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ABSTRACT: This work describes the effects of different plasticizers, namely glycerol, triacetin, 

and 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), on the structure and properties of 

thermomechanically-processed, bulk chitosan and chitosan/alginate materials. Mechanical data 

shows that, for the chitosan matrix, glycerol and [C2mim][OAc] were highly effective at reducing 

intra- and intermolecular forces between biopolymer chains, leading to increased ductility, while 

the plasticization effect of triacetin was minor. Nonetheless, this triester effectively suppressed 

biopolymer re-crystallization whereas [C2mim][OAc] promoted it. In contrast, for the 

chitosan/alginate matrix, inclusion of triacetin resulted in more re-crystallization, higher thermal 

stability, and excellent mechanical properties. The triacetin assisted the interactions between 

biopolymer chains in this polyelectrolyte complexed system. In contrast, the chitosan/alginate 

material plasticized by [C2mim][OAc] displayed the most apparent phase separation, weakest 

mechanical properties, and highest surface hydrophilicity, behavior associated with the disruption 

of polyelectrolyte complexation and hydrogen bonding between biopolymer chains. Interestingly, 

the formation of a “new structure” under the electron beam during microscopy imaging was 

observed, likely from coordination between alginate and [C2mim][OAc]. Thus, this work has 

revealed the strong and unexpected effects of three different plasticizers on the hydrogen bonding 

and electrostatic interactions within chitosan/alginate polyelectrolyte complexed materials, which 

have potential for biomedical applications where balanced hydrophilicity and mechanical 

properties are required. 
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INTRODUCTION

Biopolymers (e.g., cellulose, chitin/chitosan, alginate, starch, and proteins) are a class of 

polymers that can be directly sourced from nature and are renewable. Critically, they are low/non-

toxic, biodegradable, biocompatible, and inherently functional. Moreover, they have high 

chemical versatility due to abundant reactive groups on the backbone chain. Therefore, 

biopolymers have also been widely studied for various biomedical and pharmaceutical 

applications.1-6 

Whatever the application, biopolymers need to be processed into certain forms and shapes prior 

to use. However, biopolymers are synthesized in plants and animals with unique chain interactions 

and supramolecular structures, which makes them recalcitrant to dissolution and plasticization. For 

the disruption of the original hydrogen-bonded network, a suitable solvent, which can effectively 

interact with the biopolymer hydroxyl groups, combined with heat treatment, is usually required. 

During thermomechanical processing where intensive shear forces are involved, much less solvent 

(or plasticizer) may be required to disrupt intrinsic hydrogen bonding in and between biopolymers. 

In this way, plasticized biopolymers could be obtained.7-8. The incorporation of plasticizers into 

biopolymers may also improve processability and properties (e.g., mechanical, moisture and gas 

barrier, electrical, and thermal), which has been widely studied.9-10 

In this work, we compare the different plasticization effects of glycerol, 1-ethyl-3-

methylimidazolium acetate ([C2mim][OAc]), and triacetin on the structure and properties of 

thermomechanically processed chitosan and chitosan/alginate materials. Creating blends or 

composites based on biopolymers is a simple and cost-effective method to realize new materials 

with enhanced properties and/or new functionality.11-14 The electrostatic attraction between the 

chitosan polycation and the alginate polyanion may lead to polyelectrolyte complexation (PEC). 
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Recent research demonstrated the advantages of PEC for the development of advanced biopolymer 

materials with superior properties that single biopolymers cannot achieve, e.g. mechanical 

properties,15-17 barrier properties,18 hydrolytic stability,19 and cell adhesiveness.20 In 

polyelectrolyte complexed systems, ionic interactions may lead to the formation of particular 

structures and complement other interactions (e.g. hydrogen bonding). However, the preparation 

of bulk polyelectrolyte complexed materials is still challenging since rapid complexation between 

two polymers at the contact interface result in heterogeneous aggregates.21 Also, how PEC and the 

structure and properties of complexed biopolymer materials are affected by plasticizers remains 

largely unknown.

