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One Sentence Summary: Integration of variant reads across patient-specific mutation loci enables 

sensitive ctDNA quantification in plasma cell-free DNA sequencing data. 50 

 

Abstract: Circulating tumor-derived DNA (ctDNA) can be used to monitor cancer dynamics 

noninvasively. Detection of ctDNA can be challenging in patients with low-volume or residual 

disease, where plasma contains very few tumor-derived DNA fragments. We show that sensitivity 

for ctDNA detection in plasma can be improved by analyzing hundreds to thousands of mutations 55 

that are first identified by tumor genotyping. We describe the INtegration of VAriant Reads 

(INVAR) pipeline, which combines custom error-suppression methods and signal-enrichment 

approaches based on biological features of ctDNA. With this approach, the detection limit in each 

sample can be estimated independently based on the total number of informative reads sequenced 

across multiple patient-specific loci. We applied INVAR to custom hybrid-capture sequencing 60 

data from 176 plasma samples from 105 patients with melanoma, lung, renal, glioma, and breast 

cancer across both early and advanced disease. By integrating signal across a median of >105 

informative reads, ctDNA was routinely quantified to 1 mutant molecule per 100,000, and in some 

cases with high tumor mutation burden and/or plasma input material, to individual parts per 

million. This resulted in median Area Under the Curve (AUC) values of 0.98 in advanced cancers, 65 

and 0.80 in early stage and challenging settings for ctDNA detection. We generalized this method 

to whole-exome and whole-genome sequencing, showing that the INVAR may be applied without 

requiring personalized sequencing panels, so long as a tumor mutation list is available. As tumor 

sequencing becomes increasingly performed, such methods for personalized cancer monitoring 

may enhance the sensitivity of cancer liquid biopsies. 70 

 

Introduction 

Circulating tumor DNA (ctDNA) can be robustly detected in plasma when multiple copies of 

mutant DNA are present; however, when the amounts of ctDNA are low, analysis of individual 

mutant loci might produce a negative result due to sampling noise even when using an assay with 75 

perfect analytical sensitivity (1). ctDNA may be missed in samples that have low fractional 

concentrations of ctDNA (relatively few mutant molecules in a high background) or low absolute 

numbers of mutant molecules due to limited sample input (Fig. 1A). This effect of sampling noise 
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reduces the sensitivity of ctDNA monitoring for patients with early-stage cancers, particularly after 

surgery (1, 2), and is most pertinent when measuring individual mutations. For example, by 80 

assaying for a single mutation per patient in the plasma of patients with early-stage breast or 

colorectal cancer post-operatively, ctDNA was detected in approximately 50% of patients who 

later relapsed (3, 4). When applied to patients with stage II-III melanoma, carrying BRAF- or 

NRAS-variants, ctDNA was detected up to 12 weeks after surgery in 16.8% of patients who 

relapsed within 5 years (5).  85 

Tumor-guided sequencing panels use prior tumor genotype information and custom panel 

design, and offer the possibility to greatly increase the sensitivity of ctDNA assays for cancer 

monitoring by targeting a larger number of variants (6–11) (Fig. 1B). Such assays conventionally 

target 10-20 mutations in plasma (7, 12, 13), though some have analyzed up to 115 patient-specific 

mutations in parallel, quantifying ctDNA to 1 mutant molecule per 33,333 copies in patients with 90 

breast cancer after neoadjuvant therapy (9). Current patient-specific approaches enable 

identification of relapse between 3 and 10 months earlier than clinical relapse across cancer types 

including: colorectal (10, 14), breast (12), and bladder cancer (11). As whole-genome tumor 

sequencing becomes increasingly performed in clinical settings (15, 16), cost and time barriers to 

implementation of patient-specific panels are reduced. 95 

ctDNA detection methods often rely on identification of individual mutations even when 

data cover multiple loci (7, 9, 17, 18), which may discard mutant signal that does not pass a 

threshold for calling. The potential sensitivity benefit of targeting hundreds to thousands of tumor 

markers per patient has been previously suggested (8, 19), though such an approach has only been 

anecdotally applied to cancer monitoring in plasma (20). In this study, to improve sensitivity, we 100 

aggregated sequencing reads across 102-104 mutated loci for each patient. We describe the 

INtegration of VAriant Reads (INVAR) pipeline (Fig. 1C), which leverages custom error-

suppression and signal enrichment methods to enable sensitive monitoring and identification of 

residual disease. This approach uses prior information from tumor genotyping to guide analysis 

(Fig. 2A).  105 

We conceptualize the factors influencing ctDNA detection limits as a two-dimensional 

space (Fig. 2B), highlighting the importance of maximizing the number of relevant DNA 

fragments analyzed by increasing either plasma volumes and ctDNA copies analyzed or the 
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number of (patient-specific) variants sampled: the number of informative reads generated is 

proportional to the product of these two factors. Based on these principles, we apply INVAR to 110 

analyze patient-specific sequencing data using custom hybrid-capture panels. We further 

demonstrate the ability to apply INVAR to plasma whole-exome sequencing (WES) and shallow 

whole genome sequencing (sWGS). 

 

Patient-specific sequencing panel design 115 

First, tumor-tissue genotyping was performed to identify multiple patient-specific 

mutations per patient: WES data were generated from tumor and buffy coat samples from 47 

patients with Stage II-IV melanoma (Materials and Methods), identifying a median of 625 

mutations per patient (IQR 411-1076, fig. S1 and table S1 in data file S1). These mutation lists 

were used to generate custom-capture sequencing panels, which were used to sequence 120 

longitudinal plasma samples (n=130) (2,301x mean raw depth). In addition, WES (238x mean raw 

depth, n=21) and sWGS (0.6x mean raw depth, n=33) were performed on subsets of plasma 

samples from the same patients and used as input for INVAR analysis (tables S2 and S3 in data 

file S1). 

