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SUMMARY .

The main theme of this thesis (excepting Chapter 5)
is to investigate properties of crystal lattices which are
of particular significance in higher dimensions i.e. > 3,
but which barely show up in low dimensions. We study
lattices T and pairs (H,T), where H is a finite subgroup
of the orthogonal group acting on T.

In Chapter 1 we present some basic properties of
lattices which are used throughout. In Chapter 2 we
discuss crystal families and prove that the Face Theorem
of [12] can be extended to these.

In Chapter 3 we investigate the decomposability
properties of the RH-module V and the QH-module QT and
the relationship between them. We introduce the ideas
of typically orthogonal decompositions and inclined point
groups. We prove some general criteria for determining
these.

In Chapter 4 we extend the decomposability study
to families and show how our work can be used to describe
some higher dimensional families which we consider to be
of particular significance. Specific results are given.
In particular, we reduce the problem of describing the
descendants of one, two and three dimensional families
to a problem involving only the partition function.

In Chapter 5 we formulate and study an approach to
the problem of the stability of symmetry in lattice
hyperplanes. The full solution corresponding to this
formulation is given in 3 dimensions. We venture to hope
that this solution might be of some interest to
practising crystallographers.j possibly in the study of

twinned crystals with rational twinning planes.



NOTATION
Crystallographic.

We use the following symbols which are standard in
crystallography. The reader is referred to [2* or
[10; pp-24-29~ for a full explanation of these.
Two Dimensional Geometric Crystal Classes.

1,2, 2, 4, 6, m, 2mm. 3m. 4mm. 6mm.
Three Dimensional Geometric Crystal Classes.

1.1»

2. s. |:
222 . 2mm. mmm;

it Lkl 1, 4mm, 32m, |mm;
It 2€ 25t 2m. Xt 6. 5, 622, 6mm, 5m2, |jm;
23. 432. m3. ?3m. m3m.

Two Dimensional Bravais Classes.

= Parallelogram;

= Rectangle;

Diamond;

= Square;

T »n O v T
I

= Hexagon.

Other Notation.
IT the symbol x appears as a matrix entry, it means
- X. We never use x to denote the complex conjugate.
We denote the complex, real and rational numbers
by C, R and Q respectively. We denote the integers by Z.
Moreover, R* = R\fO] and R+ = {Xx €& R: x>0j.

We denote the natural numbers by N.

Continued



By GL(n,Z) we mean the set of n x n integral matrices
with determinant +1 or -1.

We denote the adjoint of a linear map by <p*.

We denote the identity map by L.

The symbol C means strict inclusion, but when we
wish to emphasize this we write . The symbol S, implies
"possibly equal to.-

The symbols DT and ODT used in Chapters 3 and 4

mean “decomposition type®" and “typically orthogonal

Gv)

decomposition type" respectively. These are fully explained

on pages 27 and 44 respectively.
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DECLARATION OF ORIGINALITY.

With a few exceptions, any definition, lemma,
proposition or theorem which is not directly attributed
to another source ( either in the text or in the
introduction), or stated to be standard, is claimed
as original.

The exceptions ares Propositionl,4, Proposition 1,6,
and all of Section 2.1, These results are well known,
hut not stated in a convenient form elsewhere which suits
our point of view. Proposition 1.6 does not appear to
be proved anywhere in the literature, although it is
sometimes used in a matrix form.

The idea for the definition of decomposition type
comes from [3], although we use the term in a wider

context than in [3]



INTRODUCTION.

If U iIs an n-dimenslonal space, then an
n-dimensional space group is a discrete group of isometries
of U containing n linearly independent translations.
Space groups (in three dimensions) were first-studied by
Fedorov and Schoenflies in the 1880"s. They discovered
(working independently) all 230 classes of three
dimensional space groups, under an equivalence relation
which we would now call conjugation by an orientation
preserving affine map. Hilbert asked if the number of
space groups in any given dimension is finite and
Bieberbach proved this in the early 1900°s. It is worth
noting that the theoretical description of three dimensional
space groups came well before the realization that these
actually corresponded to the physical structure of crystals.

lattices arise in crystallography as the sets of
translations in n-dimensional space groups. Given a
choice of origin of U, a lattice T may be regarded as
a subgroup of an n-dimensional vector space V. A space
group G determines a short exact sequence

0 —-*T—*G—vH-*1

where T is the lattice and H, the polnj group, is a finite
subgroup of the orthogonal group 0(V) acting on T. Most
methods of deriving space groups begin with pairs of the
form (H,T) and these are essentiallywhat we study in this
thesis, lattices themselves are classified according to
their symmetry groups G(T) ={©0 € 0(V)s OT m t}, and we

consequently show particular interest in pairs (G(T),T).
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Space groups and pairs have been classified for n £ 4

(see [21. [3B1. [4]) but few general results are known.

Interest in n-dimensional crystallography for n >3 has

recently been revived by Bulow, Neubiiser and Wondratschek

in [3], and by other authors (e.g. [2], E3]1)- One of

the main themes of this thesis is to formulate and

investigate properties of lattices and pairs which we

feel are of particular importance in studying their

behaviour in higher dimensions, but are not very significant

in low dimensions. Subordinate to this theme is the use

of crystal families of lattices, introduced by Bulow et al.

in [3]. which are of particular value in looking at lattices

in higher dimensions, particularly with regard to

decomposition properties. Chapters One to Pour essentially

deal with this main theme. Chapter Five, dealing with

lattice hyperplanes, is almost a separate unit, although

it does rely on some concepts and results from the others.
Chapter One presents some basic properties of crystal

lattices which are particularly relevant in all later work.

It is immediately clear that our point of view in considering

pairs (H,T) is geometric, as in [13], rather than arithmetic,

as in [3] and much of the rest of the literature. This

means that we consider the representation H— *GL(T)

explicitly, anfl, if forced to convert to a matrix representation,

rely on the scalar product on V to choose an

orthonormal basis. An arithmetic approach uses a matrix

representation relative to a basis of the lattice T, thus

dealing with only integral matrices.



Chapter Two introduces the idea of a crystal family,
giving a more general description than in the only other
works where it is mentioned (i.e. [3] and [13]). We then
place families in the topological context of [l12] , proving
that the Face Theorem can be extended
to families and showing that a family is a manifold of
the same dimension as all of the systems which it contains.
This is significant because it shows that in some sense
families are not all that much bigger than systems. In this
chapter we reprove two results of Schwarzenberger, namely
our Propositions 2.6 and 2.7 (appearing in [13* and[123
respectively). We do this for two reasons. First, we feel
our proof of Proposition 2.7 clears up a certain difficulty
in the proof in [12} , which is pointed out. Secondly,
we use different techniques to Schwarzenberger, relying
on positive definite symmetric transformations, some useful
properties of which are presented in Section 2.1. We feel
that these techniques are more suited to a geometric point
of view, and since they are used extensively in the rest of the
thesis, it is hoped that their use here makes later work
easier to understand. In the course of this chapter
we also prove two results stated but not proved by Biilow
et al. in [3]. These are nointed out. Also we link our
dimension of a family to what they call the"number of free
parameters)

Chapter Three studies properties of the decomposabillty

of crystallographic point groups which are of particular



importance in higher dimensions hut which barely show up,
if at all, in the first three dimensions. An example of
this is the relationship between the decomp”sability of V
over H and that of the rational lattice QT over H, discussed
in Section 3.2. In two. and three dimensions, V 1is
decomposable if and only if QT is, but we see that this is
not true for n even, nk4. We prove it is true for n = 5,
however. Chapter Four relates the work in Chapter Three to
the decomposition of families. We discover that crucial
to a description of decomposable families in higher dimension»
are the notions of what we call “typically orthogonal
decompositions®™ and"inclined point groups®. We give some
general criteria for determining these. We include rather
a large number of specific higher dimensional results in
order to assess how useful the properties we have isolated
are. There are general results also. In particular, we
reduce the problem of determining the descendants of one,
two and three dimensional families to a problem involving
only the partition function.

In Chapters Three and Four, as in the rest of the thesis,
a knowledge of all crystallographic groups and lattice types
in one, two and three dimensions is assumed. Nevertheless,
results for these are found in some of the tables in Chapter
Four for reasons of completeness. We make a specific
point of not using the four dimensional results of Bulow et
al. in [3~\ , in order to demonstrate how our results work.
We do use the names for four dimensional families coined
in [i]» solely to show how our results relate to the lists
in [3]of four dimensional families. Also the table at the
end of Section 3.1 , which is for illustration only, uses

their results. We should point out, however, that many of
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the ideas in Chapters Three and Pour were inspired by
studying the list of results in [V].

Chapter Five deals with the problem of the stability
of symmetry in lattice hyperplanes. It appears that there has
been a recent revival of interest in problems concerning
lattice planes in three dimensions, and we venture to
hope that our work here might be of some physical relevance.
Possible three dimensional applications were mentioned in
the original paper on this subject ([11)).

For a given lattice T of rank three and rational plane
W in three dimensions, several papers have presented methods
of finding a basis or reduced basis of TOW e.g. [6), [II] ~.
These methods involve a great deal of computation and
require either the lattice or the plane, or both, to be
fixed. They give no real insight into possible general
patterns in the behaviour of lattice hyperplanes. Our aim
is to discover some general relationship between the Bravais
classes of T and TOW. It is immediately dear that there
is no simple direct relationship, as it is not difficult to
establish, by considering simple examples, that any three
dimensional Bravais class produces all five two dimensional
Bravais classes by means of its lattice planes. Gruber
gives some interesting examples relevant to this in [6l.

Given an n-dimensional Bravais class Bn and an
(n-1)-dimensional Bravais class Bn_”, any attempt to describe
those lattice planes in Bn for which Bn_1 occurs, Beems
bound to lead us back to an algorithmic approach as in

[63 i and hence to specialized situations. Instead we consider



here a related problem which has some chance of a general
solution. Given that Bn_”~ occurs on a rational plane for W,
to what extent is it accidental ? In other words, is there
a relationship between Bn, Bn_”~ and the size of the set
of small symmetry preserving perturbations of T which also
preserve the symmetry of THW ? We show particular interest
in the planes W for which the symmetry of Tr*w is always
preserved, since this corresponds to a structurally
stable situation.

We formulate an approach to this problem in n dimensions,
and present the corresponding solution in three dimensions,
where we show there is a definite dimensional relationship

between Bn, Bn_4 and the symmetry preserving set. We

consider the results for the tetragonal, hexagonal and

rhombohedral systems to be the most significant.



CHAPTER ONE. BASIC PROPERTIES OF CRYSTAL LATTICES.

Throughout this thesis, V denotes an n-dimensional
real vector space with scalar product, with nil .

In this chapter, we consider some properties of crystal
lattices which are of particular importance in the rest of
the thesis.

We begin with a standard definition.

Definition. Let re Z, Oi r £n. Then T is a lattice of
rank r in V if and only if it is a subgroup of V generated

additively by r linearly independent vectors.

For r = 0, T = 0. For r > 0, T - ££ 1 £ 70,

where {t1,...,t~ C V is a linearly independent set, called
a basis of T. For r > 0, T has more than one basis, but
each basis has exactly r vectors.

A lattice is a discrete subgroup of V, by the following:

Proposition 1.1. [14; Theorem 3»p.2753» Any non-empty

subset of a lattice T has a vector of minimum length.

The next proposition is essentially part of a theorem of
Bieberbach ( see [jI5; Theorem 3.2.1., p.1003) but it is

welt that our elementary proof is an advantage.

Proposition 1.2. Any discrete subgroup of V spanning a
subspace of dimension r is a lattice of rank r. in
particular, the set of translations in an n-dimensional

space group is a lattice of rank n.

To prove this, we need:

Lemma 1.3. Let D be a discrete subgroup of V and suppose



~Ndl,...,dk} C D. ~IF there exist slt...,sk € R, not all

zero, such that ~ si?i = then there exist p™,...,pk £ Z,

not all zero, such that ¢(p,d. m O,
i=1 11

Proof. By a well known result in Number Theory (see [8;
Theorem 201, p.170]), for any & >0 thereexist q feZ, q£ O,
and P1,...»Pk € Z, not all zero, such that Ip” - pY < £,
1~ 1< k. Let d»=q(".sidi) - ~ Pidi* Then dg e D

and "d<éH S(l:llldidl)- Slince D is discrete, for sufficiently
small S , dg = 0, giving TTp~d. = O.

i=1 1 i
Proof of Proposition 1.2. Let D be a discrete subgroup of
V spanning a subspace of dimension r. I1f{x",...,xr] isan
independent set in D, then the set A = [y : vy = S sixi»|s_jj<lJ
is bounded and it is easily seen that A O D generates D as
an additive group. Therefore D is finitely generated, since

A is compact.

Let {d.,...,dk} be a minimal set of generators for D.
Clearly k 1 r. Suppose k > r. Then by Lemma 1.3 there exist ﬁ
e Z, not all zero, with SkZp-d- = 0. Write this
1 K k-1 i=1 11
as gkdk = qidi assuming without loss of generality that
gk /7 0 and ql is the smallest positive q© for 1 = 1,...,k-1.
Choose m2,...,mk_1 such that 0 ~ g~ + migql< ql1, 2 £i ™ k-1.
Write gkdk = q1dl1 - m~dg - m~q” - ... - I*e)  +
(g2 + nigg™dg + ... + (gk_1 + mc_idi)dEi i*e*

gkdk “ ~1d1* + g2,d2 + eee + gk-1dk-1* Por 1 =
each gA " is nonnegative and less than g”~. Repeat the

procedure to get a new set of generators , di**d2*»eeexdk-f ,dk*

where gkdk = zd.~; gk, z e Z\{0} and without loss of
generality HCF(gk,z) =1. It follows that (J)dk € D
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and hence that £d.j,.. .,dj~ is not a minimal set of generators,
which is a contradiction. Therefore k = r and the result

follows.

Proposition 1.4. Let W be a vector subspace of V. If
T is a lattice of rank r, then TA W is a lattice of

rank not greater than r.

Proof. Clearly T A W is a discrete subgroup®"of V spanning
a subspace of dimension not greater than r. Apply

Proposition 1.2.

Definition. [M;p-2713. A set {~,,..,1” in a lattice
T is primitive if it forms a basis for the lattice

Tn W, where W is the vector subspace spanned by {t.j,--.

Proposition 1.5. [14; Theorem 2,p.272]. A primitive set
{t~,...,tk} in T can always be extended to a basis

»*u»ge> tj+\»eeentr} of T.
We make the following standard definitions.

Definition. A linear transformation 6: V-vV 1is

orthogonal if and only if, for all x,y € V, <0x, 0y> = <x,y>

We denote the group of orthogonal transformations by
o(v).
Definition. If T is a lattice of rank n in V, the

symmetry group of T, denoted G(T), is {Oeo(V) sOT = t].-

The group G(T) 1is a discrete, and hence finite, subgroup

of 0(V).

As discussed in the introduction to this thesis, we

are interested in pairs (H,T), where T is a lattice of

rank n in V and H is a finite subgroup of 0(V) acting



on T. Clearly H £LG(T). We use the following equivalence

relations, which appear in £13}.

Definition. The pairs (HM,T.]) and (H2,T2) are:

(i) arithmetically equivalent if and only if there exists
a linear transformation 9 e GL(V) such that Tl = T2

and = H2 ;

(ii) geometrically equivalent if and only if there exists

a linear transformation 9 € GL(V) such that 9H19 1 = Hg.

An equivalence class under (i) is an arithmetic
crystal class. The set of them is denoted by
An equivalence class under (ii) is a geometric

crystal class. The set of them is denoted by

Definition. The lattices T and T2 are arithmetically
(respectively geometrically) equivalent if and only if the
pairs (G(T),T) and (G(T2),T2) are arithmetically

(respectively geometrically) equivalent.

The arithmetic equivalence classes of lattices are
called Bravals classes. The set of them is denoted by 8 ,
The geometric equivalence classes of lattices are

called crystal systems. The set of them is denoted by £
For any n, the sets ,O0,TS are finite (since the
number of n-dimensional space groups is finite). They

have been fully described for n<4 (see [2], [31. [41 )-

Proposition 1.6. Suppose (H",T) and (H2,T2) are
geometrically equivalent pairs. Let QT

t™e€ Tj, me n} for j = 1,2. Then there exists 9 6 GI(V)
such that >@QT.]) - QT2 and «H-,9 “1 - H2



Proof. Choose a basis of T.] and a basis
{t21, . ,t2n} of T2. We represent H1l and H2 as groups
Il and ft2 of integral matrices relative to these
bases. TakeY”~GL(V) such that = H2. Suppose

Yhas matrix F relative to {t~f...,t"n} and that E is

the matrix of {t21,...,t2n} relative to {tl1l,...,t"n}.
Then H2 has matrix representation E relative to
{t*} n . The equation YH”-1 = Hg gives the following
matri%z%quation, relative to the basis Et",j n
13 j=1
Ftf-jF"1 = E#2E"1.
Now suppose = {A™,... ~
where FANF L = EBAE_lj 1 <1i<m The equation
X = \Il2, for which X = E-1F is a solution, yields

a system of equations given by:
XAl - BMX =0
0 ™

xa2 - b2x

XAm " BmX = °-
There are mn2 equations in n2 variables, xilc, 1 < i, k™ n
(where X = (xik) ). We denote by C the (mn ) x n matrix
of coefficients. The matrix C has all integral entries and
has rank less than no, since X = E_IF provides a non-trivial
solution. By elementary column operations, whose product
we denote by an invertible matrix U with rational entries,

we may reduce C to the form:

D=CU= / 6mﬁ2) X T

where r = rank C < 2

The entries of E:1F form a vector in Rﬂr, say b,

where " = 0. Therefore D(U 7€) = 0. The Tfirst r



coordinates of U must be zero, as the rank of C
is r. We choose a new vector S" in RHZ, with the first
r coordinates zero and the remaining n2 - r coordinates
in Q and arbitrarily close to the corresponding coordinates
in s. Then Ds* =0 and C(j3") = 0. The vector Us* has
coordinates in Q and is arbitrarily close to b. Its corres-
ponding matrix S" satisfies (*), where det S, ~ 0 since
S" is close to E~"F. We conclude that det (ES") £ 0 and
(ES™)#.,(ES"rl = E~E -1.

Let > in GL(V) have matrix ES" relative to {Lim)»eee
Then 9~ 9“1 = H2 and it is clear that for all t» 6 T»,
9tl € QTg. It is easily verified that 9 maps QTl onto
QTg. This completes the proof.

IT T is a lattice of rank n in V and 9 GGL({V)>
then it is clear that J)T is another lattice of rank n.
If g 6 G(T), then 999~ acts on 5T but it may happen that
gjggfl 0(V), in which case 9gsjT" G(PT). For example,
ifn=2and T is of class S, whereas 9T is of class

R, then the rotation through TT 1in G(T) becomes non-
e 7

orthogonal under conjugation by 9.
Conversely, there may be elements © in G(<pl) which
are not of the form for g © G(T). However, if

9 is close to L , this is not so,as we now show.

