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MEAN FIELD LIMITS FOR INTERACTING DIFFUSIONS WITH1

COLORED NOISE:2

PHASE TRANSITIONS AND SPECTRAL NUMERICAL METHODS3

S.N. GOMES∗, G.A. PAVLIOTIS† , AND U. VAES‡4

Abstract. In this paper we consider systems of weakly interacting particles driven by col-5
ored noise in a bistable potential, and we study the effect of the correlation time of the noise on6
the bifurcation diagram for the equilibrium states. We accomplish this by solving the correspond-7
ing McKean–Vlasov equation using a Hermite spectral method, and we verify our findings using8
Monte Carlo simulations of the particle system. We consider both Gaussian and non-Gaussian noise9
processes, and for each model of the noise we also study the behavior of the system in the small10
correlation time regime using perturbation theory. The spectral method that we develop in this11
paper can be used for solving linear and nonlinear, local and nonlocal (mean field) Fokker–Planck12
equations, without requiring that they have a gradient structure.13

Key words. McKean–Vlasov PDEs, Nonlocal Fokker–Planck equations, Interacting particles,14
Desai–Zwanzig model, Colored noise, Hermite spectral methods, Phase transitions.15

AMS subject classifications. 35Q70, 35Q83, 35Q84, 65N35, 65M70, 82B26,16

1. Introduction. Systems of interacting particles appear in a wide variety of17

applications, ranging from plasma physics and galactic dynamics [5] to mathematical18

biology [12, 31], the social sciences [16, 34], active media [4], dynamical density func-19

tional theory (DDFT) [18, 17] and machine learning [30, 39, 42]. They can also be20

used in models for cooperative behavior [8], opinion formation [16], and risk manage-21

ment [15], and also in algorithms for global optimization [38].22

In most of the existing works on the topic, the particles are assumed to be subject23

to thermal additive noise that is modeled as a white noise process, i.e. a mean-zero24

Gaussian stationary process that is delta-correlated in time. There is extensive lit-25

erature studying the behavior of these systems; we mention for example works on26

the rigorous passage to the mean field limit [35], the long-time behavior of solutions27

(see [8, 41] for a case of a ferromagnetic (quartic) potential, and [19] for more general28

potentials), multiscale analysis [20], and phase transitions [43].29

In a more realistic scenario, the system has memory and the hypothesis of Marko-30

vianity does not hold [25, 26, 27]. This memory can be modeled by using colored noise,31

i.e. noise with a nonzero correlation time (or, more precisely, a nonsingular autocorre-32

lation function), which is the approach we take in this paper. For simplicity, we will33

assume that the noise is additive and that it can be represented by a finite-dimensional34

Markov process, as in the recent study [10] on mean field limits for non-Markovian35

interacting particles.36

In this paper we will study the dynamics of a system of interacting particles of the37

Desai–Zwanzig type, interacting via a quadratic Curie–Weiss potential. The system38

of interacting particles is modeled by a system of stochastic differential equations39

(SDEs):40

(1.1)
dXi

t

dt
= −

V ′(Xi
t) + θ

Xi
t −

1

N

N∑
j=1

Xj
t

+
√

2β−1 ξit, i = 1, . . . , N,41
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where N is the number of particles, V (·) is a confining potential, θ is the interac-42

tion strength, β is the inverse temperature of the system, and ξit are independent,43

identically distributed (i.i.d.) noise processes.44

Before discussing the Desai–Zwanzig model with colored noise, we present a brief45

overview of known results [8, 41] for the white noise problem. When ξit are white noise46

processes, we can pass to the mean field limit N →∞ in (1.1) and obtain a nonlinear47

and nonlocal Fokker–Planck equation, known in the literature as a McKean–Vlasov48

equation, for the one-particle distribution function ρ(x, t):49

(1.2)
∂ρ

∂t
=

∂

∂x

(
V ′(x) ρ+ θ

(
x−

∫
R

x ρ(x, t) dx

)
ρ+ β−1 ∂ρ

∂x

)
.50

The McKean–Vlasov equation (1.2) is a gradient flow with respect to the quadratic51

Wasserstein metric for the free energy functional52

(1.3)

F [ρ] = β−1

∫
R

ρ(x) ln ρ(x) dx+

∫
R

V (x) ρ(x) dx+
θ

2

∫
R

∫
R

F (x− y) ρ(x) ρ(y) dxdy,53

where F (x) := x2/2 is the interaction potential. The long-time behavior of solutions54

depends on the number of local minima of the confining potential V [43]. It follows55

directly from (1.2) that any steady-state solution ρ∞(x) solves, together with its first56

moment, the following system of equations:57

∂

∂x

(
V ′(x) ρ∞(x) + θ (x−m) ρ∞(x) + β−1 ∂ρ∞

∂x
(x)

)
= 0,(1.4a)58

m =

∫
R

x ρ∞(x) dx.(1.4b)59
60

Since (1.4a) is, for m fixed, the stationary Fokker–Planck equation associated with61

the overdamped Langevin dynamics in the confining potential62

(1.5) Veff(x;m, θ) = V (x) +
θ

2
(x−m)2,63

solutions can be expressed explicitly as64

(1.6) ρ∞(x;m,β, θ) :=
1

Z(m,β, θ)
e−βVeff(x;m,θ),65

where Z(m,β, θ) is the normalization constant (partition function); see [8, 19, 20] for66

more details. By substitution in (1.4b), a scalar fixed-point problem is obtained for67

m, the self-consistency equation:68

(1.7) m =

∫
R

x ρ∞(x;m,β, θ) dx =: R(m,β, θ).69

The stability of solutions to (1.4) depends on whether they correspond to a local70

minimum (stable) or to a local maximum/saddle point (unstable) of the free energy71

functional. The free energy along the one-parameter family (1.6), with parameter m,72

can be calculated explicitly [20],73

F [ρ∞( · ;m,β, θ)] = −β−1 lnZ(m,β, θ)− θ

2

(
R(m,β, θ)−m

)2
,74

75
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from which we calculate that76

∂

∂m
F [ρ∞( · ;m,β, θ)] = −βθ2

(
R(m,β, θ)−m

)
Var(ρ∞(· ; m,β, θ)),77

78

where, for a probability density ψ,79

Var(ψ) :=

∫
R

(
x−

∫
R

ψ(x) dx

)2

ψ(x) dx.80

Though incomplete, this informal argument suggests that the stability of a steady-81

state solution can also be inferred from the slope of R(m,β, θ)−m at the corresponding82

value of m: if this slope is positive, the equilibrium is unstable, and conversely. The83

self-consistency map and the free energy of ρ∞(x;m,β, θ), for a range of values of84

m, are illustrated in Figure 1.1 for the bistable potential V (x) = x4

4 − x2

2 . It is
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Fig. 1.1: Free energy (1.3) of the one-parameter family (1.6) of probability densities
that solve (1.4a) for some value of m (in blue), and associated first moment R(m) (in
green), for fixed θ = 1 and β = 5. Along the one-parameter family, m = 0 is a local
maximum of the free energy, and it therefore corresponds to an unstable steady state
of the McKean–Vlasov equation.

85
well-known that, when V (·) is an even potential, (1.2) possesses a unique, mean-86

zero steady-state solution for sufficiently large temperatures (i.e., small β). As the87

temperature decreases, this solution loses its stability and two new solutions of the88

self-consistency equation emerge, corresponding to a pitchfork bifurcation; see [8, 20]89

for details.90

As mentioned above, in this paper we focus on the case where the noise processes91

ξit in (1.1) have a nonzero correlation time, and in particular we assume that each92

noise process can be represented using a (possibly multi-dimensional) SDE, in which93

case (1.1) leads to a Markovian system of SDEs in an extended phase space. The94

colored noise will be modeled by either an Ornstein–Uhlenbeck process, harmonic95

noise [36, Example 8.2], or a non-Gaussian reversible diffusion process.96

Though more realistic, the use of colored noise presents us with some difficulties.97

First, the introduction of an extra SDE for the noise breaks the gradient structure of98

the problem; while we can still pass formally to the limit N →∞ in (1.1) and obtain99

a McKean–Vlasov equation for the associated one-particle distribution function, it is100

no longer possible to write a free energy functional, such as (1.3), that is dissipated101

by this equation. Second, the McKean–Vlasov equation is now posed in an extended102

phase space, which increases the computational cost of its numerical solution via PDE103

