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(v) h.ffedi

3UI-IT-IAE.Y

The aim of this thesis is to investigate the circum­

stances under which group rings over fields have non-zero 

socle, i.e. contain minimal one-sided ideals.

After an introductory chapter, we consider the 

special case Oj. a periodic abelian group and a non-modular 

field (that is, a field of characteristic prime to the 
orders of the elements of the group). This special case, 

and the background material contained in Chapter III, serve 

as preparation for our principal results, which concern, 
locally finite groups.

V/e establish necessary and sufficient conditions on 

an arbitrary field K and a locally finite group 0 for the 

group ring KG to contain minimal one-sided ideals: the most
.  Vimportant condition is that G should be a Cernikov group.

Me then examine the structure of KG when these conditions 

are satisfied. Vie show that KG has a finite series of ideal3 

each factor of which i3 a direct sum of quasi-Frobenius 

rings, and characterize the socle of KG. Me also classify 

indecomposable KG-modules, and determine (for countable but 
not necessarily locally finite groups G) necessary and 

sufficient conditions for all indecomposable KG-modules to 
be irreducible.

/•
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In the final chapter we consider non-locally-finite 

groups, conjecturing that group rings of such groups never 

contain minimal one-sided ideals. We establish the truth 

of this conjecture for several classes of groups, and also 

consider semiartinian group rings.
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NOTATION

(m,n) highest common factor of integers m and n

[m,n] lowest common multiple of m and n
o(m,n) order of m modulo n (if (m,n) = 1)

1 if x = y; 0 otherwise

K a  field
char K its characteristic
*K its multiplicative group

K an algebraic closure of K
<Q the rational field

V a finite field of order pd

G a group

«(G) the set of primes p such that G has elements of 

order p

A(G) the PC-centre of G

n(G) the subgroup of G generated by all elements of 

prime order

O p  (G) the largest normal p-subgroup of G

V a cyclic group of order pn
CpOO a Prüfer p-group

KG, K[0] a group ring
Slipp X the support of «.£ KG (see p. 2)

J(KG) the Jacobson radical of KG



N(KG) the nilpotent radical of KG

K(Q) a certain subfield of K (see p. 21)

X £ KG X is a subset of KC-

W X> - {*£ KG : «tX = 0}

rK G ^  = i*£ KG : X* = 0}

CS(D the controller of an ideal I of KG (8ee p. 95)

V a right KG-module
CG (V) = {g € G : vg = v for all v £ V}
AnnKG(V)== jx £ KG : V* = 0|
SndKG(V) the ring of KG-endomorphi3ms of V
So (V) the socle of V

So* (V) the -x-th terra of the ascending Loewy series of 

V (see pp. 4, 119)

H< G H is a subgroup of G
H ^ G H is a normal subgroup of G

v h = v Ih
W

the restriction of V to KH 
a right KH-module

wG = v|G == y®jQjKG, "tiie induced module

Min the minimum condition on subgroups
P 9 A 9 • • • group classes (see p. 112)

9  ̂f • • • group-theoretical operations (see p. 112)



Chapter I

INTRODUCTION'

1 . Preamble

Let X be a field and G a group. Our aim is to 

investigate consequences of the supposition that the group 

ring KG contains a minimal one-sided ideal.

Our central results, which concern the case of a 

locall3T finite group G, occur in Chapter IV. In preparation 

for these we examine the special case of a periodic abelian 

group G and a non-modular field X (Chapter II), and set down 

some necessary background results of a more general, nature 

(Chapter III). In Chapter V we consider non-locally-finite 

groups G. The contents of the various chapters will be 

described in more detail in the first sections thereof.

In Section 2 we investigate the behaviour of the 

socle of a group ring when either the group or the field is 

extended, while the remainder of this section is concerned 

with establishing some notation and definitions (see also 
the list of notation commencing on page (vii)).

Let G be a group. By n(C-) we denote the set of 

primes p such that G has elements of order p. If X is a 

property of groups, we say that G is almost an X-group if

G has a normal X-subgroup of finite index.



Let K be a field . We denote the group ring of G 

over K by KG, or sometimes K^g] . If

= Z T  *- g £ KG (d £ K)
g£G g S

then the support of ■*- is

S U P P  ut { g £  & : a g t  0 }  ,

a finite subset of G.

Let V be a (right) KG-module; ve always assume that

V is unitary. We denote by Ann^Ol) the annihilator of V in 
KG (an ideal of TIG), and by End-™(V) the ring of KG-endo-Ivor
morphisms of V. The composition length of V is the length 

of a composition series for V, provided a finite such series 
exists.

(which is induced by the group homomorphism G — 1). Augment­

ation ideal3 of group ring3 KG, EH, etc. will be denoted g, 

etc. If H is a normal subgroup of G then hG = h.KG = KG.h 
i3 a two-3ided ideal of KG, being the kernel of the map

G — G/Jl. Y/e shall require the following well known result

The augmentation ideal of KG is the kernel of the

map

KG — k [g/HJ induced by the canonical group homomorphism

on the augmentation ideal of a group ring:
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Lemma 1 .1 If K is a field and G a group with generating set 

then

g = H  (g.-DKG = H  KG(g.-1 ) .i 1 i 1

Proof (see jjl8; ) We prove the first equality.

Certainly, each g^-1 £ g. Conversely, suppose

<*■ = XT £ g (ot £K) »g£G - &
so that X I  <x_ = 0. Then g€G 8

<x = at - 0 = X Z  <*_(g-1 ) ,g€G 8

so if A = ZI(g^-1)KG, it is enough to prove that g-1 £ A for 
all g£ G. Let

H = {g£ G : g-1 £ A} .

If h £ H  then

g±h - 1 = (h-1 ) + (g±-1 )h £ A

and g^1h-1 = (h-1) - (g±-1)g“1h £ A ,
so gih,gT*'h£H. Thus for all i we have g.jH = g^1H = H, whence 

H = < gi > H  = GH. But 1 £ H so H = G as required.



(4)

2- The socle: snb-croans arid field extensions

let R be a ring and 7 a left or right R-module. The 

socle 3o(7) of 7 is the sum of the minimal submodules of 7.

The ascending loewy series of 7 i3 defined inductively by 

3oq (7) = 0 ;

3°n+1(V)/3°n (7) = 3o(7/3on(7)) (n-0,1,2,...) .

For the ring R itself we shall usually denote the right socle 

3o(H,,) by So(R); the left socle will always be denoted 3o(^R). 
A submodule 7 of 7 is essential in V if every non-sero 

submodule of 7 has non-sero intersection with 7; we shall 

write ess 7 when this ocorns. The following result is 

well known:

Lemma 2.1 The socle of 7 is the intersection of the 

essential submodules of 7.

Troof If N is a minimal and 7 an essential submodule of 7, 

then 0 + iTO 7 < 30 IT < 7. Thus

3o(7) « : ;l ess 7} = 3 ,

3ay.

Conversely, we show that every submodule li of 3 i3 

complemented in 3, so that 3 is completely reducible and 

therefore contained in So(7). 3y Zorn's lemma there exists 

a submodule T of 7 maximal subject to K'Pi T = 0. ,/e claim

that i:® T i3 essential in 7. For if I « 7 with (I-i® T) O I = 0,

-MX

H
i-
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then . 8i9l is a direct sura, 3 0 I;n (I' + I) =0. Thus I < T by 

choice of i', whence 1=0. Hence E«!;®!’, so Sail ® (EO f) as 
required.

It will be useful to know when the augmentation ideal 

of a group ring is essential.

Lenina 2.2 Let K be a field and G a group. Then g is not 

essential in if and only if G is of finite order not 

divisible by char K.

Proof If char X \  | G- j <  00 then KG-™ is completely reducible 

by llaschke's theorem, so no proper right ideal is essential. 

Conversely, suppose IT is a non-zero right ideal with
irn £ = 0• '2h.2n ir+g:= KG- as £ is maxinal, so ITSKG/g is the
trivial KG-module. Let 0=j=OC £ .IT, a;nd write

oi. - z (<=tx £K) .:c£G
If g£ G then

Z c* x = d = = z Vg~1 = 2_ V *  *x£G y£(J J x£G ö
wh enc e <x = d. 4= 0. Thus G = supp ot is finites. Moreover,
under the canonical nap KG — X,

-  - « r E ix£G
maps to ol |g | . Since 01$ g, it follows that |c-| =0 in X.

Let KG be a group ring, H a subgroup of G, and 7 an 

extension field of K. We shall require a number of results 

relating the socles of KG, KH and ?G.
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Lemma 2.5 Let K be a field, H a subgroup of a group G, V 

right KK—module, and V" =7®_.KG the induced module.

(a) If Vx are submodules of V, then

o u 0 = r>£ •
(b) If W i3 a submodule of V and ess 7G, then ,-/ ess

(c) If HSC- and W ess 7 then v/G ess VG .

(d) If H«JG, then 3o("r) < So(V)G ; in particular,

So(KG) So(KH)KG .

Proof Let I be a right transversal to H in G.

(a) Since ™KG - = 0 K H x ,  we have = 0  7®s. Thus
iZH x€T x£f

f V £  = 0 (  ©  \ < s x )  = 0  (P)7x)«x = ((>*)<1 x£T x£T X \

( b ) This follows immediately from (a)

(c) (see also [_3 ; 2.53) As H is normal, 7®x is a Ill-

module for each x€ T, and ax ess Tax. Hence

W'r = Tax ess 0  7®x = V®x£T x£T
(a3 KH-3Ubmodule 30 a fortiori as KG-subaodule).

(d) ;y lemma 2.1,

So (V) = O! -r : 7 ess V} ,
so by (a) and (c)

3o(V)Cr = 0 !  f r : :■! ess V)

> 0 | U  : U ess 7G J = 3o(VC) .

Putting V = we obtain the particular case cited.
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?he hypothesis in (c) and (d) that H is normal may 

be weakened: for example, H ascendant or locally subnormal 

in G is sufficient. The following easy but extremely useful 

lemma, due to Hannah and O'Meara f8l , gives a variation of 

(c) with no such hypothesis on H.

Lemma 2.4 Let K be a field and H an infinite subgroup of a 

locally finite group G. Then the augmentation ideal hG is 

essential in KG—„.rJ.r

Proof Suppose there exists non-seroot-S EG with «tKGOhG=0. 
Since ! = < supp ot >  is finite but H is not, there exists a 

finite subgroup P of K with

|?| >  IL| / (dimK <xKL) .
Let 0 = < F,L >. Then <*KDn£D= 0, so 

| D | > dim- (otKDefD)

= dim— o-KD + dim., fl)A. rv =

= hi (dim- oLEL) / |l | + (|?| - 1 ) |d | / |?|XV
>  hi »

a contradiction.

Lerama. 2 .5  Let E be a field and H a subgroup of a group G.

(a) If 3o(KG)nKH4=0 then So(KH)±0.

(b) If |G:H|< oo, then 3o(EG) =0 if and only if 3o(KH) = 0.
a

if
c*

c
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Proof (a) Let 0 4s «*€ 3o(KG)nEH. Then atIZ3 is cyclic and 

completely reducible, so has the minimum condition on EG~ 

submodules. How otKG £ *KH| ̂ , so <*EH has the minimum 

condition on KH-subnodules, and in particular contains a 

minimal submodule. Hence 3o(XH)^0.

(b) Since Hg is normal and of finite index in both
g£C-

H and G, we may assume H*G. Thus So(H!I) = 0 implies 

3o(HG) = 0 by Lemma 2.3(d). Suppose 3o(KH)^0, and let I be

a minimal right ideal of KH. Then the restriction IG|T, =ri
rii |tj of IG to KH is a direct sum of |G:H| irreducible Kfi- 

3Ubmodules, so has minimum condition. \ fortiori IG has 

minimum condition on KG-submodules, so 0^ 3o(IG)4 3o(KG).

We may obtain more precise information on the 

behaviour of the socle under certain group and field 

extensions U3ing the following results on 'relative projact­

ivity' . Recall that an algebraic element of an extension 

of a field X is called separable if its minimal polynomial 

over K has no repeated roots; an algebraic field extension 
is separable if all its elements are separable.

Lemma 2.6 Suppose either

(a) A = KG end 3 * KH, where K is a field and H is a normal 
subgroup of a group G of finite index not divisible by

ohar K; or
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(b) 3 is an algebra over a field K and A = 3#~? where ?

is a finite separable extension of II.

If V is an A-module and ',! an A-subnodtile which as 3-subnodule 

is a direct summand of 7, then is already a direct summand 

as A-subraodule. In particular, if 7 is completely reducible 

as 3-module it is completely reducible as A-module.

Proof See [ 1 5 :  15.2, 15.4] or [ 1 8 ;  7.2.2, 7.2.3]. Part
(a) is Higman's version of Kaschke's theorem.

Lemma 2.7 Let K be a field and H a normal subgroup of a 

group G such that char Kf |G:H|<oo. Then
(a) 3o(KG) = So(KH)KG ;

(b) 3o(KH) = 3o(KG)O KH

Proof (a) If I is a minimal right ideal of 7H then IG|-, 

is completely reducible; hence IG is completely reducible by 

Lemma 2.6(a). Thus 3o(KH)KG< So(KG), and (a) follows by 
Lemma 2.3(d).

(b) This follows from (a) since if H is any subgroup

(not necessarily normal) of G and 3 is a right ideal of KH, 
then 30O ICi = 3. Per let T be a right transversal to H in G,
with 1 € T; then KG = ®  KHx, so

x£f
3G P. ICI = ZH O 3.® KHx

KH. 1 n ® 3 x
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r.ma le4; F be an extension of a field and G a group.

(a) 3o(FG) * 3o(KG)?.

(b) If ? is a finite separable extension of K, t'nen

3o(?G) = 3o(EG)?

and 3o(2G) = So(?G)OKG .

Proof Let be a basis of F over K.

(a) A proof parallel to that of Lemma 2.3(d) may be

applied, using the basis (ax } instead of a transversal, and 

noting that

FGt-„ = ©  KC-cû.hi It

(b) jince

1o ( K G ) ? |t,g = 0  3o(EG)w.;

is a direct sun of |?:K| copies of 3o(KG), it is completely 

reducible. By Lemma 2.6(b) it follows that 3o(KG)? is al3o 

completely reducible, so is contained in 3o(?G). Hence by

(a), 3o(FG)= 3o(KG)7. An argument similar to that of Lemma 
2.7(b) now shows that

3o(?G)nXG = 3o (XG)pn ICG = 3o(XG) .
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PERIODIC A33LIAH GROUPS

3. Preliminaries

In this chapter we investigate consequences of the 

supposition that the group ring KG.has non-zero socle in the 

case when G is a periodic abelian group and E is a non-modular 

field for G (i.e. char E ^ tv(G)). We establish two principal 

results, which will both be of use in the investigation in 

Chapter III of group rings of arbitrary locally finite groups 

over arbitrary fields. Firstly, we determine necessary and 

sufficient conditions for the socle of EG to be non-zero 

(Theorem 5.3). Secondly, assuming the socle non-zero we 

describe the ascending Loewy series in terms of augmentation 

ideals of certain subgroups of G (Corollary 6.3), and show in 

particular that the series reaches KG after a finite number 

of steps (Corollary 6.4).

The necessary and sufficient conditions we shall obtain 
for the socle of KG to be non-zero are the following:

31: G satisfies Kin, the minimum condition on subgroups;

31: G i3 almost locally cyclic; and

33: |k(G)HE: k|<oo, where k is the prime field of E, and

k(G) is a certain algebraic extension of k, to be defined in 

lection 1.
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The next two results provide information on the 

structure of abelian groups satisfying conditions 31 and S2. 

If G is an abelian group we denote by JTl(C-) the subgroup of 

all elements of finite square-free order in G. A Prüf er (or 

auasicyclic) -row is isomorphic to the multiplicative group 

of all pn-th complex roots of unity, where n=0,1,2,..., for 

some fixed prime p; all proper subgroups of such a group 

(denoted Ĉ oo) are finite.

Theorem 1.1 If G i3 an abelian group, the following are 

equivalent:

(a) G satisfies Kin;

(b) G i3 periodic and -ft(G) is finite;

(c) G has a decomposition
G = 7 x ?1 x ... x ? (0^m<oo) ,

where ? is finite and each P^ is a Prüfer group.

Proof 3ee [6 ; 25.1 , 3.1] .

Corollary 5.2 If G i3 an abelian group with Min, the 
folio'wing are equivalent:

(a) G has a finite subgroup ? such that G/? is locally 
cyclic;

(b) G is almost locally cyclic;

(c) G has a decomposition

G = P x P ,  x... x ?  (0 « m <  oo) ,• i'll
V
■«a
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where ? is finite and the are Prufar p^-groups for distinct 
primes p^.

Proof (a) =^(’o) Let n= |?|<oo. Since G is abelian,

Gn = [gn : g€G| is a quotient of G and indeed of G/F, as ?ri= 1. 

Thus Gn like G/? is locally cyclic. But G/Gn has finite 

exponent and satisfies Kin, so is finite by Theorem 3.1 (since 

a Prufer group has infinite exponent). Hence G is almost 
locally cyclic.

(b) (c) By Theorem 3.1 , since G satisfies Win, there is a 
decomposition

G = F x P1 x ... x (Oincoa)

with ? finite and each ?. a Prufer group. How P., x...xPi  i in

like G is almost locally cyclic, but has no proper subgroup 

of finite index, so is itself locally cyclic. Thus no two P^ 

can be p-groups for the same prime p.

(c) ^  (a) G/F = pix.*.*pn is locally cyclic.

Via remark that (a) and (b) remain equivalent if G is 
any periodic abelian .group.

To foreshadow the significance of condition 33, we 
observe that it always holds if G is finite or IC is a finite 

extension of k, but if K is algebraically closed then 33
holds only if G is finite. ./hen G is a locally cyclic group
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with i in, it is convenient to consider a condition equivalent 

both to 13 and to the existence of minimal ideals in KG: 

namely, the existence of K-inductive sub.-routs in G. ;e call 

a finite subgroup H of G K-inductive if every irreducible KH- 

module faithful for H remains irreducible when induced up to 

G. ?or our study of K-inductive subgroups in Section 4, we 

shall require a field-theoretic lemma (3.7). The next four 

results, and the associated definitions, are standard.

Lemma 3.3 If 3 is a finite extension of a field F, the 

following are equivalent:

(a) 3 is a splitting field of some polynomial over ?;

(b) every irreducible polynomial over ? with a root in 3 

splits as a product of linear factors over 3.

Proof See [l 2 ; Theorem 10, p. ■Z2],

>/’hen the equivalent conditions (a) and (b) hold, 3 

is called a normal extension of ?. Xotice that it follows 

from (a) that if F < K <  3 are fields with 3 normal over F, 

then 3 is also normal over K.

Lemma 3.4. The separable elements in an algebraic extension 
form a subfield.

Proof See jj 2 ; Theorem 11, p. ¿6].



(15)

In extension 3 of a field F is simple if 3=7(0) is 

generated over ? (as a field) by a single element 0.

Lemma 3.5 Any finite separable field extension is simple.