Theorem 1.7. Let T be a lattice of rank n in V. Then
there exists S >0, depending on T, such that for all

9 6 GL(V) with |9 -LJ< S, G(9T) = 9>6(D9~1i\ (V).

To prove this we need two lemmas, the second dependent

on the first



Lemma 1.8, For any lattice T of rank n in V, there exists

CT > 0 with the following property: if ~J€EGL(V) and

I<pt | = ftl for all t G T with fif] < CY,, then PG OV).
Proof. Let (t.j,--.,tn} he a basis of T. Put
CT = maximum {.Util : t = + s™M” ; ss™ € {o,l},,

1< itj & n} . We show that this works. Take € GL(V)
such that |lpd] = util for all t G T with Q) < CA.
Then for all i1,j ,

2<9H* Q> = + 4),0>(t + t)> - gl

= 2<ti,tp

Since t»,...,tn span V, the result follows.

Lemma 1.9. Let H(T) = (<pGGL(V) :9T =T} . Then

there exists > 0 such that for all h 6 H(T\G(T), B(JipAO(V)
is the empty set , Where B(n,dt) = {9 € GL(V) : I - hR< Dt}.
Proof. Since T is discrete, T 0 5(0,2Cj) is finite.

Therefore we may define m» = minimum {|tt™H - [lhglll

t-ptg 6 T nS(0,2CT), U1 ~ Ut2]} - Let MT= minimum” ,CT)

mt
and put Dt We show that this works.

N *

Take any h € H(T)\G(T). By Lemma 1.8, there exists
the Tn 5(,CT) such that ||hth ] t 133 . Either
Itlhth I > -2CT or ||hth]] < 2Ct, so |jJht)] - *®th]|] > Mt.

For any 0 GO(V), kh -e £> ( -p-j) Ihth - 0th |
™) pHhl - 1|

m<ra>Uhv -

=*hi



Proof of Theorem 1.7« Choose S > 0 such that if Q€ GL(V)
and JI<P- LI < 8, then I(p“%kg>- ©]] < Dj Ffor all ©€. 0(V).
This is possible because for all ©e O0O(V)TF

BO" <p -OIl < H(p-1_ LHUO9O N + HOIl B9 - LIl

- 19" - nlit@H + 19- 1|

We show that this S works in the theorem. Suppose
9o - L l<S. Takeg 6 G(9T). Then Jcp—-1g<f> g || < DT,
since g eO(T). But 9~1g9 £H(T) , so <p'lg 9 eG(T) , by
Lemma 1.9. This proves that G(<pT) Q cpG(T)9"1r\ 0(V). The

reverse inclusion is clear.

Corollary. There exists & >0, depending on T, such that:
96 GL(V), IlI(p-L < 8 and G(<pl) =9G(T)V"1l for

some YG GL(V) => G(9T) = CpG(M<p-1.

Proof. Choose 8 as in the theorem. Comparing group orders

gives the result.



CHAPTER TWO. CRYSTAL FAMILIES.

2.1. Functions of Positive Definite Symmetric Transformations.
We make the following standard definitions.

Definition. A linear transformation 9: V—-*V s

symmetric if and only if ¢$v,w> = ~v,<pw> For all v,w e V.

Definition. A symmetric linear transformation p: V->V
is positive definite if and only if ~pv,v> >0 for

all v /7 0.

We denote the set of symmetric transformations by
Sym(V) and the set of positive definite symmetric transformations
by Pos(V), where Pos(V) C GL(V), but is not a subgroup.

It is well known that for p e. Pos(V) all the eigenvalues
of p are real and strictly positive. Also. there is an
orthonormal basis of V consisting of eigenvectors of p
(by the Spectral Theorem). Suppose the eigenvalues
of p are contained in some interval [a,b] and that f e c+[a,b] ,
the space of continuous, strictly positive, real
valued functions on £a,b] = |If we choose a basis of V
relative to which p has the diagonal matrix D(A"), then
we may define f(p) in Pos(V) to have matrix Difi”)). This
definition of f(p) is independent of the basis chosen, since
f(p) equals P~F p)(p), where P~AF p)(x) is a polynomial
in R[xl chosen so that P~ 1£ ii1in. |IFf
p has k distinct eigenvalues (without loss of generality

then PAf pj(X) has degre® k - 1 and is
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where /\ denotes omission.

Proposition 2.1. (1) For fixed p, the map from C+{a,b3
to Pos(V) taking f to f(p) is continuous.

(ii) Por fixed ¥ € C+(0,0°), the map from Pos(V) to
Pos(V) taking p to f(p) is continuous.

Proof. (i) The polynomial P~F p)(X) clearly depends
continuously on f.

(ii) The polynomial P~ pj(x) depends continuously on
the eigenvalues of p. If p and q are close in Pos(V),

so are their eigenvalues.

Definition. Let H he a subgroup of 0(V). The centralizer
of H in GL(V).denoted C(H,GL(V)), is{<pe GL(V) : <ph = h9 for
all h £ H}.

The centralizers C(H,0(V)) and C(H,Pos(V)) are
defined similarly. Note that C(H,GL(V)) and C(H,0(V))
are groups, but C(H,Pos(V)) is not.

Proposition 2.2. Suppose p € Pos(V) and f€ C+fa,b3 , where
{eigenvalues of p* C. [a,I53- I1f P £ C(H,Pos(Y)). then

f(p) e C(H,Pos(V)).

Proof. Follows directly from the facts that f(p) =P " ,p)<>
and that if ph = hp then pmh = hpm, any m € N.

For"a proof of the following standard result, see

¥Y; Theorem 1, p. 169].

Proposition 2.3. (The Polar Decomposition).

There is a homeomorphism p from the product space
0(V) x Pos(V) onto the space GL(V) defined by p (©,p) m Op.
The inverse is given by p:1 = (q:)iqa'ip)_7:L , (Ep'tp)%)-

Remark. The continuity of p andp~~ 1is not included in

the proof in [*7]. That of p is obvious. That of~"0’1
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follows from Proposition 2.1 (i),

Proposition 2.4. Let and Hg be subgroups of 0(V) such
that = H2 for some PG GL(V). If the polar
decomposition of P isOp, then p € CH.j ,Pos(V)) and
eH..e  H, .
Proof. Take h™€ . Thencph”™-1 € 0(V) so

(@1e~1)= = (Ch”~*“1)”1. This gives (@-1J=hl<C’iph”1 = L

and hence (y<phl = p"tp. However, p = @@ ~ by

Proposition 2.3 and by Proposition 2.2 we get p €. C(H1,Pos(V)).
It is immediate that QHMNO-~ = H2.

2.2. Crystal Families.

Before defining a crystal family, we need to establish
the existence of a lattice of minimal symmetry in each
arithmetic crystal class. This is assumed without full
proof in [3] but proved injl3; Theorem 2.1, p. 26~], A
different proof is given here, which is more in keeping
with our geometric viewpoint. Throughout the remainder of this

chapter, we deal with lattices of rank n in V.

Definition. Let A be an arithmetic crystal class in &=
and suppose the pairs (HN,T™) and (H2,T2) belong to it.
We write T1~ T2 if and only if there exists e GL(V)
such that <pTl - T2, «pHjp-1 = Hg -~ (T"~-1 2 G(T2).

It is clear that this defines a partial ordering

on the set of lattices occurring in the pairs of A.

Lemma 2.5. The lattices Tl and T2 are in the same Bravais
class if and only if T > T2 and T2 > T/

Proof. This is clear from the definition of >
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Proposition 2.6. Each arithmetic crystal class contains
a pair (Hgq ,T0), where TQ is minimal for the partial
ordering i.e. TQ T for all T occurring in pairs
(H,T) of the class.
Proof. Since & is finite, it is enough to show, by
Lemma 2.5, that if (H*.T*) and (H2,T2) are in an
arithmetic class, then there exists a pair (Hj,Tj) in
the class such that Tj < Tl and Tj < T2. _We know there
exists <p€r GL(V) such that (pT1 = T2, 9Hi19-1 = H2* Suppose

© has polar decomposition ©p. For k e N, we may form
1 1

p~ and B" G Pos(V) by the method of Section 2.1.
Now pG C(H, ,Pos(V)) by Proposition 2.4 and therefore
1 1 1

p~r , p N G C(HN,Pos(V)) by Proposition 2.2. Consequently

1 _1 1
= (p™MHHM(p and acts on (PM)TA. It follows that
(H™,p~ATN ) is arithmetically equivalent to However,

by choosing k sufficiently large, we (\:an make pk

arbitrarily close to L by Proposition 2.1 (i). So for
1 1 1

ic
some kQ, G(p O )}

E ~ £
P °)GT..D(E °)H 0Y) by Theorem 1.7.
Putting Tj = (p ), we have T™ «£ T-j, It remains to show
1

T3~T 2. Let H1" » (g6 Gd,) : (PE)g(p ~ G OV} .

Then p ° G. C(H-J",Pos(V)) ?nd G(Tj) = Hle by Proposition
1V

2.4. It follows that p (Pr)ke £ C(H1",Pos(V)). We now

1 1 1
E E. - E, -1 .
have : ("p °)T3 =Cpll = Tg ; (P ) -9~ 9F H
1 1
“E “E -1
P g (3)( °) 9G(T3)Cp"l =OH1"6“1 0(V) and
1 1

» E ce

-1
hence QP °)G(T3)(% °) C G(T2). This proves Tj ~ Tg.
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Remark. There is a small error in the proof of this
result iIn £13™» which, however, does not invalidate it.
In the statement of Lemma 2.2(A), if H and G are groups
of integral matrices, then "D(H) 2 fI(G) imples H Q G"
is true only if G represents the symmetry group of some

lattice.

By Lemma 2.5 and Proposition 2.6, there is a well-
defined map™u:A —v ©, taking an arithmetic class A to
the Bravais class ofaminimal lattice occurring in A.

Let D:A —> he the natural surjection. Confusion
has arisen in crystallography because of the lack of
a natural choice for a set X of crystallographic objects
and m a p s X and 0" :B — X which make the following

diagram commutative:
A -*U *5

Such a set X and maps yuU*, 0" would induce equivalence
relations on A , and ©, the equivalence classes being
in bijective correspondence with X.

Accordingly, Biilow , Neubiiser and Wondratschek in

[3; p-519] define an equivalence relation on sK

M i3\ -“m A-) ) which in our terminology can be

described as the weakest for which the maps

/X' = TT! ./_.“1 :B-* and 4 = TH . )1 :$

are well-defined. This clearly gives a commutative

diagram. An equivalence class of is a crystal family.
In view of our remarks, we can also define crystal

families by using the weakest equivalence relation ~ 2

on *§ for which IT2 . ). "1 1is well-defined or by

using the weakest equivalence relation on B for
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which TTj ,ytt . D “1 is well-defined. It is easily

seen that the equivalence relation induced on S\ in
either case is the same as that defined by Bulow et al.

We are interested in the relation ~ ~on B . Again
we call an equivalence class a crystal family and we denote

the set of them by 3~ . We can readily describe IWe efuixialec.

orl  \oV'WeeS ~j 4> wi swunr
generated by , Where:
Definition. ~ T2 if and only if there exist geometrically

equivalent pairs (H*.T") and (H2,T2) such that:
is minimal in the arithmetic class of (H1tT");

T2 is minimal in the arithmetic class of (H2,T2).

This is the characterization of a family which we use
subsequently. It is immediate from this definition that
each family of lattices contains whole crystal systems.

In general 3™ and do not coincide and this is why
confusion has sometimes arisen, since an arithmetic crystal
class dxs not always to a

crystal system. Clearly any arithmetic class (and its
associated space groups) belong to a unique family.

For n =2, 3*=*6but for n = 3, if TI®:K — > £ is the
natural surjection, there are two possible answers for

Tie »/L1 .0-1 (), namely the hexagonal or the rhombohedral
system. In [3], it is shown that, for n=4, 13~= 23, It| = 33.

In [13], Schwarzenberger approaches the problem
from the point of view of systems, using the natural
surjection B — "G and a map from to G which is
defined by the existence of a lattice of minimal symmetry
in each geometric crystal class. Families are then

defined by the weakest equivalence relation on G which

makes the diagram :



commutative. This does have the advantage of producing

a more natural map from S to J than our TT™ .jx.. O

but there is some doubt about the proof in £3~ that this
map exists. This proof contains several mistakes and
gaps. Some explicit problems are the following.

@) p-27, line 12. The statement "only a finite number

of choices of integer n”™ are possible” is false.

(2) Lines 18-19. The statement " A(G.j) 2 A(G2) only

if G1S. G2" is false.

(®5) Lines 24-27. There are two gaps here. First, it

io not clear that the union Vj <pA(GQ) can be taken over
the normalizer of H. Secondly, even if this can be done,
what special properties of the normalizer are being used
to justify V = U <pA(GQ) ? Other problems in this proof
could be mentioned and this is why our approach to families

avoids the need for this result.

Problem. Prove or disprove the statement that each
geometric crystal class contains a lattice of minimal

symmetry.

We shall see in Chapters 3 and 4 that families are

15

very useful for investigating lattices in higher dimensions.

2.3. The Dimension of a Family.

Definition. [12; p.-328]. Let { e e n} be a basis of

V. The unimodular group relative to {e.,...,em™ is the
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subgroup of GL(V) consisting of those maps whose matrix

relative to fe,],...fen} 1is in GI(n, z ).
Definition. [I12; p.328]. Two bases {e™,...,en\ and
{fjJ,--. ,fm} are unimodularly equivalent if and only if

there exist a linear map < belonging to the unimodular
group relative to {e”,...,eni and c >0 such that

<pei = cf, 1< i < n.

We denote the set of equivalence classes by X n" . This
is clearly in bijective correspondence with the set of
all lattices of rank n in V, given that we make no
distinction between a lattice T and multipl es cT, c > O.
Since every lattice possesses a reduced basis (©12; Proposition
2\ ), our definition of X = is equivalent to that in [,
where is regarded as the unimodular equivalence

classes of reduced bases.

Definition. ((12; p-330J). Two points x* and y* in Xn*
are orthogonally equivalent if and only if there exist
bases {e”~,,.,ejJ in x" and {fj,...,fn} 1In y* such
that, for some 0 60(V), ©Ce” =, 1 i1 "™ n.

We denote the set of equivalence classes by X n-
There is a natural surjection ”~n: Xn -2~ X n* Choosing
any basis {e ~ e n”™ in V determines i~ map

oC: GL(V) ontv X n i taking <p to the class of
fcpe.,,-.., (pen™. The space (Xn> quotient topology of < )

is then homeomorphic to VvV , where ~ 1is the
equivalence relation induced by oC . The quotient topology

on X n 1is independent of , For suppose we

take a basis b e, ...,ysen} , with corresponding map
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: GL(V) °nt» XD- Then Y where vy is the
homeomorphism of GI(V) onto itself given by right
translation throughy. Consequently, the quotient topologies
of oi and X coincide. For this reason, we can choose the
most convenient basis for any particular situation, since
we are interested in the topology on <, not the exact
nature of

The map Tl: GL(V) — =*-GL(V)y”™ is open since

TT-1aTAW)) = 0(V).W.U, where U is generated by (R+)L and the
unimodular group relative to {el,...,en*. Since GI(V) is
a topological group, O(V).W.U. is open if W is open,
Consequently,”: GL(V) — > 'G*) is open, where T«*is
the quotient topology induced byoC,

IT we now restrict « to Pos(V) we still have an onto
map «f]: Pos(V) —since if  © GL(V) has polar
decomposition ©p, then <*() =«<(p). Moreover, (2 fTot]) is
homeomorphic to Pos(V)yC» where is the equivalence relation
induced by «il. The map «]: Pos(V) — * (X_, ™oc) is open,
since ifyOgi GL(V)- |*Pos(V) takes <pto its positive definite
symmetric part (<p'<]>)9, we have @D W) = (<<(/\)~_l)(W), for
any W CPos(V), Since o( is open andp 2 is continuous, of] is
open. It follows that let= Xki . We shall regard» as a
quotient space of Pos(V), whereas in ~2n it is regarded as

a quotient space of GL(V),

Notation. Let G be a finite subgroup of 0(V). We denote

byJ™"n (G) the subset ofconsisting of those classes which

contain a basis determining a lattice with symmetry group G.
dbs«s GF

By Proposition 2.4, (n(G) consists of theLiattices in the

system determined by G,

We give Xn(G) the subspace topology from
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The following is essentially the same as Proposition 6
in [12; p.331*], hut a different proof is given here. Also,
a difficulty in the proof in QI2” is indicated.

Proposition 2.7. Each point x in £ n(G) has a neighbourhood
homeomorphic to a neighbourhood of L in C(G, Pos(V) r\SL(V)).
In particular, ¢(Cn(G) is a smooth manifold.
Proof. We assume that x = (4]L. Suppose p” and p2 belong
to Pos(V), with Jlpl - L] and |2 -L qQ arbitrarily
small, such that («¢IXp4) € X n(G) and ©@IO(P2) e <M (G).
By the Corollary to Theorem 1.7 and by Proposition 2.4,
pl and p2 G C(G, Pos(V)). Suppose moreover (&D@.J) = CiDEP2)»
Then there exist © G 0(V), c > 0 and u € GL(V), where
u is unimodular relative to a fixed basis in X, such that
cp-,u = Op2. Since JJu -0D = IHHOPj P2 “ ©11* which
is small, we know, by lemma 1.9, that u G 0(V) and hence
uG G. Thus p.u = upl and cpl = ©"p2, Q" G 0(V),
giving cpl = p2, since p®, p2 G Pos(V).

Consequently, there is a neighbourhood W of L in
Pos(V) such that ot] maps W OC(G, Pos(V)) onto
<~iDW) n om({G) and for p.,, p2G W 0C(G, Pos(V)),
@) e™) = ipDE2) if and only if cp® = p2, c > 0. We
know oil is open. It is easily checked that its restriction
to WO C(G, Pos(V)) is open. We can then deduce that
CCipW) 0 on(G) is homeomorphic to the quotient space

WoC(G, Pos(VW)) (H+)L ~* which in turn is dearly

homeomorphic to a neighbourhood of L in C(G, Pos(V)O SL(V)).

This completes the proof.

Remarks. In the proof of this result in [12], some result
like our Theorem 1.7 is needed several times but is

not quoted. This omission seems to occur directly because
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of the error In lines 9-10 on p.329 which read: "IFf
€r GL(V) then the lattice oil ... has symmetry group
consisting of all orthogonal maps of the form for

some # in the symmetry group of T.< Clearly "consisting

of"" should he replaced hy "containing."

Notation. If B e ® , we denote hy the space of all
points in £ whose lattices belong to B.
IT Fe 3p, we denote by &EnF the space of all points

in whose lattices belong to F.

