A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/139217

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

GROUP RINGS IITA NON-ZERO SOCLE

James Stephen Richardson
A thesis suomitted for the degree of Doctor of Philosophy
University of iar:sicls

GROUP RINGS :ITTE NON-ZERO SOCLE

James Stephen Richardson

A thesis suomitted for the degree of Doctor of Ehilosophy University of 'ar'fick

CONT AITS

Acknowledgements page iv
Summary ∇
Notation vi
I. Introduction

1. Preamble 1
2. The socle: subgroups and field extensions 4
II. Periodic Abelian Grouns
3. Preliminaries 11
4. K -Inductive suberoups 21
5. Primitive idempotents in $K G$ 36
6. The Loewy series of KG 47
III. Some Rackground Results
7. On groups 53
8. On rings and algebras 56
9. On group rings 63
IV. Locally Pinite Groups
10. Preamble 73
11. Endomorphism rings 77
12. Structure of̂ G 33

(iii)

13. Structure of KG 86
14. A characterization of the socle 94
15. Indecomposable modules 103
V. Non-locally-finite Groups
16. A conjecture 111
17. Some well-behaved group classes 114
18. Semiartinian group rings 119
References 124

I should like to express my deep aporeciation and gratitude to my supervisor Dr Brian Hartley for his unfailing help and encouragement: he has baen a constant, cheerful source of inspiration, advice and hospitality to me through three years.

I should also like to thank Professor J.A. Green and Professor D.S. Passmen for their useful suggestions, and my friend Kenny Srown for the many stimulating conversations which have so increased my inpreciation of matrematics and of the real vorld.

I am greatly indebted to the Association of Comonwealth Universities and the British Council for the scholarship which has supported me at Wardick, and to the Universities of Virginia, Warwick and Wisconsin for additional financial assistance.

```
The aim of this thesis is to investigate the circumstances under which group rings over fields have non-zero socle, i.e. contain minimal one-sided ideals.
After an introductory chapter, we consider the special case o+ a periodic abslian group and a non-modular field (that is, a field of characteristic prime to the orders of the elements of the group). This special case, and the background material contained in Chapter III, serve as preparation for our principal results, which concern locally finite groups.
```

Ve establish necessary and suxisicient conditions on an arbitrary field K and a locally finite roup for the group ring KG to contain minimal one-sided ideals: the most important condition is that G should be a Černisov group. We then examine the structure of $K G$ when these conditions are satisfied. We show that KG has a finite series of ideala each factor of which is a direct sum of quasi-Probenius rings, and characterize the socle of FG . le also classify
 not necessarily locally finite groups G) necessary and sufficient conditions fior all indecomposable KG-modules to be irreduciole.

In the final chapter we consider non-locally-finite groups, conjecturing that group rings of such groups never contain minimal onemsided ideals. Ve establish the truth of this conjecture for several classes of groups, and also consider semiartinian group rings.

(m,n)	highest common factor of integers m and n
[m, n]	Lowest common multiple of m and n
$o(m, n)$	order of m modulo n (if (m, m$)=1$)
$\delta_{\mathrm{x}, \mathrm{y}}$	1 if $\mathrm{x}=\mathrm{y}$; 0 otherwise
K	a field
char K	its characteristic
K^{*}	its multiplicative group
$\overline{\mathrm{K}}$	an algebraic closure of K
Q	the rational field
${ }^{17} p^{\text {d }}$	a finite field of order $p^{\text {d }}$
G	a group
$\pi(G)$	the set of primes p such that G has elements of
	order p
$\Delta(G)$	the PC-centre of G
$\Omega(\mathrm{C})$	the subgroup of G generated by all elements of
	prime order
$O_{p}(G)$	the largest normal p-subgroup of G
$C^{C}{ }^{n}$	a cyclic group of order p^{n}
$\mathrm{C}_{\mathrm{p}}{ }^{\text {a }}$	a Prüfer p-group
KG, K[G]	a group ring
supp x	the support of $x \in K G$ (see p. 2)
$J(K G)$	the Jacobson radical of KG

```
N(KG) the nilpotent radical of KG
K(G) a certain subfield of K (see p. 21)
X\subseteqKG X is a subset of KG
\ell \KG
r KG
G(I) the controller of an ideal I of KG (see p. 95)
\nabla a right KG-module
CG}(V)={g\inG:Vg=v for all vミV
Ann
#nd
So(V) the socle of V
Sok}(V) the x-th term of the ascending Loevy series of
V (see pp. 4, 119)
H\leqslantG H is a subgroup of }
H&G H is a normal subgroup of G
V
N a right KN-module
NG}=:|\mp@subsup{|}{}{G}=W\mp@subsup{W}{KH}{KG}K, the induced module
Min the minimum condition on subgroups
F,A,... group classes (see p. 112)
L,f,... group-theoretical operations (see p. 112)
```


INTRODUCTION

1. Preamole

Let K be a field and G a group. Our aim is to investigate consequences of the supposition that the group ring KG contains a minimal one-sided ideal.

Our central results, which concern the case of a locally finite group G, occur in Chapter IV. In preparation for these we examine the special case of a periodic abelian group G and a non-modular field K (Chapter II), and set dom some necessary background results of a more general nature (Chapter III). In Chapter V we consider non-locally-finite groups G. The contents of the various chapters will be described in more detail in the first sections thereof.

In Section 2 we investigate the behaviour of the socle of a group ring when either the group or the field is extended, while the remainder of this section is concerned With establishing some notation and definitions (see also the list of notation commencing on page (vii)).

Let G be a group. By $\pi(G)$ we denote the set of primes p such that G has elements of order p. If is a property of groups, we say that G is almost an X-group if G has a normal X-subgroup of finite index.

Let K be a field. ie denote the group ring of G over $I I$ by $K G$, or sometimes $\pi[G]$. If

$$
\alpha=\sum_{g \in G} \alpha_{g} G \in \operatorname{KG} \quad\left(\alpha_{g} \in K\right)
$$

then the supoort of α is

$$
\text { supp } u=\left\{g \in G: x_{g^{\top}} \frac{1}{0} 0\right\},
$$

a finite subset of G.

Let V be a (right) KGmodule; , Te always assume that V is unitary. Ve denote by $A n n_{K G}(V)$ the annihilator of V in $K G$ (an ideal of $T G$), and by find $H_{N G}(V)$ the ring of $K G$-endomorphisms of V. The composition length of V is the length of a composition series for V, provided a finite such series exists.

The augmentation ideal of K map

$$
K G \rightarrow K, \quad \sum_{g \in G} \alpha_{g} g \mapsto \sum_{g \in G} \alpha_{g} \quad\left(\alpha_{g} \in K\right)
$$

(Which is induced by the group homomorphism $G \rightarrow 1$). Augmentation ideals of sroup rings rig, fH, etc. will be denoted \mathfrak{G}, $\underline{\underline{h}}$, etc. If it is a normal subgroup of G then $h=\underline{h} \cdot \mathrm{~h} G=\mathrm{KC} \cdot \underline{\mathrm{h}}$ is a tovo-sided ideal of $\bar{K} G$, being the kernel of the map $\mathbb{K} \rightarrow \mathbb{K}[r / E]$ indured by the canonical group homomorphism $0 \rightarrow r / t$. Ve shall require the following well dnown result on the augmantation ideal of a group rins:

Lemma 1.1 If K is a field and G a group with generating set $\left\{g_{i}\right\}$, then

$$
\underline{g}=\sum_{i}\left(g_{i}-1\right) K G=\sum_{i} K G\left(g_{i}-1\right)
$$

Proof (see $[18 ; 3.1 .1]$) He prove the first equality. Certainly, each $g_{i}-1 \in \underline{g}$. Conversely, suppose

$$
x=\sum_{g \in G} \alpha_{g} g \in \quad \underline{g} \quad\left(x_{\bar{G}} \in K\right)
$$

so that $\sum_{g \in G} \alpha_{g}=0$. Then

$$
\alpha=\alpha-0=\sum_{g \in G} \alpha_{g}(g-1),
$$

so if $A=\sum\left(g_{i}-1\right) K G$, it is enough to prove that $g-1 \in A$ for all gaG. Let

$$
H=\{g \in G: g-1 \in A\}
$$

If $h \in H$ then

$$
g_{i} h-1=(h-1)+\left(g_{i}-1\right) h \in A
$$

and

$$
g_{1}^{-1} h-1=(h-1)-\left(g_{i}-1\right) g_{i}^{-1} h \in A
$$

so $g_{i} h, g_{i}^{-1} h \in H$. This for all i we have $g_{i} H=g_{i}^{-1} H=H$, whence $H=<g_{i}>H=G H$. But $1 \in H$ so $H=G$ as required.

(4)

2. The socle: suigroum and iield ertonsions

Iet 2 be a ring and V left or richt R module. the Socle $30(T)$ of V is the sum of the minimal submodules of T. The ascending Ioery series of y is defined inductively by

$$
\begin{aligned}
& 3 o_{O}(V)=0 ; \\
& S o_{n+1}(V) / 3 o_{n}(V)=30\left(V / 3 o_{n}(T)\right) \quad(n=0,1,2, \ldots) .
\end{aligned}
$$

For the ring R itself ve shall usually denote the right socle So (2, by So(?); the Left socle will alvays be denoted $30\left(R^{R}\right)$. A suomodule X of V is essential in V if every non-sero submodule of V has non-zero intexsection rith \because; te shall wite \because ess V minen this ocours. The Follosing reeult is weli lmom:

Lerms ?. 1 The socle of V is the intersection or the essential subuodules of ••.
roof If ir is a minimal ant \because an essential sulmodule of T,

$$
30(V) \leqslant \bigcap\{V: I \operatorname{ess} T\}=2,
$$

say.

Conversely, ine show that every suomodule: of is is
complemented in 3 , so that E is commetely reancible and thererone contaned in 3o(T). Zy Zom's lemm tinere exista

 required.

It will be useful to know when the aumentation ideal of a group ring is essential.

Lemma 2.2 Let K be a field and $\underset{\sim}{5}$ a growo. Then \cong is not essential in $K G_{K G}$ if and only ip G is of finite order not, divisiole by char K .
 by Zaschke's theorem, so no proper right ideal is essential. Conversely, suppose in is a non-wero right ideal with
 trivial KG-module. Iet $0 \neq 0 \in \mathrm{~F}, \mathrm{and}$ rite

$$
\alpha=\sum_{x \in 0} \alpha_{x} x \quad\left(\alpha_{x} \in T\right)
$$

If $\delta \in G$ then

$$
\sum_{x=G} \alpha_{x} x=\alpha=\alpha g^{-1}=\sum_{y \in G} \alpha_{y} y^{-1}=\sum_{x \in G} \alpha_{x g} x
$$

whence $\alpha_{f}=\alpha_{i} \neq 0$. Thus $G=$ supp α is İinite. Noreover, under the canonical man $K G \rightarrow K$,

$$
\alpha=\alpha_{1} \cdot \sum_{x=G} x
$$

mans to $x_{1}|r|$. Eince $x \neq$, it follows thet $|r| \neq 0$ in -

Let KG be a group ring, \because a sub:monp of G and $Z=$ extension field of K. ie shall require a mumber of results relating the socles of hig, mitand

(a) If T_{λ} are suomodules of V, then

$$
\left(\bigcap_{\lambda}\right)^{G}=\bigcap_{\lambda} .
$$

(b) If is is a submodule of Y and H^{G} ess V^{r}, then it ess $\%$.
(c) If $\bar{H} s \%$ and v ess \because then f^{G} ess V^{G}.

$$
S O(Z G) \leqslant S O(N H) I G G .
$$

Proof Let M be a right transversal to in G.
 $\bigcap_{\lambda}=\bigcap_{\lambda}\left(\bigoplus_{x \in T} V_{\lambda} \otimes x\right)=\bigoplus_{x \in D}\left(\bigcap_{\lambda}\right) \otimes x=\left(\bigcap_{\lambda} T_{\lambda}\right)^{G}$.
(b) Ghis follons immediatoly iron (a).
(c) (s?e also [3; 2.5]) As is normal, VQx is a I-
module for each $x \in m$, and $\otimes x$ ess $V \otimes x$. Zence

$$
i^{r^{5}}=\bigoplus_{x=9} i \otimes x \text { ess } \bigoplus_{x=n} T \otimes x=T^{G}
$$

(as -a-bubmodule 30 a Cortiori as RGーBubmodule).
(d) Iemma 2.1,

$$
\text { So }(T)=\bigcap\{: \operatorname{ess} V\},
$$

so by (2) and (c)

The hyontiesis in (c) and (d) tint it is nomal may be nealrened: for example, if ascenaant or locally subnormal in G is sufficient. The folloring easy but extremely useful lemma, due to Iannah and 0'reare [8], gives a variation of (c) Wit' no such hypothesis on

Iemma 2.1 Iet K be a field and H an infinite subgroup of a locally finfte group G. Then the augmentation ideal hG is essential in KN_{m}.

Proai Suppose there exists non-zerox \quad with arich hior $=0$. Since $\overline{\lrcorner}=<\operatorname{siog} \alpha>$ is finite hut \bar{Z} is not, there eristo a finite subreouv \vec{c} of If with

$$
|F|>|I| /\left(\operatorname{dim}_{\mathbb{R}} x K I\right) .
$$

Let $?=<\mathrm{F}, \mathrm{I}\rangle$. Then $x \rightarrow 0$, so

$$
\begin{aligned}
& |D| \geqslant \operatorname{dim}_{\pi}(\alpha \sim \otimes \underset{\underline{D}}{ }) \\
& =\operatorname{dim}_{K} \alpha \underset{\sim}{D}+\operatorname{dim}_{n} \underset{\underline{D}}{ } \\
& =|\partial|\left(\operatorname{Iim}_{\mathrm{X}} \alpha I I\right) /|\Sigma|+(|\Xi|-1)|D| /|I| \\
& >|2|,
\end{aligned}
$$

a contradiction.