With different chemical polarity and hydrophilicity/hydrophobicity, glycerol and triacetin 

should have different degrees of interactions with biopolymers. Meanwhile, the groups with 

different degrees of polarity on biopolymer chains will interact with the plasticizers to different 

extents, possibly leading to a phase-separated structure.22 Besides, [C2mim][OAc], as an ionic 

liquid (IL) containing a strongly basic, hydrogen-bond-accepting anion (i.e., carboxylate), can 

disrupt intra- and intermolecular hydrogen bonding in biopolymers.23 Our hypothesis is that these 

plasticizers have very different ways of interacting with biopolymers and their effects are highly 

dependent on matrix type (chitosan or chitosan/alginate). We also propose that triacetin can 

interact in an unconventional manner with biopolymers to cause structural changes. Our 

motivation for this work is to understand the phase interactions resulting from the use of different 

plasticizers, providing options to tailor biopolymer material properties such as surface wettability 

and mechanical properties, which can better meet the needs of biomedical and pharmaceutical 

applications.
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EXPERIMENTAL SECTION

Materials. Chitosan (poly(β-(1,4)-D-glucosamine), derived from crustaceous shells, with a 

viscosity of about 200 mPa·s (i.e., 1% solution in 1% acetic acid at 20 °C), and a degree of 

deacetylation of ≥85%, was purchased from Jinan Haidebei Marine Bioengineering Co., Ltd. 

(China). The molecular mass of this chitosan is about 250 kDa. Alginate sodium (viscosity: 

200±20 mPa·s; M/G ratio: 1:1) was purchased from Shanghai Macklin Biochemical Co., Ltd. 

(China). Glycerol (≥99% analytical grade) was supplied by Fisher Scientific UK Ltd.; 

[C2mim][OAc] (≥95.0%) and triacetin (99%) by Sigma-Aldrich Company Ltd. (UK); formic acid 

(98% w/w AR) and NaBr (pure) by Scientific Laboratory Supplies Ltd. (UK). Deionized water 

was used for all experiments.

Sample preparation. Table 1 shows the formulations and codes of the different samples 

prepared in this work. In these codes, “X” means the matrix was chitosan alone while “Y” indicates 

chitosan/alginate was the matrix. The following letter indicates the plasticizer used, namely, “G” 

for glycerol, “E” for [C2mim][OAc], and “T” for triacetin. The samples were prepared by pre-

blending with 2M formic acid solution, thermomechanical kneading at 80°C for 15 min, hot-

pressing at 110 °C and 160 bar for 10 min, and conditioning at 57% relative humidity for 3 weeks, 

as described previously.19 One of the plasticizers (glycerol, [C2mim][OAc], and triacetin) was 

added during pre-blending. After conditioning, the samples were left openly at room temperature 

(RT) for 5 days before characterization.

Table 1. Sample codes and compositions (represented as portions by weight).

Sample Chitosan Alginate Plasticizer 2M Formic acid

X-F 100 – – 260.67
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XG-F 100 – 20, Glycerol 260.67

XE-F 100 – 20, [C2mim][OAc] 260.67

XT-F 100 20, Triacetin 260.67

Y-F 50 50 – 260.67

YG-F 50 50 20, Glycerol 260.67

YE-F 50 50 20, [C2mim][OAc] 260.67

YT-F 50 50 20, Triacetin 260.67

Material characterization. Scanning electron microscopy (SEM) imaging was performed using 

a Zeiss Sigma field-emission scanning electron microscope with an acceleration voltage of 6 kV. 

The biopolymer films were cryo-fractured using liquid nitrogen and the samples sputter-coated 

with gold/palladium before imaging. 

Scanning transmission electron microscopy (STEM) was conducted using a Talos F200X 

transmission electron microscope at 200 kV to obtain both bright-field (BF) and high-angle annular 

dark-field (HAADF) images. Ribbons of about 60 nm thick were sectioned from epoxy-embedded 

sample blocks and subsequently transferred onto holey carbon films on 200-mesh copper grids. 

No liquids were used during sample preparation, to avoid damage to the samples.