By the Corollary to Theorem 1.7, if Be ® is in
the crystal system determined by G C 0(V), then
is open in ofEn(G). We may write
\O k JBj
£ NG Q <4
i*l
where k e N, each Bf*G H3 and each «4** is open and

closed in <En(G) ( LJ denotes disjoint union).
Similarly for F € y we may write
U anG> »
where k & N.

Proposition 2.8. Each oCn(Gj.) °Pen (and hence closed)
w JE_”-"

In order to prove this we need two lemmas.

Lemma 2.9. For-a pair (H,T), T is a minimal lattice in
the arithmetic crystal class determined by (H,T) if and
only if C(H, Pos(V)) » C(G(T), Pos(V)).

Proof of Lemma. Only if. Let T be minimal in the
arithmetic class of (H,T). Since G(T) 2. H,

19
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C(H, Pos(V)) 2. C(G(T), Pos(V)). Suppose there exists
p in C(H, Pos(V)) which is not in C(G(T), Pos(V)).
1

By taking the function p (ke N) of p for sufficiently
1 1 1

large k, we can ensure that G(p~ T) = (p’?G(T)(pi_’\ ) 0o(V),
by Theorem 1.7. let H* = {g € G(T) : (p")g(p_E ) G o)}
Then p £ C(H", Pos(V)) by Proposition 2.4. However,

Hl(/:\ G(T), since p & C(G(T), Pos(V)) almd hence

pl?L 4- C(G(T), Pos(V)). Therefore G(p" T)S G(T). Since

pt: G (lJ(H, Pos(V)) (by Proposition 2.2), we have a pair

H, pt: T) contradicting the minimality of T.

If. Suppose C(H, Pos(V)) = C(G(T), Pos(V)) but T

is not minimal. Let T™ be minimal with = TH*

9 H9 -1 = HIC. O(V), 9G(T)9~1 i3 G(T1>. If 9 has

polar decomposition ©p, then p G C(H, Pos(V)). But

p 6 C(G(T), Pos(V)) would imply 9G(T)9_1C G(T1).

Therefore, p~ C(G(T), Pcs(V)) and C(H, Pos(V)) N C(G(T), Pos(V)

which is a contradiction.

Remark. If T is minimal in the class of (H,T), it is

not true in general that C(H, 0(V)) = C(G(T), 0(vY)), and
hence not true that C(H, GL(V)) = C(G(T), GL(V)). For
example consider a pair (H,T) in the class (;,, S) for n = 2.
Then G(T)=4mm and T is minimal in the arithmetic class of

(H, T). However, C(H, 0(V)) = SO(V) (- O(V) H sSL(V))
whereas C(G(T),0(M)) = , - I}. Nevertheless,

C(H, Pos(V)) = (RHI = C(GC(T),Pos(V)).

Lemma 2.10. |If the lattices T and Tg belong to the same
family, then there exists 0€ 0(V) such that
e(C(G(T1), Pos(V))e"l = C(G(T2), Pos(V))-
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Proof of Lemma 2.10. For H1, H2 £ O(V) with gH.j<p-1 = H2,
we have 6(C(H1t Pos(V))© -1 = C(H2, Pos(V)), by
Proposition 2.4 (where <rhas polar decomposition ©p).
The result now follows from the definition of a family and

lemma 2.9.

Proof of Proposition 2,8. Take X £ <En(G™) and any
lattice T» determined by x*. Then there is a neighbourhood

UiTA) of L in Pos(V) such that for p £ U(TY) ,

GipT~ = pGiT~p-1n 0O(V), by Theorem 1.7. Suppose

pT~ is in the family P. Put ={ g€ GIiTY) : pgp-~ e oMW"
Then p e C(Hif Pos(V)) by Proposition 2.4 and GipT~ = HA.
Prom Lemma 2.10, CiG”), Pos(V)) = C(Hif Pos(V)) by

a dimension argument. Therefore, p ©C(G(T"), Pos(V))

and G(pT*) = 0(1~ = Hi. Consequently,
(-MHWTE)) n £nF c £n(G1).

However, (OtDW(™)) O ofnF is a neighbourhood of
XN In  OofnF since we know <fl: Pos(V) -> £ n is open.

This completes the proof.

We have now proved:
Theorem 2.11. For any P £ Jr, £ nF 1is a smooth manifold
whose dimension equals that of C(G(T), Pos(V) r\ SI(V)), Tor

any lattice T in P.

Notice that this theorem and Proposition 2.8 imply
that, topologically speaking, a family is not much

"bigger" than a system.

We shall call the dimension of «WIhF '"the dimension
of the family P." By lemma3..9, it also equals the
dimension of C(H, Pos(V) C\ S1(V)), for any pair (H,T)
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determining a geometric crystal class belonging to P.

Remark. Sometimes it is more convenient to consider

the space A n, which is also a space of equivalence
classes of bases under unimodular and orthogonal
equivalence, but with a weaker definition of unimodular
equivalence. For A n» we distinguish between a lattice
T and multiples cT, c > 0. All the results of this
section follow through for A n in a similar way. The
manifolds A nB, An() and A nF are, however,
modelled on C(G(T), Pos(V)) and hence have dimensions

which are one larger than those of their counterparts
¢nB* /n(G) and <2nF*

We now establish the connection between the dimension
of a family as we have defined it and what Bulow et al.
in [3] define as '"the number of free parameters of
a family."

The arithmetic approach in [3] uses, instead of a

pair (H,T), an integral matrix group "ft representing H
relative to some fixed basis {t~,...,tn} of T. The
space SI(ft) of all symmetric matrices S such that
S*sS"Ss =S, for all e 'ft , is then a subspace of the
vector space of all symmetric matrices. Bulow et al. state
In without proof that the dimension of IT ('ft) is the
same for all arithmetic classes in a family, and they call
this dimension '"the number of free parameters of the family."
The following proposition shows the connection between this
number of free parameters and our dimension of a family
and also, in view of the results in this section, establishes

that dim S)-(-ft) is an invariant of a family.
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Proposition 2.12. Let (H,T), »eexntn™ and fl(ft)
be as above. Then _Q(i£) R\ Pos(n, R) Is homeomorphic
to C(H, Pos(V)), where Pos(n, R) is the set of positive
definite symmetric matrices over R.

Proof. Define yS : C(H, Pos(V)) — > Pos(n, R) by

(iS(p))ia = =ia'pt, pt~> . For p £ C(H, Pos(V)) the group
H equals pHp“l and so has matrix representation ft relative
to {ptl ... ptn} . Since H £0(V), V({/3G)))$ = BB ()

for all 1 6 if , so y3(p) e Clift). Hence ft maps

into -Clift) O Pos(n, R).

jQ is one-to-one. Suppose y3(p?) =AB(P2)= Then

~PIV prgd = ~pgtn, pogytr all i, €

and therefore <plx, p~> = <p2x» P2Y*> all x» Y £ v»
giving <x, y> = <TP2Pl-1x, P2Pi_ly> all x»Y € V.
Therefore p2P"~1G O0O(V) and p2 = pl by the uniqueness of
the polar decomposition.

p is onto. Take S G XI (ft,) O Pos(n, R). Choose

n independent vectors v~,...,vn in V such that S = ~vi»
1i i, j<n. Define (@ GGL(V) by 9 -vVA, 1< i”" n.
Suppose @ has polar decomposition ©Op. Then

Sij = ~ Dti» = AP*Ix» * The 6rouP PHP~1

has matrix representation ft relative to £pt.j,... ,ptn"
and since SG n<«>, pHp-1 1is contained in O(V).
Therefore, p G C(H, Pos(V)) by Proposition 2.4 and S = yQ (p)-

The maps A and /71 are clearly continuous.



CHAPTER THREE. THE DECOMPOSITION OF
CRYSTALLOGRAPHIC POINT GROUPS.

3.1. The Decomposition of Three Representations Associated

with a Pair (H.T).

We use the following standard definitions in relation

to a left module M over a ring S with unit, M t O.

M is reducible if it has a proper non-zero submodule.
Otherwise, M is irreducible.

M is completely reducible if every submodule K of H is
complemented i.e. there exists a submodule K" such that
M =KO K-.

M s decomposable if there exist submodules M*, Mg, both
non-zero, such that M = M* © Mg. Note that henceforth
whenever we write M = M © ... © MY, we assume that each

is non-zero, unless specifically stated otherwise.
The decomposition M = M1© ... © Mk is a complete

decomposition if each Mi is indecomposable.

We use the following standard term.

Finite groups HSO(V) occurring in pairs (H,T) (i.e. subgroups
which can act on lattices of rank n) are called

crystallographic point groups.

For a pair (H,T) the lattice T is a free Z-module of
rank n and corresponding to the left linear action of Hon T
we have a faithful representation of degree ns
(1) TTZSH — yGL(T), where GL(T) is the group of

Z-automorphisms of T.



By choosing a basis for T we obtain a matrix
representation Pz: H — *-GL(n, Z2). We can replace Z

by R or Q to get:
Pg! H— » GL(n, Q);
PR: H— "mGL(n, R).

The representations Pg, Pr may be regarded as the
matrix representations derived from:

(i) TTg: H—- >GL(QT);

(i) TIr : H — >GL(V);

where QT is isomorphic to y<>* T and is defined in the
statement of Proposition 1.6 - it is a vector space
of dimension n over Q, by Lemma 1.5.
Associated with the representations (i), (ii), (iii)

we have: (i) the left ZH-module T, of Z-rank n;

(ii) the left QH-module QT, of Q-dimension n;

(iii) the left RH-module V, of R-dimension n;
where ZH, QH and RH are group algebras.

we denote these modules by RT, RQT, jjV- In

general, the decomposition properties of these three
modules are different. It is true, however, that

rT decomposable => RQT decomposable =~HV decomposable,
since IFRT =T,0 ... © Tk then RQT « QT1© ... © QTk ,

and if rQT = M10© ... © Mk then RV =RM10© ... © RMk.
Let (SH, M) be either (ZH, T), (QH, QT) or (RH, V).

Take any matrix representation Ps: H — ~-CLin, S).

IT RM is decomposable then Pg(H) is conjugate in GL(n, S)

to a matrix group H whose elements are all of the form:



where AL ism xm (m £ 0), Ag is (n - m) x (n - N
and m is the same for each element. Conversely, if
IﬂH is conjugate to a group of this form then HV
is decomposable.

Part (ii) of Proposition 3.1 (see below) establishes
that in the case S =Q, M = QT, may be taken to be a
subgroup of GL(n, 2) C GL(nh, Q). It is now easy to see
that the "matrix group" definition of decomposability

in [3; p.5263 corresponds to the decomposability of

hQT.
Proposition 3.1. () IFf is a direct summand of
iiT and W = RIij then W is a submodule of RV, =TA W

and rankz (T AW) = dimRW.

(ii) If M is a submodule of RQT and W = RM, then W is a
submodule of RV, M = QTH W = Q(T A W) and din™ = dimRW =

= rankz (T A W).

Proof, (i) Since is a submodule of T as a Z-module,

T] is free with rank r ~ n, as Z is a principal ideal

domain. Let {t.],... ,tr} be a basis. Then W = R{t™,..., tr}
and W is clearly a submodule of RV of dimension r, by

Lemma 1.3. Clearly, ™™ STOW. Also, since {t©,...,tr}
may be extended to a basis of T as a Z-module, ™2 TAW.

(ii) Let dimmigh = k, with -{x*, ... (X~ a basis. Then

W = R{X.jJ,--- ,xk} and is clearly a submodule of RV.
There exist integers ml,...,mjc such that {m jX.j,-.. .m™*x*CT A
By Lemma 1.3» {m~x”,...,mkxk} is a basis for W. It

follows that M = Q(T A W) and din™M m dimRW = rankz(T A W).
Clearly, Q(T A W) yi AW. IT x 6 QT A W, there exists
m€ Z such that mx € T A W, giving x € Q(T A W).
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Proposition 3.2. (1) The modules HQT and H/ are

completely reducible.

(ii) A complete decomposition of QT (respectively V)

is unique up to order and QH- (respectively RH- ) isomorphism
of the summands.

Proof, (i) The modules both satisfy the conditions

of Maschke"s Theorem (see [5; p-883).

(ii) The modules both satisfy the conditions of the
Krull-Schmidt Theorem (see [5; p-833)» since their
submodules, being vector subspaces, must satisfy both

chain conditions.

By (ii), any complete decomposition of jjQT
(respectively ~V) has the same set of associated Q-
(respectively R-) dimensions for the summands. IT the
k-tupleof dimensions is (nl,...»n"), where we specify
n >n2> ... > nk to get uniqueness, then we call
(n™,...,nk) the decomposition type of fiQT (respectively HV).

We abbreviate this to DT in the sequel.

In general, ~T is not completely reducible. For
example, let n = 2 and let T be of class D, with
H =G6(T) - this is of class 2mm. The lattice of rank
1 lying in a mirror line is a non-zero proper submodule, but
is not complemented.

Also, HT does not satisfy the conditions of the
Krull-Schmidt Theorem, since T Z2T 5 3T 3 ... is an
infinite descending chain of submodules, for any H.

As we might expect, there are cases when different complete
decompositions of HT have different rank types, and we
cannot define a decomposition type for HT in general.

Biilow et al. in \z»i p.527] note this fact, but produce



no examples when the rank type is not well-defined.

The following, for n = 5, seems to he one of the simplest

T is generated by e.j,eg,e, en, e, Tj,fg, where
{el....e5 is a basis of vV, Ffl = ~.(ei)+ £ €5),

fO = 1 @)+ R(e,)+ A(ep and the quadratic form A

( = <eif e ) of {el,...,eMN\is j
a 0
b o0
A 0 c where
0 O
0 0 O

a,b,c,d are arbitrary strictly positive real numbers,

e / Vat .
We denote e”,e2.en,en,e® by 1 0000, (01000

(00100), (00010), (O0O0O01) respectively.

They form a unit cell { ¢ Vi - 0*1 * 1} whose
interior (or "centring") points are (~0”200), (@ j 0]

cfo7D, <71 7 7 8= This verifies

that T is in fact a lattice, since it is discrete (see
Proposition 1.2). We can choose H A.0(V) acting on T

to be the product of: {(.} on Rle™eq] ; , (.} on R (e ;
3m on R{e™,e™ . Let T~ denote the rhombohedral lattice
of rank 3 generated by egjS~.e~fg and let Tg denote

the diamond lattice of rank 2 generated by e”,e™,fA. Then

HT = T1© Tg is complete with ranks (3, 2).
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Now put el*= (@100 0), e2“ = (3 20 0 0).

Since det N =-1,T is generated bye, e2", e",

e4, e5, f1# f2 . let el>- A 0000 )",e2" = (010 0 0)e-,
e5=(0 0 100)* e4« (000 10)", =0 000 1)".

The unit cell formed by en", e2*", e, e4, e has

centring points (O\N\ 0 0)", (0o~0~™~)", (O] O

e~~~y @rnn le Let T.]1 denote the lattice
of rank 4 generated by e2", e, e4, et ~, 2 and

T2« the lattice of rank 1 generated by e”~". Then
HT = TJ*O T 2" is complete with ranks (4, D £ (G, 2).

We omit the proof of the following straightforward
result:
Proposition 3.3. (@) If (", T and (H2, T2) are
arithmetically equivalent pairs, then any (@ in GL(V)
satisfying ™)T1 = T2 and <H.jPp -1 = H2 takes a complete

decomposition of H T1l to a complete decomposition of

H2T2

(i) If Hj, T) and (Hg, Tg) are geometrically equivalent
pairs, then any <p in GL(V) satisfying <p(QT.,) = QTg

and = H2 takes a complete decomposition of

xT») 1. a complete decomposition of H2QT2. Any <

in GL(V) satisfying (pH” “1 = H2 takes a complete

decomposition of ,, V to a complete decomposition of u V.
H1 h2

Proposition 3.4. Let (SH, M) be either (ZH, T), (QH,QT)
or (RH, V). Let T be minimal in the arithmetic crystal
class of (H, T). Then HM - M1© ... © Mk is complete
if and only if q()M = M10 ... © Mk is complete.
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Proof. It suffices to show that if =M10 ... © |,
then q(T)M = M1© ... © M1 . Suppose HM =M, © ... © M
is a decomposition contradicting this. Then without
loss of generality, we may assume there exists gl G G(T)
and m € M1 such that gimn) N M.p For S>-0 define
<ps in OI(V) by S(IKD)®I(,,2e ... ®Hj)-
Then ( H(<$)-1 = H and (H, Cpg T) is arithmetically
equivalent to (H, T). Also,by Theorem 1.7, if 5 is

chosen sufficiently close to 1, G(<9fcT) = (<Pg)G(M(tpg) 10 0V).

Let gM(m™) = x1 + y1? where x16 M1, yle M2€>_.._.0M1 ,
yl #0. Then (g9 )g-1(Ps = (cpgjgh-1 m.pD =
° xi +\ y) = xi + @ Y+ Now

IPS)gL(~ ) " 1enD))| 2 - 1I'MI 2
= |[(<PS)gL«d>s)I(A>[ 2 - IUICm)|| 2

- Kxi + <Tyill2 " Hxi +yill 2

= 2 ¢
_ _ _ N X -i»yi>
This is 0 only if m-L = =——-=-, but we
by-1l 2 28

can choose 8 avoiding this and still arbitrary close
to 1. Consequently, for appropriate 8 > 0,
(<Pg)gl(98)"1 £ 0(V), giving G(9g ) ~ ~GdJdicpg ) 1,

which contradicts the fact that T is minimal.

Corollary. (Also uses Proposition 3.3(ii)). The DT
of ﬁV and ﬁQT is the same for all geometric crystal classes

in the same family.
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We are mainly interested in the decomposability of
HQT, although we shall also use that of V. The
decomposability of AT is much harder to analyse as
iiT lacks complete reducibility and the unique decomposition
property. Also, ~T has a lower occurrence of decomposability
e.g. for n = 3, HQT is decomposable for 27 of the 32
geometric crystal classes. Of the 58 arithmetic crystal
classes belonging to these 27, ~T is decomposable for 39,

The decomposability of QT and for n = 2,3,4,
where the geometric classes are known, is summarised
in the following table.t The last row (n = 4) uses the
list of geometric crystal classes in 4 dimensions given

in [3] and also some of our later results.

Y Number of Geometric Number of Geometric Number of Geometric

Crystal Classes Crystal Classes for Crystal Classes for
in Total. which jQT is which jv is
Decomposable. Decomposable.
2 10 4 4
3 32 27 27
4 227 153 161

In the next section we discuss the implications of

the difference between the last two numbers in the table.

3.2. Some Results on the Relationship Between the

Decomposability of HQT and HV.

