Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/139085

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/139085
mailto:wrap@warwick.ac.uk

The Wisdom of the Crowd when Acquiring Information
is Costly!

Jacob Glazer, University of Warwick and Tel Aviv University
Tlan Kremer, University of Warwick and The Hebrew University

Motty Perry, University of Warwick

21,/06/2020

ABSTRACT

We consider a sequential investment process that is characteristic
of crowdfunding platforms, among other contexts. Investors wish to
avoid the cost of information acquisition and thus prefer to rely on
information acquired by previous investors. This may lead to phe-
nomoenon similar to an information cascade. We characterize the
optimal policy that balances between the incentive to acquire infor-
mation and the optimal investment decision. The policy is based on
time-varying transparency levels such that it may be worthwhile to

conceal some information in some periods.

1'We would like to thank the editor of this journal for his guidance and encouragement.
Special thanks are due to a referee for his highly constructive suggestions, which led us to
rethink and rewrite parts of the paper. We believe that his/her thoughtful comments greatly
improved the paper.



1 Introduction

Platforms that implement the "wisdom of the crowd" are becoming increasingly
important in the new internet economy. They are used to collect information
from the public, process it and redistribute it among the public to be acted
upon. Examples include Google Maps, Yelp, and others. However, there are
numerous cases in which the information first needs to be acquired by the crowd
members, and an important task of an information disclosure mechanism is to
induce the right number of agents to incur the cost of doing so. One example is
crowdfunding platforms where potential investors can conduct their own (costly)
investigation before deciding whether or not to invest. Another is product re-
view platforms where consumers can share information about the products, in
addition to the information provided by the platform.

When acquiring information is costly an important task of an optimal infor-
mation disclosure mechanism is to induce the right number of agents to incur
the cost. To the best of our knowledge, little attention has been devoted to the
question of how to design such mechanisms, and it is our intention to take the
first step in closing that gap.?

We study a stylized model in which an uninformed principal hosts a single
project that is either a "lemon" or "good". Potential agents arrive sequentially,
and each of them decides whether or not to invest in the project without know-
ing its quality. Agents cannot observe the preceding choices made by other
agents, although they can learn about them from the principal, who observes
each agent’s decision and decides how much of that information to reveal and
to whom. After receiving whatever information is provided by the principal
and before deciding whether or not to invest, each agent can conduct his own
costly exploration of the project. This takes the form of acquiring a noisy but
informative binary signal indicating whether the project is a "lemon" or "good".
Each agent’s objective is to maximize his expected profit whereas the princi-
pal’s objective is to maximize the present value of the sum of all agents’ profits.
Thus, the principal’s benefit from each agent’s exploration is larger than that
of the agent himself. Consequently, and since exploration is costly, a conflict of
interest may arise between the principal and the agent as to whether the agent
should carry out an exploration. It is assumed that an agent’s decision whether

to explore and the outcome of the exploration are unobservable to the principal

2 An exception in a different context is Gershkov and Szentes (2009); see below for a com-
parison to our model.



and any other agent. Thus, the only information available to the principal is
each agent’s final decision whether or not to invest. Finally, the principal can
commit ex-ante to a disclosure mechanism.

The principal faces the following trade-off: if a policy of full disclosure is
adopted, an inefficient cascade may emerge and an insufficient number of agents

3 If, on the other hand, the principal

will conduct the costly investigation.
chooses not to reveal any information, an excessive number of agents may end
up incurring the cost of exploration and in addition some may end up making
the wrong investment decision. The optimal disclosure policy must walk a fine
line between providing information to agents and creating incentives for them
to acquire costly (and noisy) information.

After describing the first-best mechanism and showing that it is not imple-
mentable, we move on to characterize the second-best mechanism which we refer
to as Recommend & Correct. It consists of at most two phases of communication
between the mechanism and each agent. In Phase 1, the mechanism randomizes
between the following recommendations: invest, pass or explore and the agent
follows the recommendation (along the equilibrium path). If the mechanism’s
recommendation is explore then the agent does so and reports the outcome. In
Phase 2, the mechanism randomizes between recommending invest or pass.

The fact that the mechanism randomizes in both phases involves a welfare
loss since the mechanism does not necessarily recommend the best action, given
the information it possesses. The randomization is necessary in order to make
the mechanism incentive-compatible and in particular to induce the agent to
explore whenever it is recommended that he do so. The exact randomization of
the optimal mechanism, however, crucially depends on the signals’ information
structure, as will become evident from the two canonical cases we study in detail.
In one case, the "bad" signal (and only that signal) is fully revealing, while in
the other, signals are noisy and symmetric.

The characterization of the optimal mechanism enables us to derive a number
of insights regarding disclosure policy when obtaining information is costly to
the agents. In general, at every point in time the mechanism can be in one
of three states, the duration of which depends on the particular information
structure and can be random. The mechanism enters the third and final state
in which there is no conflict of interest between the mechanism and the agent

after the mechanism has obtained enough information. From this point onward,

3The inefficient cascade can go in both direction: either all investors invest in a lemon or
none of them invest in a good project.



it recommends to all agents either to invest or to pass. The mechanism starts
from a state in which there is no conflict of interest, since both the principal
and the agent are interested in exploration. It is in the second state where the
conflict of interest arises, since the agent, if he had the information that the
mechanism possesses, would have chosen to either invest or pass whereas the
mechanism would have rathered that he explore. As a result, the mechanism
must hide some information from the agent, resulting in a welfare loss.

Even though the model is theoretical in nature, we believe that its insights
are relevant to several real-life situations, such as crowdfunding. The internet
has revolutionized the investment industry, enabling potential agents to rely on
the wisdom of the crowd as a source of information about potential investment
opportunities. There is, however, widespread agreement among regulators and
researchers that insufficient and asymmetric information lead to major market
failures in the crowdfunding industry?. In what follows, we attempt to shed
some light on how information disclosure policies should be designed in the
crowdfunding market. The insights gained may be of value to both platform
owners who must decide how to design their information disclosure policies
and regulators who must decide what information should be disclosed by the

principals and when.?

2 The Model

A project is either a good project (G) or a lemon (L). There are infinitely
many periods, denoted by ¢ = 1,2, 3, ... In each period, a different agent chooses
whether to invest a predetermined fixed amount in the project or to pass. Here-
after, we will refer to the agent in period t as "agent ¢".5 If the project is
good, then it is optimal to invest and if it is a lemon, then it is optimal to pass.
We normalize the agent’s payoffs so that the optimal action yields a payoff of
one and the other action yields a payoff of zero. An agent knows his place in

line but cannot observe the actions (nor the payoff) of the agents who moved

4For a comprehensive survey of the crowdfunding markets see Agrawal, Catalini and Gold-
farb (2013) and Belleamme, Omrani and Peitz (2015). Discussion of the market failures in
this industry can also be found in Howe (2008), Burtch et al. (2016), Block and Koellinger
(2009), and Geva et al. (2106).

5Our reading of the literature on the regulation of crowdfunding is that regulators have so
far taken a very direct and perhaps overly simplistic approach to what the optimal disclosure
policy should look like.

6If agents have no information about their position in line, then a first-best policy (at least
in terms of information acquisition) can be implemented.



previously.”