Lema 2.5 Iet F be field and H a suogrouv of a rroup G.

(b) If $|G: B|<\infty$, then $30(G)=0$ if and only if $30(\mathrm{Ki})=0$.
proof (a) Let $0 \neq \alpha \equiv 30(\mathbb{Z}) \cap$. Then α is cycic and completely reducible, so has the minimum condition on resubmodules. Now $x E G \cong x \mathcal{K A}^{G}$, so xEif has the minimum condition on $n-s$-somodules, and in particular contains a minimal suomodule. Hence $30(K I) \neq 0$.
(b) Since $\bigcap_{\mathcal{G} E G} H^{g}$ is normal and of finite index in both I and G, we may assume H sG. Thus So $(\mathrm{IN})=0$ implies $30(Z G)=0$ by Lemma 2.3(d). Suppose $30(\mathrm{Ki}) \neq 0$, and let I be a minimal right ideal of $K A$. Then the restriction $\left.I G\right|_{\mathrm{H}} \cong$ $\left.I^{G}\right|_{\text {H }}$ of IG to AB a direct sum or $|G: A|$ irreducible Misubmodues, so has minimum condition. 'Vortiori Io has

Te may obtain more precise information on the behaviour of the socle under cartain crow and Zield extensions usins the following resulus on 'relative projectivity'. Recall that an algebraic elenent of an extension of a field Z is called separable if its minimal polynomial over K has no reneated roots; an algevraic lield extension is separable fif all its elements are separeble.

Lemme 2.6 Juppose either
(a) $A=\pi G$ and $=\pi$, where $i n$ is a field and is a normal subgroup of a group G of fintte index not divisible by char \bar{n}; or
(b) 3 is an alsenro over a field r and $A=3$ mere F is a finite separeble eatension of F .

If V is an A module and if an A-sumodule inich as 3 -submodule
is a direct summand of T, then i is elready a direct summand
as 1 -submodule. In particular, if V is completely reduciole
as B-inodule it is completely reducible as A -module.

Proof See $[15 ; 15.2,15.4]$ or $[18 ; 7.2 .2,7.2 .3]$. Part (a) is Higman's version of Maschke's theorem.

Lemma 2.7 Let I be a field and H a normal subgroup of a

(a) $30(X G)=S O(K) \pi G$;

Droof (a) If I is a minimal ristit iden of F then IGla is completely reducible; hence rG is completely reducible by
 Lemma 2.3(d).
(0) This follow from (a) since iz tis any subgrown (not necessarily nomsl) of G and j is a risht iaeal of $k=$,
 with $1 E \mathrm{~B}$; then $\vec{H}=\bigoplus_{x=1}$ In, so

$$
\begin{aligned}
& 3 G \cap A=2 H \cap 3 . Q A \\
& =1 \leftrightarrows .1 \cap \Theta 3 \pi \\
& =3 .
\end{aligned}
$$

Ieme 2.3 Iè 2 be an extension of a field , and G a sroup.

(o) If \vec{Z} is finite separable extension of K, then
and

$$
\begin{aligned}
& \mathrm{So}(\mathrm{FG})=30(\mathrm{FG}) \mathrm{F}
\end{aligned}
$$

Proof Let $\left\{\omega_{i}\right\}$ be a basis of F over K.
(a) A proof parallel to that of Lemaa 2.3(d) may be appliad, using the basis $\left\{\omega_{i}\right\}$ instead of a transversal, and notines that

$$
\nabla G_{W G}=\oplus \cdots \omega_{1} .
$$

(b) Since
is a direct sum of $|\vec{F}: \pi|$ copies of $30(K)$, it is completely reduciole. 3 If Lema 2. $6(b)$ it follows that jo(me) is also

 2.7(3) now shows tiat

$$
30(F) \cap N G=30(T G) E \cap K G=30(E C) .
$$

FARIODIC ABMLINT GROUPS

3. Preliminaries

In this chapter we investigate consequences of the supposition that the group ring Kig has non-zero socle in the case when G is a periodic abelian group and \mathbb{F} is a non-modular field for $G(i . e . \operatorname{char}$ 苚丰 $\pi(G))$. Ne establish tro princjpal. results, which will both be of use in the investigation in Chapter III of group rings of aroitrary loonlly finite groups over arbitrary fields. Jirstly, ve detervine necessary and sufficient conditions for the socle of fic to be non-eero (Theorer 5.j). 3econdy, assumine the socle non-as aro we describe the ascending Loevf series in terms of augnentation ideals of certein subsroups of G (Corollary 6.3), and shon in partic:lar that the series reaches r after a finite number of steps (Corollary 6.4).

The necessary and sufficient conditions we shell obtain for the socle of $X G$ to be non-zero are the following:

31: G satisfies liin, the minimum condition on subroups;

3?: (is 2laost locally cyclic; and
 $k(G)$ is a certain alsebraic extension of k, to be defined in Bection 4.

The next two results proriae information on the structure of abelian sroups satisfying conditions 31 and $S 2$. If 9 is an abelian group we denote by $\Omega(G)$ the guogroup ot all elements of finite square-free order in G. i Drüfer (or quasicyclic) moup is isomorphic to the multiplicative group of all $p^{n}-t h$ comnlex roots of unity, where $n=0,1,2, \ldots$, for some fixed prime p; all proner sungroups of such a group (denoted \int_{n}) are finite.

Theorem 3.1 If G is an abelian group, the followinc are equivalent:
(a) G satisfies :inn;
(b) G is periodic and $\Omega(G)$ is finito;
(c) G has a decomoosition

$$
G=\Xi \times P_{1} \times \ldots \times P_{\square},(0 \leqslant m<\infty)
$$

where \mathfrak{F} is 1 inite and each p_{i} is a Prïfer sroup.

בroof see $[6 ; 25.1,3.1]$.

Corplary 3. 2 If f is an bolian group with lin, tine followins are equivelent:
(a) G has a finite subrroup such that G / is locallJ cyciic;
(S) \quad is almost locnIIy crolic;
(c) fonas a decomposition

$$
G=T \times P_{1} \times \ldots \times p_{\text {in }} \quad(0 \leqslant m<\infty),
$$

Where \because is finite and the pi are prüfor ${ }_{i}$ - Groups for distinct primes p_{i}.

Proof (a) $\Rightarrow(\mathrm{b})$ Let $\mathrm{n}=|\mathrm{F}|<\infty$. Since G is aoelian, $G^{n}=\left\{g^{n}: E \in G\right\}$ is a quotient of G and indeed of G / P, as $P^{n}=1$. Thus G^{n} like G / a is locally cyclic. But G / G^{n} has finite exponent and satisiies Min, so is finite by Theorem 3.1 (since a Prüfer group has infinite exvonent). Hence G is almost locally cyclic.
(o) $\Rightarrow(c)$ By Theorem 3.1 , since G satisiies IIn, there is a decomposition

$$
G=F \times P_{1} \times \ldots \times P_{m} \quad(0 \leqslant n<\infty)
$$

With s finite and each P_{i} a Druter sroum. ITon $p_{i} \times \ldots \times P_{i}$ like G is alnost locally cyclic, but has no proper siofroup of finite index, so is itself locally cyclic. Mus no toro P_{i} can be p-groups For the same prime p.
$(c) \Rightarrow(a) \quad G / F \cong P_{1} \times \ldots \times P_{m}$ is locelly cyclic.

Ie remaris that (a) and (b) remain equiralent if G is any periodic abelian roup.

To foreshado: the simiticance of condition 33 , we obsarve that it alrays holds if A is finite or \bar{i} is a finite extensinn of k, but if K is oleshraically closed then 33 holds only if G is finite. hen r_{7} is a locally cyclic group
rito : in, it is convonient to consider a condition enuivalent both to i3 and to the existance of minimal ideais in fre: nomely, the existence of m-inductive suo roups in G. ie call a finite subgroup H of G rininductive if every irreducible Ernodule faithful for I remains irreducible rien inducect up to G. For our study of K-inductive subgroups in Jection 4 , we shall require a field-theoretic lema (3.7). The next four results, and the associated definitions, are standard.

Iemma. If E is a finite extension of d field fothe following are equivalent:
(a) $コ$ is 2 shlitting ifeld of some polynomial over \rightarrow
(b) everu irreduciole oolrnoninl orer a rith a root in $コ$ splita as a prodict of Iinear fectors ovar 2.

Eroof $3 e 9$ [12; Lheorem 10, p. 12$]$.
inen the equivalent conditions (a) end (b) hold, I is called a normal extemsion of ?. Iotioe that it iollons
 then $\underset{i}{ }$ is also nommal orer $\underset{\sim}{x}$.

Lerma 3.4 rine separeble elements in an alyebraic extension form a subiseld.

Proof 3ee $[12 ;$ Theorem 11, n. 16].

```
|n ertension ef a field F is simnle if }\textrm{B}=丁(0)\mathrm{ is
```

generated over F (as a field) by a single element θ.

Lemma 2.5 Any finite separable field extension is simple． Proof See $[12 ;$ pp．54，59］．

Lemma 3.6 Suppose E_{1} and E_{2} are extensions of a field F lying in some common extension of F ．Then the following are equivalent：
（a）The canonical map

$$
\Sigma_{1} \otimes_{3} z_{2} \rightarrow \Xi_{1} 氵_{2}, \sum \alpha_{i} \otimes \beta_{i} \rightarrow \sum \alpha_{i} \beta_{i}
$$

is an isomorphism；
（b）there exists a basis of \bar{Z}_{2} over F rhich is linamely independent over Ξ_{1} ；
（c）any subset of \sum_{1} Iinearly indenendent over \vec{Z} is independent over z_{2} ．

Proop $(a) \Rightarrow(b)$ Lat $\left\{\omega_{i}\right\}$ be a basis of z_{2} over F ，so that $z_{2}=\oplus \omega_{i}$ ．Then

$$
\Xi_{1} \otimes_{2} \Xi_{2}=\Theta\left(\Xi_{1} \otimes \omega_{i}\right) .
$$

dpplying the canonical isomorgism，we find that

$$
\Xi_{1} z_{2}=\oplus \Xi_{1} \dot{\omega}_{i},
$$

so $\left\{\omega_{i}\right\}$ Is a basis of $E_{1} \Xi_{2}$ over E_{1} ，and in particular linearly indepandent over Ξ_{1} ．Jince any linearly independont set may be ertended to a hesis，we may prove similerly that（a） imコロェes（c）．
(b) \Rightarrow (a) Iet $\left\{\omega_{i}\right\}$ be a besis of z_{2} over which is linearly independant ovar Ξ_{1}. As above
$\Xi_{1} \otimes_{F} \nabla_{2}=\oplus\left(\Xi_{1} \otimes \omega_{i}\right)$.
If $\sum \alpha_{i} \otimes \omega_{i} \in \Xi_{1} \otimes_{g_{2}} z_{2}\left(\alpha_{i} \in \Xi_{i}\right)$ maps to zero in $E_{1} E_{2}$, i.e. $\sum \alpha_{i} \omega_{i}=0$, then each α_{i} is zero. Thus the canonical may (which is alwoys onto) is an isomoronism. Similarly, (c) imnlies (a).
hen (a)-(c) hold, Ξ_{1} and $د_{2}$ are said to be linaarly disfoint over 2.

Lemme 3.7 Let D and B be subsields of some field, and suppose that I is a finite normal separable extension of

(a) Dand are linearly disjoint over \mathfrak{Z};

Proof (a) By Lemma 3.5, 3 contains an element θ with $\mathrm{Z}=(\mathrm{O} \cap \mathrm{B})(\theta)$. Let f be the minimal polynomial of θ over on E . Then f is in fact irreaxible over D. For in $f=g h$, there δ and h are monic polynomisis over D, then the roots of g and h are roots of f, so lie in 2 by Lemma $3.3(b)$. The coefficisnts of and hare (plus or minus) elementary symatric functions in the ronts, so lie in on \therefore. 3ut f is irreducible over Dns, so over too.

If n is the derree of f, then $\left\{1, \theta, \ldots, \theta^{n-1}\right\}$ is a
basis of \exists over $D \cap E$, consisting of elements which are
linearly independent over D. Jo D and E are linearly disjoint over Dคコ.
(b) Let $\left\{\omega_{i}\right\}$ be a basis of D over $D \cap$, with $\omega_{1}=1$. Then $\sum D=\sum \sum \omega_{i}$. By (a), the ω_{i} are linearly independent over \sum. Suppose

$$
\beta=\sum \alpha_{i} \omega_{i} \in \operatorname{PD} D \quad\left(\alpha_{i} \in \vec{i}\right)
$$

Then $\quad\left(\alpha_{i}-\beta\right) \omega_{i}+\sum_{i \neq 1} \alpha_{i} \omega_{i}=0 \quad\left(\alpha_{i}-\beta, \alpha_{i} \in \Sigma\right)$ so $\beta=\alpha, E$. Thus $\operatorname{BD} \cap \mathrm{B}=\mathrm{P}$.