Whenever HQT is decomposable, we may regard H

as a subgroup of the product of lower dimensional



crystallographic point groups, by Proposition 3.1(ii) -
hence H is, in a sense, not a new crystallographic point
group. However, HQT 1is in general not an absolutely
irreducible QH-module and there are crystallographic
point groups H for which is decomposable but

HQT is not. We shall see that the first of these

occur for n = 4. Although we may regard H in these cases
as a subgroup of the product of lower dimensional groups,
not all of these are crystallographic point groups, as

we now show.

Proposition 3.5. Let H be a crystallographic point

group acting on T. Suppose =v40 .... © VK where
for 1< i <k, dimV, =n.. If H] is a crystallographic

point group in V™ for each i, then HQT has a decomposition
with dimensions (n™,...,nk).
Proof. For each i, let T be a lattice of rank n” in

on which Hjv acts. Let T" be the lattice generated
by 1< i£k} . Then T° is of rank n,
hT™ =T10 ... © Tk and HQT" = QT1© ... © QTk. However,
(H, T and (H, T* are geometrically equivalent and

Proposition 3.3(ii) gives the result.

Terminology. Suppose GL(V). Then <pextends to a

map <pC in GL(V + iV), where <p°(X + iy) = <px + i (py-
IT A is a non-real eigenvalue of (p and xQ + lyQ a
corresponding eigenvector, then xQ and yQ span a
2-dimensional subspace of V left invariant by 9 * We

call the sum of such subspaces over all eigenvectors of A

the eigenspace of A in V. This is the same as the

eigenspace of the complex conjugate of A . |If A is a real



33
eigenvalue then, as usual, the eigenspace of 'X 1is

Ker( $ - )-

The following lemma is a consequence of the

Spectral Theorem for normal operators.

Lemma 3.6. ( [7; 881, p.162]). Let ©€0(V). Then
the eigenspaces of © in V are mutually orthogonal and

span V.

Proposition 3.7. Let T be a lattice of rank n in V

and let g € GIT). Regard two eigenvalues of g as equivalent
ifT they have the same order. Suppose there are m equivalence
classes of eigenvalues, and that the sum of eigenspaces

for the i class is E~. Then rank (T OE 1) = dim E®,

1< 1™ m

Proof. By Lemma 3.6, V = E10© ... © Em. Let dim E® = n?®,

1 i <m We may assume without loss of generality that

K.j kg < ... < km , where k™ is the order of the ith

class. Consider gkl £G(T).
1

and <gkl)] x fixes no points but 0. There is a set of

n - n™ vectors in T whose projections into form an
independent set, otherwise T has rank less than n. Let

be such a set. Then
is an independent set in Tn E”~ since if
0, then
giving 1j = 0 all j, since the projection of

X . into B1 must be 0. Consequently, rank (TnE-j) m dim
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There is a set of vectors in T whose projections
set. We may write sj = + ej* where ™ € BE¥f e £ EM,
1€ jinn Choose a basis v1,...,v] for T A Ef*

= _ K 1N = =

and write ff = 1 anv, . Now (@ “)fj - Fi S 1>J -SJe T
and also (g )fj - ™ Since each
(g 1)vA - is in " each a” 1is rational. Hence there
exist g, ...,qn in Z\ (©i such that {q1f1peeesgn fn \

is contained in T, meaning that {"iei»***»™n en 1l is

an independent set in T O . Therefore rank(T = dim E~.

Now repeat the argument for e2 and the lattice T A EJL

Remarks. (1) |If we consider the E~"s to be simply
eigenspaces, this result does not hold.

(2) This proposition is the generalization of statements
like (in 3 dimensions): 'the plane perpendicular to a
non-trivial rotation axis contains a lattice of rank 2';

"a mirror plane contains a lattice of rank 2."

Corollary. Suppose © V2, where (H, T) is

a pair. (Recall that in writing jv = © V2 we assume

of order k, then HQT is decomposable.

Proof. There exists t€ T t £ 0, by Proposition 3.7.
The module QH{t} is a non-zero, proper submodule of

HQT' Hence HQT is reducible and therefore decomposable

by complete reducibillty (Proposition 3.2(i )).



Theorem 3.8. If (H, T) is a pair and has a decomposition
with dimensions either

@ m-1,1), n2:2

or (i) (-2, 2, n odd, n S$73,

then QT is decomposable.
Proof. (i) Let HV =Vn-1© V1, dimVn-1 - n - 1, dim v1 - 1.

let Hg = {h€ H :h”™ =L ,Hl1= {h€&H :h”» =-Ly"
Then H = HQU H.. If for all h 6 HQ, h]y = ly ,

u vn-1 n-1
and, for all h € H., h]v = - Uv , then H = {1, -0}

and HQT is clearly decomposable (HQT = Q{t. A © e== © Q

where {tlt...,tn} is a basis of T). If this is not true,
the Corollary to Proposition 3.7 gives the result.

(ii) Let HV =Vn_2 &V2, dimVn_2 =n - 2, dim Vg = 2.

Since n - 2 is odd, h].r has an eigenvalue 1 or -1 for all
,vn-2
h€H. IT Hly always has real eigenvalues, then Hjy

is of class 1, 2, m or 2mm, V9 decomposes, and we are in
M - H

case (i). |If, for some h G H, h[, has a non-real eigenvalue,
“v2

use the Corollary to Proposition 3.7.

Remark. 1t follows immediately that for n = 2, 3 or 5,

iiY is decomposable ~QT 1is decomposable.

In order to treat the case when jjV has a decomposition
with dimensions (n - 2, 2), n even, we need to consider
a special type of crystallographic point group. Suppose
n is even (n > 2) and © G 0(V) is a transitive symmetry
operation, in the sense of Hermann 9; p.140] i.e. the

eigenvalues of 0 are a full set of primitive roots of
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unity, where $(k) =n ( &((k) is the Euler function denoting

the number of positive integers less than k but coprime
to k). Since nS2, all the eigenvalues of ©are non-real

and we denote them by e ,€ , .. 7, 7

. } . 7. s —ill_!'
characteristic polynomial of O is - (x-e DX - e ),
d-1
the kth cyclotomie polynomial, which has integral coefficients

and is irreducible over Q. Choose t e V such that t has

n
non-zero projection into each of the 2 eigenspaces

of © inV. Let W be the linear span of {t, ©Ot,..., © n-1t}.
By Cayley-Hamilton , © satisfies its characteristic equation
and hence W is invariant under ©O. It follows that W » V.
Therefore {t, Ot,..., ©On-1t} is a basis of V and can

be regarded as the basis of a lattice Tg of rank n.

Since the characteristic polynomial of © is in Z[Xx],

0O acts on TO, as does Hq = : 14 jik3} . The
DT of ,, V is (2, 2,...,2) but u QT is indecomposable, since
ne

© cannot act on a lattice of rank less than n, as this
would contradict the irreducibility of the k**1 cyclotomie
polynomial over Q.

Let V1,.,.,Vn be the eigenspaces of © and let

?

*% o Cpo *T_1 * + c™x + 1 be the kth cyclotomie
polynomial. The matrix of © relative to the basis
{t, Ot....On_1t} is

0T

0 c1

0 c2

0 't

000 1chq



It is easily shown that

Let A € GL(V) have matrix, relative to the same basis:

However, the coefficients of the cyclotomie polynomial

satisfy cn.m - cm, m - This is because the product

of raprimitive roots of unity equals the complex conjugate



of the product of the complementary n-m primitive Kth roots.

Therefore Qp =p©-1. It follows that o("sV) = firy 1 —i — 2%

since vi»****yn are also the eigenspaces of 0~~. Also,

since © 1 p &p =pep, the eigenvalues of O|py are the
same as those of O]y . Therefore, =V, 17N J< Q-
Moreover, o0(v), since for O £ j,I1 ~ n - 1,

P&, y301t> =<On-(3+1)t, On-<l+1>t>
=<e~h, erl”

="01lt, ent?-

and {t,Qt,...,0n_lt} is a basis of V, Consequently, /3 €. G(T@)
n n

The characteristic polynomial of is (x - 1)5(x + 1)29 SO
p has all real eigenvalues. Ifp\y =1Ly or . then
d 0 Vj

Olv. = (0*1)jy , which contradicts k >m2. So Piv is a
reflection for all j.

For a given k with CNK) = n we have established the
existence of two geometric crystal classes - that of
(He, %) and that of "H(©,")* Te™» where HO = zk »
H(Bpﬂ} = Dg}/< (the dihedral group of order 2k) We call
these the cyclic and dihedral transitive classes of k
respectively. For n = 2, there are six such classes,
given by. .k = 3, 4, 6. These are j5, 3m, 4, 4mm. 6 and 6mm.
For n = 4, there are eight such classes, given by
k =5, 8 10, 12. For cyclic and dihedral transitive
classes, the DT of is 2, 2,...,2), but HQT is
indecomposable.

Note that for a given k, the cyclic and dihedral
transitive classes of k belong to the same family, since

the discussion above shows that a lattice minimal in the
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arithmetic class of (%, TO) is also in the arithmetic

class of (H(e/j), Te).

Theorem 3.9. Suppose n is even (n > 2), (H, T) is a

pair and has a decomposition with dimensions (n - 2, 2).
Then either ~QT is decomposable, or (H, T) belongs to a
cyclic or dihedral transitive geometric crystal class.
Proof. Suppose HQT is not decomposable. We know

HV =Vn_20V 2, where dim Vn_2 =n - 2, dim V2 = 2.
Now V9 is indecomposable, or Theorem 3.8 produces a

contifadiction. Also HFy has an eigenvalue of highest

order > 2. Suppose ™ € H is such that h.jly has
an eigenvalue of order k®. Suppose for hgG H, hgjy
has a non-real eigenvalue of order kg. Then H]y™ has

an eigenvalue of order ICM(k”™, k2), which must equal k™.

Hence (h2]y ) = (h-Jdy )m for some m G. N, and

(hgh_j“**)~ = Ly . Since HQT is indecomposable, the
Corollary to Proposition 3.7 gives h2h”~-m and
o 1M . The cyclic subgroup j of H, generated

by hi# contains all the elements of H with non-real
eigenvalues, again by the Corollary to Proposition 3.7.

If L and -L are the only possible elements of H with real
eigenvalues, then H = y Now h™ is a sum of transitive
parts (any h € 0(V) acting on a lattice is such a sum).
Also the restriction of H to each part is in a cyclic
transitive class. Proposition 3.5 establishes that M

has only one transitive part and that (H, T) belongs

to the cyclic transitive class of k- .



Suppose there exists 838G H such that p £ C or *C.
but p has some real eigenvalues. Then p has all real

eigenvalues and, by the Corollary to Proposition 3.7,
/*1v2 must be a reflection, giving {/*N2><hilv2>MlIv2> -

(h"Jy )-1. It follows that ™ and p generate H and that
P leaves invariant the eigenspaces of h"Jy - IfWw
is such an eigenspace with eigenvalues e*", e¢"”i*

and w 6 W, w ~ 0, then the linear span of <{w, h™w]

s invariant under h”, since there exists x € V such
that w + ix is in thecomplex eigenspace of e”
Choose w such that p w =w or -w. Then Bh™w = (") ~p w

= 1 ("= w, which is in the span of {w, h”w” , since

G.j)”’l = h~rk1l « Therefore the 2-dimensional span of
(w, h™w} is invariantunder p . 1In this way we can write
W as an orthogonal sum of 2-dimensional subspaces
invariant under H. The restriction of p to each must be
a reflection. Now hl is a sum of transitive parts, to
each of which the restriction of H is in a dihedral
transitive class. Application of Proposition 3.5 now

completes the proof.

Remark. In any even dimension n, the number of families
corresponding to cyclic and dihedral transitive classes
is equal to the number of even integers k for which

£ (kK =n. This is because for k odd, the corresponding
H% or H<,© )\ does not contain - & , and the classes of
k are in the same family as those of 2k (for k odd,

$ (K = $(2k)). It is easily checked that distinct
even integers k with $(k) = n give distinct families,

using Proposition 3.4 and properties of the Euler function



Theorems 3.8 and 3.9 give:

Proposition 3.10. (i) In dimensions 2,3, and 5,

HV is decomposable HQT is decomposable.
(ii) In dimension 4, there are 8 geometric crystal
classes for which is decomposable but QT is not.
These are the cyclic and dihedral transitive classes
of 5, 8, 10, 12. They determine 3 families.
(iii) In dimension 6, there are at least 8 geometric
crystal classes for which HV is decomposable but hQT
is not. These are the cyclic and dihedral transitive
classes of 7, 9, 14 and 18. They determine 2 families.

The only other possibilities are when HV has DT = (3, 3).

Problem. Are there in fact any crystallographic point
groups in dimension 6 for which has DT = (3, 3) but
HQT is indecomposable? Suppose HV = © Vg *s complete,
corresponding to such a situation. Then by Proposition

3.5 and the Corollary to Proposition 3.7, Hjy and

Hl., are both in the class 53 or are both in the class
V2

53m.

Remark. Similar statements to those in Proposition 3.10
are clearly possible in higher dimensions, but more

problem cases such as (3, 3) arise. For n =7, DT = (4, 3)
is the only problem case. For n = 8, there are 10
transitive cyclic and dihedral classes (8 = $(15) -

= $(16) = $(20) = $(24) = $(30)) belonging to

4 families. The problem cases are DT * (5, 3) and (4, 4).
For n =9, the problem cases are DT = (6, 3), (@G, 3, 3)

and (6, 4;. For n = 10, there are 4 transitive cyclic

41
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and dihedral classes (10 = <201J = §(22)) belonging

to 1 family. The problem cases are DT = (7, 3), (6, 4),
G, 5 and @, 3, 3).

Conjecture. There are geometric classes other than
cyclic and dihedral transitive ones for which JW is

decomposable but jjQT is not.

3.3. Typically Orthogonal Decompositions.

Proposition 3»11. Let H be a crystallographic point group.
If HV = Vl <« ... © Vk then there exists <P G C(H, GL(V))
such that HV = gv., © ... © <pVk is an orthogonal
decomposition (i.e. one in which the summands are mutually

orthogonal).

Proof. Choose a basis ~v/~t...,vnJ of V adapted to
v~, . ..,Vk, such that the included basis of each is
orthonormal. Then the matrix of any h G H relative to this

basis is an orthogonal matrix. Let be any map taking
fv~,...,yn] to an orthonormal basis of V. Without loss
of generality, we may assume <P G Pos(V). Clearly

<pHcp-1 Q. 0(V), and by Proposition 2.4, <G C(H, Pos(V)).

This illustrates that orthogonality is not in
itself a special property for decompositions. The important

property is:

Definition. A decomposition © ... © VK is
typically orthogonal if for all <p in GL(V) with <pH<p-~"£ 0(V),

the decomposition .V = © ...0 (Dwv is
PHI>-1 1 K

orthogonal
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In other words, the decomposition is forced to be

orthogonal by the geometric nature of H.

Example. Let n = 3, T be triclinic, H*»G(T) = T. No
decomposition of is typically orthogonal, but there
are orthogonal decompositions. IT T is orthorhombic and
H = G6(T) = mmm. all decompositions of HV are typically

orthogonal .

We say that a decomposition of HQT is typically

orthogonal if it produces a typically orthogonal

decomposition of (by multiplying through the decomposition
by R).
Definition. A decomposition of (respectively hQT)

is a complete typically orthogonal decomposition if it is
typically orthogonal but cannot be further reduced to

a typically orthogonal decomposition of jVv (respectively

hgt).

Using the Krull-Schmidt property (Proposition 3.2(ii))
it is easy to show that any complete decomposition can

be "built up” to a complete typically orthogonal decomposition.

Proposition 3.12. The modules jVvV and ~QT each have a
unique complete typically orthogonal decomposition (up to
the ordet of the summands).
Proof. We prove the proposition for HV - the proof for
iiQT is similar.

Let RV =V1I© ... © Vkand HY = Wl © ... © Wm be
two such decompositions. Por Ki i k, define (o € GL(V)

by «P“Vi - ZLVi), PilV&) “Lv »1 3. Tmen
I

<t G C(H, Pos(V)) and HV - <piWl © ... © is
orthogonal. Suppose w™ G W, w* € Wj, 1 /7 J. Then
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~wl, W™ = 0 =<cpjwn, . However, <pA is

symmetric, SO (P2« ™ 0. This implies that

leaves each invariant and so does its positive

square root
For eWj, Piiwj) - w. € Wj. But 9i(wj) - W » ~iNj)

where TT~: V—>-V is the projection map. Therefore

k
TTi(w.j) €. VAAWjJ and =® (V*HW~). This induces

a further reduction of the complete typically orthogonal
m
decomposition V = © , So we conclude at most one
3-1 J
VAO Wj 1is non-zero, and C Vv», some i. By a dimension
argument, uniqueness (up to the order of the summands)

follows.

This shows that there is a well-defined typically
orthogonal decomposition type (abbreviated ODT) for
gV and hQT. This is clearly the same for all pairs (H, T)
in the same geometric crystal class. Also, it is the same

for all geometric classes in a family by the following.

Proposition 3.13. Let T be a minimal lattice in the

arithmetic crystal class of (H, T). Then:

() HVY =V10 ... &\ is a complete typically orthogonal
decomposition if and only if G(T)V = V1 © ... © VK is;

(ii) hQT =QT1 © ... ©QTk is a complete typically
orthogonal decomposition if and only if G()QT - QT1 ©... © QTk

is.
Proof. By Lemma 2.9, C(H, Pos(V)) = C(G(T), Pos(V)).

Using the polar decomposition and Proposition 2.4, we may
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deduce that CpH<p-1 Q O(V) if and only if <&G(MD<p“l £ 0V).

The decompositions=>V1©® ... © VK and

G(T)QT = QT1 © ... © QTk are both valid decompositions, by

Proposition 3.4. The result now follows.

Proposition 3.14. (i) Suppose HV = V., © ... 0 VK 1is

complete and for some h 6 H, h]y has an eigenvalue

whereas hly has no eigenvalue . Then for all <p€ GL(V)

such that <pH9 -1 ¢ O(V), (@'~ is orthogonal to <PVj.
(ii) Suppose jiQT = QT1 © ... © QTk is complete and for

some h 6 H, h[Rp has 8l eigenvalue of order k whereas
AR has no eigenvalue of order k. Then for all
3

GL(V) such that CQ)H(p_l C 0O(V), (@RI is orthogonal
to (piRT)).
Proof, (i) Any vector v in in the eigenspace of ~ is
orthogonal to Vj, by Lemma 3.6. Since H c 0(V) and

is irreducible, it follows that is orthogonal to
The same argument applies to <PV, Cpv» and <pHC>-\
(ii) A similar argument applies, using Lemma 3.6 and

Proposition 3.7.