The common prior belief that the project is good is denoted by pg. Be-
fore making the investment decision, the agent can conduct at most one costly
exploration in an attempt to discover the true nature of the project. This is
modeled formally by assuming that agent ¢ can obtain an informative signal
about the state of the world at a cost of ¢ > 0. We denote the choice of whether
or not to obtain such a signal by explore. We assume that the signal has two
possible realizations, s and s'. Conditional on the event that the project is a
lemon, the signal s’ is realized with probability ¢; and the signal s9 is realized
with probability 1 — ¢;. Similarly, conditional on the project being good, s9
is realized with probability ¢, and s' is realized with probability 1 — qq- We
further assume that g4 4+ ¢; > 1 and therefore, upon observing the signal s9 the
probability of the project being a lemon decreases, whereas upon observing the
signal s' it increases. We say that an agent follows his signal if he invests after

observing the signal s9 or passes after observing s'.

2.1 The Principal

There exists a principal who observes the investment decisions made by the
agents, but does not observe whether an agent has acquired a signal (and ac-
cordingly nor the realization of the signal) nor the agent’s payoff. The principal’s
objective is to maximize the sum of the discounted present value of all agents’
payoffs, taking into account the costs of acquiring a signal. We let ¢ € (0,1) de-
note the principal’s discount factor. The principal can commit to a mechanism
that specifies the messages to be conveyed to each agent as a function of the
history (to be defined formally below).® The mechanism chosen by the principal
is known to all agents.

Let p; denote the principal’s belief at the beginning of period ¢ that the
project is good. Prior to the arrival of agent 1, the principal holds the same
prior as the agent, namely, p; = pg. In subsequent stages, p; will depend on the
information possessed by the principal at the beginning of the period. If, at the

7An alternative and perhaps more natural assumption would be that the agent’s payoff is
1 when he invests in a good project, -1 when he invests in a lemon and zero when he does
not invest. Since we care only about the difference in payoffs between the two actions, our
assumption is equivalent to such a setup. In both payoff structures, conditional on the project
being good, the benefit from investing compared to not investing is one. Conditional on the
project being a lemon, the benefit from not investing as compared to investing is also one.

8In particular, monetary transfers to and from the principal are not permitted. In future
work, it might be interesting to allow for such transfers in order to improve the incentives.



beginning of period ¢ and on the basis of his information, the principal believes
that n, agents have observed the signal s? and n; have observed the signal st
then his belief will be:

a9’ (1 — qg)"'p1 }
pr(ng, i) = { . | ; . 0
! qg° (1= qg)™p1 + (1 — @)™ q" (1 — p1)

Recall, however, that the principal does not observe the signals but can only
infer them from the decisions made by the agents.

2.2 The First-Best Solution

The first-best mechanism refers to the principal’s optimal policy in the (hypo-
thetical) case in which he can decide whether each agent should purchase a signal
prior to the investment decision and in which he can observe the realization of
all signals acquired by the agents.

As will be shown below, the first-best solution is characterized as a stopping
rule with two cutoffs, p, and p;. The principal starts by requiring the first
agent to explore and continues doing so with subsequent agents as long as the
posterior p; is in the interval [p;, py]. Furthermore, for each agent who acquired
a signal, the principal, after observing the realization of that signal, instructs
the agent whether to invest or to pass.

The probability p, has the property of being the lowest posterior for which
the likelihood that the project is good is high enough such that acquiring a signal
is no longer worthwhile and the principal is better off requiring the agent (and
all subsequent agents) to invest. Similarly, the probability p; has the property
of being the highest posterior at which the likelihood that the project is good
is low enough that acquiring a signal is no longer worthwhile and the principal
is better off requiring the agent (and all subsequent agents) to pass. This is
formally stated in the following proposition (the proof of which is provided in

the appendix):

Proposition 1 The first-best solution is given by two cutoffs, py and p;, such
that pg > p; and:

(i) if pr € [pi,pg), then agent t acquires a signal and invests if and only if
pit1 > 0.5;

(i) if pr < py, then agent t passes (without acquiring a signal); and

(111) if pr > pg, then agent t invests (without acquiring a signal).



2.3 The Agent’s Choice

In order to demonstrate the infeasibility of the first-best mechanism, we describe
the agent’s problem and the conflict of interest between him and the principal.
Let 1, denote agent t’s belief that the project is good when he is contemplating
taking an action. Obviously, x4, may depend on the information provided to the
agent by the principal. For the first agent, we have p; = po.

Consider some agent t whose belief is u,. If the agent decides to invest
without acquiring a signal, then his expected payoff is y, and if he decides to
pass, then his expected payoff is 1 — ;.

As for the agent’s decision whether or not to acquire a signal, observe first
that if no further information is revealed to the agent after acquiring a signal,
then the agent will find it optimal to do so only if he plans to follow it. In such

a case, agent t's expected payoff from acquiring a signal and following it is:

tqg + (1 = py)ar — ¢
We can now make the following claim:

Proposition 2 If no further information is revealed to agent t after acquiring

a signal, his expected utility-maximizing decision is given by:

invest if p1, > i,
di(p) = pass if py < py (2)
cif m <y <n,

where i, solves

ngg + (1 - H‘g)ql —Cc= H‘g

and p; solves
g+ (1= p)a —c=1~p.
Therefore,
q —c _l+e—q

Hg = and i

71_qg+QZ

Claim 1 In order for the model to be non-trivial and in particular to ensure
that in equilibrium some agents acquire signals (i.e., By > ), we make the

following assumption:

Assumption 1: 0 < ¢ < 2 =1 and pg € (11, 1)



Remark 1 (i) If the above assumption fails, the first agent as well as those
that follow him, will refuse to acquire information and there is no mechanism
that can convince them otherwise. (i) If acquiring a signal is costless (¢ =0),
then the principal’s problem becomes trivial. He can simply ask each agent for
the realization of the signal and pass the information on to the other agents (or
alternatively recommend the optimal action to them based on the information).
This mechanism is incentive-compatible and implements the first-best solution.
(iii) The assumption that po € [, p,] guarantees that an agent with no in-
formation other than the prior belief py (as in the case of the first agent) will

acquire a signal.

Based on Proposition 1 and Proposition 2, we can now discuss the conflict
of interest between the principal and the agents. Assume that the platform
adopts a policy of full disclosure. That is, at the beginning of every period, the
principal reveals all the information it has gathered so far to the agent. In such
a case, it is clear that p, = p; for all ¢, and the agent will find it optimal to
acquire a signal if and only if p; € [, p,]. However, when p, > p; > p, it
is optimal for the agent to invest without acquiring a signal, even though it is
socially optimal to acquire a signal given the potential benefit to future agents
and similarly for the case in which p; < p; < .

Since a policy of full disclosure cannot implement the first best, the problem
then becomes to find the (second) best mechanism that the principal can imple-
ment in order to maximize social welfare. In the following section, we present a

general characterization of the second-best mechanism.

3 Recommend & Correct Mechanisms

In this section, we first describe a set of direct mechanisms and then argue that
without loss of generality we can focus on the optimal mechanism within it. We
refer to these mechanisms as Recommend & Correct mechanisms, (hereafter:
R&C mechanisms). The rational for restricting our attention to R&C mecha-
nisms follows a similar logic to that of the proof of the revelation principle in
Myerson (1986). In an R&C mechanism, each period consists of at most the
following two phases:

Phase 1: The principal recommends (privately and possibly randomly) to
agent ¢ whether to invest, pass or explore (acquire a signal). If the principal

recommends invest or pass, the mechanism proceeds to agent t 4 1. Otherwise,



the principal continues together with agent ¢ to Phase 2.