3
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methods. And third, it is no longer possible to obtain an explicit expression for the104

one-parameter family of (possible) stationary solutions to the mean field equation, as105

was possible in (1.6), which renders the calculation of steady states considerably more106

difficult.107

When the correlation time of the noise is small, the latter difficulty can be some-108

what circumvented by constructing an approximate one-parameter family of solutions109

through appropriate asymptotic expansions in terms of the correlation time, from110

which steady-state solutions of the McKean–Vlasov dynamics can be extracted by111

solving a self-consistency equation similar to (1.7), see (2.10). Outside of the small112

correlation time regime, however, finding the steady-states of the McKean–Vlasov113

equation requires a numerical method for PDEs in all but the simplest cases.114

In this work, we propose a novel Hermite spectral method for the time-dependent115

and steady-state equations, applicable to the cases of both white and colored noise.116

Discretized in a basis of Hermite functions, the McKean–Vlasov equation becomes117

a system of ordinary differential equations with a quadratic nonlinearity originating118

from the interaction term. In contrast with other discretization methods for PDEs,119

the use of (possibly rescaled) Hermite functions for the problem under consideration120

leads to an efficient numerical method, first because Hermite functions have very121

good approximation properties in L2, but also because all the differential operators122

appearing in the McKean Vlasov equation lead to sparse matrices in Hermite space,123

with a small bandwidth related to the polynomial degree of V (provided that a suitable124

ordering of the multi-indices is employed). To solve the finite-dimensional system of125

equations obtained after discretization of the time-dependent equation, we employ126

either the Runge–Kutta 45 method (RK45) or a linear, semi-implicit time-stepping127

scheme.128

We also verify that our results agree with known analytical solutions in simple129

settings, and with explicit asymptotic expansions in the small correlation time regime.130

We then use our spectral method, together with asymptotic expansions and Monte131

Carlo (MC) simulations of the particle system, to construct the bifurcation diagram of132

the first moment of the steady-state solutions as a function of the inverse temperature.133

For the reader’s convenience, we summarize here the main results of this paper:134

1. The systematic study of the effect of colored noise, both Gaussian and non-135

Gaussian, on the long-time behavior of the McKean–Vlasov mean field equa-136

tion, including the effect of colored noise on the structure and properties of137

phase transitions.138

2. The development and analysis of a spectral numerical method for the solution139

of linear or nonlinear, local or nonlocal Fokker–Planck-type equations. In140

particular, our method does not depend on an underlying gradient structure141

for the PDE.142

The rest of the paper is organized as follows. In Section 2, we present the models143

for the colored noise and we derive formally the mean field McKean–Vlasov equation144

associated with the interacting particle system. In Section 3, we present the numeri-145

cal methods used to (a) solve the time-dependent and steady-state Fokker–Planck (or146

McKean–Vlasov) equations and (b) solve the finite-dimensional system of interacting147

diffusions (1.1). In Section 4, we describe our methodology for constructing the bi-148

furcation diagrams and we present the associated results. Section 5 is reserved for149

conclusions and perspectives for future work.150
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2. The model. We consider the following system of weakly interacting diffu-151

sions,152

(2.1) dXi
t = −

V ′(Xi
t) + θ

Xi
t −

1

N

N∑
j=1

Xj
t

 dt+
√

2β−1 ηit dt, 1 ≤ i ≤ N,153

where the noise processes ηit are independent, mean-zero, second-order stationary154

processes with almost surely continuous paths and autocorrelation function K(t). In155

the rest of this paper, we will assume that the interaction strength θ is fixed and equal156

to 1 and we will use the inverse temperature β−1 as the bifurcation parameter. We157

will consider two classes of models for the noise: Gaussian stationary noise processes158

with an exponential correlation function, and non-Gaussian noise processes that we159

construct by using the overdamped Langevin dynamics in a non-quadratic potential.160

Gaussian noise. Stationary Gaussian processes in Rn with continuous paths161

and an exponential autocorrelation function are solutions to an SDE of Ornstein–162

Uhlenbeck type:163

(2.2) dYi
t = A Yi

t dt+
√

2 D dWi
t, i = 1, . . . , N,164

where A,D are n × n matrices satisfying Kalman’s rank condition [29, Chapter 9],165

and Wi
t, 1 ≤ i ≤ n, are independent white noise processes in Rn. We assume here166

that the noise is obtained by projection as ηit =
〈
Yi
t,yη

〉
, where 〈·, ·〉 denotes the167

Euclidean inner product, for some vector yη ∈ Rn. Throughout this paper we will168

consider two particular examples, namely the scalar OU process and the harmonic169

noise [36, Chapter 8].170

(OU) Scalar Ornstein–Uhlenbeck process:171

dηit = −ηit dt+
√

2 dW i
t .172

The associated autocorrelation function is173

KOU (t) = e−|t|.174

(H) Harmonic noise:175

A =

(
0 1
−1 −γ

)
, D =

(
0 0
0
√
γ

)
, yη =

(
1
0

)
.176

In this case the noise is the solution to the Langevin equation, with the177

first and second components of Y corresponding to the position and velocity,178

respectively. Throughout this paper we will assume γ = 1 for simplicity. The179

associated autocorrelation function of ηi is given by180

KH(t) = e−
|t|
2

(
cos

(√
3

2
t

)
+

√
3

3
sin

(√
3

2
t

))
.181

Non-Gaussian noise. In this case, instead of (2.2) we consider182

dηit = −V ′η(ηit) dt+
√

2 dW i
t ,183

where now Vη is a smooth non-quadratic confining potential satisfying the mean-zero184

condition:185

(2.3)

∫
R

η e−Vη(η) dη = 0.186

5
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We consider the following choices for Vη:187

(B) The bistable potential Vη(η) = η4/4− η2/2.188

(NS) The shifted tilted bistable potential189

(2.4) Vη(η) =
(η − α)

4

4
− (η − α)

2

2
+ (η − α),190

with the constant α ≈ 0.885 such that (2.3) is satisfied.191

2.1. Mean field limit. For weakly interacting diffusions, the derivation of the192

mean field McKean–Vlasov PDE is a standard, well-known result [8, 41, 35]. When193

ξit in (1.1) are colored noise processes, it is also possible to pass to the mean field194

limit N → ∞ in (1.1) and to obtain a McKean–Vlasov equation for the one-particle195

distribution function ρ(x,y, t):196

(2.5a)
∂ρ

∂t
=

∂

∂x

(
V ′ρ+ θ (x−m(t)) ρ−

√
2β−1

〈
yi,yη

〉
ρ
)

+ L∗yρ,197

with the dynamic constraint198

(2.5b) m(t) =

∫
R

∫
Rn

x ρ(x,y, t) dy dx.199

Here y are the noise variables, denoted by (η, λ) in the case of harmonic noise and200

just η otherwise, and201

L∗yρ =


∂η (η ρ+ ∂ηρ) , for scalar OU noise,

∂λ (λ ρ+ ∂λρ) + (η ∂λρ− λ∂ηρ) , for harmonic noise,

∂η
(
V ′η ρ+ ∂ηρ

)
, for non-Gaussian noise.

202

A formal derivation of the mean field limit is presented in [44], and this derivation203

can be justified rigorously using the results in [11, 33].204

The main goal of this paper is the study of the effect of colored noise on the205

structure of the bifurcation diagram for the McKean–Vlasov equation with colored206

noise, (2.5a) and (2.5b). In other words, we want to gain insight into the number of207

solutions to the following stationary PDE and associated constraint (self-consistency208

equation):209

(2.6a)
∂

∂x

(
V ′(x) ρ+ θ (x−m) ρ−

√
2β−1

〈
yi,yη

〉
ρ
)

+ L∗yρ = 0,210

211

(2.6b) m =

∫
R

∫
Rn

x ρ(x,y) dy dx.212

Although there still exists, for fixed β and fixed θ, a one-parameter family of solutions213

to (2.6a) (with parameter m), which we will denote by {ρ∞(x,y;m,β, θ)}m∈R, no214

closed form is available for these solutions. This is because the detailed balance215

condition no longer holds in the presence of colored noise, i.e. the probability flux at216

equilibrium does not vanish. Here, by probability flux, we mean the argument of the217

divergence in the Fokker–Planck operator; see [36, Section 4.6].218
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2.2. The white noise limit. To study the limit of small correlation time, it219

will be convenient to rescale the noise as220

ηit → ζ ηit/ε2/ε,221

where ε is a time scaling parameter, and ζ is a model-dependent parameter ensuring222

that the autocorrelation function of the rescaled noise, given by ζ2K(t/ε2)/ε2, satisfies223 ∫ ∞
0