Theorem 3.15. Any complete decomposition of HV or
hQT is typically orthogonal if it has dimensions either
() (-1,1) n23;
or (i) (n -2, 2), n23, n/ 4.
Proof, (i) for all n and (11) for n odd.
Use Proposition 3.14 and arguments similar to those
in the proof of Theorem 3.8.
(11) for n even. |If we assume the decomposition is not
typically orthogonal, then using Proposition 3.14 and

similar arguments to those in Theorem 3.9* we establish



that jv (or hQT) has DT = 2, 2,...,2). This is a

contradiction unless n = 4.

We shall examine some crystallographic point groups
for which the DT and ODT differ in Section 3.5, after
looking at the relationship between decomposability and

centralizers.

3.4. Decomposability and the Centralizer.

Theorem 3.16. Let Hbe a crystallographic point group and
suppose HV is indecomposable. IT £ CH, GL(V)) and
<p has a real eigenvalue, then <= kIl , some k £ 0. IFf
<p has a non-real eigenvalue re”~ , then re-" is the
only other eigenvalue and the eigenspace of re”~ and
re’-it, spans V.

In particular, .if n is odd, C(H, GL(V)) = (R*)L .

For any n, C(H, Pos(V)) - (RML- .
Proof. Suppose < has a real eigenvalue k with <px = kx,
X N 0. Since HV is irreducible, the orbit Hx spans V.
However, for all h e H, <p(hx) = h<px = k(hx). It follows
that < = kt

If o has a non-real eigenvaluere”™ with x + iy G T + iV
such that Cp°Uireili (x + iy), then <pC(x - iy) =re-l>I(x _ iy).
Also, 9° =r(eill)c on CHC{x + iy] and <C =r(e_ii)u
on CHC{x - iy] . Now 2x GV and HV is irreducible, so
V + 1V - CHC{2x] = CHC{x + iy] + CHC[x - iy] . The

result follows.

IfT V=Vjo ... © Vk, then the external direct

k
product TT GL(V<) is easily identified with the subgroup
i-1 1



of GL(V) consisting of those transformations which leave
each VA invariant. The isomorphism (which is also a
homeomorphism) takes (<, ..., ¢pk) to <p where

<PDM + ... +vk) = + ... +$kvk and its inverse

takes <p to (Cpv™,..., (pN)*

k
Proposition 3.17. The product jr cHVi» GLvi>) is

a closed subgroup of C(H, GL(V)). The coset space

C(H, GL(V)) x k is in one-to-one
TT cqHlv |, owv..))
i Vi 1

i=1

correspondence with the distinct decompositions

HV = <pvl © ... © <pVk produced from HV =Vl © ... © Vk

by elements (p in C(H, GL(V)), where the order of the
summands is considered.

k
Proof. The product TT Cﬂ‘ly , GLiv™)) is clearly a

subgroup of C(H, GL(V)). Also,

_TKr C(HL , GLAA\,)) = C(H, GL(V)) r\ _TkT GKV.)
i=1 Vi 1 i=1 i

since each h £ H is uniquely expressible in the form
k

(hlt...,hk). Since 'I'1 GLCV™) 1is closed in GL(V),
1=

k
TT C(HIV , GL(V1)) is closed in C(H, GL(V)).
1 vi

If P,Y & C(H GI(V)), then g>,Y produce the same

decomposition if and only if

<pVi = YVif 1707 k
= Ti( 1iiik
In
£ IT GL(V.)
i-1 1
k

4=* QP V £ TT C(HIV, GI(V)))
i-1 ,Vi

47



When the number of distinct decompositions produced
by elements of C(H, GL(V)) is finite, C(H, GL(V)) 1is a
finite union of open and closed cosets. We now give

necessary and sufficient conditions for this.

Theorem 3.18. For a decomposition HV = ©... ©

the following are equivalent:

(1 HY =V1IO0 ... ©Vk is typically orthogonal;
@ CHH, GLWV); K is finite;
TT C(Hjv , GL(V™M))
i=1 Y1
(©)) has dimension O;

C(H, GI(V)) |
'/_ 1C( N_ > GL(Vi))
1= "1

i=1 1
(not a product of groups)
k
() dim C(H, Pos(V)) = dim CiH”, Pos(Vt)).
Proof. (@) (2). Reduce the decomposition in Q)

to a complete typically orthogonal decomposition. By
the uniqueness of this (up to the order of the
summands), an element of C(H, GI(V)) can only permute
the summands. Now use Proposition 3.17.

(@ =M3) . Obvious.

(©)) 1). Suppose (1) is not true. Then if

HY = V10 ... © Vk 1is orthogonal, there exists <J>€GL(V)

such that <PH<p 1 C 0O(V) and V= V. © ... © OV.
<> 1 K

is not orthogonal. Taking p to be the positive definite

symmetric part of <p, we deduce that p £C(H, Pos(V))
and HV = pvV10©... © pVk 1iB not orthogonal. If
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v > ©> .= © Vk is not orthogonal we similarly can
find p e C(H, Pos(V)) such that HV = pvV1© ... © pVk is

orthogonal by Proposition 3.11. In either case

p " ﬁ- GL(Vj). Now the dimension of

equals the dimension

of the vector space C(H, L(V))

where L(V) 1is the vector space of all linear transformations

of V. However, there exists p in CH, L(V)) which is
k

not in _g%L(V.i) . The result now follows.
1=

(1) ==y=(4). If (1) holds and p e C(H, Pos(V)) then
HV = pv1© ... © pvk is orthogonal and pv+ = Vif 1~ 1 < k

(use the same argument as in the proof of Proposition 3.12).
k k

The reverse inclusion is obvious.

(4) => (3). Obvious.

(5) =»= (1). Suppose (1) is not true. By the construction
in Proposition 3.11 we obtain 6 6. C(H, Pos(V)) such that
HV - &V10 ... © 6"Wk is orthogonal. Clearly

dim C(Hjy , Pos(Vt)) = dim C(H |$Vi» Pos(&V%t)),since
conjugation by & gives a homeomorphism. However,

HV = 1V1® ... @ $Vk 1is not typically orthogonal,

so there exists p e C(H, Pos(V)) such that
HV = p®V1 + ... + pfi"k is not orthogonal, meaning

k
p " T GLiA"V~). We conclude that the vector space

-1
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C(H, Sym(V) k is non-zero and hence
©OC(H]V , Syrn?™))
i1 1’

dim C(H, Sym(V)) > dim C(H|dv , SymiVj)

As remarked in the proof of (1) =2-(2), an
element of C(H, GI(V)) may only permute the summands of a
complete typically orthogonal decomposition. " In practical
cases, the possible permutations are limited
by considering eigenvalues, since if $e C(H, GL(V)) and
9V+ = Vy then for all h e H, the eigenvalues of

hly must equal those of hjy . A particularly good

example of this, when the identity is the only possible

permutation is:

Proposition 3.19. Suppose =V10 ... ©Vk is complete
k
and H = TT nh|v , where all the fixed points of H
i=1  lvi «
are contained in one V.,. Then C(H, GL(V)) = TTC(H|w ,GI(V.))
1 i<l Vi 1

Proof. Considering eigenvalues, we see that
HY = V10... © Vk 1is a complete typically orthogonal
decomposition and elements of C(H, GI(V)) must leave

invariant each VA,

In 3 dimensions, the identity is also the only
possible permutation that occurs and consequently the
centralizers are all a product of lower dimensional ones,
except, of course, when ODT = (3). In the following

table, the ODT is obtained using Proposition 3.14 (i).

The table is included to illustrate the results of this
section and for later use. The information it contains

does not appear elsewhere in the literature.
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Table 3.1« Centralizers of the 3-Dimensional Point Groups.

Geometric DT oDT C(H, GL(V C(H, Pos(V
Crystal Y of HV ( 1 ( )
Class of f
H
1,1. a.1.1 & GLj Pos(3)
,1,) @D GL2 x GL~ Pos(2) x Pos(l)

222 _2mm. ,1,1) (@,1,1) GL™x GL§ xGL-J Pos(i) x Pos(l) X Pos(1)

mmm .
4,7,]. @)  (@,1) (R¥S02 «x GL1  (R+)I2 x Pos(l)

422 _4mm.
7om 2, 2, (R*)L2 « GL1 (R+)L2 x Pos(l)

4

2%15 G» ,D) 2,1 (R*)S02 x GL1 (R+)12 x Pos(l)

6
m*

22,622,
2m,2m,
6mm,5m2,
A

=mim .
m

2,1) ,D (R®L2 « GL1 (R+)L2 x Pos(l)

22%222, ® ® (r*)13 (R+L3.
22,7221» ITheorem 3.16)
m3m.

Remark about the Normalizer.
We do not use the normalizer In this work, but It is
worth noting how the ideas of this section apply to it.
We know that N(H, Pos(V)) = C(H, Pos(V)) (Proposition 2.4) and
N(H, GL(V)) is homeomorphic to N(H, O(V)) x C(H, Pos(V)),

where the homeomorphism is given by the polar decomposition.
It is not generally true that N(H, GL(V)) contains the
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product IEN(HlV , GL(Vﬁ?) e.g. n = 3 and H is of class
1=

?2m. When it is true we can establish that N(H, GL(V)) is
a finite union of open and closed cosets when a decomposition
k

is typically orthogonal. In the case H = TTH v , it is

k 1=1 i
always true that N(H, GL(V)) 2 TTM(H]t , GL(VD)- An

example of this is when T is orthorhombic and.H = G(T). Then
HV has DT = (1,1,1) and ODT = (1,1,1). The normalizer
N(H, GL(V)) is a union of six cosets of GL™ x GL™ x GL~.

3.5. Inclined Crystallographic Point Groups.

Definition. A crystallographic point group H is inclined
if for one and hence for all pairs (H,T), RQT is
decomposable, but the ODT of RQT is (n).

We shall now describe all inclined crystallographic
point groups for which the DT of RQT involves only the
dimensions 1, 2 and 3. Using Proposition 3.14 and similar
arguments to those in the proof of Theorem 3.15, we can
deduce that for such groups the DT of RQT must, in fact,
involve all 1°s or all 2%s or all 3"s. Also, by
Proposition 3.14 (ii), for each he H and for each 1i,j,

the orders of the eigenvalues of U|Rg, must be the same

as those of h|RT .
(0]

We now look at the possibilities for these groups and
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use Theorem 3.18 to check which have ODT = (n).

(1) The DT of HQT is For each n, there are
only two possibilities, H = { and H = £1,

Clearly, 1in each case C(H, Pos(V)) = Pos(V), and Theorem
3.18 ((D4=r> (4)) implies that the ODT is (n), recalling
that any complete decomposition can he built up to a
complete typically orthogonal one. For each n >1, this
gives two inclined geometric crystal classes for which

nQT has DT = (1.1....1).

(2) The DT of RQT is (2,2,...,2), n is even. Let
hQT = QT1©... © QTk he complete. For any i»HQTi
is indecomposable and so is in one of the classes

2» 5™» i, 4mm, 6, 6mm. Looking at eigenvalue orders, we

see that H is either cyclic of order 3» 4 or 6 or it is
generated by an element of order 3» 4 or 6 plus an

element whose restriction to each RT™ is a reflection.
This gives six possible geometric classes. |If H is

cyclic of order 3,4 or 6, it has a particularly simple
matrix form, and it is not difficult to show that there

is an orthonormal basis of V relative to which C(H, Pos(V))

is the set of matrices whose upper triangle has the form:

0 b12 ;5 o« , bim c1m

al®°12 b12 b 1lm
0 LIRS

a2 b2m c2m

az2 c2m b2m



where m = B and cij are artilrary

subject to positive definiteness. |If H also contains

the "reflection” element, this adds the restriction c*j = 0.
Using Theorem 3.18 ((1)<E”*(4)) we conclude that in

both cases the ODT of RQT is (n). For n even, n > 2. this
gives six inclined geometric crystal classes for which

RQT has DT = (2.2..-..2). In the cyclic case,
dim C(H, Pos(V)) = 7 +£ (F«“ 1) = = In the

2
dihedral case, dim C(H, Pos(v)) = + ¢8{fs+ 1 - g-

(@) The DT of RQT is (3,3,---,3), n a multiple of 3.
Let rQT = QT1© ... ©QTk be complete. For each i,

to one of the classes 23, m3, 432, ?3m or m3m. Looking
at eigenvalue orders, it is easily deduced that each

HIRT 1is in the same class.

When each H|rt is of class 23, we can always

choose an orthonormal basis of V relative to which H

has generators; /0
1

0]
0]

001

100

010
001
100
010

of order 3, and
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This follows from the properties of 23 and from Proposition

3.11. It is clear that all appropriate H are geometrically

equivalent. A similar situation occurs when H|RT

is of class m3. We can show in both cases C(H, Pos(V)) is the

set of matrices whose upper triangle has form:

0O b12 0 O
0O O >i._n

where m

to positive definiteness.

When each H
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However, the other generator (of order 4) can be

either (@ 100 or (b)
00T
010

OO0
RLROO
o—-o

The two possibilities for H are not geometrically equivalent.
However, for (ag, C(H, Pos(V)) has the same form as

in the 25 case whereas for (b) b~ = 0, Prom Theorem

3.18 we conclude that for (a) the ODT is (6) whereas

for (b) it is (3, 3). It is not difficult to see that in
higher dimensions also the type (a) generator is the only one
giving ODT = (n). The same type of situation occurs for

the classes T3m and m3m. Therefore we get exactly one
inclined class for each 3-dimensional indecomposable

class. For n > 3. n a multiple of 3, there are five

Inclined geometric crystal classes for which QT

haa DT = (3-3:;;73). For each, dim C(H, Pos(V)) = %(9)(% + 1) =



CHAPTER FOUR. THE DECOMPOSITION OF FAMILIES

Throughout this chapter, when we refer to the DT
or ODT of a family we mean the DT or ODT of RQT for any
pair (H,T) in that family, unless specifically stated

otherwise. In fact, we concentrate on pairs -of the form

G(M,T).

4.1. Distinguishing Between Decomposable Families.

Let G(T)QT = QT1 ® ** © QTk* where dim QTi “ ni"
Then G(MIFY 1is a crystallographic point group in RT™?
determining an n™-dimensional crystal family F~.
Associated with the decomposition we have a k-tuple of
families (F»,...,FM). If T is minimal in the arithmetic

class of (H,T), then H|RT also determines the family F?,

since C(G(T), Pos(V)) = C(H, Pos(V)) by lemma 2.9 and
hence C(G(T)| RT , PosiRT”) = C(H|RT”, PosiRTM).

Theorem 4.1. (i). |IF = QT§© ee= © QTk ~
G(T™)QT" = QTI" ® ** © QTk" aresia) complete; or

(b) complete typically orthogonal; where T and T" are
lattices in the same family, then the associated k-tuples
(F1,...,Fjc) and (F11,...,Fk™) are identical, up to
possible variation in order.

(i). 1FG@)QT =QT1@ ... © QTk and

G(ti)Qt™ = QT1*@ ... © QT~” are typically orthogonal and
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the k-tuples of families (P1,...fPk) and (P17, ...,Pk") are
identical, up to possible variation in order, then T and T"

are in the same family.

Remark. Part (i) is not true for arbitrary typically orthogonal
decompositions. Part (ii) is not true for arbitrary
complete decompositions.e.g. let n = 2, 1 be of class P

and T* be of class R.

Proof, (i) (a). Suppose that T is minimal in the arithmetic
class of (H,T). Then RQT = QT1© ... © QTk is complete by
Proposition 3.4. Moreover, Hj”~ determines the same family
as G(T)|R.|_j Now T and T° are related by a finite chain of
equivalences and through these the decomposition g (T)QT =
QT1© ... © QTk induces a complete decomposition of

U ,)QT* with k-tuple (P1,...,Pk). By the Krull-Schmidt
property, the result follows.

(b). The proof is similar, using Propositions 3.13 and

3.12 in that order.

(). let S1 be the lattice generated by T,...,Tk.

Then G(T)S1 = T10 ... © Tk< Let S be a minimal lattice

in the arithmetic class of (G(T7),S"). Then there exists

9 in GL(V) with 9S1 =S, 96(M)<p_1 = H £ G(S),

9G(S1)“12 G(S). The decomposition HS = l.] © ... ©9Tk
muBt be orthogonal. Moreover, since S is minimal in

the arithmetic class of (H,S), G(s)s = © ... ©9~n

by Proposition 3.4. We can now deduce that G(S) = fAGCFTi).

Similarly, we may construct S* from T, where



G(S™)S" = P'Ti" © === ® 9"Tk" is orthogonal and

k
G(S™) :iIE(ITPﬂZ ). Clearly S is in the same family

|
as T and S" is in the same family as T". We now show
that S and S™ are in the same family. We may assume
without loss of generality that R(pT™) = R(<p,Ti ") and
that (T and gj*"T" are in the same family - otherwise
reorder the T*" and take 0S" for some ©€0(V). Now
9T~ andf"T*~" are related by a finite chain of equivalences.
Consider the first link in such a chain, giving 9/
equivalent to, say, Uit for 1 £ i < k. We have:

g>Ti is minimal in the arithmetic class of (H*.opT);

is minimal in the arithmetic class of (L"MUM);

and (HMipT?) is geometrically equivalent to (n,IM).
Without loss of generality we may assume that and
both contain -I.

Now S is minimal in the arithmetic class of (fTH,, S),

-1 1
because (_kH )S =9T10 ... ©9Tk is typically
N=l k
orthogonal and G(S) = TTG~MNI~). Putting U = Ul ... ©

we take U* to be minimal in the arithmetic class of
k

k
(jT'k?» U), which is geometrically equivalent to (_TIHi, S,
i= i-

Therefore S and U" are in the same family. Treating the
other links in the chain of equivalences in the same way,
we conclude that S and S" are in the same family. This

completes the proof.
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4.2. The Descendants of One, Two and Three Dimensional

Families.

Given a particular DT for G(T)QT in n dimensions,
involving only the dimensions 1, 2 and 3, we wish to
describe all the possible families corresponding to this.
Suppose that the DT has n® 1%s, n2 2"s and n™ 3"s, meaning
n =nl+ 2n2 + 3n®. Then for any G(T)QT with the given
DT, we can show, using Proposition 3.14, that there is a
typically orthogonal decomposition G(T)QT » QT © QT2 © QT™,
where the DT of G(p)}Qrd (lLil».»*»1), the DT of cfr™QT is

,2,...,2), and the DT of G(T)QTM3is (B»3,...73). Some

of the QI ~ may be zero. Corresponding to this decomposition
there is a 3-tuple of families (.j,F2,Fj). Using

Theorem 4.1 (for complete typically orthogonal decompositions),
it is easily shown that if T" has the same DT as T, but

has corresponding 3-tuple (F~",F2°,F~*), then T and T" are

in the same family if and only if F* and F~" are the same
family for 1 = 1,2,3. Hence there is a distinct

n-dimensional family for each distinct 3-tuple. If 3 (in?)
denotes the set of (i,i,...,1) Tamilies in dimension

(inn) for 1 - 1,2,3, then the number of descendants in

n dimensions of 1-, 2- and 3-dimensional families is:

I13F(1»2,3)(nN) |- zZ 1D (DIBC2) (2n HIIBIB)(3n )I;
1 all partitions” " c *
of n into parts
not greater
than 3

where we assumej”1™(0)] =1, for the purposes of this formula.
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If we can describe the families for i = 1,2,3,

then we can theoretically describe 371"~"~(n).