Using a patient-specific sequencing approach, a large number of private mutation loci were 125 

targeted. Each locus has its own error rate. Accurate benchmarking of the background noise rates 

of individual loci to below 10-6 would require analyzing cfDNA molecules from 1 L of plasma in 

order to sample one mutant read (this assumes a cfDNA concentration of 10 ng/mL from plasma, 

yielding 3 million analyzable molecules). To circumvent this, we sought to develop a background 

error model for patient-specific sequencing data that could estimate the background error rate of a 130 

locus accurately using limited control samples. In this study, 99.8% of the mutations identified by 

tumor-tissue sequencing were private to each individual. Each custom hybrid-capture sequencing 

panel design in this study covered loci from a mean of 5.5 patients, generating data from matched 

as well as non-matched mutation lists for each sample. INVAR uses sequencing data from one 

patient to control for others using both custom and untargeted approaches such as WES or WGS 135 

(fig. S2A). There was no significant difference in background error rate whether using data from 

healthy individuals or from other patients as control data (‘patient-control’ samples, which may 

control for other patients at private loci) (fig. S2B).  
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Error-suppression in patient-specific sequencing data 140 

As part of the INVAR pipeline (flowchart outline in fig. S3), we developed methods to 

minimize artefacts in patient-specific sequencing data. We evaluated the contribution of different 

filtering steps using patient samples, ‘patient-control’ samples, samples from healthy individuals, 

and dilution series (Supplementary Materials and Methods). Read collapsing was performed using 

unique molecular identifiers (UMIs), which reduced error rates across all mutation classes (fig. 145 

S4A), similar to previous studies (21). To increase the resolution of background error rates, we 

grouped mutations by both mutation class and trinucleotide context, demonstrating over two orders 

of magnitude difference in background error rate between the least and most noisy trinucleotide 

contexts (Fig. 3A). Increasing the minimum number of duplicates per read family reduced the error 

rates further, at the expense of a greater fraction of the sequencing data being discarded (fig. S4B). 150 

To balance data loss against background error rate, a minimum family size threshold of 2 was 

used. With more redundant sequencing, this can be increased to further reduce background rates. 

INVAR requires any mutation signal to be represented in both the forward (F) and reverse 

(R) reads of the read pair. This serves to both reduce sequencing error, and to produce a small size-

selection effect for short fragments because only short fragments would be read completely in both 155 

F and R with paired-end 150-bp sequencing. This step retained 92.4% of mutant reads and 84.0% 

of wild-type reads in a training dataset (fig. S4C).  

When targeting a large number of patient-specific loci, it becomes increasingly likely that 

technically noisy sites or single-nucleotide polymorphism (SNP) loci are included in the list. 

Newman et al. have previously used position-specific polishing to address this issue (8). In this 160 

study, we blacklisted loci that showed either error-suppressed mutant signal in >10% of the patient-

control samples or a mean background error rate of >1% mutant allele fraction. This approach 

excluded 0.5% of the patient-specific loci across all patients (fig. S4D). Requiring mutant signal 

in both reads and applying a locus noise filter reduced noise modestly when applied individually; 

however, when combined they showed a collective benefit, reducing background error rates to 165 

below 10-6 in some mutation classes (Fig. 3B). The individual effects of these filters on individual 

trinucleotide contexts are shown in fig. S4E. 
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The distribution of observed allele fractions can be assessed when targeting a large number 

of patient-specific sites. In the residual disease setting, we expect to observe a high degree of 

sampling error. Therefore, signal should appear stochastically as individual mutant molecules 170 

distributed across patient-specific loci, with many of the loci having zero mutant reads. In order to 

optimize INVAR for detection of the lowest possible amounts of ctDNA, we identified outliers to 

this distribution (correcting for multiple testing) and excluded signal at individual loci that was not 

consistent with the remaining loci (“patient-specific outlier suppression”, Fig. 3C). This reduced 

mutant signal in control samples approximately threefold, while retaining 96.1% of mutant signal 175 

in patient samples (summarized in Fig. 3D, raw data shown in fig. S5A). This filter had the greatest 

effect at low ctDNA fractions: in the dilution series dataset, 100% of mutations were retained at 

an Integrated Mutant Allele Fraction (IMAF, see below) above 3 x 10-4, and a median of 81% at 

IMAF in the parts-per-million (ppm) range (fig. S5B). Outlier-suppression was more likely to 

remove signal from mutations at highly amplified regions in the genome, such as the BRAF locus 180 

in melanoma (fig. S5C, D). However in the context of large panels any individual mutation makes 

a minor contribution and despite its amplification, BRAF mutations were not observed in the 

10,000x dilution (ppm range) or below due to sampling noise. 

Combining the above steps resulted in an average 131-fold decrease in background error 

relative to raw sequencing data (Fig. 3B) and reduced the error rates of some trinucleotide contexts 185 

to below 10-6. This signal-to-noise window created the potential for detection of ctDNA to parts 

per million in some samples. Individual sample-level average error rates after background error 

filters are shown in fig. S6. 

 

Patient-specific signal enrichment 190 

INVAR generates a p-value at each locus for the presence of ctDNA, which may be 

weighted with various factors before being combined. Here, we enrich for ctDNA signal by 

assigning greater weight to loci with higher tumor allele fractions, and to sequencing reads that are 

most similar to the size distribution of ctDNA.  

Tumor variants with a higher tumor variant allelic fraction (VAF) are more likely to be 195 

observed in the plasma (22), therefore, greater weight was allocated to mutant signals in plasma 

from loci with high tumor mutant allele fraction. Using a dilution series, we confirmed the 
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relationship between the tumor allele fraction of a locus and the rate of ctDNA detection for that 

locus in plasma (fig. S7A). We confirmed in clinical samples that patient-specific mutation loci 

observed in plasma had a significantly higher tumor allele fraction compared to those not observed 200 

in plasma (stage II-III melanoma, P < 2x10-16; stage IV melanoma, P < 2x10-16, Wilcoxon test, 

Fig. 3E). Similarly, by sequencing a second tumor sample for each patient of the late-stage 

melanoma cohort, we showed that shared mutations were significantly more frequently detected 

in plasma than private mutations (P < 2 x 10-16, Wilcoxon test, fig. S7B). 

Analysis of DNA fragment sizes in 130 samples from patients with melanoma showed a 205 

nucleosomal pattern of cfDNA fragmentation, with mutant fragments shorter than wild-type 

fragments at the mono-nucleosome and di-nucleosome peaks (fig. S7C). We also observed that 

patients with stage IV melanoma had a significantly higher median mutant fragment size compared 

to the patients with stage II-III melanoma (163 bp vs. 154 bp, P = 2x10-16, Wilcoxon test, fig. S7D), 

due to a relatively high amount of mutant dinucleosomal DNA in this cohort. This analysis was 210 

performed with downsampling to the same number of mutant reads in each dataset, indicating that 

in advanced disease, longer dinucleosomal ctDNA fragments can exist, and can show greater 

enrichment for mutant DNA than mononucleosomal DNA. Although PCR-based studies have 

noted greater cfDNA fragment length in cancer patients (23–25), previous studies have focused on 

shorter ctDNA compared to non-tumor cfDNA (26–30). To address these inconsistencies, INVAR 215 

weights mutant reads based on the empirical distribution of mutant fragments in all other samples 

in the cohort being studied, so any size range that may be enriched in cancer may be given greater 

weight. The potential advantage of assigning greater weight to specific loci rather than applying a 

hard size-selection cut-off is that when ctDNA fractions are low, a ‘hard’ cut-off can cause loss of 

rare mutant alleles (31). In order to perform size-weighting, we assessed the frequency of 220 

mutations for any given fragment size (Fig. 3F and fig. S7E), and then weighted each mutant read 

observed with the probability that it came from the cancer distribution as opposed to the wild-type 

size distribution (Supplementary Materials and Methods).  

