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SUMMARY.

The main theme of this thesis (excepting Chapter 5) 
is to investigate properties of crystal lattices which are 
of particular significance in higher dimensions i.e. >  3, 
but which barely show up in low dimensions. We study 
lattices T and pairs (H,T), where H is a finite subgroup 
of the orthogonal group acting on T.

In Chapter 1 we present some basic properties of 
lattices which are used throughout. In Chapter 2 we 
discuss crystal families and prove that the Face Theorem 
of [12] can be extended to these.

In Chapter 3 we investigate the decomposability 
properties of the RH-module V and the QH-module QT and 
the relationship between them. We introduce the ideas 
of typically orthogonal decompositions and inclined point 
groups. We prove some general criteria for determining 
these.

In Chapter 4 we extend the decomposability study 
to families and show how our work can be used to describe 
some higher dimensional families which we consider to be 
of particular significance. Specific results are given.
In particular, we reduce the problem of describing the 
descendants of one, two and three dimensional families 
to a problem involving only the partition function.

In Chapter 5 we formulate and study an approach to 
the problem of the stability of symmetry in lattice 
hyperplanes. The full solution corresponding to this 
formulation is given in 3 dimensions. We venture to hope 
that this solution might be of some interest to 
practising crystallographers.j possibly in the study of
twinned crystals with rational twinning planes.



NOTATION
Crystallographic.

We use the following symbols which are standard in 
crystallography. The reader is referred to [2^ or 
[lO; pp.24-29^ for a full explanation of these.
Two Dimensional Geometric Crystal Classes.

_1_, 2, 2, 4, 6, m, 2mm. 3m. 4mm. 6mm.
Three Dimensional Geometric Crystal Classes.

1 . 1 »
2. s. |: .
222. 2mm. mmm;
it liLiLi 1, 4mm, 32m, |mm;
It 2t 2St 2m. 2£.t 6. 5, 622, 6mm, 5m2, |jmm;
23. 432. m3. ?3m. m3m.

Two Dimensional Bravais Classes.
P = Parallelogram;
R = Rectangle;
D = Diamond;
S = Square;
H = Hexagon.

Other Notation.
If the symbol x appears as a matrix entry, it means 

- x. We never use x to denote the complex conjugate.
We denote the complex, real and rational numbers 

by C, R and Q respectively. We denote the integers by Z. 
Moreover, R* = R\fO] and R+ = {x €• R: x > oj.
We denote the natural numbers by N.

Continued
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By GL(n,Z) we mean the set of n x n integral matrices 
with determinant +1 or -1.

We denote the adjoint of a linear map <p by <p*.
We denote the identity map by L.
The symbol C  means strict inclusion, but when we 

wish to emphasize this we write . The symbol S, implies 
'possibly equal to.'

The symbols DT and ODT used in Chapters 3 and 4 
mean 'decomposition type' and 'typically orthogonal 
decomposition type' respectively. These are fully explained 
on pages 27 and 44 respectively.
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DECLARATION OF ORIGINALITY.

With a few exceptions, any definition, lemma, 
proposition or theorem which is not directly attributed 
to another source ( either in the text or in the 
introduction), or stated to be standard, is claimed 
as original.

The exceptions ares Propositionl,4, Proposition 1,6, 
and all of Section 2.1, These results are well known, 
hut not stated in a convenient form elsewhere which suits 
our point of view. Proposition 1.6 does not appear to 
be proved anywhere in the literature, although it is 
sometimes used in a matrix form.

The idea for the definition of decomposition type 
comes from [3], although we use the term in a wider 
context than in [3].
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INTRODUCTION.

If U is an n-dimenslonal space, then an
n-dimensional space group is a discrete group of isometries 
of U containing n linearly independent translations.
Space groups (in three dimensions) were first-studied by 
Fedorov and Schoenflies in the 1880's. They discovered 
(working independently) all 230 classes of three 
dimensional space groups, under an equivalence relation 
which we would now call conjugation by an orientation 
preserving affine map. Hilbert asked if the number of 
space groups in any given dimension is finite and 
Bieberbach proved this in the early 1900's. It is worth 
noting that the theoretical description of three dimensional 
space groups came well before the realization that these 
actually corresponded to the physical structure of crystals.

lattices arise in crystallography as the sets of 
translations in n-dimensional space groups. Given a 
choice of origin of U, a lattice T may be regarded as 
a subgroup of an n-dimensional vector space V. A space 
group G determines a short exact sequence 

0 —*-T — *-G — vH— *1
where T is the lattice and H, the polnj group, is a finite 
subgroup of the orthogonal group 0(V) acting on T. Most 
methods of deriving space groups begin with pairs of the 
form (H,T) and these are essentiallywhat we study in this 
thesis, lattices themselves are classified according to 
their symmetry groups G(T) = {© €  0(V)s 0T ■ t} , and we 
consequently show particular interest in pairs (G(T),T).
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Space groups and pairs have been classified for n £  4 
(see [2], [3], [4]) but few general results are known.
Interest in n-dimensional crystallography for n >3 has 
recently been revived by Bulow, Neubiiser and Wondratschek 
in [3], and by other authors (e.g. [12] , [13]). One of
the main themes of this thesis is to formulate and 
investigate properties of lattices and pairs which we 
feel are of particular importance in studying their 
behaviour in higher dimensions, but are not very significant 
in low dimensions. Subordinate to this theme is the use 
of crystal families of lattices, introduced by Bulow et al. 
in [3], which are of particular value in looking at lattices 
in higher dimensions, particularly with regard to 
decomposition properties. Chapters One to Pour essentially 
deal with this main theme. Chapter Five, dealing with 
lattice hyperplanes, is almost a separate unit, although 
it does rely on some concepts and results from the others.

Chapter One presents some basic properties of crystal 
lattices which are particularly relevant in all later work.
It is immediately clear that our point of view in considering 
pairs (H,T) is geometric, as in [13], rather than arithmetic, 
as in [3] and much of the rest of the literature. This 
means that we consider the representation H — *GL(T) 
explicitly, anfl, if forced to convert to a matrix representation, 
rely on the scalar product on V to choose an 
orthonormal basis. An arithmetic approach uses a matrix 
representation relative to a basis of the lattice T, thus 
dealing with only integral matrices.
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Chapter Two introduces the idea of a crystal family, 
giving a more general description than in the only other

to families and showing that a family is a manifold of 
the same dimension as all of the systems which it contains.
This is significant because it shows that in some sense 
families are not all that much bigger than systems. In this 
chapter we reprove two results of Schwarzenberger, namely 
our Propositions 2.6 and 2.7 (appearing in [13̂  and[l23 
respectively). We do this for two reasons. First, we feel 
our proof of Proposition 2.7 clears up a certain difficulty 
in the proof in [12} , which is pointed out. Secondly, 
we use different techniques to Schwarzenberger, relying 
on positive definite symmetric transformations, some useful 
properties of which are presented in Section 2.1. We feel 
that these techniques are more suited to a geometric point 
of view, and since they are used extensively in the rest of the 
thesis, it is hoped that their use here makes later work 
easier to understand. In the course of this chapter 
we also prove two results stated but not proved by Biilow 
et al. in [3]. These are nointed out. Also we link our 
dimension of a family to what they call the'number of free 
parameters)

Chapter Three studies properties of the decomposabillty

works where it is mentioned (i.e. [3] and [13]). We then 
place families in the topological context of [1 2] , proving
that the Face Theorem can be extended

of crystallographic point groups which are of particular
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importance in higher dimensions hut which barely show up, 
if at all, in the first three dimensions. An example of 
this is the relationship between the decomp^sability of V 
over H and that of the rational lattice QT over H, discussed 
in Section 3.2. In two. and three dimensions, V is 
decomposable if and only if QT is, but we see that this is 
not true for n even, nk4. We prove it is true for n = 5, 
however. Chapter Four relates the work in Chapter Three to 
the decomposition of families. We discover that crucial 
to a description of decomposable families in higher dimension» 
are the notions of what we call 'typically orthogonal 
decompositions' and'inclined point groups'. We give some 
general criteria for determining these. We include rather 
a large number of specific higher dimensional results in 
order to assess how useful the properties we have isolated 
are. There are general results also. In particular, we 
reduce the problem of determining the descendants of one, 
two and three dimensional families to a problem involving 
only the partition function.

In Chapters Three and Four, as in the rest of the thesis, 
a knowledge of all crystallographic groups and lattice types 
in one, two and three dimensions is assumed. Nevertheless, 
results for these are found in some of the tables in Chapter 
Four for reasons of completeness. We make a specific 
point of not using the four dimensional results of Bulow et 
al. in [3~\ , in order to demonstrate how our results work.
We do use the names for four dimensional families coined 
in [i]» solely to show how our results relate to the lists 
in [3]of four dimensional families. Also the table at the 
end of Section 3.1 , which is for illustration only, uses 
their results. We should point out, however, that many of

±
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the ideas in Chapters Three and Pour were inspired by 
studying the list of results in [V].

Chapter Five deals with the problem of the stability 
of symmetry in lattice hyperplanes. It appears that there has 
been a recent revival of interest in problems concerning 
lattice planes in three dimensions, and we venture to 
hope that our work here might be of some physical relevance. 
Possible three dimensional applications were mentioned in 
the original paper on this subject ([11)).

For a given lattice T of rank three and rational plane 
W in three dimensions, several papers have presented methods 
of finding a basis or reduced basis of T O W  e.g. [6), [ll] ’ . 
These methods involve a great deal of computation and 
require either the lattice or the plane, or both, to be 
fixed. They give no real insight into possible general 
patterns in the behaviour of lattice hyperplanes. Our aim 
is to discover some general relationship between the Bravais 
classes of T and TOW. It is immediately dear that there 
is no simple direct relationship, as it is not difficult to 
establish, by considering simple examples, that any three 
dimensional Bravais class produces all five two dimensional 
Bravais classes by means of its lattice planes. Gruber 
gives some interesting examples relevant to this in [6l.

Given an n-dimensional Bravais class Bn and an 
(n-1)-dimensional Bravais class Bn_^, any attempt to describe 
those lattice planes in Bn for which Bn_1 occurs, Beems 
bound to lead us back to an algorithmic approach as in 
[63 i and hence to specialized situations. Instead we consider



here a related problem which has some chance of a general 
solution. Given that Bn_^ occurs on a rational plane for W, 
to what extent is it accidental ? In other words, is there 
a relationship between Bn , Bn_^ and the size of the set 
of small symmetry preserving perturbations of T which also 
preserve the symmetry of T H W  ? We show particular interest 
in the planes W for which the symmetry of Tr'vW is always 
preserved, since this corresponds to a structurally 
stable situation.

We formulate an approach to this problem in n dimensions, 
and present the corresponding solution in three dimensions, 
where we show there is a definite dimensional relationship 
between Bn , Bn_-j and the symmetry preserving set. We 
consider the results for the tetragonal, hexagonal and 
rhombohedral systems to be the most significant.
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CHAPTER ONE. BASIC PROPERTIES OF CRYSTAL LATTICES.

Throughout this thesis, V denotes an n-dimensional 
real vector space with scalar product, with n i l .

In this chapter, we consider some properties of crystal 
lattices which are of particular importance in the rest of 
the thesis.

We begin with a standard definition.

Definition. Let r e  Z, 0 i r £ n. Then T is a lattice of 
rank r in V if and only if it is a subgroup of V generated 
additively by r linearly independent vectors.

For r = 0, T = 0. For r > 0, T - £ £  ! £ Z^,

where {t1,...,t ^  C V is a linearly independent set, called 
a basis of T. For r > 0, T has more than one basis, but 
each basis has exactly r vectors.

A lattice is a discrete subgroup of V, by the following:

Proposition 1.1. [14; Theorem 3»p.2753» Any non-empty
subset of a lattice T has a vector of minimum length.

The next proposition is essentially part of a theorem of 
Bieberbach ( see [jl5; Theorem 3.2.1., p. 10o3) but it is 
■̂ elt that our elementary proof is an advantage.

Proposition 1.2. Any discrete subgroup of V spanning a 
subspace of dimension r is a lattice of rank r. In 
particular, the set of translations in an n-dimensional 
space group is a lattice of rank n.

To prove this, we need:
Lemma 1.3. Let D be a discrete subgroup of V and suppose



^d1,...,dk} C D. ^If there exist s1t...,sk € R, not all
zero, such that ^  si^i = then there exist p^,...,pk £ Z,
not all zero, such that ¿p,d. ■ 0,

i=1 1 1
Proof. By a well known result in Number Theory (see [8;
Theorem 201, p.17o]), for any & >0 there exist q fe Z, q £ 0,
and P1,...»Pk € Z, not all zero, such that Iqs.̂  - p̂ | < £ ,
1 ^ 1 <  k. Let d^ = q(^.sidi) - ^  Pidi* Then dg e D
and || d<- H S( II d-sll ) • Since D is discrete, for sufficiently 6 1=1 1 k
small S , dc = 0, giving TTp^d. = 0.

* i=1 1 i
Proof of Proposition 1.2. Let D be a discrete subgroup of 
V spanning a subspace of dimension r. If {x^,...,xr] is an
independent set in D, then the set A = [y  : y = S sixi» |s.jj<lJ
is bounded and it is easily seen that A O  D generates D as 
an additive group. Therefore D is finitely generated, since 
A is compact.

Let {d.,...,dk} be a minimal set of generators for D.
Clearly k i r. Suppose k > r. Then by Lemma 1.3 there existk

e  Z, not all zero, with SZp.d. = 0. Write this 1 K k-1 i=1 1 1
as qkdk = qidi assuming without loss of generality that
qk / 0 and q1 is the smallest positive q̂  ̂ for i = 1,...,k-1.
Choose m 2,...,mk_1 such that 0 ^  qĵ  + miq1 <  q1, 2 :£ i ^  k-1.
Write qkdk = q1d1 - m ^ d g  -  m ^ q ^  - ... - <**_•) +
(q2 + nigq^dg + ... + (qk_1 + mic_i<li)d]£_i i*e*
qkdk “ ^1d1* + q2,d2 + ••• + qk-1dk-1* Por 1 = 
each qA ' is nonnegative and less than q^. Repeat the
procedure to get a new set of generators , di**d2*»•••»dk-f ,dk* 
where qkdk = zd.̂ *; qk, z e Z\{0} and without loss of 
generality HCF(qk,z) =1. It follows that (j)dk € D

•»r=i



and hence that £d.j,.. ., dj^ is not a minimal set of generators, 
which is a contradiction. Therefore k = r and the result 
follows.

Proposition 1.4. Let W be a vector subspace of V. If 
T is a lattice of rank r, then T A  W is a lattice of 
rank not greater than r.
Proof. Clearly T A  W is a discrete subgroup'of V spanning 
a subspace of dimension not greater than r. Apply 
Proposition 1.2.

Definition. [M;p.27l3. A set {^,,..,1^ in a lattice 
T is primitive if it forms a basis for the lattice 
T n  W, where W is the vector subspace spanned by {t.j,... .

Proposition 1.5. [14; Theorem 2,p.272]. A primitive set
{t^,...,tk} in T can always be extended to a basis 

» » * » » tjç» tjj+  ̂» • • • » tr} of T.

We make the following standard definitions.

Definition. A linear transformation ô: V — vV is
orthogonal if and only if, for all x,y € V, <©x, ©y> = <x,y> .

We denote the group of orthogonal transformations by
o(v).

Definition. If T is a lattice of rank n in V, the 
symmetry group of T, denoted G(T), is {©eo(V) s ©T = t] .

The group G(T) is a discrete, and hence finite, subgroup 
of 0(V).

As discussed in the introduction to this thesis, we 
are interested in pairs (H,T), where T is a lattice of 
rank n in V and H is a finite subgroup of 0(V) acting

3
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on T. Clearly H £LG(T). We use the following equivalence 
relations, which appear in £13}.

Definition. The pairs (H^,T.|) and (H2,T2) are:
(i) arithmetically equivalent if and only if there exists 
a linear transformation 9 e GL(V) such that ^T 1 = T2

and = H2 ;
(ii) geometrically equivalent if and only if there exists 
a linear transformation 9 € GL(V) such that 9H 19_1 = Hg.

An equivalence class under (i) is an arithmetic 
crystal class. The set of them is denoted by

An equivalence class under (ii) is a geometric 
crystal class. The set of them is denoted by .

Definition. The lattices T^ and T2 are arithmetically 
(respectively geometrically) equivalent if and only if the 
pairs (G(T^),T^) and (G(T2 ),T2) are arithmetically 
(respectively geometrically) equivalent.

The arithmetic equivalence classes of lattices are 
called Bravals classes. The set of them is denoted by 8 , 

The geometric equivalence classes of lattices are 
called crystal systems. The set of them is denoted by £  .

For any n, the sets ,©,TS are finite (since the
number of n-dimensional space groups is finite). They 
have been fully described for n < 4  (see [ 2 ] ,  [3], [4] ).

Proposition 1.6. Suppose (H^,T^) and (H2,T2) are
geometrically equivalent pairs. Let QT^
t^ € Tj, m e  n } for j = 1,2. Then there exists 9  6 GI(V) 
such that 9>(QT.|) - QT2 and «pH.,9 “1 - H2 .
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Proof. Choose a basis of T.| and a basis
{t21, .  ,t2n} of T2. We represent H1 and H2 as groups 
It-l and f t 2 of integral matrices relative to these 
bases. TakeY^GL(V) such that = H2. Suppose
Yhas matrix F relative to { t ^ f...,t^n} and that E is 
the matrix of {t21,...,t2n} relative to {t11,...,t^n} . 
Then H2 has matrix representation E relative to
{t^} n . The equation Y H ^ -1 = Hg gives the following

3=1 r i nmatrix equation, relative to the basis it..,) :
13 j=1

F tf- jF "1 = E # 2E "1.

Now suppose = {A^ ,... ~
—1 —1where FA^F = EB^E j 1 < i < m. The equation 

X = \ l2, for which X = E-1F is a solution, yields
a system of equations given by:

XA1 - B^X = 0
x a 2 - b2x = 0 (*)

XAm " BmX = °-
2 2There are mn equations in n variables, xilc, 1 < i, k ^  n 

(where X = (xik) ). We denote by C the (mn ) x n matrix 
of coefficients. The matrix C has all integral entries and

o _ihas rank less than n , since X = E F provides a non-trivial 
solution. By elementary column operations, whose product 
we denote by an invertible matrix U with rational entries, 
we may reduce C to the form:

D = CU = / /_2

where r = rank C < n
((mn ) x r 

2
-1 nrThe entries of E- F form a vector in Rn , say b ,

where Cŝ  = 0. Therefore D(U £̂i) = 0. The first r
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coordinates of U must be zero, as the rank of C

n2is r. We choose a new vector si' in Rn , with the first
2r coordinates zero and the remaining n - r coordinates 

in Q and arbitrarily close to the corresponding coordinates 
in s. Then Ds' = 0 and C(Uj3') = 0. The vector Us* has 
coordinates in Q and is arbitrarily close to b . Its corres
ponding matrix S' satisfies (*), where det S', ^ 0 since 
S' is close to E~^F. We conclude that det (ES') £ 0 and 

(ES')#.,(ES'r1 = E ^ E -1.
Let J> in GL(V) have matrix ES' relative to {.ti ■)»••• •

Then 9^ 9“ 1 = H2 and it is clear that for all t^ 6 T^,
9t1 €. QTg. It is easily verified that 9 maps QT1 onto 
QTg. This completes the proof.

If T is a lattice of rank n in V and 9 G G L (V)>
then it is clear that J)T is another lattice of rank n.
If g 6 G(T), then 9g9~^ acts on 5>T but it may happen that
gjgqf1 0(V), in which case 9 g<jT̂  ̂  G(<J>T). For example,
if n = 2 and T is of class S, whereas 9T is of class
R, then the rotation through TT in G(T) becomes non-“ 7
orthogonal under conjugation by 9 .

Conversely, there may be elements © in G(<pT) which 
are not of the form for g © G(T). However, if
9  is close to L , this is not so,as we now show.

Theorem 1.7. Let T be a lattice of rank n in V. Then 
there exists S >0, depending on T, such that for all 
9  6 GL(V) with | 9 - L.| < S , G(9T) = 9>G(T)9~ 1 i\ Q(V).