Phase 2: Agent t (privately) reports the signal’s outcome (s9 or s') to the
principal which then recommends to agent ¢ (privately and possibly randomly)
whether to invest or to pass.

We restrict our attention to mechanisms that are characterized by Incentive
Compatability (IC) namely that the agent finds it optimal to follow the princi-
pal’s recommendation and if he acquires a signal, then he reports it truthfully.
Note that, off equilibrium, if the agent has decided not to acquire a signal and
since the principal cannot observe that decision, the agent in Phase 2 can lie
and report a fake realization (s9 or s'). In this event, the agent can wait in
order to acquire a signal only after hearing the principal’s recommendation. As
we argue below, the role of mixing (in both phases) is to guarantee that the
RE&C mechanism satisfies IC.

Following Myerson (1986), in any mechanism, and after some communication
back and forth between the principal and the agent, the agent decides whether to
tnwest, pass or explore. This can be implemented in Phase 1 of our mechanism.
After acquiring a signal, there is again some communication between the parties
that leads to an investment decision by the agent as a function of the private
information possessed by the principal and the agent. This outcome can be
directly implemented in Phase 2. The following proposition (the proof of which
is straightforward and therefore omitted) states that restricting attention to an
RE&C mechanism is without loss of generality.

Proposition 3 The optimal R&C mechanism is optimal within the set of all

mechanisms.

3.1 The Optimal R&C Mechanism

We now provide a characterization of the optimal R&C mechanism. In particu-
lar, the following proposition describes the properties that every optimal R& C
mechanism satisfies, regardless of the information structure. The exact random-
ization that the mechanism assigns to every action after every history depends
on the specific information structure. Two canonical cases will be examined in

the following sections.

Proposition 4 Let p; be the principal’s posterior at the beginning of period t,
and let p; be the principal’s posterior after hearing t's report in Phase 2. The

optimal REC mechanism is given by:



Phase 1:

(i) If ps € [ul,ug], then the mechanism recommends explore.

(i) If pr > pg, then the mechanism randomizes between recommending
explore and invest, and if pr < p;, then the mechanism randomizes between
recommending explore and pass.

Phase 2:

(iii) If agent t reports s? and py > 1/2, then the mechanism recommends
invest. If agent t reports s' and p; < 1/2, then the mechanism recommends
pass.

(iv) If agent t reports s9 and pp < 1/2, then the mechanism randomizes
between recommending pass and recommending invest. If agent t reports s
and py > 1/2, then the mechanism randomizes between recommending pass and

recommending invest.

An informal argument will suffice to establish Proposition 4. We start with
Phase 1. To establish (i), suppose by contradiction that the mechanism recom-
mends to agent ¢ to invest or to pass when p; € [, y1,]. If instead it recommends
explore, then this will increase not only agent t's payoff (since when p; € [p, 1]
agent ¢ will wish to explore), but also that of all future agents since the mecha-
nism will have more information about the state of the world.

To prove (ii), assume that p; € [0,1]\ [p, ;). Recall that in this case if the
platform applies a policy of full transparency, then the agent will not explore.
It follows that to incentivize the agent to explore, the mechanism may need
to randomize. We need to show that there is no history following which the
mechanism assigns a strictly positive probability to all three recommendations,
namely invest, pass, and explore. Assume that p; > (a similar argument
applies when p; < ;). We shall argue that the optimal mechanism does not
recommend pass in this case.

Suppose, by contradiciton, that the mechanism recommends pass with a
strictly positive probability. Consider the following modification of the mech-
anism: instead of recommending pass, the mechanism recommends invest. To
see why the modified mechanism is incentive-compatible, notice first that the
recommendation explore is incentive-compatible (since the modified mechanism
recommends explore for the same set of histories as the original one). The rec-
ommendation to invest is also incentive-compatible under the modified mecha-
nism, since the agent knows that the mechanism recommends invest only when

pt > pg- Finally, observe that the modified mechanism yields a higher payoff to

10



both the agent and the mechanism since p; > 1/2.

We can now proceed to Phase 2. First, observe that there is no conflict of
interest between the mechanism and agent ¢, in this phase, since it is optimal
for both that the agent makes the right investment decision. This implies that
when agent ¢ reports s9 but p; < 1/2 or when he reports s’ but p; > 1/2,
the mechanism would like to correct the agent. However, since the mechanism
needs to ensure that the agent follows the recommendation to acquire a signal
in Phase 1, it may not always correct the agent in these cases. If the mechanism
did always correct the agent, then the agent might choose not to explore in
Phase 1, to report a fake realization, and to make his decision only after hearing
the mechanism’s recommendation in Phase 2. Because not correcting the agent
is costly, the principal will randomize just enough to make exploration incentive-
compatible for the agent. The exact randomization that the mechanism assigns
to an action after every history depends on the specific information structure.

To understand the construction in Phase 2, it is useful to consider a simple
example in which if the principal does not randomize in Phase 2, then the agent

has no incentive to acquire a signal after hearing the recommendation explore.

Example 1 ?Suppose that p; = py = 0.55, ¢ = go = 0.7, and ¢ = 0.1. Suppose
also that agent 1 has already acquired a signal and truthfully reported it to the
principal, thus allowing us to focus on agent 2. Notice that the principal now
has more information about the project than agent 2 (because he possesses the
information acquired by agent 1). Agent 2 will then choose one of two possible
strategies:

1. Acquire a signal and report it truthfully.

2: Do not acquire a signal and randomize between reporting s9 and s' (say,
with equal probability).

Notice that signals affect the principal’s belief. Thus:

- If both agents report s9, then py > p1 > 1/2 and the principal recommends
1nvest.

- If both agents report s', then Py < 1/2 and the principal recommends pass.

- If one agent reports s9 and the other reports s

, then po = py1 and the
principal recommends invest.

- It is straightforward to show that agent 2’s expected payoff is 0.621 un-
der the first strateqy and 0.625 under the second. Thus, agent 2's payoff is

increased by not acquiring a signal. In order to correct for this and make it

9We would like to thank the referee for suggesting this example.
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incentive-compatible for the agent to explore whenever the principal makes that
recommendation, the principal will randomize between correcting the agent (in
the sense of Proposition 4, ) and not correcting him. Since not correcting the
agent 1s costly, the principal will randomize just emough to make exploration
incentive-compatible for the agent. In this example, the principal optimally cor-

rects the agent with probability 0.96 and does not with probability 0.04.

In what follows, we present two canonical information structures and charac-
terize their optimal mechanism. To accomplish this, we first define the general

mechanism more formally in the following subsection.

3.2 The R&C Mechanism: A Formal Representation

To define the mechanism more formally, let h; denote a history of actions ob-
served by the principal at the beginning of period ¢ + 1. The history h; consists
of all the observable actions taken by the agents, as well as the principal’s, in
all periods ¢/ < t. Thus, h; is the relevant history prior to the principal rec-
ommending an action m;y1 to agent ¢ + 1 in Phase 1. Let H; denote the set
of all possible histories of length ¢ induced by the mechanism. The principal’s
recommendation policy in Phase 1 of period t + 1 is history-dependent, and we
write v, : H;y — [0,1] to denote a function mapping the possible histories onto
the probability of a recommendation to invest. Similarly, A;y; : Hy — [0, 1] and
et41 : Hy — [0,1] are defined for the recommendation to pass and to acquire a
signal, respectively.