Proof dee [ n ; PP. 54, 59].

Lemma 5.6 Suppose 3̂  and are extensions of a field F 

lying in some common extension of F. Then the following are 

equivalent:

(a) The canonical map

31 **? 32 >• 3 ^ 2  > >—> I«ifi
is an isomorphism;

(b) there exists a basis of 3, over F which is linearly 

independent over 3.;

(c) any subset of 3. linearly independent over ? is 
independent over 30.

Proof (a) ^(b) Let be a basis of 3, over F, so that
3, = © ? cji. . Then

31 s2 = (^1® t*\)
Applying the canonical isomorphism, we find that

31S2 = ©  31U i ’
so ¡tOj } is a basis of 3̂  3? over 3 ^  and in particular linearly 

independent over 3.. dince any linearly independent set may 

be extended to a basis, we nay prove similarly that (a) 
implies (c).
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(b) ^  (a) Let be a basis of 3, over '¿? which is linearly

independent over 3^. As above

31 ® ? 32 = ®  (3lS cJ.) .

If ®v (ot^€3^) maps to zero in 3̂ 3.,, i.e.
^.»>3^=0, then each ou is aero. Thus the canonical map 

(which is always onto) is an isomorphism. Similarly, (c) 

implies (a).

■/hen (a)-(c) hold, 3̂  and 3? are said to be linearly 
disjoint over 3.

Lemma 3.7 Let D and 3 be subfields of some field, and 

suppose that 3 is a finite normal separable extension of
DH 3. Then

(a) D and 3 are linearly disjoint over DO 3;

(b) if ? is a subfield of 3 containing DO 3 then 3D0 3=3.

Proof (a) 3y Lemma 3 • 5, 2 contains an element 0 with
3= (DO 3) (0). Let f be the minimal polynomial of 6 over DO 3.

Then f is in fact irreducible over D. 3or if f=gh, where g 

and h are monic polynomials over D, then the roots of g and 
h are roots of f, so lie in 3 by Lemma 3.3(b). The 
coefficients of g and h are (plus or minus) elementary 

symmetric functions in the roots, so lie in DO 3. But f is 

irreducible over DOE, so over D too.
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If n is the degree of f, then (1, 9 , . . .,0n_1 } is a 

basis of 3 over DO 3, consisting of elements which are 

linearly independent over D. 3o D and 3 are linearly disjoint 

over DO 3.

(b) let {tOjJ be a basis of D over DO 3, with = 1 . Then

30 = ̂ ? ^ .  3y (a), the to are linearly independent over 3. 
Suppose

3 = ^ PD0 3 (o^e?) .
Then («*.-3 )10. + X ^ U )i = 0 (*. -0,*, £ 3)

i=t= 1 ' ' 1

so £=*.,£?. Thus 3D O 3 = 3.

The next two lemmas will explain the usefulness of 

the assumption, made throughout this chapter, that K is a 

non—modular field for Or. We say that a E-algebra satisfies 

a condition X locally if every finite subset is contained in 

an X-subalgebra. In particular an algebra is locally 
Wedd erbium  if every finite subset lies in a semisimple 

artinian subalgebra.

Lemma f.3 If G is a locally finite group and K a field with 
char K $ 7T(G), then EG is locally 7/adder burn.

Proof If 3 is a finite subset of KG, then 
H = <  supp ex. : a £ 3 >

is a finite subgroup of Or. Then EH contains 3 and i3 semi-

Strifes

simple artinian by Easchke*s theorem H
ilt

f 
'<



( 1 B)

Recall that an element e of a ring is an idempotent
o .ix e'= e4=Q. Idenpotents e and f are orthogonal if 

ef = fe=0. ¿in id empotent is primitive if it cannot be 

expressed as the sum of two orthogonal idempotents.

Lemma 3 .9  Let A be a locally Wedderbum algebra. Then

(a) every non-zero right ideal of A contains an idempotent;

(b) a right ideal is minimal if and only if it is 

generated by a primitive idempotent;

(c) 3o(A^) contains and is generated by all primitive 

idempotents of A;

(d) if A is commutative then

do (A) = £J3 i el : e is a primitive idempotent in A} .

Proof (a) Let I be a right ideal of A containing a non­

zero element and choose a semisimple artinian su’oalgabra 

3 containing cl. Now (a) certainly holds in 3 (since every 

non-zero right ideal ir a direct summand so is generated by 
an idempotent). Hence «.1 (c^Ai I) contains an idenpotent.

(b) Let e be a primitive idenpotent in A and I a non­

zero right ideal contained in eA. By (a), I contains an 
idempotent f. Then f£ eA, say f=eot, whence ef = e 'at = e*= f. 

How e = fe+(e-fe), and we easily have (fe) = fa, (e-fe) * = 

e-fe, fe(e~fe) = (e-fe)fe=0. A3 e is primitive, either fe = 0 

If fe = 0 then f=f' = fef=0, a contradiction.or e-fe= 0.
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Hence esfel I» so 7. — e.l. Thus eA is a minimal right ideal.

On the other hand, if I is a minimal right ideal of 

A, then by (a) I contains an id empotent e. Since 0| eA« I, 

we have I = eA. Moreover, if

e = e1 + e?, e1
0 ,e0 = e,e1 = 0, er- e^ * 0,

then 0 4= e1 = eet € I, so e£I=e.|A, and e0 = e.,e£ e0e^A = 0, a

contradiction. Thus 0 is primitive.

(c) Since So(A.) i8 the sum of the minimal right ideals,
(c) follows immediately from (b).

(d) This follows from (c). The sum is direct 3ince

primitive idempotents e and f in a commutative ring are 

either equal or orthogonal: if ef i 0 then as e=ef+e(1-f) 

we find that e= ef; similarly f = ef. Thus if e^,e,,...,e 

are distinct primitive idempotents, then
Y\

e. A O e. A « e. .1 i=2 1 1
(since if dl£ e^A then ot= e.a.).

Thus we are led to investigate the primitive idem­
potents in MG: this is done in Section 5. As well as the 

question of the existence of primitive idempotents, we 

consider (for almost locally cyclic groups G with Min) the 

connection between primitive idempotents and irreducible 

EG-nodules. :/hen 33 holds, there is a one-to-one onto

v  " 0
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correspondence between primitive idempotents in ICG and 

isomorphism classes of irreducible KG-modules ’with finite 

centralizer (i.e. finite kernel in G); moreover there are 

only finitely many non-isomorphic such modules having any 

fined finite subgroup of G as centralizer (Theorem 5.5). 

But if 35 fails to hold the situation is quite different: 

there are no primitive idempotents in KG, but given any 

finite subgroup 0 of G such that G/C is locally cyclic, 

there exist 2 * non-isomorphic irreducible KG-modules with 

centralizer C (Theorem 5*5).

In Section 6, as mentioned above, we examine the 

ascending Loevy series of KG when 31, 32 and 35 hold.



i. K—Inductive subgroups

Let G ’oe .a periodic abelian group and K a field with 

char Xq.7?(G). Let X be an algebraic closure of X, and K
its multiplicative group. We denote by K(G) the I'-su'oalgebra

— — *of X generated by all images of honomorphisns G — K ; as G is

periodic, K(G) is in fact a subfield of K. Since the torsion
““ -Tsubgroup of X is a direct product of Prufer groups, one for 

each prime not equal to char X, if G is locally cyclic then 
X has exactly one subgroup isomorphic to G; the elements of 

thi3 subgroup generate K(G) as a K-algebra, for any quotient 

of G is isomorphic (albeit unnaturally) to a subgroup of G.

Lemma . 1 Let H be a finite cyclic group and K a field with 

char K^7r(H). Then there exist irreducible KH-raodules 

faithful for H, and all such modules have dimension |K(H) : 

over X.

. .  *Proof K(H) has a unique subgroup isomorphic to H, so we 

may choose a monomorphism 0: H — K(H) . Then K(H) becomes a 
XH-module with H-action given by

v.h = vh8 , v £ X (H ), h £ H  .

If 0=j=w-£K(H) then since Ha generates X(H) as K-algebra, 

v.KH ss vK(H) = K(H). Thus K(H) is an irreducible XH-module; 
it is faithful for H as 0 is one-to-one.

(21 )
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Let 7 be any irreducible EH-module faithful for H. 

Then 7 is isomorphic to KH/M for some maximal ideal M of KH. 

Now KH/M is a field, containing (since V is faithful) a 

multiplicative subgroup isomorphic to H which generates it 

over K. It follows that KH/M is algebraic over K, and thence 

isomorphic to the field K(H). Thus

dim,.! = dim^KH/M - ¡K(H) : K| ,

completing the proof.

If K is a field, G a group, and 7 a KG—module, we
writ e

Cq (V) = |g£G : vg = v for all v£ 7} .

Lemma <t,2 Let G be a periodic abelian group, H a subgroup 

of G containing fl(G), and K a field with char X 4 7r(g ). Let 

V be an irreducible KH-module faithful for H, and ':! a non­

zero submodule of the induced module VJ = V®~jKG. Then .7 is 

faithful for G.

G i GProof Since G is abelian, the restriction 7 |rr of 7 to H
is a direct sum of conies of 7. As 7 is irreducible, W.r is* n
also a direct sum of copies of 7. Suppose 1 f g£ Cr(/).

There exists an integer n such that 1 ={=gn £ X1(G) « H. But 

then 1 4= gn £ C„('7̂ ) = C^(7), a contradiction as 7 is faithful 

for H. Hence 7/  is faithful.for G.
ii3

&-



(23)

Let £ be a field and G a locally cyclic '-roup with 

Kin such that char IĈ 7y(G). A finite subgroup K of G will 

be called K-inductiva in G if whenever 7 is an irreducible 

KH-module faithful for H, the induced nodule 7' is an 
irreducible KG-module.

Lemma <1.3 A finite subgroup H of G is K-inductive if and 

only if the following two conditions are satisfied:
(a) H contains fl(G);

(b) whenever L is a finite subgroup of G containing H, 

we have

|K(L):E(H)| = iLsHl .

Proof Suppose H is K-inductive in G. 3y Lemma 4.1 there
c.exists an irreducible KH-module V faithful for H; then V 

is irreducible.

(a) Suppose .0.(G)^H; then there exists a finite non-
tr xT,trivial subgroup L of G with HL-HxL. now 7" is reducible:

indeed { v«x : v€ 7} is a proper submodule. A fortiori V'7 
X*

is reducible, a contradiction. 3o.fl(G)sH.

(b) Let L be a finite subgroup of G containing H. Then 

7 ‘ like 7 1 is irreducible; by (a) and Lemma 2 7^ is 

faithful for L. Hence using Lemma 1.1,
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|K(L) : K(H) | = ¡X(L) : X| / |K(H) : K|
= din,, V “ / dim., V4V A.
= |L : H| ,

since = V®.„. XL.aJZL

Now suppose (a) and (b) hold. We may express G as 

the union of a chain

H = Hq < < Hp < .. . < G
of finite subgroups, let V be any irreducible XH-module 

faithful for H. By (a) and Lemma ¿.2, any irreducible
tr.submodule of V 1 is faithful for so has dimension 

151 ( )  : K| by lemma 4.1. But by (b) and Lemma 4.1»

IKO^) : X! = |X(Hi) : K(H) | |K(H) : K|
= |Hi : Hi dimK V 

= dim.. VHi .

Hence is itself irreducible. Now V ‘ may be regarded as 
H*the union of the V *■, so is also irreducible. Thus H is 

E-inductive in G.

Corollary 4.4 A finite subgroup 3 if G is K-inductive if
and only if there exists an irreducible XH-module V faithful

n.for H and such that V is irreduci ile.

Proof If such a V exists then by the first half of the 

proof of Lemma 4.3 H satisfies (a) and (b); then by the 

second half H is K-inductive. The converse follows from 

lemma 4.1.
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Corollary A.c If the finite subgroup li of contains a 

K-inductive subgroup H., H itself is K-inductive.

Proof We have n(C-) « < H, and, for any finite L contain­

ing H,

|K(L) : K(H) | = |K(L) : 2(^)1 / |K(H) s 2(^)1

= |L : H1 I / |H : H1 l 

= |l:H| .

Proposition 1.6 If H < K G  and L is finite then in any case 
we have

|K(L):K(H)| c |L : Hj .

Proof If n = | L : H] and the subgroup of E(l)* isomorphic to 

1 is generated by then ijpSKfH), so the polynomial f (X) = 

has degree a over X(H) and % as a root. Hence 

|:-:(L) : E(H)| = |IC(̂ ) : K(H) | S a.

Lemma 4.7 Let 7 and K be subfields of some field. Then 

|K? : ?| s \Z : KPi?l .
(Here the ring IC7 nay or may not be a field.)

Proof Any basis of X over I P ?  also 3pc?.ns IC7 over ?.

Theorem A.3 Let G be a locally cyclic group with Kin, and Z 

a field with char IC^Tr(G). If there exists any K-inductive 

subgroup in G, there exists a unique minimal K-inductive

subgroup in G.
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Proof Sines K—inductive subgroups are finite, it is 

sufficient to show that if H. and Hp are X-inductive in G, 

then so is H, PiIL,. 3u-fc let H1 be K-inductive, and HP any 
subgroup of G. Then

n  (h 2) « fl(C-)nH, < .

Moreover, if L is a finite subgroup of H9 containing H . n H 2» 

then H1 O  H2 = H1 O L, so

|K(L) : KO, O H 2)| = |Z(L) : K(H1 HI) |

^ |K(L) : K(H1)O E(L)|

} |K(L)K(Ht) : KCHt)I
by Lenina 4.7. Clearly K(L)K(H.) ̂  K(LH1), and in fact we have

__ — ifequality, since if 9 ; LH. — K is a homomorphism, then 

LeH® =Z(L)Z(H1). So as is K-inductive in G,

|K(L) : K(H1 O H 2) | ^ |K(LH1 ) : K(H]) |

= |1H1 : |
= | L : H1 O L |

= |l : h 1 n n 2i .

But |K(L) : K(H1 O H 2) | < |L : H. O H P| by Proposition 4.6, so by 

Lenina 4.3 H, OH, is K-inductive in H2.

Thus if V is an irreducible X^H.O -module faithful
Vfor H ^ H , ,  then V  1 is irreducible, and faithful for K0 by 

Lemma 4.2. If now HP is also K-inductive in G, then Vu i3 

irreducible; hence H. O H 2 is K-inductive in 0 by Corollary 

4.4. This completes the proof.
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/e shall now investigate more closely the conditions 

under which a locally cyclic group with Min contains inductive 

subgroups for various fields.

Lemma 4.9 Let G be a locally cyclic group with Min. Then 

SL(G) is (Q-inductive in G.

Proof Suppose L is a finite subgroup of G containing 

H= il(G), and let £ be a primitive |L1 —th root of unity.

Then

|Q (L) : <Q| = !<D(e ) : © i = ^ ( iX.|) ,

where C? is the Euler function. Thus

|<Cl(L) : <Q(H)| = q?( |L| ) /tp( |H| )

= (?(|L :H||H|)/^(iH|)

= |L : H| ,

for -rr(L) = tt(H) and if p is a prime dividing an integer m, 

then q>(pm) = p<f(m). Hence ri(G)--H is I)-inductive in G by 

Lemma 4.3.

If m and n are positive integers, their highest

common factor is denoted by (m,n). If (m,n)= 1, we shall
denote by o(m,n) the order of m modulo n, i.e. the smallest

positive integer r such that n divides mr - 1. If G is a

locally cyclic group with Min, say
G = C n, x ... x C*' * «

where the p^ are distinct primes and 1 < n . < 00, then
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~ - -i* . p-Iv* will be cal? ed the nupemntv.r .1 number «Assoc­

iated v/ith G. evidently the concepts of divisibility and 

highest comnon factor extend to supernatural nunbers.

the following is a 3lightly strengthened form of
[ 9  ; 2 . 2 ] :

1 arm i. 10 Let G be a locally cyclic group with Kin* and 

(F j- a finite field of order pa , with p£ ~(l) . Let IT be 

the supernatural number associated vrith G, and put
n = (IT, 2".3.5
r = o(pu,n) ,
rv> — (IT , pdr-1 )

Then the unique subgroup H of order m in G is fr ¿.-inductive 
in G.

Proof ’Since n | vre have n | n, '..hence O( g ) « H. Let

L be a finite subgroup of G containing H. Then L is cyclic
and F0a(L) is the smallest extension (f it of If̂t such that

L may bo embedded in tF*«, i.o. such that £ = |l | divides

| Hr .>tui = p" '-1 . Tlonce t is the smallest positive integer such 
, . , at dt .inas l  | p -i , so we have

i IV;)a(L) : (F,*l = t -- o(pd,i) .

by Le:me. 1.3, to show that 1 is ftbi-inductive in G it is 

sufficient to prove that | (F0a(I>) : (F a(TI) i - |l : H| , i.e. that
if r | i  \ n then

*
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o(pa»4!) / o(p ,m) = i  / m .

ifots that o(pd ,m)=r, for 3ince n| m, r=o(pd ,n) | o(p~,m), 

while as m | pur-1 , o(pd,m) | r. Ie shall prove by induction 

on -2/n (more precisely, on the sum of the exponents in the 

prime power factors of i/m) that if o(pd ,-0 = t and pd -̂1 = k»!, 
then (k , ir/m) = 1, and t/r= l /m .

Firstly, let l = m, so t = r. Trite pdr-1 = km. Then 

(km , II) = (pdr-1 , IT) = m, so (k , U/m) = 1 . Also t/r = 1 = ¿/m.

'Tow suppose that a | i | tq | IT, where q is a prime,
let t = o(pd,0) and pd^-1 = ki. by induction we may assume

that (k , Il/m) = 1 and t/r= -i/m. ,/e then have

pdtci = (1 + k£)q

= 1 + qk l + yj(q-1)(kT)2 + ... + (ki)°* .
let q., | IT be prime. If 4s 9 then as qq^ | l we have

pdi,q ^  ̂ + ok l (mod ?qq1 ) .

If q. = q we have q so (since for s = 2,...,q—1)
dta = 1 + aki + (ki)d (mod i q2) ,

whence pd ' : = 1 + qk l (mod iq")

provided q>2. but if a = 2 then 2“ | ¿q | TT whence 2‘ | n | a | ( ,
and again we obtain

p”“'1 = 1 + r k l  (mod iq~) .

In partic’ilar we see that i q | p’l'fcn--1, so f  = o(pd,*?j.) 
divides to. Moreover, ?! in, so t=o(pd ,i) | f.  If
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i | p "'-1 = ki, than q | k. But m | i  | to | M, so then q divides 
N/m, a contradiction a3 (k , N/m) = 1. Hence 2q 4» pu "-1 . Thus 

t | t 1 | tq, but t 4= t 1, so o(pĉ, in) = t' = tq.. ,/e have

t'/r = tq/r = ^q/m.

rl 4* I *Now write p -1=k'*q. By the above congruences, 

if q1 i 3  any prime divisor of N, we have

k'iq a k?a (mod ?qq.j) , 
whence k' s k (mod q1) .