After signal weighting, INVAR aggregates signal across all patient-specific mutation loci 

(Supplementary Materials and Methods). In order to determine whether ctDNA is detected in a 225 

sample, data from samples of other patients, where these mutations were not present in the tumor,  

were used as negative controls to set the detection threshold (fig. S2A). The aggregated INVAR 

likelihood ratio was used to determine detection, rather than a preset minimum number of mutant 
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molecules. A threshold for determining detection was defined so as to maximize sensitivity and 

specificity (Supplementary Materials and Methods), requiring a minimum specificity of 90%. In 230 

the setting we have used, two mutant reads supporting the same locus, one forward and one reverse, 

were required to pass the background noise filters. In some samples, two such reads which may 

come from the same molecule were sufficient to obtain positive ctDNA detection at high 

specificity. An Integrated Mutant Allele Fraction (IMAF) was determined by taking a background-

subtracted, depth-weighted mean allele fraction across the patient-specific loci in each sample 235 

(Supplementary Materials and Methods).  

 

Analytical sensitivity and specificity of INVAR 

To benchmark the sensitivity of INVAR, we performed custom capture sequencing of a 

dilution series of plasma from one patient with melanoma (stage IV disease), for whom we 240 

identified 5,073 mutations through WES. Plasma DNA from this patient was serially diluted into 

control volunteers’ plasma DNA to an expected IMAF of 3.6 x 10-7. Without use of unique 

molecular barcodes, INVAR detected ctDNA down to an expected allele fraction of 3.6 x 10-5, 

which was quantified to an average IMAF of 4.7 x 10-5 in both replicates (fig. S8A). Following 

the use of molecular barcodes and custom error-suppression methods, the diluted ctDNA was 245 

detected to an expected IMAF of 3.6 x 10-6 (3.6 parts per million) in both replicates, with IMAF 

values of 4.3 and 5.2 ppm (Figs. 4A, 4B, S8B). 5,305 out of 8,660 tumor-genotyped mutations 

(61.2%) were observed in plasma in the dilution series at any point. The correlation between IMAF 

and the expected VAF was 0.98 (Pearson’s r, p < 2.2 x 10-16). At an expected allele fraction of 3.6 

x 10-7, ctDNA was detected in 2 out of 3 replicates. To assess the impact of the number of targeted 250 

mutations on sensitivity, we downsampled sequencing data in silico to include subsets of patient-

specific mutation lists. This confirmed that targeting more mutations resulted in more informative 

reads and correspondingly higher ctDNA detection rates (Fig. 4C, Supplementary Materials and 

Methods).  

The false positive rate of INVAR was measured twice, once in patient-control samples and 255 

separately in healthy control samples. First, detection accuracy was evaluated through analysis of 

samples from other patients (patient-control samples) at non-matched mutation loci (Fig. 4D, black 

line). This resulted in specificity of 95% (table S4 in data file S1). To confirm the specificity in 
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independent control samples, we ran custom capture sequencing (with the same oligo pools) on 

samples from healthy individuals and analyzed those by INVAR using each of the patient-specific 260 

mutation lists. This resulted in specificity of 97% (Fig. 4D, red line).  

 

Distribution of ctDNA mutant allele fractions in advanced melanoma 

We applied INVAR to custom capture panel sequencing data from 130 plasma samples 

from 47 patients with stage II-IV melanoma, generating up to 2.9 x 106 informative reads per 265 

sample (median 1.7 x 105 informative reads), thus analyzing orders of magnitude more cfDNA 

fragments compared to methods that analyze individual or few loci (Fig. 5A). In this study, we 

demonstrated a dynamic range of 5 orders of magnitude and detection of trace amounts of ctDNA 

in plasma samples (Figs. 5B, 5C); this detection was obtained from a median input material of 

1638 copies of the genome (5.46 ng of DNA; table S2 in data file S1). In a total of 13 of the 130 270 

plasma samples analyzed with custom capture sequencing, ctDNA was detected with signal in 

fewer than 1% of the patient-specific loci (Fig. 5D). The lowest fraction of a cancer genome 

detected was 1/683, equivalent to roughly 5 femtograms of tumor DNA, with an IMAF of 2.52x10-

6 and an INVAR likelihood ratio at the 99th percentile of bootstrapped values from healthy control 

samples (fig. S9A). This was detected based on an individual mutant molecule sequenced in both 275 

forward and reverse directions in a total of 7.7x105 informative reads. Given the limited input 

amounts, in 48% of the cases (indicated with filled circles in Fig. 5C) the low ctDNA amounts that 

we detected would be below the 95% limit of detection for a ‘perfect’ single-locus assay. The input 

mass vs. IMAF of each sample is shown in fig. S9B, highlighting the sensitivity benefit of a 

sequencing approach using integration of variants across the genome. Thus, targeting multiple 280 

mutations can allow detection of low absolute amounts of tumor-derived DNA. 

 

Distributions of ctDNA mutant allele fractions across cancer types and stages 

To study the distributions of ctDNA amounts more broadly, we applied INVAR to samples 

from different clinical studies covering a range of tumor types, including non-small cell lung 285 

cancer (NSCLC, n=19 patients), renal cancer (n=24 patients) (32), glioblastoma (n=8 patients) 

(33), and breast cancer (n=7 patients). The median detected IMAF per cohort varied from 5.2 ppm 
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in early stage breast cancer to 0.015 in advanced melanoma (Fig. 6A). ctDNA was detected at in 

≥50% of patients with early-stage breast cancer, early-stage non-small cell lung cancer, and glioma 

(33) at IMAFs as low as less than one part per 100,000.  290 

For each sample where ctDNA was not detected, we estimated the 95% upper bound for 

ctDNA fraction based on the total number of informative reads tested in that sample. 44% of 

detected samples (55 of 124) and 68% of non-detected samples (39 of 57) had ctDNA fractions or 

upper bounds below 1 mutant per 10,000 molecules, or 1x10-4 IMAF (Fig. S10), further 

highlighting the requirement of sequencing a large number of informative reads for sensitive 295 

quantification of ctDNA. 