Let l~1t+1 = (h¢, mit1,71+1) denote the history at the beginning of period
t + 1 amended by the principal’s recommendation m;; and the agent’s report
re41. Let ﬁt-}-l denote the set of all possible histories ﬁt-i—l- The principal’s
recommendation policy in Phase 2 of period ¢ + 1 is a function vy : ﬁt+1 —
[0,1] where yt+1(i~zt+1) is the probability that the mechanism recommends that
the agent invest.

We can now formally define a mechanism as a pair ({M; }$2,, {v+}:2,) where
Mt = ('Yta)‘taft) | 7t7>\t75t . Htfl - [07 1]37 (3)
and, for all hy_, € Hy_1,

Ve (ht—1) + At (hie—1) + &1 (he—1) =1,

12



and
ve : Hy — [0,1]. (4)

Knowing the mechanism and understanding the law of motion of the prin-
cipal’s beliefs, the agent forms beliefs about the principal’s prior (i.e., a distrib-
ution over p;) after hearing the principal’s recommendation. Let p,(m;) denote
agent t's beliefs that the project is good after hearing the recommendation
my € {invest, pass, explore} in Phase 1, and let fi, (1) denote agent t's beliefs
that the project is good after hearing the recommendation m; € {invest, pass}
in Phase 2.

As will become clear in the following sections, the optimal R&C' mechanism
results in a welfare loss relative to the first-best outcome for two reasons: agents
explore in states where it is socially optimal for them to either invest or pass, and
agents invest or pass when it is socially optimal for them to explore. Nontheless,
the optimal R&C mechanism can significantly improve welfare relative to a
policy of full dicslosure. The size of the welfare gain generally depends on the
parameters of the problem. It can be seen, however, that the larger the social
discount factor, the larger the gain will be.

In what follows, we fully characterize the optimal mechanism in two canon-

ical cases.

4 Asymmetric Signals

We first consider the case of strong asymmetry between the two signals, in the
sense that one of them is fully revealing. More precisely, assume that conditional
on the project being good, the realization of the signal is s¢ with probability 1,
(i-e., g = 1), whereas conditional on the project being a lemon, the realization
of the signal is s' with probability ¢ (i.e., ¢ = ¢) and s9 with probability 1 — gq.
Clearly, upon observing the signal s9 the posterior that the project is a lemon
decreases, whereas upon observing the signal s the project is a lemon with
probability 1.
It is easy to see that in this case:

q-

c l14+c—q
g =~ and = ———.

2—q
The following assumption is an application of Assumption 1 to this case:
Assumption 1’: 0 < c < ¢/2 and pg € [y, ).

13



The following proposition characterizes the first-best cutoffs in the asym-
metric case. The proof of which (similar to Wald (1947)) is provided in the
appendix.

Proposition 5 The first-best solution is given by the cutoff:

pg=1-c = pg +cd/q

such that:
(1) if pr € [p1,pg], then agent t acquires a signal and follows it;
(i) if pr = 0, then agent t passes (without acquiring a signal).

The following definitions will be useful in what follows:

Consider some history of length ¢, along which all agents explore, obtain the
signal s9, and choose to invest. Let ¢ denote the first period along such a history
for which the principal’s posterior is strictly above p,. That is,

; . D1
t = min |t > . 5
| it A—p)—gp1 M (5)

Thus, £— 1 is the maximal number of (consecutive) s¢ signals following which
the principal’s belief is weakly below 1 . That is, if agent t knows that all the
previous agents received the signal s9, then he will still want to explore, but if
he also receives the signal s9 and the history is known to agent £+ 1, then agent
t 4+ 1 will prefer to invest without further exploration.

Similarly, let

D1
pr+(1—p1)(1—¢q

As above, ¢ — 1 is the maximal number of (consecutive) s9 signals following

t = max |t | T <pg| - (6)

which the principal’s posterior is weakly below p,. Even if all the agents prior
to agent % received the signal s9, the principal will still want agent ¢ to explore.
However, if agent £ also receives the signal s9, then the principal will want agent
t+ 1 and all subsequent agents to invest without any further exploration. Since

ttg < pg, we know that t <t . Hereafter, we will assume that ¢ < £.1

10Note that if ¢ = £, then a policy of full disclosure is optimal and the first-best is trivially
achieved. This might be the case if the signals are very precise.

14



4.1 The Optimal Mechanism

Some additional notation and discussion are required prior to the presentation of
this section’s main theorem. We define a "modified" cost of exploration function
c*(p) as follows:

max{0, (p — p1y)}

c*(p)=c+ m (1+c—q). (7)

Note that for p < ., and as shown above, there is no conflict of interest be-
tween the principal and the agents, i.e. ¢*(p) = ¢; otherwise, ¢*(p) is monotonic
in p. As will be discussed below and shown formally in the proof of the theorem,
the solution to the second-best problem is, in fact, the solution to a modified
first-best problem in so far as the cost of exploration is ¢*(p) rather than c.
The modified cost of exploration function, ¢*(p), captures not only the real cost
of exploration but also the "implied" cost resulting from the need to make the
agent’s choice to explore incentive-compatible when p, < p.

Using this modified cost function, we can define a modified cutoff, py, in
much the same way as we defined p, for the original first-best problem. That is,
Py is the point at which the principal’s posterior probability is sufficiently high so
that exploration becomes too costly (under the modified first-best mechanism)
when the cost is ¢*(p;). Specifically,

P; =1- C*(pg)¥v
and note that pj < pg. Similarly we define t* by substituting pj for p, in the
definition of ¢, such that:

D1
p+(1-p)(1—¢q

t* = max |t | = <pg|- (8)
That is, t* —1 is the maximal number of (consecutive) s? signals following which
the posterior is weakly below p.

In what follows, we first prove that in the asymmetric case the principal
can make do with a simple R&C mechanism, which will be referred to as a
recommendation mechanism. We then analyze the optimal recommendation

mechanism.
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5 A Recommendation Mechanism Without Loss

of Generality

In a recommendation mechanism, each agent receives a single incentive-compatible
recommendation. Therefore, a recommendation mechanism is a special case of
the R&C mechanism in which the second stage is degenerate, namely Vt(fz) =0
for all h. In what follows, we explain why limiting the recommendation mecha-
nism does not involve a loss of generality.

Suppose, by contradiciton, that there exists a history hy_1, following which
the mechanism recommends (with some positive probability) that the agent
acquire a signal and that after the agent reports s9 (s!) the principal (in Phase 2)
recommends the action pass (invest). Note, however, that all histories following
which it is optimal for the agent to ignore his signal are those in which, had he
known the history, his choice would have been not to acquire a signal.

It follows that if at the beginning of period ¢ the agent assigns a positive prob-
ability to such a history, then he is better off avoiding the cost of exploration,
reporting a fake signal, waiting to receive the principal’s recommendation, and
then choosing whether to acquire a signal and follow it or to act without ac-

quiring a signal.