Thus if q1 | (k' , IT/m) then a. | (k , N/m) = 1 , a contradiction. 

Hence (k1 , N/n)= 1. This completes the induction, and the 
proof.

The subgroup H we have constructed is in .almost all 

cases minimal inductive, as we now show.

Pro position ’-.11 vith notation a3 in Lemma 1.10, H i3 the 

minimal qn-inductive subgroup of 0 unless

(a) |02(0)| = 4;
(b) o' = 3 (mod 4); and

(c) o(pu ,m/4) is odd,

in which case the subgroup of index 2 in H i3 minimal 
induetive.

Proof /e remark first that if (a) hold3 then 4 | n, so 

o(p~, ’) ! o(p'l,n) = r: thus 4 divides (N , p^r-1 ) = m, and (c) 
makes senn.

©¡»*

i
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Suppose that II is not minimal inductive. lien H 

contains a prooer inductive subcroup L. By Corollary 4.5 we 

may choose L maximal in H» so that q = |ci : L| is prime. Let 
£•= | L i = m/a.

Suppose n | Since l | m, we then have 

r = o(pd,n) | o(pd ,£) | o(pd,m) = r 
(see the proof of Lemma 4.10). Hence vising Lemma 4.3(b),

q = IH : L |

= I Fpji(H) : Fpi(L) |
= o(pd ,m) / o(pd,i)

= 1 ,
a contradiction. Thus n-j'i.. But by Lemma. 4.5(a), £1(0) ̂  L, 

whence (IT , 2.5.5.7....) divides l .  Hence we see that 2" || n 

(that is, (2co,n) = 2') but 2 || L. Since n | m and q is prime,

it foliov/3 that q = 2  and 2" || m. Of course, p =f= 2.

Tf (x,y)=1 then o(pd,xy)= [o(pd,x) , o(pd,y)3 (the 
least common multiple). V/rite m=2i = 2~z, so that 2 ^ z .

7rom above,
5 o(pd ,m) £o(pd,2~) , o(pd,z)"]

o(pd ,-J!) ~ [o(pd ,2) , o(pd,z)]
awhence (as o(p,2) = 1) we obtain

£o (pd, 2 “) , o (pd , z )3 = 2.o(pd ,z) .
Since the value of o(pd ,2w) must be either 1 or 2, we see
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;hat on; (whence (b)) and 2 < o(; ("hence (c)).

As 2~ | n, we have

2 = o(pd,22) 1 o(pd,n) = r ,

so p~d-1 divides pdr-1. But 2 | pd-1 and 22 | pd+1, so 

25 I P2d-1 | Pdr-1 . Now 22 i! m = (IT , pdr-1 ), so 22 |! IT, i.e.

(a) holds.

Conversely suppose that (a), (b) and (c) hold, and 

let L be the subgroup of index 2 in H. Since Z~ | n | m= |H| , 
clearly 11(G) s L. Moreover, -..writing |h | =2|l| = ? 2z , so that 

2 )( s, we have

! ifpj.(H) : l i y d )  | =  o ( p d , IHI ) / o ( p d , i L I  )

£o(pd ,2~),o(pd,~)]
[ o ( p d ,2)  , o ( p d , s ) l

= o(pd,22) = 2 = iH : 1 1

(by (c) then (b)). Since H is inductive, it follows by 

Lemma 4.3 that L is too.

Finally, if L1 is an inductive subgroup of L, we see
as before that | L : | is a power of 2. But 11(G) $ Lj whenc

2 divides ILJ, and 2 |j |L| , so L1 = L. Hence I i3 minimal
inductive.
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In passing from prime fields (covered by Lemmas 4.9 

and 4.10) to arbitrary fields, we shall apply Lemma 3.7, the 

relevance of which is explained by the following:

Lemma 1.12 If L is a finite cyclic group, k a field with 

char k^rr(L), and T a field with k< T< k(L), then k(L) is a 

finite normal separable extension of T.

Proof As k(L) is the splitting field over T of the 

polynomial X ^ - 1  , it is a finite normal extension of T.
lines

A fT|i!dXu - 1 ) ) =

-1

by the

has no repeated roots, 

roots of X'L i-1, so by

( /JL|-1 , |l |X>l1"1 ) = 1 ,
ITow k(L) is generated over 

Lemma 3.4 k(L) is separable

over I .

theorem 1.13 Let K be any field, k its prime field, and G a 

locally cyclic group satisfying Min with char k$?r(&). Then 

G has a K-inductive subgroup if and only if
|k(G)nX:k| <  oo .

(Here k(G)OK is a subfield of E, in which k and k(G) are 

embedded.)

Proof Suppose that H is a K-inductive subgroup of G and L 

is a finite subgroup of G containing H. Then by Proposition 

4.6 we have

|k(L) : k(H)| * |L |K(L) : K(H) |
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(as H is IT-inductive). Tow :;(L) = k(L)l'(H), so by Lemma 4.7

l"(L) : X(H)| = i k(L)K(H) : K(S) |

« |k(L) : k(l)OZ(H)|
* |k(L) : k(H)|

(as k(H)< k(L)O K(H)). 'Ye now have

■fk(L) : k(L)nK(H)| = |k(L):k(H)| ,
whence k(L)Oh e k(L)PiZ(H) = k(H) .

.is G is locally finite it follows that k(G) n X < k(H). Hence 

| k(G) O K : k | s |k(H):k| |h | < oo .

Conversely, suppose that | k(G) O I' : k| <  OQ: say 

k(G) O r: = k(^ *..., jj ) ( in view of Lemma 3.3, we could
actually assume that 3 = 1 ). 3y Lemma 4.9 or 4.10, as k is
prime fi3Id, G contains a k-inductive subgroup H^. Since '
is locally finite, there exists a finite subgroup H of G 

containing H1 and such that ^  ,... £ k(K). Then

k(G) r> IC = k ( 1 ,..., ¡J3) < k(H) .
Ye shall show that H is K-inductive in G. Note first that 
il(G) s by Lemma 4.3(a).

Let L be a finite subgroup of G containing H. Then 

k(L)OK < k(G) O K « lc(H) .
Hence taking G = H, H = k(L), and 7=k(H) in Lemma 3.7(b) (and 
applying Lemma 4.12), we obtain

K(H)Ok(L) = k(H)KOk(L) = k(H) .

v
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By Lemma 3.7(a), K(H) ( = D) and lc(L ) ( = J) are linearly 

disjoint over their intersection k(H). Hence a basis for 

k(L) over k(H) also constitutes a basis for Iv(L)= K(H)k(L) 
over E(H). Thus

| K(i) : K(H) | = | k(L) : k(H) | = |L : H|
as H?Hj is k-inductive by Corollary 4.5. By Lemma 4.3, H 
is K-inductive in G.

Coro liar-/ 4.1=1 Let K be any field, k it3 prime field, and G 
a periodic abelian group with char k^w(G). Suppose that 
|k(G)P.I': k| < oo. Then every locally cyclic quotient of G 
satisfying Min contains a -'-inductive subgroup.

Proof If G. is any quotient of C-, every image of G in Ic* is 

also an image of G, and therefore k(C-) < k(G). ITov apply 
Theorem 4.13.
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a. Primitive idsnootants in KG

Let G be an abelian group and K a field. If «<.£ KG,
*.re •.-rrite

Ga («-) = jg£ G : otg= ai.| .
Since G is abelian, CP (ot) is in fact the centraliser CU (<¿110)

VT

of aKG considered as a XG-module. If e is an idempotent in 

KG, we say that e is faithful (for G) if CG(e) = 1.

Lerama 5.1 Let G be a periodic abelian group and K a field 

with char K$fr(G). Suppose KG contains a primitive idem- 
potent e. Then G satisfies Min and is almost locally cyclic. 

If e is faithful, G is locally cyclic, and < 3upp e> i3 

K—inductive in G.

Proof Let H = < supp e>, a finite subgroup of G. Chen eKH is 
an irreducible XH—module and elPP|” = eXG an irreducible KG- 

module by Lemmas 3.3 and 3.9(b). A3 in the proof of Lemma 

4.3, it follows that ¿1(G) % H, whence ¿1(G) is finite and G 

satisfies Min (Theorem 3.1). If e is faithful for G 30 for . 

H, then H is K-inductive in G by Corollary 4.4.

The group C=Cn(e) is finite, since it act3 faith­
fully (by multiplication^ as a group of permutations on the 
finite set supp e. The irreducible KG-module eKG, considered 

as a ring, is actually a field ?. The homomorphism G — P , 

g ►* eg has Kernel 0. Hence 0/C embeds in ? so is locally
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cyclic. Thus G ±3 almost locally cyclic by Corollary 3.2. 

If e is faithful then C =1 and G itself is locally cyclic. 

This completes the proof.

We shall now investigate the circumstances under 

which KG contains primitive idempotent3 faithful for G, 

given that G is locally cyclic and satisfies Min. We shall 

need the following technical lemma (which will also be used 

in Sections 6 and 15).

Lemma 5.2 Let G be a periodic abelian group and K a field
with char K^TfiG). Let {  be a family of finite subgroups

of G such that every finite subset of G lies in some member

of i .  Given {e^ : L£ -L } such that for Lj ,L,€i , e^ is a

primitive idempotent in KL, , and eT e, i 0, there exists aI jĵ x<2
maximal ideal M of KG such that

(a) for each L£ £  , MOKL= (1-e_)KL (in particular, 

eL $ M);

(b) C0 (KG/M) = U{CG (eL) : L S £  | .

Proof Let

M = U !  (1-eL)KL : L£ 1  } .

We show first that M is an ideal in KG. If L^,L2 -̂ , there
exists L € jC with L̂  < L. Since

eL = eL±eL + (l-eL±)eL <i=1>2)

Ì3 primitive in KL and ( ejJ_ e^) ' = eL eL 4=0, we conclude that
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cyclic. Thus G ±3 almost locally cyclic by Corollary 3.2. 

If e is faithful then C=1 and G itself is locally cyclic. 

This completes the proof.

We shall now investigate the circumstances under 

which KG contains primitive idempotent3 faithful for G, 

given that G is locally cyclic and satisfies Min. We shall 

need the following technical lemma (which will also be used 

in Sections 6 and 15).

Lemma 5.2 Let G be a periodic abelian group and K a field

with char k 4^(G)- Let £  be a family of finite subgroups

of G such that every finite subset of G lies in some member

of ¿. Given {e^ : L£ ( such that for L̂  ,L,si , e^ is a

primitive idemootent in KL., and eT eT i 0, there exists ai Jj  ̂ x̂ 2
maximal ideal M of KG such that

(a) for each L£ , MO KL = (1-e-)KL (in particular, 
eL i  M);

(b) CG (KG/M) = U{CG (eL) : L £ £  | .

Proof Let

M  = U f  (l-eL)KL : L£ L  ) .
We show first that M is an ideal in KG. If L j,L2 £ i- , there 

exist3 L € jC with L1 L2 < L. Since

e x. =  e L i e L  +  ( 1 - e T. ) e T. (1=1 »2)L±' L

is primitive in KL and (e^ eL)~ = e^^O, we conclude that
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eL eT = eL* whence (l-eT )(1-eT) = 1-eT . Thus
Li

(l-eL )KL1 + (1-eL )KL2 Ç ( 1 -eL)KL ç M

Hence M is additively closed, and therefore clearly a K- 

subspace of KG. If L1 £;£. and g£ G, there exists L £ i  with 

< L 1 ,g> <L, and we have

(1-e^^)KL^g s (l-eL )Klg

= (1-eL)KL € M , 

whence M is indeed an ideal of KG.

Suppose for some L£ £  , e^CM. Then (1-e^ )£k-| 

for 3ome , and we have eT = ( 1 — )sj; whence e^= 0,

a contradiction. Thus

(1-eL)KL c MO KL ^ KL .
Since char K^ tt(L) and e^ is primitive in KL, (l-eL)KL is a 

maximal ideal of KL, so we have (a).

To show that M is a maximal ideal of KG, suppose 

that <*.£ KG-M, and let 3upp ot c L £ ^  . Then ^ £ KL-(MO KL), so 

1£ (MOKL) + olKL ? M + 'xKG. Hence M + xKG = KG as required.

Let L.j £ £. , x£C^(e^ ), and oC£KG. Choose L£jL with 

<x, supp oc, L̂  >  c L .

As before eL e ^ e ^ ,  so x £ C G(eL). Thus

(u x- x) e^ «.(xeL-eL) = 0 ,

whence oiX-oL £ (1-eL)KL Ç M ,

i.e. (x+M) x =* x+M. It follows that



U l C G (eL ) : L€ £ } < Cg (KG/M) .

Conversely let x £ CG(KG/M), so that x-1 € M, and there 

exists L £ £  with x-1 € (1-eL)Kl. Then eL (z-1) = 0, so 

x £ C G(e^). This completes the proof of (b).

Theorem 5.3 Let 5 be a locally cyclic group with Min and K 

a field with char K^7r(G). Then the following are equivalent

(a) KG contains a faithful primitive idempotent;

(b) G contains a K-inductive subgroup;

(c) there are only finitely many non-isomorphic 

irreducible KG-modules faithful for G;

(d) there do not exist 2̂ ° non-isomorphic irreducible 
KG-modules faithful for G;

(e) |k(G)OK: k|<oo, where k is the prime field of K. 

Furthermore, when (a)-(e) hold, there is a one-to-one onto 

correspondence between faithful primitive idempotents of KG 

and isomorphism classes of irreducible KG-modules faithful 
for G.

Proof (a) implies (b) by Lemma 5.1» and (b) is equivalent 

to (e) by Theorem 4.13.

Now suppose H is a K-inductive subgroup of G, and V 
is an irreducible KG-module faithful for G. Since H i3 

finite, Vg is completely reducible, so it contains an
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irreducible KH-submodule W say. Then VTr= > Wx, and
U x£G

Wx'SW as KH-modules since 0 is abelian. Hence CH (W) =

C^CVr ) = 1. So as H is K-inductive, WG is irreducible. But 

there is a non-zero KG-map WG V, w®x t-*- wx, so V= ',iG.

Thus every irreducible KG-module faithful for G is isomorphic
nto W for some irreducible KH-module W faithful for H. (Note 

that W= eKH and V = eKG for some idempotent e in KH which is 

faithful and primitive in KG.) There are only finitely many 

non-isomorphic such V, and therefore only finitely many non­

isomorphic irreducible XG-raodules faithful for G. Hence (b) 

implies (c). Trivially (c) implies (d).

The last part of the theorem now follows also. For 

if e is a faithful primitive idempotent in KG, then eKG is 
an irreducible KG-module faithful for G; as we have just 

shown, every such module arises in this way. If e and f are 

idempotents in KG and eKG = fKG, then if 0: eKG - fNG is an 

isomorphism, we have 9(e) = f 0(e) = 0(e)f; applying a-1 we 
obtain e=ef. Similarly f = fe, so e = f.

To prove that (d) implies (a), we shall assume that 

KG contains no faithful primitive idempotent, and exhibit 

2 s non-isomorphic irreducible KG-modules faithful for G.
Let

■£*!(G) = Lq ^ L^  ̂L2  ̂ ...  ̂G 
be a chain of finite subgroups with union G.
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For n=0,1,2,... let T denote the set of alln
n-tuples with each entry either 0 or 1. By induction we 

shall construct for each integer n a finite subgroup of 

G and for each <?£Tn a faithful primitive idempotent e^ in

Firstly, let Hq = L q =D.(G). By Lemma 4.1, HHQ contains 
a faithful primitive idempotent e.

Now suppose inductively that we have constructed Hn 

and (e^ tqpCT^}. By Lemma 4.2 each is faithful for G, so

by hypothesis is not primitive in KG. Hence we may choose a 

finite subgroup Hn+ 1 of G containing H^L^i and such that 
for each 9 £ Tn , e^ decomposes in KHn+  ̂; say

^ + 1  = e(9 »0 )KHn+1 ® e(9 ,1 )KHn+1 ® ••• »
where and ê  ,| j are primitive idempotent3 in KHn+1.
By Lemma 4.2, since e,KHn+1 = e(?K H j H- ‘, e((?f0) and e(<?>1)

are faithful for Hn+  ̂. Thus we have chosen ê , for each

<p'£ Tn+1 • This completes the inductive construction. Note
that

G .

Let <jp= (â  ,a2 »aj,...) be an infinite sequence of 0's 

and 1 's. Write eQ(^) - e and en (<?) = 9(ai . ,a ) ( n = 1 ,2 ,...).

If 1 € m s n then by our construction ê Ccp)en (<p) = en (^) 4s 0. By
Lemma 5.2 with ■£. = {Hq ,Ĥ  there is a maximal ideal

M = M(c?) of KG with 1-en (<f)€M(^) and e ^ c ^ M ^ )  for all n, 
and



(42)

GQ (KG/M(tp)) = CG(en (?)) = 1 .
n=0

Tb.u3 V(<£) = KG/M(c^) is an irreducible KG-module faithful for 
G •

If ^4=^ ■fciien V (qp) and V(y) are not KG-isomorphic.
For if qj and differ first in the n-th place, then

en (̂ ^en^Y^ = 0; hence en (^ = en (Y)(1 ' £ s0 en^
annihilates V(^). But 1-en (^)€ M(y), so en (̂ ) acts as the 
identity on V(î ). This completes the proof of the theorem.

In [i; 2.12~\ (see also ¡J8; 14.4.3(ii)}) S.D. Berman 
proves a result related to part of Theorem 5.3; namely, if G 

is an infinite abelian p-group and K is a field with char K^ p 

and 'of the first kind with respect to p' (a condition equi­

valent to |k(CpCo)OK: k|<£o), then KG contains a primitive 

idempotent if and only if G = C  coxF where F is finite.
Jr

We now extend parts of Theorem 5.3 from locally 

cyclic to abelian almost locally cyclic groups. The result 

which we shall obtain (Theorem 5.5) is also a generalisation 
of [9 ; 2.5l. We shall require:

lemma 5.A Let K be a field, G a periodic abelian group with 

char K$"7t(G), and C a finite subgroup of G. Then the 

canonical projection 9: KG - k [g/c] determines a one-to-one 

map from the 3et of primitive idempctents e in KG with



C(j(0)=G onto the set of faithful primitive idempotents in 

k Cg/c], (Both these set3 might be empty.)

Proof If ci.£ KG we write 0(a ) = a . 
idempotent

j l Z *| CI fee

Let v denote the

so that v = 1. If ot€ cKGO v>KG then

ot = vi € ^cKG = 0

(since if x£ C then v(x-1 ) = ux-u = 0). Thus

ker 0 n vKG = gKG n vKG = 0 .

(In fact it is easily 3een that KG = cKG© uKG.)

Let X be the set of idempotents e in KG with 

C(j(e)^C, and Y the set of all idempotents in k [g/cJ. We 

claim that 0 maps X bijectively onto Y. For suppose e^£X 

(i = 1 »2). Since C< C(,(ei), yei = e i' so if ^ = 0  we have 

e^£ker0 OvKG = 0, a contradiction. Thus ê  £ Y. If ê  = e"p 

then e1-e2£ ker 0 n vKG = 0, so e1 = e2. If *£ Y  (x£KG) put
f = i/x. Then f = Vx = ol (so f 4= 0); moreover

f - f 2 = V (oi - «-2 ) £ ker 0 n vKG = 0
and c0(f) = Cq ( vx) ^ CG(v) ^ C ,
so f £ X.