ζ2K(t/ε2)/ε2 dt =

∫ ∞
0

ζ2K(t) dt =
1

2
.224

Then the autocorrelation of the noise converges to a Dirac delta when ε → 0, and it225

can be shown that, in this limit, the solution of (2.1) converges to that of226

dXi
t =

−V ′(Xi
t)− θ

Xi
t −

1

N

N∑
j=0

Xj
t

 dt+
√

2β−1 dW i
t , i = 1, . . . N,227

where W i, i = 1, . . . N , are independent Wiener processes; see [6] and [37, Chapter228

11]. While not strictly necessary, including the parameter ζ is convenient to obtain229

simpler formulas. The value of ζ for each of the noise models considered in this paper230

is presented in Table 2.1. For the models B and NS, ζ was calculated numerically231

and rounded to three significant figures in this table.232

Table 2.1: Value of ζ

Model OU H B NS

ζ 1/
√

2 1/
√

2 0.624 0.944

In view of the convergence of the solution of the finite-dimensional particle system233

when ε→ 0, we expect that also the x-marginals of the steady-state solutions to the234

McKean–Vlasov equation with colored noise, obtained by solving (2.6a) and (2.6b),235

should converge to their white-noise counterparts as ε → 0. It turns out that this236

is the case and, using asymptotic techniques from [25], it is possible to approximate237

the solutions ρ∞(x,y;m,β, θ) to (2.6a) by a power series expansion in ε; using a238

superscript to emphasize the dependence on ε,239

(2.7)
ρε∞(x,y;m,β, θ) = p0(x,y;m,β, θ) + ε p1(x,y;m,β, θ) + ε2 p2(x,y;m,β, θ) + · · · ,240

From (2.7), we obtain a power series expansion for the x-marginal by integrating out241

the noise variable:242

(2.8)
ρε∞(x;m,β, θ) =

∫
Rn

ρε∞(x,y;m,β, θ) dy

=: ρ∞(x;m,β, θ) + ε p1(x;m,β, θ) + ε2 p2(x;m,β, θ) + · · · ,
243

The methodology to obtain expressions for the terms works by substituting (2.7) in244

(2.6a) and grouping the terms in powers of ε in the resulting equation. This leads to245

a sequence of equations that can be studied using standard techniques. Details of the246

analysis leading to an explicit expression of the first nonzero correction in (2.8) can247

be found in [25, Section 8] for the particular case of the OU noise, and in [44] for the248

other noise models we consider.249

7
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-1

0

1

Fig. 2.1: Truncated asymptotic expansion of the self-consistency map, R0 + ε2R2, as
a function of m (red line) compared to y = m (blue line) for the scalar Ornstein–
Uhlenbeck noise, with β = 10, θ = 1, ε = 0.1.

The order of the first nonzero correction in this expansion depends on the model:250

it is equal to 1 for model NS, to 2 for models OU and B, and to 4 for model H.251

In all cases, the first nontrivial term in the series expansion (2.8) can be calculated252

explicitly (possibly up to constant coefficients that have to be calculated numerically).253

For scalar Ornstein–Uhlenbeck noise, for example, we have, omitting the dependence254

of Veff (the effective potential defined in (1.5)) on m and θ for notational convenience,255

ρε∞(x;m,β, θ) = ρ∞(x;m,β, θ)

[
1 + ε2

(
COU −

β

2
(V ′eff(x))

2
+ V ′′eff(x)

)]
+O(ε4)

(2.9)

256
257

Here COU is a constant such that the correction integrates to 0. Similar expressions258

can be obtained for the other models; see [44].259

Taking into account only the first nontrivial correction, the order of which we260

denote by δ, the steady-state solutions to the McKean–Vlasov equation with colored261

noise can be approximated by solving the approximate self-consistency equation262

m = R0(m,β, θ) + εδ Rδ(m,β, θ)263

:=

∫
R

x ρ∞(x;m,β, θ) dx+ εδ
∫
R

x pδ(x;m,β, θ) dx(2.10)264

≈ R(m,β) :=

∫
R

x ρε∞(x;m,β, θ) dx.265
266

We show in Figure 2.1 that the equation R0(m,β, θ)+ε2R2(m,β, θ) = m, for fixed β =267

10, θ = 1 and ε = 0.1, admits three solutions in the case of OU noise, similarly to the268

case of white noise. This figure was generated using the asymptotic expansion (2.9).269

3. The numerical method. In this section, we describe the spectral numerical270

method that we will use in order to solve the time-dependent McKean–Vlasov equa-271

tion, (2.5a) and (2.5b), as well as the steady-state equation, (2.6a) and (2.6b). Before272

looking at colored noise, we consider the case of white noise, for which our method273

can be tested against the results in [20], which were obtained using the finite volume274

scheme developed in [7].275
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3.1. Linear Fokker–Planck equation with white noise. We start by pre-276

senting the methodology used in the absence of an interaction term, in which case277

(2.5a) reduces to a linear Fokker–Planck equation:278

(3.1)
∂ρ

∂t
=

∂

∂x

(
V ′ ρ+ β−1 ∂ρ

∂x

)
=: L∗xρ, ρ(x, t = 0) = ρ0(x).279

We assume that V (·) is a smooth confining potential and, consequently, the unique280

invariant distribution is given by ρs = 1
Z e−βV , where Z is the normalization con-281

stant [36, Proposition 4.2]. The Fokker–Planck operator in (3.1) is unitarily equiva-282

lent to a Schrödinger operator; see [1] and [36, Section 4.9]. Defining u = ρ/
√
ρs, the283

function u satisfies284

(3.2)
∂u

∂t
=

√
ρ−1
s L∗x

(√
ρs u

)
= β−1 ∂

2u

∂x2
+

(
1

2
V ′′(x)− β

4
|V ′(x)|2

)
u =: Hxu,285

with the initial condition u(x, t = 0) = ρ0/
√
ρs =: u0. Several works made use286

of Hermite spectral methods to study equations of this type, e.g. [1, 13, 14]. The287

Schrödinger operator on the right-hand side of (3.2) is selfadjoint in L2(R) and it288

has nonpositive eigenvalues. Under appropriate growth assumptions on the potential289

V (x) as x → ∞, it can be shown that its eigenfunctions decrease more rapidly than290

any exponential function in the L2(R) sense, in that they satisfy eµ|x| ϕ(x) ∈ L2(R)291

for all µ ∈ R; see [14] and also [2] for a detailed study. Under appropriate decay292

assumptions at infinity on the initial condition, we expect the solution to (3.2) to also293

decrease rapidly as |x| → ∞.294

We denote by P(d) the space of polynomials of degree less than or equal to d, and295

by 〈·, ·〉 the usual L2(R) inner product. For a quadratic potential Vq = 1
2

(
x
σ

)2
, with296

σ a scaling parameter, the Galerkin method we employ consists in finding ud(t) ∈297

e−Vq/2 P(d) such that298 〈
∂ud
∂t

, wd

〉
= 〈Hxud, wd〉d̂ ∀wd ∈ e−Vq/2 P(d), ∀t > 0,(3.3a)299

〈ud(0), wd〉 = 〈u0, wd〉d̂ ∀wd ∈ e−Vq/2 P(d).(3.3b)300301

Here the subscript d̂ ≥ d on the right-hand side of (3.3a) and (3.3b) indicates that302

the inner product is performed using a numerical quadrature with d̂+ 1 points. With303

appropriately rescaled Gauss–Hermite points, inner products calculated using the304

quadrature are exact for functions in e−Vq/2 P(d̂),305

〈vd, wd〉d̂ = 〈vd, wd〉 ∀vd, wd ∈ e−Vq/2 P(d̂),306

which is why we did not append the subscript d̂ to the inner products in the left-307

hand side of (3.3a) and (3.3b). When V is a polynomial, it is possible to show308

using the recursion relations (A.1) and (A.2) in [21, Appendix A] that the inner309

product 〈Hxud, wd〉d̂ on the right-hand side of (3.3a) is exactly 〈Hxud, wd〉 when310

d̂ ≥ d + deg(|V ′|2). This is the approach we take in all the numerical experiments311

presented in this paper, and we will therefore omit the subscript d̂ in (3.3a) from now312

on.313

The natural basis of P(d) (from which a basis of e−Vq/2 P(d) follows) to ob-314

tain a finite-dimensional system of differential equations from the variational for-315

mulation (3.3a) is composed of rescaled Hermite polynomials Hσ
i (x) := Hi(x/σ),316
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0 ≤ i ≤ d, where Hi(x) are the Hermite polynomials orthonormal for the Gaussian317

weight N (0, 1); the corresponding basis functions of e−Vq/2 P(d) are then rescaled318