To prove this we need two lemmas, the second dependent
on the first
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Lemma 1.8, For any lattice T of rank n in V, there exists 
CT > 0 with the following property: if ^J€GL(V) and 
II <pt || = || t || for all t G T with ftt|| <  Ĉ ,, then <p G 0(V).
Proof. Let (t.j,... , tn} he a basis of T. Put 
CT = maximum {.Util : t = + s^t^ ; s^s^ € {o,l},,
1 < it j & n} . We show that this works. Take € GL(V) 
such that ||<pt|| = Util for all t G T with Q ~fc Q < C^.
Then for all i, j ,
2 <9‘ti*<?t-j> = + tj),g>(t1 + tj)> - «ptjL,cj/c±>

= ^t^ + tj,t^ +

= 2 <ti,t;j>  .
Since t^,...,tn span V, the result follows.

Lemma 1.9. Let H(T) = (<pGGL(V) : 9 T = T} . Then 
there exists > 0 such that for all h 6 H(T)\G(T), B(hJip)AO(V)
is the empty set , where B(n, dt) = {9 €  GL(V) : I <p - h R < Dt}. 
Proof. Since T is discrete, T O  5(0,2Cj ) is finite.
Therefore we may define m^ = minimum {|tt^H - lltglll : 
t-ptg G  T nS(0,2CT), U -b11 ^ Ut2|} . Let MT= m i n i m u m ^  ,CT)

m t 
^  *

We show that this works.and put Dt

Take any h €  H(T)\G(T). By Lemma 1.8, there exists 
th e  T n  5(0,CT) such that ||hth || t  IJtjJ . Either 
llhth ll > - 2CT or ||hth|| <: 2Ct, so | || htj - ft th|| | > Mt.
For any 0 G 0(V), ft h - e ft >  ( -p-j ) || hth - ©th ||

T^,) |#1>thl - I® *hl|

■ < ra> U hM  -

•*hi
£  D,
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Proof of Theorem 1.7« Choose S >  0 such that if <9 € GL(V) 
and || <P - L || <  8 , then || (p “1eg> - ©|| <  Dj for all ©€. 0(V). 
This is possible because for all © e  0(V)f

II 9 " 1©<p - ©II <  H (p-1 _ L HU© 9 II + II ©II II 9  - LII
-  I 9 "1 - l lilt (pH + II9 - l ||.

We show that this S works in the theorem. Suppose 
II 9  - L II < S. Take g 6 G(9T). Then || cp—1g<f>— g || <  DT,
since g eO(T). But 9 ~ 1g 9 £H(T) , so <p"1g 9  eG(T) , by
Lemma 1.9. This proves that G(<pT) Q cpG(T)9"1 r\ 0(V). The 
reverse inclusion is clear.

Corollary. There exists & >0, depending on T, such that:
9 6  GL(V), || (p-L II <  8 and G(<pT) = 9G(T)V"1 for 

some Y G  GL(V) = >  G(9T) = CpG(T)<p-1.
Proof. Choose 8 as in the theorem. Comparing group orders 
gives the result.



CHAPTER TWO. CRYSTAL FAMILIES.

2.1. Functions of Positive Definite Symmetric Transformations.

We make the following standard definitions.

Definition. A linear transformation 9 : V — *V is 
symmetric if and only if ¿$v,w> = ^v,<pw> for all v,w e V.

Definition. A symmetric linear transformation p: V — >V 
is positive definite if and only if ^pv,v> > 0 for 
all v / 0.

We denote the set of symmetric transformations by 
Sym(V) and the set of positive definite symmetric transformations 
by Pos(V), where Pos(V) C  GL(V), but is not a subgroup.

It is well known that for p e. Pos(V) all the eigenvalues 
of p are real and strictly positive. Also. there is an 
orthonormal basis of V consisting of eigenvectors of p 
(by the Spectral Theorem). Suppose the eigenvalues 
of p are contained in some interval [a,b] and that f e c+[a,b] , 
the space of continuous, strictly positive, real
valued functions on £a,b] • If we choose a basis of V 
relative to which p has the diagonal matrix D(A^), then 
we may define f(p) in Pos(V) to have matrix Difi^)). This 
definition of f(p) is independent of the basis chosen, since 
f(p) equals P^f p)(p), where P^f p)(x) is a polynomial 
in R[xl chosen so that P^f 1 £ i i  n. If
p has k distinct eigenvalues (without loss of generality 

then P^f pj(x) has degre® k - 1 and is
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where /\ denotes omission.

Proposition 2.1. (1) For fixed p, the map from C+ {a,b3
to Pos(V) taking f to f(p) is continuous.
(ii) Por fixed f € C+(0,o°) , the map from Pos(V) to 
Pos(V) taking p to f(p) is continuous.
Proof. (i) The polynomial P^f p)(x) clearly depends 
continuously on f.
(ii) The polynomial P ^  pj(x) depends continuously on 
the eigenvalues of p. If p and q are close in Pos(V), 
so are their eigenvalues.

Definition. Let H he a subgroup of 0(V). The centralizer 
of H in GL(V).denoted C(H,GL(V)), is {<pe GL(V) : <ph = h 9  for 
all h £ H } .

The centralizers C(H,0(V)) and C(H,Pos(V)) are 
defined similarly. Note that C(H,GL(V)) and C(H,0(V)) 
are groups, but C(H,Pos(V)) is not.

Proposition 2.2. Suppose p €  Pos(V) and f €  C+fa,b3 , where 
{eigenvalues of p^ C. [a.,l>3- If P £ C(H,Pos(Y)), then 
f(p) e  C(H,Pos(V)).
Proof. Follows directly from the facts that f(p) = P ^  ,p)<>> 
and that if ph = hp then pmh = hpm , any m €  N.

For'a proof of the following standard result, see 
ĵ 7; Theorem 1, p. 169].

Proposition 2.3. (The Polar Decomposition).
There is a homeomorphism p  from the product space

0(V) x Pos(V) onto the space GL(V) defined by p  (©,p) ■ ©p.
-1 - 1 r  1The inverse is given by p ~  (<p) = (cpicp'ip) 7  , ((p'tp)1?).

Remark. The continuity of p andp~^ is not included in 
the proof in [̂ 7]. That of p  is obvious. That of ̂ 0”1
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follows from Proposition 2.1 (ii),

Proposition 2.4. Let and Hg be subgroups of 0(V) such 
that = H2 for some <p G. GL(V). If the polar
decomposition of <p is ©p, then p €  C(H.j ,Pos(V) ) and
©H.,©.-1 H,2 *
Proof. Take h^ €  . Thencph^-1 € 0(V) so
(<ph1<Ç>-1 ) • = (Çh^“1)”1. This gives (cp-1 J •h1 • Ç’i p h ^ 1 = L 

and hence (ÿ<ph1 = ĥ cp'tp. However, p = (<p'(p) ^ by 
Proposition 2.3 and by Proposition 2.2 we get p €. C(H1 ,Pos(V)). 
It is immediate that QH^©-  ̂ = H2.

2.2. Crystal Families.

Before defining a crystal family, we need to establish 
the existence of a lattice of minimal symmetry in each 
arithmetic crystal class. This is assumed without full 
proof in [3] but proved injl3; Theorem 2.1, p. 26~], A 
different proof is given here, which is more in keeping 
with our geometric viewpoint. Throughout the remainder of this 
chapter, we deal with lattices of rank n in V.

Definition. Let A be an arithmetic crystal class in &■ 

and suppose the pairs (H^,T^) and (H2,T2) belong to it.
We write T1 ^  T2 if and only if there exists <p e  GL(V) 
such that <pT1 - T2, «pHjp-1 = Hg . ^ ( T ^ -1 2  G(T2).

It is clear that this defines a partial ordering 
on the set of lattices occurring in the pairs of A.

Lemma 2.5. The lattices T1 and T2 are in the same Bravais 
class if and only if T-j >  T2 and T2 >  T^.
Proof. This is clear from the definition of >  .
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Proposition 2.6. Each arithmetic crystal class contains 
a pair (Hq ,T0), where TQ is minimal for the partial 
ordering i.e. TQ T for all T occurring in pairs 
(H,T) of the class.
Proof. Since &  is finite, it is enough to show, by
Lemma 2.5, that if (H^.T^) and (H2,T2) are in an
arithmetic class, then there exists a pair (Hj ,Tj ) in
the class such that Tj <  T1 and Tj <  T2. .We know there
exists <p€r GL(V) such that (pT1 = T2, 9 Hi9-1 = H2* Suppose
©  has polar decomposition ©p. For k e N, we may form 
1 _ 1

p^ and p ^ G  Pos(V) by the method of Section 2.1.
Now p G  C(H, ,Pos(V)) by Proposition 2.4 and therefore 

1 _ 1 1
p^ , p ^ G  C(H^,Pos(V)) by Proposition 2.2. Consequently 

1 _ 1 1 
= (p^)H^(p and acts on (p^)T^. It follows that

(H^,p^T^ ) is arithmetically equivalent to However,
by choosing k sufficiently large, we can make pk\
arbitrarily close to L by Proposition 2.1 (i). So for 

1 1 1 
Ic E ~ £some kQ, G(p 0 ) = (p °)G(T.,)(p °) H  0(V) by Theorem 1.7.

It remains to show 
1

Putting Tj = (p ) ,  we have T^ •£ T-j,

T3 ^ T 2. Let H1' » (g 6 Gd,) : (pE°)g(p ^  G  0(V)} .

Then p ° G. C(H.j' ,Pos(V)) ?nd G(Tj) = H1 • by Proposition
1 V

2.4. It follows that p
1
E

(P^°)k ° £ C(H1',Pos(V)). We now
1 1
E_ -  E„ -1

have : (^p °)T3 = CpT1 = Tg ; (<pp °) - 9 ^ 9',-1 H

9G(T3)Cp"1 => © H 1 '©“1 0(V) and
1 1“ E “ E -1

(9P °)g (t3)(9p °)
1 1” E “ E -1

hence (9 P °)G(T3)(9p °) C  G(T2). This proves Tj ^  Tg.
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Remark. There is a small error in the proof of this 
result in £13^» which, however, does not invalidate it.
In the statement of Lemma 2.2(A), if H and G are groups 
of integral matrices, then "D(H) 2 fl(G) imples H Q G" 
is true only if G represents the symmetry group of some 
lattice.

By Lemma 2.5 and Proposition 2.6, there is a well- 
defined map^u: A  — v © ,  taking an arithmetic class A to 
the Bravais class of a minimal lattice occurring in A.

Let 1) : A — > he the natural surjection. Confusion
has arisen in crystallography because of the lack of 
a natural choice for a set X of crystallographic objects 
and m a p s X  and O' : B —> X which make the following 
diagram commutative:

A  - * U  *5

Such a set X and maps yU*, O' would induce equivalence 
relations on A  , and ©, the equivalence classes being 
in bijective correspondence with X.

Accordingly, Biilow , Neubiiser and Wondratschek in 
[3; p.519] define an equivalence relation on sK

(TT| :j\ -*■ A-) ) which in our terminology can be 
described as the weakest for which the maps 

/x' = TT! . / . ‘1 :B-* and -tf' = TT-j . i)_1 : $
are well-defined. This clearly gives a commutative 
diagram. An equivalence class of is a crystal family.

In view of our remarks, we can also define crystal 
families by using the weakest equivalence relation ~ 2 
on *§ for which IT 2 . l) . "1 is well-defined or by
using the weakest equivalence relation on B for
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S~t

which TTj „ytt . i) “1 is well-defined. It is easily

seen that the equivalence relation induced on s\- in 
either case is the same as that defined by Bulow et al.

We are interested in the relation ~  ̂  on B  . Again 
we call an equivalence class a crystal family and we denote 
the set of them by 3^ . We can readily describe IWe e<£uixiale«c«.

o r \  \oV"Wc«,S ~  j  4t> Wi ■VU.n'l'

generated by , where:

Definition. ~  T2 if and only if there exist geometrically 
equivalent pairs (H^.T^) and (H2,T2) such that:

is minimal in the arithmetic class of (H1tT^);
T2 is minimal in the arithmetic class of (H2,T2).

This is the characterization of a family which we use 
subsequently. It is immediate from this definition that 
each family of lattices contains whole crystal systems.
In general 3^ and do not coincide and this is why 
confusion has sometimes arisen, since an arithmetic crystal 
class docs not always to a
crystal system. Clearly any arithmetic class (and its 
associated space groups) belong to a unique family.
For n = 2, 3* = *6 but for n = 3, if TT®: “K  — > £  is the
natural surjection, there are two possible answers for 
Tie »/Ll . 0 -1 (¿), namely the hexagonal or the rhombohedral 
system. In [3], it is shown that, for n=4, 13^= 23, lt| ■ 33.

In [13], Schwarzenberger approaches the problem 
from the point of view of systems, using the natural 
surjection B — *■ G  and a map from to G  which is 
defined by the existence of a lattice of minimal symmetry 
in each geometric crystal class. Families are then 
defined by the weakest equivalence relation on G  which 
makes the diagram :

'* • ✓
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A  - 5 U ,  2

commutative. This does have the advantage of producing 
a more natural map from S to J  than our TT^ . j x .. 0 
but there is some doubt about the proof in £13^ that this 
map exists. This proof contains several mistakes and 
gaps. Some explicit problems are the following.
(1) p.27, line 12. The statement "only a finite number 
of choices of integer n ^  are possible" is false.
(2 ) Lines 18-19. The statement " A (G .j ) 2  A (G 2 ) only 
if G1 S. G2" is false.
(5) Lines 24-27. There are two gaps here. First, it 
io not clear that the union Vj <pA(GQ) can be taken over 
the normalizer of H. Secondly, even if this can be done, 
what special properties of the normalizer are being used 
to justify V = U  <pA(GQ) ? Other problems in this proof 
could be mentioned and this is why our approach to families 
avoids the need for this result.

Problem. Prove or disprove the statement that each 
geometric crystal class contains a lattice of minimal 
symmetry.

We shall see in Chapters 3 and 4 that families are 
very useful for investigating lattices in higher dimensions.

2.3. The Dimension of a Family.
Definition. [l 2; p.328]. Let { e e n} be a basis of 
V. The unimodular group relative to {e.,...,en̂  is the
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subgroup of GL(V) consisting of those maps whose matrix 
relative to £e,|,...fen} is in Gl(n, z ).

Definition. [l2; p.328]. Two bases {e^,...,en\ and 
{f .j,... , fn} are unimodularly equivalent if and only if 
there exist a linear map <p belonging to the unimodular 
group relative to {e^,...,eni and c > 0  such that 
<pei = cf^, 1 < i < n.

We denote the set of equivalence classes by X n' . This 
is clearly in bijective correspondence with the set of 
all lattices of rank n in V, given that we make no 
distinction between a lattice T and multipl es cT, c >  0.
Since every lattice possesses a reduced basis (^12; Proposition 
2~\ ) ,  our definition of X  '' is equivalent to that in [̂ 12̂ , 
where is regarded as the unimodular equivalence
classes of reduced bases.

Definition. ( (l2; p.33oJ). Two points x* and y' in X n ' 
are orthogonally equivalent if and only if there exist 
bases {e^,,.,ej in x' and -{f-j,...,fn} in y* such 
that, for some 0  6O(V), ©e^ = f^, 1 ■£ i ^ n.

We denote the set of equivalence classes by X n- 
There is a natural surjection ^ n : X n  — ^ X n* Choosing 
any basis { e ^ e n  ̂ in V determines i~ map 
oC : GL(V) ont<V X n i taking <p to the class of
•fcpe.,,..., (pen^. The space ( X n> quotient topology of <  )

is then homeomorphic to V V , where ~  is the 
equivalence relation induced by oC . The quotient topology 
on <X n is independent of , for suppose we
take a basis b  e^,...,ysen } , with corresponding map
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: GL(V) °nt» X D- Then Y  where îg is the

homeomorphism of GI(V) onto itself given by right 
translation through y8. Consequently, the quotient topologies 
of oi and X  coincide. For this reason, we can choose the 
most convenient basis for any particular situation, since 
we are interested in the topology on <Xn, not the exact 
nature of

The map Tl: GL(V) — =*-GL(V)y^ is open since

TT-1(TT(W)) = 0(V).W.U, where U is generated by (R+)L and the
unimodular group relative to {e1,...,en^. Since Gl(V) is
a topological group, 0(V).W.U. is open if W is open,
Consequently,^: GL(V) — > "C«*) is open, where T«* is
the quotient topology induced byoC,

If we now restrict oC to Pos(V) we still have an onto
map «rf|: Pos(V) --since if <p © GL(V) has polar
decomposition ©p, then <*(<p) =«<(p). Moreover, (,/? f Tot|) is
homeomorphic to  Pos(V)yC» where is  the equ iva lence r e la t io n

induced by «il. The map «¿|: Pos(V) — *• (X_, ̂ oc) is open,
since ifyOgi GL(V)— |*Pos(V) takes <p to its positive definite

9 —1symmetric part (<p'<J>) , we have («»c|) (W) = (< < (^ )~  )(W), for 
any W CPos(V), Since o( is open and p 2 is continuous, o{| is 
open. It follows that let = Xki . We shall regard ̂  as a 
quotient space of Pos(V), whereas in 1̂2̂  it is regarded as 
a quotient space of GL(V),

Notation. Let G be a finite subgroup of 0(V). We denote 
byJ^n(G) the subset o f c o n s i s t i n g  of those classes which
contain a basis determining a lattice with symmetry group G.cUss.«s ®fBy Proposition 2.4, ¿ n(G) consists of theLiattices in the 
system determined by G,

We give X n(G) the subspace topology from
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The following is essentially the same as Proposition 6 

in [l2; p.331^|, hut a different proof is given here. Also, 
a difficulty in the proof in Ql2^ is indicated.

Proposition 2.7. Each point x in £ n (G ) has a neighbourhood 
homeomorphic to a neighbourhood of L in C(G, Pos(V) r\SL(V)).
In particular, ¿Cn (G ) is a smooth manifold.
Proof. We assume that x = (<4|)L. Suppose p^ and p2 belong 
to Pos(V), with || p 1 - L || and ||p2 - L (| arbitrarily 
small, such that («¿IXp -j) €: X n(G) and (oiO(P2) e  <?n (G).
By the Corollary to Theorem 1.7 and by Proposition 2.4, 
p1 and p2 G  C(G, Pos(V)). Suppose moreover (<*l)(p.j) = (°il)(P2)» 
Then there exist © G  0(V), c > 0 and u € GL(V), where 
u is unimodular relative to a fixed basis in x, such that 
cp.,u = © p 2. Since || u — ©  I) = ||(1) P-j_1©P 2 “ ©II* which
is small, we know, by lemma 1.9, that u G  0(V) and hence 
u G  G. Thus p.u = up 1 and cp1 = ©'p2, Q' G  0(V), 
giving cp1 = p2, since p^, p2 G  Pos(V).

Consequently, there is a neighbourhood W of L in 
Pos(V) such that ot| maps W OC(G, Pos(V)) onto 
<-i|)(W) n  ofn(G) and for p.,, p2 G W OC(G, Pos(V)),
(ot| ) (p^) = (oi|)(p2 ) if and only if cp^ = p2, c >  0. We 
know oil is open. It is easily checked that its restriction 
to W O  C(G, Pos(V)) is open. We can then deduce that 
(ci|)(W) O  ô n(G) is homeomorphic to the quotient space 
(W OC(G, Pos(V)) ̂  (H+)L ’ which in turn is dearly

homeomorphic to a neighbourhood of L in C(G, Pos(V)O SL(V)). 
This completes the proof.

Remarks. In the proof of this result in [12], some result 
like our Theorem 1.7 is needed several times but is 
not quoted. This omission seems to occur directly because
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of the error In lines 9-10 on p.329 which read: "If 
€r GL(V) then the lattice oil ... has symmetry group 

consisting of all orthogonal maps of the form for
some # in the symmetry group of T. •' Clearly "consisting 
of" should he replaced hy "containing."

Notation. If B e ®  , we denote hy the space of all
points in £  whose lattices belong to B.

If F e  3p , we denote by 0£n'F the space of all points 
in whose lattices belong to F.

By the Corollary to Theorem 1.7, if B e ®  is in 
the crystal system determined by G C  0(V), then 
is open in o£n(G). We may write

vO k j) Bj£ n<G> " U  <4i*1

where k e N, each Bĵ G  H3 and each «4* * is open and
closed in <£n(G) ( LJ denotes disjoint union).