We next claim that if e£ X then C^(e) = CG (e)/C. For 
if g£ CG (e) then eg=eg=e, so gG £ Cg(5). Conversely, 

suppose gC£C^(i); then eg= e, so eg-e£ ker9 D vKG = 0, whence
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g C C ^ i e ) . It follows that C(,(e) = C if and only if e is 

faithful for G/C.

To complete the proof it is sufficient to show that 

e£X is not primitive in XG if and only if e is not primitive 

in k [g/c ]. Thus suppose

e = e1 + e2 , e1 e2 => 0 , ei = ei ^ 0 •
Since eei = e^ we have C C^ (e) < Cq ( e^), so e^CX. Hence

e = ê  + e2 , ê  e2 = 0 » ®i = ®i ^ 0 .
Conversely, suppose

I = X| + »2 , 0i1°(-2 = 0 * 5? = 4= 0 *
and let = as before. Then

e - f 1 ~ f 2 = v (e - ¡*j - ) £ ker 6 n vXG = 0 ,

and similarly f 1 f2 = v = 0. Hence

e = f1 + f2 , f1f2 = 0 , f \  = f± + 0.

Theorem 5.5 Let K be a field, k its prime field, and G an 

abelian almost locally cyclic group with Min such that 

char k<$7T(G). If |k(G)OK: k| = 00, then KG contains no 

primitive idempotents. Suppose that |k(G)OK: k| < co. If 

C is any finite subgroup of G such that G/C is locally 

cyclic, then KG contains a non-zero finite number of primi­

tive idempotents e with C£,(e) = C, and there is a one-to-one 

onto correspondence between such idempotents and isomorphism 

classes of irreducible KG-modules V with 0^(7)= C.

1
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-ro°^ Suppose that KG contains a primitive idempotent e; 

we show that |k(G) O X : k| < 00. let C = CG (e). By Lemma 5-4, 

the image of e in k [g/c! is a primitive idempotent faithful 

for G/C. Thus G/C is locally cyclic, and by Theorem 5-3 
|k(G/C)OK : k| <  oo.

Since every image of G/C is an image of G, we have 

k(G/C) £ k(G). Now let P = k(JJ 0p(G) ) , where the product is 

taken over those primes p such that 0 (G) is finite. Then
Jr

|P:k|<oo since G satisfies Min. Moreover k(G)= P.k(G/C). 
Por k(G) is determined by the exponents of the primary 

components of G, and since C is finite, if exp 0^(G) = C£> 

then exp 0 (G/C)= oo. Hence by Lemma 4.7,r
|k(G) : k(G/C) | = |P.k(G/C) : k(G/C) | =s |P:k| <  oo .

Now k(G/C) is a union of finite normal separable- 

extensions of k(G/C)OK (see Lemma 4.12); Lemma 3.7(a) 

together with a local argument shows that k(G/C) and K are 

linearly disjoint over k(G/C)OK. In particular, any subset 

of k(G)OK which is linearly independent over k(G/C)OK is a 

subset of k(G) which is linearly independent over k(G/C), so 

|k(G) O K  : k(G/C) OK| < |k(G) : k(Q/C) | <  00.
Me now have

|k(G) n K : k| = |k(G) O K : k(G/C) n K| | k(G/C)nK : k| <  oo .

Now suppose that |k(G)OK; k| < 0 0 ,  and that G is a
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finite subgroup of G such that G/C is locally cyclic. Since 

k(G/C)«k(G) we also have | k(G/C) O K : k| <  CO. In view of 

Lemma 5.4» an application of Theorem 5.3 to k £g/c] yields the 

remaining statements of Theorem 5.5.

To conclude this section, we draw together the 

results we have obtained to give necessary and sufficient 

conditions for the existence of minimal ideals in the group 

ring of a periodic abelian group over a non-modular field.

Theorem 5.6 Let K be a field with prime field k and G a 

periodic abelian group with char k^~(G). Then So (KG) is 
non-zero if and only if

(a) G satisfies Min;

(b) G is almost locally cyclic; and

(c) |k(G)OK : k| <  Co.

Proof Sy Lemma 3.9» So(KG)4=0 if and only if KG contains 

a primitive idempotent. Hence if So(KG)^0 then (a) and (b) 

hold by Lemma 5.1» and (c) hold3 by Theorem 5.5. Conversely, 
if (a), (b) and (c) hold then by Corollary 3.2 G has a finite 

subgroup C with G/C locally cyclic, so KG contains primitive 

idempotents by Theorem 5.5.
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o ♦ •""I =■ i,03T' 9T2.es of Il­

l's now investigate the ascendine Loewy series of the
•roup ring of a periodic abelian >roup over a non—modular
field. linee this series is of little interest 
are aero, we are led in the light of Theorem 5.6 
3.2 to introduce the following hypothesis, which

if its terms'

and Corollary 
will be

assumed throughout this section.

■•.ypothesi3 6.1 K is a field with prime field k, and G is a 
periodic abelian group with char r(C-) and having a 
decomposition

G = F x ?1 x ... x Pa (Oim<oo) , 

where F is finite and the are Prufer p.—groups for 
distinct primes p.. Finally, |k(G) n K : k|< co, so that 
Jo (KG) 4=0.

/e shall describe the ascending loewy series of KG 
in terns of the augmentation ideals of the P.;. 7e commence 
with the socle itself.

.he or -',,2 Go (KG) = 2 1GO...KnnG .

Proof !e remark that when m = 0 (30 that G is finite and 
KG r,_ completely r lucible) the empty intersection is to be 
interpreted as KG itself. Thus we shall assume that m ■* 1.
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Jy lemma 3.2, y. is essential in ¿or each i, so 

is essential in KG by Leona 2.3(c). Inus 3o(KG) * /ig^G 
by Leona 2.1.

Conversely, suppose that 0 ̂  oi £ /J2  ̂G. Let H =
<  supp oc >, and writ e

oc = otQ1 + ... + oter ,

where the ê  are orthogonal primitive idempotents in I'll, and 

oce^O for each j. Since ê .KH is irreducible, oce.KH= ê -TCi, 

so there exists 8. £ KH such that e.=ote.A.; thus e.£(lo.G. 
Hence it is sufficient to show that if H is a finite subgroup 

of G, e is a primitive idenpotent in KH, and esf^p.G, then 

e£3o(KG), i.e. if e^ 3o(KG) then ê I

Choose a chain

H = Hq « H1 « ... G

of finite subgroups with union G. If f is a primitive 

idempotent in KH for some n>0, consider the set of all 
sequences (f ,f . ,...) such thatn n . i

(i) f . is a primitive idenpotent in ICî. for all j 2 n;
(ii) fn = f ;

(iii) V'j+i for all j } n.
If r? 0 we shall say that f is r-stationarv if for all such
sequences (f , f . ,...) and all j>0 we have f = fn n+1 n+r n+r+j
ilote tliat if

f = f• + . . . +  f^
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v/here the f!̂  are orthogonal primitive idempotents in lHn+  ̂» 

then f i3 r—stationary (for r ̂  1 ) if and only if each f.! is 

(r-1)-stationary. Moreover f is 0-3tationary if and only if 

it is primitive in KG. Hence if f is r-stationary and we 

write f as a sum of orthogonal primitive idempotents in 

KHjj+j.» then each such idempotent will be O-stationary; thus 
by Lemma 3-9(c) we have f£3o(KG).

iTow let e be a primitive idempotent in III with 

e^doil’G). Then e = e^ is not r-stationary for any r. Hence 

among the finitely many orthogonal primitive idem^otents in

131 whose sun 13 eQ , there oust exist one, say s., , which is
not r-statione.ry for any r. 31:milarly we may cho036 a
primitive id er;¡pot ent 13 2 which satisfies - e9 and
is not r-stationary for any r, and so on. In this way we 

obtain a sequence e., = e, e, , e0,... such that e^ is a primitive 

idempotent in aH*, and a., ei+1 = e^.1.

Consider the chain of subgroups C^(eQ) « C(.(e1) i ...,
CO

and suppose that C=l/C„(e.) is finite; then 0 = C„ (a ) fori=0 l-T 1 ^ n
some n. lor i}r_, i3 an irreducible module faithful

for H.,/C, so H ./C is cyclic; hence G/C is locally cyclic.
Thus by Coro liar',' 

Thus T:a may chocs 

(Corollary 4.3).

4.14 G/C contains a. ’'-inductive subgroup.

e a >, n so that H /C is K-inductive in G/C

But e, is a primitive idempotent in rZ; s * * 's
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T'ith = C, go e_ is ori

a contradiction. It follows 
Lsrana 5.2 (with £  = {Hq .H.,. 

of KG such that e= 8.,¿1-1 and 

Cq (KG/II) contains P. for som 

e4 0 g ;jG> as required.

nitive in KG, i.e. O-stationary 

that C is infinite, whence hy 

.. ! ) there is a maximal ideal I«I 

Cr(KG/;i)=C is infinite. Then 
e i, whence ohi < K. Thus

As an example we may take G to be a Priif er yrouo C ,» andP
K a subfield of the complex numbers with | Q(C oo)nK : Q  j <  oo; 

then 3o(KG) = g, a result obtained by Muller in [l 4].

Corollary 5.5 7or 0 < i « m ,

SOi(KG) = J T  g.G ,

where the intersection is taken over all subsets I of 
11 *..-,m} with i elements.

Proof le proceed by induction on i: the- case 1=1 is the 
theorem we have just proved.

The canonical maps KG
KG—map

induce a

mKG — »■ © KG/g.G

with kernel C\p = 3o(KG). Henc e we have a

^ : KG/To (KG) — > ©  KG/o .G
j = 1 -■1

KG-nonomorphi srr.

luppose 1 <  i < m Then
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3oi( .Tr) /  Go(KG) = 3ot_ 1 (I:g/ 3 o (ICG-))

Y  1 (g, 3oi_1 (::a/2 .a:) •
hence

n
•3o. (KG) = ^  i*-£ KG : ct+o.G£ 3o. . (KG/p .G) j .3 = 1 =3 i"1 -.1

3y induction on i, since G/? . = FxP. x... xP . . x?. .x...xP ,3 1 j-1 3+1 m
3°i_i (EG/u G) = (g/G+g.G) / n.G|l.|=i-1 ££I ' ' “j ' '

J J
where the intersection is taken over a3.1 subsets I.. ofJ
{1,...,m}- {j} with i-1 elements. Hence we have

50.(KG) = A O  2 1  (oyG + n.G) ,
3 = 1  l i j l - i - i  Zei.

an expression easily seen to be equal to the one desired.

CoroG-lrr" P. The ascending L o e .r j series of KG reaches 

after exactly n+1 steps, i.e. Go (KG)= KG = 3o„,. (KG).IH m-r I

Proof By the previous corollary with i = m, we have

3o (KG) = Z I  2,G .
3 = 1 _;]

m < P 19 • • • 9 J 30 that by
m

T (x-1)KG
I7'

= n3=1 y C O 3 3=1
KG. Moreover,

.

KG/3oa (KG) = KG/gG = -LG/A] .
3y Kascake’s theorem, since G/A3J? is finite, k [g/a] is 

completely reducible as k JjG/a]-module, and therefore also
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ZG-aodul o. H one s

So(KG/So (KG)) = KG/3o (EG) ,
la m

i » € .  (-*-0) =  At.

l a  re marie that the ascending Loevry series of EG 

enables ns to classify irreducible EG—modules as follows.

For a given irreducible EG—module M there is a unique integer 

\£ {0,...,m} such, that M is a composition factor of 

3o^+1(EG)/3o^(EG) . Further, X is equal to the number of 
Prufer factors P. which are contained in C„(M). '.‘/eI IU VJ

also remark that every indecomposable EG-module is irreducible. 

The proofs of these results will, be given in a more general

setting in Section 15.
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301:3 BACKC-ROUIiD R33UL 0

7. On grô -ios

In th±3 chapter we record a number of results which 

will be needed in our study of the socle in group rings of 

locally finite groups (Chapter IV) and non-locally-finite 

groups (Chapter V). In Section 3 we present the material 

required on rings and algebras, and in Section 9 we con­
sider group rings specifically, while this section deals 

with the necessary group theory, mentioning PC—groups,
VCernikov groups, and linear groups. Por the most part we 

are content to state results only, referring the reader to 
the literature for proofs.

An PC-group is a group in which each element has 

only a finite number of conjugates. ',ie define the PC-centre 
of a group G- as

A(G-) = (x£ G : |G:Cg (x ) \ < ° o ] .
The following result is well known:

Lemma 7.1 If G- is any group, A(G) is a characteristic 

subgroup of G. The torsion' elements of Ad01 form a locally 

finite subgroup with torsion-free abelian quotient.

Proof "See [13; 4.1.6] or 03; 19.3].

' _________ * _____________________________________
\
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A Cernikov group is an almost abelian group satis­

fying Min. 3y Theorem 3.1 we see that Cernikov groups may 

be characterized as finite extensions of direct products of 

finitely many Prüfer groups. In determining those locally 

finite groups whose group rings may have non-zero socle 

(Section 12) we shall require the following deep result of
VSunkov:

Theorem 7.2 If G is a locally finite group every abelian 

subgroup of which satisfies Min, then G is a Cernikov group.

Proof See [l3; 5.8].

When considering group rings over fields of positive 

characteristic, the full force of Sunkov's theorem will not 

be needed: the following far more elementary special case 
will suffice.

Lemma 7.3 If G is a nilpotent group every abelian subgroup 
of which satisfies Min, then G is a Cemikov group.

Proof See [13; 1.G.4 (or even 1.G.3)].

If S is a division ring, a linear group over 3 is a 
group of linear transformations of a finite-dimensional 
vector space over E.

Theorem 7.4 Let G be a finitely generated linear group over 
a field K. Then
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(a) if char K = 0  then for any prime q, G is almost 
residually finite-q';

(b) if char K = p > 0  then G is almost residually finite-p.

Proof This follows immediately from [_24; 4.72»

Theorem 7.5 (Schur) A periodic group which is linear 
over a field is locally finite.

Proof See [2 4 ; 4.9].
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8. On rir_''-3 : ,n ■ algebras

In this section we discuss quasi-Probenius rings, 

separable algebras» a theorem of Kaplanslcy, locally 

■/adderburn algebras» and strongly crime rings.

If X is a subset of a ring A, we denote by <t, (X) and 

r,(X) respectively the left and right annihilators of X in 

A. When confusion is unlikely the subscript . -will be 
omitted.

Proposition 3.1 If A is a right and left artinian ring, 

the following are equivalent:

(a) A. is injective;

(b) A is inj ective;.tv

(c) for every right ideal R and left ideal L of A we have

r(*(R)) = R , £(r(L)) = L .

Proof See [22 ; XI7.3.1 , XIV. 3 .3].

.■An artinian ring A satisfying (a)-(c) is called 

quasi-frobenius. ITote that from (c) it follows that taking 

annihilutors induces an inclusion-reversing bijection 

between the lattices of right and left ideals of A.

Proposition 1.- 3very irreducible right module for a quasi- 

Frobeniua ring is isomorphic to a minimal right ideal.

3ee [22; XIV.3.2, XI.5.1] .Proof
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Proposition . ¿;he following properties of .>. right nodule 

I- over a quasi-frobenius ring .. are equivalent:
(a) Ii is injective;

(b) II is projective;

(c) for a family { }  of primitive idenpotents 
in A.

Proof 3ee [22; XIV.3.6].

'..re next consider separable algebras. An algebra A 
over a field K is called separable if A® P is semisimple 

for every field extension 7 of K. (:fe remark that if A is 

an algebraic field extension of II, this definition agrees 

with that given in Section 2: see [4; 71.93.) Hots that a 

separable algebra is in particular semisinple: take f  — K.  

Recall that a field is perfect if every finite extension is 

separable; in particular, prime fields and fields of charac­
teristic cero are perfect.

Proposition S, 1- livery 3 eni simple algebra over a p erf act 
field is separable.

Proof lee [l3; 7.3.9] or [l; $}7, Ho. 53•

Pro no-lit lor. ?." A finite-dimensional X-algebra A is separable 
if and only if there exists an extension ? of K such that 

A®--? is isomorphic to a direct sun of full matrix algebras
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Proof See [4; 71.2].

The importance for our purposes of separable algebras 

derives from the following corollary to a theorem of Bourbaki:

Theorem 9.6 The tensor product of two separable algebras is 
again separable.

Proof See [l8; 7.3. id] or [4 ; 71.1 6] .

Recall that an algebra A over a field K is said to 
satisfy a polynomial identity if there is a non-zero poly­

nomial f(X^»...,Xm ) in non-commuting indeterminates 

over K such that f (0̂  ,... ,lm ) = 0 for all at ,...,&€ a .

Lemma 8.7 The ring Mn (K) of nxn-matrices over a field K 
satisfies a polynomial identity.

Proof See (jl8; 5.1.6^. (In fact, K could be any commut­
ative ring.)

The next theorem, which characterizes primitive 

polynomial-identity algebras, is due to Kaplansky.

Theorem 8.3 Suppose an algebra A over a field K satisfies a 

polynomial identity and has a faithful irreducible module V. 

Let E be the division algebra End.(V). Then t = dim-Vis 

finite, and A is isomorphic to the ring M^(S) of txt-matrices 
over E.

w
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Proof See [18; 5.3.4] or [l5; 6.4].

Kaplan3ky's theorem has the following corollary, 
which is probably well known.

Corollary 3.9 Let A. be a locally Redderburn algebra (with 

unit element) satisfying a polynomial identity, and let MA 

be a module with a finite composition series. Then M is 
completely reducible.

Proof Since the property of being a locally Wedderburn 

algebra (like that of being semisimple artinian) is inherited 

by epimorphic images, we may assume that M, is faithful. Let 

0 = Mq <  M1 <  ... <  Mr = M 
be a composition series, and set

T± = AnnA(Mi/M±_1) (i=1,...,r)
and T=r\li. Then MTr = 0 so Tr =0, whence T = 0  by Lemma 

3.9(a). Each A/T^ is primitive and satisfies a polynomial 

identity so is artinian by Theorem 8.8. Hence A, which i3 

isomorphic to an A-submodule of © A / T a, is 3 emisimple 

artinian. Thus MA is completely reducible.

We define the endomorphism dimension of an irreduc­

ible module to be the dimension of the module over it3 

endomorphism ring (which is a division ring by Schur's

lemma).
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Lemma 8.10 (Parkas and Snider) Let A be a locally Wedder- 

burn algebra and V an irreducible right A-module of finite 

endomorphism dimension. Then V is an injective A—module.

Proof [5; Lemma 3] Assume that V is not injective, so 

that by Baer ' 3 criterion [22; 1.6.5] there is a right ideal 

I of A and an A-map : I — V which cannot be lifted to A.