The next two lemmas wIl explain the usefulness of the assumption, mada throughout this chavter, that I is a non-modular field for G. Te say that a K-algenre setisifes a condition \cong locally if every finite subset is contained in
 'Aederburn if every finite subset lies in a semisimple artinian subelgeora.

Inman 3. 3 If G is a locally finite proun and \mathfrak{H} a field with char $K \neq \pi(G)$, then πG is locally tedderburn.

Droof If S is a finite subset of fro, then

$$
\bar{F}=\langle\sup \alpha: \alpha \in 3\rangle
$$

is a finite suhsrow of G. Then rex contains 3 and is somisimole artinion by "aschke's theorem.

Pecall that an element e of a ring is an idempotent in $e^{?}=e \neq 0$. Idempotents e and f are orthogonal if $e \hat{I}=f e=0$. An idemootent is orinitive if it cannot be expressed as the sum of t:o orthogonal idempotents.

Lema 3.9 Let a be a locally tedderburn alebora. Then
(a) every non-zero right iden of A contains an idempotent;
(b) a right idsal is minimal if and only if it is
generated by a primitive iderpotent;
(c) $30\left(A_{A}\right)$ contains and is generated by all primitire idempotents of A ;
(a) if A is comnutative then
jo $(A)=\oplus\{e A: e$ is a primitive idempotent in 1$\}$.

Froof (a) Let I be a right ideal of A containing a nonzero element x, and choose a samisimple artinian subalgabra. 3 containing x. Now (a) certainly holds in ? (since every non-zero right ideal is a direct sumend so is Eanerated by an idempotent). Hence $\alpha\left(\subseteq \alpha_{1} \leqslant I\right)$ contains an idempotent.
(b) Let e be a primitive idempotent in A and I a nonzero risht ideal contained in es. By (a), I contains an iderpotent f. Then $f \in e i$, say $\vec{I}=s \alpha$, whence $e \vec{I}=e^{2} x=e x=f$. Ho: $e=P e+(e-f e)$, and easily have $(Q a)^{2}=f e,(e-I b)^{?}=$ $e-f e, f e(e-f e)=(e-f e) f e=0$. As e is primitive, either $f e=0$ or $e-f e=0$. If $f e=0$ then $f=\hat{r}^{2}=\hat{I} e P=0$, a controliction.
ience $e=f e ミ I$, so $=$ en. thus eA is a mimal right ideal.

On the other hand, if I is a minimal right ideal of A, then $\mathrm{b}_{\mathrm{y}}(\mathrm{a})$ I contains an idempotent e. Since $0 \neq e \mathrm{e} \leqslant \mathrm{I}$, we have $I=$ eA. Noreover, if

$$
e=e_{1}+e_{2}, \quad e_{1} e_{2}=e_{2} e_{1}=0, \quad e_{i}^{2}=e_{i} \neq 0,
$$

then $O \neq e_{1}=e_{1} \in I$, so $e \in I=e_{1} A$, and $e_{2}=e_{2} e \in e_{2} e_{1} A=0$, a contradiction. Thus e is primitive.
(c) Since $30\left(A_{A}\right)$ is the sum of the minimal richt ideals, (c) follows immediately from (b).
(d) This follows from (c). The sum is direct since primitive idempotents e and f in commtative ring are either aqual or orthogonal: if ef $=0$ tinen as $e=e f+e(1-\hat{r})$ we find that $e=e f$; similarly $f=e f$. Thus if $e_{1}, e_{2}, \ldots, e_{n}$ are distinct primitive idempotents, then

$$
e_{1} A \cap \sum_{i=2}^{n} e_{i} A \leqslant e_{1} \cdot\left(\sum_{i=2}^{n} e_{i} A\right)=0
$$

(since is $x \equiv e_{1} \&$ then $x=e_{1} \alpha$).

Thus de are led to investigate the primitive idempotents in Ef : this is done in Jection 5 . As well as the question of the existence of primitive idempotents, :fe consider (for almost locally cyclic groups G with fin) the comection betreen primitive idemotentis and irreducible EG-modules. Then 33 holds, there is a one-to-one onto


```
isomorphism classes of irreducible Kof->modules with finite
centralizer (i.e. finite kernez in G); moreover there are
only finitely many non-isomorphic such modules having any
fixed finite subsroup of G as centralizer (Theorem 5.5).
But if 33 fails to hold the sitimtion is quite different:
there are no primitive idempotents in KG, but given any
finite subgroup C of G such that G/C is locally cyclic,
there exist 2 {% non-isomorphic imeducible EG-modules with
centralizer C (Theorem 5.3).
    In Section 6, as mentioned 彐jove, ir evamine tho
ascending Loery series of FG mhen 31, 32 and 33 nold.
```

Let G be a periodic abelion groun and k a field vitis char $\mathbb{K} \ddagger \pi(\%)$. Let $\overline{\mathrm{K}}$ be an algebraic closure of \bar{K}, and $\overline{\mathrm{K}}$ its multiplicstive croup. Je denote by $R(G)$ the I-suoalgebra of \bar{I} generated ∂y all images of homomorphisms $G \rightarrow \bar{E}^{*}$; as G is periodic, $X(G)$ is in fact a subfield of \bar{F}. Since the torsion suhgroup of $\overline{\mathrm{F}}$ is a direct product of Prifer groups, one for each prime not equal to char F , if G is locally cyolic then IT has exactiy one subsroup isomorphic to \& the elements of
 of G is isomornhc (albeit unneturally) to a subrroup of G.

Lemme 4.1 Let I be a finite cjolio srow and wa field rith char $\mathrm{K}+\pi(\mathrm{Z})$. Ghen there exist irreducible kH-modules faitheul for X , and all such modules have dimension $\mid \mathrm{K}(H): \mathbb{K}$, over

Proof $Z(J)^{*}$ has a unique subgroup isomoryhic to A, so we may choose a monomorphism $\theta: H \rightarrow K(H)^{*}$. Ihen $K(H)$ becomes a KH-module with E-action given by

$$
v \cdot h=v h^{\theta}, \quad v \in \pi(H), \quad h \in \mathbb{H}
$$

If $O \neq v E R(X)$ then since H^{*} generates $K(H)$ as K-algebra,
 it is faithiul for H as θ is one-to-one.

Let V be any irreducible $E=$ module faithful for $\%$. Then V is isomorphic to $K W / M$ for some maxinal ideal $\begin{aligned} & \mathrm{M} \\ & \mathrm{KH}\end{aligned}$ Now \bar{K} / M is a field, containing (since V is faithful) a multiplicative suogroup isomorphic to H which generates it over K. It follows that K / H is algebraic over K, and thonce isomorphic to the field $K(H)$. Thus

$$
\operatorname{dim}_{K} T=\operatorname{dim}_{K} K H / K=|K(H): K|,
$$

comoleting the proof.

If K is a field, G a group, and T a $K G-m o d u l e, ~ w e$ write

$$
C_{G}(T)=\{\sigma \in G: V g=v \text { for all } v \in T\} \text {. }
$$

Lema 1.? Iet G be a veriodic abelion group, fi a subgronp of G containing $\Omega(G)$, and K a field with char $\mathbb{A} \neq \pi(G)$. Iej Y be an irreducible 促module faithinl for f and a non-
 faithiul for ${ }^{\text {f. }}$

Droof Since G is abelian, the restriction $\left.T^{G}\right|_{A}$ of V^{G} to is a direct sum of copies of $\%$. $A s \quad V$ is irreducible, γ_{-}is also a direct sum of copies of V. Suppose $1 \neq E \in{ }_{G}(1)$. There exists an integer n such that $1 \neq ⿷^{n} \in \Omega(G) \leqslant H$. Jut

Let Z be a field and 6 g locally ctolic roup with in such that char $\because: \neq \pi(G)$. i finite subgoup of G fill be called $\xlongequal{T-i n d u c t i v e ~ i n ~} G$ if whenever 7 is an irreducible İ-module faithrtu for A , the induced module V^{2} is an irreducible FG-module.

Lemma 1.3 A finite subgroup F of G is x -inductive if and only if the following two conditions are satisfied:
(a) F contains $\Omega(G)$;
(b) whenever I is a finite subsroup of G containing H, we have

$$
|\vec{H}(I): \vec{B}(G)|=|I: H| .
$$

Proof Juppose H is K-inductive in G. $2 y$ Lemme 4.1 there
 is irreducible.
(a) Jupoose $\Omega(G) \$ \mathrm{~F}$; then there exists a finite nontrivial subgrow L of G fith $H I=F I$. Now $V^{I X}$ is reducible: indeed $\left\{\sum_{X \in \pm} v \otimes x: \nabla \in V\right\}$ is a proper submodinle. A Iortiori $V^{?}$ is reducible, a contradiction. jo $\Omega(G) \leqslant$. .
(0) Let L be a finite subgroup of G containing $\overline{\text { i }}$. Then T^{-}Iike γ^{r} is irresucible; by (a) and Lemma $.2 T^{L}$ is ざaithful for I. Fence using Lema 1.1,

$$
\begin{aligned}
|X(I): E(X)| & =|X(I): K| /|K(X): X| \\
& =\operatorname{dim}_{X} V^{I} / \operatorname{dim}_{X} V \\
& =|I: B|,
\end{aligned}
$$

since $V^{L}=V Q_{=I}$.

$$
\text { How suppose (} 3 \text {) and (b) hold. fe may express } G \text { as }
$$

the union of a chain

$$
H=H_{0} \leqslant H_{1} \leqslant H_{2} \leqslant \ldots \leqslant G
$$

of finite subgroups. Let V be any irreducible Kr -module faitheul for H. By (a) and Iema A.2, any irreducible subrodule of F_{i} is faithf for F_{i}, so has dimension $\left|\mathrm{K}\left(\mathrm{H}_{\mathrm{i}}\right): \mathrm{K}\right|$ by Lemma 4.1. But by (b) and Leama 4.1,

$$
\begin{aligned}
& =\operatorname{dim}_{\mathrm{E}} \mathrm{v}_{\mathrm{H}} \text {. }
\end{aligned}
$$

Hence $\mathrm{V}^{\mathrm{i}} \mathrm{i}$ is itself irreducible. No:t V may be regarded as the union of the $\mathrm{v}^{\mathrm{H}_{\mathrm{i}}}$, so is also irreducible. Thus H is F-inductive in G.
 and only if there exists an irreducible Ef-module Y faithful for and such that V^{3} is irreducisle.

Prooi If such a V exists then by the ifirst half of the proor of Lenma 4.3 H satisfies (a) and (b); then by the second half tis t-inductiva. The converse follows from Iemmat 4.1.

Corgligur 4. $=$ If the finite subgroup \because of contoins a

F-inductive subgroup ${\underset{F}{i}}$, 1 itself is F -inductive.

Prooi We have $\Omega(G) \leqslant H_{1} \leqslant H$, and, for any finite I containing H,

$$
\begin{aligned}
|Z(I): K(H)| & =\left|Z(I): Z\left(B_{1}\right)\right| /\left|K(E): Z\left(I_{1}\right)\right| \\
& =\left|I: H_{1}\right| /\left|E: H_{1}\right| \\
& =|L: B| .
\end{aligned}
$$

Prooosition 1.6 If $H \leqslant I \leqslant G$ and L is finite then in any case we have

$$
|E(I): \pi(H)| \leqslant|L: H| .
$$

Znoof If $m=|I: Z|$ and the subsroup of $Z(I)^{*}$ isomorybic to I is generated by ξ, then $\xi \in \mathbb{Z}(\mathrm{ti})$, so the polynomial $\hat{(1)}(\%)=$ $\mathrm{X}^{\mathrm{m}}-\xi^{\mathrm{m}}$ has decree m over $\pi(\mathbb{Z})$ and ξ as a root. Ence $|\Sigma(\bar{L}): \therefore(\mathrm{B})|=|\mathrm{n}(\xi): K(\Omega)| \leqslant m$.

Lemme 4.7 Let \vec{i} and A be subfields of some field. Then $|K: F| \leqslant|X: K \cap ?|$.
(Gere the ring may or may not be a field.)

Theoren A. B Let G be a locally cyclic group witi lin, and E
3. Ifeld vith char $\mathrm{K}=\boldsymbol{F} \pi(G)$. If there exists any subgroup in G, there exists a unique minimal F-inductive suosroun in G.

Proor Bince $\begin{gathered}\text {-ind } \\ \text {-inctive suoroups are finite, it is }\end{gathered}$
sufficient to show that if H_{1} and \mathbb{F}_{2} are Iminductive in G, then so is $H_{1} \cap \mathrm{I}_{2}$. But let H_{1} be K -inductive, and H_{2} any subgrour of G. Then

$$
\Omega\left(\ddot{H}_{2}\right) \leqslant \Omega(G) \cap H_{2} \leqslant H_{1} \cap H_{2} .
$$

Moreover, if I is a finite subgroup of I_{2} containing $\mathrm{H}_{1} \cap \mathrm{H}_{2}$, then $\mathrm{H}_{1} \cap \mathrm{I}_{2}=\mathrm{H}_{1} \cap \mathrm{~L}$, so

$$
\begin{aligned}
\left|K(I): K\left(B_{1} \cap H_{2}\right)\right| & =\left|K(I): K\left(B_{1} \cap I\right)\right| \\
& \geqslant\left|K(I): K\left(H_{1}\right) \cap K(I)\right| \\
& \geqslant\left|K(I) K\left(B_{1}\right): K\left(I_{1}\right)\right|
\end{aligned}
$$

by Lemaa 4.7. Clearly $E(I) E\left(F_{1}\right) \leqslant E\left(I A_{1}\right)$, and in fact we heve equality, since if $\theta: I Z_{i} \rightarrow \bar{W}^{*}$ is a homomorphism, then
 $\left|K(I): K\left(H_{1} \cap H_{2}\right)\right| \geqslant\left|K\left(\operatorname{Li}_{1}\right): W\left(H_{1}\right)\right|$ $=\left|I H_{1}: H_{1}\right|$ $=\left|I: H_{i} \cap I^{\prime}\right|$ $=\left|I: \exists_{1} \cap \mathcal{H}_{2}\right|$.