Similarly for F €  ÿ  we may write

U  oin<Gi> »

where k & N.

Proposition 2.8. Each oCn(Gj.) °Pen (and hence closed)
■<” JE.’-"

In order to prove this we need two lemmas.

Lemma 2.9. For-a pair (H,T), T is a minimal lattice in 
the arithmetic crystal class determined by (H,T) if and 
only if C(H, Pos(V)) » C(G(T), Pos(V)).
Proof of Lemma. Only if. Let T be minimal in the 
arithmetic class of (H,T). Since G(T) 2. H,
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C(H, Pos(V)) 2. C(G(T), Pos(V)). Suppose there exists
p in C(H, Pos(V)) which is not in C(G(T), Pos(V)).

1
By taking the function p (k e  N) of p for sufficiently

1 1 _ 1
large k, we can ensure that G(p^ T) = (p^)G(T)(p ^ ) O0(V),

1 _ 1
by Theorem 1.7. let H' = {g € G(T) : (p^)g(p E ) G 0(V)} .

Then p £  C(H', Pos(V)) by Proposition 2.4. However,

H ’C  G(T), since p & C(G(T), Pos(V)) and hence 
1 ̂  1

pE 4- C(G(T), Pos(V)). Therefore G(p^ T) C  G(T). Since1 *
t:p G  C(H, Pos(V)) (by Proposition 2.2), we have a pair 

1
t:(H, p T) contradicting the minimality of T.

If. Suppose C(H, Pos(V)) = C(G(T), Po s(V)) but T 
is not minimal. Let T^ be minimal with = T-| *
9  H9 - 1  = H 1 C. 0(V), 9 G ( T ) 9 ~ 1 ¡3 G(T1>. If 9  has 
polar decomposition ©p, then p G  C(H, Pos(V)). But 
p 6 C(G(T), Pos(V)) would imply 9 G ( T ) 9 _1 C  G(T1).
Therefore, p ̂  C(G(T), Pc s(V)) and C(H, Pos(V)) ^  C(G(T), Pos(V) 
which is a contradiction.

Remark. If T is minimal in the class of (H,T), it is 
not true in general that C(H, 0(V)) = C(G(T), 0(V)), and 
hence not true that C(H, GL(V)) = C(G(T), GL(V)). For 
example consider a pair (H,T) in the class (¿, S) for n = 2. 
Then G(T)=4mm and T is minimal in the arithmetic class of 
(H, T). However, C(H, 0(V)) = S0(V) (- 0(V) H  SL(V)) 
whereas C(G(T), 0(V)) = (l , - l}. Nevertheless,
C(H, Pos(V)) = (R+)l = C(G(T),Pos(V)).

Lemma 2.10. If the lattices T^ and Tg belong to the same 
family, then there exists 0 €  0(V) such that 
e(C(G(T1), Pos(V))e" 1 = C(G(T2), Po s(V)).
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Proof of Lemma 2.10. For H1, H2 £  0(V) with <pH.j<p -1 = H2, 
we have 6(C(H1t Pos(V))© -1 = C(H2, Po s(V)), by 
Proposition 2.4 (where <J> has polar decomposition ©p).
The result now follows from the definition of a family and 
lemma 2.9.

Proof of Proposition 2,8. Take x̂  ̂£ <£n(G^) and any 
lattice T^ determined by x^. Then there is a neighbourhood 
UiT^) of L in Pos(V) such that for p £ U(T^) ,

GipT^ = pGiT^p-1 n  0(V), by Theorem 1.7. Suppose
pT^ is in the family P. Put = { g €  GiT^) : pgp-  ̂ e  0(V)^
Then p e C(Hif Pos(V)) by Proposition 2.4 and GipT^ = H^.
Prom Lemma 2.10, CiG^), Pos(V)) = C(Hif Pos(V)) by
a dimension argument. Therefore, p ©C(G(T^), Pos(V))
and G(pT^) = 0(1^ = Hi. Consequently,

(•M)(U(T±)) n  £ nF c  £ n (G ± ) .

However, (ot|)(U(T^)) O  o£nF is a neighbourhood of 
x^ in o£nF since we know <»£l : Pos(V) - > £ n is open.
This completes the proof.

We have now proved:
Theorem 2.11. For any P £ Jr , £ nF is a smooth manifold 
whose dimension equals that of C(G(T), Po s(V) r\ Sl(V)), for 
any lattice T in P.

Notice that this theorem and Proposition 2.8 imply 
that, topologically speaking, a family is not much 
"bigger" than a system.

We shall call the dimension of «¿!nF "the dimension 
of the family P." By lemma 3.. 9, it also equals the 
dimension of C(H, Pos(V) C\ S1(V)), for any pair (H,T)
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determining a geometric crystal class belonging to P.

Remark. Sometimes it is more convenient to consider 
the space A  n , which is also a space of equivalence 
classes of bases under unimodular and orthogonal 
equivalence, but with a weaker definition of unimodular 
equivalence. For A  n» we distinguish between a lattice 
T and multiples cT, c > 0. All the results of this 
section follow through for A n in a similar way. The 
manifolds A nB, A n(G) and A nF are, however, 
modelled on C(G(T), Pos(V)) and hence have dimensions 
which are one larger than those of their counterparts

¿ n B* / n (G) and <2nF*
We now establish the connection between the dimension 

of a family as we have defined it and what Bulow et al. 
in [3] define as "the number of free parameters of 
a family."

The arithmetic approach in [3] uses, instead of a 
pair (H,T), an integral matrix group "ft representing H 
relative to some fixed basis {t^,...,tn} of T. The 
space S I ( f t )  of all symmetric matrices S such that 
S'S'S = S, for all e ' f t , is then a subspace of the 
vector space of all symmetric matrices. Bulow et al. state 
In without proof that the dimension of IT ("ft) is the 
same for all arithmetic classes in a family, and they call 
this dimension "the number of free parameters of the family." 
The following proposition shows the connection between this 
number of free parameters and our dimension of a family 
and also, in view of the results in this section, establishes 
that dim S ) - ( - f t ) is an invariant of a family.



Proposition 2.12. Let (H,T), »• • • »tn^ and f l ( f t )

be as above. Then _Q(i£) r~\ Pos(n, R) Is homeomorphic 
to C(H, Pos(V)), where Pos(n, R) is the set of positive 
definite symmetric matrices over R.
Proof. Define yS : C(H, Pos(V)) — > Pos(n, R) by

(iS(p))ia = •«i'pt̂ , pt^> . For p £  C(H, Pos(V)) the group 
H equals pHp“ 1 and so has matrix representation f t  relative
to {pt1 ... ptn} . Since H £0(V), V ( / 3 (p ))$ = /3 (p)
for all 1 6 if , so y3(p) e  C l i f t ) .  Hence f t maps 
into - C l i f t )  O  Pos(n, R).
jQ is one-to-one. Suppose y3(p^) = /3 (P2 )• Then 
^ P l V  p^tj1̂  = ^pgt^, pgtj"^ all i, j € 
and therefore < p 1 x, p ^ >  = <Tp 2x» P2Y^> a 1 1 x » Y £ v»
giving <x, y >  = <TP2P1-1x, P2Pi_1y >  a 1 1 x» Y €  V.
Therefore p2P^~1 G  0(V) and p2 = p1 by the uniqueness of 
the polar decomposition.
p  is onto. Take S G XI ( f t , ) O  Pos(n, R). Choose 
n independent vectors v^,...,vn in V such that S^j = ^ vi» *
1 i i, j < n. Define (p G GL(V) by 9 ^  - vA, 1 <  i ^  n.
Suppose (J> has polar decomposition ©p. Then
Sij = ^ <i)ti» = ^P*!» * The 6rouP PHP~ 1
has matrix representation f t  relative to £pt.j,... ,ptn^ 
and since S G n < « > ,  pHp- 1  is contained in O(V).
Therefore, p G C(H, Pos(V)) by Proposition 2.4 and S = yQ (p).

The maps A and /} ” 1 are clearly continuous.
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CHAPTER THREE. THE DECOMPOSITION OF
CRYSTALLOGRAPHIC POINT GROUPS.

3.1. The Decomposition of Three Representations Associated 
with a Pair (H.T).

We use the following standard definitions in relation 
to a left module M over a ring S with unit, M t  0.

M is reducible if it has a proper non-zero submodule. 
Otherwise, M is irreducible.

M is completely reducible if every submodule K of H is 
complemented i.e. there exists a submodule K' such that 
M = K ©  K'.

M is decomposable if there exist submodules M^, Mg, both 
non-zero, such that M = M^ ©  Mg. Note that henceforth 
whenever we write M = M^ ©  ... ©  M^, we assume that each 

is non-zero, unless specifically stated otherwise.
The decomposition M = M1 ©  ... ©  Mk is a complete 

decomposition if each Mi is indecomposable.

We use the following standard term.

Finite groups HSO(V) occurring in pairs (H,T) (i.e. subgroups 
which can act on lattices of rank n) are called 
crystallographic point groups.

For a pair (H,T) the lattice T is a free Z-module of 
rank n and corresponding to the left linear action of H on T 
we have a faithful representation of degree ns
(i) TTZS H — yGL(T), where GL(T) is the group of 

Z-automorphisms of T.



By choosing a basis for T we obtain a matrix 
representation Pz: H — *-GL(n, Z). We can replace Z 
by R or Q to get:

Pq ! H — ► GL(n, Q);

PR : H — *■ GL(n, R).

The representations Pq , Pr may be regarded as the 
matrix representations derived from:
(ii) TTq : H — >GL(QT);

(iii) TTr : H — >GL(V);

where QT is isomorphic to y <2̂  T and is defined in the 
statement of Proposition 1.6 - it is a vector space 
of dimension n over Q, by Lemma 1.5.

Associated with the representations (i), (ii), (iii) 
we have: (i) the left ZH-module T, of Z-rank n;

(ii) the left QH-module QT, of Q-dimension n; 
(iii) the left RH-module V, of R-dimension n; 

where ZH, QH and RH are group algebras.
we denote these modules by RT, RQT, jjV. In 

general, the decomposition properties of these three 
modules are different. It is true, however, that 
rT decomposable => RQT decomposable = ^ H V decomposable,

since if- RT = T., ©  ... ©  Tk then RQT « QT1 ©  ... ©  QTk ,

and if rQT = M1 ©  ... ©  Mk then RV = RM1 ©  ... ©  RMk.
Let (SH, M) be either (ZH, T), (QH, QT) or (RH, V). 

Take any matrix representation Ps: H — ^-CLin, S).
If RM is decomposable then Pg(H) is conjugate in GL(n, S) 
to a matrix group H  whose elements are all of the form:



where A 1 is m x m (m £ 0), Ag is (n - m) x (n - in) 
and m is the same for each element. Conversely, if 
Pg(H) is conjugate to a group of this form then HM 
is decomposable.

Part (ii) of Proposition 3.1 (see below) establishes 
that in the case S = Q, M = QT, may be taken to be a 
subgroup of GL(n, Z) C  GL(n, Q). It is now easy to see 
that the "matrix group" definition of decomposability 
in [3; p.5263 corresponds to the decomposability of 
hQT.

Proposition 3.1. (i) If is a direct summand of
jjT and W = RT-j then W is a submodule of RV, = T A  W 
and rankz(T A W )  = dimRW.
(ii) If M is a submodule of RQT and W = RM, then W is a 
submodule of RV, M = QT H  W = Q(T A  W) and din^M = dimRW =
= rankz (T A  W).
Proof, (i) Since is a submodule of T as a Z-module,
T.| is free with rank r ^ n, as Z is a principal ideal 
domain. Let {t.|,... ,tr} be a basis. Then W = R{t^,..., tr} 
and W is clearly a submodule of RV of dimension r, by 
Lemma 1.3. Clearly, T^ S T O W .  Also, since {t^,...,tr} 
may be extended to a basis of T as a Z-module, T̂  2  T A W .
(ii) Let dirrigM = k, with -{x^,... (X^ a basis. Then 
W = R{x.j,... ,xk} and is clearly a submodule of RV.
There exist integers m 1,...,mjc such that {m.jX.j,... .m^x^ C T  A  
By Lemma 1.3» {m^x^,...,mkxk} is a basis for W. It
follows that M = Q(T A  W) and din^M ■ dimRW = rankz(T A  W). 
Clearly, Q(T A  W) yi AW. If x 6 QT A  W, there exists 
m € Z such that mx € T A  W, giving x € Q(T A  W).
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Proposition 3.2. (1) The modules HQT and HV  are 
completely reducible.
(ii) A complete decomposition of ^QT (respectively ^V) 
is unique up to order and QH- (respectively RH- ) isomorphism 
of the summands.
Proof, (i) The modules both satisfy the conditions 
of Maschke's Theorem (see [5; p.883).
(ii) The modules both satisfy the conditions of the 
Krull-Schmidt Theorem (see [5; p.833)» since their 
submodules, being vector subspaces, must satisfy both 
chain conditions.

By (ii), any complete decomposition of jjQT 
(respectively ^V) has the same set of associated Q- 
(respectively R-) dimensions for the summands. If the 
k-tupleof dimensions is (n1,...»n^), where we specify 
n^ > n2 >  ... >: nfc to get uniqueness, then we call
(n^,...,nk) the decomposition type of fiQT (respectively HV). 
We abbreviate this to DT in the sequel.

In general, ^T is not completely reducible. For 
example, let n = 2 and let T be of class D, with 
H = G(T) - this is of class 2mm. The lattice of rank 
1 lying in a mirror line is a non-zero proper submodule, but 
is not complemented.

Also, HT does not satisfy the conditions of the 
Krull-Schmidt Theorem, since T Z> 2T 5  3T 3  ... is an 
infinite descending chain of submodules, for any H.
As we might expect, there are cases when different complete 
decompositions of HT have different rank types, and we 
cannot define a decomposition type for HT in general.
Biilow et al. in \z>i p.527] note this fact, but produce



The following, for n = 5, seems to he one of the simplest
no examples when the rank type is not well-defined.

T is generated by e.j, eg, e^, e^, e^, f .j ,fg, where 
{e1....e5} is a basis of V, f1 = .̂(ei)+ £ (e5),

f 0 = 1 (e9)+ 2(e.) + 1 (er) and the quadratic form Ac. ^  c. ^ 4 7̂  0

( = < e if e ) of {e1,...,e^\ is j

A (a e 
e b 
0 0 
0 0 
0 0

0
0
c
0
0

where

a,b,c,d are arbitrary strictly positive real numbers, 
e / V  at) .

We denote e^,e2.e^,e^,e^ by (1 0 0 0 0), (0 1 0 0 0)

( 0 0 1 0 0 ) ,  ( 0 0 0 1 0 ) ,  ( 0 0 0 0 1 )  respectively.
They form a unit cell { ¿ V i -  0 * 1 * 1 } whose

interior (or "centring") points are ( ^ 0 ^ 0 0 ) ,  (0 j 0 |

(° f 0 7 |), <7 I 7 7 §>• This verifies
that T is in fact a lattice, since it is discrete (see 
Proposition 1.2). We can choose H CL 0(V) acting on T 
to be the product of: {(.} on Rle^eg] ; , - ( . }  on R (e^ ;
3m on R{e^,e^^ . Let T^ denote the rhombohedral lattice 
of rank 3 generated by egjS^.e^fg and let Tg denote 
the diamond lattice of rank 2 generated by e^,e^,f^. Then 
HT = T1 ©  Tg is complete with ranks (3, 2).
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Now put e1* = (1 1 0 0 0), e2‘ = (3 2 0 0 0).

Since det ^^ = -1, T is generated by •, e2', e^,

e4, e5, f1# f2 . let e1> - (1 0 0 0 0 )', e2 ' = (0 1 0 0 0)•,

e5 = (0 0 1 0 0 )*,  e4 « (0 0 0 1 0) ' ,  = (0 0 0 0 1) ' .

The unit cell formed by e^', e2', e^, e4, e^ has 

centring points (0 \  \  0 0)', ( 0 ^ 0 ^ ^ ) ' ,  (O j 0

(0 ^ ^ ^ j)1, (0 ^  ̂  ̂  1 • Let T.|1 denote the lattice
of rank 4 generated by e2', e^, e4, e^t f^, f2 and

T2• the lattice of rank 1 generated by e^'. Then 
HT = T.J* © T 2 ' is complete with ranks (4, 1) £ (3, 2).

We omit the proof of the following straightforward 
result:
Proposition 3.3. (i) If (H^, T.j) and (H2, T2) are
arithmetically equivalent pairs, then any (p in GL(V) 
satisfying ^)T1 = T2 and <pH.j<p -1 = H2 takes a complete 
decomposition of H T1 to a complete decomposition of

H2T2
(ii) If (H.j, T^) and (Hg, Tg) are geometrically equivalent 
pairs, then any <p in GL(V) satisfying <p(QT.,) = QTg
and = H2 takes a complete decomposition of
„ QT, to. a complete decomposition ofXI « I H2QT2. Any <p

in GL(V) satisfying (pH^ “1 = H2 takes a complete
decomposition of „ V to a complete decomposition of u V.

H1 h2

Proposition 3.4. Let (SH, M) be either (ZH, T), (QH,QT)
or (RH, V). Let T be minimal in the arithmetic crystal
class of (H, T). Then HM - M1 ©  ... ©  Mk is complete
if and only if q (T)M = M1 ©  ... © Mk is complete.
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Proof. It suffices to show that if = M1 ©  ... © ,  
then q (T)M = M1 ©  ... ©  M1 . Suppose HM = M., ©  ... ©  M-ĵ

is a decomposition contradicting this. Then without 
loss of generality, we may assume there exists g1 G G(T) 
and m^ € M1 such that g^m^)  ̂M.p For S >-0 define 
<ps in OI(V) by S(lKl) ® l ( „ 2 e  ... ®Hj)-
Then ( )H( <p$ )-1 = H and (H, Cpg T) is arithmetically 
equivalent to (H, T). Also,by Theorem 1.7, if 5 is 
chosen sufficiently close to 1, G(<9fcT) = (<Pg)G(T)(tpg) 1 O  0(V). 
Let g^(m^) = x1 + y 1? where x1 6 M1, y1 e  M2 € > . . . © M1 , 
y1 ¡4 0. Then (<pg )g.|(<Ps = (cpgjg^-l m.|) =

° xi + \  y-j) = xi + (■£) y<\- Now 

||((PS)g1( ^ ) " 1('n1)|| 2 -  ll"MI 2

= l[(<Ps)g1«J>s)'1('nl>l[ 2 - IUiCmi)|| 2

-  Kx i + <T) y i l l 2 "  Hx i + y i l l  2 

= 2 ♦

^ x-i»yi> _i _ cThis is 0 only if ■ - L = -----, but we
li y -,11 2 28

can choose 8 avoiding this and still arbitrary close 
to 1. Consequently, for appropriate 8 > 0,
(<Pg)g1(98)"1 £  0(V), giving G(9g T) ̂  ^ G d Jicpg )_1, 
which contradicts the fact that T is minimal.

Corollary. (Also uses Proposition 3.3(ii)). The DT
of „V and „QT is the same for all geometric crystal classes n n
in the same family.
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We are mainly interested in the decomposability of 

HQT, although we shall also use that of ^V. The 
decomposability of ^T is much harder to analyse as 
jjT lacks complete reducibility and the unique decomposition 
property. Also, ^T has a lower occurrence of decomposability 
e.g. for n = 3, HQT is decomposable for 27 of the 32 
geometric crystal classes. Of the 58 arithmetic crystal 
classes belonging to these 27, ^T is decomposable for 39,

The decomposability of ^QT and for n = 2,3,4, 
where the geometric classes are known, is summarised 
in the following table.t The last row (n = 4) uses the 
list of geometric crystal classes in 4 dimensions given 
in [3] and also some of our later results.

V» Number of Geometric 
Crystal Classes in Total.

Number of Geometric Crystal Classes for which jjQT is
Decomposable.

Number of Geometric 
Crystal Classes for 
which jjV is
Decomposable.

2 10 4 4
3 32 27 27
4 227 153 161

In the next section we discuss the implications of 
the difference between the last two numbers in the table.