Let S be the set of finite-dimensional semisimple 
subalgebras of A. Let d  , and put

D(3) = {v £ V : <̂ >(a) = va for all a € IO B } .

Then D(B)4=0 since (like every B-module) is injective.
If w£ D(3) and

iy(IOB) = (v£ V : va= 0 for all a£ m  Bj
(a B-submodule of V), then easily

D(3) = w + y i n B )  .

Since A is locally Wedderbum, every element of I lies in 
some member of , so our assumption is that 

nfD(3) : B£ &  | = 0 .

Let B=3nd^(V). Since dim^ V is finite, we may 

choose Bq £<^ such that d = dim3 ¿v (inB0) is minimal. By 

the empty intersection there exists Bj £ with

D(30) D(31 ) .

Now Bq and B1 are finite-dimensional and A is locally 

'.Vedderbum, so there exists B2£ ̂  with Bq U B j? B2. Then



0 + D(32) C  D(3q) O D(B1) % D(30) .
Thus if w£ D(B,) we have

w + = D(32)
% D(Bq ) = w + iv (IOB0 ) , 

contradicting the minimality of d.

The following technical result of Hartley (jO; 
Theorem Cl} will be used in Section 15»

Theorem 8.11 Let A be a locally Wedderburn algebra of 
countable dimension, and V an irreducible A-module. Then 

exactly one of the following alternatives holds:

(i) V has finite endomorphism dimension and is injective; 

(ii) V ha3 infinite endomorphism dimension and may be 

embedded in an indecomposable A-module of composition length 
two.

Proof The first alternative comes from Lemma 8.10. Por 

the construction of the indecomposable A-module of the 
second alternative, see £lOJ.

Recall that a ring R i3 prime if whenever ot,?£R 
and aRJ = 0 either a. or ^ i 3  zero, or equivalently, if 

r(*R) =0 for all non-zero <*€R. Handalman and Lawrence [7] 

call R (right) 3trongly prime if for each non-zero a. £ R 

there i3 a finite subset X of R with r(d.X) =0. The next 

1 esult i3 [7; IV, Corollary 2] ;  we give a different proof.

(61)

i •-
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Lemma 8.12 If R is strongly prime then So(R) is either 0 
or R.

Proof Suppose that So(R) 4=0, and let *R be a minimal right 

ideal. Let X be a finite subset of R with r(«.X) =0. Then 
the obvious map

is one-to-one. Since ol̂ R ̂  «.R, ot^R is either zero or a.R, and 

it follows that Rr is completely reducible, i.e. So(R)=R.

Ri■R
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9. On group rings

.■e commence this section of background material on 

group rings with a series of miscellaneous elementary and 
well kno wn 1emmas.

lemma 9.1 let K be a field, H a subgroup of a group C-, and 
SH. Then

(a) r>;c(c l) = ri;ii(oc)KG ;

(b) <x i3 regular (i.e. not a nero-divisor) in KG- if and 
only if it is regular in KH.

P r o o f  (a) C e r t a i n l y  v.-3(ot)lCG- * r-r„ (at). C o n v e r s e l y ,  
suppose ^ £ r.,p (<x). Let T be a  r i g h t  t r a n s v e r s a l  t o  H  i n  C-, 
a n d  w rit e

Then 0 = <xS = :< (ot-ft £ KH) ,
:i£T ‘w

so a-̂ ;, = 0 for each x, whence p £ r^CoO and ^£ r— ,(ol)£G.

(b) Part (b) follov/s at once from (a.) and its left-hand 
analogue.

,enma 9.2 (..'allace [23; 2. V ] ) Let K  b e  a  f i e l d  a n d  G  a
group with a family {
(a) l^\ = 1 ; andX£A
(b) if X,u £ A then th'

’hen O  hj.G = 0.X-;/\ =
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T00.--. hippo 3 e O^.xC /°\hx j *;e may assume 1 £ supp ac (by
rep lac in x by oC;: ' where x£ supp &). lince supp X is
finite, ’ey (a) and (b) there exists o £ A  with H O suoo «. =o
{1 } . Now «.£ G, 30 if <x = A g  (A € X) then in k [g/H ] weg£G °
have

whence

0 =

\  = 0,

X - n v +  XgH JsH° nT i
a contradiction.

V cor o

Lemma 9.3 Let L be an extension of a field K, G a group, 
and 7 a KG-module of finite X-dintension. Then

SndL& (V ®T L) h 3ndra (V) ®u L .

Proof Gee jy'r; 29. c3*

The next result is certainly well known: see for 

example \ _ p 2,53» '-'ksre it is stated without proof.

Lertma °. i Let X be a field, H a subgroup of a group G, and 
7 an injective right Id-nodule. Then

(a) I: = HonTrtj(IiG,7) is an injective right XC—  module;

(b) if |G:H|<00, V  is isomorphic to K, 30 is also 
inj ective.

Proof (The action of KG on !■•! is as usual given by 

(/•*$)(*■) = (f*£!'!i ^»icKG) .)

(a) By Baer's criterion for injectivity [22;  I . S . 5J , it 

is sufficient to show that any XG-map : I — I: from a right
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ideal of /'} is the restriction of a map M'. — !.. define

■r -» V» oc ■— (̂i («.) ( 1 ). Since V  is injective, therea -i—’in o <r : !.. 

is a Ifi-man ? making

0 » I„H

’ i  >
V

define a KG--map <p :
KG we have
(oc) (£) = (tt-0 (̂ )

= ?(^)

= cr(*o,)
= <̂> (oc3 ) ( 1 )

(s?(*)^)(i )
= C*(*)(£) ,

S '" Z S’

oc&S!

so that ĉ> | T = Cj> as required.

(b) Let 2 be a right transversal to d in G, so that

T T - ©  V® s

and uG = ©  x"1IIH

A routine verification shows that

M» IC:—  x w. ¿.v et.x£ Z x£f x

(v„£!/i a*.£EK)
and

2  <p(x" 1 )® :ĉ> 1— ?■
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(where the last sum is meaningful since ¡fj 

mutually inverse KG— mans.
oo) are

ve remark that the proof of part (a) actually gives a 

more general result: if 3 is a subring of a ring 3 (with the 

same 1) and V is an injective right R-module, then 3om0(3r,,V) 
is an injective right 3-module.

Corollas 9.5 If K is a field and G a finite group, then KG 
is a auasi-7robenius ring.

Proof KG is finite-dimensional so artinian. faking H = 1 

in Lemma 9.4(h) we see that KC-S K1 |a i3 right self-injective.

Recall that if G is a finite group, a field L is s. 

split tang Held for G if 2nd-,, (v)=L for every irreducible” —far
LG-raodule V.

theorem 9.6 Let G he a finite group and K any field. Then 

K has a finite separable extension L which is a splitting 
field for G.

Proof This result is proved in [-4; 69.11] \mder the 

additional hypothesis that K is perfect. If K has charac­
teristic aero this hypothesis is of course satisfied.

Juppose K has characteristic p>0. 3 y the result cited 
(applied to the perfect field it ) there is a finite field ? 

of characteristic p which is a splitting field for G. Let T.
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be a composite of K and P (i.e. a quotient of 7 by a
£i

maximal ideal). ihen L is a finite separable extension of 

L» 3ince it is generated over I! (like 7 over it̂ ) by roots of 

unity. Moreover L, which contains a cop;/ of 7, is a splitting 
field for G-.

The next three results concern the Jacobson radicals 
of group rings.

Lemma 9.7 Let K be a field, and H a normal ŝ b̂grou■r> of 
finite index n in a group G. Then

(J(KG))n € J (SH)KC- « J(XC-) .

Proof Gee [l3;7.2.7] or [1 5 ; 16.5~].

Theorem 9.8 Let X be a field and G a soluble group with 
char X $ 7t (G). Then J (KG) = 0.

Proof Gee [ l 3 ;  7.4.6] or [15; 13.9]. ( ’e shall only
require the simpler case of an abelian group.)

If G is a locally finite group and p a prime, we 

denote by 0^(0) the unique largest normal p-subgroup of G.

Lemma. 9 .') Let G be a locally finite group, IC a field of 

characteristic p>0, and 7 an irreducible KG— nodule. Then

°p(ft) « CG (V) .

Proof Let p = 0 (G). ,'e must show that V.nO s= 0 for every

r ~ 4 . 7 i r . - j  q*4pf.'.
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irreducible V, i.e. that gG « J(KG). Hence it is sufficient

to show that gG is a nil ideal. Let 
n

* = Ai(Xl-1 )g. £ gG (X±€ K ,  x± £P, Si£G) ,

and put H = < x ±, g± : i= 1 ____,n> . Since x±£ PO Hi 0p (H),

we may assume that G = H is finite. As PiJG w& have 

(gG)n = gnG, so it is enough to prove that if G is a finite 

p-group then g i3 nilpotent.

We proceed by induction on |g | (following [13; 3.1.6]). 
If |G|=p and G = < x >  then

gP = ((x-1)XG)p by Lemma 1.1

= (x-1)*XG as KG is commutative

= (xp-1 )KG since char K = p
= 0.

If |G| = pm (m>1) let H be a central subgroup of G of order 

p. The image of g under KG — k [G/h ] lies in the augmentation 

ideal of KLG/H], which i3 nilpotent by induction. Hence for 

some t we have g^^hG. But by the above and as H i3 central 

in G, (hG)p = hpG = 0. Hence =0 as required.

The next lemma is an early example of a class of 

group ring results known as ’intersection theorems'.

Lemma 9.10 Let G be a group with a normal abelian subgroup 
A, and put

H = |x£G: | A?Ca(x ) (< oo}.
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(a normal subgroup of G containing A). If K is a field and 

I a non-zero ideal of KG, then IOKH^O.

Proof See [ l 8 ;  7.4.9] o r  ¡15; 21 . l]  .

V/e s h a l l  r e q u i r e  two r e s u l t s  r e l a t i n g  g ro u p  r i n g 3  

and  p o ly n o m ia l  i d e n t i t i e s .

Lemma 9.11 Let K be a field and G an almost abelian group. 
Then KG satisfies a polynomial identity.

Proof See [ Î8 ;  5 . 1 .1 1 ]  o r ] i 5 ;  5.l]. The crux of the proof 
i3 that if A i3 an abelian normal subgroup of G of finite 

index n, then KG may be embedded in the nxn-matrix ring over 

the commutative ring KA: cf. Lemma 8.7.

A (right) annihilator ideal of a ring i3 a two-3 id ad 

ideal which is the right annihilator of some subset of the 
ring.

Theorem 9.12 (Passman) Let K be a field and G a group.
Then the following are equivalent:

(a) KG has an annihilator ideal A 4= KG such that KG/A 
satisfies a polynomial identity;

(b) |G : A(G) I < 00 and |&(G) '  | <  00.

Proof Gee (j8; 5.2.1 fj or [l7; Theorem Î] .

Next we consider injectivity and endomorphism
dimension of irreducible KG-modules.



(70)

Lemma 9.13 (Parkas and Snider) Let K be a field and G a 

group. The trivial KG-module K is injective if and only if 

G is locally finite and char K^n'(G).

Proof See [l8; 3.2.12] or [3 ; Theorem 1] .

Lemma 9.14 Let K be a field and G an almost abelian group. 

Then every irreducible KG-module has finite endomorphism 
dimension.

Proof Use Lemma 9.11 and Theorem 8.8.

Lemma 9.14 has a partial converse:

Theorem 9.15 (Hartley) Let X be a field and G a locally 

finite group with char K^<f(G). Then every irreducible 

KG-module has finite endomorphism dimension if and only if 
G is almost abelian.

Proof See (jl8; 12.4.163 or [j0; Theorem b ] .

This section's penultimate result i3 due to Handelman 

and Lawrence |7> Proposition 111.33.

Lemma 9.16 Let K be a field and G = A*3 the free product of 
non-trivial groups A and B. Then KG is strongly prime.

Proof Let 1 + a£ A, 1 ± b£ B, and put X = {aa,ab,ba,bbj s G.
We shall show that r(^X)=0 whenever O^gSKG. (Thus KG is 

actually 'uniformly' strongly prime.)



V/e say that a non-trivial element g of G has type AA 

and length A(g)= 2n + 1 if g may be written in the form 
(necessarily unique)

g = a^b^a2b2•. • an^nan+i O r  a-̂ S A, 1 ̂  b^ £3) .
We define elements of types A3, 3A and B3, and their lengths, 

similarly. Any non-trivial element of G falls into exactly 
one of the four types. We define X(1 )= 0.

Suppose 0 =̂ ,̂<j£XG butjX7=0. Choose elements v of 

supp g and w of supp 5 of maximal length; clearly v,w=}= 1. 
Suppose v is of type ?A (i.e. AA or BA) and w is of type A? 

(there are three other cases, which may be handled similarly). 
Now jjbb£ £ 2jXS=0, so vbbwif 3upp ^bbS; hence there must exist 

v.| £ supp £ and ŵ  £ supp ̂5 with v^ 4=v, ^ w > but v^bbw^ =
vbbw. Then

X(v) + 2 + X(w) = X(vbbw)
= A(v^ bbw^)
 ̂ A(vi) + 2 + X.(w1 )

* A(v) + 2 + X(w) ,

whence X(v1) =» X(v) and A(w1) = ,\(w). Since v^bbw^ =vbbw, it 

follows from the uniqueness of the reduced form expression 
that v 1 = v and w1 = w, a contradiction.

In fact, as Handelman and Lawrence show, the coeffic­

ient ring X need not be a field: it suffices for X to be

(71 )
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strongly prime. The modification required in the proof 
is elementary.

Lemma 9.17 Let G be a group, K a field with |k |>|g | , and V 

an irreducible right XG-module. Then S=SndK;G(V) is algeb­
raic over X.

gr°of (see ][l 8; 7.1.2, 9.1.6]) If 0=)=v£V, then 3 - V, 

e v* ev i3 a X-monomorphisra; moreover, V is an image of XG-,-,.a.Ct
Hence

dim^B « dim^rV « dim^XG = |g | <  |x|
Thu3 if e£ 3—X, the elements |(e-a)-1 : a£X} of 3 are lin-
early dependent over K: say 

n
21 b ■ (e-a. )_1 = 0 (a. ,b. £ X) ,i=1 x 1

where the a^ are distinct. Since the e— and their inverses

commute, we find by multiplying by the common denominator
that e satisfies the polynomial

n
f(X) = H  b. JT (X-a.) ,

i=1 1 j+i J
which is non—zero 3ince f (â  ) 4= 0. Hence e is algebraic over 
X.



Chapter IV

LOCALLY FINITE GROUPS

10. Preamble

In this chapter we examine consequences of supposing 

that KG contains a minimal one-sided ideal N in the case 

where G is a locally finite group and K is an arbitrary 
field.

We commence in Section 11 by investigating properties 
of the endomorphism ring of N» using a local technique.

Then in Section 12 we consider consequences of the 

existence of N for the structure of G. We find that C- must 

be a Cernikov group (Theorem 12.1), and then use the results 

of Chapter II to deduce necessary and sufficient conditions 

for the existence of a minimal one-sided ideal (Theorem 12.2) 

namely, that G should have a normal abelian subgroup A of 

finite index such that K is non-modular for A and A satisfies 
conditions 31, S2 and S3 of Section 3.

In Section 13 we investigate consequences of the 
existence of N for the structure of KG itself. We 3how in 

Lemma 13.3 that the ascending Loewy series of KG reaches KG 
after finitely many steps; it follows that every non-zero 

KG-module has non-zero socle (i.e. KG is '3emiartinian1).
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The principal result of the section is that KG has a finite 

series of ideals each factor in which is a direct sum of 

quasi-Frobenius rings (Theorem 13*4). We also show that the 
socle of KG is a direct sum of minimal two-sided ideals 
(Theorem 13.5).

Most of Section 14 is devoted to the determination 

of the 'controller’ of the socle of KG, that is, the smallest 

normal subgroup C of G for which there is an ideal in KC 

which generates the socle of KG. Of course, if the socle is 
zero, thi3 subgroup is trivial; otherwise it is a certain 

easily described subgroup of G depending only on the charac­

teristic of K (Theorem 14.8). We use this result to obtain, 

in Theorem 14.9, an expression for the socle of KG. This 

expression is quite explicit except that it involves the 

socle of a finite-group algebra, and is therefore the best 

obtainable until the problem of characterizing such socles 
is solved.

In Section 15 we use the knowledge of the structure 
of KG gleaned in Section 13 to classify indecomposable KG- 
modules, in a manner analogous to the partitioning of 

indécomposables for a finite—group algebra into blocks; we 
also describe the injective and projective indecomposable 

KG-modules. Finally, we determine (for countable but not
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necessarily locally finite G) the conditions under which all 

indecomposable KG-modules are irreducible.

It is convenient at this point to remark on the 

relationship between the left and right socles of KG. Since 

for any group G and field K, g t-» g-  ̂ induces an anti- 

automorphism of KG, the left socle of KG is zero if and 

only if the right socle is also zero. When G is locally 

finite, we have the following stronger result (stated, but 
not completely proved, in ¡J4; $2]).

Proposition 10.1 Let K be a field, G a locally finite 

group, and a € KG. Then aKG is a minimal right ideal if and 

only if KG* i3 a minimal left ideal. In particular,

3o (k gKG) = 3o (KGkg) .

Proof Suppose wKG is a minimal right ideal, and let H be 

any finite subgroup of G containing supp oi. Then <*KH is a 

minimal right ideal of KH (since *KG = «.KH| G ). Moreover,

KGot is the union of KHoc over all such H, 30 it is enough to 

show that KH* i3 minimal. Now ô KH = KH/r(ct) , so r(x.) = r(KH*) 

is a maximal right ideal. Since KH is quasi-Probenius 

(Corollary 9-5), its left and right submodule lattices are 
anti-i3omorphic (see Proposition 8.1), and it follows that 

HR*= ¿r(KHx) is a minimal left ideal. This completes the
proof.



r.fU*

Note that the last part of this proof may be extended 

to show that if H is finite then 3oji(1qIKH) = 3on (KHjQj) for all 

values of n. For if «.KH has a series of length n with com­

pletely reducible factors, then so does KHoi. However, the 

preceding local argument has no obvious analogue when n>1, 

and it is an open question whether for G locally finite 

S°n (gGKG)= 3on (KGKG^ for a11 n*

V
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11. Endomorphism rings

Let G be a locally finite group, K a field, and *-KG 

(for some u£KG) a minimal right ideal of KG. In this 

section we examine the division ring E^ = End^G(otKG).

Let H=<suppoC>, a finite subgroup of G. Then 

£  = | ? ^ H : P  is a finite subgroup of G|

is a directed set of subgroups of G, i.e. any two members of 

£ are both contained in some common third member. Moreover, 

U £  = g . If L£ £  U {G } then i*KL is a minimal right ideal of 

KL, so EL = End^ixKL) is a division algebra over K by Schur's 

lemma. If 7,L£ £ u (G} and F < L, then «-KL = ̂ K F®^ KL. Hence 

there is a K-algebra map ET - 2^, cp v-» where for (^CKF,

Si€KL,
^ L =^>i3k7KL : oi.KF®K7 KL — *■ otKF <&gp KL

Since ĉL jAK_,= ̂ , the map cf i3 one-to-one. Furthermore,

if also MS £  U {Gl and F * L< M, the diagram

EF h

n * I

commutes, since if a £ S-q, then

(r z p KL)®KLKM = ^®2p (KLSg-j-KM)

= Q?®k? km •
Sp (7£ £ ) and the Ep - E^ form a directed systemThus the
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of K-algebras and K-algebra maps.

