ2, that can be described as follows. Let {Aθn(t); t ≥ 0} be a pure death process on the non-negative
integers, started at Aθn(0) = n, where the only transitions are of the form m 7→ m − 1 and occur at rate
m(m + θ − 1)/2 for each m ∈ {1, . . . , n}. Then qθm(t) = P[Aθ∞(t) = m] can be expressed as the limit
qθm(t) = limn→∞ P[Aθn(t) = m]. The coefficients qθm(t) are known in terms of an alternating series [JS17,
Eq. (5)], with summands whose absolute values are ultimately monotonically decreasing. This property is
exploited in [JS17, Alg. 2] for the simulation of Aθ∞(t). In theory, [JS17, Alg. 2] is exact for all values of
parameters. In practice, when the time horizon t is very small, the algorithm runs into the running time and
floating number precision problems, as it requires the multiplication of very large and very small numbers.
It is noted in [JS17] that [JS17, Alg. 2] works well for t ≥ 0.05 (the values of θ1,θ2 do not seem to affect the
performance). For t < 0.05, a normal approximation for Aθ∞(t) can be used, see [JS17, Thm 1]. This yields
an efficient approximate simulation algorithm for the law WFx,t(θ1,θ2).

Appendix B. Brownian motion on projective spaces

Pick a field F ∈ {R,C,H}, where C are the complex numbers and H denotes the quaternions, consider Fn+1

as an (n+1)-dimensional vector space over F and recall that the n-dimensional projective space FPn is defined
as a space of all 1-dimensional subspaces of Fn+1. More precisely, define FPn to be the set of all equivalence
classes [x0 : · · · : xn], where the (n+1)-tuple (x0, . . . ,xn)> is in Fn+1\{0} and [x0 : · · · : xn] = [y0 : · · · : yn] if
and only if there exists a scalar λ ∈ F\{0} such that xi = λyi for each i ∈ {0, . . . ,n}. For any x ∈ Fn+1\{0},
[x] := [x0 : · · · : xn] denotes the homogeneous coordinates of the corresponding point in FPn.

Let π : Fn+1\{0} → FPn be the quotient map given by π(x) := [x]. FPn is topologised by the quotient
topology i.e. a subset U ⊆ FPn is open if and only if π−1(U) is open in Fn+1\{0}. It is easy to see that FPn

is Hausdorff, second-countable and compact since the restriction of π to the sphere Sn (resp. S2n+1, S4n+3)
if F = R (resp. C, H), is surjective. Moreover, FPn is a smooth manifold. Indeed, for any i ∈ {0, . . . ,n}, let
Ũi =

{
x ∈ Fn+1 ; xi 6= 0

}
and note that Ũi = π−1(π(Ũi)), making the set Ui = π(Ũi) open in FPn. Define

the chart ϕi : Ui → Fn by ϕi([x]) = (x0xi , . . . ,
xi−1

xi
,xi+1

xi
, . . . ,xnxi )>. The map ϕi is well-defined (since it assigns

the same value to each (n + 1)-tuple in a given equivalence class in Ui) and a homeomorphism with the
inverse ϕ−1i (y1, . . . ,yn) = [y1 : · · · : yi−1 : 1 : yi : · · · : yn]. The charts (Ui,ϕi), i ∈ {0, . . . ,n} are smoothly
compatible. Thus FPn is a compact smooth manifold of dimension n (resp. 2n, 4n) if F = R (resp. C, H).

An equivalent way of defining the smooth structure on FPn is via the action on Sn (resp. S2n+1, S4n+3)
if F = R (resp. C, H) of the multiplicative group of unit elements in F, see proof of Lemma B.1 below. This
action is free, proper and smooth, so by the Quotient Manifold Theorem [Lee12, Thm 21.10] there exists

1This notation coincides with the one used in [JS17] but differs from the one in [MMU18] by a factor of 2.
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a unique smooth structure on the projective spaces RPn = Sn/S0, CPn = S2n+1/S1 and HPn = S4n+3/S3

that makes the quotient projection π from a sphere onto FPn a smooth submersion i.e. its differential dπx
is surjective at each point x in the sphere.