Fourier-transform infrared (FTIR) spectra were collected using a Bruker Tensor 27 FTIR 

spectrometer with an attenuated total reflection (ATR) accessory acquiring 32 scans for each 

sample over the range 4000–500 cm−1 at RT. 

X-ray diffraction (XRD) patterns were acquired using a Panalytical Empyrean X-ray 

diffractometer at 40 kV and 40 mA with a Co target (Kα = 1.790307 Å) and a beam slit of 10 mm. 

The samples were scanned over an angular range (2θ) of 6–40° with a step size of 0.0263° and a 

step rate of 2.16 s/step. 
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Thermo-gravimetric analysis (TGA) was undertaken using a Mettler Toledo TGA apparatus 

over a temperature range of 30–700 °C at 10 K/min under nitrogen. 

Dynamic mechanical thermal analysis (DMTA) was performed using a Tritec 2000 DMA 

(Triton Technology Ltd., UK) in dual cantilever mode with a sample length of 5 mm at a 

displacement of 0.01 mm. Temperature scans were performed from −100 °C to 180 °C at 2 °K/min 

and 1 Hz. 

Tensile testing was performed using an Instron 3367 universal testing machine with a 1kN load 

cell at a crosshead speed of 3 mm/min. As the specimens were in the form of thin sheets, specimen 

extension was measured by grip separation as suggested by ASTM Standard D882. At least seven 

replicates were used for each sample.

Contact angle (θc) data was obtained from sessile tests at RT based on Young–Laplace using an 

Attension Theta Lite instrument (Biolin Scientific, UK). As θc kept changing after a drop of water 

was placed onto the sample surface, θc values at 0 s, 30 s, and 60 s (denoted as θc0s, θc30s, and θc60s 

respectively) were recorded.

Electrical impedance spectroscopy (EIS) was performed using a Princeton Applied Research 

PARSTAT MC (PMC) multi-channel potentiostat (Ametek Scientific Instruments, USA) with a 

PMC-2000 card and a two-point probe. The two surfaces of samples were painted with carbon 

conductive grease (No.8481, MG Chemicals, Canada) in designated areas (24 × 24 mm). Each 

sample was measured in triplicate. The real (Z′) and imaginary (Z″) parts of impedance were 

acquired within a frequency (f) range of 1–106 Hz. The AC conductivity (admittance) (σ), the real 

part of relative permittivity (ε′r), and the imaginary part of electric modulus (M″) were calculated 

using the following equations:24-26 

(1)𝜎 =
𝑍′

𝑍′2 + 𝑍″2 ∙
𝑡
𝐴
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(2)𝜀′𝑟 =
―𝑍″

𝑍′2 + 𝑍″2 ∙
𝑡

𝜔𝐴𝜀0

(3)𝑀″ =
𝜀″

𝜀′2 + 𝜀″2

where, ω is the angular frequency (= 2πf), ε0 is the permittivity of free space (≈ 8.854 ×10−12 

F⋅m−1), A is the tested area of the sample (m2), and t is the sample thickness (m). 

The bulk resistance (Rb) was determined from the Nyquist plots of impedance (Z″ vs. Z′) from 

the points where the semicircle and the straight line meet. Then, the conductivity (σdc) can be 

calculated using equation (4):24, 27

(4)𝜎𝑑𝑐 =
𝑡

𝑅𝑏 ∙ 𝐴

RESULTS AND DISCUSSION

Morphology. SEM images (Figures S1) show that unprocessed chitosan and alginate have an 

un-compacted structure with crevices. In comparison, all the chitosan (X) films showed a cohesive 

and firm structure, indicating successful processing of the biopolymers. In particular, both X-F 

and XE-F exhibited a very smooth fractured surface. For XT-F, there were some cavities and 

protrusions with sizes up to about 1 µm on the surface. This feature could be triacetin-concentrated 

domains. Due to its hydrophobicity, triacetin may have weak interaction with chitosan.28

Compared with the X-series, the Y-series presented less smooth surfaces. The least cohesive 

structure was displayed by YE-F. For this sample, while there are strong interactions between the 