 For each cohort, the likelihood ratio threshold for detection was determined by ROC 

analysis (Supplementary Materials and Methods) with a minimum specificity of 90% (Fig. 6B). A 

median specificity of 95.0% was obtained (table S4 in data file S1). Specificity varied between 

cohorts, likely due to differences in noise profile between cancer types during the panel design 300 

phase. Some cases showed signal but a likelihood ratio below the threshold for 90% specificity. 

These cases (shown in gray in Fig. 6A) would be detected at specificity of 85%, suggesting that 

detection can be improved with further optimization. This resulted in median values for Area 

Under the Curve (AUC; Fig. 6B) of 0.98 in advanced cancers (stage IV melanoma and breast 

cancers, AUC range 0.96-1), and 0.80 in early stage disease and other settings where ctDNA 305 

detection has previously been challenging (including stage I-III NSCLC, stage I-II breast cancers, 

renal and brain tumors, stage II-III melanoma after surgery; AUC range 0.64-0.92) (5, 32, 33).  

 

Personalized monitoring of ctDNA in melanoma 

INVAR analysis was used to monitor ctDNA dynamics in response to treatment in a cohort 310 

of patients, most of whom received anti-BRAF targeted therapy as first-line treatment (Fig. 7A). 

ctDNA IMAF values showed a correlation of 0.8 with tumor size assessed by computed 

tomography (CT) imaging (Pearson’s r, P = 6.7 x 10-10, fig. S11A, table S5 in data file S1), 

comparable to other studies (7, 13). ctDNA IMAF had a correlation of 0.53 (Pearson’s r, P = 2.8 

x 10-4, fig. S11B) with serum lactate dehydrogenase (LDH), a routinely used clinical marker for 315 

monitoring of melanoma. A large proportion of timepoints in our dataset had LDH concentrations 

within the normal range (0-250 IU/L), potentially masking dynamic changes in disease state, 
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whereas ctDNA concentrations had a wider dynamic range, which may explain the relatively low 

correlation observed (Fig. 7A). Similar observations have been made in comparison to clinical 

markers of other cancer types (34, 35). 320 

In one patient (#59) treated with a series of targeted therapies and immunotherapy, ctDNA 

was detected to an IMAF of 2.5 ppm, corresponding to a time point where 3 out of 5 tumor lesions 

had become non-detectable by CT, and the remaining two had volumes of 0.59 cm3 and 0.43 cm3 

(fig. S12A, table S3 in data file S1), indicating that ctDNA may be detected at the threshold of CT 

detection (36). After progression on vemurafenib, patient #59 progressed on multiple other anti-325 

BRAF targeted therapies (pazopanib, dabrafenib, and trametinib) and immunotherapy 

(ipilimumab), corresponding to a constant rise in ctDNA over two years of monitoring (Fig. 7A, 

fig. S12A). By clustering mutation trajectories over time (Supplementary Materials and Methods), 

we identified clusters of mutations that emerged after progression on vemurafenib and pazopanib 

(Fig. 7B). The mutations in the cluster which emerged latest in plasma had the lowest median allele 330 

fraction in the tumor specimen collected from this patient prior to treatment, at 26%, in contrast to 

33% and 37% for the clusters that were observed in plasma earlier. Other patients’ IMAFs and 

tumor volumes for patients with stage IV melanoma are shown in fig. S12B-E. 

In some patients, we identified differential responses of mutation clusters to targeted 

therapy (Fig. 7B, all mutations shown in fig. S13), suggestive of a heterogeneous response to 335 

targeted therapy in different tumor subclones. In one case (patient #60), multiple mutation clusters 

were not detected at the start of treatment but emerged after 4 months’ treatment with vemurafenib, 

whereas a separate cluster that was present at the beginning declined in IMAF over a year on 

treatment. In two cases (patient #60 and patient #64), treatment-responsive mutation clusters had 

a lower average tumor allele fraction compared to the non-responsive mutation clusters. These 340 

data highlight the increased granularity of insight into clonal evolution that may be obtained by 

sequencing a larger number of mutations over time (20). However, by virtue of being patient-

specific, this approach is not designed to identify de novo mutations in plasma that were not present 

in the original tumor, though mutation calling can also in principle be applied to the data generated. 

To test INVAR in the residual disease setting, we applied it to post-operative samples from 345 

38 patients with completely resected Stage II-III melanoma recruited in the UK AVAST-M trial 

(37). Patient samples were collected up to 6 months after surgery with curative intent. The clinical 
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details of this cohort are given in fig. S14A. We interrogated a median of 3.6 x 105 informative 

reads (IQR 0.64 x 105 to 4.03 x 105) and detected ctDNA to a minimum IMAF of 2.85 ppm, as 

indicated in Fig. 5C. The specificity of this analysis was >0.98 (table S4 in data file S1). Here, in 350 

order to maximize sensitivity, samples that were not detected with fewer than 20,000 informative 

reads were termed “unclassified” because insufficient information was available to classify them 

as ctDNA negative. Similar to the relative haplotype dosage method by Lo et al., additional 

information is warranted to classify these samples (38), thus, 3 samples were excluded from the 

analysis on this basis.  355 

Of the evaluable patients, ctDNA was detected in 40% (8/20) of patients who later recurred 

and did not show a significant difference in disease-free interval (6.3 months vs. median not 

reached with 5 years’ follow-up; Hazard ratio (HR) = 2.08; 95% CI 0.85-5.13, P = 0.08, fig. S14B) 

and overall survival (2.6 years vs. median not reached, P = 0.11, fig. S14C). There were no 

significant associations between Breslow thickness of the primary tumor and ctDNA detection, 360 

primary tumor ulceration, or disease stage (P > 0.05, Fisher’s Exact Test, fig. S14D). The median 

LDH value showed no significant difference (403 IU/L vs. 327 IU/L, P > 0.05, Wilcoxon test). A 

previous analysis of ctDNA detection at 12 weeks after surgery in 161 patients with resected BRAF 

or NRAS mutant melanoma from the same clinical trial detected ctDNA in 16.8% of patients who 

later relapsed (5). Given the small size and limited power of this analysis, validation studies are 365 

required to fully benchmark this approach in larger cohorts and in other cancer types after surgery. 