3.2. Some Results on the Relationship Between the 
Decomposability of HQT and HV.

Whenever HQT is decomposable, we may regard H 
as a subgroup of the product of lower dimensional



crystallographic point groups, by Proposition 3.l(ii) - 
hence H is, in a sense, not a new crystallographic point 
group. However, HQT is in general not an absolutely 
irreducible QH-module and there are crystallographic 
point groups H for which is decomposable but
QT is not. We shall see that the first of these H

occur for n = 4. Although we may regard H in these cases 
as a subgroup of the product of lower dimensional groups, 
not all of these are crystallographic point groups, as 
we now show.

Proposition 3.5. Let H be a crystallographic point 
group acting on T. Suppose = v-j ©  .... ©  Vk where
for 1 < i < k, dim V, = n.. If H.| is a crystallographic

point group in V.̂  for each i, then HQT has a decomposition 
with dimensions (n^,...,nk).
Proof. For each i, let T^ be a lattice of rank n^ in 

on which Hjv acts. Let T' be the lattice generated 
by : 1 < i £ k }  . Then T' is of rank n,
hT* = T1 ©  ... ©  Tk and HQT' = QT1 ©  ... ©  QTk . However, 
(H, T) and (H, T *) are geometrically equivalent and 
Proposition 3.3(ii) gives the result.

Terminology. Suppose GL(V). Then <p extends to a
map <pC in GL(V + iV), where <p°(x + iy) = <px + i (py.
If A is a non-real eigenvalue of (p and xQ + IyQ a 
corresponding eigenvector, then xQ and yQ span a 
2-dimensional subspace of V left invariant by 9  * We 
call the sum of such subspaces over all eigenvectors of A 
the eigenspace of A  in V. This is the same as the
eigenspace of the complex conjugate of A  . If A  is a real



eigenvalue then, as usual, the eigenspace of 'X is 
Ker( $  - ).
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The following lemma is a consequence of the 
Spectral Theorem for normal operators.

Lemma 3.6. ( [7; §81, p.162]). Let ©€0(V). Then
the eigenspaces of ©  in V are mutually orthogonal and 
span V.

Proposition 3.7. Let T be a lattice of rank n in V 
and let g €  GÎT). Regard two eigenvalues of g as equivalent 
if they have the same order. Suppose there are m equivalence 
classes of eigenvalues, and that the sum of eigenspaces 
for the i class is E^. Then rank (T O E i) = dim E^,
1 < i ^  m.
Proof. By Lemma 3.6, V = E1 ©  ... ©  Em . Let dim E^ = n^,
1 i <  m. We may assume without loss of generality that 
k.j kg <  ... <  km , where k^ is the order of the ith

independent set, otherwise T has rank less than n. Let

class. Consider gkl £G(T).
1

and <gkl)| x fixes no points but 0. There is a set of

n - n^ vectors in T whose projections into form an

be such a set. Then

is an independent set in T n  E^ since if

0, then

giving lj = 0 all j, since the projection of 
n-n.\--y I •x  . into B1 must be 0. Consequently, rank (TnE-j) ■ dim
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There is a set of vectors in T whose projections

an independent set in T O  . Therefore rank(T = dim E^.

Remarks. (1) If we consider the E^'s to be simply 
eigenspaces, this result does not hold.
(2) This proposition is the generalization of statements 
like (in 3 dimensions): "the plane perpendicular to a 
non-trivial rotation axis contains a lattice of rank 2"; 
"a mirror plane contains a lattice of rank 2."

Corollary. Suppose ©  V2, where (H, T) is
a pair. (Recall that in writing jjV = ©  V2 we assume

of order k, then HQT is decomposable.
Proof. There exists t €  T t £ 0, by Proposition 3.7.

„QT. Hence UQT is reducible and therefore decomposable n n
by complete reducibillty (Proposition 3.2(i )).

set. We may write sj = + ej* where f^ €  Ê " , e^€  E^ f. £  E^,
for T A  E-j*"1 ■£: j i  n ^  Choose a basis v1,...,v]

k 1and write fs = a n v, . Now (g 
J 1=1

Now (g )fj - fj =fj ■ ‘S 1>*J - SJ e  T

and also (g )fj - f^ Since each

1(g )v^ - is in '-F* each a ^  is rational. Hence there 

exist q^,...,qn in Z \ (oi such that {q1f^,...,qn fn \ 

is contained in T, meaning that {^iei»***»^n en l is
1 + 1 »•••»

Now repeat the argument for e 2 and the lattice T A  E.jL

t

The module QH{t} is a non-zero, proper submodule of

1 T m
•t



Theorem 3.8. If (H, T) is a pair and has a decomposition 
with dimensions either

(i) (n - 1 , 1 ) ,  n 2: 2

or (ii) (n - 2, 2), n odd, n S’3, 

then jjQT is decomposable.
Proof. (i) Let HV = Vn-1 ©  V1, dim Vn-1 - n - 1, dim V1 - 1.

Let Hq = {h € H : h ^  = L , H1 = { h €L H : h ^  = - Ly^
Then H = HQ U  H.. If for all h 6  HQ, h|y = l y , 

u vn-1 n-1
and, for all h € H., h|v = - Uv , then H = {l , -l_}

and HQT is clearly decomposable (HQT = Q{t.^ ©  ••• ©  Q
where {t1t...,tn} is a basis of T). If this is not true, 
the Corollary to Proposition 3.7 gives the result.
(ii) Let HV = Vn_2 ($> V2, dim Vn_2 = n - 2, dim Vg = 2.

Since n - 2 is odd, h|.r has an eigenvalue 1 or -1 for all,vn-2
h€H. If H|y always has real eigenvalues, then Hjy

is of class 1, 2, m or 2mm, V9 decomposes, and we are in “ ~ ~ H
case (i). If, for some h G  H, h[„ has a non-real eigenvalue,

' v2
use the Corollary to Proposition 3.7.

Remark. It follows immediately that for n = 2, 3 or 5, 
jjY is decomposable ^QT is decomposable.

In order to treat the case when jjV has a decomposition 
with dimensions (n - 2, 2), n even, we need to consider 
a special type of crystallographic point group. Suppose 
n is even (n >  2) and ©  G 0(V) is a transitive symmetry 
operation, in the sense of Hermann ¡̂ 9; p.14o] i.e. the 
eigenvalues of 0  are a full set of primitive roots of
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S-'T

unity, where $(k) = n ( &(k) is the Euler function denoting 
the number of positive integers less than k but coprime
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to k). Since nS2, all the eigenvalues of ©are non-real
*ln - ^ n,,e 7,e 7 , Theand we denote them by e , e ,

7  -̂"*1 -s -i1|jcharacteristic polynomial of Ô  is -pj- ( x - e  J)(x - e J

d-1
),

the kth cyclotomie polynomial, which has integral coefficients 
and is irreducible over Q. Choose t e  V such that t has

nnon-zero projection into each of the 2 eigenspaces

of ©  in V. Let W be the linear span of {t, ©t,..., © n-1t}.
By Cayley-Hamilton , ©  satisfies its characteristic equation
and hence W is invariant under ©. It follows that W » V. 
Therefore {t, ©t,..., © n-1t} is a basis of V and can 
be regarded as the basis of a lattice T g  of rank n.
Since the characteristic polynomial of ©  is in Z [x],
0  acts on T©, as does Hq = :  1 4  j i k } . The

DT of „ V is (2, 2,...,2) but u QT is indecomposable, sincene
©  cannot act on a lattice of rank less than n, as this 
would contradict the irreducibility of the k**1 cyclotomie 
polynomial over Q.

Let V1,.,.,Vn be the eigenspaces of ©  and let
?

** ♦ c»-,*”-1 * + c^x + 1 be the kth cyclotomie
polynomial. The matrix of ©  relative to the basis 
{t, 0 t .... © n_1t} is

0 T
0 c1 
0 c2 
0 "c.

0 0 0 1 cn-1



It is easily shown that

Let A  €. GL(V) have matrix, relative to the same basis:

However, the coefficients of the cyclotomie polynomial 
satisfy cn_m - cm, m - This is because the product

of ra primitive roots of unity equals the complex conjugate



of the product of the complementary n-m primitive kth roots.

Therefore Qp = p ©-1. It follows that ©(^SV^) = f i^ y  1 — i — 2* 
since vi»****vn are also the eigenspaces of ©~^. Also,
since © -1 p  & p = p e p , the eigenvalues of ©|py are the 
same as those of ©|y . Therefore, = V^, 1 ^  j <  g. 
Moreover, 0(V), since for 0 £  j,l ^  n - 1,

•¿P& ^t, y301t> = < © n-(3 + 1 )t, © n-<l+1 >t> •

= < e ~ h , er1 ^

= ^ © 1t, e^t?-
and {t, Qt,...,©n_1t } is a basis of V, Consequently, /3 €. G(T@)n n5 2The characteristic polynomial of is (x - 1) (x + 1) 9 so
p  has all real eigenvalues. If p \ y = Ly or . then

d 0 Vj
0 lv. = (©‘1)j y , which contradicts k >■ 2. So Pi v is a

reflection for all j.
For a given k with Ĉ (k) = n we have established the 

existence of two geometric crystal classes - that of
(He , % )  and that of ^H(©,^a)* Te^» where H© = zk »
H . \ = D9V. (the dihedral group of order 2k) We call(Bpfl ) ¿K
these the cyclic and dihedral transitive classes of k 
respectively. For n = 2, there are six such classes, 
given by..k = 3, 4, 6. These are j5, 3m, 4 , 4mm. 6 and 6mm. 
For n = 4, there are eight such classes, given by 
k = 5, 8, 10, 12. For cyclic and dihedral transitive 
classes, the DT of is (2, 2,...,2), but HQT is 
indecomposable.

Note that for a given k, the cyclic and dihedral 
transitive classes of k belong to the same family, since 
the discussion above shows that a lattice minimal in the
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fcL i**-'- -

arithmetic class of (1%, T©) is also in the arithmetic 
class of (H(e>/j), Te ).

Theorem 3.9. Suppose n is even (n > 2), (H, T) is a 
pair and has a decomposition with dimensions (n - 2, 2 ).
Then either ^QT is decomposable, or (H, T) belongs to a 
cyclic or dihedral transitive geometric crystal class. 
Proof. Suppose HQT is not decomposable. We know 
V = Vn_2 © V 2, where dim Vn_2 = n - 2, dim V2 = 2.

V9 is indecomposable, or Theorem 3.8 produces a 
H .contradiction. Also Hjy has an eigenvalue of highest 

order >  2. Suppose h^ €  H is such that h.j|y has

an eigenvalue of order k^. Suppose for hg G  H, hgjy 

has a non-real eigenvalue of order kg. Then H|y^ has

an eigenvalue of order lCM(k^, k2), which must equal k^. 
Hence (h2|y ) = (h-Jy )m for some m G. N, and

(hgh.j“’")^ = Ly . Since HQT is indecomposable, the

Corollary to Proposition 3.7 gives h2h^-m 
, . m
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H 
Now

and
of H, generated»1 . The cyclic subgroup j 

contains all the elements of H with non-real
“2
by h 1#
eigenvalues, again by the Corollary to Proposition 3.7.
If L and - L are the only possible elements of H with real 
eigenvalues, then H = y  Now h^ is a sum of transitive 
parts (any h € 0(V) acting on a lattice is such a sum). 
Also the restriction of H to each part is in a cyclic 
transitive class. Proposition 3.5 establishes that h^ 
has only one transitive part and that (H, T) belongs 
to the cyclic transitive class of k^.



Suppose there exists ̂ 3 G  H such that p  £ C or *• C. 
but p  has some real eigenvalues. Then p  has all real 
eigenvalues and, by the Corollary to Proposition 3.7,
/*lv2 must be a reflection, giving { /*lv2 ><hilv2>Mlv2> - 
(h^Jy )-1. It follows that h^ and p  generate H and that 
P  leaves invariant the eigenspaces of h^Jy . If W 
is such an eigenspace with eigenvalues e*^, • e"’i** ,
and w 6 W, w ^ 0, then the linear span of •{w, h^w] 
is invariant under h^, since there exists x € V such 
that w + ix is in the complex eigenspace of e ^  .
Choose w such that p w = w or -w. Then /8h^w = (h^) ^p w
= 1 (h^- )̂ w, which is in the span of {w, h^w^ , since

(h.j)” 1 = h ^ k 1 “ Therefore the 2-dimensional span of
(w, h^w} is invariant under p  . In this way we can write
W as an orthogonal sum of 2-dimensional subspaces 
invariant under H. The restriction of p  to each must be 
a reflection. Now h 1 is a sum of transitive parts, to 
each of which the restriction of H is in a dihedral 
transitive class. Application of Proposition 3.5 now 
completes the proof.

Remark. In any even dimension n, the number of families
corresponding to cyclic and dihedral transitive classes
is equal to the number of even integers k for which
£  (k) => n. This is because for k odd, the corresponding

Ha or H/_ \ does not contain - t- , and the classes ofe V© )
k are in the same family as those of 2k (for k odd,
$  (k) = $(2k)). It is easily checked that distinct 

even integers k with $(k) = n give distinct families, 
using Proposition 3.4 and properties of the Euler function
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Theorems 3.8 and 3.9 give:

Proposition 3.10. (i) In dimensions 2,3, and 5,
HV is decomposable HQT is decomposable.

(ii) In dimension 4, there are 8 geometric crystal 
classes for which is decomposable but ^QT is not.
These are the cyclic and dihedral transitive classes 
of 5, 8, 10, 12. They determine 3 families.
(iii) In dimension 6, there are at least 8 geometric 
crystal classes for which HV is decomposable but hQT 
is not. These are the cyclic and dihedral transitive 
classes of 7, 9, 14 and 18. They determine 2 families.
The only other possibilities are when HV has DT = (3, 3).

Problem. Are there in fact any crystallographic point 
groups in dimension 6 for which has DT = (3, 3) but 
HQT is indecomposable? Suppose HV = ©  Vg *s complete,
corresponding to such a situation. Then by Proposition 
3.5 and the Corollary to Proposition 3.7, Hjy and

H|„ are both in the class 53 or are both in the class 
V2 53m.

Remark. Similar statements to those in Proposition 3.10 
are clearly possible in higher dimensions, but more 
problem cases such as (3, 3) arise. For n = 7, DT = (4, 3) 
is the only problem case. For n = 8, there are 10 
transitive cyclic and dihedral classes (8 = $(15) -
= $(16) = $ ( 20) = $(24) = $(30)) belonging to
4 families. The problem cases are DT ** (5, 3) and (4, 4). 
For n =9, the problem cases are DT = (6, 3), (3, 3, 3) 
and (5, 4;. For n = 10, there are 4 transitive cyclic



and dihedral classes (10 = <j?(1 1 J = § ( 2 2 ) ) belonging 
to 1 family. The problem cases are DT = (7, 3), (6, 4),
(5, 5) and (4, 3, 3 ) .

Conjecture. There are geometric classes other than
cyclic and dihedral transitive ones for which „V isJtl
decomposable but jjQT is not.
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3.3. Typically Orthogonal Decompositions.

Proposition 3»11. Let H be a crystallographic point group.
If HV = V 1 <±> ... ©  Vk then there exists <P G  C(H, GL(V)) 
such that HV = <pv., ©  ... ©  <pVk is an orthogonal 
decomposition (i.e. one in which the summands are mutually 
orthogonal).
Proof. Choose a basis ^v^t...,vnJ of V adapted to 
V^,...,Vk, such that the included basis of each is 
orthonormal. Then the matrix of any h G H relative to this 
basis is an orthogonal matrix. Let be any map taking 
fv^,...,yn] to an orthonormal basis of V. Without loss 
of generality, we may assume <p G Pos(V). Clearly 
<pHcp— 1 Q. 0(V), and by Proposition 2.4, <f> G  C(H, Pos(V)).

This illustrates that orthogonality is not in 
itself a special property for decompositions. The important 
property is:

Definition. A decomposition ©  ... ©  Vk is
typically orthogonal if for all <p in GL(V) with <pH<p-  ̂£  0(V),
the decomposition .V ■ ©  ... ©  (Dvv is

<p H<J>- 1  1 K
orthogonal
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In other words, the decomposition is forced to be 

orthogonal by the geometric nature of H.
Example. Let n = 3, T be triclinic, H *> G(T) = T. No 
decomposition of is typically orthogonal, but there 
are orthogonal decompositions. If T is orthorhombic and 
H = G(T) = mmm. all decompositions of HV are typically 
orthogonal.

We say that a decomposition of HQT is typically 
orthogonal if it produces a typically orthogonal 
decomposition of (by multiplying through the decomposition 
by R).

Definition. A decomposition of (respectively hQT) 
is a complete typically orthogonal decomposition if it is 
typically orthogonal but cannot be further reduced to 
a typically orthogonal decomposition of jjV (respectively
hq t ).

Using the Krull-Schmidt property (Proposition 3.2(ii)) 
it is easy to show that any complete decomposition can 
be "built up" to a complete typically orthogonal decomposition.

Proposition 3.12. The modules jjV and ^QT each have a 
unique complete typically orthogonal decomposition (up to 
the ordet of the summands).
Proof. We prove the proposition for HV - the proof for 
jjQT is similar.

Let RV = V1 ©  ... ©  Vk and HV = W1 ©  ... ©  Wm be 
two such decompositions. Por K i i k ,  define (p̂  €  GL(V)
by «Pilv - 2< Lv ), Pilv “ Lv » 1 3 • Theni i a) i

<f>± G C(H, Pos(V)) and HV - <piW 1 ©  ... ©  is
orthogonal. Suppose w^ G  W^, w^ €. Wj, 1 / J. Then
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^ wl, Wj"> = 0 =<cpjW^, . However, <pA is

symmetric, so ( (Pi)2« ^  = 0. This implies that

leaves each invariant and so does its positive
square root

For eWj, Piiwj) - w.. €  Wj. But 9i(wj) - Wj » ^i^j)

where TT^: V — >-V̂  is the projection map. Therefore
k

TTi(w.j) €. VA A W j  and = ®  (V^ HW^). This induces

a further reduction of the complete typically orthogonal
m

decomposition V = ©  , so we conclude at most one
3-1 J

VA O  Wj is non-zero, and C  V^, some i. By a dimension

argument, uniqueness (up to the order of the summands) 
follows.

This shows that there is a well-defined typically 
orthogonal decomposition type (abbreviated ODT) for 
gV and h QT. This is clearly the same for all pairs (H, T) 
in the same geometric crystal class. Also, it is the same 
for all geometric classes in a family by the following.

Proposition 3.13. Let T be a minimal lattice in the 
arithmetic crystal class of (H, T). Then:

(i) HV = V 1 ©  ... (£> \  is a complete typically orthogonal
decomposition if and only if G(T)V = V1 ©  ... ©  Vk is;

(ii) hQT = QT1 ©  ... © Q T k is a complete typically 
orthogonal decomposition if and only if G(T)QT - QT1 ©... ©  QTk 
is.
Proof. By Lemma 2.9, C(H, Pos(V)) = C(G(T), Po s(V)).
Using the polar decomposition and Proposition 2.4, we may



45
deduce that CpH<p- 1  Q  0(V) if and only if <$>G(T)<p“ 1 £  0(V). 
The d e c o m p o s i t i o n s => V1 ©  ... ©  Vk and 
G(T)QT = QT1 ©  ... ©  QTk are both valid decompositions, by 
Proposition 3.4. The result now follows.

Proposition 3.14. (i) Suppose HV = V., ©  ... 0  Vk is
complete and for some h 6  H, h|y has an eigenvalue

whereas h| y has no eigenvalue . Then for all <p€ GL(V)

such that <pH9 - 1  c  0(V), (pV.̂  is orthogonal to <PVj.
(ii) Suppose jjQT = QT1 ©  ... ©  QTk is complete and for

some h 6  H, h|R,p has 8111 eigenvalue of order k whereas

hl RT has no eigenvalue of order k.
3
GL(V) such that Ç)H(p_1 C  0(V),

Then for all 

(ptRTĵ ) is orthogonal
to (piRTj).
Proof, (i) Any vector v in in the eigenspace of ^ is 
orthogonal to Vj, by Lemma 3.6. Since H c  0(V) and

is irreducible, it follows that is orthogonal to 
The same argument applies to <J>V̂ , CpV^ and <pHÇ>-\
(ii) A similar argument applies, using Lemma 3.6 and 
Proposition 3.7.