We now do describe all (i,i,...,i) families for i = 1,2,3.

For any m > 1 there are only two inclined geometric
crystal classes with DT = (1,1,...,1) in dimension m, (see
Section 3.5), given by H = and {l, - (- These clearly

belong to the same family. Therefore by Theorem 4.1, there
is just one family corresponding to each possible ODT in
n dimensions. (The existence of at least one is easily

verified). We have:

Proposition 4.2. There are precisely p(n) families in
n dimensions with DT = (1,1,...,1), where p(n) is the
number of unrestricted partitions of n (i.e. partitions into

positive parts, with order irrelevant ). The family

corresponding ton =m, + m0O + ... + mk has ODT = (m1,m2,...,mk)

and dimension
Proof. For the dimension part, use Theorem 3.18.
Remark. The function p(n) is well known, but there is no

known explicit expression for p(n) in terms of n ( see [83).

It is worth noting for studying growth in families that



IT we can describe the (i,i,...,i1) families for i = 1,2,3,
then we can theoretically describe 3 ™ *~°~(n).

We now do describe all (i,i,...,i) families for i = 1,2,3.

11-

For any m > 1 there are only two inclined geometric
crystal classes with DT = (1,1, ...,1) in dimension m. (see
Section 3.5), given by H = {I} and {t, - I}. These clearly
belong to the same family. Therefore by Theorem 4.1, there
is just one family corresponding to each possible ODT in
n dimensions. (The existence of at least one is easily

verified). We have:

Proposition 4.2. There are precisely p(n) families in

n dimensions with DT = (1,1,...,1), where p(n) is the

number of unrestricted partitions of n (i.e. partitions into
positive parts, with order irrelevant ). The family
corresponding +« "™ - m j.m has ODT = (WM»n”™, .. .»m"

and dimension

Proof. For the dimension part, use Theorem 3.18.

Remark. The function p(n) is well known, but there is no
known explicit expression for p(n) in terms of n ( see [8]).-

It is worth noting for studying growth in families that

lienee PAy I —» 1 as n “wé>.



Table 4.1» Familles with DT = (1.1....1) up ton = 6.

n Nuﬁggizof Pazgg%;on USHgéeFamily Dimension
Families

1 1 1=1 Line

2 2 2=2 Parallelogram
2=1+1 Rectangle

3 3 3=3 Triclinic
3=2+1 Monoclinic
3=1+1+1 Orthorhombic

4 5 4=4 Hexaclinic
4=3+1 Triclinic
4=2+2 Diclinic

4=2+1+1 Monoclinic

w A 01 O © N W O+ N O

4=1+1+1+1 Orthogonal
5 7 5=5 14
5=4+1 10
5=3+2 8
5=3+1+1 7
5=2+2+1 6
5=2+1+1+1 5
5=1+1+1+1+1 4
6 11 6=6 20
6=5+1 15
‘- 6=4+2 12
6=3+3
6=4+1+1
6-3+2+1
6=2+2+2
6=3+1+1+1
6=2+2+1+1

6=2+1+1+1+1
6=1+1+1+1+1+1

01@\10000@':':
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Remarks. 1. Distinct ODT may result in the same dimension.

The first examples are for n = 6.

2. Families with DT = (1,1,...,1) always have dimension
larger them n-1, since 117 im.,(m., + 1)1 - 1 =
k k -« a-1 3 k3
[i + 157" ]-1+= (51 m.,2) + in - 1, hut
kd=1 3 3=1 3 3=1 3

57m»2 £ n. This also shows that the lowest dimensional
3=1 3
,1,...,1) family is the orthogonal one, with ODT = (1,1,...,1)

and dimension n-1.

3. The highest dimensional family of all families is the
(1,1,... ,1) family with ODT = (n). The next highest

a,1,...,1) family has ODT = (n-1,1), since ifn=m + ... +m,

then (n-1)2 + 1 > (n-m.)2 + m.2 z 5%m.2.
1 1 3=1 3

@.2].--%2)

Lemma 4.3. For m even, m > 2, there are 4 inclined families
in m dimensions with DT = (2,2,...,2).

Proof. Consider the six inclined geometric crystal classes
with DT = (2,2,...,2) (see Section 3.5). Of the cyclic
classes, those of order 3 and 6 are in the same family, since
that of order 6 is generated by adding -L to that of order 3.
Similarly, the two dihedral classes obtained from these by
adding the*reflection®™ element are in the same family. By
looking at dim C(H, Pos(V)), however, (see Section 3.5 again)
we see that the c¥cli% and dihedral classes are in different

families, since © 7 unless m m 2. The same applies

to the cyclic and dihedral classes of 4 and 4mm. These



64

determine different families from those of 6 and 6mm. by

Theorem 4.1 (i). This gives 4 families in all.

Now consider a possible ODT corresponding to DT =
2,2,...,2). In contrast to the (4,1, -..,1) case we now
have many families associated with this ODT. Suppose the
ODT has gl 2*8, qg 4°s and, in general, o (2i)"s, for
i = 1,2,...,7, meaning S qii) =n. If g(MQT has
DT = (2,2,-.-..,2) and the given ODT, then we have a typically

orthogonal decomposition = QTi O=== © QTn , where
7

G(T)QTi has 1)l = @*2»****2) and ODT 0 (2i,21,...,2i).
Some QT™ may be zero. Corresponding to this decomposition

there is a "-tuple of families Fj,F2»e-. ,Fn)» where some
7

Fi are missing for n > 2, namely those corresponding to
zero QTi. IF GO t)QT* has the same DT and ODT as g ()T *®

with £-tuple (P! then, using Theorem 4.1 for
7
complete typically orthogonal decompositions, we can deduce

that T and T° are in the same family if and only if Pzx

and F** are the same family for i = 1,...,". So the

number of n-dimensional families corresponding to the

given ODT is: n
Mi ("<)»
i=l (¢ 1)
where Mi(x) is the number of (2,2,...,2) families in
dimension (i)x with ODT = (2i,2i,...,2i). Again, existence

is easily verified. We define M*(0) =1.
We introduce the symbol A <3Ai...»5A>(x) to denote



the number of partitions of x into s positive parts,

of one kind, jg of another kind, of another kind etc,
(order is irrelevant). Using Theorem 4.1 and the fact that
there are two 2-dimensional indecomposable families, we
deduce that, for x /7 0, M1(X) = 2[A(l 1DX).+ AMj(x)J +

IT i1~ 1, then by Lemma 4.3 we get, for x ji O:

Mx (X)

24[AJ1>1>1f1 300 + N 1>1(1)(X)]

+ 12 [M2,1,D)(x> + M(2,1)) + ¢<1,1)(x7]

+

6F7(2,2)X) + A ()]

+

4 [AG>DH) + A(G) + ACH)]

+

1K 4)6)]-

Note that this expression is independent of i.
We now have:

Proposition 4.4. In n dimensions (n even), there are

n
21 (jy Mi(qi))
unrestricted 1=1
partitions
families with DT » (2,2,...,2), where g” is the number

of i"s in a given partition and Mi(qi) is as described

above.

Remarks. 1. We could give an explicit expression for

the dimensions of the (2,2,...,2) families, but we do
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not feel that this is sufficiently enlightening to merit
inclusion.

2.Notice that many of the terms in the expression for Mi(X)
are zero in low dimensions. Also, M1(X) is always equal

to x + 1. Some values of M*(x), 1 / 1, for small x are:

Mi(l) = 4, Mi(2) = 10, 1~(3) = 20, Mi(4) = 35, Mi(5) = 56.

In the following table, we do include the dimensions.
The word in brackets after a particular dimension
indicates the number of families in that row with that

dimension, if there is more than one.

Table 4.2. Families with DT - (2.2....2) up ton = 8.
n Partition oDT Number of Usual Family Names Dimension
6F N Families
Belonging
to
Partition
2 =1 (&) M1(@)=2 Square 0
TOTAL=2 Hexagon 0
4 2=2 () M2 (1)=4 Ditetragonal 3
diclinic
Dihexagonal 3
diclinic
Ditetragonal 2

monoclinic

Dihexagonal 2
monoclinic

2=1+1 2,2) M1(2)=3 Ditetragonal 1
orthogonal
Dihexagonal 1
orthogonal
Hexagonal 1
tetragonal
TOTAL-7

Continued
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Table 4.2. Continued.

n Partition obT ¢t Number of There Dimensions
of 9 Families
: Belonging to are
Partition
no
6 3=3 ®) M3(D) =4 8(two) ,5(two)
usual
3=2+1 4.2) ME(1)M2(1)=8 4(four) ,3(four)
family
3=1+1+1 (2.2.2) M1(3) =4 2(four)
names
TOTAL=16
for
8 4=4 ®) M4(1) =4 4 15(two), 9(two)
n >
4=3+1 (6,2) M1(1)M3(1)=8 9(four) ,6(four)
4=2+2 4,4 M2(2)=10 7(three) ,6(four
5(three)
4=2+1+1 4,2,2) M2()M1(2)=12 4(six),3(six)
4=1+1+1+1 (2,2,2,2) M1(4)= 5 3(five)
TOTAL=39

Proposition 4.5. For n a multiple of 3, there are precisely

p(™) families with DT = (3,3,...,3) in n dimensions. The
family corresponding to 5 =m. + ... + My has
5 1 -k
obT = (Bm.,... ,3n. ) and dimension | Jm woq_
1 k Lj=1 J(M3+13] 1
Proof. The five inclined geometric crystal classes with

DT = (3,3,...,3) (see Section 3.5) all belong to one family,
since each is contained in the class of m3m and C(H, Pos(V))
is the same (up to conjugacy) for each class. Therefore,

by Theorem 4.1, there is precisely one family corresponding

to each possible ODT. The dimension part follows from

Section 3.5 and Theorem 3.18.
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Table 4.3. Families with DT = (3.3....3) up ton = 9.
n Numbg$§of: Partition of 7 oDT Dimension
Families
(Cuéic) 1=l 6 0
° 2 2=2 (6 2
2=1+1 @3.,3) 1
° 3 3-3 © 5
3=2+1 6.3) 3
3=1+1+1 (3.3.3) 2

Problem. For which k In general is it likely to be true
that the number of (k,k,...,k) families in dimension n
(where k divides n) is p(d ? Clearly this depends on
there being jnst one inclined (k,k,...,k) family.

The descendants of one, two and three dimensional
families up to n = 6 are described in Table 4.4 in the next
section. The actual values ofi3*l "2°~(n)] for the first eight

dimensions are:1, 4, 6, 17, 24, 58, 84, 178. Our
description of 371,2,MN(n) gives at least a lower bound
for the total number of families in n dimensions.

We hope that our description can be used to discover

the rate of growth of 3/1»2»5)(n). We conjecture from

looking at our results that 1 as n-
) J3~1,2,5;(n)
heavily does ZfiK « * (n) depend on partitions.
The main problem in confirming this conjecture
(or otherwise) is to see if there exists a lower bound for
the number of (2,2,...,2) families corresponding to a
given ODT i.e. for TT(Mi (g”")).

We wonder if the rate of growth of 371,2,2(n) matches
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the rate of growth of all families. A slow rate of growth
such as that conjectured would be interesting because
estimates for some other quantities in crystallography
(see TI3;p.313) are of the form where gq(n) is a

quadratic in n.

4.3. Using Decomposition Types to Describe Families in

General.

The results of Chapter 3 and Section 4.1 actually allow
us to do more than describe 3,0,2,3) (n). Although we do
not have enough information to give a complete description of
any other descendants, we can make some general observations.
We can make deductions about typical orthogonality for
some other decomposition types, by virtue of the fact that
any indecomposable summand of ~QT of dimension 1 (respectively 2)
is always orthogonal to another summand of dimension other
than 1 (respectively 2), using Proposition 3.14 and
arguments like those in the proof of Theorem 3.15. In

particular, by Theorem 4.1 we have:

Proposition 4.6. |If the DT (m",...,mlkd) has x corresponding

n-dimensional families and no is 1, then the DT
(ml,...,mk,1) has x corresponding (n+l1)-dimensional families.
If no is 2, then the DT (m™,...,mk,2) has 2x

corresponding (n+2)-dimensional families.

A general statement about dimension using Proposition 3.11,

Theorem 3.16 and Theorem 3.18 is:
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Proposition 4.7« |If the family F has m parts in its DT,

then dim F >m - 1.

Theorem 3.8 allows us to decide for some situations

whether can be decomposable when HQT is not.

To illustrate these ideas we now enumerate as far as
possible the families up ton = 6. In the following table
we denote by rR the number of families in n dimensions
for which jV is indecomposable i.e. which have dimension O.
We denote by gR the number of families in n dimensions for
which HQT is indecomposable but is not - these all have
dimension larger than O. The dimensions of families
are calculated using Theorem 3.18. Note that this also
applies to cyclic and dihedral transitive classes, which
always have dimension ™ - 1.

Some information in the table duplicates information

in Tables 4.1 - 4.3, but this is necessary for completeness.

Note. We could substitute r» = 3 from the results of Biilow
et al. in [3] and hence obtain a complete description of

all decomposable families in 5 dimensions. We then can see
that there are 30 of these. Since g” = r™ (Proposition 3.10)

the only other families have dimension O,

As in Table 4.2 the word in brackets after a particular
dimension indicates the number of families iIn that row

with that dimension, if there is more than one.



Table™4d 4.
n DT
1 (D
2 @,n
(@)
3 (1.1.D
@,D)
(©)
4 (1,1,1,1)
,1,1)
2.2
@G.D
©O)
7‘.—-}:;L !

Dimensions of a

Typically
Orthogonal

Decomposition

Suitable

See

See

See

See

@.0

See

See

2.2)

See

G.D

O

for all
Families with DT

Description of Families up to n = 6.

Names and
Number of
Families

Table 4.1 1
TOTAL=1
Table 4.1 - 2
Table 4.2 2
TOTAL=4
Table 4.1

Tetragonal 1
Hexagonal )
Table 4.3

3
2
1
TOTAL=6
Table 4.1 5
Tetragonal 4
monoclinicl
Hexagonal |
monoclinicV
Tetragonal
orthogonal
Hexagonal
orthogona”

Table 4.2 7

Cubic 1
orthogonal

Octagonal "k.=3
Decagonal V*
DodecagonalJ

rd
TOTAL=20+r4
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Dimensions

2,1
0 (two)

5,3,2
1(two)

9,6,5,4,3

3(two),
2(two)

3(two),
2(two) ,1(three)

1

1(three)

o(r™ times)

Continued
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Table 4.4» Continued.
n DT Dimensions of.. Number of Dimensions
.-with DT Families
5 (i.i*i.i.D See Table 4.1 .."7 14,10,8,7,6,5,4
@,1,1,1) 2,3) 6 6(two),4(two),3(two)
2,2,1) (4,1 7 4(two),3(two),2(thre
(.1,1) G.2) 2 5»2
@G.2) G.2) . 2 1(two)
4,1 (CHD) r4 + 3 2(three),1(r4 times)
®) o) g5 = r5 0O(r™ times)
TOTAL=27+r£Hr§
i
6 (1,1,1.1,1.1) See Table 4.1 11 20,15.12,11(two),9
8(two),7,6,5
2,1,1,1.1) 2,4) 10 10(two),7(two),6(two]
5(two) ,4(two)
@,2,1,) 4,2 14 6(two) .5(four),
4(Five),3(three)
2,2,2) See Table 4.2 16 8(two) .5(two),
4(fourd,3(four),
2(four)
@G,1,1,1) @G.3) 36,4,3
@G,2,1) (3.2,1) 2 2(two)
@3.,3) SeeTable 4.3 2 2,1
“4,1,1) “4,2) 2r4+6 4(three),3(three+r.),
2(r4 times) *
4,2 “4.,2) 2r4+6 2(six),0(r4 times)
G, G,D rs 1(r™ times)
®) ®) gqéuU2)*r6 2(two),1(qg-2 times),

0(rg times)

TOTAL=70+4r i, 154 r6+q6
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Remarks. |In dimension 7, there are 15 possible DT and
new unknowns arise for (4,3) and (7) only. This is the
first time we get unknowns not of the form - 9, -

In dimension 8, there are 22 possible DT and new unknowns

arise for (4,4), (6,3) and (8).

Idea for Further Study.

Families can be partially ordered according to
dimension. However, we feel that this is only a guide
to a much more useful ordering, that of “special case*,
e.g. in 3 dimensions, tetragonal is a special case of
orthorhombic. This ordering seems likely to lead to useful
statements about higher dimensional families.

Not only does dimension give a guide to this ordering,
but also the DT and ODT do, and we feel that this is
further justification for our emphasis on these.

We consider to be a special case of F2 if every
lattice in F1 is a special case of a lattice in Fg, but

not necessarily vice versa.

Definition. The family F" is a special case of the family F2

if and only if X n 2 is dense in £n Xn 2«

Proposition 4.8. (i). If P is a special case of F2 then:

(@ dim F1< dim F2;

(b) the DT of F2 can be "built up® to that of F by
grouping parts.

(ii). If F1l is a special case of F2 and the DT of F1 equals

that of F2, then the ODT of F* can he "built up® to that of



P2 by grouping parts.

Proof. By Theorem 1.7, for any lattice T" in we may
choose T2 in Pg with G(T2) "GiT". Part (i)(b) follows
immediately. Part (i)(a) needs Lemma 2.9 also.

Part (ii) is true because a complete typically orthogonal
decomposition can always be “built up® from a complete

decomposition.

In 5 dimensions, Proposition 4.8 (i)(b) and (ii) give
the same amount of information about possible special cases
as that given by (i)(@). The diagram of possible special

case relationships which are allowed by Proposition 4.8 is:

Dimension
5 Triclinio
3 Monoclinic
t
2 Orthorhombic
X \
1
0

The true diagram (see, for example, [12)) is
Triclinio
t
Monoclini
t
Orthorhoir
Tetragonal Hexagonal

Cubic

In 4 dimensions, the decomposition type conditions
actually contribute new information. The (1,1,1,1) family
with ODT = (2,2) i.e. diclinic, has dimension 5 but
cannot be a special case of the (1,1,1,1) family with
ODT = (3,1) i.e. triclinic, of dimension 6, by (ii).
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The two (2,1,1) families of dimension 2 cannot be
special cases of the two (2,2) families of dimension 3,
by (i)(b). The one (3,1) family of dimension 1 cannot be
a special case of any of the four (2,2) families of
dimension > 1, by (D(b).

The decomposition type conditions are more significant
in higher dimensions. This can be seen from looking at
Table 4.4, in which it is noticeable that the overlap in
dimensions between different decomposition types gets

larger as n gets larger.