 

Personalized ctDNA monitoring using WES and sWGS  

 Patient-specific capture panels allow highly sensitive detection of ctDNA but they require 

prior design of customized sequencing panels. Therefore, we assessed whether INVAR could be 370 

applied to standardized workflows such as WES or WGS. This would generally result in a smaller 

number of informative reads covering mutated loci due to wider coverage and lower depth of 

sequencing, in exchange for omitting the panel design step and requiring only the patient-specific 

mutation list from tumor-tissue sequencing (for example WES). The tumor tissue sequencing may 

thus be performed in parallel with plasma sequencing to reduce the turnaround time (Fig. 8A).  375 

To test the generalizability of INVAR, we selected samples with IMAF values quantified 

as being between 4.5 x 10-5 and 0.16 using custom-capture sequencing and used commercially 
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available exome capture kits to sequence plasma DNA to a median raw depth of 238x. Despite the 

modest depth of sequencing, we obtained between 1,565 and 473,300 informative reads using 

WES (Fig. 8B). Background error rates per sample are shown in fig. S15A. We detected ctDNA 380 

in all tested samples (n=21) down to IMAFs as low as 4.34 x 10-5 (Fig. 8C) with a specificity of 

>95% (fig. S15B), demonstrating that ctDNA can be sensitively detected by INVAR from WES 

data using patient-specific mutation lists. These IMAF values showed a correlation of 0.97 with 

custom capture data from the same samples (Pearson’s r, P = 1.5 x 10-13, Fig. 8D). Therefore, 

INVAR is not only highly sensitive when applied to custom capture panels that redundantly 385 

sequence up to 102-103 haploid genomes, but also when applied to WES data with a de-duplicated 

coverage between 10x-100x (Fig. 8E).  

We hypothesized that ctDNA could be detected and quantified with INVAR from even 

smaller amounts of input data. Therefore, we performed WGS on libraries from cfDNA of 

longitudinal plasma samples from a subset of six patients with Stage IV melanoma, to a mean 390 

depth of 0.6x (indicated in black in Fig. 8B). For each of those patients we identified >500 patient-

specific mutations using WES from each patient’s tumor and buffy coat DNA. We generated 

between 226 and 7,696 informative reads per sample (median 861, IQR 471-1,559; Fig. 8B) after 

read collapsing with a “minimum family size” requirement of 1 (duplicate removal). Despite not 

leveraging unique molecular barcodes, the median error-rate per sample was 5 x 10-5 (fig. S15C). 395 

Using INVAR on sWGS data, IMAF values as low as 1.1 x 10-3 were quantified (Fig. 8F) with 

specificity of >97% (fig. S15D). Compared to custom capture data from the same samples, we 

observed a correlation of 0.93 (Pearson’s r, P = 9 x 10-10, Fig. 8D). In samples where ctDNA was 

not detected, it was possible to estimate the maximum likely IMAF of that sample from the known 

number of informative reads for each sample (Fig. 8F). Using sequencing data with less than 1x 400 

coverage, INVAR could boost the sensitivity using patient-specific mutation lists by up to an order 

of magnitude compared to copy-number analyses (28, 39). 

 

Future sensitivity estimates of personalized sequencing 

Lastly, we sought to estimate the sensitivity of INVAR with each data type used in this 405 

study. sWGS requires minimal sequencing in plasma and thus may be performed with minimal 

DNA input, for example from droplets of blood (40). In contrast, a single mutation assay or fixed 
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panel of limited size could not achieve this degree of sensitivity from limited material. As 

sequencing costs decline and as tumor WGS becomes increasingly performed clinically (16), 

future increases in sequencing depth in WGS in plasma could boost sensitivity further without 410 

requiring the design of patient-specific capture panels (Fig. 8G), particularly in tumor types with 

high mutation rates (as identified in ref. (41)). However, sWGS data may lack redundancy of 

sequencing which would limit options for error-suppression.  

For custom hybrid-capture sequencing, the distribution of informative reads for all the 

samples in this study is shown in fig. S16, indicating those where limited sensitivity was reached 415 

(<20,000 informative reads) and conversely those with >106 reads and sensitivity to the ppm range. 

Samples with limited sensitivity could be re-analyzed with larger amounts of DNA input/more 

sequencing, or by using tumor WGS to expand the patient-specific mutation lists. Our 

considerations suggest that the sensitivity of ctDNA quantification using sequence alterations 

alone would likely be limited to ~0.1 ppm due to limitations placed by tumor mutation burden and 420 

plasma cfDNA amounts (Fig. 2B), even before considering background error rates.  

 

Discussion 

In this study, we developed a method for sensitive patient-specific monitoring of ctDNA that 

leverages the properties of patient-specific sequencing data. In this initial application of INVAR, 425 

sensitivity was routinely achieved to one mutant molecule per 100,000 leveraging a median 

number of 1.7 x 105 informative reads generated per sample. Under optimal conditions, when the 

number of tumor-guided mutations and input material are sufficiently high, it is possible to achieve 

detection to individual parts per million, representing an order of magnitude greater sensitivity as 

compared to alternative methods (8, 9, 18). In advanced disease, INVAR enabled detection of 430 

ctDNA in 100% of patients with stage IV breast cancer or melanoma and 62.5% of patients with 

glioblastoma. In earlier-stage disease, ctDNA was detected in plasma in 63% of patients with lung 

cancer before treatment, in 29% of patients with early-stage melanoma after surgical resection 

(40% of those who later relapsed), and in longitudinal samples from 3 of 4 patients with early-

stage breast cancer. 435 

We applied INVAR to exome sequencing and WGS data, demonstrating that personalized, 

tumor-guided analysis can be beneficial when applied to non-personalized sequencing data. 
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Although these latter methods generated fewer informative reads, INVAR detected ctDNA to 5 

parts per 100,000 using WES and to 0.1% mutant allele fraction using low-depth (0.6x) WGS, 

over an order of magnitude more sensitive compared to previous methods based on copy-number 440 

analysis of sWGS (39, 42). For a given sequencing output, data generated by WES or WGS have 

fewer informative reads, and the sensitivity is therefore less than that obtained by personalized 

sequencing panels. However, the turnaround time would be faster due to the omission of a panel 

design stage, and the cost saving of not designing a sequencing panel may in the future offset the 

cost of additional sequencing.  445 

When applied to samples from patients with early-stage melanoma, our results with 