[OAc]− anion and the hydroxyl and amine groups of chitosan, the [C2mim]+ cation may bind with 

the carboxylate groups of alginate due to the reverse charges, which might account for the highest 

degree of phase separation in YE-F and possibly weakened PEC. Like XT-F, YT-F also showed 

cavities and protrusions on the surface, which could reflect triacetin-rich domains. 
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The morphology of the different samples was further examined using STEM, as shown in Figure 

1. The X-series, in general, displayed a homogeneous microstructure (The band and line features 

in the low-magnification images for the X-series samples were induced from microtoming the 

samples). In contrast, for the Y-series, a second phase (rich in alginate, the brighter areas in the 

STEM-HAADF images) distinct from the chitosan-rich phase can be observed, corresponding to 

the inhomogeneity seen when examined by SEM. Thus, while both chitosan and alginate contain 

hydrophilic groups (i.e., hydroxyl, amine, or carboxyl), they are not fully compatible probably 

caused by their thermodynamic difference (e.g., different ways of chain aggregation such as the 

helical conformation of alginate). 
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Figure 1. STEM-HAADF images of the different biopolymer films.
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Only for YE-F, during the STEM imaging, we surprisingly observed the generation of a “new 

structure” normally in the edges of imaged areas (where the material has no or much less 

interaction with the electron beam) (see Figure S2). It looks like that some material migrated into 

the areas adjacent to the region imaged driven by the electron beam; as such, the initial equilibrium 

at the areas outside of this region is broken, giving rise to the generation of the “new structure”. 

Nonetheless, the “new structure” was unstable and became difficult to observe rapidly (within a 

few seconds) when directly exposed under the electron beam, as shown in Video Clip S1 (STEM-

HAADF) and Video Clip S2 (STEM-HAADF). The “new structure” appears as scattered spots or 

as a helical shape. Previous research29-31 suggested that alginate chains tend to form helical 

structures through intramolecular hydrogen bonding and coordinate with Ca2+ to form junction 

zones. We speculate that the energy from the electron beam may facilitate the coordination 

between alginate and [C2mim]+ and the packing of biopolymer chains to form a new structure 

(possibly crystals). This interesting phenomenon is worth further investigation.

Molecular interactions. Figure 2 shows the FTIR spectra for the different samples. The X-

series of biopolymer films displayed FTIR patterns very similar to each other but quite different 

from that of unprocessed chitosan. Specifically, a prominent peak emerged at 1570 cm−1 (N─H 

bending) with a shoulder at 1530 cm−1 (partial protonation of the amine group of chitosan, i.e., 

─NH3+).32 The characteristic peak originally at 1265 cm−1 (Amide III) red shifted and the one at 

1059 cm−1 (asymmetric C─O─C stretching in the glycosidic linkage)32-34 blue shifted. Therefore, 

it is likely that the hydrogen bonding in the processed chitosan films mainly involved amine and 

amide groups and also affected the polysaccharide backbone.
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Figure 2. FTIR spectra for chitosan, alginate, and the different biopolymer films. The reference 

lines indicate characteristic bands for unprocessed alginate (1591 cm−1, 1408 cm−1, 1300 cm−1, 

1082 cm−1, and 1024 cm−1) and chitosan (1649 cm−1, 1591 cm−1, 1420 cm−1, 1375 cm−1, 1319 

cm−1, 1265 cm−1, 1150 cm−1, 1059 cm−1, and 1024 cm−1). The arrows indicate shifts in peak 

position or changes in peak intensity.