Sut $\left|\mathrm{K}(\mathrm{L}): \mathrm{K}\left(\mathrm{H}_{1} \cap \mathrm{H}_{2}\right)\right| \leqslant\left|I: \mathrm{H}_{1} \cap \mathrm{H}_{2}\right|$ by Proposition 4.6 , so by Lemma $4.3 \mathrm{H}_{1} \cap \mathrm{E}_{2}$ is K -inductive in H_{2}.

Thus if y is an irreacible $\left.r_{1} \cap H_{2}\right]$-moulle faithful for $E_{1} \cap E_{2}$, then V_{2} is irreducible, and faithtul for \mathbb{I}_{2} by Lema 4.2. If now E_{2} is also S -inductive in G, then V^{i} is irreducible; nence $\mathrm{H}_{1} \cap \mathrm{H}_{2}$ is F -inductive in G by Corollary 4.4. Nis completes the proor.

Ie shall no: investisiate more closely the conlitions under whici a locolly cyciic group with lin contains inductive subroups for various fields.

Lemma 4.9 Let G be a locally cyclic group with Min. Then $\Omega(G)$ is \mathbb{Q}-inductive in $\underset{F}{ }$.

Froof Suppose I is a finite subgroup of G containing $\ddot{i}=\Omega(C)$, and let ε be a primitive $|L|-t h$ root of unity. Then

$$
|\mathbb{Q}(I): \mathbb{Q}|=|\mathbb{Q}(\varepsilon): \mathbb{Q}|=\varphi\left(\left|I_{1}\right|\right),
$$

where Q is the Euler function. Nhs

$$
\begin{aligned}
|\mathbb{Q}(I): \mathbb{Q}(H)| & =\varphi(|I|) / \varphi(|\mathrm{H}|) \\
& =Q(|工: I||E|) / Q(|H|) \\
& =|\Sigma: H|,
\end{aligned}
$$

for $\pi(I)=\pi(I)$ and $i=p$ is a prime dividing an integer m,
 Lemmar 4.3.

[^0][^1] iaten with $\%$. Fidentlu the coneentic oil dutaibilit and
hirhest common rachor extend to supernabural numbers.

No followinr is : sifehtur strenstinened fom 0 ?
$[9 ; 2.2]:$

Lema 1.10 Iet G be a Iocally orrlic spoum ith .in, and

the supernatural murnber associated fitia and put

$$
\begin{aligned}
& n=\left(1 \cdot 2^{2} \cdot 3 \cdot 5 \cdot 7 \ldots\right), \\
& r=0\left(0^{1}, n\right), \\
& m=\left(1, p^{2 r}-1\right) .
\end{aligned}
$$

When the naime sungrou the order in in io $\mathbb{F}_{\text {natinductive }}$ in G

 and $F_{p}(T)$ in the smallast extension $F_{\text {at }}$ of \mathbb{F}_{p} suin thet

$$
\left|\mathbb{F}_{, i}(L): \sqrt{F_{a}}\right|=i=0\left(x^{i}, l\right)
$$

$$
o(p, \ell) / o(p, a)=\ell / a .
$$

Note that o $\left(p^{d}, m\right)=r$, for since $n\left|m, r=o\left(p^{d}, n\right)\right| o\left(p^{2}, m\right)$, Mine as $n\left|p^{\operatorname{dr}}-1, o\left(p^{n}, m\right)\right| r$. is shall orove by induction on $\ell /$ (more precisely, on the sum of the exponents in the prime power factors of l / m) that if $o\left(p^{d}, \ell\right)=t$ and $p^{d t}-1=x l$, then $(1, y / m)=1$, and $t / r=\ell / m$.

Firstiy, let $l=m$, so $t=r$. Trite $p^{d r}-1=k m$. Then $(M, T)=\left(y^{2}-1, I\right)=m$, so $(k, Y / m)=1$. Liso $t / r=1=l / m$.

No: suppose that m|l|la|r, where q is a prime. Zet $t=0\left(y^{d}, l\right)$ and $y^{i t}-1=5 l$. By induction se nay assume that $(\mathrm{k}, \mathrm{r} / \mathrm{m})=1$ and $\mathrm{t} / \mathrm{r}=\mathrm{l} / \mathrm{m}$. Se then have

$$
\begin{aligned}
n^{a t 2} & =(1+2 \ell)^{a} \\
& =1+a l+\frac{1}{2} q(q-1)(k \ell)^{2}+\ldots+(2 \ell)^{q} .
\end{aligned}
$$

Let a_{1} I a be prime. If $q_{1} \neq a$ then as $a q_{1} \mid l$ wa have

$$
p^{d t c} \equiv 1+c k l \quad\left(\bmod \quad q_{1}\right)
$$

If $a_{1}=q$ ne have a $\mid \ell$ so (since $\left|\left\lvert\,\left(\frac{q}{s}\right)\right.\right.$ for $s=2, \ldots,-1$)

$$
p^{d t a} \equiv 1+a k l+(k l)^{q} \quad\left(\bmod l^{2}\right)
$$

Thence $\quad \eta^{d+\sigma} \equiv i+q z l \quad\left(\bmod l q^{2}\right)$
provided >2. Sut if $=2$ then $2^{2} \mid$ la \mid mence $2^{2}|n| m \mid \ell$, and again :a outain

$$
\operatorname{man}^{a t n} \equiv 1+\cos ^{2} \quad\left(\bmod \operatorname{la}^{2}\right)
$$

$$
\text { In paricinar se see that } \ell 0^{\text {the }}-1,30 t^{\prime}=0\left(2^{4}, \ell_{1}\right)
$$

$$
\text { Ifrites th. Moroover, } \ell \mid \ell, \text { so } t=0\left(p^{2}, \ell\right) \mid t^{\prime} \cdot \text { In }
$$

$t\left|t^{\prime}\right| t a, b u t t \neq t$, so $o\left(p^{d}, l_{1}\right)=t^{\prime}=t q$. le have

$$
t / r=t q / r=l q / a .
$$

Wow wrije $p^{d t}-1=k^{\prime} \hat{i} q$. $3 y$ the ajove congruences, if I_{1} is zny prime divisor of T, we have

$$
\therefore l a \equiv k l a \quad\left(\bmod \ln a_{1}\right),
$$

whence $\quad k^{\prime} \equiv k \quad\left(\bmod q_{1}\right)$.
Thus if $a_{1} \mid\left(k^{\prime}, N / m\right)$ then $a_{1} \mid(x, N / m)=1$, a contradiction. Hence $\left(\alpha^{\prime}, \quad V / m\right)=1$. Whis completes the induction, and the proos.

```
    The suycoun re have constructer is in almost aty
cases mininal inductive, as we no: sho:.
```

Propozition '. 11 itionotation as in Lamen 1.10, it is tra minimal $\vec{T}_{\text {d }}$-inductiote subsoun of a unless
(a) $\mid 0$ (a) $\mid=4$;
(b) $y^{2} \equiv 3$ (mod 1); and
(c) $o\left(p^{d}, m / 4\right)$ is $o d x$,
in which case the subron of index 2 in is minimal
inductire.

$o\left(a^{2}, y!a\left(g^{t}, n\right)=r\right.$; thus 4 divites $\left(x, p^{n t r}-i\right)=n$, and (0) make. gon:.
jupose that Fi is not miniar inductive．Wen I contains a prover inductive suberoun I．崄 Corollary 4.5 re may choose I marimal in A ，so that $q=|n=I|$ is prime．Let $l=|L|=m / q$.

Suppose $n \mid l$ ．Since $l \mid m$ ，we then have

$$
r=o\left(p^{d}, n\right)\left|o\left(p^{d}, \ell\right)\right| o\left(\underline{p}^{d}, m\right)=r
$$

（see the proof of Lemma 4．10）．Hence usinf Lemma $4 . \overline{2}(\mathrm{~b})$ ，

$$
\begin{aligned}
\underline{q} & =|E: L| \\
& =\left|\mathbb{F}_{p^{d}}(Z): \mathbb{F}_{p^{d}}(L)\right| \\
& =o\left(p^{d}, a\right) / o\left(p^{d}, l\right) \\
& =1,
\end{aligned}
$$

a．contradiction．Ohus nfl．3ut by Lema t．j（a），$\Omega(G) \leqslant L$ ， whence（tit 2．3．5．7．．．．）divides ℓ ．Hence tre see that $2^{2} \| n$ （that is，$\left(2^{c 0}, n\right)=2^{2}$ ）but $2 \| \ell$ ．Since $n \mid m$ and q is prime， it follors that $q=2$ and $2^{2} \| m$ ．of course，$p \neq 2$ ．

$$
\text { If }(x, y)=1 \text { then } o\left(v^{d}, x y\right)=\left[o\left(p^{d}, x\right), o\left(p^{d}, y\right)\right] \text { (the }
$$ least common mulfiple）．Frite $m=2 l=2^{2} z$ ，so that ユイz． From ajove，

$$
2=q=\frac{o\left(p^{d}, m\right)}{o\left(p^{d}, l\right)}=\frac{\left[o\left(p^{d}, 2^{2}\right), o\left(p^{d}, z\right)\right]}{\left[o\left(p^{d}, ?\right), o\left(p^{d}, z\right)\right]}
$$

whence $\left(3 \sin \circ\left(p^{d}, 2\right)=1\right)$ re obtain

$$
\left[0\left(p^{\lambda}, 2^{2}\right), o\left(n^{d}, z\right)\right]=2.0\left(n^{d}, z\right)
$$

Since the ralue of $o\left(3^{d}, 2^{2}\right)$ must be either 1 or 2 ，ye see
thet $0\left(y^{1}, 2^{2}\right)=$? (rhence (b)) mat 2 $0\left(y^{1}, z\right.$) (thance (c)).
As $2^{2} \mid n$, we have

$$
2=o\left(p^{d}, 2^{2}\right) \quad o\left(p^{d}, n\right)=r,
$$

so $p^{2 d}-1$ divides $p^{d r}-1$. But $2 \mid p^{d}-1$ and $2^{2} \mid p^{d}+1$, so $2^{3}\left|p^{2 d}-1\right| p^{d r}-1$. No: $2^{2} \| m=\left(\pi, p^{d r}-1\right)$, so $2^{2}\| \|$, i.e. (a) holds.

Conversely suppose that (a), (b) and (c) hold, and let L be the subgroup of Index 2 in A. Jince $2^{2}|n| m=|H|$, clearly $\Omega(G) \leqslant I$. Moreover, riting $|H|=2|I|=?^{2} z$, so that 2ła, we have

$$
\begin{aligned}
\left|\mathbb{F}_{p, 4}(\mathbb{H}): \mathbb{F}_{p, 1}\left(H_{1}\right)\right| & =o\left(p^{d},|n|\right) / o\left(p^{d},|I|\right) \\
& =\frac{\left[o\left(p^{2}, 2^{2}\right), o\left(p^{d}, 2\right)\right]}{\left[o\left(0^{d}, 2\right), o\left(p^{d}, z\right)\right]} \\
& =o\left(2^{d}, 2^{2}\right)=2=|i: I|
\end{aligned}
$$

(by (c) then (n)). Jince x is inductive, it follorm 0%
Lemma t. 3 that I is too.

Pinally, if I_{1} is an inauctive subrrow of I, we see as beione that $\left|I: I_{1}\right|$ is a power of 2 . ut $\Omega(u) \leqslant I_{1}$ whence 2 divides $\left|L_{1}\right|$, and $2 \||I|$, so $I_{1}=I_{\text {. }}$. lence I is minimal inductive.