Hermite functions. The fundamental results on Hermite polynomials, Hermite func-319

tions and the related approximation results that are used in this paper are summarized320

in [21, Appendix A].321

It is possible to prove the convergence of the method presented above in the limit322

as d → ∞ given appropriate additional assumptions on the confining potential V (·).323

For simplicity we will make the following assumption, which is satisfied for the bistable324

potential that we consider in this work, but we note that less restrictive conditions325

would be sufficient.326

Assumption 3.1. The confining potential V (·) is a polynomial of (even) degree327

greater than or equal to 2. Consequently, it satisfies328

C1(1 + |x|2) ≤ C2 +W := C2 +

(
β

4
|V ′|2 − 1

2
V ′′
)
≤ C3(1 + |x|2k),329

for constants C1, C2, C3 > 0 and a natural number k ≥ 1.330

We will denote by Hm(R;Hx) the Hilbert space obtained by completion of C∞c (R),331

the space of smooth compactly supported functions, with the inner product332

〈u, v〉m,Hx := 〈(−Hx + 1)mu, v〉 .333

The norm associated with this Sobolev-like space will be denoted by ‖ · ‖m,Hx .334

Theorem 3.1. Suppose that Assumption 3.1 holds and that the initial condition335

u0 is smooth and belongs to Hm(R;Hx) for some natural number m ≥ 2k, where k is336

as in Assumption 3.1. Then for any d ≥ m − 1, any final time T and for all α > 0,337

it holds that338

sup
t∈[0,T ]

‖u(t)− ud(t)‖2 ≤ Cα eαT
(d−m+ 1)!

(d− 2k + 1)!
‖u0‖m,Hx ,339

for a constant Cα not depending on d, u0, or T , and where ‖ · ‖ denotes the L2(R)340

norm.341

Proof. See Appendix A.342

Remark 3.1. Theorem 3.1 is not optimal. One one hand, it overestimates the343

error for large times: both the numerical and exact solutions converge to stationary344

solutions as t→∞, so we expect the error ‖u(t)−ud(t)‖2 to tend to finite limit when345

t→∞. Although the error between the stationary solutions can be bounded similarly346

to the transient error, see Remark A.1, we have not obtained a result that combines347

both errors; we plan to return to this interesting question in future work. On the348

other hand, the bound on the transient error of Theorem 3.1 is probably not sharp.349

Indeed, when the initial condition u0 is smooth and, together with all its derivatives,350

decreases exponentially as x→∞, Theorem 3.1 implies only that the error decreases351

faster than any negative power of d. In most practical examples, however, we observed352

numerically that the convergence is in fact exponential.353

Remark 3.2. The condition that u0 ∈ Hm(R;m,Hx) is quite restrictive. It354

requires in particular that u0 ∈ L2(R), which is equivalent to requiring that ρ0 ∈355

L2(R; ρ−1
s ), because u0 = ρ0/

√
ρs by definition. Though natural from an L2-theory356

perspective, see [36, Sec. 4.5] and [32], this condition excludes a large class of initial357
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conditions. If V (x) behaves as |x|4 as |x| → ∞, then it excludes Gaussian initial358

conditions, for example.359

3.2. McKean–Vlasov equation with white noise. In the presence of an360

interaction term, the Fokker–Planck equation becomes nonlinear:361

(3.4)
∂ρ

∂t
=

∂

∂x

(
V ′ ρ+ θ(x−m(t)) ρ+ β−1 ∂ρ

∂x

)
=: (Lmx )∗ρ, m(t) =

∫
R

x ρdx.362

For this equation the weighted L2(R; eV ) energy estimate of the linear case (A.7) does363

not hold, and there is therefore no longer a natural space for the Galerkin approxi-364

mation. Because of this, and since we would like to employ the spectral numerical365

method with Gaussian initial conditions, which is not possible with a variational for-366

mulation of the type (3.3) in view of Remark 3.2, we will use Hermite functions to367

approximate the solution to (3.4) directly, i.e. we will look for an approximate solution368

in the space e−Vq/2 P(d). The variational formulation corresponding to the Galerkin369

approximation is then to find ρ ∈ e−Vq/2 P(d) such that370 〈
∂ρd
∂t

, wd

〉
= 〈(Lmdx )∗ρd, wd〉 ∀wd ∈ e−Vq/2 P(d),(3.5a)371

md =
〈x, ρd〉d̂
〈1, ρd〉d̂

≈
∫
R
x ρd dx∫

R
ρd dx

,(3.5b)372

〈ρd(0), wd〉 = 〈ρ0, wd〉d̂ ∀wd ∈ e−Vq/2 P(d).(3.5c)373374

Dividing by 〈1, ρd〉d̂ in (3.5b) is useful to account for changes in the total mass of375

ρd, which can compromise the accuracy of the method when d is low, but doing so376

becomes unnecessary for large enough d. In contrast with the operator Hx in (3.3a),377

the operator (Lmdx )∗ is not selfadjoint in L2(R), and therefore the associated stiffness378

matrix is not symmetric. In addition, the quadratic form 〈(Lmx )∗·, ·〉 is not necessar-379

ily negative for the usual L2(R) inner product, and indeed we observe numerically380

that the eigenvalue with smallest real part of the discrete operator is often negative,381

although small when d is large enough.382

For the integration in time, we used either the RK45 method (using the solve_ivp383

method from the SciPy integrate module), or a linear semi-implicit method obtained384

by treating md explicitly and the other terms implicitly at each time step. The former385

is most useful when an accurate time-dependent solution is required, while the latter386

enables the use of larger time steps and is therefore more convenient when only the387

steady-state solution is sought, as will be the case for the construction of bifurcation388

diagrams. Denoting the time step by ∆t and the Galerkin approximation of ρd(n∆t)389

by ρnd , the semi-implicit method is based on obtaining ρn+1
d by solving:390 〈

ρn+1
d − ρnd , wd

〉
= ∆t

〈
(Lm

n
d

x )∗ρn+1
d , wd

〉
∀wd ∈ e−Vq/2 P(d),(3.6a)391

mn+1
d =

〈
x, ρn+1

d

〉
d̂〈

1, ρn+1
d

〉
d̂

.(3.6b)392

393

Remark 3.3 (Computational considerations). Discretizing the operators appear-394

ing in the Galerkin approximations (3.3a) and (3.5) requires the calculation of multiple395

matrices corresponding to operators of the type Πd (f ∂x) Πd, where f is a polynomial396

and Πd is the L2(R; e−Vq ) projection operator onto P(d). These calculations can be397
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carried out by noticing that398

Πd

(
f

dm

dxm

)
Πd = (Πd f Πd)

(
Πd

dm

dxm
Πd

)
.399

The matrix representation of the first operator on the right-hand side, in a basis of400

Hermite polynomials, can be obtained from the Hermite transform of f . The matrix401

representation of the second operator, on the other hand, is a matrix with zero entries402

everywhere except on the m-th superdiagonal, in view of the recursion relation (A.1)403

in [21].404

3.3. Linear Fokker–Planck equation with colored noise. In this section,405

we turn our attention to the case of Gaussian or non-Gaussian colored noise given in406

terms of overdamped Langevin dynamics. The case of harmonic noise can be treated407

in a similar fashion, and for conciseness we do not present the associated Galerkin408

formulation explicitly here. We start by considering the linear (without the interaction409

term) Fokker–Planck equation with colored noise:410

(3.7)
∂ρ

∂t
=

∂

∂x

(
∂V

∂x
ρ− ζ

ε

√
2β−1η ρ

)
+

1

ε2

∂

∂η

(
V ′η ρ+

∂ρ

∂η

)
=: L∗ε ρ.411

We recall that ε2 controls the correlation time of the colored noise and ζ is a parameter412

such that the white noise limit is recovered (with inverse temperature β) when ε→ 0.413

We include ε in (3.7) because, although we do not consider the white noise limit in this414

section, large values of ε are in general more difficult to tackle numerically, and it will415

be therefore convenient to use smaller correlation times in the numerical experiments416

below. The problem is now two-dimensional and the operator on the right-hand side417

of (3.7) is no longer elliptic. In contrast with the white noise case, there does not418

exist an explicit formula for the steady-state solution for (3.7).419

The procedure for obtaining a Galerkin formulation is the same as in Subsec-420

tion 3.1, except that we now use tensorized Hermite polynomials/functions. To retain421

some generality, we will consider that the Galerkin approximation space is of the form422