CHAPTER FIVE. THE STABILITY OF SYMMETRY IN
LATTICE HYPERPLANES.

5.1. Preliminaries Concerning Lattice Hyperplanes.

Let V be an n-dimensional real vector space with

scalar product and let T be a lattice of rank n in V.
We make the following standard definition.

Definition. W is a hyperplane in V if and only if it is
of the form f“1(c), where c € R and f is a non-zero

linear functional in V*.

Clearly, W is a hyperplane through O if and only if
c = 0.

For W = f~1(c), we are interested in the set TnW.
Either TnW 1is empty or, for all t € TAW,
TAW =t + (TAf"4(0))- Therefore we subsequently
restrict attention to hyperplanes through 0 and by

"hyperplane®® we mean "hyperplane through 0.*

The following is a standard result, whose proof we

omit.

Proposition 5.1.(a). Non-zero linear functionals f, g € V*
determine the same hyperplane if and only if ¥ = kg, for

some k £ O.

Let W be a hyperplane , W = f“~(0). Choose a basis
{vl,...,vn} of V and write f as a matrix (@.,a2...aQ)

relative to this basis. We call (a”a2...an) a set of
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Indices of W relative to Following directly

from Proposition 5.1 (&) we gets

Proposition 5.1 (b). Two sets of indices (al...an) and
(bl...bn) relative to "» .. .1Vv]j represent the same
hyperplane if and only if there exists k £ 0 such that

ar = kb, for 1 — i ™ n.

Remarks. 1. Under a change of basis represented by a
matrix A in GI(n,R), the indices (a,j-.-an) transform to
the indices (al ...an)A, relative to the new basis

2. 1¥f W has indices (a.j.a-a ) relative to {vi,.. .,vnJ
and €. GI(V), then 9W has indices (a™...an) relative to
{9vv ...,9vn}.

Theorem 5.2. Let3,(T) be the collection of all sets of

n independent vectors in T and let £(T) be the subcollection
of all bases of T. For a hyperplane W, Tr>W is a

lattice of rank m-1, where m is the maximum number of
integers in a set of indices of W, taken over all sets in
¢-(D, This maximum is equal to that taken over ™-(T).

Proof. The set Tr\W is a lattice of rank ¢»n-1, by

Proposition 1.4. let {v*,,,,,vn] be a basis of V

contained in T and (a....a,) a set of indices of W relative
to {viM;.,v] , such that a,,,,.,"« Z, affttl.___an £ Z.
Not all of ag----- a, are zero, so assume without loss of
generality that am £ 0. For j = 1,...,m-1, define

w.£ Tr>W by Wj = (-am)Vj + a”. The set {wl, ...

is independent, since det(w”,... ,wm_.j,vm) «(ahm™=~ 0.

Therefore, rank TOW 2:m-1.



Suppose rank TnW = r. Let {t.,,...,t } be a basis
for TOW and extend it to a basis {tl,...,tn}of T (see
Proposition 1.5). Relative to this basis, W has indices of
the form (0...0Obr+1..,bn). By taking a suitable multiple
we obtain a set of indices, relative to a basis of T, with

r+1 integers. The only possibility is that r = m-1.

Remark. The maximum number of integers in a set of indices
of W, taken over one basis, may be different from that
taken over another basis. For example, when n = 3, let W
have indices (V?11) relative to a lattice basis and

change to the basis

Corollary. The lattice Tr>W has rank n-1 if and only if
W has a set of all integer indices relative to one (and
hence all) of the sets iIn3>(T).

Proof. Note that a change from one set in 3,(T) to another

is given by A 6 GL(n,Q).

We shall concentrate subsequently on hyperplanes W
for which rank ThW = n-1. We call these rational
hyperplanes for T. The lattice TnW is called a lattice
hyperplane. These terms are consistent with the terms
rational plane and lattice plane used by crystallographers
in 3 dimensions. For any given set infL(T), we always
choose the unique integer indices for W for which

HCF(a™,..,,an) » 1 ~unique, at least, up to sign).
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5»2. Description of the Problem in n Dimensions.

In this section we formulate an approach to the
problem of stability of symmetry in n dimensions and
in Section 5.3 we present the corresponding solution in

5 dimensions.

Small symmetry preserving perturbations of a lattice
T are represented by maps close to L in GL(V) for which
G(9T) 2 "WG(My-1, for some Y eGl,(v)* If W is rational
for T, then 9W Is rational for <DT and$>Tr\<pW = g>(TnW).
Since orthogonal maps always preserve the symmetry of Tr»W,
we restrict attention to p £ Pos(V). In order to
compare G(THW) C O(W) with G(p(ToWw)) C O(pWw), we can
choose any © £ 0(V) such that ©pW = W and compare
G(TOW) with G(6p(TOW)) co(W). In fact, if6, B £ 0(V)
and (©Op)W = (ISp)W = W, then
(/3p)lw((ep)Ihr 1 - ("p)lw(p-16-1)|w
- Cre"1D)|w £«<) .
Therefore (p plw and (Op)|w have the same positive definite
symmetric part, which is of the form (T p)| w for
some T € O0(V). We denote it byco(p) £ Pos(V). It is
convenient to use this for comparison - we now compare
G(TOW) with GCUP))(MTnW)). Note that wis a continuous
function from Pos(V) onto Pos(W) (see Proposition 2.3).

Subsequently we denote <o(p) by pw .

Definition. The rational hyperplane W for T is locally

stable if and only if there exists & >0 such that:
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p ePos(V), Ulip -l < £ and G(pT) 2 YG(T)Y*“1, for
some GL(V)

= > G(pw (TrkW)) 2*G(Tr»W)Y“1, for some Y € GI(W).

By Theorem 1.7 and its Corollary, we obtain an
equivalent definition by replacing \|[Miy p, IF by pw
and 2 by = . In view of this and Proposition 2.4, the

definition becomes:

Definition. The rational hyperplane W for T is locally
stable if and only if there exists S >0 such that:
p S C(G(T), Pos(V)), Dp - til < &

=——> pP € C(G(TOW), Pos(W)).

Notice 1i,hat we are now working in neighbourhoods of

T in AAGiIT)) and TnW in A n-1 (G(Tr>V/).

We denote C(G(T), Pos(V)) by C(T) and C(G(Tr\W), Pos(W))
by C(Tr\W) in the sequel. The definition says that W is
locally stable if and only if , locally at C,

WL (C(THW)) 2C(T).

Proposition 5.3. (i). If G(TOW) = {1tw, -Iw], then W is
locally stable.

(ii) . IFG(M =1, -0}, W is locally stable if and only
if G(TOW) =K w, -Lw].

(iin) . IF is indecomposable, any rational plane

W is locally stable.

Proof, (i). C(TOW) = Pos(W), so Gl (C(TAW)) - Pos(V).
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(ii) . C(M) = Pos(V). However, Co"M(C(TOW)) = Pos(V) if
and only if C(TnW) = Pos(W), which in turn is true if
and only if G(TOW) = {tw, -Lw}.

(iii) . Use Theorem 3.16 and noteld((R+)t) = (R+)CA.

We now show that uTl(C(TnW)) 2 C(T) is true globally
if it is true locally, meaning that local stablility is
equivalent to a type of global stability, in the entire

Bravais class of T.

Proposition 5.4. The rational plane W is locally stable for
T if and only if, for all p € Pos(V) with G(pT) 2pG(T)p“\
G(pu (Mr>W)) 2G6(TnW).
Proof. 1f. Obvious.
Only if. Take p e Pos(V).with G(pT) 2 pG(T)p“l.

Then p e C(T). Take a, b > 0 such that [eigenvalues of p} C
[a,b3 and {eigenvalues of pl0} c[a,b]. For any & >0,
define fg:[a,b] ->R+ by fg(s) = (@ + 6s2)». Then fg is a
one-to-one function. Let{y”,...,yn3be an orthonormal basis
of V consisting of eigenvectors of p, with corresponding
eigenvalues ~,._._.,7~. Let[X.,,---,X".,} be an orthonormal
basis of W, consisting of eigenvectors of pu, with
corresponding eigenvaluesyu.,... e Suppose

= ~x~yn, for 1< i1 n-1l. For i MKk, "px~px” =0,

in”

n p o} 2 2
giving Xj xijxkj = 0* Also, jx~ ="px™,px™> = B3 Xj xij *
J=-

=1

J éé 5

Now for any 8>0, <fg(p)xitfg(p)xk> = *"l(l + &Xj
J

0 4 i ik

I@s>Ml 2 if i - k.
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Therefore (FE(P)IW ha§ eigenvectors ) with
eigenvalues (@ +£>/!2,)5*--_- @ +é&un_1 p)*._ Consequently,
(fg(p)f = fs(ow).

For smallS » " is close to 1 and fg(p) is close
to t by Proposition 2.1(i). Since p fcC(T), so does f(p)
by Proposition 2,2, By local stability, (f*(p))°e C(Trw/)
and so fj (pu) 6 C(Tr\W). Since fg is invertible, pw € C(ir\\W)

and the result follows.

Using the bijection between unoriented hyperplanes

through 0 in V and Pn-1(R), let W correspond to w € Pn-1(R),

Proposition 5.5. Locally at L, there is a homeomorphisrr.

from Pos(V) to Pos(W) x Pn-1(R) x R+, carrying L to (I, w, 1).
This restricts to a local homeomorphism from co"~(C(TnW))

to C(TOW) x Pn_1(R) x R+. In particular, ufl(C(TnW)) is
locally at L a topological submanifold of Pos(V), of
dimension n + dimC(Tr\W).

Proof. Let en be a fixed unit normal to W. Suppose

p £ Pos(V), p is close toc, and pW - X corresponding to

X £ Pn-~(R). Let {el,...,en_1} be an orthonormal basis
of W such that {el,...,en_2}C XHW. Let entl be the
unique vector of unit length in X normal to {e”,...,en_p]

such that a = “en+i*en_i">— 0 (uniqueness follows because
p is close to t). Let”38 = Then there exists
0 € O(W) such that:

where the matrix is relative to
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Therefore there exist c _j,...,cn e R such that:
n-2 ©pf9
= QQ
o 7n-1
n
giving p 1 o o
Jn-2 e o epP"
0 0 00
< =<- rn-11i
\0 - - - Op */ n
It is easily verified that any choice of {el,...,en-1}

produces the same cn. Since p 6 Pos(V), we have : c® =£Y(n-1)i

for 1 — i - n-2;cCen_1 =~(cn +~(n-1)(n-1)) and
©6 oWy i\ A“1 (Sym(W)(pt)_1, where Y *“ OpI and
A =
n-2

Define 5<p) to be (pf°,x,cn) G Pos(W) x Pn"*\R) X R+.
Clearly pu and x depend continuously on p and it is
easily checked that cn also does. Therefore ? is continuous.
Close to lw, O(W) and Sym(W) intersect only in Lw and
they intersect transversally. Hence there are open
neighbourhoods and U2 of Iw in Gi(/) such that for
A, pu in Ult O(W) and A-1 (Sym(W))@F)-1 intersect in just
one point in U2, Consequently, ~ is one-to-one on a
neighbourhood of I in Pos(V). Since the intersection
also depends continuously on A and p*t $ must be open

on a neighbourhood of L, The fact that 'Srestricts is

clear.



Corollary. A necessary condition for W to be stable is

dim C(TAW) > dim C(T) - n.

This condition is rather weak in 3 dimensions, but
is somewhat stronger in higher dimensions (cf. Section 4.3).
It is the best general dimensional condition that we can
expect, as if dim C(TryW) = in(n-1).and dim C(.T) = in(n+l),
then W must be stable by Proposition 5.3 (i).

Even if W is not stable for T, we are interested in
the set C(T) O J1(C(TAW)). Globally, this is a subset
of C(T) on which the symmetry of TnW is preserved. Locally
at I, it is the subset of C(T) on which the symmetry of
TOW 1is preserved. It always contains (R+)L.

We shall show in Section 5.3 that when n = 3 the situation
is as follows.

The set cJ1 (C(TnW)) 1is locally at L a differentiable
submanifold of some submanifold S(T,W) of Pos(V) which
also contains C(T) (S(T,W) may equal Pos(V)). The
manifolds C(T) and Cr\W)) intersect transversally Wilk-
in S(T,W) near L, meaning that C(T)r\ o0Jl (C(TA\W)) is
locally a submanifold of Pos(V) with dimension
d = dim C(T) + dim C(TAW) + 3 - dim S(T,W), where
dim S(T,W) A~ m = minimum{i(3) (3+1), dim C(T) + dir. C(TnW) + 3-
Por a 3-dimensional Bravals class Bj and a 2-dimensional
Bravais class Bg, if T feB” and TrvW 6 Bg, the dimension
of S(T,W) depends in general not only on B™ and Bg* but

on the particular position of W in T also. However, except



for certain special planes which we shall fully describe
in Section 5.3, dim S(T,W) = m and consequently, except

for the special planes,

(dimAnBl) +(dimAnB2) - ;(3)(3-1) if m= ;(3)(3+1)

1 if m = (dim A nBl) + (dim A nB2) + 3-1.

d

It is reasonable to conjecture that a similar pattern

of dimensional relationships occurs in higher dimensions.

5.3. The Solution in 3 Dimensions.
In this section we need the following lemma.

Lemma 5.6. Let T be a lattice of rank n in V with basis

{s1,...,s)j- Let [F1,... te a set of lattice vectorst
where f+ = gijsj ~qij & z)* Then tfl*eee*fn-1i is

a primitive set in T if and only if the n determinants
A

gll gl2 = * *qij * * * qln
g2l 922 * - * %2j = * * g2n

j s lfeeefn
. - A

q(n-1)1 q(n-1)2***q(n-1)3* **q(n-1)n
have highest common factor 1, where A denotes omission.
Proof. The set Jfl.... fn-1™ is Primitive and only If
there exists f 6 T such that £f*,...,fn_1 ,M} is a basis
of T (Proposition 1.5). However, £Ff.j,...,fn} is a basis
if and only if the matrixig™)(,j = 1,...,n), representing
(F.],---,fn} relative to £s.|,...,sn$, is in GL(n,Z). The

result now follows easily from the fact that det(g”) m +1.

In 3 dimensions, we write indices relative to a set

{Xv t2,xj in&(T), where X, X2, are shortest lattice

85
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vectors in the conventional axes (as described, for example,
in [2; p-100 et seq.-T). We take Xj to be in an axis of
highest order and, in the rhombohedral case, further restrict
Xj and X2 by insisting that jzf + <2 + 3T3 £ T. We do not,
incidentally, require right-handedness or an ordering on

Xj and t2 determined by their relative lengths. The set

need not be a basis of T, nor is.it uniquely
determined by the above. This non-uniqueness does not affect
our results, since any result we give involving explicit
plane indices is valid relative to any conventional set.
Notice that if T and T” are in the same Bravais class and
(ti >X2*X3}is a conventional set for T, then”™ 1>X2*» Tj"}is
a conventional set for T if and only if there exists 9 in
GL(V) such that <pl = T", <pG(MCp-1 = G(T") and 9~ - X=*" for
1£ii 3. If W has indices (a”™a2a™) relative tofx.j, X2,X3} »
then 9W has indices (a”™a™") relative to™X-]1» %2',
Recall that we always take the unique integer indices

(ala2a®™) such that HCP(an,a2,a™) =1.

When V has dimension 3, Pos(V) has dimension 6 and,
having chosen an orthonormal basis for V,(we do not use

conventional sets at this stage) we may write
elements of Pos(V) as matrices /p~ p~ p™\ relative to this.

( p4 p2 p6)
\p5 p6 p3/
First we look at cJ1(C(TnW)) for the five Bravais classes

to which the 2-dimensional lattice TF\W may belong. If Tr\w
is of class P we know that <jJl (C(Tr»W)) - Pos(V), since CJ
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is onto. The remaining classes fall naturally into two
groups: (i) TaW is of class R or D and hence C(TnW) =
(RHHly x (R+)Ly , where V1 and V2 are orthogonal suhspaces
containing the mirror lines; (ii) Tr\W is of class S or H,
and hence C(Tr\W) = (R+)t.

(i). Suppose that TOW 1is of class R or D. let
vl € V1 and e V2, vl, v2 ~ ie—j*e2 ,e5”™ is our
chosen orthonormal basis, let = x"eM + yhe2 + z'eM,

v2 = x2el + y2e2 + z2e3* Then a necessary and sufficient

condition for P =

(Pvl)*"(Pv2) = 0. This gives the following equation:

P1P5(x1z2 + x2z”™ + p2p4(xly2 + x ")

+

P2P6(y.1Z2 + y~.,) +

pAP5UfZ2 + x2z1) + PjP6(y1z2 + y2z.,) + Pdp~(y*z2 + y2z1) +

PAP6MNX1Z2 + X2Z1N + pbp67™xly2 + x2yP 0 (D

Regarding this equation as o<.(l ,p2,pj,p4.p".pg) = 0
(ot:R~>R), it is easily verified that:

which is non-zero for non-zero v, v,,. Since DoC is
continuous, locally at Cfoo™(C(TnW)) is a smooth

submanifold of Pos(V) of dimension 5.
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(ii). Suppose TnW is of class S or H. Let W have indices
(c™gCj) relative to {e.j, e2, ] and suppose that i 0.
Then -c2ej + c.je2 and -c”e™ + c”e” are independent
vectors in W. Normalise these to get v = x"e™ + y'e,,,
v2 = x2el + z2e3» where yl ~ 0 and z2 £ 0. Now P lies in
W-1(C(Tr»W)) if and only if there exists ©€ 0(V) and
h 6 R+ such that (GP)v.j = bv®, (0P)v2 = bv2* So
necessary and sufficient conditions are:
(Pvl)"(Pvl) = (Pv2)"(Pv2) @)
(PvlIX(Pv2) = (Pv.,) ,(Pvl)vl "Vv2 (©))
Equation (2) gives:
PNix.,2 - x22) + p22(y12) - p32(z22) + p42(1 - x22) +
P52(Xi2 - 1) + P62(yl2 - z22) + plpd(2xlyl) - p1p5(2x2z2) +
p2p4n2xi”i) " P5P5(2x2z2) - p4dp6(2x2z2) + P5P6(2x1lyl) = O
Regard this asp (pl,...,P6) = 0.

Equation (3) gives:
P12(xly12x2) - p22(xly12x2) + p52(xlyl12x2) - p62(xlyl2x2) +
plpd(ylx2 - 2x12y1x2) + plp5(x1z2) + FEFM(yiQZ" 2X 12y ix2* +
p2p6”ty 122~ + P3P5MX1Z2N + p3p67ylz2”™ + P4p5~y1z2”™ + P4P6(X1z22) +
P5P6(y-|X2 - 2x12ylx2) =0

Regard this asY(pl,...,p6) = O.