The Y-samples displayed FTIR spectra similar to those for the X-series, with additional peaks 

at 1408 cm−1 (symmetric COO− stretching), 1300 cm−1 (skeletal vibration of C─CH and O─CH 

bending), and 1082 cm−1 (asymmetric C─O─C stretching in the glycosidic linkage), which are 
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characteristic of alginate.32, 35 Some differences in the FTIR spectra among the Y-samples can be 

noticed. While YT-F showed the peak at 1570 cm−1 as for the X-series without any shift, this peak 

appeared at higher wavenumbers for Y-F, YG-F, and YE-F. Furthermore, for YE-F, the shoulder 

at 1530 cm−1 (─NH3+) and the peak at 1059 cm−1 became much weaker, and the peak at 1408 cm−1 

(symmetric COO− stretching) stronger, i.e., the FTIR spectrum for YE-F exhibited more features 

of alginate. This indicates that inclusion of [C2mim][OAc] resulted in weak interactions between 

chitosan and alginate. Glycerol may have also weakened the interaction between chitosan and 

alginate but not to the same extent as the IL.

Crystalline structure. Figure 3 shows the XRD curves for the different samples. All the X-

samples had similar XRD patterns, which were different from that for unprocessed chitosan. These 

films displayed three major peaks at 2θ = 13.5° ((020) reflection, d-spacing = 0.76 nm), 21.7° 

((100) reflection, 0.48 nm), and 27.2° ((110) reflection, 0.38 nm), which are all attributed to the 

crystal lattice of chitosan.36 The shift of the (100) reflection from 23.3° to 21.7° 2θ indicates an 

enlarged d-spacing of the chitosan crystal lattice. Also, there were some small peaks at 2θ = 10.0° 

(1.03 nm), 19.0° (0.54 nm), and 30.8° (0.34 nm). As the XRD pattern of processed chitosan was 

different from that of original chitosan, processing almost fully destroyed the original crystalline 

structure and, subsequently, new biopolymer crystals were formed. 
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Figure 3. XRD patterns for chitosan, alginate, and the different biopolymer films. The reference  

lines indicate characteristic peaks for unprocessed chitosan (13.2° and 23.3°), unprocessed 

alginate (15.9° and 25.1°), and X-F (10°, 19°, 21.7°, 27.2°, and 30.8°). 

Compared with X-F, XE-F displayed apparently more-intense XRD peaks while XT-F had less-

intense peaks (especially at 13.5° 2θ). Given this, [C2mim][OAc] may have assisted the re-

crystallization of the biopolymer whereas triacetin hindered it. 

The Y-samples displayed XRD peaks similar to those for the X-series along with the two 

characteristic reflections of alginate, but all having weak intensities. Among the Y-series, YT-F 
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had the strongest reflections followed by YE-F, whereas Y-F and YG-F were mostly amorphous. 

Processing had largely destroyed the original crystalline structures of chitosan and alginate and 

interactions (PEC and hydrogen bonding) between the two biopolymers constrained their re-

crystallization. Compared with Y-F and YG-F, YE-F was more crystalline, which could result 

from its greater degree of phase separation and lower degree of PEC. The highest crystallinity 

among the Y-series was shown by YT-F, suggesting that triacetin assisted the re-crystallization of 

both biopolymers.

Thermal stability. Figure 4 shows the TGA results in the form of derivative weight as a 

function of temperature. For chitosan, the weight loss occurred between 235 °C and 385 °C, with 

the peak temperature being 289 °C (Td, with the maximum weight loss rate). For X-F, a small peak 

evolved between 205 °C and 245 °C, likely due to the initial de-polymerization of chitosan. X-F 

had Td = 297 °C and XT-F had Td = 291°C, both higher than that of unprocessed chitosan. The 

enhanced thermal stability is probably due to the more ordered structure and/or a higher degree of 

the hydrogen-bonding resulting from the processing. In contrast, XG-F and XE-F displayed lower 

thermal stability (Td = 283 °C and 264 °C, respectively). Both glycerol37 and [C2mim][OAc]38 have 

lower thermal stability, which could make the plasticized chitosan more thermally sensitive. 

Specifically, the earlier thermal decomposition of the plasticizer could generate free radicals, 

which could accelerate biopolymer chain scission with increasing temperature. 
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Figure 4. Derivative-weight-loss curves for chitosan, alginate and the different biopolymer 

films. The reference lines indicate the peak thermal decomposition temperatures of unprocessed 

chitosan (288.7 °C), unprocessed alginate (232.7 °C), X-F (297.2 °C), and Y-F (255.7 °C). 