Theorem 3.15. Any complete decomposition of HV or 
hQT is typically orthogonal if it has dimensions either 

(i) (n - 1 , 1 ), n 2.3; 
or (ii) (n - 2, 2 ), n 23, n / 4.

Proof, (i) for all n and (11) for n odd.
Use Proposition 3.14 and arguments similar to those 

in the proof of Theorem 3.8.
(11) for n even. If we assume the decomposition is not
typically orthogonal, then using Proposition 3.14 and 
similar arguments to those in Theorem 3.9* we establish



that jjV (or hQT) has DT = (2, 2,...,2). This is a 
contradiction unless n = 4.

We shall examine some crystallographic point groups 
for which the DT and ODT differ in Section 3.5, after 
looking at the relationship between decomposability and 
centralizers.

3.4. Decomposability and the Centralizer.

Theorem 3.16. Let H be a crystallographic point group and 
suppose HV is indecomposable. If <p £ C(H, GL(V)) and 
<p has a real eigenvalue, then <p = kl , some k £ 0. If 
<p has a non-real eigenvalue r e ^  , then re-^  is the 
only other eigenvalue and the eigenspace of r e ^  and 
re' -it, spans V.

In particular, .if n is odd, C(H, GL(V)) = (R*)L .
For any n, C(H, Pos(V)) - (R^)L- .

Proof. Suppose <p has a real eigenvalue k with <px = kx, 
x ^ 0. Since HV is irreducible, the orbit Hx spans V.
However, for all h e  H, <p(hx) = h<px = k(hx). It follows 
that <p = kt .

If <p has a non-real eigenvalue r e ^  with x + iy G  T + iV 
such that Cp°Uirei1i (x + iy), then <pC(x - iy) =re-1>l(x _ iy). 
Also, 9 °  =r(ei1l)c on CHC{x + iy] and <pC =r(e_ii)u 
on CHC{x - iy] . Now 2x G V  and HV is irreducible, so 
V + iV - CHC{2x] = CHC{x + iy] + CHC[x - iy] . The 
result follows.

If V = V.j ©  ... ©  Vk, then the external direct 
kproduct TT GL(V<) is easily identified with the subgroup 
i- 1  1
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of GL(V) consisting of those transformations which leave 
each VA invariant. The isomorphism (which is also a 
homeomorphism) takes ( <J>̂ ,..., q>k) to <p where 
<J)(v1 + ... + vk ) = + ... + <$>kvk and its inverse
takes <p to ( Cp|v ^,..., (p^)*

Proposition 3.17. The product

a closed subgroup of C(H, GL(V)). 
C(H, GL(V)) x kTT C(H|V , GMV.,)) i=1 vi 1

k
jr c(H |Vi» GL<vi>) is
The coset space 

is in one-to-one

correspondence with the distinct decompositions
HV = <pv1 ©  ... ©  <pVk produced from HV = V1 ©  ... ©  Vk

by elements (p in C(H, GL(V)), where the order of the
summands is considered.k
Proof. The product TT C(H|y , GliV^)) is clearly a
subgroup of C(H, GL(V)). Also, 
k . k

TT C(H L  , GL(V\,) ) = C(H, GL(V)) r\ TT GKV.)i=1 ,vi 1 i=1 i
since each h £  H is uniquely expressible in the form

k
(h1 t...,hk). Since TT GLCV^) is closed in GL(V),

i=1
k
TT C(H|V , GL(V1)) is closed in C(H, GL(V)).
1**1 vi

If <P, Y  & C(H, GI(V)), then q>,Y produce the same 
decomposition if and only if

<pVi = Y V i f  1 ^  i  ^  k

= Ti (  1 i i i k

In
£  IT  GL(V.)

i- 1  1

>1©
•

k
4=* £  TT C(H|V , G l(V ,) )  .

i- 1  ,vi



When the number of distinct decompositions produced 
by elements of C(H, GL(V)) is finite, C(H, GL(V)) is a 
finite union of open and closed cosets. We now give 
necessary and sufficient conditions for this.

Theorem 3.18. For a decomposition HV = ©... ©
the following are equivalent:
(1) HV = V1 0 ... © V k is typically orthogonal;

(5) dim C(H, Pos(V)) = dim C i H ^ ,  Pos(V±)).

Proof. (1) (2). Reduce the decomposition in (1)
to a complete typically orthogonal decomposition. By 
the uniqueness of this (up to the order of the 
summands), an element of C(H, Gl(V)) can only permute 
the summands. Now use Proposition 3.17.
(2) = M 3 ) . Obvious.
(3) 1). Suppose (1) is not true. Then if
HV = V1 ©  ... ©  Vk is orthogonal, there exists <J>€GL(V)
such that <PH<p_1 C  O(V) and .V = <pV. ©  ... ©  ©V.

$H<$> 1 K
is not orthogonal. Taking p to be the positive definite 
symmetric part of <p, we deduce that p £C(H, Pos(V)) 
and HV = pV1 ©... ©  pVk iB not orthogonal. If

(2) C(H, GL(V);

i=1 ,Yi
TT C(Hjv , GL(V^))
k is finite;

(3) C(H, Gl(V))
'/ i=1 "iTT C(H |y , GL(Vi))k has dimension 0;

i=1 ,¥i
(not a product of groups) 

k
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jjV ** ©> . • • ©  Vk is not orthogonal we similarly can
find p e  C(H, Pos(V)) such that HV = pV1 ©  ... ©  pVk is
orthogonal by Proposition 3.11. In either case 

kp ^  TT GL(Vj). Now the dimension of

where L(V) is the vector space of all linear transformations
of V. However, there exists p in C(H, L(V)) which is 

knot in g)L(V.,) . The result now follows. i=1 1
( 1 ) •=y’- ( 4). If (1) holds and p e  C(H, Pos(V)) then
HV = pV1 ©  ... ©  pVfc is orthogonal and pV± = Vif 1 ^ i < k

(use the same argument as in the proof of Proposition 3.12).

The reverse inclusion is obvious.
(4) = >  (3). Obvious.
(5) =»• (1). Suppose (1) is not true. By the construction 
in Proposition 3.11 we obtain 6 6. C(H, Pos(V)) such that 
HV - & V1 ©  ... ©  6"Vk is orthogonal. Clearly

dim C(Hjy , Pos(V±)) = dim C(H |$Vi» Pos( &V±)), since
conjugation by & gives a homeomorphism. However,
HV = i V 1 ®  ... @  $Vk is not typically orthogonal,

so there exists p e  C(H, Pos(V)) such that 
HV = p ® V 1 + ... + pfi'Vk is not orthogonal, meaning 

kp ^  IT GLiA'V^). We conclude that the vector space

equals the dimension

of the vector space C(H, L(V))

k k

i-1
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C(H, Sym(V) k

i=1 I’i© C ( H | V , Syrn^))
is non-zero and hence

dim C(H, Sym(V)) > dim C(H|dv , S y m iV j )

As remarked in the proof of (1) =^-(2), an 
element of C(H, GI(V)) may only permute the summands of a 
complete typically orthogonal decomposition. ' In practical

by considering eigenvalues, since if <$> e  C(H, GL(V)) and 
9 V ± = V y  then for all h e  H, the eigenvalues of

example of this, when the identity is the only possible 
permutation is:

Proposition 3.19. Suppose = V1 ©  ... © V k is complete

and H = TT h |v , where all the fixed points of H i=1 lvi k
are contained in one V.,. Then C(H, GL(V)) = TTC(H|w ,GI(V.))1 i«1 |Vi 1
Proof. Considering eigenvalues, we see that 
HV = V1 ©... ©  Vk is a complete typically orthogonal 
decomposition and elements of C(H, Gl(V)) must leave 
invariant each V^.

In 3 dimensions, the identity is also the only 
possible permutation that occurs and consequently the 
centralizers are all a product of lower dimensional ones, 
except, of course, when ODT = (3). In the following 
table, the ODT is obtained using Proposition 3.14 (i).
The table is included to illustrate the results of this 
section and for later use. The information it contains 
does not appear elsewhere in the literature.

cases, the possible permutations are limited

h|y must equal those of hjy . A particularly good

k
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Table 3.1« Centralizers of the 3-Dimensional Point Groups.

Geometric Crystal 
Class of 

H

DT
° f  HV

ODTof HV C(H, GL(V) C(H, Pos(V))

1,1. (1.1.1) (3) GLj Pos(3)
(1,1,1) (2,1) GL2 x GL ̂ Pos(2) x Pos(1 )

222.2mm.
mmm.

(1,1,1) (1,1,1) GL ̂ x GL -j xGL-j Pos(i) x Pos(1) x Pos(1)

4,7,|. (2,1) (2,1) (R*)S02 x  GL1 (R+)l2 x Pos(1)

422.4mm.
72m,
4

(2,1) (2,1) (R*)L2 x  GL1 (R+)L2 x Pos(1)

2*1» 6»
6
m*

(2,1) (2,1) (R*)S02 x  GL1 (R+)l2 x Pos(1)

22,622, 
2m,2m, 
6mm,5m2,
z -------------------------mm.m

(2,1) (2,1) (R*)L2 x  GL1 (R+)L2 x Pos(1)

22*222,
22,7221»
m3m.

(3) (3) ( r* ) l 3
! Theorem 3.16)

(R+)L3.

Remark about the Normalizer.
We do not use the normalizer In this work, but It is 

worth noting how the ideas of this section apply to it.
We know that N(H, Pos(V)) = C(H, Pos(V)) (Proposition 2.4) and 
N(H, GL(V)) is homeomorphic to N(H, O(V)) x C(H, Pos(V)),
where the homeomorphism is given by the polar decomposition.
It is not generally true that N(H, GL(V)) contains the
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product TTN(H|V , GL(V,)) e.g. n = 3 and H is of class i=1 1
?2m. When it is true we can establish that N(H, GL(V)) is
a finite union of open and closed cosets when a decompositionkis typically orthogonal. In the case H = TT H v , it is

k 1=1 i
always true that N(H, GL(V)) 2  TTM(H|t , GL(VjL)). An

example of this is when T is orthorhombic and.H = G(T). Then 
HV has DT = (1,1,1) and ODT = (1,1,1). The normalizer 
N(H, GL(V)) is a union of six cosets of GL^ x GL^ x GL^.

3.5. Inclined Crystallographic Point Groups.

Definition. A crystallographic point group H is inclined 
if for one and hence for all pairs (H,T), RQT is 
decomposable, but the ODT of RQT is (n).

We shall now describe all inclined crystallographic 
point groups for which the DT of RQT involves only the 
dimensions 1, 2 and 3. Using Proposition 3.14 and similar 
arguments to those in the proof of Theorem 3.15, we can 
deduce that for such groups the DT of RQT must, in fact, 
involve all 1's or all 2's or all 3's. Also, by 
Proposition 3.14 (ii), for each h e  H and for each i,j, 
the orders of the eigenvalues of U|Rq, must be the same

as those of h|RT .
0

We now look at the possibilities for these groups and
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use Theorem 3.18 to check which have ODT = (n).

( 1 ) The DT of HQT is For each n, there are
only two possibilities, H = { and H = £l, - .
Clearly, in each case C(H, Pos(V)) = Pos(V), and Theorem 
3.18 ((1)4=r> (4)) implies that the ODT is (n), recalling
that any complete decomposition can he built up to a 
complete typically orthogonal one. For each n >1, this 
gives two inclined geometric crystal classes for which 
nQT has DT = (1.1.... 1).

(2) The DT of RQT is (2,2,...,2), n is even. Let
hQT = QT1 ©... ©  QTk he complete. For any i»HQTi 
is indecomposable and so is in one of the classes

2.» 5™» iL, 4mm, 6, 6mm. Looking at eigenvalue orders, we 
see that H is either cyclic of order 3» 4 or 6 or it is 
generated by an element of order 3» 4 or 6 plus an 
element whose restriction to each RT^ is a reflection.
This gives six possible geometric classes. If H is 
cyclic of order 3,4 or 6, it has a particularly simple 
matrix form, and it is not difficult to show that there 
is an orthonormal basis of V relative to which C(H, Pos(V)) 
is the set of matrices whose upper triangle has the form:

o b 12 C12 “ • b 1m c 1m

a 1 °1 2 b 12 b 1m

a 2 0  • • • b 2m c 2m

a 2 c 2m b 2m

•
•

•
•

•

0
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where m = 75- and cij are art,i1;rary
subject to positive definiteness. If H also contains 
the "reflection" element, this adds the restriction c^j = 0. 
Using Theorem 3.18 ((1)<£^*(4)) we conclude that in
both cases the ODT of RQT is (n). For n even, n >  2. this 
gives six inclined geometric crystal classes for which 
RQT has DT = (2.2.... 2). In the cyclic case,

(3) The DT of RQT is (3,3,...,3), n a multiple of 3. 
Let rQT = QT1 ©  ... © Q T k be complete. For each i,

to one of the classes 23, m3, 432, ?3m or m3m. Looking 
at eigenvalue orders, it is easily deduced that each 
H|RT is in the same class.

When each H|rt is of class 23, we can always 
choose an orthonormal basis of V relative to which H 
has generators; / 0  0 1

_
dim C(H, Pos(V) ) = 7  + £ (f “ 1 ) = • In the

2
dihedral case, dim C(H, Pos(V)) = ^ (§)(§+ 1) - g-1 /m/n

(1 0 0 0 1 0
0 0 1 
1 0 0 
0 1 0

0

0
0 0 1 
1 0 0 
0 1 0

of order 3, and
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This follows from the properties of 23 and from Proposition 
3.11. It is clear that all appropriate H are geometrically
equivalent. A similar situation occurs when H|RT,

is of class m3. We can show in both cases C(H, Pos(V)) is the 
set of matrices whose upper triangle has form:

0
0 0

b 12 0 0
>i. _ n

where m
to positive definiteness. 

When each H
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However, the other generator (of order 4) can be

either (a) (1 0 0 
0 0 T 
0 1 0

°

1 0 0 
o 0 T 0 1 0

or (b)

The two possibilities for H are not geometrically equivalent. 
However, for (a), C(H, Pos(V)) has the same form as 
in the 2j5 case whereas for (b) b ^  = 0, Prom Theorem 
3.18 we conclude that for (a) the ODT is (6) whereas 
for (b) it is (3, 3). It is not difficult to see that in 
higher dimensions also the type (a) generator is the only one 
giving ODT = (n). The same type of situation occurs for 
the classes T3m and m3m. Therefore we get exactly one 
inclined class for each 3-dimensional indecomposable 
class. For n >  3. n a multiple of 3, there are five 
Inclined geometric crystal classes for which ^QT 
haa DT = (3.3.... 3). For each, dim C(H, Pos(V)) = 1(n)(n + 1) =--------- ---  7 7 3

n2
TÏÏ ^ I



CHAPTER FOUR. THE DECOMPOSITION OF FAMILIES

Throughout this chapter, when we refer to the DT 
or ODT of a family we mean the DT or ODT of RQT for any 
pair (H,T) in that family, unless specifically stated 
otherwise. In fact, we concentrate on pairs -of the form 
(G(T),T).

4.1. Distinguishing Between Decomposable Families.

Let G(T)QT = QT1 ®  **• ©  QTk* where dim QTi “ ni' 
Then G(T)|ĵ rp is a crystallographic point group in RT^
determining an n^-dimensional crystal family F^.
Associated with the decomposition we have a k-tuple of 
families (F^,...,F^ ). If T is minimal in the arithmetic 
class of (H,T), then H|RT also determines the family F^,

since C(G(T), Pos(V)) = C(H, Pos(V)) by lemma 2.9 and 
hence C(G(T)| RT , PosiRT^) = C(H|RT ,̂ PosiRT^).

Theorem 4.1. (i). If = QT-j ©  ••• ©  QTk ^
G(T')QT' = QTl' ®  *•* © QTk' aresia) complete; or 
(b) complete typically orthogonal; where T and T' are 
lattices in the same family, then the associated k-tuples 
(F1,...,Fjc) and (F11, . . . ,Fk ') are identical, up to 
possible variation in order.
(ii). If G(T)QT = QT1 @  ... ©  QTk and
G(t i )Qt ' = QT1*@ ... ©  QT^’ are typically orthogonal and
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the k-tuples of families (P1,...fPk) and (P1', ...,Pk ') are 
identical, up to possible variation in order, then T and T' 
are in the same family.

Remark. Part (i) is not true for arbitrary typically orthogonal 
decompositions. Part (ii) is not true for arbitrary 
complete decompositions.e.g. let n = 2, I be of class P 
and T* be of class R.

Proof, (i) (a). Suppose that T is minimal in the arithmetic 
class of (H,T). Then RQT = QT1 ©  ... ©  QTk is complete by 
Proposition 3.4. Moreover, H j ^  determines the same family
as G(T)| RTj Now T and T' are related by a finite chain of
equivalences and through these the decomposition q (T)QT =
QT1 ©  ... ©  QTk induces a complete decomposition of 
U(T ,)QT* with k-tuple (P1,...,Pk ). By the Krull-Schmidt 
property, the result follows.
(b). The proof is similar, using Propositions 3.13 and 
3.12 in that order.
(ii). let S1 be the lattice generated by T^,...,Tk.
Then G (T)S1 = T1 ©  ... ©  Tk< Let S be a minimal lattice 
in the arithmetic class of (G(T),S^). Then there exists 
9 in GL(V) with 9S1 = S, 9G(T)<p_1 = H £  G(S),

9G(S1)q>“:1 2  G(S). The decomposition HS = <pT.| ©  ... © 9 T k 
muBt be orthogonal. Moreover, since S is minimal in 
the arithmetic class of (H,S), G(s)s = ©  ... ©  9 ^
by Proposition 3.4. We can now deduce that G(S) = f^GCfTi).
Similarly, we may construct S' from T', where
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G(S')S' = <P'Ti' ©  ••• ®  9'Tk' is orthogonal and 
k

G(S') = TT GĈ P'T.. '). Clearly S is in the same family i= 1  1
as T and S' is in the same family as T'. We now show 
that S and S' are in the same family. We may assume 
without loss of generality that R(<pT^) = R(<p,Ti') and 
that (pT̂  and gj'T^ are in the same family - otherwise 
reorder the T^' and take 0S' for some ©€0(V). Now 
9T^ andf'T'^' are related by a finite chain of equivalences. 
Consider the first link in such a chain, giving 9^  
equivalent to, say, Uit for 1 £ i < k. We have:

g>Ti is minimal in the arithmetic class of (H^.opT^); 
is minimal in the arithmetic class of (L^U^); 

and (H^ipT^) is geometrically equivalent to (1^, 1̂ ).
Without loss of generality we may assume that and 
both contain -l. k

Now S is minimal in the arithmetic class of ( fT H., S),i-1 1
because ( _k.H )S = 9T1 ©  ... © 9 T k is typically

^=1 k
orthogonal and G(S) = TTG^l^). Putting U = U 1 ... ©
we take U* to be minimal in the arithmetic class of k k
( TT I<4» U), which is geometrically equivalent to ( TTH., S), i=1 1 i- 1  1
Therefore S and U' are in the same family. Treating the 
other links in the chain of equivalences in the same way, 
we conclude that S and S' are in the same family. This 
completes the proof.



4.2. The Descendants of One, Two and Three Dimensional 
Families.

Given a particular DT for G(T)QT in n dimensions, 
involving only the dimensions 1, 2 and 3, we wish to 
describe all the possible families corresponding to this. 
Suppose that the DT has n^ 1's, n2 2's and n^ 3's, meaning 
n = n1 + 2n2 + 3n^. Then for any G(T)QT with the given 
DT, we can show, using Proposition 3.14, that there is a 
typically orthogonal decomposition G(T)QT » QT^ ©  QT2 ©  QT^, 
where the DT of G(rp}QT-] ( 1_i_1 » .»• » 1 ), the DT of cfr^QT^is

(2,2,...,2), and the DT of G(T)QT3 is (3»3,...^3). Some

of the QT.̂  may be zero. Corresponding to this decomposition 
there is a 3-tuple of families (F.j,F2,Fj ). Using 
Theorem 4.1 (for complete typically orthogonal decompositions), 
it is easily shown that if T' has the same DT as T, but 
has corresponding 3-tuple (F^',F2', F^*), then T and T' are 
in the same family if and only if F^ and F^' are the same 
family for i = 1,2,3. Hence there is a distinct 
n-dimensional family for each distinct 3-tuple. If 3^^(in^) 
denotes the set of (i,i,...,i) families in dimension 
(in^) for i - 1,2,3, then the number of descendants in 
n dimensions of 1-, 2- and 3-dimensional families is:

|3f(1»2,3)(n)|- Z  |^(1)(n1)||3«(2)(2n )||3Î3)(3n )|;1 all partitions' 1 " c *
of n into parts not greater 
than 3

where we assumej^1 (̂0)| =1, for the purposes of this formula.
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If we can describe the families for i = 1,2,3,

We now do describe all (i,i,...,i) families for i = 1,2,3.