In passing from prime fiells（covered by Lemas 4.9 and 4．10）to arbitrary fields，we shall apoly Lemm 3．7，the relevance of which is explained by the rollowing：

Iemma 1．1？If I is a finite cyclic groun，k a field with char $k \neq \pi(L)$ ，and T a field with $k \leqslant T \leqslant k(L)$ ，then $k(L)$ is a finite normal separable extension of T．

Proof $h s k(J)$ is the splitting field orer ：of the polynomial $X^{|L|}-1$ ，it is a finite normal zatension ois． Bince $\left.X^{|I|}\right|_{-1}$ has no repeated roots． $10: k(I)$ is generated over I by the roots of $\mathrm{X}^{|I|} \mid-1$ ，so by Ierma $3.4 \underline{k}(\bar{y})$ is separable over？．

Zheoren 1.13 Let x be any field，k its prime field，and G a locally cyclic group satisfying win with char $k \neq \pi(G)$ ．Then G has a K －inductive subcroup if and only if

$$
|k(G) \cap \pi: k|<\infty .
$$

（Fere $k(G) \cap K$ is a subfield of \bar{A} ，in which \bar{E} and $k(G)$ are eriondied．）

Proof Supose that H is a \because－inductive shogroup of G and L is בinite subroun of containinf th Then hy Pronosition土．⿱㇒ we have

$$
|k(I): k(J)| \leqslant|I: 甘|=|:(L): K(G)|
$$


```
    |N(I):N(I)| = |K(L)K(I):A(E)|
    * |k(I):k(I)\cap#(E)|
    s |k(I):k(I)|
(as k(i) <k(I)\capk(II)). Ye nov bave
\[
|k(I): k(I) \cap X(E)|=|k(I): k(J)|,
\]
whence
\[
k(I) \cap \mathbb{R} k(I) \cap Z(\exists)=k(\Psi)
\]
\[
\text { Is } G \text { is locally finite it follows that } r(G) \cap X \leqslant k(J) \text {. Hence }
\]
\[
|k(G) \cap E: k| \leqslant|k(E): N| \leqslant|E|<\infty .
\]
Conversely, suppose that \(\left|x(\sigma) \cap^{-r}: \Sigma\right|<\infty:\) say
```



```
actwaily ascume thet s=1). 3y Ienma f.9 or 4.10, as k is a
prime fizld,G contains ョ z-inductive subgroup ap. Since
is locally finite, there exists e finite suogroup I of G
containing E, and such that }\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{S}{}\inl(f)\mathrm{ . when
    k(G)\capu}={\mp@code{L
ie shall show that I is z-inductive in %. Note first that
\Omega(G)\leqslant & | by Iemma 4.3(a).
Let \(L\) be a finite subgroup of \(G\) containing \(\because\). Then
\[
k(I) \cap K \leqslant k(G) \cap r \leqslant k(\pi) .
\]
```



``` applying iamai d.12), we obtain
\[
X(i) \cap k(I)=k(H) \cap k(L)=k(H) .
\]
```

3y Lerna 3.7(a), $\mathbb{H}(H)(=)$ and $k(\pi) ;=$) are Linearly disjoint orer their intarsection in(I). Eance a basis for
 over $\mathrm{F}(\mathrm{H})$. Thus

$$
|X(I): E(U)|=|S(I): K(E)|=|I: I|
$$

as $\mathrm{H} \geqslant \mathrm{H}_{1}$ is k-inductive by Corollary 4.5. By Lemm 4.3, in is K-inductive in G.

Corolisry 4.11 Let X be any field, k its prime field, and G a periodic abelian group with char $k \neq \pi(6)$. Juppose that $|x(G) \cap \mathrm{F}: \mathrm{k}|<\infty$. Then overy localy cyclic quotient of G satisfying Min contains a "-inductive suogrop.
 also an image of fr, and therefore $k(\bar{G}) \leqslant i c(\})$. ITo:s apply Rineorem A.13.

Iet G be an abelion rroup and E a field. Ir $\alpha \in T G$,
re vrite

$$
C_{C}(\alpha)=\{\xi \in G: \alpha,=\alpha\} .
$$

Since G is abelian, $C_{G}(\alpha)$ is in fact the centralizer $\mathcal{C}_{G}(\alpha, G)$
 KG, se say that e is faithful (for G) if $C_{G}(e)=1$.

Ierma 5.1 Let G be a periodic abelian sroup and π a field with char $\mathrm{A} \neq \pi(G)$. Suppose $K G$ contains a primitive idempotent e. Then G satisfies Min and is almost locally cyclic. If e is zaithful, G is locally cyclic, and <supp $e>$ is Z-indloctre in .

 module y Lemmas 3.8 and 3.0(b). Is in the proof of Lemma 4. う, it iollo:s that $\Omega(\%) \leqslant$, whence $\Omega(\%)$ is finite and G setisfies Iin (aheorem 3.1). If e is faithful for Go for . R, then \vec{F} is R-inductive in bry Covollary 4.4.

The roup $O=\sigma_{G}(\theta)$ is finite, since it acto Initilfully (by multiplication) as a proup of permutations on the finite set sugn e. The irreduciole Rirmodule erg, considered as a rine, is actually a field P. The homomorphism $G \rightarrow F^{*}$,

cyclic. Thus G is almost locally cyclic by Corollary 3.2. If e is faithful then $C=1$ and G itself is locally cyclic. This completes the proof.
'We shall now investigate the circumstances under which KG contains primitive idempotents faithful for G, given that G is locelly cyclic and satisfies Min. We shall need the following technical lemma (which will also be used in Sections 6 and 15).

Lemma 5.2 Let G be a periodic abelian group and Z field with char $K \not \subset \pi(G)$. Let \mathcal{L} be a family of finite subgroups of G such that every finite subset of G lies in some member of \mathcal{L}. Given $\left\{e_{L}: L \in \mathcal{L}\right\}$ such that for $L_{1}, L_{2} \in \mathcal{L}, e_{L_{1}}$ is a primitive idempotent in $K L_{1}$, and $e_{L_{1}} e_{I_{2}} \neq 0$, there exists a maxinal ideal M of $K G$ such that
(a) for each $L \in \mathcal{L}, M \cap K L=\left(1-e_{\mathcal{L}}\right) K I$ (in particular, $\left.e_{I} \nsubseteq M\right) ;$
(b) $\quad C_{G}(K G / M)=U\left\{C_{G}\left(e_{L}\right): L \in \mathcal{L}\right\}$.

Proop Let

$$
M=U\left\{\left(1-e_{L}\right) K L: L \in \mathcal{L}\right\}
$$

We show first that M is an ideal in KG. If $I_{1}, I_{2} \in \mathcal{L}$, there exists $L \in \mathcal{L}$ with $I_{1} L_{2} \leq I$. Since

$$
e_{L}=e_{L_{1}} e_{L}+\left(1-e_{L_{i}}\right) e_{L} \quad(i=1,2)
$$

is primitive in $K L$ and $\left(e_{L_{i}} e_{I}\right)^{2}=e_{L_{i}} e_{I} \neq 0$, we conclude that
cyclic. Thus G is almost locally cyclic by Corollary 3.2. If e is faithful then $G=1$ and G itself is locally cyclic. This completes the proof.

We shall now investigate the circumstances under which KG contains primitive idempotents faithful for G, given that G is locelly cyclic and satisfies Min. We shall need the following technical lemma (which will also be used in Sections 6 and 15).

Lemma 5.2 Let G be a periodic abelian group and \mathbb{Z} a field with char $K \notin \pi(G)$. Let \mathcal{Z} be a family of finite subgroups of G such that every finite subset of G lies in some member of \mathcal{L}. Given $\left\{e_{L}: L \in \mathcal{L}\right\}$ such that for $L_{1}, I_{2} \in \mathcal{L}, e_{L_{1}}$ is a primitive idempotent in KI_{1}, and $e_{L_{1}} e_{I_{2}} \neq 0$, there exists a maxisal ideal M of $K G$ such that
(a) for each $L \in \mathcal{L}, M \cap K L=\left(1-e_{I}\right) K L$ (in particular, $\left.e_{L} \not \ddagger M\right) ;$
(b) $C_{G}(K G / M)=U\left\{C_{G}\left(e_{I}\right): L \in \mathcal{Z}\right\}$.

Proof Let

$$
M=U\left\{\left(1-e_{I}\right) K L: L \in \mathcal{L}\right\}
$$

We show eirst that M is an ideal in $K G$. If $L_{1}, L_{2} \in \mathcal{L}$, there exists $L \in \mathcal{L}$ with $L_{1} L_{2} \leq L$. Since

$$
e_{I}=e_{L_{i}} e_{L}+\left(1-e_{L_{i}}\right) e_{L} \quad(i=1,2)
$$

is primitive in $K L$ and $\left(e_{L_{i}} e_{L}\right)^{2}=e_{L_{i}} e_{L} \neq 0$, we conclude that

$$
\begin{aligned}
e_{L_{i}} e_{I}= & e_{L}, \text { whence }\left(1-e_{L_{i}}\right)\left(1-e_{I}\right)=1-e_{L_{i}} \cdot \text { Thus } \\
& \left(1-e_{L_{1}}\right) K L_{1}+\left(1-e_{L_{2}}\right) K I_{2} \subseteq\left(1-e_{I}\right) K 工 \subseteq \mathbb{M} .
\end{aligned}
$$

Hence M is additively closed, and therefore clearly a Ksubspace of $K G . \quad I f I_{1} \in \mathcal{L}$ and $g \in G$, there exists $L \in \mathcal{L}$ with $\left\langle I_{q}, g\right\rangle \leqslant L$, and we have

$$
\begin{aligned}
\left(1-e_{L_{1}}\right) K L_{1} g & \subseteq\left(1-e_{L}\right) K L g \\
& =\left(1-e_{L}\right) K L \subseteq M
\end{aligned}
$$

whence M is indeed an ideal of $K G$.

Suppose for some $L \in \mathcal{L}, e_{L} \in M$. Then $e_{L} \in\left(1-e_{I_{1}}\right) K I_{1}$ for some $I_{1} \in \mathcal{Z}$, and we have $e_{I}=\left(1-e_{I_{1}}\right) e_{I}$ whence $e_{I_{1}} e_{I}=0$, a contradiction. Thus

$$
\left(1-e_{L}\right) K I \leqslant M \cap K L \notin K I
$$

Since char $K \notin \pi(I)$ and e_{L} is primitive in $K I,\left(1-e_{L}\right) K$ is a maximal ideal of $K L$, so we have (a).

To show that M is a maximal ideal of $K G$, suppose that $\alpha \in K G-M$, and let supp $x \subseteq L \in \mathcal{L}$. Then $x \in K I-(M \cap K I)$, so $t \in(M \cap K L)+\propto K L \subseteq M+\propto K G$. Hence $M+\chi K G=K G$ as required.

Let $L_{1} \in \mathcal{L}, x \in C_{G}\left(\theta_{L_{1}}\right)$, and $\alpha \in K G$. Choose $L \in \mathcal{L}$ with $\left\langle x\right.$, supp $\left.\alpha, L_{1}\right\rangle \leqslant I$.

As before $e_{L_{1}} e_{I}=e_{I}$, so $x \in G_{G}\left(e_{I}\right)$. Thus $(\alpha x-\alpha) e_{I}=\alpha\left(x e_{I}-e_{L}\right)=0$,
whence $\alpha x-\alpha \in\left(1-e_{L}\right) \mathbb{K} \leq \mathbb{M}$, 1.e. $(x+M) x=x+M$. It follows that

$$
\bigcup\left\{C_{G}\left(e_{L}\right): L \in \mathcal{L}\right\} \leqslant C_{G}(K G / M)
$$

Conversely let $x \in C_{G}(K G / M)$, so that $x-1 \in M$, and there exists $L \in \mathcal{L}$ with $x-1 \in\left(1-e_{L}\right) K L$. Then $e_{I}(x-1)=0$, so $x \in C_{G}\left(e_{I}\right)$. This completes the proof of (b).

Theorem 5.3 Let G be a locally cyclic group with Min and K a field with char $K=\pi(G)$. Then the following are equivalent:
(a) KG contains a faithful primitive idempotent;
(b) G contains a K-inductive subgroup;
(c) there are only finitely many non-isomorphic irreducible KG-modules faithful for G;
(d) there do not exist $2^{\text {to }}$ non-isomorphic irreducible KG-modules faithful for G;
(e) $|k(G) \cap K: k|<\infty$, where k is the prime field of K. Furthermore, when (a)-(e) hold, there is a ono-to-one onto correspondence between faithful primitive idempotents of $K G$ and isomorphism classes of irreducible KG-modules falthful for G.

Proor (a) implies (b) by Lemma 5.1, and (b) is equivalent to (e) by Theorem 4.13.

Now suppose H is a K-inductive subgroup of G, and V Is an irreducible KG-module faithful for G. Since H is finite, $T_{i n}$ is completely reducible, so it contains an
irreducible $K-$ submodule N say. Then $V_{H}=\sum_{X \in G} W x$, and $W x \cong W$ as $K H$-modules since G is abelian. Hence $C_{H}(V)=$ $C_{\mathrm{H}}\left(V_{\mathrm{H}}\right)=1$. So as H is K -inductive, N^{G} is irreducible. But there is a non-zero $K G-m a p V^{G} \rightarrow V$, $W \otimes x \mapsto W X$, so $V \cong V^{G}$. Thus overy irreducible $K G-m o d u l e ~ f a i t h f u l ~ f o r ~ G ~ i s ~ i s o m o r p h i c ~$ to W^{G} for some irreducible KE-module N faithful for H . (Note that $W \cong e K F$ and $V \cong e K G$ for some idempotent e in $K H$ which is faithful and primitive in KG.) There are only finitely many non-isomorphic such W, and therefore only finitely many nonisomorphic irreducible XG-modules faithful for G. Hence (b) implies (c). Trivially (c) implies (d).

The last part of the theorem now follows also. For if e is a faithful prinitive idempotent in KG, then eKG is an irreducible KG-module faithful for G; as we have just shown, every such module arises in this way. If e and f are idempotents in $K G$ and eKG $\cong f K G$, then if $\theta:$ eKG $\rightarrow f K G$ is an isomorphism, we have $\theta(e)=f \theta(e)=\theta(e) f$; applying θ^{-1} we obtain e=ef. Similarly $f=f e, ~ s o e=f$.

To prove that (d) implies (a), we shall assume that KG contains no faithful primitive idempotent, and exhibit $2^{i V_{0}}$ non-isomorphic irreducible $\mathrm{KG}-\mathrm{modules}$ faithful for G. Let

$$
\Omega(G)=L_{0} \leqslant I_{1} \leqslant I_{2} \leqslant \ldots \leqslant G
$$

be a chain of finite subgroups with union G.