For Y-F, the weight loss mainly occurred between 154 °C and 330 °C with Td = 256 °C. Given 

this, the incorporation of alginate in the chitosan matrix led to substantially reduced thermal 

stability. This is caused by the inherent low thermal stability of alginate (weight loss range 195–

280 °C, Td = 289 °C), possibly due to its carboxyl group, which is thermally labile. Compared with 

Y-F, YT-F displayed obviously higher Td (263 °C). This enhanced thermal stability might be due 

to its higher crystallinity as determined from XRD. In contrast, plasticization by glycerol or 
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[C2mim][OAc] led to reduced thermal stability (Td = 243 °C for YG-F and 240 °C for YE-F). 

Moreover, for Y-F and YT-F, the peak for alginate at 232 °C was still visible but small. This could 

indicate there were interactions between chitosan and alginate despite some degree of phase 

separation (as discussed in STEM). In comparison, for both YG-F and YE-F, this peak originally 

at 232 °C appeared at a lower temperature and became more pronounced, indicating less 

interactions and a lower degree of compatibility between the two biopolymers. 

Molecular relaxations. DMTA (Figure 5) indicates that all the biopolymer films displayed two 

loss tangent (tan δ) transitions, a weak transition below 0 °C associated with the motions of the 

side chains or lateral groups of chitosan (β-relaxation). And, above RT, a much more prominent 

transition, which is attributed to the α-transition (glass transition) of chitosan.39-40 Overall, for both 

X- and Y-matrices, the intensities and locations of the two transitions were largely influenced by 

plasticizer type.
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Figure 5. Loss tangent (tan δ) as a function of temperature for the different biopolymer films: a) 

chitosan matrix and b) chitosan/alginate matrix.

For X-F, the peak temperature of the β-transition (Tβ) was −38 °C and that of the α-transition 

(Tα) was 95 °C. In comparison, XG-F displayed a more intense β-transition with Tβ = −41 °C, 

likely due to the interaction of glycerol with the side chains or lateral groups of chitosan. 

Furthermore, the Tα decreased significantly to 56 °C, indicating inclusion of glycerol made the 

chitosan chains more mobile. XE-F exhibited similar Tα and Tβ values as those for XG-F, although 

both peaks became less intense. The two transitions observed for XT-F matched those of X-F 

although Tα was slightly lower (89 °C). A previous study28 highlighted the weak interactions 

between triacetin and biopolymers. Subsequently, triacetin may have a limited effect on the 

mobility of the main chains of chitosan in the amorphous regions. 

The incorporation of alginate in the matrix mainly affected the α-transition, which became less 

intense and less sharp. Y-F had higher Tα than X-F. Compared with XG-F, YG-F had a weak α-

transition with similar Tα but tan δ decreased less abruptly after the peak temperature. The 
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comparison between XT-F and YT-F indicate a similar situation. For Y-F, YG-F, and YT-F, the 

α-transition peak could be an overlap of the α-transitions for chitosan and alginate respectively, 

although interactions between the two biopolymers may have restricted chain mobility. Moreover, 

compared with XE-F, YE-F seemed to have two α-transitions, one with a peak maximum at 49 °C 

and the other at 111 °C. This could indicate a low degree of compatibility between the two 

biopolymers, in agreement with the apparent phase separation, see STEM images and thermal 

stability. 

Tensile mechanical properties. Figure 6 (a) shows representative stress–strain curves for the 

different biopolymer films, which can be all considered as hard and tough polymers but with 

different degrees of strain hardening. Generally, the X-series were tougher than the Y-series. For 

both matrices, the inclusion of triacetin did not increase ductility. XT-F and YT-F were more brittle 

than X-F and Y-F, respectively. The triacetin-rich domains in the biopolymer matrices (as seen in 

SEM images) contributed to diminishing mechanical properties.
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Figure 6. a) Representative stress–strain curves under tensile testing for the different biopolymer 

films; b) tensile strength; c) Young’s modulus; and d) Elongation at break of the different 

biopolymer films. Error bars represent standard deviations.