For any m > 1 there are only two inclined geometric 
crystal classes with DT = (1,1,...,1) in dimension m, (see

belong to the same family. Therefore by Theorem 4.1, there 
is just one family corresponding to each possible ODT in 
n dimensions. (The existence of at least one is easily 
verified). We have:

Proposition 4.2. There are precisely p(n) families in 
n dimensions with DT = (1,1,...,1), where p(n) is the 
number of unrestricted partitions of n (i.e. partitions into 
positive parts, with order irrelevant ). The family 
corresponding to n = m, + m0 + ... + mk has ODT = (m1,m2,...,mk)

Proof. For the dimension part, use Theorem 3.18.

Remark. The function p(n) is well known, but there is no

then we can theoretically describe 3^1'^'^(n).

Section 3.5), given by H = and {l, - (.}. These clearly

and dimension

known explicit expression for p(n) in terms of n ( see [83). 
It is worth noting for studying growth in families that
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Table 4.1» Familles with DT = (1.1.... 1) up to n = 6.
n P(n) = Number of Families

Partition(ODT) Usual Family Name Dimension

1 1 1 = 1 Line 0
2 2 CMIICM Parallelogram 2

2=1 + 1 Rectangle 1
3 3 3=3 Triclinic 5

3=2+1 Monoclinic 3
3=1+1+1 Orthorhombic 2

4 5 4=4 Hexaclinic 9
4=3+1 Triclinic 6
4=2+2 Diclinic 5
4=2+1+1 Monoclinic 4
4=1 + 1 +1 +1 Orthogonal 3

5 7 5=5 14
5=4+1 10
5=3+2 8
5=3+1+1 7
5=2+2+1 6
5=2+1+1+1 5

5=1+1+1+1+1 4
6 11 6=6 20

6=5+1 15
.4 • 6=4+2 12

6=3+3 11
6=4+1+1 11
6-3+2+1 9
6=2+2+2 8
6=3+1+1+1 8
6=2+2+1+1 7
6=2+1+1+1+1 6

6=1+1+1+1+1+1 5
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Remarks. 1. Distinct ODT may result in the same dimension.
The first examples are for n = 6.
2. Families with DT = (1,1,...,1) always have dimension 
larger them n- 1 , since Il7 im.,(m., + 1) 1 - 1 =

k k -« a-1 3 k3
[i + i 5 7 ™ . ] - 1 = ¿(51 m.,2) + in - 1 , hut
kd=1 3 3=1 3 3=1 3
57m-»2 £ n. This also shows that the lowest dimensional
3=1 3
(1,1,...,1) family is the orthogonal one, with ODT = (1,1,...,1) 
and dimension n-1 .
3. The highest dimensional family of all families is the 
(1,1,... ,1) family with ODT = (n). The next highest 
(1,1,...,1) family has ODT = (n-1,1), since if n = m^ + ... + m^, 
then (n-1 ) 2 + 1 > (n-m. ) 2 + m . 2 z  5**m.2.

1 1 3=1 3

(2 ,2|..,.,t,2)

Lemma 4.3. For m even, m >  2, there are 4 inclined families 
in m dimensions with DT = (2,2,...,2).
Proof. Consider the six inclined geometric crystal classes
with DT = (2,2,...,2) (see Section 3.5). Of the cyclic
classes, those of order 3 and 6 are in the same family, since
that of order 6 is generated by adding -L to that of order 3.
Similarly, the two dihedral classes obtained from these by
adding the*reflection' element are in the same family. By
looking at dim C(H, Pos(V)), however, (see Section 3.5 again)
we see that the cyclic and dihedral classes are in different 2 2
families, since ^ 7  unless m ■ 2. The same applies
to the cyclic and dihedral classes of 4 and 4mm. These
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determine different families from those of 6 and 6mm. by 
Theorem 4.1 (i). This gives 4 families in all.

Now consider a possible ODT corresponding to DT = 
(2,2,...,2). In contrast to the (1,1, ...,1) case we now 
have many families associated with this ODT. Suppose the 
ODT has q1 2*8, qg 4's and, in general, q̂  ̂ (2i)'s, for 
i = 1,2,... ,77, meaning S  qi(2i) = n. If g (T)QT has 
DT = (2,2,...,2) and the given ODT, then we have a typically 
orthogonal decomposition = QTi ©••• ©  QTn , where

7

G(T)QTi has 1)1 = (2*2»****2) and 0DT 0 (2i,21,...,2i).
Some QT^ may be zero. Corresponding to this decomposition
there is a ^-tuple of families (F.j ,F2 » • •. ,Fn) » where some

7
Fi are missing for n > 2, namely those corresponding to 
zero QTi. If G(T t)QT * has the same DT and 0DT as g (T)^T'
with £-tuple (P1 then, using Theorem 4.1 for

7
complete typically orthogonal decompositions, we can deduce 
that T and T' are in the same family if and only if P± 
and F^' are the same family for i = 1,...,^. So the

number of n-dimensional families corresponding to the 
given ODT is: n

Mi(^<)» i=1 1

where Mi(x) is the number of (2,2,...,2) families in
dimension (2i)x with ODT = (2i,2i,...,2i). Again, existence
is easily verified. We define M*(0) =1.

We introduce the symbol A /* j \(x) to denote\ J ̂ i • • • » J^/
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the number of partitions of x into s positive parts, 
of one kind, jg of another kind, of another kind etc, 
(order is irrelevant). Using Theorem 4.1 and the fact that 
there are two 2-dimensional indecomposable families, we 
deduce that, for x / 0, M 1(x) = 2[ A (1 1 )(X).+ A^j(x)J +

If i ^ 1, then by Lemma 4.3 we get, for x ¡i 0: 

Mx(x) = 2 4 [A j1>1>1f1 }(x) + ^ l>1(1)(x)]

+ 12 [^(2,1,1)(x> + ^(2,1)(x) + ¿<1,1)(x>]

+ 6 f^(2,2)(x) + A (2)(x)]

+ 4 [A(5>1)(x) + A ( 5)(x ) + A ( !)(*)]

+ 1 K 4)(x )].

Note that this expression is independent of i.

We now have:

Proposition 4.4. In n dimensions (n even), there aren
2 1  ( j y  Mi(qi))unrestricted i=1 

partitions

families with DT *» (2,2,...,2), where q.̂  is the number 
of i's in a given partition and Mi(qi) is as described 
above.

Remarks. 1. We could give an explicit expression for 
the dimensions of the (2,2,...,2) families, but we do
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not feel that this is sufficiently enlightening to merit 
inclusion.
2.Notice that many of the terms in the expression for Mi(x) 
are zero in low dimensions. Also, M1(x) is always equal 
to x + 1. Some values of M*(x), i / 1, for small x are: 
Mi(1) = 4, Mi(2) = 10, 1^(3) = 20, Mi(4) = 35, Mi(5) = 56.

In the following table, we do include the dimensions. 
The word in brackets after a particular dimension 
indicates the number of families in that row with that 
dimension, if there is more than one.

Table 4.2. Families with DT - (2.2.... 2) up to n = 8.

n Partition
«r n of ^

ODT Number of 
Families 
Belonging 
toPartition

Usual Family Names Dimension

2 1=1 (2) M 1(1)=>2 Square 0
T0TAL=2 Hexagon 0

4 2=2 (4) M2(1)=4 Ditetragonal
diclinic 3

Dihexagonal
diclinic 3

Ditetragonal
monoclinic 2

Dihexagonal
monoclinic 2

2=1 + 1 (2,2) M1(2)=3 Ditetragonal
orthogonal

1

Dihexagonal
orthogonal 1

TOTAL-7
Hexagonal

tetragonal 1

Continued
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Table 4.2. Continued.
n Partition~ n of ?

ODT ' Number of Families Belonging to 
Partition

There
are

Dimensions

6 3=3
3=2+1
3=1+1+1

(6)
(4.2)
(2.2.2)

M3(1) =4 
M* 1(1)M2(1)=8 

M 1(3) =4 
T0TAL=16

no
usual 
family 
names 
for 
n > 4

8(two),5(two) 
4(four),3(four) 
2(four)

8 4=4
4=3+1

(8)
(6,2)

M4(1) =4 
M1(1)M3(1)=8

15(two),9(two) 
9(four),6(four)

4=2+2 (4,4) M2(2)=10 7(three),6(four 
5(three)

4=2+1+1 (4,2,2) M2(1)M1(2)=12 4(six),3(six)
4=1+1+1+1 (2,2,2,2) M 1(4)= 5 3(five)

T0TAL=39

Proposition 4.5. For n a multiple of 3, there are precisely
p(^) families with DT = (3,3,...,3) in n dimensions. The
family corresponding to 5 = m. + ... + m

5 1 . kODT = (3m.,... ,3m. ) and dimension I Jm
1 k Lj=1

Proof. The five inclined geometric crystal classes with 
DT = (3,3,...,3) (see Section 3.5) all belong to one family, 
since each is contained in the class of m3m and C(H, Pos(V)) 
is the same (up to conjugacy) for each class. Therefore, 
by Theorem 4.1, there is precisely one family corresponding 
to each possible ODT. The dimension part follows from 
Section 3.5 and Theorem 3.18.

k has
J(m3+1>] " 1-



68

Table 4.3. Families with DT = (3.3.... 3) up to n = 9.
n p(§) = Number of Families

Partition of ^ ODT Dimension

3 1 1 = 1 (3) 0(Cubic)
6 2 2=2 (6) 2

2=1 + 1 (3,3) 1

9 3 3=3 (9) 5
3=2+1 (6,3) 3
3=1+1+1 (3,3,3) 2

Problem. For which k In general is it likely to be true 
that the number of (k,k,...,k) families in dimension n 
(where k divides n) is p(ĵ ) ? Clearly this depends on 
there being jnst one inclined (k,k,...,k) family.

The descendants of one, two and three dimensional 
families up to n = 6 are described in Table 4.4 in the next 
section. The actual values of¡3^1 '2 ’^(n)| for the first eight 

dimensions are:1, 4, 6, 17, 24, 58, 84, 178. Our 
description of 3 ^ 1 ,2 ,^)(n) gives at least a lower bound 
for the total number of families in n dimensions.

We hope that our description can be used to discover 
the rate of growth of 3 / 1 »2 »5)(n). We conjecture from

looking at our results that J3^1,2,5;(n)pend on parti
1 as n- so

heavily does ZfrK • * (n) depend on partitions.
The main problem in confirming this conjecture

(or otherwise) is to see if there exists a lower bound for
the number of (2 ,2,...,2) families corresponding to a
g iven  ODT i . e .  f o r  TT(Mi (q ^ ) ) .

We wonder if the rate of growth of 3 ^ 1 ,2 ,^(n) matches



the rate of growth of all families. A slow rate of growth 
such as that conjectured would be interesting because 
estimates for some other quantities in crystallography 
(see Tl3;p.3l3) are of the form where q(n) is a
quadratic in n.
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4.3. Using Decomposition Types to Describe Families in 
General.

The results of Chapter 3 and Section 4.1 actually allow 
us to do more than describe 3,0,2,3) (n). Although we do
not have enough information to give a complete description of 
any other descendants, we can make some general observations.
We can make deductions about typical orthogonality for
some other decomposition types, by virtue of the fact that
any indecomposable summand of ^QT of dimension 1 (respectively 2)
is always orthogonal to another summand of dimension other
than 1 (respectively 2), using Proposition 3.14 and
arguments like those in the proof of Theorem 3.15. In
particular, by Theorem 4.1 we have:

Proposition 4.6. If the DT (m^,...,mlc) has x corresponding
n-dimensional families and no is 1, then the DT
(m1,...,mk ,1) has x corresponding (n+1)-dimensional families.
If no is 2, then the DT (m^,...,mk ,2) has 2x 
corresponding (n+2)-dimensional families.

A general statement about dimension using Proposition 3.11, 
Theorem 3.16 and Theorem 3.18 is:
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Proposition 4.7« If the family F has m parts in its DT, 
then dim F > m - 1.

Theorem 3.8 allows us to decide for some situations 
whether can be decomposable when HQT is not.
To illustrate these ideas we now enumerate as far as 

possible the families up to n = 6. In the following table 
we denote by rR the number of families in n dimensions 
for which jjV is indecomposable i.e. which have dimension 0.
We denote by qR the number of families in n dimensions for 
which HQT is indecomposable but is not - these all have 
dimension larger than O. The dimensions of families 
are calculated using Theorem 3.18. Note that this also 
applies to cyclic and dihedral transitive classes, which 
always have dimension ^  - 1.

Some information in the table duplicates information 
in Tables 4.1 - 4.3, but this is necessary for completeness.

Note. We could substitute r^ = 3 from the results of Biilow 
et al. in [3] and hence obtain a complete description of 
all decomposable families in 5 dimensions. We then can see 
that there are 30 of these. Since q^ = r^ (Proposition 3.10) 
the only other families have dimension 0,

As in Table 4.2 the word in brackets after a particular 
dimension indicates the number of families in that row 
with that dimension, if there is more than one.
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Table^4.4. Description of Families up to n = 6.
n DT Dimensions of a Typically 

Orthogonal 
Decomposition 
Suitable for all 
Families with DT

Ñames and 
Number of 
Families

Dimensions

1 ( D See Table 4.1 1 
TOTAL=1

0

2 (1,1)
(2)

See Ta 
See Ta

ble 4.1 • 2 
ble 4.2 2 

T0TAL=4

2,1
0(two)

3 ( 1 .1 .D

(2,1)
(3)

See Ta
(2,1)

See Ta

ble 4.1 3
Tetragonal 1 2 Hexagonal ) 

ble 4.3 1
T0TAL=6

5,3,2 
1(two) 
0

4 (1,1,1,1) 
(2,1,1)

(2,2)

(3,1)

(4)

; j* * ' f  ! :

See Ta
(2,2)

See Ta

(3,1)

(4)

ble 4.1 5
Tetragonal 4 

monoclinicl 
Hexagonal I 

monoclinicV Tetragonal 
orthogonal 

Hexagonalorthogona^
ble 4.2 7

Cubic 1 orthogonal

Octagonal "k.=3 Decagonal V * 
DodecagonalJ

r4
T0TAL=20+r4

9,6,5,4,3
3(two),
2(two)

3(two),
2(two),1(three) 

1

1(three)

0(r^ times)

Continued
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Table 4.4» Continued.
n DT Dimensions of.. 

..with DT Number of 
Families Dimensions

5 (i.i*i.i.D See Table 4.1 . . ' 7 14,10,8,7,6,5,4
(2,1,1,1) (2,3) 6 6(two),4(two),3(two)
(2,2,1) (4,1) 7 4(two),3(two),2(thre
(3,1,1) (3,2) 2 ,5» 2
(3,2) (3,2) . 2 1(two)
(4,1) (4,1) r4 + 3 2(three),1(r4 times)
(5) (5) q5 = r5 0(r^ times)

TOTAL=27+rJI+rf- 4 5________________i__________
6 (1,1,1.1,1.1) See Table 4.1 11 20,15.12,11(two),9 8(two),7,6,5

(2,1,1,1.1) (2,4) 10 10(two),7(two),6(two] 5(two),4(two)
(2,2,1,1) (4,2) 14 6(two).5(four), 

4(five),3(three)
(2,2,2) See Table 4.2 16 8(two).5(two),

4(fourJ,3(four), 2(four)
(3,1,1,1) (3,3) 3 6,4,3
(3,2,1) (3,2,1) 2 2(two)
(3,3) SeeTable 4.3 2 2,1
(4,1,1) (4,2) 2r4+6 4(three),3(three+r.), 2(r4 times) *
(4,2) (4,2) 2r4+6 2(six),0(r4 times)
(5,1) (5,1) r5 1(r^ times)
(6) (6) q6U2)*r6 2(two),1(qg-2 times), 

0(rg times)
TOTAL=70+4rit+r5+r6+q6

_____________

.J



Remarks. In dimension 7, there are 15 possible DT and
new unknowns arise for (4,3) and (7) only. This is the
first time we get unknowns not of the form r , q .n ’n

In dimension 8, there are 22 possible DT and new unknowns 
arise for (4,4), (5,3) and (8).
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Idea for Further Study.

Families can be partially ordered according to 
dimension. However, we feel that this is only a guide 
to a much more useful ordering, that of ‘special case*, 
e.g. in 3 dimensions, tetragonal is a special case of 
orthorhombic. This ordering seems likely to lead to useful 
statements about higher dimensional families.

Not only does dimension give a guide to this ordering, 
but also the DT and ODT do, and we feel that this is 
further justification for our emphasis on these.

We consider to be a special case of F2 if every 
lattice in F1 is a special case of a lattice in Fg, but 
not necessarily vice versa.

Definition. The family F^ is a special case of the family F2 
if and only if X n 2 is dense in £ n X n 2«

Proposition 4.8. (i). If F^ is a special case of F2 then:
(a) dim F1 <1 dim F2;
(b) the DT of F2 can be 'built up' to that of F^ by 

grouping parts.
(ii). If F1 is a special case of F2 and the DT of F1 equals 
that of F2, then the ODT of F^ can he 'built up' to that of



P2 by grouping parts.
Proof. By Theorem 1.7, for any lattice T^ in we may 
choose T2 in Pg with G(T2) ^ G i T ^ .  Part (i)(b) follows 
immediately. Part (i)(a) needs Lemma 2.9 also.
Part (ii) is true because a complete typically orthogonal 
decomposition can always be 'built up' from a complete 
decomposition.

In 5 dimensions, Proposition 4.8 (i)(b) and (ii) give 
the same amount of information about possible special cases 
as that given by (i)(a). The diagram of possible special 
case relationships which are allowed by Proposition 4.8 is:

In 4 dimensions, the decomposition type conditions 
actually contribute new information. The (1,1,1,1) family 
with ODT = (2,2) i.e. diclinic, has dimension 5 but 
cannot be a special case of the (1,1,1,1) family with 
ODT = (3,1) i.e. triclinic, of dimension 6, by (ii).

Dimension
5 Triclinio

t3 Monoclinic
t2 Orthorhombic

X  \

0
1

The true diagram (see, for example, [12)) is
Triclinio
Monoclini
Orthorhoirt

t

Tetragonal
\Cubic

Hexagonal



The two (2,1,1) families of dimension 2 cannot be 
special cases of the two (2,2) families of dimension 3, 
by (i)(b). The one (3,1) family of dimension 1 cannot be 
a special case of any of the four (2,2) families of 
dimension > 1, by (l)(b).

The decomposition type conditions are more significant 
in higher dimensions. This can be seen from looking at 
Table 4.4, in which it is noticeable that the overlap in 
dimensions between different decomposition types gets 
larger as n gets larger.

75
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CHAPTER FIVE. THE STABILITY OF SYMMETRY IN 
LATTICE HYPERPLANES.

5.1. Preliminaries Concerning Lattice Hyperplanes.

Let V be an n-dimensional real vector space with
scalar product and let T be a lattice of rank n in V.
We make the following standard definition.
Definition. W is a hyperplane in V if and only if it is
of the form f“1(c), where c € R and f is a non-zero
linear functional in V*.

Clearly, W is a hyperplane through 0 if and only if 
c = 0.

For W = f~1(c), we are interested in the set TnW. 
Either T n W  is empty or, for all t € TAW,

4T A W  = t + (TAf" (0)). Therefore we subsequently 
restrict attention to hyperplanes through 0 and by 
'hyperplane'' we mean 'hyperplane through 0.'

The following is a standard result, whose proof we
omit.