The spheres Sn, S2n+1 and S4n+3 are Riemannian manifolds with the respective metrics induced by
the ambient Euclidean spaces and the groups of unit elements S0,S1 and S3 act via isometries. Thus,
the pushforward Riemannian metric on FPn is well-defined and turns the projection π into a Riemannian
submersion. Put differently, the sphere Sn (resp. S2n+1, S4n+3) is a smooth fibre bundle over RPn (resp.
CPn, HPn) with the fibre diffeomorphic to S0 (resp. S1, S3) and the differential dπx is an isometry when
restricted to the space of horizontal tangent vectors at any x in the sphere and the tangent space at π(x)

in the projective space. This statement is trivial when F = R, since in that case we have S0 = {−1,1} and
π is a local diffeomorphism. The other cases are given in [Lee97, Problem 3-8]. If F = C this construction
yields the well-known Fubini-Study metric on CPn [Jos17, Ch. 7.1].

The BM on FPn can be defined as a strong Markov process with the generator equal to 1
2∆FPn , where ∆FPn

is the Laplace-Beltrami operator corresponding to the Riemannian metric on FPn [Hsu02, p.74]. Finally, we
establish a connection between the spherical BM and the BM on projective spaces.

Lemma B.1. Let n ≥ 1 and let Z be BM on sphere Sn (resp. S2n+1, S4n+3) started at z. Then the process
π(Z) is the BM on RPn (resp. CPn, HPn) started at π(z).

Proof. Fibres of the Riemannian submersion π are orbits in Sn ⊆ Rn+1 (resp. S2n+1 ⊆ Cn+1, S4n+3 ⊆ Hn+1)
of the (right) group action ((z0, . . . ,zn),λ) 7→ (z0λ, . . . ,znλ), where (z0, . . . ,zn)> ∈ Sn (resp. S2n+1, S4n+3)
and λ is an element of multiplicative group of unit elements in R (resp. C, H). This group is isomorphic to S0

(resp. S1,S3) and isometric to the submanifold {(z0, . . . ,zn)> ∈ Sn (resp. S2n+1, S4n+3); z1 = · · · = zn = 0}
in Sn (resp. S2n+1, S4n+3). This submanifold is easily seen to be totally geodesic i.e. any geodesic in the
submanifold is also a geodesic in the ambient manifold. Moreover, each fibre (i.e. orbit) can be isometrically
mapped onto this submanifold by multiplication from the left by suitable element of special orthogonal
group (for any element x in the fibre pick any matrix O(x) in the special orthogonal group such that
O(x)x = (1,0, . . . ,0)>). Hence all fibres are totally geodesic submanifolds.

Let (M,g) be a k-dimensional Riemannian submanifold of a Riemannian manifold (M̃,g̃), i.e. the metric g
is a restriction of g̃ to the tangent bundle ofM . For any two vector fields X,Y onM , the second fundamental
form II is given by II(X,Y ) = ∆̃

X̃
Ỹ −∆XY , where ∆ (resp. ∆̃) represent the metric connections on M

(resp. M̃) and the vector fields X̃,Ỹ are arbitrary extensions of the vector fields X,Y to M̃ . The second
fundamental form is well-defined and takes values in the normal bundle of the submanifold M (see [Lee97,
Thm 8.2]). By [Lee97, Exercise 8.4], the submanifold M is totally geodesic if and only if II(X,Y ) = 0 for
any vector fields X,Y on M . The mean curvature Hx at any x ∈ M is proportional to the metric trace of
II, i.e. for any orthonormal frame e1, . . . ,ek in the neighbourhood of x we have Hx = 1

k

∑k
i=1 II(ei,ei)x.

Clearly, Hx is equal to 0 for each x ∈M if M is totally geodesic in M̃ .
By [Pau90, Thm 1], the projection π(Z) in RPn (resp. CPn,HPn) of the BM Z on Sn (resp. S2n+1, S4n+3)

is a BM with the drift given by Vx = −n
2dπx(Hx) (resp. −2n

2 dπx(Hx),− 4n
2 dπx(Hx)), where Hx is the mean

curvature of the fibre of x in the ambient sphere. Since all the fibres are totally geodesic, the drift vanishes
and the lemma follows. �
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