INVAR recapitulated those from Lee et al. (5), which analyzed samples from this same cohort of 

patients with melanoma at a high risk of relapse: both studies found that of patients with residual 

ctDNA in this setting, at 5 years, the disease-free proportion was 20%-25% and the proportion 

surviving was ~40%. This reproducible finding, using different methods with high specificity, 450 

suggests that these findings are less likely to be a technical error; rather, this may indicate possible 

residual cells or signal present after surgery (43), which is not linked to disease relapse in the tested 

timeframe. Similar observations have recently been reported for patients at high risk of relapse in 

other cancers: in patients with stage III colorectal cancer, nearly half of patients with residual 

ctDNA after surgery did not relapse within 3 years (44, 45). This is in contrast to results for patients 455 

with earlier stage colorectal cancer, where analysis using the same method showed near 100% rate 

of relapse within 1-2 years when residual signal was detected in ctDNA (4, 14, 46). This 

observation, now repeated in several cohorts and with different methods, merits further 

investigation. 

 This study has notable limitations. Firstly, INVAR and similar personalized approaches 460 

operate by targeted sequencing and/or evaluation of signals across a patient-specific list of 

mutations that is externally provided, and thus are not suitable for early detection or diagnosis of 

new cancers. In this case, tumor samples were used to identify mutations, but this can, in principle, 

be achieved by analysis of plasma at timepoints where there is high ctDNA content (47). Next, 

INVAR has so far been applied on a limited number of cases, which may have contributed to 465 

limited power for detection of residual disease in early-stage melanoma. The performance of this 

approach was assessed using ROC analysis across individual cohorts, though when applied at 

scale, it would be desirable to set a fixed specificity threshold. Evaluation of this method in larger 
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datasets would enable optimization of both laboratory and computational methods. Furthermore, 

the IMAF is calculated as an average across all informative reads that span the list of mutations, 470 

and so intratumor heterogeneity could inflate the list of mutations, resulting in an artificially low 

IMAF. For example, in our dilution series, 3,355 of the 8,660 mutations analyzed were not detected 

in plasma. If these loci were removed from analysis, the effective number of informative reads 

would be reduced by 39% and the estimated IMAF would correspondingly increase. For 

longitudinal quantification within a patient, this would not alter the relative dynamics; however, it 475 

suggests a possible uncertainty range in estimating absolute ctDNA fractions using this method.  

 Personalized sequencing of a large number of mutations may be carried out within 

clinically relevant timeframes: recent personalized amplicon sequencing approaches may generate 

tumor exome sequencing within two weeks, with a further two weeks for panel design and 

sequencing (48). Furthermore, recent advances in oligo synthesis enable rapid manufacture of 480 

custom baitsets in comparable timeframes to custom primer pairs used in amplicon sequencing 

(49), so custom capture panels could match turnaround times of custom amplicon-based 

approaches. Tumor sequencing and bait design incur a one-time cost for every patient. The cost of 

custom hybrid-capture sequencing could occupy a price point between amplicon sequencing of 

smaller panels and sequencing of large panels such as exomes. Overall costs may be mitigated by 485 

trends for increasing utilization of tumor sequencing in oncology which could remove those extra 

costs, and strategies such as used here where baits are pooled and generated once for a set of 

patients, so that samples from one patient can generate control data for other patients. 

In summary, patient-specific mutation lists provide an opportunity for highly sensitive 

monitoring from a range of sequencing data types using methods for signal aggregation, weighting, 490 

and error-suppression. As tumor-tissue sequencing becomes increasingly routine in personalized 

oncology, patient-specific mutation lists may be increasingly leveraged for individualized 

monitoring from a variety of sequencing data types for sensitive monitoring. 
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Materials and Methods 495 

Study design. 181 plasma samples from 110 patients with multiple cancer types were collected 

along with plasma from 45 healthy controls. For each patient, at least one tumor biopsy and 

matched germline sample was required for tumor genotyping. For patients with cutaneous 

melanoma, samples were collected from patients with American Joint Committee on Cancer 

(AJCC) stage II-IV disease enrolled on the MelResist (REC 11/NE/0312) and AVAST-M studies 500 

(REC 07/Q1606/15, ISRCTN81261306) (37, 50) (Table S6 in data file S1). MelResist is a 

translational study of response and resistance mechanisms to systemic therapies of melanoma, 

including BRAF targeted therapy and immunotherapy, in patients with stage IV melanoma. 

AVAST-M is a randomized controlled trial which assessed the efficacy of bevacizumab in patients 

with stage IIB-III melanoma at risk of relapse after surgery; only patients from the observation 505 

arm were selected for this analysis. The Cambridge Cancer Trials Unit-Cancer Theme coordinated 

both studies, and demographics and clinical outcomes were collected prospectively. The BLING 

study (biopsies of liquids in new gliomas, REC 15/EE/0094) analyzes patients with brain tumors, 

recruited at Addenbrooke’s Hospital, Cambridge, UK (33). Patients with a range of renal 

malignancies were recruited to the discovery and analysis of novel biomarkers in urological 510 

diseases study (DIAMOND, REC 03/018) (32). The Personalised Breast Cancer Programme (REC 

07/Q0106/63, 15/NW/0926, 15/NW/0994)  recruited patients with early and advanced stage breast 

cancer. Patients with AJCC stage I-IIIB non-small cell lung cancer were recruited to the LUng 

cancer - CIrculating tumor DNA study (LUCID, REC 14/WM/1072). Consent to enter each study 

was obtained by a research/specialist nurse or clinician who was fully trained regarding the 515 

research. A sample size calculation was not performed for this proof-of-principle study. Analysis 

of the AVAST-M and LUCID cohorts were performed blinded to patient outcome and baseline 

characteristics. Laboratory and computational methods are described in detail in the 

Supplementary Materials and Methods. 

 520 

Supplementary Materials 

Materials and Methods 

Fig. S1. Tumor mutation list characterization for INVAR. 

Fig. S2. Use of patients and healthy individuals as controls in pooled sequencing panels. 
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Fig. S3. INVAR flowchart.  525 

Fig. S4. Characterization of background error rates with bespoke error-suppression methods. 

Fig. S5. Patient-specific outlier suppression. 

Fig. S6. Background error rate per sample in personalized capture data. 

Fig. S7. Signal weighting based on tumor allele fraction and fragment size, with consideration of 

intratumor heterogeneity.  530 

Fig. S8. ctDNA dilution series with and without read-collapsing. 