6 The Optimal Mechanism: an Informal De-

scription

The optimal private mechanism consists of the following three stages:

Stage 1: During this stage, which starts in period 1 and lasts for ¢ peri-
ods, agents receive a recommendation to explore unless one of them chooses
the action pass. If, during this stage, an agent ¢’ chooses the action pass, the
mechanism recommends that all agents ¢, ¢’ < t < ¢, choose the action pass
without acquiring a signal. Therefore, in this stage, the recommendation policy
coincides with that of the first-best mechanism (although the recommendations
are now private). Furthermore, if an agent receives a recommendation to explore
during this period, then he must conclude that all the previous agents acquired
a signal and that it was s9; if he receives a recommendation to pass, he must
conclude that one of the previous agents observed the signal s'.

It is important to note that for all ¢ in this stage (and, as will be shown
later, all other stages as well), the principal’s posterior at the end of period ¢ is

16



either 0 or p1/(p1 + (1 —p1)(1 —q)*) > p1. Thus, the distribution of p; consists
of only two points. This turns out to be one of the main differences between the
asymmetric and symmetric cases, namely that the support of the distribution
of p; consists of many points in the later case as opposed to only two in the
former case.

Stage 2: This stage starts at the beginning of period £ 4 1 and concludes
at the end of period t*, where, in general, £ < t* < £ (see the definitions in 5,
6 and 8). Since t > £, the principal, in order to induce the agents to explore,
must hide some information from the agents by, for example, committing to
the following (randomizing) policy: if p; > 0 (i.e., if none of the agents have
yet observed the signal s'), then the principal will recommend that agent ¢
explore with probability one, namely, 5 (p;) = 1. If p; = 0, then the principal
will randomize between recommending that agent ¢ choose the action pass and
recommending that he choose the action explore, namely, €5 (0) = 1—A;(0) > 0.
The magnitude of &5 (0) is chosen such that agent t’s posterior, after receiving
the recommendation to explore (i.e., u,(e)), will be exactly y,, and he will follow
the recommendation.

Stage 3: This stage starts in period t* + 1 and goes on forever. During it,
none of the agents acquire a signal. The principal recommends that all agents
choose the action invest if none of the agents who moved in Stage 1 or Stage
2 chose the action pass; otherwise, it recommends that all agents choose the
action pass.

In sum, the second-best mechanism differs from the first-best mechanism in
two respects: (i) exploration is conducted in the second stage and the action
invest may be chosen by some of the agents, even after the principal has already
learned that the project is a lemon, and (ii) exploration may be terminated and
the action invest recommended earlier than in the first-best case, in the case
that p; = p; < pg.

A key insight of this mechanism emerges in Stage 2, in which the principal
randomizes after receiving the signal s'. In this environment, if the principal
adopts a policy of full transperancy, then the agent will acquire too little infor-
mation and will invest too early, whereas the principal would like to be more
convinced about the state of the world before stopping information acquisi-
tion and recommending invest to all agents hereafter. The principal therefore
commits to recommending that the agent acquire information with a positive
probability following reports of the signal s’ (even though he knows that the
state is L and therefore this information is of no value). The agent who receives a
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recommendation to acquire information becomes more pessimistic and therefore
is induced to acquire information. In the case of the optimal mechanism, the
principal’s recommendation must make the agent just indifferent between ac-
quiring information and investing. After hearing the recommendation explore,
agent t faces three possible scenarios:

(i) The state of the world is G. All previous agents observed s¢ and invested.
Following this history, the principal recommends explore with probability 1.

(ii) The state of the world is L. The principal has observed s in every
previous period. Conditional on L, this history occurs with probability (1—q)!~*
and following it, the principal recommends explore with probability 1.

(iii) The state of the world is L. The principal has observed at least one
agent taking the action pass. Conditional on L, this occurs with probability
1—(1—¢q)*~!. In this case, the principal recommends explore with probability
€!(0) and pass with probability (1 — &(0)). The probability £¢(0) solves:

P1 _
pr+(—p)[l—g)+(1—(1—g D] "

which is the agent’s indifference condition.

6.1 The Optimal Mechanism: a Formal Statement and
Proof

Recall that v,(p;) denotes the probability of the principal recommending that
agent ¢ choose the action invest conditional on p; = p; and similarly for A;(p:)

and &y(pt). Let p; = p1/[pr + (1 —p1)(1—)'"']-
Proposition 6 The optimal mechanism M™* consists of three stages:

Theorem 1 Stage 1: For allt < t:
A (0) =1, otherwise €;f(ps) = 1.
Stage 2: For allt such that t<t< t*,
A(0)=1-¢5(0) = pszm (N#_qpl); otherwise €5 (p) = 1.
Stage 3: For allt such that t > t*,
A7 (0) = 1; otherwise v*(py) = 1.

While the formal proof is relegated to the appendix, we will present its main
idea and the intuition behind it.

The logic behind Stage 1 is based on the fact that during the first few periods
of the mechanism, no conflict of interest exists between the principal and the
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agents. They all prefer the action pass if they know that one of the agents
received the signal s', and they also find it worthwhile to acquire a signal if
they know that all previous agents received the signal s9 (i.e. their belief is
in [y, ug]) Thus, the optimal policy is based on full transparency as long as
t < t. It is important to note that because messages are private, there is no
need to take into account the effect of this transparency on future agents. This
is formally established in a series of simple claims presented in the appendix.

Stage 2 is more interesting because it highlights a potential conflict of interest
between the agents and the principal. Following the principal’s policy in Stage
1, the agents know that the principal’s belief in Stage 2 is either p; = 0 or p; >
pg- When py > p, but is small enough, the principal would like the agents to
acquire a signal whereas the agents would like to choose the action invest. To
overcome this obstacle and make exploration incentive-compatible, the principal
must recommend exploration after some histories, even when it already knows
that the project is a lemon. This strategy of the principal leaves agents with
sufficient uncertainty about the exact history so that their posterior remains
in [14, p1,]. The strategy is, costly however since it means that agents acquire
a signal when the state is already known, and moreover they may choose the
action invest when the principal already knows that the project is a lemon. To
minimize these costs, the mechanism randomizes in such a way that when the
agent receives a recommendation to acquire a signal, his posterior is exactly fi,.
More precisely, because agent ¢ knows that the principal’s prior, py, is either 0
or p1/(p1+ (1 —p1)(1 —q)' =t = p}, the principal must assign enough weight to
exploration when p; = 0 so that the agent’s posterior, conditional on hearing the
recommendation to explore, is equal to i . This weight is exactly #@—;;HL)
(see the appendix for details). Once we establish that exploration beyond period
t implies setting the agent’s posterior s, (e) to exactly fg, it Temains to determine
which agents, apart from agent ¢, will receive a recommendation to explore and
with what probability.

A key component of the proof is the relationship between the optimal mech-
anism and the first-best mechanism in a hypothetical environment, in which
the cost of exploration is a function of the principal’s belief, given by ¢*(p), as
defined in equation 7. The cost ¢*(p) internalizes the additional cost of equating
the agent’s posterior, conditional on hearing the recommendation to explore, to
pg- In this hypothetical environment, the more likely it is that the principal
believes that the project is good, the greater will be the cost for him to acquire
the signal. In the formal proof of Theorem 6, it is shown that the optimal
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incentive-compatible mechanism in our problem can be obtained by solving the
first-best problem in the hypothetical environment described above. The sim-
ilarity between the two problems arises from the fact that the "indirect" cost
that the principal has to incur, if it wishes agents to explore when p; > p,,, ap-
pears as a direct cost in the hypothetical first-best problem. For every p; > i,
the cost of exploration in the hypothetical first-best environment, i.e. ¢*(p), is
equal exactly to the direct cost of exploration plus the indirect cost of inducing
agents to explore in our original problem.