Sd = e−U(x,η)/2 e−Vq(x,η)/2 P(Id) for some function U : R2 7→ R, a nondegenerate423

quadratic potential Vq to be determined, and where P(Id) := span {xαx ηαη : (αx, αη) ∈ Id}424

for some index set Id ⊂ N2 that grows with d ∈ N. Compared to the one-dimensional425

case, there are now two scaling parameters, Vq := x2/2σ2
x + η2/2σ2

η. The Galerkin426

approximation we propose consists in finding ρd ∈ Sd such that427 〈
∂ρd
∂t

, wd

〉
eU

= 〈L∗ε ρd, wd〉eU ∀wd ∈ Sd, ∀t > 0,(3.8)428

429

with appropriate initial conditions. The choice of the weight eU in the inner products430

of (3.8) is motivated by the fact that differential operators admit sparse represen-431

tations in the Hermite-type basis naturally associated with Sd, and we note that432

e−U(x,η)/2 e−Vq(x,η)/2 P(N2), where P(N2) is the space of polynomials in two dimen-433

sions, is dense in L2(R2; eU ). In practice, we obtain ρd as e−U(x,η)/2 e−Vq(x,η)/2 vd,434

where vd is obtained by solving435 〈
∂vd
∂t

, wd

〉
e−Vq

= 〈Hε vd, wd〉e−Vq ∀wd ∈ P(Id), ∀t > 0,(3.9)436
437

where, for a test function ϕ, Hεϕ := (eU/2 eVq/2)L∗ε (e−U/2 e−Vq/2 ϕ), and the basis438

functions used for (3.9) are Hermite polynomials orthonormal with respect to the439
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Gaussian weight e−Vq . Regarding the index set, several choices are possible, with the440

simplest ones being the triangle {α ∈ N2 : |α|1 ≤ d} and the square {α ∈ N2 : |α|∞ ≤441

d}, see Figures B.1a and B.2a below. It was demonstrated in [44] that, in order to442

study the limit ε→ 0, a rectangle-shaped index set is usually the only suitable choice.443

When studying the behavior as d increases, however, we observed spectral convergence444

irrespectively of the index set utilized.445

Clearly, it is necessary that ρ ∈ L2(R2; eU ) for the Galerkin discretization (3.8)446

to produce good results. Since the 1/ε2 part of the operator on the right-hand side of447

(3.7), L∗0· = ∂η(V ′η(η) ·+ ∂η·), is selfadjoint in L2(R; e−Ux(x)/2−Vη(η)/2) for any choice448

of Ux, it is natural to choose e−U(x,η)/2 = e−Ux(x)/2−Vη(η)/2 for some one-dimensional449

potential Ux. This guarantees that the matrix representation of L∗0 is symmetric and450

negative semi-definite, but this is not a requirement.451

The performance of the Galerkin approximation (3.8) is investigated through nu-452

merical experiments in Appendix B. An asymptotic analysis of the numerical method453

in the limit as ε→ 0 is presented in [21], which is a longer version of this paper.454

3.4. McKean–Vlasov equation with colored noise. We consider now the455

nonlinear McKean–Vlasov initial value problem with OU noise: recalling that ζ =456

1/
√

2 in this case,457

∂ρ

∂t
=

∂

∂x

(
∂V

∂x
ρ+ θ (x−m(t)) ρ− 1

ε

√
β−1 η ρ

)
+

1

ε2

∂

∂η

(
η ρ+

∂ρ

∂η

)
,(3.10a)458

m(t) =

∫
R

∫
R

x ρ(x, η, t) dη dx,(3.10b)459

ρ(x, η, t = 0) = ρ0(x, η),(3.10c)460461

for some initial distribution ρ0(x, η) such that the noise is not necessarily started at462

stationarity. The method that we use in this case, which applies mutatis mutandis to463

the other noise models, is the same as in (3.8), with the addition of the interaction464

term, and we use the same time-stepping schemes as in Subsection 3.1.465

Numerical experiments, testing the convergence of the method for the two time-466

stepping schemes, are presented in Appendix B.467

3.5. Monte Carlo simulations. We will compare the bifurcation diagrams468

obtained using the spectral method described above to those obtained by direct MC469

simulations of the system of interacting particles (2.1). We use the Euler–Maruyama470

method:471

Xi
k+1 = Xi

k − V ′(Xi
k) ∆t− θ

Xi
k −

1

N

N∑
j=1

Xj
k

 ∆t+
ζ

ε

√
2β−1 ηik ∆t,472

where ηik is the appropriate projection of the stochastic process Yt. In the case of473

Gaussian noise, this is discretized as follows474

Yi
k+1 = Yi

k +
1

ε2
AYi

k ∆t+
1

ε

√
2 ∆tDξ,475

where ξ ∼ N(0, 1), and Xk, Yk and ηk are the approximations to X(k∆t), Y(k∆t)476

and η(k∆t), respectively. The time step used was always O(ε2), to ensure the accurate477

solution of the equation. This scheme has weak order of convergence one, see [23, 24],478

and we find that we capture the correct behavior as long as the time step is sufficiently479

small.480
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4. Results: effect of colored noise on bifurcations. In this section we481

present the bifurcation diagrams corresponding to the four models of the noise intro-482

duced in Section 2. We begin with the case of Gaussian noise, and later move to the483

case of non-Gaussian noise.484

4.1. Construction of the bifurcation diagrams for the mean field equa-485

tion. We constructed the bifurcation diagrams using three different approaches:486

Monte Carlo simulations. We solved the system of interacting particles (2.1) with487

a sufficiently large number of particles, and we approximated the first moment by488

ergodic average over an interval (T, T+∆T ), where T is sufficiently large to guarantee489

that the system has reached its stationary state and ∆T is sufficiently large to ensure490

that the ergodic averages are accurate. By applying this procedure for a range of491

inverse temperatures, β = 0.1, 0.15, 0.2, . . . , 10, we obtained the desired bifurcation492

diagram.493

Perturbation expansions. This approach, which we already outlined in Section 2,494

relies on the fact that the self-consistency map can be approximated as R(m,β) ≈495

R0(m,β) + εδRδ(m,β), with good accuracy when ε � 1. Here we used the same496

notation as in Section 2, and in particular δ denotes the order of the first nontrivial497

correction in (2.8). Using arclength continuation1 for the resulting approximate self-498

consistency equation, m = R0(m,β) + εδRδ(m,β), we can plot the first moment m499

as a function of β for a fixed value of ε. We note that, in view of the typical shape500

of the self-consistency map, depicted in a particular case in Figure 2.1, a standard501

root finding algorithm can be employed to initiate the arclength continuation at some502

initial inverse temperature β0.503

The spectral method. Finally, we employed the Galerkin method presented in504

Subsection 3.3. We considered two different methodologies: on the one hand, by cal-505

culating numerically an approximation ρd,∞(x, η;β,m) of the steady-state solution506

of the linear Fokker–Planck equation (2.6a) with fixed m and β, we approximated507

the self-consistency map as R(m,β) ≈
∫
R

∫
Rn x ρd,∞(x, η;β,m) dxdy, after which a508

bifurcation diagram can be constructed by using the same method as in the previous509

paragraph. Each evaluation of the self-consistency map requires the computation of510

the eigenvector associated with the eigenvalue of smallest magnitude of the discretized511

operator, which can be performed efficiently for sufficiently small systems using the512

SciPy toolbox. On the other hand, the time-dependent (nonlinear) McKean–Vlasov513

equation can be integrated directly using our spectral method. Since only the final514

solution is of interest to us, the semi-implicit time-stepping scheme (3.6) can be used515

with a large time step, which enables a quick and accurate approximation of the516

steady-state solutions. While both methodologies work well in the two-dimensional517

case, in three dimensions (harmonic noise) solving the McKean–Vlasov equation di-518

rectly proved more efficient, so this is the approach we employed for all the tests519

presented in this section.520

4.2. Gaussian case. The one-dimensional Ornstein–Uhlenbeck noise provides521

an ideal testbed for the three methods we use to construct bifurcation diagrams.522

Figure 4.1 below plots the bifurcation diagram of the first moment m as a function523

of β for ε = 0.1, 0.2, . . . , 0.5. Three different initial conditions (X0 ∼ N(0, 0.1), X0 ∼524

N(0.1, 0.1), and X0 ∼ N(−0.1, 0.1)) were used for the MC simulations. Although525

1We do this using the Moore–Penrose quasi-arclength continuation algorithm. The rigorous
mathematical construction of the arclength continuation methodology can be found, e.g., in [28]
and [3]. Some useful practical aspects of implementing arclength continuation are also given in [9].
See also [19].
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we observe that the results of MC simulations tend to be less precise around the526

bifurcation point, the agreement between the three methods overall is excellent for527

ε = 0.1, 0.2. For the other values of ε, while the results of MC simulations and of our528

spectral method continue to agree, those obtained from the asymptotic expansion are529

significantly less accurate, which is consistent with the observations presented in [44].530

Fig. 4.1: Bifurcation diagram of m against β for Ornstein–Uhlenbeck noise, obtained
via MC simulation, the spectral method, and the asymptotic expansion (2.9).