For $\mathrm{n}=0,1,2, \ldots$ let T_{n} denote the set of all
n-tuples with each entry either 0 or 1. By induction we shall construct for each integer n a finite subgroup H_{n} of G and for each $p \in T_{n}$ a faithful primitive idempotent e_{ϕ} in KH_{n}. Firstiy, Let $\mathrm{H}_{\mathrm{O}}=\mathrm{L}_{\mathrm{O}}=\Omega(\mathrm{G})$. By Lemma 4.1, KH_{O} contains a faithful primitive idempotent e.

Now suppose inductively that we have constructed H_{n} and $\left\{e_{p}: \varphi \in T_{n}\right\}$. By Lemma 4.2 each e_{φ} is faithful for G, so by hypothesis is not primitive in KG. Hence we may choose a finite subgroup H_{n+1} of G containing $H_{n} I_{n+1}$ and such that for each $\varphi \in T_{n}$, e_{Q} decomposes in $K Z_{n+1}$; say
where $e_{(\varphi, 0)}$ and $e_{(\varphi, 1)}$ are primitive idempotents in $K H_{n+1}$. By Lemma 4.2 , since $e_{Q} K H_{n+1}=\left.e_{\varphi} K H_{n}\right|^{H_{n+1}}, e_{(\varphi, 0)}$ and $e_{(\varphi, 1)}$ are faithful for H_{n+1}. Thus we have chosen e_{φ}, for each $\varphi^{\prime} \in T_{n+1}$. This completes the inductive construction. Note that

$$
\bigcup_{n=0}^{\infty} H_{n}=\bigcup_{n=0}^{\infty} I_{n}=G .
$$

Let $p=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ be an infinite sequence of $0^{\prime} s$ and 1's. Write $e_{0}(\varphi)=\theta$ and $e_{n}(\varphi)=\theta\left(a_{1}, \ldots, a_{n}\right)(n=1,2, \ldots)$. If $1 \leqslant m \leqslant n$ then by our construction $e_{m}(\varphi) e_{n}(\varphi)=e_{n}(\varphi) \neq 0$. By Lemma 5.2 with $\mathcal{L}=\left\{\mathrm{H}_{\mathrm{O}}, \mathrm{H}_{1}, \ldots\right\}$, there is a maximal ideal $M=M(\varphi)$ of $K G$ with $1-e_{n}(\varphi) \in M(Q)$ and $e_{n}(\varphi) \notin M(\varphi)$ for all n, and

$$
C_{G}(K G / M(\varphi))=\bigcup_{n=0}^{\infty} C_{G}\left(e_{n}(\varphi)\right)=1
$$

Thus $V(\varphi)=K G / M(\varphi)$ is an irreducible $K G-m o d u l e$ faithful for G.

If $\varphi \neq \psi$ then $V(\varphi)$ and $V(\psi)$ are not $K G-i s o m o r p h i c$. For il φ and ψ differ first in the $n-t h$ place, then $e_{n}(\varphi) e_{n}(\psi)=0$; hence $e_{n}(\psi)=e_{n}(\psi)\left(1-e_{n}(\varphi)\right) \in M(\varphi)$, so $e_{n}(\psi)$ annihilates $V(\varphi)$. But $1-e_{n}(\psi) \in M(\psi)$, so $e_{n}(\psi)$ acts as the identity on $V(\psi)$. This completes the proof of the theorem.

In $[1 ; 2.12]$ (see also $[18 ; 14.4 .3(i i)]$) S.D. Berman proves a result related to part of Theorem 5.3; namely, if G is an infinite abelian p-group and K is a field with char $\mathbb{K} \neq \square$ and 'of the first kind with respect to p ' (a condition equivalent to $\left.\left|k\left(C_{p}\right) \cap K: k\right|<\infty\right)$, then $K G$ contains a primitive idempotent if and only if $G \cong C_{F} \times F$ where F is finite.

We now extend parts of Theorem 5.3 from locally cyclic to abelian almost locally cyclic groups. The result which we shall obtain (Theorem 5.5) is also a generalization of $[9 ; 2.5]$. ive shall require:

Lemma 5.4 Let \mathbb{Z} be a field, G a periodic abelian group with char $\mathbb{F} \notin \pi(G)$, and C a Pinite subgroup of G. Then the canonical projection $\theta: K G \rightarrow K[G / C]$ determines a one-to-one map from the set of primitive idempctents e in KG with
$C_{G}(e)=C$ onto the set of faithful primitive idempotents in $\mathrm{K}[G / C]$. (Both these sets might be empty.)

Proof If $x \in K G$ we write $\theta(x)=\bar{x}$. Let ν denote the idempotent

$$
\frac{1}{|c|} \sum_{x \in C} x,
$$

so that $\bar{\nu}=1$. If $\alpha \in \mathbb{\underline { c }} \mathbb{K} \cap \nu K G$ then

$$
\alpha=\nu \alpha \in \nu \underline{\underline{c}} K G=0
$$

(since if $x \in C$ then $\nu(x-1)=\nu x-\nu=0$). Thus

$$
\operatorname{ker} \theta \cap \nu K G=\underline{\underline{c}} \mathrm{KG} \cap \nu K G=0 .
$$

(In fact it is easily seen that $K G=\underset{N G G \Theta \nu K G .) ~}{\text { g }}$

Let X be the set of idempotents e in $K G$ with $C_{G}(e) \geqslant C$, and Y the set of all idempotents in $K[G / C]$. We claim that θ maps X bifectively onto Y. For suppose $e_{i} \in X$ ($i=1,2$). Since $C \leqslant C_{G}\left(e_{i}\right)$, $\nu e_{i}=e_{i}$, so if $\bar{e}_{i}=0$ we have $e_{i} \in \operatorname{ker} \theta \cap \nu K G=0$, a contradiction. Thus $\bar{e}_{i} \in Y$. If $\bar{e}_{1}=\bar{e}_{2}$ then $\theta_{1}-e_{2} \in$ ker $\theta \cap \nu K G=0$, so $e_{1}=e_{2}$. If $\bar{\alpha} \in Y$ ($x \in K G$) put $f=\nu x$. Then $\bar{f}=\bar{\nu} \bar{x}=\bar{\alpha}$ (so $f \neq 0$); moreover

$$
f-f^{2}=\nu\left(\alpha-\alpha^{2}\right) \in \operatorname{ker} \theta \cap \nu K G=0
$$

and

$$
C_{G}(f)=C_{G}(\nu \alpha) \geqslant c_{G}(\nu) \geqslant C,
$$

so $I \in \mathbb{X}$.

We next claim that if $e \in K$ then $C_{G}(\bar{\theta})=C_{G}(e) / C$. For if $g \in C_{G}(e)$ then $\bar{e} \bar{g}=\overline{e g}=\bar{\theta}$, so $g C \in C_{\bar{G}}(\bar{e})$. Conversely, suppose $\mathrm{gC} \in \mathrm{C}_{\overline{\mathrm{G}}}(\overline{\mathrm{e}})$; then $\overline{\operatorname{eg}}=\bar{\theta}$, so eg-e
$g \in C_{G}(e)$. It follows that $C_{G}(e)=C$ if and only if \bar{e} is faithful for G/C.

To complete the proof it is sufficient to show that $e \in X$ is not primitive in $K G$ if and only if \bar{e} is not primitive in $\mathbb{K}[G / C]$. Thus suppose

$$
e=e_{1}+e_{2}, \quad e_{1} e_{2}=0, \quad e_{i}^{2}=\theta_{i} \neq 0
$$

Since ee ${ }_{i}=e_{i}$ we have $C \leqslant C_{G}(e) \leqslant C_{G}\left(e_{i}\right)$, so $e_{i} \in X$. Hence

$$
\bar{e}=\bar{e}_{1}+\bar{e}_{2}, \quad \bar{e}_{1} \bar{e}_{2}=0, \quad \bar{e}_{i}^{2}=\bar{e}_{i} \neq 0
$$

Conversely, suppose

$$
\vec{e}=\bar{x}_{1}+\bar{x}_{2}, \quad \bar{x}_{1} \bar{\alpha}_{2}=0, \quad \bar{\alpha}_{i}^{2}=\bar{x}_{i} \neq 0,
$$

and let $f_{i}=\nu i_{i}$ as before. Then

$$
e-f_{1}-f_{2}=\nu\left(e-x_{1}-\alpha_{2}\right) \in \operatorname{ker} e \cap \nu \mathrm{ZG}=0,
$$

and similarly $f_{1} f_{2}=\nu\left(x_{1} \alpha_{2}\right)=0$. Hence

$$
e=f_{1}+f_{2}, \quad f_{1} f_{2}=0, \quad f_{i}^{2}=f_{i} \neq 0
$$

Theorem 5.5 Let K be a field, k its prime iield, and G an abelian almost locally cyclic group with Min such that char $k \notin \pi(G)$. If $|k(G) \cap Z: k|=\infty$, then $K G$ contains no primitive idempotents. Suppose that $|k(G) \cap K: k|<\infty$. If C is any finite subgroup of G such that G / C is locally cyclic, then $K G$ contains a non-zero finite number of primitive idempotents e with $C_{G}(e)=C$, and there is a onemto-one onto correspondence between such idempotents and isomorphism classes of irreducible $K G-m o d u l e s ~ V i t h ~ C_{G}(V)=C$.

Proof Suppose that KG contains a primitive idempotent e; we show that $|k(G) \cap K: k|<\infty$. Let $C=C_{G}(e)$. By Lemma 5.4, the image of e in $K[G / C]$ is a primitive idempotent faithful for G/C. Thus G/C is locally cyclic, and by Theorem 5.3 $|k(G / C) \cap K: k|<\infty$.

Since every image of G / C is an image of G, we have $k(G / C) \leqslant k(G)$. Now let $F=k\left(\Pi O_{p}(G)\right)$, where the product is taken over those primes p such that $O_{F}(G)$ is finite. Then $|F: k|<\infty$ since G satisites Min. Moreover $k(G)=F \cdot k(G / C)$. For $k(G)$ is determined by the exponerts of the primary components of G, and since C is finite, if $\exp O_{p}(G)=\infty$ then $\exp O_{p}(G / C)=\infty$. Hence by Lemma 4.7,

$$
|k(G): k(G / C)|=|F \cdot k(G / C): k(G / C)| \leqslant|F: k|<\infty .
$$

Now $k(G / C)$ is a union of finite normal separable
extensions of $k(G / C) \cap K$ (see Lemma 4.12); Lemana 3.7(a)
together with a local argument shows that $k(G / C)$ and \underline{I} are linearly disjoint over $k(G / C) \cap K$. In particular, any subset of $k(G) \cap K$ which is linearly independent over $k(G / C) \cap K$ is a subset of $k(G)$ which is linearly independent over $k(G / C)$, so

$$
|k(G) \cap K: k(G / C) \cap K| \leqslant|k(G): k(G / C)|<\infty .
$$

Ye now have

$$
|k(G) \cap K: k|=|k(G) \cap K: k(G / C) \cap K||k(G / C) \cap K: k|<\infty .
$$

Now suppose that $|k(G) \cap \mathbb{Z}: k|<\infty$, and that G is a
finite subgroup of G such that G / C is locally cyclic. Since $k(G / C) \leqslant k(G)$ we also have $|k(G / C) \cap \bar{K}: k|<\infty$. In view of Lema 5.4, an application of Theorem 5.3 to $K[G / C]$ Jields the remaining statements of Theorem 5.5.

To conclude this section, we draw together the results we have obtained to give necessary and sufficient conditions for the existence of minimal ideals in the group ring of a periodic abelian group over a non-modular rield.

Theorem 5.6 Let K be a field with prime field k and G a periodic abelian group with char $k \neq \pi(G)$. Then $S o(K G)$ is non-zero if and only if
(a) G satisfies Min;
(b) G is almost locally syclic; and
(c) $|k(G) \cap Z: k|<\infty$.

Proof By Lema 3.9, So (KG) $\ddagger=0$ if and only if $K G$ contains a primitive idempotent. Hence ir $S o(K G) \neq 0$ then (a) and (b) hold by Lemma 5.1, and (c) holds by Theorem 5.5. Conversely, if (a), (b) and (c) hold then by Corollary 3.2 G has a finite subgroup C with G / C locally cyclic, so KG contains primitive idempotents by Theorem 5.5.
ú. The Loerr senies oir"

```
            e now inrestirute the uscondinc Joprm geries of the
roup rinr of a variodic abelian 'rouo orer a non-rodular
Zield. Jince this series is oz Iittle intorest if its terms
are zero, is are led in the light of Pheorem 5.6 snd Corollary
3.2 to introduce the IOlloving ivpothesis, mich mill be
assumed throurgout this section.
joothesis b.1 : is a field with prime field k, and G is a
periodic abelimn roup ,ith char k&%(G) and havinx a
decomposition
T}=?\times\mp@subsup{P}{1}{}\times\ldots\times\mp@subsup{\sum}{i=1}{}\quad(0\leqslantm<\infty)
noreg is finize and the Ri Gre Friner ni-grouos for
```



```
30(N%)
    le shall descrine the ascendin% oert series of Lu
in terms of tis mumentiation ileald ni biv vi ie commence
*ith the socle ithelf.
```



```
Trooz a xemor: that ynen m=0 (so that a is Ainite and
```


3ur Iemm ?.2, 2 is essertial in z_{i} ?or ench i, so
 by Lemar ?.1.