Lemma 11.1 Ê, = lim jÊ , : ?£ £, | is the direct limit of this

system.

Proof It remains to be shown that given a K-algebra A and 

K-algebra maps : -* A (PC ¿L ) such that all diagrams

commute, there is a unique map 0 : E^ — A making all diagrams

A

commute. Thus let G?£ E^. Then c^(ot)CaKG, so since G is

of 3q mapping to ĉ (d), so they agree on xXG. Now define 

©(ĉ ) = 0p(^|x^p). This is independent of the choice of F by 
the commutativity of the first diagram above; for the same 

reason, Q is a X-algebra map. If PC£, and £ Ep, then

so the second diagram above commutes. To show that d is 

unique, suppose that X, : 3^ - A i3 another K-algebra map 

making

E.‘P

A

%
(PC i . )

locally finite we may choose F£ jt with qj(<t) £ olKF. Then 

(̂>|xp-p£ Bp, and we have (<? ¡¿gp)0 = ̂ > since both are elements

e<f0> - ep(y°|iKP) - •

A
(p c  L )
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commute. If ĉ £ Eg then choosing F as above

- »<<?> >
so C=S as required.

We remark that thi3 result may be generalized: if H 

is any finite subgroup of G, «£. is as above, and V is a 

finitely generated KH-module, then

EndKG(VG ) = lim (2ndiQ,(VP) : F€ £  } .

Lemma 11.1 enables urn to reduce certain questions 

concerning Eg to the corresponding questions about Ep, an 

improvement since F is finite. This is illustrated in the 

following:

Theorem 11.2 Let K be a field, G a locally finite group, 

¿KG a minimal right ideal of KG, and Eg the division ring 

EndKG(*KG). Then
(a) Eg is locally a finite-dimensional separable 

K-algebra;
(b) if char K= p > 0 ,  EG is a field;

(c) 1KG is finite-dimensional over Eg.

Proof (a) By Lemma 11.1, any finite subset of Eg lies in 

the image of the map 3p — Eg for some F£ £. Since the map 

is one-to-one, this image is a subalgebra of Eg isomorphic 

to E^, so it i3 sufficient to prove that 3p is a finite­

dimensional separable K-algebra. Wit
r ■

<
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Since Bp is isomorphic to a subalgebra of KF/J(KF) 

and F is finite, Bp is finite-dimensional over K. 3y Theorem 

9.6 there exists a finite separable extension L of K which i3 

a splitting field for P. Then by Lemma 9.3» 3p<S>gL = 

2ndLp(a.LF) • But atXP i3 irreducible so oil? is completely 
reducible by Lemma 2.8(b). Since every irreducible LF- 

module has endomorphism ring L, we see that End^p(aiLP) is 

isomorphic to a direct sum of full matrix rings over 1.

Hence Ep is a separable K-algebra by Proposition 8.5.

(b) (This part, which is well known in the finite case,

is a modification of [5; Lemmas 8 and 9].)

Since Eç is a division ring, we need only show that 

it is commutative. 3y Lemma 11.1 any two elements of B^ lie 

in a subalgebra isomorphic to Bp for some F£ , so we may 

assume that G =» P is finite.

Let fF be the prime field of K. Since J(F G) is p P
nilpotent, we have J(F G) .K  ̂J (KG). On the other hand, by

Jr

proposition 8.1 FjG/J(lTpG) is a separable 11p-algebra, 30

KG/J(f G).K S (F G/J(F O))8. K P P P "p
is semisimple, and J(KG) < J(F G).K. By V/edderbum'3 theorem■C'
on finite division algebras, SLg/J( ¡KG) is a direct sum of& Jr

matrix ring3 over fields. If L is one of these fields then 

by Proposition 8.4 again L is a separable tt" -algebra, so



LS_K is semisimple and therefore a direct sum of fields.
FP

Hence

KG/J(XG) = KG/J(IF_G).K = (IF,G/J(F G) )8_ XP ' P ”p
is also a direct sum of matrix rings over fields. Thus 

SG = 3ndKG^j^KG^(XEG) is a field.

(c) (cf. [11]) If ?e£ then by Wedderburn's (other) theorem 

the dimension of *KF over 3-, is equal to the multiplicity of 

xKF as a right-module direct summand of KF/J(XF). Hence 
dim^ cxKF *5 dimg(XF/j(KF)) / dim̂ -ocXF 

* |f | / (|F:H!dims <xKH)

< |H| •

V/e now show that also dim-, =<.XG « |H| =n say, i.e. that any
"“G

£ «.KG are linearly dependent over Eg. For there

exists ? € . £  with ^  ,... »8n+1 £ xXF, and then there exist
n+1

91 ,... ,<̂ n+1 £ Ep (not all zero) with = 0. Applying
Q .the K-algebra monomorphism Ep — Eg, , and recalling

C Q . Q .

t h a t  c? | =  9» we se e  t h a t  t h e r e  e x i s t  . . .  ,(pn+1 £  3 G

n+1 r(not all zero) with ®?(£.) = 0, as required.i=1 1 1

Corollary 1 1 . 3 Let K be a field and G a locally finite 

group with So (KG) 4= 0* Then G contains a finite normal 
subgroup C such that G/C is linear over a division ring 

(which is a field if char K>0).

Proof Let oiXG be a minimal right ideal of KG. Then

(81 )
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C s* C„ (¿.KG) is a normal subgroup of G, and acts faithfully 

(by right multiplication) as a group of permutations of the 
finite set suppoc, 30 i3 finite. Now G/C acts faithfully on 

¿KG, which by Theorem 11.2(c) is a finite-dimensional vector 

space over the division ring 3^ = Bndg.G(t<-KG); that i3, G/C is 

linear over E&. If char K>0, 3Q is a field by Theorem 

11.2(b).

C

I
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12. Structure of G

In this section we obtain necessary and sufficient 

conditions for KG to contain minimal one-sided ideal3 when G 

is a locally finite group and K is any field. We commence by 

singling out the most difficult step.

Theorem 12.1 Let K be a field and G a locally finite group. 

If So (KG) =|= 0 then G is a Cernikov group.

Proof We show first that any residually finite subgroup H. 

of G is finite. For let (Hx} be the set of all normal 
subgroups of H of finite indez. The intersection of any two 

such subgroups is a third, and >. = 1 ; so *>7 Lemma 9.2, 

(°)hAH=0. By Lemma 2.3(a), f"lhxG = 0, so a3 So (KG) 4= 0 is 

contained in every essential right ideal, is no^
essential in KGg£ for some A., 3y Lemma 2.4, H*. is finite, 

and therefore H is too.

If 3 is any abelian subgroup of G, then £1.(3) is a 

direct product of elementary abelian groups, so is residually 

finite, so finite by the above. 3y Theorem 3.1, 3 satisfies 

Min.

It follows by Sunkov's theorem (7.2) that G i3 a 

Cernikov group.

When K has positive characteristic, it is possible



to avoid thi3 appeal to Sunkov's theorem (the proof of which

relies on many of the deepest results of finite group theory);

instead we use an approach similar to that of [16; 3.2~\ . Thus

suppose char K>0. Let otKG be a minimal right ideal of KG,

and A = r(xKG) it3 right annihilator (a two-sided ideal). 3y

Theorem 11.2, «KG is of finite dimension n say over 3G =

En<iKG^xS'G)' w^-cil i3 a 3ach element of KG acts
linearly on «.KG by right multiplication, so there is a K-

algebra map KG — Bnd^ (ouKG). This map has kernel A, so KG/A
"G

embeds in ( and by the Jacobson density theorem is even iso­

morphic to) Bndr, («.KG) = M (3P). Thus by Lemma 8.7, KG/A 
■°G n G

satisfies a polynomial identity. By Theorem 9.12, since 

A ( ̂ KG) is an annihilator ideal, we have ¡G: A(G) | < QO 

and | A(G)> | <  00.

Let C = CA (G )( A(G)‘). Then C  (< A(G)1 ) is central
in C, so C is nilpotent of class 2. Prom above, every

vabelian subgroup 3 of C satisfies Min, 30 C i3 a Cernikov 

group by Lemma 7.3. Now A(G)/C acts as a group of auto­
morphisms of A(G) • , so is finite; hence C has finite index 

in G, and G too is a Cemikov group.

V/e now deduce the necessary and sufficient conditions

sought.
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Theorem 12.2 Let K he a field with prime field k and G a 

locally finite group. Then KG contains minimal right ideal3 

if and only if:
(a) G is a Cemikov group with characteristic divisible 

abelian subgroup A of finite index;

(b) char n(A) ;

(c) A is locally cyclic; and
(d) |k(A) O K  : k| < oo.

Proof In view of Theorem 12.1 we may restrict our attention 

to groups G satisfying (a). Since by Lemma 2.5(b) 3o(KG)=0

if and only if 3o(KA) 4s 0, it suffices to show that So(KA)^0

if and only if A satisfies (b), (c) and (d).

Suppose So(KA) 4=0, and let .xKA be a minimal (right) 

ideal. If char K = p > 0  then by Lemma 9.9» 0 (A) is containedx'
in C.(*KA), which is finite (since it acts faithfully on 

supp oO. Since A is divisible, 0p(A)= 1, i.e. (b) holds 

(as of course it does if char K=0). By Theorem 5.6, (d) 
holds, and A is almost locally cyclic; since it is divisible, 

we have (c).

Conversely, if (b), (c) and (d) hold, then 3o (KA)4=0

by Theorem 5.6.
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13. Structure of KG

In this section we investigate the structure of the 

group ring KG when K is a field and G a locally finite group 

such that 3o(KG)^0. In the light of Theorem 12.2, we intro­

duce the following hypothesis, which will be assumed (except 

where specifically noted) throughout Section 13.

Hypothesis 13.1 K is a field with prime field k and charac­

teristic p^O, and G is a Semikov group with characteristic 
divisible abelian subgroup A of finite index n. The group A 

satisfies p^rr(A) and has a direct decomposition 
A = P1 x ... x (m^O)

where the P^ are Prufer groups for distinct primes p^.

Finally, |k(A) n K : k| <  o ° , so So(KG)4=0.

Lemma 13.2 Let M be a right KA-module.
p(a) If M is irreducible, M ha3 composition length at 

most n =  |G:A| .

(b) If M i3 completely reducible, Son(M*^)=M^.

Proof (a) Since A<>G, >1°!̂  is a direct sum of n irreducible
GKA-modules, so has composition length n. A fortiori, M has 

composition length at most n.

p(b) Since 3on and — preserve direct sums, we may assume

M irreducible. The result then follows from (a).
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pThe bound on the 'Loewy height' of M in (b) may be 

improved: a Maschke-type argument shows that n may be 

replaced by |G/A : 0 ,(G/A)|. A similar remark applies to-b'
the next lemma.

Lemma 1^.3 If V i3 any right KG-module then

s°h<«.+O i7) ' 7  •
In particular, if V 4= 0 then So(V) is essential in V.

Proof Since the first property in question is inherited by 
images and direct sums, it is sufficient to verify it for

V = KGKG’ By Lemma 13.2(b), if i"?:0 then 

Soi+1(XA)KG 3oi+1(XA)
So±(KA)Soi(KA)XG

has a series of length n with completely reducible factors. 

By Corollary 6.4, Som+  ̂(XA) = KA. Hence KG-̂ G has a series of 

length n(m+1) with completely reducible factors.

If V^ 0 and W is a non-zero submodule of V, then 

S°n(m+i )(w ) = 30 WO So(V) = So(V) 4= 0. Hence 3o(V) is
essential in V.

We shall write

Sj_ = Soi(KA)KG (0«i<m+1) , 

so that each S.̂  is an ideal of KG, and Sffl+1 =KG. ./e now 
show that each factor 3i+1/Si (considered as a ring, 

generally without unit element) of the series

: • 7 '
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0 - s 0 45 S 1 < ••• * sm+1 = KG 
is a direct sum of quasi-Fro’oenius rings. Recall that a

centrally primitive ideranotent in a ring is a primitive

idempotent of the centre of the ring.

Theorem 13.1 For 0«i^m,

(a) if £ is a centrally primitive idempotent in KG/S^ 

then eCKG/S^) is a quasi-Frobenius ring;

00 3i+1/3i = (KG/3^ : £ is a centrally primitive
idempotent in KG/S^

Proof Let Q = KG/3^ and R = KA/So^iKA). Vie preface the 

proof with three observations. Firstly, consider the 

following diagram:

0 — » 3o, (KA) — > KA — > R — » 0

i i i
0 ~ > 30jL(KA)|G -> k a |g -> r g -> 0

II II III
0 —* 3oi(KA)KG — » KG - * Q -a, 0

Here the first row is exact, 30 the second row, obtained 

from the first by tensoring with the flat module ^KG, is
nalso exact; in other words, R = Q  as KG-modules. The 

vertical arrows are KA-module embeddings of the form 

M = Mai — * M O ^ K G  = M° .
How the first two vertical maps are K-algebra morphisms, so

nthe embedding R — R = Q is also a K-algebra morphism; we 

shall identify R with its image in Q under this embedding.
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Secondly, suppose that M is any KA-module and m£ M, 

so that mKA is a submodule of M. Since ^ E G  i3 flat, mKA|G 

is a submodule of M°, and we have

mXA |G = mXA KG = m KG
= (m® 1 )EG = mKG C MG .

Thirdly, suppose that e is a primitive idempotent in

R. Now G acts on KA by conjugation, leaving So^(KA)

invariant, so G acts on R. Let T be a right transversal in

G to NG (e) = |g£ G : es = e}; then |t | < n since A < (e). Let

s .  r  ex; then e is independent of the choice of T, and 
x£T

(since distinct primitive idempotents in R are orthogonal) 

is an idempotent in R. By the first observation above, we 

may consider e and each ex a3 idempotents in Q; since G 

leaves e invariant, e is central in Q. In the KA-module R, 

we have
SKA = ©  exKA ;x£T

therefore, by the second observation above (taking M = R, 

m= e)

eQ = eKG = eKA |G = ®  exKA |G .x£T
Now R Í3 an epimorphic image of KA, so is locally .v'edderburn 

(Lemma 3.8); thus by Lemma 3.9(b), exKA= exR is irreducible 

for each x£T. Hence by Lemma 13.2(b), eQ has composition 

length (as right KC— module) at most n . Similarly §Q has
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finite composition length as left KG-module. Since eQ is an 

epimorphic image of the ring KG, and its KG- and eQ-3ubmodule 

lattices coincide, it follows that eQ is an artinian ring. 

Furthermore, each exKA is an injective KA-module (Lemmas 

9.14, 3-8, 8.10), so by Lemma 9.4(b), eQ is injective as 
right KG-module. Since any eQ-module may be considered as a 

KG-module, we conclude that eQ is right self-injective, and 

therefore a quasi-Frobenius ring.

We now turn to the proof of the theorem. Let £ be a 

centrally primitive idempotent in Q. By Lemma 13.3, there 

exists non-zero x £ So(tQ ). Then by Lemma 2.3(d),

£ So(QKG) = 30(R°) < So(R)G , 
so by Lemma 3.9(d) there is a primitive idempotent e£R such 

that in Q we have eo.^0. Since ee = e and tx = * we have 

e t  4= 0, whence et=i as £. is centrally primitive. Hence tQ 

is a ring direct summand of eQ, so is quasi-Frobenius. Thus 

we have (a). Furthermore,

e £ So (R) = So(Kii/3oi(KA)) = So±+1 (KA) / 3o±(KA) :
say ^ = ^ + S o ±(KA) where ££ 3oi+1 (KA) * 3±+1. Then in Q,

£ = et = (3 + Si)£ £ 3i+i/3 j_ •

To complete the proof of (b), note that by Lemma 
3.9(d) So(R) i3 the direct sum of subrings eR as e runs over 

a system 2, of representatives of the G-conjugacy classes of 

primitive idempotents in R. Hence (using the second observ­



ation above)

3i+1/3i = So (R)G = 0 ( e Q : e £  g.} .
Each eQ i3 artinian, so may be written in the form 

e.Q®...® e Q where the £.. are centrally primitive idem-I S  J
potents in Q.

Theorem 13.5 Let K be any field and G any locally finite 

group. Then So(KG) is a direct sum of minimal (two-sided) 

ideals.

Proof We may assume that 3o(KG) =̂ 0, and hence that Hypo­

thesis 13.1 hold3. Let Q be a homogeneous component of 

So (KG^g). Then Q is an ideal, and by Proposition 10.1, 

is completely reducible. Let P be a homogeneous component 

of g_Q, again an ideal. As So(KG) is the direct sum of such 

ideals ?, it is sufficient to show that P i3 a direct sum of 

minimal ideals.

Now PgQ is a direct sum of copies of some minimal 

right ideal Y. By Theorem 13.4(b), as
V « So(KG) « So(KA)KG = Sj ,

there is a centrally primitive idempotent € KG with Ye = V. 

Then P=Pe< eKG, which i3 artinian by Theorem 13.4(a). Hence 
PgQ. i3 a direct 3um of finitely many copies of V. Similarly 
_ ? i3 a direct sum of finitely many copies of some minimal 

left ideal W. Let B = KG/AnnKG(Y), C = KG/Ann^(W), and let
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C0? be the opposite ring of C. Then P considered as a KG- 

bimodule has the same structure as P considered as a right 

B Cop-module, so it is sufficient to show that the latter 

module is completely reducible.

As G is almost abelian KG satisfies a polynomial 

identity (Lemma 9.11). Hence B is primitive and satisfies 

a polynomial identity, so by Theorem 8.S is isomorphic to a 

matrix ring Mt (3) over B= Sndg(V)= SndKG(V). Similarly, 

C°^SMU(F) say, where ?=End^,(W). By Theorem 11.2(a), each 

of B and ? is locally a finite-dimensional separable K— 

algebra. By Theorem 8.6 the tensor product of separable 

algebras is semisimple, so Ss^? is a locally Wedderbum 

algebra. Hence B C°° = M^u(B ?) i3 also locally .'/edder- 

burn. Let G°^ denote the opposite group of G. Then B C°^ 

is an epimorphic image of KG KG0^ = k (g x G°^l, which 

satisfies a polynomial identity as G x Gop is almost abelian. 

The conclusion now follows from Corollary 8.9, since P has a 

composition series as B-module 30 a fortiori a3 3® g C op- 

module.

Theorem 13.4 has another consequence (which can also 

be demonstrated more directly: see [20; 3.21). Note that KG 

is semiprime if and only if G has no finite normal subgroup 
of order divisible by the characteristic of K (cf. Theorem

14.4).
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Corollary 13.6 Let K be any field and G any locally finite 

group such that XG is semiprime. Then So (KG)4=0 if and. only 

if KG has a ring direct summand which is isomorphic to a 

full matrix ring over a division ring D.