Fig. S9. Comparison of input mass and IMAF observed and ROC curves for the stage IV melanoma 

cohort. 

Fig. S10. Distribution of ctDNA fractions in plasma samples. 

Fig. S11. Clinical correlates in advanced melanoma. 535 

Fig. S12. Longitudinal tumor imaging and ctDNA data in advanced melanoma. 

Fig. S13. Longitudinal individual plasma mutation data in advanced melanoma. 

Fig. S14. Baseline characteristics and clinical correlates of ctDNA detection in early-stage 

melanoma. 

Fig. S15. Background error rates and ROC curves in exome and sWGS data. 540 

Fig. S16. Informative reads generated and hypothetical sensitivity with increased numbers of 

informative reads. 

Data file S1 contains the following tables: 

Table S1. Patient-specific mutation lists for melanoma cohorts. 

Table S2. Sample library preparation input, QC, and INVAR likelihood ratios – test samples. 545 

Table S3. Sample library preparation input, QC, and INVAR likelihood ratios – control samples. 

Table S4. Likelihood ratio thresholds and specificity for melanoma cohorts. 

Table S5. Tumor volumes for stage IV melanoma cohort. 

Table S6. Patient baseline characteristics for melanoma cohorts. 

550 
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Figure legends:  

 

Fig. 1. Patient-specific analysis overcomes sampling error in conventional and limited input 

scenarios.  840 

(A) When high amounts of ctDNA are present, gene panels and hotspot analysis are sufficient to 

detect ctDNA (top panel). However, if ctDNA concentrations are low, these assays are at high risk 

of false negative results due to sampling noise. Using a large list of patient-specific mutations 

allows sampling of mutant reads at multiple loci, enabling detection of ctDNA when there are few 

mutant reads due to either ultra-low ctDNA concentrations (middle panel), or due to limited 845 

starting material or sequencing coverage (bottom panel). (B) A given sample contains a limited 

number of haploid copies of the genome, g. For plasma samples, the small amount of material 

limits the sensitivity that is attainable to one mutant per g total copies. By analyzing in parallel a 

large number of marker loci (loci that are mutated in the patient’s tumor), n, detection of tumor 

DNA can be substantially enhanced to detect one or few mutant molecules (indicated in red) per 850 

n * g copies. (C) The INtegration of VAriant Reads (INVAR) pipeline. To overcome sampling 

error, signal was aggregated across hundreds to thousands of mutations. Here we classify samples 

(rather than individual mutations) as significantly containing ctDNA, or as ‘ctDNA not detected’. 

‘Informative Reads’ (IR, shown in blue) are reads generated from a patient’s sample that overlap 

loci in the same patient’s mutation list. Some of these reads may carry the mutation variants in the 855 

loci of interest (shown in orange). Reads from plasma samples of other patients or individuals at 

the same loci (‘non-patient-specific’) are used as control data to calculate the rates of background 

errors (shown in purple) that can occur due to sequencing errors, PCR artefacts, or biological 

background signal. INVAR incorporates additional information on DNA fragment lengths and 

tumor allelic fraction of mutations, to enhance the accuracy of detection.  860 

 

Fig. 2. Study outline and rationale for integration of variant reads.  

(A) To generate deep sequencing data across large patient-specific mutation lists at high depth, 

patient-specific mutation lists generated by tumor genotyping were used to design hybrid-capture 

panels that were applied to DNA extracted from plasma samples. In additional analysis, the tumor 865 

genotyping data were used to analyze sequencing data from WES and sWGS by INVAR. (B) 
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Illustration of the range of possible working points for ctDNA analysis using INVAR, plotting the 

haploid genomes analyzed vs. the number of mutations targeted. Diagonal lines indicate multiple 

ways to generate the same number of informative reads (IR, equivalent to haploid genomes 

analyzed (hGA) x targeted loci). Current methods often focus on analysis of ~10 ng of DNA 870 

(resulting in sequencing of 300-3,000 haploid copies of the genome) across 1 to 30 mutations per 

patient (indicated by the light-blue box). This corresponds to ~10,000 informative reads resulting 

in frequently encountered detection limits of 0.01%-0.1% (7, 17). In this study we focused on 

analysis of larger numbers (100s-1,000s) of mutations. 

 875 

Fig. 3. Characterization of background error rates.   

(A) Background error rates after error-suppression were calculated for each trinucleotide context 

by aggregating all non-reference bases across all considered bases (‘near-target’, Supplementary 

Materials and Methods). (B) Reduction of error rates after different error-suppression settings 

(Wilcoxon test, * = P<0.05; ** = P<0.001, *** = P<0.0001). Each of the filters are described in 880 

the Supplementary Materials and Methods. (C) Outlier suppression approach: loci observed with 

outlying signal relative to the remaining patient-specific loci might be due to noise at that locus, 

contamination, or a mis-genotyped SNP locus (in red). (D) Summary of effects of outlier 

suppression on each cohort (Wilcoxon test, * = P<0.05). (E) Mutations with higher tumor allele 

fraction were more frequently observed in plasma (Wilcoxon test, *** = P < 0.0001),  which was 885 

not observed in control samples. NS, not significant; ND, mutation not detected in plasma. (F) 

Log2 enrichment ratios for mutant fragments from two different cohorts of patients. Size ranges 

enriched for ctDNA are assigned greater weight by the INVAR pipeline.  
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Fig. 4. Sensitivity and specificity determination for INVAR.  

(A) Spike-in dilution experiment to assess the sensitivity of INVAR. The median number of 890 

mutation loci with error-suppressed positive signal was 3,637 of 8660 for the undiluted sample 

replicates, and decreased for subsequent 10x dilutions to 2,586 loci, 209 loci, 73.5 loci, 27.5 loci, 

and finally 16 loci for 100,000x diluted sample replicates. The heat-map shows the 5305 loci that 

were observed in plasma (at any dilution), with gray bars where error-suppressed signal was 

detected in any of the replicates for the indicated dilution. A magnified version is provided in fig. 895 

S8B. (B) After error suppression, ctDNA was detected in all replicates for all dilutions to an 

estimated concentration of 3.6 ppm. Using signal enhancement based on fragment sizes, ctDNA 

was detected in 2 of 3 replicates at an estimated ctDNA allele fraction of 3.6 x 10-7 (Supplementary 

Materials and Methods). Using error-suppressed data of 11 replicates from the same healthy 

individuals without spiked-in DNA from the cancer patient, no mutant reads were observed in an 900 

aggregated 6.3 x 106 informative reads across the patient-specific mutation list. (C) The sensitivity 

in the spike-in dilution series was assessed after the number of loci analyzed was downsampled in 

silico to between 1 to 5,000 mutations (Supplementary Materials and Methods). (D) ROC curve 

for the stage IV melanoma cohort. This was generated based on 52 timepoints from 9 patients 

(black, with 212 negative controls obtained from non-patient-specific loci); and when comparing 905 

the patient samples to sequencing data from 7 healthy individuals (red) which generated 45 

ctDNA-negative control datasets (samples tested across the mutation list for each of the patients, 

see fig. S2). 
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Fig. 5. ctDNA quantification by INVAR in early and advanced melanoma.  