Conversely, supoose that $O \neq \alpha \in \bigcap \prod_{2}$. Let $H=$ $<\operatorname{supp} x>$, and mrite

$$
\alpha=\alpha e_{1}+\ldots+\alpha e_{r}
$$

mere the e are orthogonal primitive idempotents in Vif, and
 so there exists $\beta_{j} \in \mathbb{Z}$ such that $e_{j}=a e_{j} \beta_{f} ;$ thus $e_{j} \in \bigcap_{i}$. Fence it is surficient to sho: that if is a İirite supgrouy of Q, e is a primitive idempotent in z, and $e \in \bigcap \sum_{i} G$, then

Choose 3 chain

$$
H=I_{0} \leqslant M_{1} \leqslant \ldots \leqslant G
$$

of Iinite subroups with union $\%$ If f is a primitime
idemotent in $\mathrm{Fin}_{\mathrm{n}}$ for some $n \geqslant 0$, consider the set of all
sequences $\left(\hat{I}_{n}, f_{n+i}, \ldots\right)$ such that

(ii) $f_{n}=f ;$
(:ii) $f_{j}{ }_{j}{ }_{j+1}=f_{j+1}$ for all $j \geqslant n$.
If $r \geqslant 0$ se shall say that f is r-stationary if for all such sequences $\left(f_{n}, f_{n+1}, \ldots\right)$ and $2 l l j \geqslant 0$ we nave $I_{n+r}=f_{n+r+j}$. Note thet if

$$
f=f_{i}+\ldots+f_{t}^{\prime}
$$

Fhere the fi are orthogonal primitive idempotentis in f_{n+1}, then f is r-stationary (for $r \geqslant 1$) if and only if acle f is (r-1)-stationary. Moreover f is O-stationary if and only is it is primitive in K. Hence if f is r-stationary and re write f as 2 sum of orthogonal primitirs idempotents in Inn $_{n+1}$, then each such idemyotent will be O-stationary; thus by Lemma $3.9(c)$ we have $f \in \operatorname{So}(\pi G)$.

ITOW let e be a primitive idempotent in $e \neq$ Jo (ra). Then $e=e_{0}$ is not r-stationary for any r. تnce among the finitely many orthogonal primitive idemnotents in
 not r-stationary fon any r. Jimilarly ore may choone a priaitire idennotent e_{2} in if, mich satissies $e_{1} e_{2}=e_{2}$ and is not r-stationary for any r, and so or. In tons iay ite obtain a senuance $e_{0}=e_{1} e_{1}, e_{2}, \ldots$ such that e_{i} is a primjtire idenpotent in ${\underset{-i}{i}}$, and $e_{i} e_{i+1}=e_{i+1}$.

Consider the chein of subgroups $C_{0}\left(e_{0}\right) \leqslant \sigma_{c}\left(e_{1}\right) \leqslant \ldots$,
 somen. Jor $i \geqslant n, e_{i}$ Kin $_{i}$ is an irreducible module ioithrul

 (Comoly 4. 5). Jut e is a prinitive idemnotent in fis
 a contradiction. It follows that C is infinite, rhence by Lama 5.2 (with $\mathcal{L}=\left\{\mathrm{I}_{0}, \mathrm{~F}_{1}, \ldots\right\}$) there is a maximal ideal of $K G$ such that $e=e_{0} \in I$ and $v_{6}(F G / S)=C$ is infinite then
 $e \notin \bigcap \underline{p}_{i} G$, as required.

As an example we may tare G to be a Primer group C_{0} on and F a subfield of the complex numbers with $\left|\mathbb{Q}\left(0_{p}\right) \cap \mathbb{L}: \mathbb{Q}\right|<\infty$; then $S O(A G)=g$, a result obtained by Muller in [14].

Corollary 6.3 For $0<i \leqslant m$,

$$
3 o_{i}(K G)=\bigcap_{|I|=i} \sum_{j=1} \underline{=},
$$

Where the intersection is then over all subsets if $\{1, \ldots, m\}$ with i elements

Proof le proceed by induction on i : the case $i=1$ is the theorem re have just proved.

$$
\text { The canonical maps } K G \rightarrow E\left[G / P_{j}\right] \cong T G / \underline{D}_{j} G \text { induce a }
$$

Truman

$$
\operatorname{XG} \rightarrow \bigoplus_{j=1}^{m} \mathbb{E} G / \underline{g}_{j} G
$$

$$
\psi: \pi / \mathrm{No}(\mathrm{x}) \rightarrow \bigoplus_{j=1}^{m} \pi / 2, j
$$

Suppose $1<i \leqslant m$. Then

Hence

By induction on i, since $G / E_{j} \cong P \times P_{1} \times \ldots \times P_{j-1} \times P_{j+1} \times \ldots \times P_{m}$,

$$
\mathrm{So}_{i-1}\left(\mathrm{KG} / \underline{\underline{p}}_{j}^{G}\right)=\bigcap_{\left|I_{j}\right|=i-1} \sum_{\ell \in I_{j}}\left(\underline{\underline{p}}_{l} G+\underline{\underline{p}}_{j}^{G}\right) / \underline{\underline{n}}_{j}^{G}
$$

where the intersection is taken over all subsets I_{j} or \{1,..., m$\}$ - \{j\} with i-1 elements. Hence we have

$$
30_{i}(\underline{M})=\bigcap_{j=1}^{m} \bigcap_{j \mid=i-1} \sum_{l \in I_{j}}\left(\underline{p_{i}} \underline{G}+\underline{p}_{j}^{G}\right),
$$

an expression easily seen to be equal to the one desired.

after exactly $m+i$ steps, in. $3 o_{m}(x)+\cdots=2 o_{m+1}(r)$.

Proof y the previous corollary with $i=n$, we have

$$
\Delta O_{m}(K G)=\sum_{j=1}^{m} \underline{D}_{j}^{G} .
$$

Let $A=P_{1} \times \ldots \times P_{m}=\left\langle P_{1}, \ldots, P_{m}\right\rangle$, so that \quad Lemma 1.1 we have

$$
\underline{\geqq}=\sum_{j=1}^{m} \sum_{x \in P_{j}}(x-1) \mathrm{KG}=\sum_{j=1}^{m} \sum_{j} .
$$

Thus $3 o_{m}(\mathrm{~N})=\underline{2}+\pi \mathrm{F}$. Moreover,

$$
K G / 30_{m}(K G)=K \tilde{N G} \cong \underline{X}[G / A] .
$$

Ir arcing's theorem, since σ / \cong is finite, $\pi[G / 1]$ is
completely reducible as $E[G / A]$-module, and therefore also as
＂゙心ーyokulo．Honce
i．e． $3 o_{m+1}(K G)=$ ．

Te remarle that the ascending toevy series of
enables is to clessify irreducible 心modnles as follons．
Tor a given irreducible riemodule H there is a uniaue integer
$\lambda \in\{0, \ldots, m\}$ such that X is a composition factor of So $\lambda_{\lambda+1}(\pi G) / B o_{\lambda}(S G)$ ．Further，λ is equel to the number of Prifer factors $D_{i}, \ldots, P_{I L}$ which are contained in C_{G}（Ni）．Je also remark that every indecomposable rismodule is irreducible． The proofs of tisese results will be given in a more general settins in Section 15.

Sはajex III

7. on aroups

In this chapter we record a number of results inich will be needed in our study of the socle in group rings of looally finite roups (Chavter IY) and non-locally-finite groups (Chapter V). In Section 8 we present the material required on rines and algebres, and in Jection ? ife consider group rings specixically, hile this section deels ritin the necessary groun theory, mentioning potroups, Semikov roups, and linewr grouns. For the inost part re are contant to state results only, resierring the reader to the Iiterature for proois.

An Pr-arong is a group in which each element aas

only a finite number of conjurates. fe derine the \because g-centre of a group as

$$
\Delta(G)=\left\{x \leq G:\left|: O_{G}(x)\right|<\infty\right\}
$$

Whe rolloming result is well :mom:

Leman 7.1 If G is any group, $\Delta(G)$ is a characteristic subgroun of a. ?he torsion elements of $\Delta(r)$ form a locall. finits subgroun ritin torsion-free abelian ruotient.

Proos ;as $[13 ; 1.1 .6]$ or $[15: 19.3]$.

A Čemikov group is an almost abelian group satisfying Min. By Theorem 3.1 we see that Černikov groups may be characterized as finite extensions of direct products of finitely many Prüfer groups. In determining those locally fiaite groups whose group rings may have non-zero socle (Section 12) we shall require the following deep result of Šunkor:

Theorem 7.2 If G is a locally finite group every abelian subgroup of which satisfies Min, then G is a Černikov group. Proof See $[13 ; 5.8]$.

Then considering group rings over fields of positive characterigtic, the full force of Sunkov's theorem will not be needed: the following far more elementary special case will suffice.

Lemma 7.3 If G is a nilpotent group every abelian subgroup of which satisfies Min, then G is a Černikov group.

Proof See [13; 1.G.4 (or even 1.G.3)].

If E is a division ring, a linear group over I is a group of linear transformations of a finite-dimensional vector space over E .

Theorem 7.4 Let G be a finitely generated linear group over a field K. Then
(a) if char $K=0$ then for any prime q, G is almost residually finite-q';
(b) if char $K=p>0$ then G is almost residually finite-p.

Proof This follows imediately from [24; 4.7].

Theorem 7.5 (Schur) A periodic group which is linear over a field is locally finite.

Proof See $[24 ; 4.9]$.
8. On rimer an alsebus

```
    In this section me discuss quesi-Trobenius rings,
separable 2lgebras, 3 theorem of Taplans:ct, locally
fedderburm 3lgebras, and strongly prime rim**.
    If }X\mathrm{ is a suoset of a ring A, re denote by }\mp@subsup{\ell}{A}{\prime}(x)\mathrm{ and
r,(%) respectively the lect and right annihilutors os I in
A. Then confusion is unlikely the subscript d :rill be
omj.t七ed.
```

Pronostiton 3.1 IV I is a right and leat artinian rina,
sine folloving are equivalent:
(e) $\quad \therefore$ is injective:
(b) A is injective;
(c) for everr right ideal a and leit ideal I of a re heve
$r(\ell(R))=R, \quad \ell(r(I))=I$.
Prooi see [22; KIT.3.1, XIV.3.3].
An artinian ring 1 satisfoying (a)- 0) is called
quasi-Frobenius. Tote that from (c) it Pollorrs that talins
annihilntors induces an inclusion-reversins bijection
betireen the lattices of right and lert ideals of 1.
Imonosition O.? Dvery imeducible right modyle Eor a quani-
Probenius ring is isomornhic to a minimal right ideal.
Proof jee $[22 ;$ KIV.3.2, KI.5.1].

Promosition ． 3 he zollorin yroverties of arisht module
1．orer a auasi－robenius ring ．．are equitalent：
（a）is iniectir゙ョ；
（b）is projectire；
（c）$: \quad \cong \bigoplus_{i} e_{i}$ for a fomily $\left\{e_{i}\right\}$ of primitive idempotents in A．

Proof Jee $\left[22 ; x I^{r} \cdot 3.6\right]$ ．

「e next consider separable algebras．An al－ebra a oren afield \bar{A} is called separnbie if 0 is semisimple for every field extension \vec{F} of \mathbb{K} ．（le remark that if k is an algeoraic $\mathfrak{I} \ddagger e l d$ extension of z ，this derinition agrees Fith that given in jeoticn 2：see［4；71．0］．：Sote tant a separable algebra is in perticular seaiるirol ：take $=\pi$ ． Pecall that a rield is yerfectif every ininite extension is separoole；in particular，prime fields and fields of charac－ teristic zero are perfact．

Eronosition 8．！Jery semisimple algebra over a perỉet Field is senarable．

三not jee $[13 ; 7.3 .0]$ or $[? ;\} 7$, ivo．5］．

iti and only if there exists an extension 3 al such fint
 over ．

Proop See [4; 71.2].

The importance for our purposes of separable algebras derives Irom the following corollary to a theorem of Bourbaki:

Theorem 8.6 The tensor product of two separable algebras is again separable.

Proof See $[18 ; 7.3 .10]$ or $[4 ; 71.10]$.

Recall that an algebra A over a field K is said to satisfy a polynomial identity if there is a non-zero polynomial $f\left(X_{1}, \ldots, X_{m}\right)$ in non-commuting indeterminates X_{1}, \ldots, X_{m} over K such that $I\left(\alpha_{1}, \ldots, \alpha_{m}\right)=0$ for all $x_{1}, \ldots, \alpha_{m} \in A$.

Lemma 8.7 The ring $M_{n}(K)$ of $n \times n$-matrices over a field K satisfies a polynomial identity.

Proof See $[18 ; 5.1 .6]$. (In fact, K could be any commutative ring.)

The next theorem, which characterizes primitive polynomial-identity algebras, is due to Kaplansky.

Theorem 8.8 Suppose an algebra A over a field K satisfies a polynomial identity and has a faithful irreducible module V. Let E be the division algebra End (V). Then $t=d i m_{E} V$ is finite, and A is isomorphic to the ring $M_{t}(E)$ of $t \times t-m a t r i c e s$ over E.

Proof See $[18 ; 5.3 .4]$ or $[15 ; 6.4]$.

Kaplansky's theorem has the following corollary, which is probably well known.

Corollary 8.9 Let A be a locally Wedderburn algebra (with unit element) satisfying a polynomial identity, and let M_{A} be a module with a finite composition series. Then M is completely reducible.