The solution to the modified first-best problem determines the threshold
p, and which agent is the last to explore (i.e., t*) in our original problem.
Furthermore, the solution also shows that for p; > 0 the optimal policy does
not involve any randomization. The mechanism recommends explore for t < t*
and invest for t > t*.

By showing that the second-best mechanism can be presented as a mod-
ified first-best, we prove that no randomization takes place when p; > p,.
However, unlike the original first-best, the modified mechanism does involve
randomization when p; = 0. The modified cost function captures the cost of

this randomization exactly.

7 Symmetric Signals

The symmetric signals case is defined by pp = 1/2 and ¢, = ¢; = ¢. First, note
that in this case (and given our assumption about the agents’ payoffs) the first-
best thresholds, p, and p;, are also symmetric, i.e. p; = 1—p,. When the signals
are symmetric, the beliefs conditional on signal realizations {n;,n,} depend only
on the difference ny — n;. Observe that if the mechanism is fully transparent,
then a cascade will emerge after agent 1 since as soon as | ng —n; [> 1 no agent
will find it beneficial to explore. However, and as will be shown below, there
are histories in which the optimal mechanism calls for many agents to explore.
Before arriving at the main result of this section, we prove that when signals
are symmetric, there always exists a symmetric mechanism. A mechanism is
symmetric if when it recommends inwvest for some history with some probability,
then it recommends pass with the same probability for the mirror image of that

history.

Proposition 7 When the information structure is symmetric, there exists an

optimal RE&C mechanism that is symmetric.
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Proof. Assume by contradiction that a symmetric optimal mechanism does not
exist. Let ({M}521, {ve}521) be an optimal asymmetric mechanism. Assume
that this mechanism is symmetric up to and including agent t. We prove the
proposition by constructing an optimal mechanism that is symmetric up to and
including agent t + 1.

Let ({M{}2,, {vi}21) be the "mirror image" of ({M:}s2,, {vi}52,) and
observe that from the symmetry of the information structure it follows that
({M}e2,, {vi}s2,) is also optimal. Consider the following mechanism which is
symmetric for the first t +1 agents: for all agents t' < t, the mechanism is as
in the above two cases; for agent t+1, the mechanism, at the beginning of period
t + 1, randomizes equally between ({M:}52,, {ve}2,) and ({M{}24, {vi}i2y),
and the realization is revealed to all future agents but not to agent t + 1.

Clearly, the principal’s payoff under this mechanism is identical to that of the
two asymmetric mechanisms. Furthermore,, incentive compatibility is trivially
satisfied for every agent t' # t+ 1. To see that it is also satisfied for agent t + 1,
consider the recommendation a € {invest, pass, explore} in Phase 1. It was
incentive-compatible for agent t + 1 to follow it in ({M}s2,, {vie}52,) and in
(M2, {vi}2,), and therefore it is also incentive-compatible for him to do
so when he does not know which of them is being played.

Since this result is true for every t, there is mo "mazimal” t beyond which

the mechanism is asymmetric.

Proposition 8 When the information structure is symmetric, there exists an
optimal REC mechanism that never randomizes in Phase 1, i.e. either v, (hy—1) =
1or A (hi—1) =1 ore (hy—1) = 1.

Proof. Assume that for some posterior, p:, the mechanism randomizes between
tnwvest and explore with some strictly positive probability. Then, by symmetry,
the mechanism also randomizes between pass and explore for the posterior 1—p;
with the same probability. Consider the modified mechanism according to which
when the posterior is p; or 1 — p; the mechanism recommends explore with
probability 1. To see that the modified mechanism is also incentive-compatible,
observe that conditional on the mechanism recommending explore the expected
probability value of p: is the same as in the original mechanism. Also observe
that the recommendation to invest or pass is incentiwe-compatible since p; ¢

145, og] with probability 1 by Proposition 4. ®
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8 Related Literature

Our model is designed to balance between the potential cost of an information
cascade and the benefit of revealing information. The literature on informa-
tion cascades originated with Bikhchandani, Hirshleifer, and Welch (1992) and
Banerjee (1992) and was later developed by others (e.g., Lones Smith and Peter
Serensen (2003)) A few papers, however, have studied the design of mecha-
nisms to reveal information in the conexts of information cascades. The two
that we are aware of are Sgroi (2002) who evaluates - from the perspective of
a social planner - the strategy of forcing a subset of agents to make decisions
early and Smith, Sorensen, and Tian (2014) who conduct a welfare analysis of
the herding model to show that the efficient outcome can be decentralized by
rewarding individuals if their successor mimics their action.

Several papers have studied the role of costly information in social learning
(Burguet and Vives (2000), Hendricks et al. (2012) and Mueller-Frank and Pai
(2016)). Ali (2018) is the first one to study the impact of costly information in
a herding model. None of these papers, however, have examined the design of
optimal information disclosure when acquiring information is costly.

The current paper is also part of the literature on mechanism design with-
out monetary transfers. Gershkov and Szentes (2009)’s voting model shares the
sequential feature of our model. In the optimal mechanism, the social planner
asks voters randomly and sequentially to invest in information gathering and
to report the resulting signal. As in our model, the planner does not observe
whether the agent invests in acquiring information, but in contrast to our model,
the planner makes only one decision and all agents share the same payoff. Mar-
timort and Aggey (2006) consider the problem of communication between a
principal and a privately informed agent in the absence of monetary incentives.

Some other related papers are Ely (2016) who studied disclosure of informa-
tion by a principal in a dynamic setup. Even though our mechanism and that
of Ely (2016) share some common features, the situations we analyze are quite
different.

Another related paper is Ely, Frankel, and Kamenica (2013) who analyze the
optimal way in which to reveal information over time in order to maximize the
expected suspense or surprise experienced by a Bayesian passive agent. Also
relevant are Kamenica and Gentzkow (2011) and Rayo and Segal (2010) who
consider optimal disclosure policies in a static environment, in which a principal

wishes to influence an agent’s choice by sending the correct message.
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As in our model, Kremer, Mansour, and Perry (2014) and Che and Horner
(2014) also study a mechanism design problem in which the planner wishes to
aggregate information. In contrast, our paper relates to a different scenario,

and the resulting optimal policies differ significantly.
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9 Appendix

9.1 Proof of Proposition 1

Proof: When the principal does not face incentive constraints, the expected
payoff in every period depends only on p;, namely its prior belief in that period.
Hence, the first-best solution can be viewed as a dynamic optimization where the
state variable is p;. In principle, the principal can randomize, at least in some
periods, over the three alternatives, i.e. invest, pass, and explore, but such
a randomization will never be necessary. If the principal randomizes between,
say, two actions, then his expected payoff is simply the average of the payoffs
for the two actions. Thus, we can conclude that the first-best mechanism is
deterministic.

By assumption, it is optimal for the first few agents (or perhaps just the
first one) to explore and hence it is also optimal for the principal to do so
during the first few periods. Since ¢ > 0, we know that there exists a posterior
probability p; large enough so that at this posterior it would not be optimal,
from the principal’s perspective, for an agent to acquire a signal, even if it is
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fully informative. This is particularly the case if:

Pt 1
(175):(175)—c — pe>1—¢c(1-09).

Similarly, for small enough py, it is socially optimal to pass.