Proposition 5.1.(a). Non-zero linear functionals f, g € V* 
determine the same hyperplane if and only if f = kg, for 
some k £ 0.

Let W be a hyperplane , W = f“^(0). Choose a basis 
{v1,...,vn} of V and write f as a matrix (a.,a2.. .aQ) 
relative to this basis. We call (a^a2...an) a set of



Indices of W relative to Following directly
from Proposition 5.1 (a) we gets

Proposition 5.1 (b). Two sets of indices (a1 ...an) and 
(b1 ...bn) relative to ^ » . . . i v j  represent the same 
hyperplane if and only if there exists k £ 0 such that 
a^ = kb^, for 1 — i ^  n.

Remarks. 1. Under a change of basis represented by a 
matrix A in Gl(n,R), the indices (a,j...an ) transform to 
the indices (a1 ...an)A, relative to the new basis .
2. If W has indices (a.j.a.a ) relative to {v1,.. .,vnJ 
and <p €. Gl(V), then 9 W has indices (a^...an ) relative to 
{9vv ...,9vn}.

Theorem 5.2. Let3,(T) be the collection of all sets of
n independent vectors in T and let £(T) be the subcollection
of all bases of T. For a hyperplane W, Tr>W is a
lattice of rank m-1 , where m is the maximum number of
integers in a set of indices of W, taken over all sets in
¿.(I), This maximum is equal to that taken over -̂(T).
Proof. The set Tr\W is a lattice of rank ¿»n-1, by
Proposition 1.4. let {v^,,,,,vn] be a basis of V
contained in T and (a....a„) a set of indices of W relative
to {v1 M ;.,vJ , such that a,,,,.,^« Z, affl+1.... an £  Z.
Not all of a......a are zero, so assume without loss ofi m
generality that am £ 0. For j = 1,...,m-1, define 
w .£  Tr>W by Wj = (-am)Vj + a ^ .  The set {w1, .. . 
is independent, since det(w^, . .. ,wm_.j ,vm ) «*(-aJn)m"‘̂  0.
Therefore, rank T O W  2: m-1.



Suppose rank T n W  = r. Let {t.,,...,t } be a basis 
for T O W  and extend it to a basis {t1,. . . , tn} of T (see 
Proposition 1.5). Relative to this basis, W has indices of 
the form (0...0br+1..,bn ). By taking a suitable multiple 
we obtain a set of indices, relative to a basis of T, with 
r+1 integers. The only possibility is that r = m-1.

Remark. The maximum number of integers in a set of indices 
of W, taken over one basis, may be different from that 
taken over another basis. For example, when n = 3, let W 
have indices (V?11) relative to a lattice basis and 
change to the basis

Corollary. The lattice Tr>W has rank n-1 if and only if 
W has a set of all integer indices relative to one (and 
hence all) of the sets in3>(T).
Proof. Note that a change from one set in 3,(T) to another 
is given by A 6 GL(n,Q).

We shall concentrate subsequently on hyperplanes W 
for which rank T h W  = n-1. We call these rational 
hyperplanes for T. The lattice T n W  is called a lattice 
hyperplane. These terms are consistent with the terms 
rational plane and lattice plane used by crystallographers 
in 3 dimensions. For any given set in£L(T), we always 
choose the unique integer indices for W for which 
HCF(a^,..,,an ) » 1 ^unique, at least, up to sign).
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5»2. Description of the Problem in n Dimensions.

In this section we formulate an approach to the 
problem of stability of symmetry in n dimensions and 
in Section 5.3 we present the corresponding solution in 
5 dimensions.

Small symmetry preserving perturbations of a lattice 
T are represented by maps close to L in GL(V) for which 
G(9T) 2  'VyG(T)y-1, for some Y eGI,(v)* If W is rational 
for T, then 9 W Is rational for <J)T and$>Tr\<pW = g>(TnW). 
Since orthogonal maps always preserve the symmetry of Tr»W, 
we restrict attention to p £ Pos(V). In order to 
compare G(TH W) C  0(W) with G(p(ToW)) C  O(pW), we can 
choose any © £ 0(V) such that ©pW = W and compare 
G(TOW) with G(6p(TOW)) co(W). In fact, if 6, J3 £  0(V) 
and (©p)W = (|Sp)W = W, then

( / 3 p ) | w( ( e p ) | l)r 1 -  ( ^ p ) | w( p - 16- 1) | w

- C^e"1)|w £ « < ) .
Therefore ( p  p)|w and (0p)|w have the same positive definite 
symmetric part, which is of the form ( T p)| w for 
some T  € 0(V). We denote it byco(p) £ Pos(V). It is 
convenient to use this for comparison - we now compare 
G(TOW) with G((u(p))(TnW)). Note that w i s  a continuous 
function from Pos(V) onto Pos(W) (see Proposition 2.3).

Subsequently we denote <o(p) by pw .

Definition. The rational hyperplane W for T is locally 
stable if and only if there exists & >0 such that:
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p ePos(V), lip - Lll <  £ and G(pT) 2  YG(T)Y“1, for 
some GL(V)

= >  G(pw (TrkW)) 2*G(Tr»W)Y“1, for some Y € Gl(W).

By Theorem 1.7 and its Corollary, we obtain an 
equivalent definition by replacing \|Miy p, If by pw  
and 2 by = . In view of this and Proposition 2.4, the 
definition becomes:

Definition. The rational hyperplane W for T is locally 
stable if and only if there exists S > 0  such that: 
p S C(G(T), Pos(V)), l)p - til <  &

.--- >  pP € C(G(TOW), Pos(W)).

Notice i,hat we are now working in neighbourhoods of 
T in A^GiT)) and T n W  in A n -1 (G(Tr>V/).

We denote C(G(T), Pos(V)) by C(T) and C(G(Tr\W), Pos(W)) 
by C(Tr\W) in the sequel. The definition says that W is 
locally stable if and only if , locally at C, 
to“ 1 (C(THW)) 2C(T).

Proposition 5.3. (i). If G(TOW) = {lw , -lw] , then W is 
locally stable.
(ii) . If G(T) =^1, - l}, W is locally stable if and only 
if G(TOW) = K w, -Lw].
(iii) . If is indecomposable, any rational plane
W is locally stable.
Proof, (i). C(TOW) = Pos(W), so CJ“ 1 (C(TAW)) - Pos(V).
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(ii) . C(T) = Pos(V). However, Co"^(C(TOW)) = Pos(V) if 
and only if C(TnW) = Pos(W), which in turn is true if 
and only if G(TOW) = {tw, -Lw} .
(iii) . Use Theorem 3.16 and noteld((R+)t) = (R+)C^.

We now show that uT 1 (C(Tn W)) 2  C(T) is true globally 
if it is true locally, meaning that local stablility is 
equivalent to a type of global stability, in the entire 
Bravais class of T.

Proposition 5.4. The rational plane W is locally stable for 
T if and only if, for all p € Pos(V) with G(pT) 2pG(T)p“\  
G(pu (Tr>W)) 2G(TnW).
Proof. If. Obvious.

Only if. Take p e  Pos(V).with G(pT) 2  pG(T)p“1.
Then p e  C(T). Take a, b > 0 such that [eigenvalues of p} C
[a,b3 and {eigenvalues of p10} c[a,b]. For any & >0,
define f g : [a,b] ->R+ by fg(s) = (1 + 6s2)^. Then fg is a
one-to-one function. Let{y^,...,yn3 be an orthonormal basis
of V consisting of eigenvectors of p, with corresponding
eigenvalues ^,...,7^. Let [x.,,. . . , x^.,} be an orthonormal
basis of W, consisting of eigenvectors of pu , with
corresponding eigenvalues yu.,... • Suppose

= ^ x ^ y ^ ,  for 1 <: i i n-1. For i ^ k, ^ p x ^ p x ^  = 0, 
iia n̂ p o 2 2giving 'Xj xijxkj = 0* Also, jx ^  = ̂ px^,px^> = 53 Xj xij *j=1 J= ‘n 2Now for any 8>0, <fg(p)xitfg(p)xk>  = 53 ( 1 + &XjJ ** 1

{0 if i i* k 1 *S>Ml 2 if i - k.
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Therefore (f£(p))W  has eigenvectors with
2 i pi.eigenvalues (1 +£>/!,)*.... (1 + &yUn_ 1 )*. Consequently,

(fg (p)f = fs (pw ).
For smallS » f^ is close to 1 and fg (p) is close 

to t by Proposition 2.1(i). Since p fcC(T), so does f^(p) 
by Proposition 2,2, By local stability, (f^(p))°e C(Trw/) 
and so fj (pu ) 6 C(Tr\W). Since fg is invertible, pw € C(ir\W) 
and the result follows.

Using the bijection between unoriented hyperplanes 
through 0 in V and Pn-1 (R), let W correspond to w € Pn-1 (R),

Proposition 5.5. Locally at L, there is a homeomorphisrr. 
from Pos(V) to Pos(W) x Pn-1 (R) x R+, carrying L to (l, w, 1). 
This restricts to a local homeomorphism from co"^(C(TnW)) 
to C(TOW) x Pn_1 (R) x R+. In particular, uf 1 (C(TnW)) is 
locally at L a topological submanifold of Pos(V), of 
dimension n + dimC(Tr\W).
Proof. Let en be a fixed unit normal to W. Suppose 
p £ Pos(V), p is close to c , and pW - X corresponding to 
x £  Pn-^(R). Let {e1 ,...,en_1} be an orthonormal basis 
of W such that {e1,..., en_2} C XHW. Let en+1 be the 
unique vector of unit length in X normal to {e^,...,en_p] 
such that at = ^ en+i*en_i'> —  0 (uniqueness follows because 
p is close to t). Let ̂ 3 = Then there exists
0 € 0(W) such that:

where the matrix is relative to
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Therefore there exist c_j,...,cn e R such that:
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n -2
Q Q

©p 1<*)

giving p 1

oo

Jn- 2
• • 
• •
• •
0 0

0 • • • 0 \o . . . 0 p * /

e P'

?n- 1  'n

rn-1 in
It is easily verified that any choice of {e1 ,...,en-1} 

produces the same cn. Since p 6 Pos(V), we have : c^ = £Y(n-1)i

for 1 — i - n-2; cCcn_ 1 =^(cn + ̂ (n- 1 )(n-1 ) ) and 
© 6  0(W) i\ A“1 (Sym(W))(ptJ)_1, where Y  “ ©p1*1 and

A =
n - 2

Define 5<p) to be (pf°,x,cn) G  Pos(W) x Pn"*\R) x R+. 
Clearly pu and x depend continuously on p and it is 
easily checked that cn also does. Therefore ? is continuous. 
Close to lw, 0(W) and Sym(W) intersect only in Lw and 
they intersect transversally. Hence there are open 
neighbourhoods and U2 of lw in Gi(V/) such that for 
A, pu in U1t 0(W) and A - 1  (Sym(W)) (pf° ) - 1  intersect in just 
one point in U2, Consequently, ^ is one-to-one on a 
neighbourhood of l in Pos(V). Since the intersection 
also depends continuously on A and p*°t $ must be open 
on a neighbourhood of L, The fact that "S restricts is 
clear.



Corollary. A necessary condition for W to be stable is 
dim C(TAW) >  dim C(T) - n.

This condition is rather weak in 3 dimensions, but 
is somewhat stronger in higher dimensions (cf. Section 4.3).
It is the best general dimensional condition that we can 
expect, as if dim C(TryW) = in(n-1).and dim C(.T) = in(n+1), 
then W must be stable by Proposition 5.3 (i).

Even if W is not stable for T, we are interested in 
the set C(T) O  cJ 1 (C(TAW)). Globally, this is a subset 
of C(T) on which the symmetry of T n W  is preserved. Locally 
at l, it is the subset of C(T) on which the symmetry of 
T O W  is preserved. It always contains (R+)L.

We shall show in Section 5.3 that when n = 3 the situation 
is as follows.

The set cJ1 (C(TnW)) is locally at L a differentiable 
submanifold of some submanifold S(T,W) of Pos(V) which 
also contains C(T) (S(T,W) may equal Pos(V)). The 
manifolds C(T) and (C(Tr\ W)) intersect transversally Wilk
in S(T,W) near L, meaning that C(T)r\ oJ1 (C(TA\W)) is 
locally a submanifold of Pos(V) with dimension 
d = dim C(T) + dim C(TAW) + 3 - dim S(T,W), where 
dim S(T,W) ^  m = minimum{i(3) (3+1), dim C(T) + dir. C(TnW) + 3- 
Por a 3-dimensional Bravals class Bj and a 2-dimensional 
Bravais class Bg, if T fe B^ and TrvW 6 Bg, the dimension 
of S(T,W) depends in general not only on B^ and Bg* but 
on the particular position of W in T also. However, except
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for certain special planes which we shall fully describe 
in Section 5 . 3 , dim S(T,W) = m and consequently, except 
for the special planes,
d = (d im A nB1)  + (d im A nB2) -  ¿ ( 3 ) ( 3- 1) if m = ¿ ( 3 ) ( 3+ 1)

= 1 if m = (dim A nB1)  + (dim A nB2) + 3 - 1 .

It is reasonable to conjecture that a similar pattern 
of dimensional relationships occurs in higher dimensions.

5.3. The Solution in 3 Dimensions.

In this section we need the following lemma.

Lemma 5.6. Let T be a lattice of rank n in V with basis 
{s1,. .., sj. Let [f1,... toe a set of lattice vectors
where f± = qijsj ^qij &  z)* Then tf 1 *•••*fn-1i is 
a primitive set in T if and only if the n determinants

A

q 11 q12 * * * qij * * * q1n 
q2 1 q22 * • * q2j • * * q2n• • t • j s 1 f • • • f n

t

• • A
q(n-1 ) 1 q(n-1 )2***q(n-1 )j* * *q(n-1 )n 

have highest common factor 1 , where A denotes omission.
Proof. The set Jf1 .... fn-l̂  is Primitive and only lf
there exists f 6 T such that £f^,...,fn_1 ,fn} is a basis 
of T (Proposition 1.5). However, £f.j,...,fn} is a basis 
if and only if the matrixiq^^)(i,j = 1 ,...,n), representing 
(f.|,...,fn} relative to £s.|,..., sn$ , is in GL(n,Z). The 
result now follows easily from the fact that det(q^) ■ +1 .

In 3 dimensions, we write indices relative to a set 
{ X v  t2, x j  in&(T), where X^, X 2 , are shortest lattice
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vectors in the conventional axes (as described, for example, 
in [ 2 ; p.100 et seq.T). We take Xj to be in an axis of 
highest order and, in the rhombohedral case, further restrict 
X-j and X2 by insisting that j Z f  + •j't2 + 3 T3 £ T. We do not, 
incidentally, require right-handedness or an ordering on 
X-j and t2 determined by their relative lengths. The set 

need not be a basis of T, nor is.it uniquely 
determined by the above. This non-uniqueness does not affect 
our results, since any result we give involving explicit 
plane indices is valid relative to any conventional set.
Notice that if T and T’ are in the same Bravais class and 
(ti > X 2* X 3} is a conventional set for T, then ̂  1> X 2*» Tj'}is 
a conventional set for T' if and only if there exists <p in 
GL(V) such that <pT = T', <pG(T)Cp-1 = G(T') and 9^  - X ±' for 
1 £ i i  3. If W has indices (a^a2a^) relative to£x.j, X 2, X 3 } » 
then 9 W has indices (a^a^^) relative to^X-]1» %2 ' ,

Recall that we always take the unique integer indices 
(a1a2a^) such that HCP(a^,a2 ,a^) =1.

When V has dimension 3, Pos(V) has dimension 6 and,
having chosen an orthonormal basis for V,(we do not use
conventional sets at this stage) we may writeelements of Pos(V) as matrices /p^ p^ p^\ relative to this.

( p4 p2 p6 )

\ p5 p6 p3/
First we look at cJ"1 (C(TnW)) for the five Bravais classes 

to which the 2-dimensional lattice Tf\W may belong. If Tr\W 
is of class P we know that <jJ1 (C(Tr»W)) - Pos(V), since CJ
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is onto. The remaining classes fall naturally into two 
groups: (i) T a W  is of class R or D and hence C(TnW) = 
(R+)ly x (R+)Ly , where V 1 and V2 are orthogonal suhspaces 
containing the mirror lines; (ii) Tr\W is of class S or H, 
and hence C(Tr\W) = (R+)t.

(i). Suppose that T O W  is of class R or D. let 
v 1 € V 1 and e  V2, v1, v 2 ^ ie-j*e2 ,e5  ̂ is our
chosen orthonormal basis, let = x^e^ + y^e2 + z^e^, 
v2 = x2e1 + y 2 e2 + z2e3* Then a necessary and sufficient

(Pv1 )'(Pv2) = 0. This gives the following equation:

P 1P5 ( x 1z 2 +  x 2z ^  + p 2p 4 ( x 1y 2 + x ^ )  + P 2P6 (y . |Z 2 + y ^ . , )  +

p^P5U f Z 2 + x 2z 1) + P j P 6 ( y 1z2 + y2z.,) + P4p^(y^ z2 + y2z1) +

condition for P =(

P4P6^X1Z2 + X2Z1̂  + p5p6^x1y2 + x2yP  = 0 ( D

Regarding this equation as o<.(p1 ,p2 ,pj,p4,p^,pg) = 0 
(ot:R̂ — >R), it is easily verified that:

which is non-zero for non-zero v^, v,,. Since DoC is 
continuous, locally at C f oo^(C(TnW)) is a smooth 
submanifold of Pos(V) of dimension 5.
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(ii). Suppose T n W  is of class S or H. Let W have indices 
(c^gCj) relative to {e.j, e2, e^] and suppose that ¡i 0.
Then -c2e.j + c.je2 and -c^e^ + c^e^ are independent 
vectors in W. Normalise these to get v^ = x^e^ + ŷ e,,, 
v2 = x2e1 + z2e3 » where y 1 ^ 0 and z2 £ 0. Now P lies in 
U)-1 (C(Tr»W)) if and only if there exists © €  0(V) and 
h 6 R+ such that (6P)v.j = bv^, (0P)v2 = bv2* So 
necessary and sufficient conditions are:

(Pv1 )'(Pv1) = (Pv2)'(Pv2) (2)
(Pv1 X(Pv2) = (Pv.,) ,(Pv1 )v1 'v2 (3)

Equation (2) gives:
P ^ ix . , 2 -  x22) + p22( y 12) -  p 32( z22) + p42(1 -  x22) +

P52(X i 2 -  1) + P62(y12 - z22) + p 1p4(2x1y1) - p 1p 5(2 x2z2) +

p2p4^2xi” i ) "  P5P5( 2x2z2) -  p4p6(2x2z2) + P5P6(2x1y1) = 0 

Regard this asp  (p1 ,...,P6) = 0.
Equation (3) gives:
P 1 2(x1y 1 2x2) - p22 (x1y 1 2x2) + p52(x1y 1 2x2) - p62(x1y 1 2x2) +

p 1p4(y1x2 - 2x1 2y 1x2) + p 1p 5(x 1 z2) + p2p4(y-ix2 " 2xi2yix2* +

p2p6^y 1z2^ + P3P5^X1Z2^ + p3p6^y 1z 2^ + P4p5^y 1z2^ + P4P6 (X1Z2 ) + 
P5P6(y-|X2 - 2x 1 2y 1x2) = 0

Regard this a s Y ( p 1 ,...,p6) = 0.
We have:

DP(1 ,1 ,1 .0,0,0) ■ (2 (X 1 2 “ x22)» 2yi2. -2z22» 4x1y 1 » “♦X2Z2 *
and

D*(1 ,1 ,1 ,0,0,0) “ -2xiyi2x2, 0, 2 ( Y i x 2 - 2x1 2y 1x2),
2x 2 z 2» 2 y l z 2>*
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Since ^ 0, these are non-zero and locally at L,
p_ 1 (0) and Y-1 (0) intersect transversally. Therefore 
cJ”  ̂(C(Tr\ W) ) is locally at l a smooth submanifold of Pos(V) 
of dimension 4. Assuming Cg / 0 or Cj / 0 gives the same 
result in this situation. In other situations later, we 
may have to consider the possibilities c^ = 0, ¡i 0; 
c.| = C£ = 0 but c5 ji 0.

Notice that the results in (i) and (ii) are in 
agreement with Proposition 5.5.