Proof If t is a central idempotent in KG such that 

£KGSMt(D), then 0 ̂ So(eKG) < So(KG). Conversely, if 

So(KG) ̂  0 we may assume Hypothesis 13.1 » and then by Theorem 

13.4 (with i = 0) KG contains a centrally primitive idem- 

potent t such that ¿KG is quasi-Frobenius. Then ¿XG is 

semiprime (like XG) and artinian, and contains no central 

idempotents other than t. Hence ¿KG is isomorphic to a 

matrix ring M*(D) over a division ring D.

We remark that if K has positive characteristic then 

by Theorem 11.2(b) D is necessarily a field. In any case, 

if So(KG)^ 0 then by Theorem 12.1 G is almost abelian, so 

D satisfies a polynomial identity (Lemma 9.11)» and is 

therefore finite-dimensional over its centre ( Cl8; 5.3.41 

or [1 5; 6.4]).
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14. A characterization of the socle

We now turn to the problem of finding an explicit 

characterization of the 3ocle of KG when G is locally finite. 

Since no such characterization is known in the case of a 

finite group, the expression we obtain (in Theorem 14.9) 

involves the socle of a finite-group algebra. A major step 

towards this expression is the determination (in Theorem 

14.8) of the 'controller' of the socle. The concept of the 

controller of an ideal in a group ring was introduced by 

Passman [l8 ;§8 .l] ; for convenience we shall prove two of his 

results, on which the idea i3 based.

If H is a subgroup of a group G and K is any field,

it is easy to see that the map
T\„ : KG — *• KH, X  b Y-* X  g (X € K)
H g£G ^  g£H g S

is a KH-bimodule homomorphism.

Lemma 1 4 . 1 Let K be a field, H a normal subgroup of a group 

G, and I an ideal of KG. Then
(IOKH)KG < I < 7Th (I)KG .

Furthermore, if either inclusion is an equality then both 

are.

Proof (cf. [18; 1.1.5, 1.1.6]) The first inclusion is 

clear. Suppose I, and let T be a transversal to H in G.

Then ¡x. may be written in the form
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ot z :x£T
u
X
X

I f  x,y£T then T^(xy~ 1 ) = S x>y. 

map, we have

U X €KH) .

Since 7«h is a left KH-module

Thus

) = «T •x£T x 11 y
ot = Z T  77 («.x“ 1 )x € Tf (I)KG , 

x£T H H
since otx“ 1 € Ix~ 1 Thi3 establishes the second inclusion.

If I = tth (I)KG then tth (I) c m  KH, whence 

I = 7fH (I)KG «s (IOKH)KG .

Conversely, if I=(IOXH)KG then

W H (I) = (inKH)7rH (KG) 9 I , 

whence I 5 rt^(I)KG.

When (IOKH)KG= I = 7V(I)KG, we say that H controls I.

Lemma 14.2 [l8 ; 8.1.l] Let K be a field, G a group, and I

an ideal of KG. Then there exists a unique normal subgroup 

Q (I) of G such that H ^ G  controls I if and only if H i  G(T).

Proof Let W be the intersection of all normal subgroups of 

G which control I. We shall show that 7^(1) c I. Let <x£ 1 

and suppose
suppu. - W = (OsnCoc?)

For each i=1,...,n there exists a normal subgroup con­

trolling I such that Then
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e i
since Tt (l)c I for each i. By Lemma 14.1» W controls I,

Hi
and is therefore clearly the unique minimal controlling 

subgroup for I.

If H is any normal subgroup of G containing W then 

I > (inXH)KO > (inKW)KG = I , 

so H controls I. The result now follows with G(I)=¥.

The subgroup G(I) is called the controller of the 

ideal I. We shall need:

Lemma 11.3 Let I be an ideal of KG and L= ¿(1) if3 loft 

annihilator. Then 6 (L)<- G(l).

Proof It is enough to show that H=  G(I) controls L, i.e. 

that 7Tjj(L) S L. Now
TfH (L)I = 7CEi(L)7r{i(I)KG since H controls I

^(L.Trjjil) )KG since i3 a right KH-map

i ^h (LI)KG since H controls I

0

so *h (L) S  ¿(1 ) =L

Passman has determined the controller of the

nilpotent radical il(KG) of KG:
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Theorem 14.4 Let I be a field of characteristic p ^ O  and G 

any group. Then <3(N(KG)) = £p(G), where

A P (G) = < x €A ( G ) :  |x| is a power of p >  .

Proof When p > 0  this is [l8 ; 8.1.9(i)l. When p=0, 

N(KG)=0 [18; 4.2.13] so G(N(KG))=1 = A P(G).

Since if G is finite the socle and the nilpotent 

radical of KG are each other's annihilators, it follows from 

Lemma 14.3 that in this case A P (G) is also the controller 
of the socle. Y/hen G is merely locally finite, the situ­

ation is more complicated, since in the light of condition

(d) of Theorem 12.2, we must expect G(3o(KG)) to depend on 

K itself and not just on the characteristic. However, thi3 

dependence turns out to be rather crude: for a group G 

satisfying conditions (a)-(c) of Theorem 12.2, C(3o(KG)) 

can take only two values - 1 (iff K is so large that 

So(KG) = 0) or A A P (G). Before investigating thi3 we prove 

two general lemmas.

Lemma 14.. 5 Let K be a field and G a group. Suppose So (KG) 

is essential in and controlled by H^G. Then

So(KG) = So(KH)KG ,

and So(KG)nKH = So(KH) ess KHgjj.

Proof By Lemma 2.3(b), since (So(KG)OXH)KG= So(KG), 

3o(KG)OKH i3 essential in KH^, 30 contains So(KH). ThU3
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So(XG)^3o(XH)XG, and equality holds by Lemma 2.3(d). Hence 

also So(XG)O XH = 3o(XH)XGO KH = 3o(KH).

Lemma 11.6 If X is a field of characteristic 0 and G is 

a group, then the finite-p' residual

H f  N-g G : p \  |G:N| <  oo | 

of G controls 3o(XG).

Proof By Lemmas 2.7 and 14.2.

For the remainder of this section, we again assume 

Hypothesis 13.1: in view of Theorem 12.2, this assumption 

entails no loss of generality.

Lemma 11.7 A P(G) is finite.

Proof Vie may easily reduce to the case where G= A 5 (G).

In particular G i3 an FC-group, so its minimal subgroup A 

of finite index is central. If x and y are p-elements of G 

with xA = yA, then there exists g£ A with xg=y. Since g is 

a central p'-element, < x > = < y > .  But G is generated by its 

p-elements, so may be generated by |G:A| (or fewer) elements. 

Hence G i3 finite.

Theorem 14.3 Assume Hypothesis 13.1, and let D = A P(G). Then

<S (3o(KG)) = AD.

Moreover, So(KG) = 3o(X[ADl)XG
and So(XG)nX[ADl = So (x [a d]) .
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Proof We show first that J(KG) is the left annihilator of 

So(KG). Certainly in view of Proposition 10.1 we have 

J(KG).So(KG)= 0. For the converse it is sufficient to show 

that ¿(So(KG)) i3 a nil ideal. Thus let *£ i(So(KG)) and 

put H = <supp<x.>. Now rKG(oi)> So(KG), so by Lemma 13.3» 

rKG(ot) is essential in KGKQ.. By Lemma 9.1(a), rKG(<w) = 

rj^g^iKG; hence is essential in KHgg (Lemma 2.3(b))

so contains So(KH). But H is finite, so by Corollary 9.5 

and Proposition 8.2, So(KH) contains a copy of every irreduc­

ible left KH-raodule. It follows that «. £ J(KH), whence is 

nilpotent as required.

However, by Lemma 9.7 and Theorem 9.8, since G is 

almost abelian-p', J(KG) is nilpotent. Thus 

¿(3o(KG)) = J(KG) = N(KG) .

Hence by Theorem 14.4 and Lemma 14.3,

D = G (N(KG)) < (5 (So(KG) ) .

Recall that A=P^ x ... x Bm » where the P^ are Priifer 

groups. By Lemma 2.4, p^G is essential in KGKG, whence 

So (KG) < B±G. Let C = G(So(KG)) and T = C n P i; then 

So(KG) O KC * p±G O KC = tC

(where the equality hold3 3ince ^ G  is the set of elements 

of KG whose coefficient sum on each right coset of P^ is 

zero). Hence by Lemmas 13-3 and 14.5, tC is essential in 
KC.r„> whence t is essential in KT by Lemma 2.3(b). 3y Lemma
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2.2, T is not a finite p'-group, so must be infinite. There­

fore Pi =T«C. We have now shown that AD« G(So(KG)).

We next prove that Cj,(A)=H say controls So(KG).

Let I be a minimal ideal of XG. Since A has no proper sub­

group of finite index, it follows from Lemma 9.10 that 

in KH+ 0. Hence as I is minimal, (IOKH)KG*I, so 

by Lemma 14.1. Since 3o(KG) is a direct sum of minimal 

ideals (Theorem 13.5), we have ^(SoCXG))s 3o(KG), i.e. H 

controls So(XG) as required.

Since A i3 the minimal subgroup of finite index in 

G, and abelian,
H = Cg (A) = A ( G )  5 AD .

Kurthermore, H/AD is a fini.te p'-group since D= A^(G) 

contains all p-element3 of H. Hence AD controls 3o(XH) by 

Lemma 2.7. By Lemma 14.5 twice we now have

So(KG) = So(KH)KG = So(K[AD])KG 

and So(k Cad] ) = so(KH)nx[AD] = s o (k g )o x [ad] .

Thus AD controls So(KG), and the proof is complete.

We are now ready to give our characterization of 

the socle of KG.

Theorem 14.9 Assume Hypothesis 13.1 and let D= Z\P(G). Then 
So(KG) = 3o(KA)So(KD)KG

= i O  3o (KD) KG .
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Proof Note that the second equality holds by Theorem 6.2.

Let  ̂£ So(KG). By Lemma 2.3(d), $£So(KA)KG, so by 

Lemma 3.9(d) there is an idempotent e (not necessarily 

primitive) in So(KA) with ejsj. 3y Lemma 2.3(d) again,

$£ So(KD)KG, so

X = e$ £ So(KA)3o(KD)KG .

It remains to be shown that 3o(KA)So(KD)KG < 3o(KG).

By Theorem 14.8, So(KG)= So (K[AD])KG, so we may assume that 

G = AD. Since by Lemma 14.7 D is finite, there exists a 

finite separable extension F of K which is a splitting field 

for D (Theorem 9.6). By Lemma 2.8(b) we have

So(KA)3o(KD)KG = 3o(KA)3o(KD)7G n KG 

= 3o(FA)So(irD)PG n KG 
and 3o(FG)OKG = 3o(KG) ,

so we may assume that K=F. Let M and N be minimal right 

ideals of KA and KD respectively; we must show that 

MN< 3o(KG).

We claim that is a minimal right ideal of

KA'Sg KD = k Ca x T)] . Let V be a non-zero submodule of 

say 2_m;i>ani£V, where jni} is a (finite) K-ba3 i3 of N, m^£ M, 

and m 1 ? 0. As K is a splitting field for D, Endj^CNjsK, so 

by the Jacobson density theorem the map KD — 3nd^(N) is onto. 

Hence for each j there exists 5. £ KD with n.S • = n . andJ • J J
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n^S j = 0 (i± 1). Thus for each £ V. As M = m^KA,

clearly V = M N  as required.

Since G = AD and D« A( G ) = C g (A), there is a K- 

algebra epimorphism 0: XA<&g. KD — KG, induced by aesd ad 

(a£ A , d£D). Thus Mli = 8 (M«g N) is either a minimal right 

ideal of KG or zero, and is contained in So(KG) in either

case.
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15. Indecomposable modules

In this section we classify indecomposable KG-modules 

when K is a field and G a locally finite group such that 

5o (KG)4=0, in a manner which generalizes the classification 

into blocks of indecomposable modules for a finite-group 

algebra. We also describe the injective and projective 

indecomposable KG-modules. To conclude the section, we 

consider a more general question: for arbitrary K and G, 

when is every indecomposable KG-module irreducible?

In view of Theorem 12.2, we shall again assume 

Hypothesis 13.1» until further notice. As in Section 13» we 

set

S± = So±(KA)KG (0<i«m+1) .

Proposition 15.1 Let M be an indecomposable right KG-module.

(a) There exists a unique integer X = A(M)£ {0,...,m{ such 

that M3X = 0 but MSX+1 = M.

(b) There exists a unique centrally primitive idempotent 

t£ KG/3X such that Ms, = M.
(c) If M is injective than M has finite composition length 

and is isomorphic to a direct 3ummand of (KG/3x )t£q.; converse­
ly each indecomposable direct 3ummand of (KG/3x )^q is inject­

ive.
(d) If M is projective then M is also injective, and



(104)

X(M)= 0. Thus the projective indecomposable KG—modules are 

exactly the indecomposable direct summands of KG^.

Proof Firstly we remark that if IT is an indecomposable 

direct summand of (KG/Sj^)^ (0«A«m) then by Lemmas 13.3 

and 2.3(d), 0 4= 3o(M) < So(KG/Sx) ̂  3x+i/^a. ’ wnence ^7 Theorem 
1 3 .4 (b) there exists a centrally primitive idempotent vj in 

KG/SX with 3o (N)tj|=0. Since N = ilij ® N( 1 -;j) is indecomposable, 

N = Nî  is a direct summand of rj(KG/3^). In particular, N like 

tj(KG/3x ) is an injective KG-module of finite composition 

length (see the proof of Theorem 13.4(a)); furthermore

N3X+1 =1T 3ince Yl £ 3a+i/3a -

(a,b) Let X be the greatest integer such that M3^ = 0 ; then 

A < m  as Sm+1 = XG. JTow M may be considered as a KG/3^-module, 

and M(3^+./3X) 4s 0. Thus there exists a centrally primitive 

idempotent £ € KG/3^ with Me i 0, and then M = Ke. since M is 

indecomposable. Hence MS^+1 = M. The uniqueness of X and £ 

i 3  clear.

(c) Since t/KG/S^) is an epimorphic image of KG, M is

injective (as well as indecomposable) when considered as an 

£(KG/SX)-module. 3y Proposition 8.3, M i3 isomorphic to a 

right direct summand of s(KG/3^), and hence to a direct 

3ummana of (KG/S^)^. The remaining assertions of (c) 

follow from the above remark.

— T
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(d) M is projective and indecomposable when considered 

as an t(KG/S^)-module, and hence by Proposition 8.3 M is 

cyclic, as E^G/S^)- or KG-module. Thus M is isomorphic to 

a direct summand of KG^,. By the above remark, M  is inject­

ive, and M31 =M, whence X(M)= 0.

For an irreducible KG-module M we can provide an 

alternative characterization of the integer X(H).

Proposition 15.2 Let M be an irreducible right KG-module 

and i an integer with 0« i ̂  m. Then the following are 

equivalent:

(a) i = X(M);
(b) M is isomorphic to a submodule of (3^+1

(c) M is isomorphic to a composition factor of (Si + 1 /Sj_)j£(j

(d) the kernel C^(M) of M in A contains exactly i of the 

Prufer direct factors P^,...,Pm of A.

Proof (a) ^»(b) We have M3i = 0 but MSi + 1 = M, whence M is 

an irreducible KG/S ̂ module with M(Si+1/3±)= M. By Theorem 

13.4(b) there i3 a centrally primitive idempotent t£ KG/S^ 

with Hs=»M. Then M is am irreducible fc(KG/3i)-module, so by 

Proposition 8.2 (since e(KG/3±) is quasi-Frobenius), M is 

isomorphic to a right ideal of eiKG/3^, whence to a sub- 

module of ( /3j_)k g '

(b) =S»(c) Thi3 is trivial.
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(c) =£>(a) Suppose MS U/V where Since

US1 =&Si «V, we have MSjL% (U/V)S± = 0, so X(I!)?i. If u£ U/S_L 

then by Theorem 13.4(b) there exist distinct (and therefore 

orthogonal) centrally primitive idempotents in

ZS/3i with

u — ut.j ... + U£^ ^ (H/oA) (S^^/S^) »
since each lies in S^/S^. Thus US1+1 = U, whence 

M3i + 1 = (U/V)Si + 1 = U/V4=0, and X(M) * i.

(a)<^>(d) Note that (a) holds if and only if i is the 
greatest integer such that MS^=0, i. e. such that S^ £

Ann^c (M). Since M is irreducible, AnnKG(M) is a prime ideal. 

By Corollary 6.3»
S, = So, (KA)KG = n  E » . «  .

1  1  |l|=i j£I “3
Hence S. s Ann™(M) if and only if for at least i. values of 

j, |>jG < AnnKG(M), i.e. Pj <C a (M).

We now cease to assume Hypothesis 13.1» and consider, 

for arbitrary K and G, the question of when all indecompos­

able HG-modules are irreducible. In (¡j ; Theorem 2.7^ Berman 

shows that it is sufficient for G to be periodic abelian and 

K non-raodular for G. We extend hi3 result in the following:

Theorem 13.3 Let G be a periodic almost abelian group and K 

a field with char K^-niG). Then every indecomposable KG-

module i3 irreducible.
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Proof Let A be a normal abelian subgroup of finite index 

in G, and V an indecomposable right KG-module.

Suppose F i3 a finite normal subgroup of G contained

in A, and e is a primitive idempotent in 1C?. As in the proof

of Theorem 13.4» we let T be a right transversal in G to

IT&(e) = {g£ G : es = e} ; then T is finite since A ̂  NG (e). Let

« , Z > ;  then e is independent of the choice of T, central 
x£T

in KG, and (since the ex are distinct primitive idempotents 

in K?, so orthogonal) an idempotent. Since G/A is finite, 

we may choose, among all finite ? in A normal in G and all 

primitive idempotent3 e in KF satisfying 4= 0, an ? and an 

e with NQ (e) minimal. Since V is indecomposable, Ve = V, so 

e acts as the identity on V.

Let
JL = | L < A : ? 4 L 4 G ,  | L | <  00} ;

since |G:Al is finite, every finite subset of A lies in some 

member of dL . We shall construct primitive idempotents f^ 

in XL (L£ 1 ) to which we may apply Lemma 5.2. Let L £ ¿  ,
Aand consider the various idempotents in KL of the form f, 

where f is a primitive idempotenfc in KL. Since these idem­

potents are central in KG, and have sum 1, and since V is 

indecomposable, there is exactly one such idempotent, say , 

3uch that Vrj 4=0. Then r| acts as the identity on V, so er¡ 4= 0.
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If e ^ j = 0 ,  then for x£G, 0 =  ( e ^ ) x  = ex/j, whence e i ^ = 0 ,  a 

contradiction. Thus ei^O, so since KL is semisimple artin- 

ian we may choose a primitive idempotent f^ in KL with 

fLe^rO. In particular f^rjiO; since r| is the sum of some 

G-conjugacy class of primitive idempotents in KL, it follows 

that f^ = 7j, so f^ acts as the identity on V. Also f^e^O, 

whence

fLe = fL
as f^ is primitive; hence (e)> (f^). For if g£ G and

f^ = f^, then f^e® = (f^e)®.= fjF = fjj = f^e, so e®e 4= 0 whence 

e^=e. 3y the minimality of NG (e), we have N^( e) = NG (f-jO.