Note also that if for some posterior p;, the first-best mechanism chooses the
action invest or pass without exploration, then it will do so in all subsequent
periods. This follows immediately from the fact that if, at period ¢, the action
invest or pass is chosen, then p;11 = p:, and therefore the optimal action in
t+ 1 is the same.

The above argument implies that the payoff from choosing the action invest
when the posterior is p; is p;/(1 — 0) and similarly the payoff from choosing
the action pass when the posterior is p; is (1 — pt)/(1 — §). Thus, the payoffs
from invest and pass are linear in p; and are larger than those from choosing to
explore in the neighborhood of 1 and 0, respectively. By assumption, the payoff
from explore is higher than that from either pass or invest when p; is close to
1/2. To complete the argument, we now show that the payoff from choosing to

explore in period t is convex in p;. Namely,
aV(ew | pre) + (1 — a)V(ea | p2r) > V(€' | aprs + (1 — a)par)

where

py = apie + (1 — a)py, for 0 <a <1,

and V(e | p) is the principal’s payoff in period ¢ when the prior is p and he
chooses to explore in period ¢ and to continue optimally thereafter. Note that:

V(e | p)=pV(e|p,G)+ 1 —-p)V(e|p, L) =
apuV (e | p,G)+ (1 —a)peV(e|p,G)+
a(l=pi)V(e | pp L)+ (1 —=a)l—pa)V(e|p, L)

< aV(ew | pir) + (1 —a)V(ea | par).

9.2 Proof of Proposition 5

By assumption, it is optimal for the first agent to explore and hence it is also
optimal for the principal to do so in the first period. Also, by assumption and
since the signal s' reveals the project to be a lemon, we know that if, at some
period ¢, the principal observes agent ¢ choosing the action pass (after obtaining
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a signal), it is optimal for all subsequent agents to also choose the action pass.
The only remaining question is what the principal should do in a given period
if, in all previous periods in which agents chose to explore, the realization of the
signal was s9 (i.e., all agents chose the action invest). Since ¢ > 0, we know that
there exists a prior probability p; large enough so that at this prior it would not
be optimal from the principal’s perspective for an agent to acquire a signal, even
if the signal is fully informative (i.e., ¢ = 1). Thus (and recalling the updating
rule 1), there exists a period t large enough so that if all agents observe the
signal s9 in all periods t < £, it is optimal for the principal to choose the action
invest in all periods ¢ > t. It remains to be shown that if for some ¢ < ¢ the
first-best mechanism chooses the action invest without exploration, then it will
do so in all subsequent periods. This last claim follows immediately from the
fact that if at period ¢ the action invest is chosen, then p;11 = p; and therefore
the optimal action in ¢ + 1 is also invest.

Notice that p, is the solution to the following equation:

p p
T-9 -9 177

(1-9)

The LHS is the principal’s payoff from choosing the action invest in the current
period and in all periods thereafter, whereas the RHS is the principal’s payoff
from exploring one more time and following the signal in all periods thereafter
when the prior is p. If p < py, the RHS is greater than the LHS and therefore
the principal is better off exploring at least one more time. It is left to show that
if p > pg, the optimal action is invest. Assume, by contradiction, that there
exists some p’ > p, at which the optimal action is to acquire a signal. Since
we know that there exists a posterior large enough such that it is optimal for
the mechanism to choose invest, there must be p” > p’ at which it is optimal
for the principal to acquire only one more signal and to follow it in all periods
thereafter. This, however, leads to a contradiction since the LHS of the equation
above increases with p at a higher rate than the RHS and hence it must be the

case that it is better to terminate exploration a period earlier.

9.3 Proof of Proposition 6

The proof is accomplished by proving several claims which, taken together,
characterize the optimal recommendation mechanism M*. Hereafter, we refer

only to p; for which, given the mechanism in place, there is a positive probability
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that the principal holds that belief, i.e., 7} (p;) > 0. Note that given Assumption
1, every incentive-compatible mechanism must recommend that agent 1 explore,
simply because that is what he is going to do in any case. The following claim
states that for small enough ¢, when it is common knowledge that there is no
conflict of interest between agent ¢ and the principal, a policy of full revelation
is adopted and it is recommended that the agent choose the best action from
his perspective.

Claim 2 For all t < t, if the principal’s prior at t is strictly positive (i.e.,
pt > 0), then €5 (pt) = 1; otherwise A; (0) = 1.

Proof. By the definition of ¢, for all t < ¢, it is common knowledge that
Pr(p; € [, 1t,) U{0}) = 1 and hence the agent’s optimal choice is e if he knows
that p; # 0 and pass otherwise. This is also the first-best choice. Consequently,
if the agent is fully informed, then he will follow the first-best choice strategy.
Assume, by contradiciton, that the optimal IC mechanism is such that there
exists some agent ¢ < { who is not fully informed about the moves of all
preceding agents and as a result does not choose the action that is optimal for
him. Consider a modified mechanism under which agent ¢ is informed about
the moves of his predecessors and in all periods thereafter the principal ignores
the additional information obtained in period ¢ and instead follows the original
mechanism. Clearly, this modified policy yields a higher level of social welfare,

a contradiction. m

A consequence of Claim 2 is that the optimal mechanism essentially reveals
p¢ to agent ¢ in the first £ periods, and unless s’ is observed by one of the agents,
all agents ¢t < ¢ acquire a signal. The following corollary follows directly from

Claim 2 together with the posterior’s law of motion and the assumption that

P1E (1 1ty

Corollary 1 Fort <, Pr(p; € (111, 1y ] U{0}) = 1 and fort > t, Pr(ps =0) >0
and Pr(p; € (0, p,]) = 0.

Claim 2 and Corollary 1 allow us to restrict the search for the optimal

recommendation mechanism to histories in which p; =0 or p; > p,,.
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Claim 3 For allt, the principal never recommends the action invest if he knows
that the project is a lemon, i.e., v;(0) = 0, and for p; > p, the principal never
recommends the action pass, i.e., \i(pt) = 0.

Proof. Suppose that at some ¢ we have p, = 0 and ~;(0) > 0. Consider the
modified mechanism such that ~}(0) = 0 and X;(0) = A;(0) + ~;(0). Such a
modification will certainly increase agent ¢’s utility and will not affect the other
agents’ payoffs since the posterior beliefs in all periods thereafter do not change.

A similar proof shows that Aj(p:) = 0 for all p; > 1, m

An immediate consequence of Corollary 1 is that for ¢ > ¢, agent ¢ knows
that some previous agents (and, in particular, agent 1) chose e and with some
positive probability acquired the signal s'. Thus, agent ¢ knows that either the
principal has learned that p, = 0, i.e., the project is a lemon, or the principal’s
posterior is p; > f1,. While we know from Claim 3 that ~;(0) = 0, this does not
imply that Ay (0) = 1.