Based on the stress–strain curves, Young’s modulus (E), tensile strength (σt), and elongation at 

break (εb) were determined, see Figure 6 (b), (c) and (d). Overall, irrespective of matrix, the 

samples plasticized by glycerol and [C2mim][OAc] displayed lower E and σt but higher εb, 

suggesting greater ductility. This is as expected for the action of a plasticizer, which can reduce 
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the number of hydrogen bonds and act as a spacer between biopolymer chains. For both matrices, 

the IL led to moderately higher εb than glycerol. Given this, compared with glycerol, the IL should 

have stronger hydrogen-bonding capability to interact with biopolymers. YE-F had comparable 

mechanical properties as YG-F, suggesting probably the hydrogen bonds formed during the 

conditioning played a dominant role in determining mechanical properties. When triacetin was 

used as a plasticizer, significantly increased E and σt and decreased εb were achieved. Compared 

with X-F and Y-F, XT-F and YT-F showed even lower εb values with similar or even lower E and 

σt, suggesting the more brittle nature of the triacetin-plasticized samples. 

Additionally, the Shore D hardness values for the different samples were also measured, see 

Figure S3. Matrix and plasticizer types influenced hardness and the same trends observed for 

tensile properties (E and σt) were obtained for hardness. The lowest Shore D hardness was 

displayed by the samples with [C2mim][OAc] added, which, again, shows the strongest 

plasticizing effect for these biopolymers. It is proposed that, compared with the other plasticizers, 

the IL could more effectively increase chain mobility and free volume in the biopolymer(s).

Surface wettability. The contact angle (θc) results are shown in Figure 7, a measure of the 

variation in film surface wettability of the different biopolymer films. X-F had θc0s = 104±3°, θc30s 

= 76±4°, and θc0s = 71±3°. While XG-F displayed similar values as X-F, XE-F had marginally 

lower θc0s (95±3°) but similar θc30s and θc60s, which could be due to the higher hydrophilicity of 

[C2mim][OAc] but the enhanced crystallinity of chitosan. Whilst XT-F had similar θc0s as X-F, the 

θc30s and θc60s for the former were moderately lower, which might be due to its more amorphous 

structure (see XRD results). 
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Figure 7. Contact angle values for the different biopolymer films at 0 s, 30 s, and 60 s. Error 

bars represent standard deviations.

Compared with X-F, Y-F had similar θc0s (101±4°) but significantly higher θc30s (97±5°) and θc0s 

(94±5°), indicative of its hydrophobic surface (θc > 90°). The increased surface hydrophobicity of 

Y-F could undoubtedly be attributed to interactions (PEC and hydrogen bonding) between the two 

biopolymers while alginate is hydrophilic because of hydroxyl and carboxyl groups. Inclusion of 

glycerol (YG-F) did not cause any significant difference in θc. YT-F had θc0s = 95±8°, θc30s = 

87±9°, and θc60s = 87±4°. The moderately increased surface hydrophilicity of YT-F may be due to 

the slightly weakened PEC and hydrogen bonding by triacetin. Moreover, YE-F showed 

dramatically decreased θc0s (48±5°), θc30s (36±5°), and θc60s (33±5°). The much higher surface 

hydrophilicity of YE-F could be ascribed to not only the high hydrophilicity of [C2mim][OAc], 

but also the weakened PEC and greater phase separation, as discussed above. 