Suppose with L1 =* L2. Then f^ and f^ both

act as the identity on V , so fT fT =j= 0. Hence fT fT (like
h \ L 2 L 1 L 2

erj above) is also non-zero. Thus for some x£G, f^ 

and then f^ f^ = t *  as f *  is primitive in KL2. Since 

fT e = fT (from above), we havel 2 l 2

*T. fTX °* = fT. fL, + 0 ’V L 2 2
so fL ex ^0 whence fL ex = fL . But from above fL e = fL , so

1 1

eex 4s 0 whence x £ NG(e)= NG (fL ). Thus

fr. *T. = fL fL, + 0 '
' L 1 L 2 2

whence fT fT = fT .Up Up

Now given any L j,L2£ jL, let L^Lp,»L£,2L. Then



(109)

f^ f^ ~ ^ L ~ ^ L  ^L* 30 ^ Thus we may apply Lemma 5.2

to obtain a maximal ideal M of KA such that for all L£ ¿»

MO KL = (1 - fL )KL .

Let T be a (finite) right transversal to NG (e) iJta G. 

We claim that

Ann~..(V) > n  Mx .
^  x£T

For let ot€ M*, and say supnoL c L €  . Then for x£ T, 
x£T

«<• £ lyr^nKL = (m o  k l )x

= (1-fJ)KL ,
so f̂oi. = 0. But UG (fL) = NQ (e), 30 fL = 2 Z  f^> whence fL«. = 0.

x£T
Since f^ acts as the identity on 7, we have x£Ann^(V).

Thus KA/Ann^tV) is an image of the completely reduc­

ible KA-raodule XA / f~')Mx, so is a semisimple artinian X-
x£T

algebra. Thus its module Vt̂ is completely reducible. By 

Lemma 2.6(a) 7 is completely reducible as XG-module; since 7 

is indecomposable, it is irreducible.

We now consider necessary conditions for indecompos­

able XG-modules to be irreducible, commencing with:

Lemma 15.4 Let K be a field and 0 a group such that every 

indecomposable KG-module is irreducible. Then G is locally 

finite and char X^ M G ) .

—
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Proof The injective hull of the trivial KG-module K is 

indecomposable so irreducible; that is, K i3 injective. Now 

use Lemma 9.13.

When G is countable, we can establish necessary and 

sufficient conditions. The following result extends a 

theorem of Hartley:

Theorem 1 S. 5 If K is a field and G is a countable group, 

the following are equivalent:

(a) G is periodic and almost abelian, and char K^7r(G);

(b) every indecomposable KG-module is irreducible;

(c) every irreducible KG-module is injective.

Proof (The equivalence of (a) and (c) i3 00; Theorem A-].)

(a) (b) This is Theorem 15.3.

(b) ̂ >(c) If (b) holds then by Lemmas 15.4- and 3.8, KG is 

locally Wedderburn, so Theorem 8.11 applies. But (b) pre­

cludes alternative (ii) of that theorem from occurring, so 

we have (c).

(c) ̂ >(a) 01°3 Given (c), Lemma 9.13 shows that G i3 locally
finite and char K$ 7r(G). By ( c ) and Theorem 3.11, every 
irreducible KG-module has finite endomorphism dimension, so

G is almost abelian by Theorem 9.15.



Chapter V

N0N-LQCALLY-FINTT3 GROUPS

16. A conjecture

In this chapter we investigate the existence of 

minimal right ideals in group rings of groups which are not 

locally finite. The results we shall obtain all provide 

evidence in support of

Conjecture 16.1 Let G be a non-locally-finite group and K a 

field. Then So(XG)=0.

In Section 17 we show that thi3 conjecture is valid 

for certain group classes, in particular for a class of 

generalized ?C-30luble groups, which includes all radical 

and all locally soluble groups (Theorem 17.3), and for free 

products (Proposition 17.4). We also show that if IC has 

characteristic p (^0) then residually finite-p' groups G 

satisfy Conjecture 16.1 (Proposition 17.5); we deduce that 

groups linear over a field of characteristic zero or not 

equal to p also satisfy the conjecture (Corollary 17.7).

A ring is called (right) semiartinian if every non­

zero right module has non-zero socle. Recalling from Lemma 
13.3 that if a group ring of a locally finite group ha3 non­

zero socle then it is seraiartinian, we are led to consider a
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weaker form of Conjecture 16.1:

Conjecture 16.2 If I is a field and G a group such, that KG 

is semiartinian, then G is locally finite.

We establish some special cases of this second con­

jecture in Theorem 18.4.

In Section 17 we shall employ the notation of group- 

theoretical classes and operations (see [21; Section 1. 1̂  ). 

The group classes we mention include the following:
F finite groups

£p’ : finite p'-groups (where p is a prime)

So* : finite groups

4 : abelian groups

1 : FC-groups

(G) : the class of all groups isomorphic to a fixed

group G, together with all trivial groups.

We shall use a number of group-theoretical operations. If X 

is a group class, we define the following group classes:

lX ; locally-X groups (i.e. groups in which every 

finite subset lies in an X-subgroup) 

aX : residually-X groups
pX : groups with an ascending (transfinite) series

with each factor in X 

$X : subgroups of groups in g-



Each of these operations is a closure operation, i.e. satis-
2fies A ^ = Ag for all We also require the closure oper­

ation < p ,l>, whose closed classes are the classes which are 

both p- and L-closed [21 ; p. 5~\.

We shall need an easy lemma concerning products of 

group classes:

Lemma 16.3 If X and Y are group classes then Y.lX c l (YX).

Proof Let G£ Y . lX> so that G has a normal subgroup H € Y  
with G/H£ l|. If {g 1 ,... is a finite subset of G then

{g^,... (? G/3) is contained in some ¿-subgroup W/H of

G/H. Then {g1 ,... ,gn l S W€ YX as required.
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17. Some well-behaved group classes

Abusing set-theoretic notation, we define 

§ = l | U {G : So (KG) = 0 for all fields K } ;

thus Conjecture 16 .1 is true if and only if S is the class 

of all groups.

Lemma 17.1 lF.A c 3.

Proof Suppose that G£ lF.A - 3, so that G 4- uF contains a 

locally finite normal subgroup H with G/H abelian, and there 

exists a field K with 3o(KG)=}=0. Since G/H^ug, G contains 

an element x of infinite order modulo H. Now <x,H>i>G, 

so by lemma 2.3(d) we may assume G = < x , H >  = < x  >H. 3y

Lemma 2.3(d) again, So(KH)^0. Hence by Theorem 12.2, H 

contains a locally cyclic subgroup A of finite index such 

that char K<fcw(A). Then also <x ,A> has finite index in G, 

so by Lemma 2.3(b) we may assume that H= A. Then in partic­

ular every subgroup of H is characteristic, and char X^n-(G).

By Lemma 1A.6, since G/H = < x >  is residually finite-p' 

for any p, H controls So(KG), so there exists non-aero 
c(.£ So (KG) n KH. Then x-KG is completely reducible and cyclic, 

so has the minimum condition on KO-submodules. Since 

<  supp x >  i3 a finite characteristic subgroup of H, there 

exists r > 0  such that «' = ot. Now

«.KG 3 «(xr - 1 ) KG 3 ... 3 *(xr -1)tKG 3 ... ,
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so by the minimum condition ¿n.(xr-1 )^KG = a.(xr-1 ) t+ 1 KG for

some t^O. Then (since a. and xr commute) there exists  ̂£ KG

with (xr-1 ) K  = (xr-1 )t+1xÿ.

Let W = <  xr >. Then if O + Sc ¿KW(xr-1)* ¿0 (w) (by

Lemma 1.1), we find as in the proof of Lemma 2.2 that

where we have shown only the greatest and least powers of x. 

Hence r+N*K=0; so r =* M-N < 0, a contradiction.

improve on Lemma 17.1.

Lemma 17.2 Let | be a group class such that Lg.g <= §. Then

(a) ug.LX a 3 = l3 ;
(b) gX Q | ;
(c) lF.pX c § ;
(d) if X = sX then §. < P»>->X c g .

Proof (a) By Lemma 16.3» l-?-'-X c u(i-g.X) c to, so it i3

sufficient to show that >-3 = 3. Thus let G£ lS and suppose

supp S =W, which is impossible. Thus xr-1 is regular in KV, 

30 too in KG (by Lemma 9.1 (b)). Hence x = (xr-1 )A^. Since 

0 , also dig ̂  0 : write

Then

The following rather technical lemma allows us to
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there exists a field K with SoCKG^O: we must show that 

G £ lF. Let g.|,...,gn £ G  and 0^<l£3o(KG), and put 

H = <  g ̂ ,..., gn , supp ol >. Since G £ l S, there exists K G  

with H < L £ S. Now 0 ̂  £ So (KG) n XL, so by Lemma 2.5(a),

So(KL)^0. Hence L £ lF, whence <g|i..>,gn>  £ |  as 

required.

(b) Let G£§X : 3ay H s G  with H£ S, G/H£g. Suppose K 

is a field with So(KG)4=0; then by Lemma 2.3(d), So(KH)4:0, 

so H£ l?. Hence G£ i-g.£ S §•

(c) Let G£ u?.$X, so that there is an ordinal p and an 

ascending series

Gq 3 G.j £ ... 5 G4 i ^x+1 ^ • • • ■* Gp = G 
such that Gq € v_g and Got+1 /Gx £ X  for all X<p. Ne proceed by 

induction on p. Suppose first that p i3 not a limit ordinal 

then by induction G £ S, so G£ |X s § by (c). Now assume 

that ^(>0) i3 a limit ordinal, and let H be a finitely 

generated subgroup of G. Then H $ G^ for some a.<̂ >, and by 

induction G^£3. Hence G£i~S = S by (a).

(d) Let
| = {G : Lg.s(0) s S )

(where s(G) is the class of groups isomorphic to subgroups 

of G). Then clearly sg = T and Lg.g <= 3. Let G£ Then

lF.s(G) G Lg.su'g c Lg.t-sT = lF.i_£ <£ S
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by (a). Hence lT=£. Similarly,

L?.spT c lP.psT = LP.p| c S 
by (c), whence PT = T. We conclude that <  P ,L >  T = T.

Now >-?.sX = lP.X c 3, so X«T. Therefore 

<P, l > x £ < p ,l > T  = | .

In particular, Lg. <  P ,l >  X 9 3. Thus by (b), g . <P,L>g s g.

Theorem 17.3 If g is the class of FC-groups, then
3. <P,L > 3  c 3 .

Proof In an FC-group the periodic elements form a locally 

finite normal subgroup with abelian quotient group (Lemma 

7.1). Hence l?.B= u?.A, and the theorem follows from Lemmas 

17.1 and 17.2(d).

/We remarl-c that the class < P , u > B  contains, for 

example, all radical (i.e. hyper-(locally nilpotent)) groups, 

and all locally (FC-)soluble or (FC-)hypercentral groups.

Proposition 17.4 Let G = A*B be the free product of non­

trivial groups A and B. Then GEg.

Proof If X is any field then by Lemma 9.16 KG is strongly 

prime. Hence by Lemma 8.12, 3o(XG) equals 0 or XG. The 
latter case is impossible by Lemma 2.2, as G is infinite.

We now consider residually finite groups. 3y 

definition, Fq ,=P.
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Proposition 17.5 Let K be a field of characteristic p ̂ 0, 

and If So(XG)4=0 then G£ P.

Proof By Lemma 14.6, the identity subgroup of G controls 

So(XG), i.e. So(XG)= (3o(KG)n K)KG. Thus So(XG) 0X4=0, 

whence I S  So (KG), i.e. So(KG)=XG. Hence G is finite by 

Lemma 2.2.

Corollary 17.6 If p and q are distinct primes, then

RIp. n RIq. s | .
It follows both from Proposition 17.4 and from 

Corollary 17.6 that free groups lie in 3.

Corollary 17.7 Let G be a linear group over a field P.

(a) If char ? = 0 then G£|>.
(b) If there is a field K with char K 4= char P and 

3o(XG) 4= 0, then G£ u|.

Proof In case (a) suppose K is any field with So(KG) ̂  0. 

In either case put q = char K (■? 0). By Theorem 7.4,

G€ u(a|ql .P). If S1»***»Sn € G  311,1 04=*£S o (KG) then 
H = < g 1 ,...»gn» supp oi >  e aB^.P , 

and 3o (KH)4=0 by Lemma 2.5(a). Thus H£ ? by Lemma 2.3(d) 

and Proposition 17.5. Hence G£i-?.
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13. Camiartininn group rings

We now consider semiartinian group rings. Firstly, 

we note that Handelman and Lawrence [7 ] prove, for a field X 

and a group G, that if KG is strongly prime then G has no 

non-trivial locally finite normal subgroup; they conjecture 

that the converse al3o hold3. If this is correct then Con­

jecture 16.2 is a consequence. For suppose XG is semiartin- 

ian, and let L(G) be the product of all locally finite normal 

subgroups of G. Then L(G) is locally finite, and

L(G/L(G)) = 1 .

How k [g /L(G)] is an image of XG so has non-zero socle; if it 

is strongly prime we conclude from Lemmas 8.12 and 2.2 that 

G/L(G) is finite, whence G i3 locally finite.

3emiartinian rings may be characterised in terms of 

their transfinite ascending Loewy series. For a (rignt) 

module V we define 3o q(V)=0, and

3ou.+1 ( V ) / 3 o * (V) = S o i V / S o ^ i V ) ) ,

So. (V) = L J  3oft(V)
$ < \  P

for any ordinal a1 and any limit ordinal X. Hots that the 

orooerty 3o^ (V) — / is ©equivalent to in© condition tnat T nas 

an ascending series of type oL with. completely reducible 

factors, 30 i3 inherited by submodules, images, and direct

3 U IH 3 .
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Lemma 18.1 The ring R is semiartinian if and only if 

So^iRp) = R  for some ordinal ou

Proof If is an ordinal of cardinal larger than |r | then 

3ojt+1 (R) = So^ (R), i.e. So(R/So^(R))=0, so if R is semi­

artinian then R/3o,x(R) = 0. Conversely, if 3oa (R)=R then 

we see that 30^(7) = Y  first for free and then for arbitrary 

right R-modules V. Thus if V 4= 0 then 3o(V) 4= 0.

Lemma 18.2 Given a group G and a field K, suppose for some 

ordinal at that S o ^ g ^ )  = g. Then either G is locally finite 

or So^CKG^) = ICG.

Proof Suppose that G is not locally finite, so that there 

exi3t g,»...>gn £ G  such that H = < g 1 ,gn >  is infinite.

The obvious map

<? : XGkg. —  ©  («1-1)1®

has kernel r-̂ G ( f g1-1 ,... >gn~1 }) = rgfj(G^) (by Lemma 1.1).
If o4=^€rKG(Gh) we find (as in Lemma 2.2) that supp ̂  2 H, 

a contradiction. Hence ^ is a monomorphism. -or each i, 

gjfeg, so 3oflt((g±-1)KG)= (g±-1)KG. It follows that 

3o^(KG^g)= KG.

Lemma 13.3 Let K be a field and H a normal subgroup of a 

group G.
(a) If V is a right KH-module, oc i3 an ordinal, and
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So.iVG)= VG, then So«(V)= V.

(b) If EG is semiartinian then so is EH.

Proof (a) We show by induction that for all ordinals u ,

So^(VG) ̂ So^. (V)G : the desired result is an immediate conseq­

uence. The case oi= 1 is Lemma 2.3(d), and if m is a limit 

ordinal the proof is clear. Suppose that ot is not a limit 

ordinal, and that Soct_̂  (VG ) < S o ^ ( V ) G . Then 

(So* (VG) + So(t_1 (V)G) / So(t_1 (V)G 
is an image of So(t(VG )/So^ 1 (VG), and is therefore completely 

reducible. Thus
(So6i(VG ) + So4t_1(V)G )/Soet_1(V)G < S o ^ / S o ^ V ) 0) .

= So((V/Soai_1 (V))G )

3o(V/3oa{_1 (V)) |G by 2.3(d) 

= (Sost(V)/So^_1 (V)) |G

= SoBl(V)G/Soot_1(V)G ,

and So*(VG ) s So*.(V)G as required.

(b) This follows from part (a) and Lemma 18.1.

We can now prove some special cases of Conjecture 

16.2, if we impose two rather stringent conditions on K.

Theorem 18. A Let G be a group and K an a],gebraically closed 
field with |K|> |G|. Suppose that KG is semiartinian, and 

that at least one of the following conditions holds:

r " 4  t r . - j
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(a) char K=0; or

(b) G is periodic; or

(c) G is finitely generated and has no proper subgroup 

of finite index.

Then G is finite.

Proof Let be the least ordinal such that Sooi(KG)=XG 

(see Lemma 18.1). Since 1 £ KG, x is not a limit ordinal.

V/e proceed by induction on tl. If at = 1 then KG--G is com­

pletely reducible, so G is finite by Lemma 2.2.

Thus suupose &t>1, and let T = So .(KG). How KG/T 

is completely reducible: say

KG/T = V1 ® ... ® Vr ,
where the are irreducible right KG- (and KG/T-) modules, 

and r i3 finite since 1 £ KG. Since KG/T is semisimple 

artinian, V± is finite-dimensional over its endomorphism 

ring for each i. By Lemma 9.17, since |k |>|g |, each 

is algebraic over K; but K is algebraically closed, 30 

E.=K. Now G/C(,(Vi) act3 faithfully by right multiplication

on the finite—dimensional K—space so i3 linear over K.
r

Let H = C-(KG/T)= O  Cr (V.). Then G/H embeds in the G i=1
direct product of the groups G/Cq (V\), 30 is al30 linear 

over K. In case (a), sinc9 3o(K|_G/Hl ) = So(KG/gH) 0, G/H is 

locally finite by Corollary 17.7(a). In case (b), G/H is
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locally finite by Theorem 7.5. In case (c), since G/H is 

finitely generated, G/H i3 (almost) residually finite by 

Theorem 7.4(b); thus H = G since G has no proper subgroup of 

finite index.

Since H acts trivially on KG/T we have 

]jG s: T = 3ooC_1(KG) ,

whence So^(hG) = hG. By Lemma 18.3(a), So ,j(lj)=h. Then 

by Lemma 18.2, either H is locally finite, or 3o^_1(EH) = KH. 

In the latter case H i3 actually finite, by induction on 
(Note that H satisfies the same hypotheses S3 G: KH is semi- 

artinian by Lemma 18.3(b); in case (c) we have already seen 

that H = G.)

Thus in any case both H and G/H are locally finite, 

so G is too. If k i3 the prime field of K and A is any 
infinite periodic abelian group with char k^ M A ) ,  then 

|k(A)HK: k| = | k(A) : k| = o o , since K is algebraically closed. 

Hence it follows from Theorem 12.2 that G is finite.
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