Claim 4 Consider period t > t. If €f(p;) > 0 for p; > Hg, then €5(0) > 0 and
pi(e) = pg-

Proof. If 7;(p;) > 0, then from Claim 1 we know that Pr(p; € (0,p,]) =0 for
some p; > p,. The proof of the first part of the claim follows immediately from
the fact that in order for the mechanism to be incentive-compatible, it must
be the case that the agent’s posterior, conditional on the recommendation to
explore, i.e., uf (e), is such that i (e) € [y, u,] . Now assume, by contradiciton,
that py(e) < p,. It is then possible to decrease €;(0) by a small amount and
increase Ay (0) by that same amount. This increases agent t’s utility without

affecting the distribution of p for all 7 > ¢, a contradiction. m

Taken together, the above claims summarize the incentive-compatible con-
straints within which the optimization is carried out. Starting with the prior
p1 € [ul,ug], the random variable p; is either zero or above p;. When p; = 0,
the principal recommends either pass or explore; similarly, when py > g, the
principal recommends either invest or explore; and when p; € [p, f1,], the prin-
cipal recommends explore. Moreover, whenever the recommendation is explore,
it must be that u,(e) € [, p,] (Where p,(explore) is the agent’s posterior
following the recommendation explore). When ¢t > £, the agent knows that
Pr((p: > pgy) U (pr = 0)) = 1. The expected value y,(-) is over all possible p;’s
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given the mechanism in place and, in order to provide agent ¢t > ¢ with the
incentive to explore when p; > 0, the mechanism must also recommend explo-
ration when p; = 0 so that u,(explore) will be in the region where the agent
is willing to explore, i.e., [y, ug]. Recommending exploration when p; = 0 is
costly, due to the unnecessary cost of exploration when the principal already
knows that the project is a lemon and because the agent may obtain the signal
s9 and choose the wrong action. To minimize these "costs", exploration, when
pr = 0, is recommended with the smallest probability necessary, which implies
that the agent’s posterior becomes exactly u, (i.e., u;(explore) = p,).

With this in mind, we can now derive the optimal mechanism by solving
a modified first-best problem in which the cost of acquiring a signal includes
not only ¢ but also the implied cost to maintain the agent’s posterior, i.e.
p(explore), at pi,. As will be shown, this cost is monotonic in p, and hence
we can employ the same technique used in the solution to the original first-best
problem to establish that, for ¢ > ¢ and p; > pg, the optimal solution is de-
terministic, namely, either €} (p;) = 1 or v*(p:) = 1. Before proving this result
formally, the following discussion will be helpful.

Let g:(p) = m¢(p)et(p) denote the "ex ante" probability of exploration at p
in period t. As discussed above, the efficient way to satisfy the IC constraints

implies that:

t
uy (explore) = — — — = l,,
K 5 Et (p) £:(0) + Zﬁt>() E:(p) 7

> 5, PEL(P) > 5,50 PEt(D)
>

which can be written as:

Z{;t>o PEY (p) — Hg Z{;t>0 €t (p) .

£4(0) =
+(0) m

Thus, if for some p > 0, exploration at p (i.e., £/(p)) is increased by one unit,

this will have a direct cost of ¢ and an indirect cost of:

Hp) = ﬁ—“g[cm—q)},

which is the cost of increasing exploration when the project is already known

to be a lemon. Note that H(p) is increasing in p.
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We can now show that the optimal mechanism can be viewed as the solution

to a modified first-best problem in which the cost of exploration is:
¢*(p) = c+ H(p).

Using the same line of reasoning and as in the solution of the (original)
first-best mechanism, we denote by pj the solution to the following equation:
1-9
p=1-c"(p)—-
q
We note that: (i) since c¢*(p) is non-decreasing, p; is uniquely defined by the
above equation; and (ii) tg < py < pg. We can therefore conclude that the

solution to the first-best problem with a modified cost function is given by:

Ye(p) = 1forp>pj,
er(p) = 1for0<p<py 9)
M(0) = 1fort<tand fort>t*.

In what follows, we first formally define the planner’s (second-best) problem
for the case of pt > p,. We then show that the IC constraints can be plugged
into the planner’s objective function, thus transforming the second-best problem

into a first-best problem with the modified cost function.

Claim 5 For every T > t, the optimal mechanism must satisfy the following

mazximization problem (referred to as the SB problem hereafter):

Maz V.=
{rez A2,

> () (@ + (1 =7.(0) (p+ (1 —p) g —c)+7-(0)(Ar+(1-Xr)(g—¢))+0Vr 1

P>Hg

subject to:
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(D) Vi = 22 m(p) (ve(@)p + (1 = 7:(p)) (P + (1 = p) ¢ = ) +7(0) Ae+-(1=Ae) (g=€))+0 Vi1,

P>Hg

fort=714+1, 74+2, T+3,...

(IT) we(p) = me—1(P)ve—1 (P)+me—1 (P4 (0)) (1=, 1 (011 () (Pi 4 (0)+(1—p; 1 (p)) (1=0)),

forp>pandt=71+1, 7+2, 74+3,...
(II-Q Yoy =p) e (p) (1=, ()] +7(0) (1=As) g = 0,
P>hyg
fort=7, 74+1, 7+2, 7+3,... and
(IV) 7 (0) =1= > me(p), v:(p) € [0,1], A €[0,1],
P>hyg
fort=7, 7+1, 7+2, 7T+3,...

where:
(i) 7-(p) is the distribution of possible beliefs at period T, given the mecha-
nism;

(ii) p; (p) is the inverse of the function

Y43
pe+ (1 —p)(1—gq)

p(pe) =

which is the probability that the posterior is p given that the prior was py and
the agent explored and acquired the signal s9;

(#ii) the function Vi is the principal’s expected present value, given a mech-
anism M, for all t > T;

(iv) the second constraint specifies the evolution of the distribution of the
random variable p;, given the mechanism M; and

(v) the third constraint specifies the incentive-compatible constraint, guaran-
teeing that agent t’s posterior is exactly p, when the mechanism recommends

explore.

Proof. From the incentive-compatible constraint (iii), we obtain that, for every
t>1,

O =) = ¥ L) )1 = (). (10)

p>p, Mg
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Plugging (10) into V;, we obtain that for all ¢ > Z,

Vi= > m() (ve(p)p + (1 =7,(p)) (p+ (1 = p) g — c*(p)) + 7:(0) + Vi1,

P>H,

where
(p - ,ug)

Fg

c*(p) =c+ (1+c¢c—q).

Thus, the SB problem can be simplified as follows (and is hereafter referred to
as the S B/ problem):

Max V., =
{7},

> () (v-@p+ (1 =7,(p) (p+ (1 =p)g—c*(p) + 7 (0) + V711,

P>pg

subject to:

() Vi= 2 m(p) (ve(p)p + (L = 7(p)) (P + (1 = p) g — " (p)) +7(0) + 6 V41,

P>Hg

fort=7+1, 7+2, 7+3,...,

(1) m(p) = mi-1(p)ve-a(p) +
T (P (0) (L = 71 (0 () (i (p) + (1= i () (1 = q))

forp>p,andt=7+1, 7+2, 7+3,.., and

(I11) m(0) =1 = 3 m(p), v:(p) €[0,1], A €[0,1],

P>l

fort=7, 74+1, 74+2, 743, ....

To complete the proof, we can now show that the {v,(p)},—. which solves
the S B! problem above also solves a modified first-best problem in which the
cost of exploration is ¢*(p). Notice that for every period 7 > t, the solution
to the modified first-best problem is given by the solution to our original SB
problem with the following adjustments: c is replaced everywhere by ¢*(p), the
IC constraint (I11) is deleted, and A;(0) = 1 in all periods. It follows that
the solution to the modified first-best problem is identical to that of the SB/
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problem. Thus, the optimal mechanism (i.e., the solution to the original SB

problem) does not randomize at p; > p, and either ¢; (p) = 1 (for 0 < p < pj)
or v, (p) =1 (for p > py).
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