The case of harmonic noise, corresponding to a three-dimensional McKean–Vlasov531

equation, is more challenging to tackle using our spectral method. When using 40 basis532

functions in each direction, the CPU time required to construct the full bifurcation533

diagram was of the order of a week. As a consequence of the lower number of basis534

functions used in this case, we observe a small discrepancy between the results of535

the spectral method and those of MC simulations for large β in the case ε = 0.4.536

Nevertheless, as can be seen in Figure 4.2, for small ε the overall agreement between537

the three methods is excellent. We note in particular that, as suggested by the538

asymptotic expansions, the use of harmonic noise produces results much closer to the539

white noise limit than scalar OU noise.540

4.3. Non-Gaussian noise. For the non-Gaussian noise processes we consider,541

the x4 asymptotic growth of the confining potentials in both directions causes the542

McKean–Vlasov equation to be stiffer than in the cases of OU and harmonic noise,543

especially for large values of ε. Consequently, we were not able to consider as wide544

a range of ε as in the previous subsection using the spectral method. Since, on the545

other hand, MC simulations become overly computationally expensive for small ε, the546

comparisons in this section comprise only results obtained using our spectral method547

and asymptotic expansions. Results of simulations for the bistable noise (model B)548

are presented in Figure 4.3, in which a very good agreement can be observed.549

For nonsymmetric noise (model NS), the two branches in the bifurcation diagram550

are separate, as illustrated in Figure 4.4. Here too, the agreement between the spectral551

method and the asymptotic expansion is excellent. In contrast with the other models552

considered, the first nonzero term in the asymptotic expansion is of order ε, which553

is reflected by the manifestly higher sensitivity to the correlation time of the noise.554
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Fig. 4.2: Bifurcation diagram of m against β for harmonic noise (model H), obtained
via MC simulation, the Hermite spectral method, and the asymptotic expansion (2.9).
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Fig. 4.3: Bifurcation diagram of m against β for the bistable noise (model B), using
the spectral method and a truncated asymptotic expansion including the first nonzero
correction. We see that, overall, the agreement between the two methods is excellent.

In the right panel of Figure 4.4, we present the graph of R0(m;β) + εR1(m;β) for555

a value of β close to the point at which new branches (one stable and one unstable)556

emerge.

1 2 3 4 5
β

−0.5

0.0

0.5

m

Asymptotic

Spectral

White noise

ε = 0.01

ε = 0.025

ε = 0.05

Fig. 4.4: Left: bifurcation diagram of m against β for the nonsymmetric noise (model
NS), using the spectral method and a truncated asymptotic expansion including the
first nonzero correction. Right: R0 + εR1(m)−m against m for ε = 0.1 and β = 2.6.
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4.4. Dependence of the critical temperature on ε. For the noise models558

OU, H and B, the effect of colored noise on the dynamics is a shift of the critical559

temperature: the pitchfork bifurcation occurs for smaller values of β (i.e., larger560

temperatures) as the correlation time increases. In order to further investigate the561

effect of the correlation time on the long time behavior of the system of interacting562

particles, we will compute the critical temperature as a function of ε based on the563

asymptotic expansions and compare with the results of spectral and MC simulations,564

see Figure 4.5. Rather than finding the critical inverse temperature βC for a range of565

values of ε (and for a fixed θ), it is convenient to fix βC and find the corresponding ε,566

satisfying567

(4.1)
d

dm

(∫
R

x p0(x;βC ,m) dx

)
m=0

+ εδ
d

dm

(∫
R

pδ(x;βC ,m) dx

)
m=0

= 1,568

which is merely a polynomial equation in ε, the coefficient of which can be calculated569

by numerical differentiation. With this procedure, the dependence of the critical β570

upon ε can be calculated on a fine mesh. In the case of OU noise, for example, both571

coefficients on the left-hand side of (4.1) are positive, implying that the equation has572

a solution (in fact, two, but one of them negative) only if βC is lower than the inverse573

critical temperature in the white noise case.574

Of the three methods employed in Figure 4.5, the approach based on the asymp-575

totic expansions has the lowest computational cost: calculating all the solid curves576

took only about a couple of minutes on a personal computer with an Intel i7-3770 pro-577

cessor. The data points associated with the spectral method and the MC simulations578

were obtained from the bifurcation diagrams presented above.

0.0 0.2 0.4 0.6 0.8 1.0
ε

0.5

1.0

1.5

2.0

β
C

Asymptotic expansion

Spectral method

Monte Carlo simulation

Scalar OU noise

Harmonic noise

Bistable noise

Fig. 4.5: Critical β against ε.

579

5. Conclusions. In this paper, we introduced a robust spectral method for the580

numerical solution of linear and nonlinear, local and nonlocal Fokker–Planck-type581

PDEs that does not require that the PDE is a gradient flow. We then used our582

method to construct the bifurcation diagram for the stationary solutions of the mean583

field limit of a system of weakly interacting particles driven by colored noise.584

To verify our results, we also constructed the bifurcation diagrams by using two585

other independent approaches, namely by MC simulation of the N -particle system586

and by using explicit asymptotic expansions with respect to correlation time of the587

noise. In the small correlation time regime, we observed a very good agreement588
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between all three methods. For larger values of the correlation time, the asymptotic589

expansions become inaccurate, but the results obtained via the spectral method and590

MC simulations continue to be in good agreement.591

It appeared from our study that, unless the potential in which the noise process592

is confined is asymmetric, the correlation structure of the noise does not influence593

the topology of the bifurcation diagram: the mean-zero steady-state solution, which594

is stable for sufficiently large temperatures, becomes unstable as the temperature595

decreases below a critical value, at which point two new stable branches emerge, in the596

same manner as reported in [8, 41]. The correlation structure does, however, influence597

the temperature at which bifurcation occurs, and in general this temperature increases598

as the correlation time of the noise increases. In the presence of an asymmetry in the599

confining potential of the noise, on the other hand, the two stable branches in the600

bifurcation diagram are separate, indicating that the system always reaches the same601

equilibrium upon slowly decreasing the temperature. This behavior is similar to what602

has been observed previously in the white noise case when a tilt is introduced in the603

confining potential V (·), see [19, 20].604

Several problems remain open for future work. On the theoretical front, we605

believe that the analysis we presented in Subsection 3.1 and Appendix A for the linear606

Fokker–Planck equation can be extended to both the linear Fokker–Planck equation607

with colored noise and the nonlinear McKean–Vlasov equation. Another direction for608

future research could be the rigorous study of bifurcations and, more specifically, of609

fluctuations and critical slowing down near the bifurcation point. On the modeling610

front, it would be interesting to consider more general evolution equations for the611

interacting particles, such as the generalized Langevin equation, and also to study612

systems of interacting particles subject to colored noise that is multiplicative.613

Appendix A. Proof of Theorem 3.1.614

Using the same notation as in [21, Appendix A], we let Πd be the L2(R; e−Vq )615

projection operator on P(d) and Π̂d := e−Vq/2 Πd e
Vq/2. The solution ud of (3.3a)616

satisfies ∂tud = Π̂dHx Π̂d ud =: Hd ud. Clearly, the operator Hd is selfadjoint on617

e−Vq/2 P(d) with the L2(R) inner product, and it is also negative, by negativity of618

Hx:619

(A.1) 〈Hdwd, wd〉 = 〈Hxwd, wd〉 ≤ 0 ∀wd ∈ e−Vq/2 P(d).620

To prove the convergence of ud when d→∞, we will rely on the following lemma.621

Lemma A.1. Let ∂̂x := ∂x+x/2, and assume that ∂̂nxu ∈ L2(R) for n = 0, . . . ,m.622

Then for all natural numbers m1,m2 such that m1+m2 ≤ m, it holds that xm1 u(m2) ∈623

L2(R) and624

K1(m) max
m1+m2≤m

‖xm1 u(m2)‖ ≤ max
0≤i≤m

‖∂̂ixu‖ ≤ K2(m) max
m1+m2≤m

‖xm1 u(m2)‖,
(A.2)