We now look at the centralizer C(T) and its intersection 
with CO 1 (C(TOW). If T is triclinic, C(T) = Pos(V) and 
C0 1 (C(Tr\W)) n  C(T) = cJ1 (C(TP>W)). If T is cubic,
C(T) =(R+)L and uJ1 (C(Tr\W)) C(T) = C(T). If TrvW is of 
class P, then cJ1 (C(Tr\W)) r\ C(T) = C(T). These three 
cases are easily seen to conform to the description in 
Section 5.2, and there are no special planes for them. They 
are summarised in Table 5.1.

For the remaining cases, we choose such that
e0 2 and e, =>—■*„ forma conventional set in â>(T).

2 11x 211 5 IIX3II
Therefore C(T) is determined as follows, no matter what the 
conventional set;

T monoclinic; p^ = pg = 0;
T orthorhombic; p^ = p^ = Pg ■ 0;
T tetragonal, hexagonal or rhombohedral;

P1 “ P2* P4 - P5 - P6 " °*
For verification of this, refer to Table 3.1.
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We now look at cJ”̂  (C(Tr\ W) ) r\ C(T) for these remaining 
cases.

(A). T Monoclinic.
Tow(i). The lattice Lis of class R or D. Prom equation (1), 

it follows that C(T) and uT1 (C(TnW)) intersect transversally 
in Pos(V) near t unless x.jX2 = y.|y2 = z1z2 = x1y2 + x2y1 = °» 
in which case uT1 (C(Tr\W)) Q C(T) and S(T,W) = C(T).
Therefore the dimension d of the 'local stability manifold' 
is 3 unless x.j = y.j = z2 = 0 or x2 = y2 = z.j = 0, when 
d = 4. If W has indices (a^a2a^) relative to {'t.j, tg, 
d = 4 occurs when T O W  is of class R if and only if
a^ = 0; a2̂ 1 “ a1^2 and ̂ 3 are Primi'tive in TOW;
H a2Xi “ a^X2H t . The vectors a ^  - a 1t2 and tj
are shortest non-zero lattice vectors in the proposed 
mirror lines, and the last restriction is to prevent 
T O W  being of class S. If T is primitive monoclinic, 
a2X.| - a1t 2 and X^ are automatically primitive if a^ = 0, 
by Lemma 5.6, since HCFÉa^ag) = 1. If T is body-centred, 
k 1 ,t2 ,t3} is no longer a basis of T and the primitivity 
condition becomes: HCP(a^-a2, 2a1, 2a2) =1. This holds 
if and only if a 1 + &2 is odd.

The lattice T n W  is of class D with appropriate 
restrictions if and only if a^ = 0; iagE-j - * ^ 3

andtj are primitive in TOW; Ha2^-1 ~ a 1^ 2H ^ or 1.

If T is primitive monoclinic, this is impossible. If T is 
.body-centred, we need a^ and a2 to both be odd i.e. a^ + a2

to be even



(ii). The lattice TrMtf is of class S or H. Prom equations 
(2) and (3), C(T) and (C(Tr» W)) intersect transversally 
near L in Pos(V) unless x2 = 0, in which case C(T) ^ ^ ”^(0) = 
S(T,W), and C(T) and (C(Tf\W)) intersect transversally 
in S(T,W). Therefore d = 2 unless x2 = 0, when d = 3. 
However, x2 = 0 requires a^ = 0 and we have already 
calculated when S or H occurs under this restriction in (i). 
Deriving the analogue of equations (2) and (3) under the 
assumption ĉ  = 0, c2 ^ 0 gives the same result. The case 
Ci = eg = 0 is impossible, since for this T n W  is always 
of class P.

Notice that we have not only identified the planes 
for which d has a special value if a particular 
2-dimenslonal Bravais class appears. We have determined 
exactly when this class appears with a special value for d.
We shall do this in all later results as well.

(B). T Orthorhombic.
(i). The lattice TP*W is of class R or D. From equation 
(1) we see that C(T) and u5"1 (C(TnW)) intersect transversally 
near L in Pos(V) unless x^ 2 = y.jy2 “ z1z2 = when 
C(T) C (j^(C(TnW)) = S(T,W). Therefore d = 2 unless

3x^ 2 = y ^ 2 = =* 0, when d = 3. Now d =
requires one of the following: x^ = y 1 “ Z2 = 0; x

X1 " *2 = z 2 = 0; x2 = y 1 = z1 = 0; x 2 " y 1 “ Z2

x2 = y 2 = Z1 = 0. Take the case x^ “ y 1 " Z2 * 0.
T is -primitive orthorhombic. Tr\W is of class R with these 
restrictions if and only if a^ = 0; »2^1 “ a 1^2 and ̂ 3 are 
primitive in TnW; || a 2^1 “ a 1^ 2^  ^ UX3II • Since if



92

= 0, HCF(a.j,a2) = 1 , the primitivity condition is
always satisfied. If T is body-centred, we requiresa^ = 0;
HCF(a.j-a2 ,2a.|, 2a2) = 1 i.e. a^ + a^ to he odd;
I la2t i  -  a i l 2 || t  l l t 3H • I f  T j-3 face r  cent r ed, we re q u ire s

2sl 2 ( a  -fa. ) 4&
a3 = 0; HCP(— J, ---t -j^) = 1 (m., = HCF(a1+a2,2ai) ) i.e.

a 1 + a2 to he even;||ia2t 1 - èa1X 2|| t  iltjll . If T is

C-centred (meaning £X^ + Ì X 2 € T) we require: a^ = 0;
a.+a0 2a. u ap a< „

» “m ^  " 1 < m1 " HCP<a1+a2’ 2&1)); || ^  t 2 R
a 1+a2IlX 5II • If a 1 + a 2 is even, m 1 = 2 and HCF(— — , a ^  ■ 1; 

if a 1 + a2 is odd, m 1 = 1 and HCFia.j+a,,, 2a1) = 1 .
For TA W of class D we get no possibilities for T 

primitive or C-centred. For T body-centred, we get a^ = 0;
— a i*tp|| __ 1; - - £ 1 , V5  or^. For T face-centred.a 1 + a2 even

we get a^ = 0, a^ + a2 odd; ||a2 ti - aiX2||
— r a —

t  1 , or^j.

Considering the other possibilities for x^, y^, z^, x2, 
y2, z2 gives similar results with a^ = 0 or a2 = 0, 
except that D may oocur in the C-centred case if a^ or a2 is 
zero. The results are summarized in the tables at the 
end of this section.

(ii). The lattice T A W  is of class S or H. The
manifolds C(T) and to1 (C(Tr\W)) intersect transversally
near t in Pos(V) unless x1 = 0 or x2 = 0, when C(T) C “
S(T,W), and C(T) and C*T1 (C(TA W)) intersect transversally
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in S(T,W). Therefore d = 1 unless or x2 = 0, when 
d = 2. The calculations in (i) reveal all cases when 
x 1 or x2 = 0 and Tr\W is of class S or H, since this 
corresponds to one index of the plane being 0. Again 
the results are summarized in the tables.

In deriving equations (2) and (3), assuming c2 / 0 
or ĉ  = c2 = 0, Cj £ 0 gives the same re.sults,

(C). T Tetragonal.
(i). The lattice Tf\W is of class R or D. Equation (1) 
implies that C(T) and t*T1 (C(TP\W)) intersect transversally 
near l in Pos(V) unless z^z2 = 0, when S(T,W) = to ̂ (C(T O W ) ), 
which is bigger than C(T). Therefore d = 1 unless = °*
when d = 2. For d = 2 and T O W  of class R one mirror line 
must lie in the plane (001). A shortest non-zero lattice

SLp
vector in this is t1 = —  - jjp-Xg» wbere m-| = HCF(a^,a2).
We are assuming that a^ and a2 are not both 0, since 
if this is the case T O W  is always of class S. If T is 
primitive tetragonal , a s‘ * *

and || t1 1| ji Kt2 1| . For T O W  to be of class D, we require

where m2 = HCFia^a^, a2a^,

in W normal to t̂  is t2 =

For T A W  of class R, we require
) to be 1 and

1 M  / l|t2n 2 2• This is true if and only if a 1 + &2 *
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a2<a1 2+a22> a3(ai2-a22)
'  Pm ! m * Pm m * 9m  m *¿m1m2 2m 1m2 2m 1m2 to be 1 ;

jjŶ u ^ or^. The second condition is satisfied if
? ?and only if a 1 + a_ = 2m 1m?. However, if this holds, it

a f  a ?  +  a „ 2
is immediate that —  and —  are odd. Since ------ - ism. m. m„

cl<x '4_3 and -2- 2.even,
»2 ^2

condition is satisfied. Therefore TrvW is of class D with d=2 if
2 2 Vtill p- 1and only if a^ + a2 ■= 2mim2» ^ 1 »v3 o r ^  •

If T is body-centred tetragonal, we test for R and D
with z.|Z2 = 0 in a similar way, Since H 2» is no

2 2longer a basis of T, we now have m2 = HCP(a^aj+a^ +a2 ,
P P P ?a2a^+a1 +a2 , 2(a1 +a2 )) and for T A W  of class R we

2a 1 ( a 2+a 2) 2a?( a 2+a 2) (a.+a2+a,)(a2+a?2)
require HCF( , ■ A .  )

must be odd, meaning the first

m ^ 2 m^m2 m 1m2

to be 1 and || t | | t 2|| . This holds for a^+a2+a^ odd if 
and only if a.j2+ a^2 = n n̂ig, and )(t1 (| £ )] 1̂ 2 1! * for 
a.j + a2 + a^ even if and only if 2(a^ +a2 ) = râ m,,, and
# t,ll * l *au .

2 23*p +&p
For T O W  of class D we require 4(—  + ---— ------ ) and— ra1 nip

2 2a. a0a,+a. +a9
M -  ¡¡p + ■ ■ -------- - ) to be integral;

‘ 1a.Ca.^+a, ) a A a . 2+a02) (a.+ap+a,)(a. +&2 )
HCg< m|m-2— - » m;m22 » --------  > to be 1 *

1*111
jjT̂ y 1» ^  °r^ *  ThlS h°|tS,|f°r a1 + a2 + a3 °dd if 
only if a^2 + a2 2 = 2m^m2 > ¡ 4 '  '• - n  for

a^ + a2 + a^ even if and only if a ^  + a2 2

and

* 1 » ^  ot<A-
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(ii). The lattice T A W  is of class S or H. Equations (2) 
and (3) show that C(T) and cJ1 (C(Tf\W)) always intersect 
transversally in ¥"1 (0) = S(T,W), meaning d = 1. Assuming 
c2 ^ 0 in deriving equations (2 ) and (3) gives the same 
result. Assuming ĉ  = Cg = 0, c^ ji 0 means we are 
considering the plane (001). Clearly S always occurs here 
with d = 2, but H never occurs.

(D). T Hexagonal/Rhombohedral.
The results follow the same pattern as in the tetragonal 

case, but we spare the reader the details of the 
calculations. The results are summarized in the tables.

Table 5.1. Usual Dimension d of the local Stability Manifold.

The numbers in brackets in the first row are the dimensions
of A 5(G) for each system.
\T->
TnVh

i

Triclinic
(6)

Monoclinic
(4)

Orthorhombic
(3)

Tetragonal Hexagonal
(2)

Rhombo-hedral
(2)

Cubic
(D

P 6 4 3 2 2 2 1

R .5 3 2 1 1 1 1

D 5 3 2 1 1 1 1

S 4 2 1 1 1 1 1

H 4 2 1 1 1 1 1



\

Table 5.2. Description of When the Local Stability 
Manifold has Special Dimension.
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(A). T Monoclinic.
||a9Xi “ aitoO Notation: = tj(a.j,a2) = --- ŷ  | 1 =■

T n  w SpecialDimension T Primitive T Body-centred

R d=4(STABLE) a3=0 , +■ 1 a3=0, a1+a2 odd, tj ji 1

D d=4(STABLE) Never a3=°, « V a 2 even,ij ji 1,j3,^

S d=3 a3=0,^= 1 a3=0,^ =1

H d=3 Never a3=0, a1+a2even, îj =V3, ^

(B). T Orthorhombic.
Notation: ^(aita ) = ’ Mi,j.

TfiW SpecialDimension
d=3(STABLE)

Primitive

or

or

d-3 (STABLE) Never

Body-centred

ai=°*
a2+a^ odd, 
■*i(a2,a3)ji1 

or 
a 2=ü7
a^ +a3odd,
^ ( a - p a ^ j i l

or
a 3=^7
ai+a2odd,
»)(&!,ag)/-!

Same as in 
R but with 
aA+aj even 
and >l ( a± t a j

*  ' ■ #  “S?

Face-centred

Same as
body-centred 
for R but with
a^+a^ even

Same as 
body-centred 
for D but

)with ai+aj 
odd

C-centred

ai=0,a2 odd, 
•»j(a2,a3 )^1 

ora2=ü7 a 1 odd,

,+a.

■»i <a 1 »a2 ^
or

a3=0,a^+&2 
even,

a^=0,a2 even,I

(̂ a2 * a3 ) 1 , V5
°ri or
a2-0,a.j even, 
V a  ̂» aj ) ^  » '
or A

Continued.
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Table 5.2(B)« Continued.
T A W Special

Dimension
Primitive

S d=2

or
or

H d=2 Never

Body-centred Face-centred C-centred

^ 1 ( a 2 * a3 Ì or "a^O.jJa^a ) 
or •aj=0,a.j+a2odd

,|(a1 ,a2 )=1 
ora^=0,a^+a2eve

tj(a1 ta2 )=2

Same conditions on a„,a„,a, as i .Vi 2 5
in the corresponding column for 
D above, ¡but with the ¡restriction

i 1 '
that or , [
_________ i_______ i____i____________

(C). T Tetragonal.
Notation: (a„,a„ not both zero) m 1=HCF(ai,a0); 0 0----KZ ¿L * a ..a, a?a, a1 +a?
t1= ” STJ'r 2 ; t 2 = ^ - t 1 + H J “ 'C 2 “ m2 X 5;

, N Btill
’I - W V V

2 2For T primitive. m 2 = HCFia^j, a2a^, a1 +a 2 ).
2 2 2 2 / 2 iFor T body-centred. m2 = HCF(a^aj+a^ +a2 »a2a3+al +a2 , 2(a^ +a2

Ir the following table (overleaf), we assume a1 and a2 are 
not both zeroJin rows R and D.
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T n w Special
Dimension

Primitive Body-centred

R d=2
(STABLE)

2 2a1 +a2 =m^m2,

V t  1

2 2a^+a2+a3 odd, a^ +a2 = m^mg,^^ 1 
or 2 2

a1+a2+a3 even» 2 (a^ +a2 )=m^m2 ,ij;i 1

D d=2
(STABLE) 2 2a 1 +a2 =2111̂ 1112 

^  1 » o r ^

2 2a1+a2+a3 0<̂ > ai +a2 =2râ m2#
T ^1,V3 or ̂

2 2a1+a 2+a 3 even, a^ +a2 =m^m2,
*  i,^5 orV5

s d=2
(STABLE)

a 1=a2=0 a^=a2=0

CD). T Hexagonal/Rhombohedral.
Notation: (a.j,a2 not both zero) m 1 = HCF(a.j,a2);

*1 - ift! - *2

^ “ '•?(a1,a2,a3)

/(2a1+a2)a3 w  ^ a ^ a ^ a ^
' -------- ' L1 (  m2 ' * 2

x2(a1 2+a22+a1a2) ^
1 nZ JZ j i

2 2For T hexagonal. m2 = HCP((2a^+a2)a3> (2a2+a^)a3>2(a^ +a2 +a-ja2))^

For T rhombohedral, 
m2 - HCF[(2a1+a2)a3+4(a12+a22+a1a2),(2a2+a1)a3+2(a12+a22+a1a2)f

6(a12+a22+a1a2)J.

Again in the table overleaf we assume a 1 and a2 are not 
both zero in rows R and D.
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TOW Special
Dimension Hexagonal Rhombohedral

R d=2(STABLE)
O p

2(a1 +a2 +a1a2 )=m1m2> 
 ̂* 1

2 22(a1 +a2 +a1a2)=m1m2,
3 does not divide 2a^+a2+aj,

V. t  1or
2 7F""6(a1 +a2 +a1a2)=m1m2,

3 divides 2a^+a2+a3 
1

D d=2(STABLE)
2 2a 1 +a2 +a1a2=m1m2, 

^ 1 . ^ 5  o r ^

2 2

3 does not divide 2a 1+a2+a3, 
^  1,V3 o r ^

0r2 23(a1 +a2 +a1a2)=m1m2,
3 divides 2a1+a2+a,, ĵ( 1,-f3,J

°r ri

H d=2(STABLE) a^=a2=0 a1 =a2=0

Some Examples of Interesting Special Planes.
We give some examples of planes satisfying the special 

conditions in Table 5.2 (C) and (D) when T n W  is of class R 
or D. This is by no means a complete list of such planes.
We exclude the restrictions on ̂  in these examples. Except 
for thesç restrictions, the examples may be regarded as 
always being of class R or D.

T Primitive Tetragonal.
R. a3 = a .,2 + a2 2 and HCF(a1 ta2) = 1 e.g. (125);

a 1 " a2 an<* a 3 even e,8* ( ^ 2);
(245);
(3^5) i.e. the plane with equation 3x -6y +5z - 0; 
(4 6(1 3 )) i.e. ■ " " M 4x + 6y + 13z - 0.
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Some Examples of Interesting Special Planes.
We give some examples of planes satisfying the special 

conditions in Table 5.2 (C) and (D) when T n W  is of class R 
or D. This is by no means a complete list of such planes.
We exclude the restrictions on ̂  in these examples. Except 
for thes§ restrictions, the examples may be regarded as 
always being of class R or D.

T Primitive Tetragonal.
R. a3 - a .,2 + a2 2 and HCFia.,^) = 1 e.g. (125);

a 1 * a2 an<* a3 even e,8* 0 ^2);
(245) ;
(3?>5) i.e. the plane with equation 3x -6y +5z - 0; 
(46(13)) i.e. " " " " 4x + 6y + 13z - 0.



D. a1 = a2 and a^ odd e.g. (1 1 3 ); 
(265);
(13(15)).

T Body-centred Tetragonal.
a3R. a 1 = a2, a^ even, ^ + a1 even;

a? = a ^  + a22, HCP(a1 fa2) = 1 ,
(46(13));
(245). 2 2D. a^ = a 1 + a2 , HCP (a1 ta2) = 1 

a 1 = a2 ’ a 3 Q(̂ » a3a^ « a2, a^ even, ^ + a^ odd; 
(355);
(265);
(13(15)).

a 1 + a 2 even

, a^ + a2 odd

T Hexagonal.
R. a 1 = a2, a^ even; 

( 127 ).

D« ~ oddj
a^ = al^ + a 2 + aia2 * HCF(a^,a2) = 1 ; 
(247).

T Rhombohedral.
R. a^ = a2, a^ even and not divisible by 3.

D. a^ = a2, a^ odd and not divisible by 3; 
(247);
(127).
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Final Remark.
In [6], there are four specific examples given 

illustrating the use of the algorithm in that paper.
Each involves taking a plane of fixed indices throughout 
a Bravais class. In each case the plane is a non-special one 
by our classification and the answers obtained for these 
examples all conform to the pattern predicted in Table 5.1.
To see this it is necessary to notice that the space of 
free parameters over a particular Bravais class, used by 
crystallographers, corresponds to our space C(G(T), P o s(V)) 
(cf. Proposition 2.12). Also, in view of the remarks at 
the beginning of this section about conventional sets, 
fixing plane indices and varying parameters in the Bravais 
class corresponds to taking pW for p in C(G(T), Pos(V)).

By way of illustration, consider the case of a (123) 
plane in a primitive orthorhombic lattice. Gruber states 
(p. 623) that R occurs if and only if the parameters a,b,c, 
satisfy 6a2 = 3b2 £ 2c2 or a2 - 2b2 - c2 = 0. It is 
clear that this indicates a local stability manifold of 
dimension 2, as Table 5.1 predicts. The other parametric 
equations in Gruber's examples may be interpreted in the 
same way. We emphasize that the parameters a, b, c are 
not plane indices but lattice parameters. The pl*»ne indices 
in Gruber's examples are fixed.
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