(A) Number of haploid genomes analyzed (hGA; calculated as the average depth of unique reads) 

and the number of mutations targeted, in 130 plasma samples from 67 cancer patients across two 

cohorts. Dashed diagonal lines indicate the number of informative reads that were generated. (B) 

Two-dimensional representation of ctDNA fractions detected (IMAF), plotted against the number 915 

of informative reads (IR) for each sample. The dashed line indicates the theoretical limit of 

detection set by the reciprocal of the number of informative reads. In some samples, >106 

informative reads were obtained, and ctDNA was detected down to fractional concentrations of 

few ppm (orange shaded region). In this study we used a threshold of 20,000 informative reads 

(left-most dotted line), such that samples with undetected ctDNA that had fewer than 20,000 920 

informative reads were deemed “unclassified” due to limited sensitivity and were excluded from 

the analysis (yellow shaded region  below 20,000 IR). The number of patient-specific mutations 

targeted in each sample is indicated by the size of the circle. (C) ctDNA fractions (IMAFs) detected 

in cell-free DNA from plasma samples of melanoma patients in this study, shown in ascending 

order for each of the two cohorts. Filled circles indicate samples where the number of haploid 925 

genomes analyzed would fall below the 95% limit of detection (LOD) for a perfect single-locus 

assay given the estimated number of cancer genome copies (see panel D). Empty circles indicate 

the samples from patients in the early stage melanoma cohort who did not relapse during 5-year 

follow-up. Samples shaded in lighter blue show discordant ctDNA detection between two 

replicates. (D) The number of copies of the cancer genome detected for each of the samples in the 930 

same order as above in part (C), calculated as the number of mutant fragments divided by the 

number of loci queried (table S2 in data file S1).  

 

 

Fig. 6. ctDNA detection and fractional concentrations in different clinical studies across 935 

cancer types with early and advanced disease. 

(A) ctDNA fractions (IMAFs) are shown for samples from different clinical studies (32, 33) 

covering a variety of cancer types and varying disease stages and treatment status. The specificity 
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threshold was determined for each cohort using ROC analysis (panel B) with a minimum 

specificity of 90%. Box plots, and data in black dots, show samples detected at the indicated 940 

specificity. Five samples with ctDNA signal below this threshold, but with likelihood ratios 

equivalent to specificity >85%, are shown in gray. (B) ROC curves and Area Under the Curve 

(AUC) values for the likelihood ratios obtained for each of the cohorts. The number of patients 

used for each ROC analysis are shown in table S4 in data file S1.   
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Fig. 7. Longitudinal ctDNA monitoring   945 

(A) ctDNA and lactate dehydrogenase (LDH) are shown over time for each of the patients with 

stage IV melanoma. Treatments are indicated by shaded boxes. The upper limit of normal of LDH 

(250 nmol/L) and the limit of detection of ctDNA are each indicated with a dashed horizontal line. 

IMAF, integrated mutant allele fraction. (B) ctDNA concentrations over time, grouped by mutation 

cluster. Mutations were clustered based on longitudinal mutation dynamics (Supplementary 950 

Materials and Methods). Treatments are indicated by shaded boxes. The transparency of each line 

indicates the median tumor allele fraction of the respective mutation clusters in plasma, indicating 

mutation clusters that are more likely to be clonal in origin.  
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Fig. 8. Detection of ctDNA from WES/WGS data using INVAR (A) Schematic overview of a 955 

generalized INVAR approach. Tumor (and buffy coat) and plasma samples can be sequenced in 

parallel using whole exome or genome sequencing, and INVAR can be applied to the plasma 

WES/WGS data using mutation lists inferred from the tumor (and buffy coat) sequencing. (B) 

INVAR was applied to WES data from 21 plasma samples with an average sequencing depth of 

238x (before read collapsing), and to WGS data from 33 plasma samples with an average 960 

sequencing depth of 0.6x (before read collapsing). ctDNA fractions (IMAF values) are plotted vs. 

the number of unique informative reads for every sample. The dotted vertical line indicates the 

20,000 informative reads (IR) threshold, and the dashed diagonal line indicates 1/IR. (C) IMAFs 

observed for the 21 samples analyzed with WES ordered from low to high. ND, not detected. (D) 

ctDNA fractions obtained from plasma WES (yellow) and sWGS (black) were compared to the 965 

ctDNA fraction obtained from custom capture sequencing of the same samples, showing 

correlations of 0.97 and 0.93, respectively (Pearson’s r, P = 1.5 x 10-13 and P = 9 x 10-10). (E) 

Number of hGA (indicating depth of unique coverage after read collapsing) and number of known 

tumor mutations covered by plasma WES and sWGS. sWGS data could cover many more mutation 

loci, but in this case, mutations were determined from WES analysis of tumors, therefore the lists 970 

of mutations are of similar size. (F) Longitudinal monitoring of ctDNA fractions in plasma of six 

patients with stage IV melanoma using sWGS data with an average depth of 0.6x, analyzed using 

INVAR with patient-specific mutation lists (for patients with >500 mutations identified by WES 

tumor profiling). Filled circles indicate detection at a specificity of >0.99 by ROC analysis of the 

INVAR likelihood (fig. S16). For samples with no ctDNA detection, the 95% confidence intervals 975 

of the maximum IMAF are shown, based on the number of informative reads for each sample 

(empty circles and bars). ND, not detected. (G) Predicted sensitivities for sWGS plasma analysis 

of patients with different cancer types, using an average of 0.1x or 10x coverage (equivalent to 0.1 

and 10 hGA) and the known mutation rates per Mbp of the genome for different cancer types (41). 

The limit of detection (LOD) for ctDNA based on copy number alterations is shown at 3% (39), 980 

and an approximate LOD of INVAR without error suppression (or with family size 1, fs1), is 

indicated, based on error rates in fig. S15C. 