625
626

where K1(m),K2(m) are positive constants depending only on m and ‖ · ‖ is the usual627

L2(R) norm.628

Proof. We denote by Hm(R; e−x
2/2) the Sobolev space weighted by e−x

2/2,629

Hm(R; e−x
2/2) = {v : v(i) ∈ L2(R; e−x

2/2) for i = 0, . . . ,m},630

and by ‖ · ‖m,e−x2/2 the associated norm: ‖v‖2
m,e−x2/2

=
∑m
i=0 ‖v(i)‖2

e−x2/2
. For the631
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first inequality, we know from [40, Lemma B.6] that632

‖xv‖e−x2/2 ≤ 4 ‖v‖1,e−x2/2 ∀v ∈ H1(R; e−x
2/2).633

Applying this inequality repeatedly, we obtain634

‖xm1v‖e−x2/2 ≤ C(m) ‖v‖m,e−x2/2 , m1 = 0, . . . ,m, ∀v ∈ Hm(R; e−x
2/2),

(A.3)

635
636

for a constant C(m) depending only on m. By definition, ∂̂xu = e−x
2/4 ∂x(ex

2/4 u),637

so the assumption implies that ex
2/4 u ∈ Hm(R; e−x

2/2), from which we obtain using638

(A.3) that, for 0 ≤ m1 ≤ m,639

‖xm1u‖ = ‖xm1u ex
2/4 ‖e−x2/2 ≤ C(m) ‖u ex

2/4 ‖m,e−x2/2 = C(m)

√√√√ m∑
i=0

‖∂̂mx u‖2.640

This proves the first inequality of (A.2) in the case m2 = 0. We assume now that641

the statement is proved up to m2 − 1, and we show that it is valid for m2. Using the642

triangle inequality we obtain643

‖xm1 u(m2)‖ ≤ ‖xm1 (u(m2) − ∂̂m2
x u)‖+ ‖xm1 ∂̂m2

x u‖.644645

The derivatives in the first term are of order strictly lower than m2, and therefore646

this term can be bounded by the induction assumption. The second term is bounded647

by applying the base case to ∂̂m2
x u: introducing v := ∂̂m2

x u, we notice that ∂̂m−m2
x v =648

∂̂mx u ∈ L2(R) by assumption, so we can apply the first inequality in (A.2), without649

any derivative of v in the left-hand side, to deduce650

‖xm−m2v‖ ≤ max
0≤i≤m−m2

‖∂̂ixv‖ ≤ max
0≤i≤m

‖∂̂ixu‖.651

The second inequality in (A.2) then holds trivially by expanding ∂̂x and applying a652

triangle inequality.653

With Assumption 3.1, we can show that the two norms in Lemma A.1 can be654

bounded from above by the norm
√
〈(−Hx + 1)

m
u, u〉 for appropriate m.655

Lemma A.2 (Bound by alternative norm). If Assumption 3.1 holds, then656

m∑
i=0

‖∂̂mx u‖
2 ≤ C 〈(−Hx + 1)mu, u〉657

for any smooth u for which the right-hand side is well-defined. Here C is a positive658

constant that depends on β, m, and on the particular expression of the potential W659

defined in Assumption 3.1.660

Proof. Below C1 and C2 denote the same constants as in Assumption 3.1. First661

we notice that, for any constant K > 1,662

(A.4) 〈(−Hx +K)mu, u〉 ≤ Km 〈(−Hx + 1)mu, u〉 ,663

because Hx is a negative operator. Since W is a polynomial, its derivatives grow664

asymptotically more slowly that W itself, and so it is possible for any ε > 0 to find665

K ≥ C2 large enough that666

(A.5)
∣∣∣W (i)(x)

∣∣∣ ≤ ε (W (x) +K) ∀x ∈ R, i = 1, 2, . . . .667
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For this proof to go through, it is in fact sufficient that this inequality be satisfied for668

i = 1, . . . ,m. We decompose −Hx+K as (−β−1∂2
x)+(W (x)+K). The two operators669

in this sum are positive because K ≥ C2 and by assumption W (x)+C2 ≥ C1(1+|x|2).670

Expanding the inner product in the left-hand side of (A.4) and using integration by671

parts,672

〈(−Hx +K)mu, u〉 =

(
m∑
i=0

β−i
(
m

i

) ∫
R

(W (x) +K)
i
(u(m−i)(x))

2
dx

)
+ · · · ,

(A.6)

673

674

where the remainder terms originate from the fact that the operators ∂x and (W (x)+675

K) do not commute. By (A.5), these terms can be bounded for sufficiently large K676

by half the leading term in (A.6). To conclude, we further expand this leading term:677

〈(−Hx +K)mu, u〉 ≥ 1

2

m∑
i=0

(
m

i

)
β−i

∫
R

(W (x) +K)
i
(u(m−i)(x))

2
dx678

≥ 1

2

m∑
i=0

(
m

i

)
Ci1 β

−i
∫
R

(1 + x2)
i
(u(m−i)(x))

2
dx679

≥ 1

2

m∑
i=0

i∑
j=0

(
m

i

)(
i

j

)
Ci1 β

−i
∫
R

x2j (u(m−i)(x))
2

dx680

≥ C(m,β,C1)
∑

m1+m2≤m

‖xm1 u(m2)‖2,681

682

from which Lemma A.1 allows us to conclude.683

Proof of Theorem 3.1. We assume for simplicity that σ = 1, and we begin by684

splitting the error as ud − u = (ud − Π̂du) + (Π̂du − u) =: ed + δd. The first term is685

related to the so-called consistency error, and the second to the approximation error.686

We obtain from (3.3a) and (3.2)687

∂ted = Π̂dHxΠ̂ded + (Π̂dHxΠ̂d − Π̂dHx)u.688689

Taking the inner product with ed and using (A.1), this implies690

〈∂ted, ed〉 ≤
〈
Hx(Π̂d u− u), ed

〉
691

≤ α

2
〈ed, ed〉+

1

2α

〈
H2
x(u− Π̂d u), (u− Π̂d u)

〉
∀α > 0,692

693

where we used Young’s inequality. We see from this equation that ed can be controlled694

if one can bound the second inner product on the right-hand side. For this we use695

arguments similar to the ones employed in [1, 14]. SinceHx is negative and selfadjoint,696

we notice697 〈
(−Hx)iu(t), u(t)

〉
=
〈
(−Hx)iu0, u0

〉
+

∫ t

0

d

ds

〈
(−Hx)iu(s), u(s)

〉
ds698

=
〈
(−Hx)iu0, u0

〉
− 2

∫ t

0

〈
(−Hx)i+1u(s), u(s)

〉
ds699

≤
〈
(−Hx)iu0, u0

〉
,(A.7)700701
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for i = 1, 2, . . . , which implies that the inner products
〈
(−Hx)iu, u

〉
remain bounded702

for all positive times. We can now apply [21, Corollary A.2] to obtain, using Lem-703

mas A.1 and A.2 and Assumption 3.1,704

〈
H2
x(u− Π̂d u), (u− Π̂d u)

〉
≤ C

2 k∑
i=0

‖∂̂ix(u− Π̂d u)‖2705

≤ C (d−m+ 1)!

(d− 2k + 1)!
‖∂̂mx u‖2706

≤ C (d−m+ 1)!

(d− 2k + 1)!
〈(−Hx + 1)mu, u〉707

≤ C (d−m+ 1)!

(d− 2k + 1)!
〈(−Hx + 1)mu0, u0〉 .708

709

We note that when V is quadratic, k = 1 is a valid choice in Assumption 3.1, and the710

bound above can be obtained by simply expanding u in terms of the eigenfunctions711

of Hx, which in that case are just rescaled Hermite functions. Using Grönwall’s712

inequality, we finally obtain713

‖ed(t)‖2 ≤ eαt ‖ed(0)‖2 +

∫ t

0

eα(t−s)
〈
H2
x(u− Π̂d u), (u− Π̂d u)

〉
ds,714

≤ eαt
(
‖ed(0)‖2 + Cα

(d−m+ 1)!

(d− 2k + 1)!