Electrochemical properties. Figure 8 (a) shows the Nyquist plots of impedance (Z″ vs. Z′) for 

the different samples, based on which, Rb and σdc values were calculated41 and listed in Table S1. 
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For the X-series, plasticization led to obviously higher σdc. Given this, the plasticizers increased 

the mobility of electrical charges (ions and dipoles) in the processed films. Among the X-samples, 

the highest σdc was displayed by XE-T, in which case, [C2mim][OAc] as a salt might further 

contribute to the amounts of mobile ions in the system. Y-F exhibited a σdc value similar to those 

of XE-F. The predominantly amorphous nature of Y-F could be instrumental in determining its 

electrical conductivity. Compared with Y-F, both YG-F and YT-F displayed reduced σdc, 

indicating glycerol and triacetin retard ionic conductivity. YE-F also showed a similar σdc value as 

those of YG-F and YT-F. The low σdc of YE-F could be due to the strong interactions between the 

IL ions and the charged biopolymers, as discussed above. 
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Figure 8. EIS results for the different biopolymer films: a) Nyquist plot of impedance; and b) 

imaginary electric modulus (M″).

Figure 8 (b) shows for all samples, a well-defined peak for M″ at high f, indicating relaxation 

processes with a distribution of relaxation times (i.e., viscoelastic relaxation, or dipolar 

relaxation)27 For X-F, the peak position was at about 105 Hz. In comparison, for the plasticized 

samples, the peak moved to higher f and became less intense, suggesting a decreased relaxation 

time. The plasticizer can increase chain mobility and, thus, assist ion and associated dipole 

mobility. In contrast, compared with Y-F, the plasticized Y-samples displayed a peak shifted to 

lower f (about 1.3×105–1.5×105 Hz), indicating a longer relaxation time and decreased mobility of 

ions and associated dipoles. This trend in relaxation time matches that shown by the σdc results.

In Summary, our results show that, for the X-matrix, both glycerol and [C2mim][OAc] were 

highly effective plasticizers, reducing intra- and intermolecular forces resulting in the chitosan 
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chains being more mobile and the material more ductile (lower E and σt and higher εb). The 

effective plasticization, however, resulted in reduced thermal stability of XG-F and XE-F. XT-F 

was much more rigid than XG-F and XE-F and even more brittle than X-F. In this regard, triacetin, 

which is hydrophobic, should have less interaction with chitosan and, thus, a weaker plasticization 

effect. Interestingly, XRD data shows that the IL assisted the re-crystallization of chitosan but 

triacetin restricted it, implying the mechanical properties were not in the main determined by 

crystallinity but the extent of hydrogen bonding. EIS data show that the plasticizers especially the 

IL increased the mobility of electrical charges in the processed films, thus, increasing their 

conductivity. Despite its high hydrophilicity, the IL did not significantly reduce surface 

hydrophilicity. Overall, [C2mim][OAc] could be considered an excellent plasticizer for chitosan. 

For the Y-matrix, plasticization by glycerol or [C2mim][OAc] also led to reduced thermal 

stability. STEM images show that chitosan and alginate were not compatible on the sub-micron 

scale, despite their chemical similarity. Surprisingly, YE-F was the most phase-separated system. 

Given this, [C2mim][OAc], as a salt, might disrupt PEC and weaken hydrogen-bonding 

interactions between chitosan and alginate. As a result, YE-F had distinctly higher surface 

hydrophilicity than the other samples. The incompatibility between triacetin and the Y-matrix was 

also apparent in YT-F. Despite the hydrophobicity of triacetin, YT-F displayed the most enhanced 

re-crystallization of both chitosan and alginate and the highest thermal stability among the Y-

series, although being more brittle. 

CONCLUSIONS

This work has revealed the strong and unexpected effects of three different plasticizers (i.e., 

glycerol, [C2mim][OAc], and triacetin) on the structure (e.g., crystallinity) and properties (e.g., 

surface hydrophilicity) of chitosan and chitosan/alginate polyelectrolyte complexed materials. The 
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different effects reflect multiple interactions including hydrogen bonding and ionic forces within 

such multiphasic systems, whereas the ability of the plasticizer to interrupt hydrogen bonding is 

not the only determinant factor. The new knowledge obtained from this work can provide insights 

into the design of plasticized polysaccharide materials with tailored structure and properties. 
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1-Ethyl-3-methylimidazolium acetate has strong and unexpected effects on the hydrogen 

bonding and electrostatic interactions within chitosan/alginate polyelectrolyte complexed 
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Figure 1. STEM-HAADF images of the different biopolymer films. 
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