We have:

DP(1,1,1.0,0,0) m (Q(X12 * x22)» 2yi2. -2z22» 4xlyl» “eX2Z2*
and

p*(,1,1,0,0,0) « -2xiyi2x2, 0, 2(vixz2 - 2x12ylx2),

2x2z2» 2yl z2>*



89

Since ~ 0, these are non-zero and locally at L,
p_1() and Y-1(0) intersect transversally. Therefore
cINCAr\W)) is locally at 1 a smooth submanifold of Pos(V)
of dimension 4. Assuming Cg /7 0 or Cj /7 0 gives the same
result iIn this situation. In other situations later, we
may have to consider the possibilities ¢c* =0, ii 0;

c] =CE =0 but c5 jiO.
Notice that the results in (i) and (ii) are in

agreement with Proposition 5.5.

We now look at the centralizer C(T) and its intersection
with CO1(C(TOwW). IT T is triclinic, C(T) = Pos(V) and
COLCAr\W)) n C(M) = cJlEap>w)). If T is cubic,

C(M =(R+)L and uJdl (C(Tr\W)) C(M =cC(M. If Trw is of
class P, then cJI(C(Tr\W)) N\C(T) = C(T). These three
cases are easily seen to conform to the description in
Section 5.2, and there are no special planes for them. They

are summarised in Table 5.1.

For the remaining cases, we choose such that
el 2 and e, =>—u, forma conventional set in a>(T).
2 Ix2 5 131

Therefore C(T) is determined as follows, no matter what the
conventional set;

T monoclinic; p~ = pg = 0;

T orthorhombic; p~ = p~ = Pg m O;

T tetragonal, hexagonal or rhombohedral;

Pl “ P2* P4 - P5 - P6 " °*

For verification of this, refer to Table 3.1.
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We now look at cI”(C(TrAW)) r\ C(T) for these remaining
cases.
(A). T Monoclinic.

Tow

(i). The lattice Lis of class R or D. Prom equation (),
it follows that C(T) and uTl1(C(TnW)) intersect transversally
in Pos(V) near t unless xjX = y.|y2 = z1z2 = x1ly2 + x2y1l = °»
in which case uTl(C(Tr\W)) Q C(T) and S(T,w) = C(D).
Therefore the dimension d of the "local stability manifold”
is 3unless xj =y.j =22 =0o0or x2 =y2 = zj = 0, when
d = 4. If W has indices (a”a2a®™) relative to {tj, tg,
d = 4 occurs when TOW 1is of class R if and only if
a® = 0; a2l “ al™2 and ™3 are Primitive in TOW;
Ha2xi ““anx2H t . The vectors a ~ - alt2 and tj
are shortest non-zero lattice vectors in the proposed
mirror lines, and the last restriction is to prevent
TOW being of class S. If T is primitive monoclinic,
a2X|] - alt2 and X~ are automatically primitive if a~ = 0,
by Lemma 5.6, since HCFEa”ag) = 1. |If T is body-centred,
k 1,t2,t3} is no longer a basis of T and the primitivity
condition becomes: HCP(a™-a2, 2al, 2a2) =1. This holds
if and only if al + &2 is odd.

The lattice TnW is of class D with appropriate

restrictions if and only if a® = 0; iagE-j - * N3
andtj are primitive in TOW; Ha2™l ~ alr2H ~ or 1.
If T is primitive monoclinic, this is impossible. If T is

body-centred, we need & and a2 to both be odd i.e. a™ + a2

to be even



(ii). The lattice TrMtF is of class S or H. Prom equations
@ and (), C(M) and (C(r»W)) intersect transversally
near L in Pos(V) unless x2 = 0, in which case C(T) "~ "~0) =
S(T,W), and C(T) and (C(TA\W)) intersect transversally
in S(T,W). Therefore d = 2 unless x2 = 0, when d = 3.
However, x2 = 0 requires a® = 0 and we have already
calculated when S or H occurs under this restriction in (i).
Deriving the analogue of equations (2) and (3) under the
assumption c®» = 0, c2 ~ 0 gives the same result. The case
Ci = eg = 0 is impossible, since for this TnW is always
of class P.

Notice that we have not only identified the planes
for which d has a special value if a particular
2-dimenslonal Bravais class appears. We have determined
exactly when this class appears with a special value for d.

We shall do this in all later results as well.

(B). T Orthorhombic.
(i). The lattice TP*W is of class R or D. From equation

(1) we see that C(T) and u51(C(TnW)) intersect transversally

near L in Pos(V) unless x™ 2 = y.jy2 “ z1z2 when

C(mH C gnEmnw)) = s(M,Wy). Therefore d = 2 unless

xN2 =yN2 = =0, when d = 3. Now d=3
requires one of the following: x* = yl « 72 = 0; x

X1 " %) = 79 = 0; x2 =yl =2zl =0; X2 "yl o« Z2

x2 =y2 = 71 = 0. Take the case x* . yl ™ 22 *0.

T is -primitive orthorhombic. Tr\W is of class R with these
restrictions if and only if a® = 0; »271 “ al®2 and "3 are

primitive in TnW; Ja2*l « al”2” ~ UX3ll « Since if
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= 0, HCF(a.j,a2) = 1, the primitivity condition is
always satisfied. IT T is body-centred, we requiresa®™ = 0;

HCF(a.j-a2 ,2a.|,2a2) = 1 i.e. a" + a" to he odd;

la2ti - ail2] t 1It3He |If T j-3 facercentr ed, we requires
2sl 2(a -fa. ) 4&

a3 = 0; HCP(- J, ——-t -j™) = 1 (., = HCF(al+a2,2ai)) i.e.

al + a2 to he even;|lia2t]l - ealX2] t ilgll . I1f T is

C-centred (meaning £X~ + I1X2 € T) we require: a™ = 0;

a.+a0 2a. u ap a< »
» “m”N " 1 <m " HCP<al+a2~” 2&1)); [I» t2R
al+a2
IXK 50 -« I1f al + a2 is even, ml = 2 and HCF(- - , a” m 1;

if al + a2 is odd, ml =1 and HCFia.j+a,,, 2al) = 1.

For TAW of class D we get no possibilities for T

primitive or C-centred. For T body-centred, we get a = 0;

—ai*tp|| 1
al + a2 even; - - £ 1, V5 or~. For T face-centred.
[la2 ti - aix2]
t

- ra -

we get a® = 0, a~ + a2 odd; 1, or™j.

Considering the other possibilities for x®, y®, z*, x2,
y2, z2 gives similar results with a» = 0 or a2 =0,
except that D may oocur in the C-centred case if a® or a2 is
zero. The results are summarized in the tables at the

end of this section.

(ii). The lattice TAW is of class S or H. The
manifolds C(T) and tol (C(Tr\W)) intersect transversally
near t in Pos(V) unless x1 = 0 or x2 = 0, when C(T) C
S(T,W), and C(T) and C*T1 (C(TAW)) intersect transversally
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in S(T,W). Therefore d = 1 unless or x2 = 0, when
d = 2. The calculations in (i) reveal all cases when
x1l or x2 = 0 and Tr\W is of class S or H, since this
corresponds to one index of the plane being 0. Again
the results are summarized in the tables.

In deriving equations (2) and (3), assuming c2 / O

or c» =c2 =0, Cj £ 0 gives the same re.sults,

(©). T Tetragonal.

(i). The lattice TA\W is of class R or D. Equation (1)
implies that C(T) and t*Tl (C(TP\W)) intersect transversally
near 1 in Pos(V) unless z"*z2 = 0, when S(T,W) = to™(C(TOW)),
which is bigger than C(T). Therefore d = 1 unless = °*
when d = 2. For d = 2 and TOW of class R one mirror line
must lie in the plane (001). A shortest non-zero lattice

vector in this is tl = - - jjp—Xg» wbere mq = HCF(a”™,a2).

We are assuming that & and a2 are not both 0, since
if this is the case TOW is always of class S. IFf T is
primitive tetragonal , a s* * *

in W normal to t is t2 =
where m2 = HCFia™a”, a2a™,
For TAW of class R, we require
) to be 1 and

2

*

1M / 1j2n = This is true if and only if a12 + &2

and [Itl] ji K23 . For TOW to be of class D, we require
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al2<al2+a22> a3(@i2-a22) .
gmim2 - omim2 - omim2 - to be 1:

Jjjyu ~ or~. The second condition is satisfied if

a_° = 2mlm?. However, if this holds, it
af a? + a,2 _
m

and = are odd. Since ———5—— - s

and only if al’? +

is immediate that
dkx
even, 4)323 and —,252- must be odd, meaning the first

condition is satisfied. Therefore TrvW is of class D with d=2 if

2 2 veill 1
and only if a8 + a2 = 2mim2» WA l»vp3_ orf e

IT T is body-centred tetragonal, we test for R and D
with z.]2 = 0 in a similar way, Since H2» is no
longer a basis of T, we now have m2 = HCP(a’\aj+a’\2+a22,
a2a’\+alp+a2p, 2(alp+a2?)) and for TAW of class R we

) 2al (a2+a 2) 2a?(a2+a 2) (a.+a2+a,)(a2+a?2)
require HCF( mA 2 , B AN mim2 )

tobe 1and JJt | | t 21 - This holds for a”+a2+a”™ odd if
and only if aj2+ a”2 = n\ig, and Xtlq £ )20 * for

aj + a2 + a® even if and only if 2@ +a2 ) = ram,,, and

#t,l1 * 1*au .

3P +&p
For TOW of class D we require 4(g + B T R ) and
a. ala,+a. 2,392
M- i‘ilp + Em———— - ) to be integral;
a.Ca.™+a, ) aAa.2+a02) (a.+ap+a,)(a. +&2 )
HCg< mjm2 - » m;m22 » e > to be 1*

1*111 an
Ty I» ~  °r™~*  ThIS h°|tS,[fF°r al + a2 + a3 °dd if

only if a2 + a22 = 2m™m2> j4 ' "e -n for

d

at + a2 + a” even if and only if a” + a22

*od» N ot<A-



95

(ii). The lattice TAW 1is of class S or H. Equations (2)
and (@) show that C(T) and cJl (C(TRA\W)) always intersect
transversally in ¥"1 () = S(T,W), meaning d = 1. Assuming
c2 ~ 0 in deriving equations (2) and (3) gives the same
result. Assuming c» = Cg =0, c”™ ji 0 means we are
considering the plane (001). Clearly S always occurs here

with d = 2, but H never occurs.

(D). T Hexagonal/Rhombohedral.
The results follow the same pattern as in the tetragonal
case, but we spare the reader the details of the

calculations. The results are summarized in the tables.

Table 5.1. Usual Dimension d of the local Stability Manifold.

The numbers in brackets in the first row are the dimensions

of A5() for each system.

\T-> Triclinic Monoclinic Ortho- Tetr- Hex- Rhombo- Cubic
TnVh rhombic agonal agonal hedral

i ®) ) (€©)) @) @) (D
P 6 4 3 2 2 2 1

R 5 3 2 1 1 1 1
D 5 3 2 1 1 1 1
S 4 2 1 1 1 1 1
H 4 2 1 1 1 1 1
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Table 5.2. Description of When the Local Stability
Manifold has Special Dimension.
(A). T Monoclinic.
. S [leXi aftoo
Notation: = tjaj,a2) = —y* | E Y
Tnw Special T Primitive T Body-centred
Dimension
R d=4 a3=0, -ml a3=0, al+a2 odd, jji 1
(STABLE)
D d=4 Never a3=°, «Va2 even,ijji 1,j3,"
(STABLE)
S d=3 a3=0,= 1 a3=0,n =1
H d=3 Never a3=0, al+a2even, §J=V3, "
(B). T Orthorhombic.
Notation: ~(aita ) = > Mi,j-
TfiW Special Primitive Body-centred Face-centred C-centred
Dimension
d=3 ai=°* Same as ai=0,a2 odd,
(STABLE) a2+a/\ Odd, body—centred qzi(a2 ’aS)/\l
or i@ ,al)jil for R_ or
or but with a2=07al odd,
az2=u/ ar+a™ even
or a™+a3odd,
A (a-panjil -1a.
or .
a3=n7 n<a(1);>a2’\
ai+a2odd, a3=0.a™M&2
»)(&!,ag) /4 even,
d-3 ) an=0,a2 even,l
(STABLE)  Never Same as in Same as

a2*a3) 1,v5
R but with body—centredAg ) ) 1.

ri
aA+aj even Tor D but or
_ o a2-0,a.j even,
and A (attaj IWIth ai+ay  oon -
N , w odd
m#“S? or A

Continued.
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Table 5.2(B)« Continued.

TAW Special Primitive Body-centred Face-centred C-centred
Dimension

S d=2 N *22]
1 OI(aZ a3]),
or ar0.jJaa )

or -
or aj=0,a.j+a2odd
J@l ,a2)=1
or
a~=0,a”+a2eve
tj(al ta2)=2
H d=2 Never Same condltlons on aﬁ“az 5 as

in the corresponding column for

i
that or
i i

D above, jbut with the jrestriction
i 1

- ®

(©). T Tetragonal.

Notation: (a,,,a,, nhot both zero) ml= HCF(al ,a0); 0 0
——KZ L o * a..a, a?a, al +a?

tl= "SUr2; t2 =N -t 1+ HJI“C2 w2 X5;

N Btill

?
1T- WV V

For T primitive. m2 = HCFianj, azZa®, a12+a22)-

For T body-centred. m2 = HCF(aAaj+a“2+a22»a2a3+al2+a22,2 a’\2+a2I

Ir the following table (overleaf), we assume al and a2 are

not both zeroJdin rows R and D.
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Tnw Special Primitive Body-centred
Dimension
- 2 2_ 2. ,2_
R d=2 al“+a2°=m™"m2, a™+a2+a3 odd, a*"+a2 ™= m~mg,”" 1
(STABLE) or s 9
vel al+a2+a3 even» 2 @™ +a2 )=m™"m2,iji 1
D d=2

2 2
(STABLE) 312+322:ZﬂMﬂ2 al+a2+a3 0> ai +a2 =2ram#

N 1 orAn T ~,v3 or N

al+a2+a3 even, aA2+a22:mAm2,

* 1,25 orV5
S d=2 al=a2=0 a~=a2=0
(STABLE)
CD). T Hexagonal/Rhombohedral.
Notation: (a.j,a2 not both zero) ml = HCF(a.j,a2);
/(Qal+a2)a3w NaN~anNan
*1 - ift!l - *2 e ——— L1 ¢ 2 =2

x2 (al2+a22+ala2) ~»
1 nz JZji

A H eXal,a2,a3)
For T hexagonal. m2 = HCP((2aA+a2)a3>(2a2+aA)a3>2(aA2+a22+a:h2))A

For T rhombohedral,

m2 - HCF[(2al+a2)a3+4(al2+a22+ala2),(2a2+al)a3+2(al2+a22+ala2)f

6 (a12+a2+a1a2)]

Again in the table overleaf we assume al and a2 are not

both zero in rows R and D.
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TOW Special Hexagonal Rhombohedral
Dimension
- o _.p 2,52
R d=2 2(al +a2 +ala2)=mim2> 2(al“+a2“+ala2)=mim2,
(STABLE) A x g 3 does not divide 2a™+a2+aj,
Vit ol

or
6(a12+a271a1a2)=m1m2,
3 divides 2a”+a2+a3
1

D d=2 a12+a22+a1a2=mlm2, 2 2
(STABLE)

3 does not divide 2al+a2+a3,
N 1,V3 orn

9 9 Or
3(al“+a2”+ala2)=mlm2,

3 divides 2al+a2+a,,Nj( 1,-13,]
°r ri

N1 .M or”N

d=2
(STABLE) a~=a2=0 al=a2=0

Some Examples of Interesting Special Planes.

We give some examples of planes satisfying the special
conditions in Table 5.2 (C) and (D) when TnW 1is of class R
or D. This is by no means a complete list of such planes.
We exclude the restrictions on ™ in these examples. Except
for thes¢ restrictions, the examples may be regarded as

always being of class R or D.

T Primitive Tetragonal.
R. a3 = a.,2 + a22 and HCF(alta2) = 1 e.g. (125);
al "™ a2 an<* a3 even e,8* ("2);
(245);
(3”"5) i.e. the plane with equation 3x -6y +5z - O;
(46(13)) i.e. = " " M 4x + 6y + 13z - 0.



Some Examples of Interesting Special Planes.

We give some examples of planes satisfying the special
conditions in Table 5.2 () and (0) when TnW 1is of class R
or D. This is by no means a complete list of such planes.
We exclude the restrictions on ™ in these examples. Except
for thes§ restrictions, the examples may be regarded as

always being of class R or D.

T Primitive Tetragonal.

R. a3 - a.2 + a22 and HCFia.,”) =1 e.g. (125);

al * a2 a<* a3 even €,8* 0 "2);
(245) ;

@>5) i.e. the plane with equation 3x -6y +5z - O;
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“46(13)) i.e. * v " " 4x + By + 13z - O.



D. al = a2 and a® odd e.g. (113);
(265);
(13(15)).

T Body-centred Tetragonal.
R. al = a2, a* even, A3+ al even:
a? = a”™ + a22, HCP(alfa2) =1

(46(13)):
(245).
D. ar = al? + a22, HCP (alta2) = 1, a~ + a2 odd

*al + a2 even

al = a2’ a3 Qq»
a» « a2, aN even, ﬁ3+ a® odd;

(355);
(265);
(13(15)).

T Hexagonal.
R. al = a2, a™ even;

(127 ).

D« ~ oddj
a® = al™ + a2 + aia2* HCF(an,a2) = 1;
247).

T Rhombohedral.

R. a”» = a2, a™ even and not divisible by 3.
D. a” = a2, a® odd and not divisible by 3;
247);

Qazn).
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Final Remark.

In [6], there are four specific examples given

illustrating the use of the algorithm in that paper.

Each involves taking a plane of fixed indices throughout

a Bravais class. In each case the plane is a non-special one
by our classification and the answers obtained for these
examples all conform to the pattern predicted in Table 5.1.
To see this it is necessary to notice that the space of
free parameters over a particular Bravais class, used by
crystallographers, corresponds to our space C(G(T), Pos(V))
(cf. Proposition 2.12). Also, in view of the remarks at
the beginning of this section about conventional sets,
fixing plane indices and varying parameters in the Bravais
class corresponds to taking pW for p in C(G(T), Pos(V)).

By way of illustration, consider the case of a (123)
plane in a primitive orthorhombic lattice. Gruber states
(p- 623) that R occurs if and only if the parameters a,b,c,
satisfy 6a2 = 3b2 £ 2c2 or a2 - 2b2 - c2 = 0. It is
clear that this indicates a local stability manifold of
dimension 2, as Table 5.1 predicts. The other parametric
equations in Gruber®s examples may be interpreted in the
same way. We emphasize that the parameters a, b, c are
not plane indices but lattice parameters. The pl*»ne indices

in Gruber®s examples are fixed.
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