)
.(A.8)715

716

The first term, proportional to ‖ed(0)‖2, depends only on the interpolation error of717

the initial condition, which is nonzero when using a Gauss–Hermite quadrature. It718

was proved that this error term also decreases spectrally, see e.g. [40, Theorems 7.17,719

7.18], and in our case faster than the second error term. For the approximation error720

δd, similar inequalities to the ones used above can be used to obtain a bound of the721

type (A.8), which leads to the conclusion.722

Remark A.1. As mentioned in Remark 3.1, Theorem 3.1 is not optimal. It723

leaves open, in particular, the question of precisely how the error behaves as t → ∞.724

In this remark, we give a partial answer to the question: we show how a bound on725

the stationary error can be obtained, under the assumption that the solution to the726

discretized equation is rescaled in time in such a way that the integral of ρd :=
√
ρs ud727

remains equal to 1. With this rescaling and with the notation Sd := Π̂d(L
2(R)), the728

stationary solution of the discretized (in space) equation is729

ûs := arg max
ψd∈Sd,

∫
R

√
ρs ψd=1

〈Hxψd, ψd〉 .730

Taking731

ψd =
Π̂
√
ρs∫

R

√
ρsΠ̂
√
ρs
,732

we deduce733

−〈Hxûs, ûs〉 ≤ −
∣∣∣∣∣ 1∫

R

√
ρsΠ̂
√
ρs

∣∣∣∣∣
2 〈
Hx(Π̂

√
ρs), Π̂

√
ρs

〉
.734

735
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Since Hx is self adjoint in L2(R) and Hx√ρs = 0, it follows that736

−〈Hx(ûs −
√
ρs), ûs −

√
ρs〉 ≤ −

∣∣∣∣∣ 1∫
R

√
ρsΠ̂
√
ρs

∣∣∣∣∣
2 〈
Hx(Π̂

√
ρs −

√
ρs), Π̂

√
ρs −

√
ρs

〉
.737

738

An approximation argument similar to the one above can be employed to show that739

the right-hand side, and therefore also the left-hand side, decrease to zero as d → ∞740

faster than d−n for any n > 0. To conclude, a Poincaré-type inequality can be invoked,741

which is justified because742 ∫
R

(ûs −
√
ρs)
√
ρs = 1− 1 = 0,743

to obtain a bound of the type744

‖ûs −
√
ρs‖ ≤ −C 〈Hx(ûs −

√
ρs), ûs −

√
ρs〉 .745

Appendix B. Benchmark tests for the spectral numerical method. In746

this section, we investigate the performance of the spectral method through numerical747

experiments.748

B.1. Linear Fokker–Planck equation with colored noise. We focus first749

on the Galerkin approximation (3.8). Here we consider only the cases where V (·) is a750

quadratic or a bistable potential and where the noise is described by an OU process,751

but results of additional numerical experiments, corresponding to harmonic noise and752

non-Gaussian noise, are presented in [44].753

We start with the case V (x) = x2/2, for which the exact solution to the Fokker–754

Planck equation (3.7) can be calculated explicitly by substitution of a Gaussian ansatz,755

see [36, Section 3.7]. We study the convergence of the steady-state solution, obtained756

by calculating the eigenfunction associated with the eigenvalue of lowest magnitude757

of Π̂d L∗ε Π̂d, where Π̂d is the L2(R2; eU ) projection operator on Sd, directly using the758

method eigs from the SciPy toolbox. The parameters used for this simulation are the759

following: β = ε = 1, σ2
x = 1

10 , σ2
η = 1, e−U(x,η)/2 = e−Vη(η)/2 = e−η

2/4. With these760

parameters, the steady-state solution to (3.7) is equal to ρ∞(x, η) = e−2x2+2xη−η2 /π,761

and clearly ρ∞ ∈ L2(R2; eU ). Figure B.1a presents the steady-state solution, obtained762

using the spectral method with Hermite polynomials up to degree 100 (d = 100) and763

a triangular index set, and Figure B.1b presents the convergence of the method. Since764

the solution satisfies ρ∞(x, η) = ρ∞(−x,−η), the Hermite coefficients corresponding765

to even values of i+ j are zero, where i and j are the indices in the x and η directions,766

respectively.767

Now we consider that V is the bistable potential x4/4 − x2/2, which was solved768

numerically in [22] using generalized Hermite functions and a variation of the ma-769

trix continued fraction technique. For this case an explicit analytical solution is not770

available. The parameters we use are the following: β = 1, ε = 1
2 , σ2

x = 1
20 , σ2

η = 1.771

Through numerical exploration, we noticed that a good convergence could be obtained772

by using the multiplier function e−U(x,η)/2 = e−βV (x)/2−η2/4, rather than just e−η
2/4773

in the previous paragraph. We note that this would have been the natural choice if the774

noise in the x direction had been white noise. The solution obtained using a square-775

shaped index set and d = 100, as well as the corresponding Hermite coefficients up776

to degree 10, is illustrated in Figure B.2a. We observe that the Hermite coefficients777

corresponding to the degree 0 in the η direction (i.e. to the basis function e−η
2/2)778
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(a) Steady-state solution of the Fokker–Planck equation (3.8) with the associated field lines
of the probability flux (left) and absolute value of the coefficients of degree less than equal
to 10 in the Hermite expansion (right).
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(b) Convergence of the method, using three different metrics for the error: the L1 norm of
the error between the numerical and exact solutions, the negative of the minimum of the
numerical solution, and the absolute value of the eigenvalue with smallest real part.

Fig. B.1: Simulation data when V (x) = x2/2.

are significantly larger than the other coefficients, which is consistent with the fact779

that, as ε→ 0, the steady-state solution approaches e−βV (x) e−η
2/2 (up to a constant780

factor). The associated convergence curves are presented in Figure B.2b. We observe781

that the convergence is exponential, which is better than the rate of convergence782

predicted in Theorem 3.1.783

B.2. McKean–Vlasov equation with colored noise. We focus now on the784

Galerkin approximation to (3.10). When the potential V (·) is quadratic and the785

initial condition is Gaussian, it is well-known that the McKean–Vlasov equation has786

an explicit solution and that this solution is Gaussian. We assume that V (x) = x2/2787

and we rewrite (3.10) in the formalism of [10], as788

∂ρ

∂t
= −∇ ·

(
B x ρ+

∫
R2

K(x− x′) ρ(x′, t) dx′ ρ−D∇ρ

)
,789
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(a) Steady-state solution to (3.8) and associated field lines of the probability flux (left), and
absolute value of the coefficients of degree less than or equal to 10 in the Hermite expansion
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(b) Convergence of the method using the same measures of the error as in Figure B.1a,
except that the L1 error is calculated by comparison with the numerical solution obtained
when d = 100.

Fig. B.2: Simulation data when V (x) = x4/4− x2/2.

where x = (x, η)T and790

B =

(
−1 ε−1β−1/2

0 −ε−2

)
, K =

(
−θ 0
0 0

)
, D =

(
0 0
0 ε−2

)
.791

Adapting [10, Proposition 2.3] to our case, we deduce that the solution is of the type792

ρ(x, t) =
1

(2π) |Σ(t)| exp

(
−1

2
(x− µ(t))TΣ−1(t)(x− µ(t))

)
,793

where µ(t) and Σ(t) are given by794

(B.1)

µ(t) = eBt µ(0), Σ(t) = et(B+K) Σ(0) et(B+K)T +2

∫ t

0

es(B+K) D es(B+K)T ds.795

This solution can be obtained by introducing g = − ln ρ, rewriting (3.10) as an equa-796

tion for g, and using a quadratic ansatz for g. The eigenvalue decomposition of B+K797
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is798

(B +K)

(
1 −ε
0
√
β (1− ε2(1 + θ))

)
=

(
1 −ε
0
√
β (1− ε2(1 + θ))

) (
−1− θ 0

0 −ε−2

)
,799

which enables the explicit calculation of the integral in the expression of Σ(t). From800

(B.1) and the structure of B and K, we notice that, as t→∞, µ→ 0 and801

Σ(t)→ Σ∞ = 2

∫ ∞
0

es(B+K) D es(B+K)T ds,802

which coincides with the solution of the steady state linear Fokker–Planck equation803

corresponding to the McKean–Vlasov equation when m is a parameter equal to 0. For804

this test case, we use the following parameters: β = θ = 1, ε = 1/2, σ2
x = σ2

η = 1/5,805

e−U(x,η)/2 = e−V (x)/2 e−Vη(η)/2. The initial condition is taken to be the Gaussian806

density N
(
(1, 1)T , I2×2

)
. The evolution of the probability density is illustrated in807

Figure B.3, and the convergence of the method, in the L∞(0, T ;L1(R2)) norm, is808

illustrated in Figure B.4.809
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Fig. B.3: Probability density solution of (3.10) (obtained using the spectral method)
at times 0, 0.2, 0.5, 1.
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