Proof Since the property of being a locally wedderburn algebra (like that of being semisimple artinian) is inherited by epimorphic images, we may assume that M_{A} is faithful. Let

$$
0=M_{0}<M_{1}<\ldots<M_{r}=M
$$

be a composition series, and set

$$
T_{i}=\operatorname{Ann}_{A}\left(M_{i} / M_{i-1}\right) \quad(i=1, \ldots, r)
$$

and $T=\Lambda T_{1}$. Ther $M T^{r}=0$ so $T^{r}=0$, whence $T=0$ by Lemms 3.9(a). Bach A / T_{i} is primitive and satisfies a polynomial identity so is artinian by Theorem 8.8. Hence A, which is isomorphic to an A-submodule of $\oplus A / T_{i}$, is semisimple artinian. Thus M_{A} is completely reducible.

We define the endomorphism dimension of an irreducible module to be the dimension of the module over its endomorphism ring (which is a division ring by Schur's lemma).

Lemma 8.10 (Farkas and Snider) Let A be a locally Vedderburn algeora and V an irreducible right A-module of inite endomorphism dimension. Then V is an injective A-module.

Proof [5; Lemma 3] Assume that V is not injective, so that by Baer's criterion $[22 ;$. 6.5$]$ there is a right ideal I of A and an $A-m a p \varphi: I \rightarrow \nabla$ which cannot be lifted to A.

Let $\&$ be the set of finite-dimensional semisimple subalgebras of A. Let $B \in \mathscr{O}$, and put

$$
D(B)=\{v \in V: \varphi(a)=v a \text { for al] } a \in I \cap B\}
$$

Then $D(B) \neq \varnothing$ since V_{B} (like every B-module) is injective. If $w \in D(B)$ and

$$
l_{V}(I \cap B)=\{v \in V: v a=0 \text { for all } a \in I \cap B\}
$$

(a B-submodule of V), then easily

$$
D(B)=w+k_{V}(I \cap B)
$$

Since A is locally Vedderburn, every element of I lies in some member of \neq, so our assumption is that

$$
\bigcap\{D(B): B \in \mathbb{X}\}=\emptyset
$$

$$
\text { Let } E=\operatorname{lnd}_{A}(V) \text {. Since dim } V \text { is finite, we may }
$$

choose $B_{O} \in \mathcal{S}$ such that $d=d i m_{E} l_{V}\left(I \cap B_{O}\right)$ is minimal. By the empty intersection there exists $B_{1} E \neq 3$ with

$$
D\left(B_{0}\right) \nsubseteq D\left(B_{1}\right)
$$

NTow B_{O} and B_{1} are finite-dimensional and A is locally Wedderburn, so there exists $B_{2} \in \&$ with $B_{0} \cup B_{1} \subseteq B_{2}$. Then

$$
\emptyset \neq D\left(B_{2}\right) \subseteq D\left(B_{0}\right) \cap D\left(B_{1}\right) \leftrightarrows D\left(B_{0}\right) .
$$

Thus if $w \in D\left(B_{2}\right)$ we have

$$
\begin{aligned}
w+\ell_{V}\left(I \cap B_{2}\right) & =D\left(B_{2}\right) \\
& \varsubsetneqq D\left(B_{0}\right)=w+\ell_{V}\left(I \cap B_{0}\right),
\end{aligned}
$$

contradicting the minimality of d.

The following technical result of Hartley $[10$; Theorem C1] will be used in section 15.

Theorem 8.11 Let A be a locally Wedderburn algebra of countable dimension, and V an irreducible A-module. Then exactly one of the following alternatives holds:
(i) V has finite endomorphism dimension and is injective;
(ii) V has infinite endomorphism dimension and may be embedded in an indecomposable A-module of composition length two.

Proof The first alternative comes from Lemna 8.10. For the construction of the indecomposable A-module of the second altemative, see $[10]$.

Recall that a ring R is prime if whenever $\alpha, \beta \in R$ and α 䟥 $=0$ either a or $\hat{\beta}$ is zero, or equivalently, if $r(x R)=0$ for all non-zero $\alpha \in \mathrm{R}$. Handelman and Lawrence [7] call $R($ rizht) strongly orime if for each non-zero $\alpha \in R$ there is a finite subset X of R with $r(\alpha X)=0$. The next result is [7; I\%, Corollary 2]; we give a different proof.

Lemma 8.12 If R is strongly prime then $S o(R)$ is either 0 or R.

Proof Suppose that $S o(R) \neq 0$, and let $\times R$ be a minimal right ideal. Let X be a finite subset of R with $r(\alpha X)=0$. Then the obvious map

$$
R_{R} \rightarrow \bigoplus_{\xi \in X} \alpha \xi R
$$

is one-to-one. Since $\alpha \xi R \leqslant x R, \alpha \xi R$ is either zero or $x R$, and
it follows that R_{R} is completely reducible, i.e. So(R) $=R$.

```
O. In reoun rinco
```

e comence this section oi bachrround materisi on group rincis ritil a series of miscellaneows elementery and wəll kom lemmes.

Eemma 9.1 Let F be a Field, H a subgroup of a gro:p G, and $\alpha \in$ men
(a) $r_{\text {KIG }}(\alpha)=r_{i=T}(\alpha)$ KG ;
(b) α is regular (j.e. not a sero-dirioor) in E (if and only if it is reaular in

 and mite

$$
\beta=\sum_{x=1} \beta_{x} \pi \quad\left(\hat{\beta}_{x} \in \pi i\right)
$$

Wen

$$
0=\alpha \beta=\sum_{\pi E H} \alpha \beta_{z} z \quad\left(\alpha \beta_{x} \in \pi\right),
$$

(b) Part (b) follows at once from (a) and its lezt-inand 2naloue.

Iemmar ? (all20e [23; ?.1]) Let Je be a Lielu and a a

((x) $\int_{\lambda \equiv \Lambda} \Omega_{\lambda}=1$; and
(i) if $\lambda, \mu E \Lambda$ then there exists $\nu \leqslant \Lambda$ vith $\exists_{\nu} \leqslant i_{\lambda} \cap \mu_{\mu}$ $\operatorname{non} \bigcap_{\lambda \equiv \lambda} \operatorname{nar}_{2}=0$.
 replacin x by x^{-1} there $x \in$ supp α). Jince supp x is finite, $\cup y(a)$ and (b) there exists $o \in \Lambda$ with $H_{0} \cap \operatorname{supg} \alpha=$ [1]. Now $\alpha \in h_{0}^{r}$, so if $\alpha=\sum_{\beta \in G} \lambda_{S}^{S}\left(\lambda_{g} \in Z\right)$ then in $K\left[G / H_{0}\right]$ we have

$$
0=\sum \lambda_{g^{H}} g_{0}=\lambda_{1} Z_{0}+\sum_{g_{0} A_{0}^{+H_{0}}} \lambda_{g^{H} H_{0}},
$$

whence $\lambda_{1}=0$, a contradiction.

Lemme 9.3 Let L be an extension of a field K, G a group, and V a KG-module of finite K-dimension. Then

$$
\operatorname{En}_{\mathrm{IG}}\left(V \otimes_{Z} I\right) \cong \operatorname{mad}_{\mathbb{Z}}(V) \otimes_{K} I .
$$

Proof see [4; 29.5].
he next result is cerbainly well linom: see for
examyla [3; 2.5], Hinere it is stated withouts proos.

Eeras a. Let F be a field, if a subgroup of a group G, and T an injective rizht rimodule. Then

(b) if \mid ana $\mid<\infty$, if is isomorphic to i., so is also injective.

Proot (The action of fic on is as ustial given by

$$
(\mu \gamma)(x)=\mu(\gamma x) \quad(\mu \in \therefore ; \gamma, x \equiv \pi) \quad .)
$$

(a) 3aer's criterion for injectivity [22; I.5.5], it

is a - -man τ messing

$$
\begin{aligned}
0 \longrightarrow I_{\mathrm{EI}} & \left.\longrightarrow \mathrm{KC}\right|_{\mathrm{Z}} \\
& \sigma \downarrow_{k},{ }^{\prime} \frac{\prime}{\tau}
\end{aligned}
$$

 Then if $a \in I$ and $\beta \in \pi=$ re have

$$
\begin{aligned}
\hat{\varphi}(\alpha)(\beta) & =(\tau \alpha)(\beta) \\
& =\tau(\alpha \beta) \\
& =\sigma(\times \beta) \quad \text { as } \alpha \beta=z \\
& =\varphi(\alpha \beta)(1) \\
& =(\varphi(\alpha) \beta)(1) \\
& =\varphi(\alpha)(\beta),
\end{aligned}
$$

so that $\left.\hat{\varphi}\right|_{I}=\varphi$ as required.
(0) Jet I be a right transversal to in in so that

$$
\hat{v}=\bigoplus_{x \in} d x
$$

$\sin x$

$$
\pi G=\bigoplus_{x \in D} x^{-1}
$$

A routine verification hots that

$$
\begin{array}{r}
v^{2} \rightarrow 1, \quad \sum_{x=1} v_{z} \otimes u \mapsto\left(\sum_{x \in I} x^{-1} \alpha_{x} \mapsto \sum_{x=I} v_{i n} \alpha_{i}\right) \\
\left(v_{x} \in \gamma, \alpha_{x} \in \pi\right)
\end{array}
$$

and

$$
\therefore \rightarrow v^{\prime}, \quad q \longmapsto \sum_{x E i} p i x^{-i} i \otimes x
$$

(inere the last sum is maninciul since $|\mathrm{I}|=|\mathrm{a}=\mathrm{a}|<\infty$) are mutuall: inverse formaps.
? e remark that the proof of part (3) actually gives a more seneral result: if $?$ is a suorine of a ring $\%$ (rith the same 1) and V is an injective rimt R-module, thon fom $\left(J_{R}, V\right)$ is an injective rigint s-module.

Corollamt 0.5 If K is a field and G a finite group, then $E G$ is a quasi-srobenius ring.
 in Lema $9.4(b)$ we see that $\left.\pi \cong M 1\right|^{G}$ is risht selin-injective.

Recall that if G is a finite roon, a field I is a
 IGーrodule ?.

Mheorem 9.6 Let G be a Inite roup and in anj field. Then II has a finite separable extension I frich is a splitting field for

Proof Inis result is proved in $[\% ; 59.11]$ under the zuditional hyponhesis thet \because is perfect. Î in has characteristic zero this hypothesis is of course satisfied. juppose is has chanucteristic $p>0$. $3 y$ the result cited (applied to the perfect field $\mathbb{T}_{\text {j }}$; there is a finite field $?$

 maximal ideal). Fien L is a finite separaple extension 0 π, since it is generated ovar \because (like \mathcal{I} over \mathbb{T}_{p}) by roots or unity. Moreover I, mich contains a copy of $コ$, is a splitting Iield I゙or G.

The next three results concern the Jacobson radicals
of group rings.

Lemmin 9.7 Let π be a field, and a normal subproun or finite index n in a group G. Then

$$
(J(\pi G))^{n} \leqslant J(E) K G \leqslant J(T C)
$$

3root $\operatorname{jee}[18 ; 7.2 .7]$ or $[15 ; 16.6]$.

Theorem . 8 Iet Ti be a field and $a=$ soluble group ritit $\operatorname{char} \pi \neq \pi(G) . \quad \operatorname{chen} J(\operatorname{LG})=0$.

Proof Bee $[13 ; 7.4 .6]$ or $[15 ; 13.9]$. (?e shall oniy require the simpler case of an abelian group.)

If G is a locaIly finito group and $?$ a prime, denote by $O_{p}\left(r_{x}\right)$ the unique largest normal p-subroup of \because.

Lemme 0. Let G be a Iocaily finite mroup, $\underset{\sim}{\circ}$ a Iisld oi choracteristic $p>0$, and T an irreducible rmodule. Men

$$
O_{p}(N) \leqslant C_{C}(T)
$$

irreducible V, i.e. that $p G \leqslant J(K G)$. Hence it is sufficient to show that $p \mathrm{p}$ is a nil ideal. Let

$$
\alpha=\sum_{i=1}^{n} \lambda_{i}\left(x_{i}-1\right) g_{i} \in \quad \underset{\sim}{p G} \quad\left(\lambda_{i} \in K, x_{i} \in P, g_{i} \in G\right),
$$ and put $H=\left\langle x_{i}, g_{i}: i=1, \ldots, n\right\rangle$. Since $x_{i} \in P \cap H \leqslant O_{p}(H)$, We may assume that $G=H$ is finite. As $P \leq G$ we have $(\underline{\underline{p}} G)^{n}=\underline{p}^{n} G$, so it is enough to prove that if G is a finite p-group then \underline{g} is nilpotent.

We proceed by induction on $|G|$ (following $[13 ; 3.1 .6]$). If $|G|=p$ and $G=\langle x\rangle$ then

$$
\begin{array}{rlrl}
\underline{g}^{p} & =\left((x-1)^{K G}\right)^{p} & & \text { by Lemma } 1.1 \\
& =(x-1)^{p K G} & & \text { as KG is commutative } \\
& =\left(x^{p}-1\right) K G & & \text { since char } K=0 \\
& =0 . &
\end{array}
$$

If $|G|=p^{m}(m>1)$ let H be a central zubgroup of G of order p. The image of g under $K G \rightarrow K[G / H]$ lies in the augmentation ideal of $K[G / H]$, which is nilpotent by induction. Hence for some t we have ${\underset{\underline{g}}{ }}_{t}^{t}{ }_{\underline{h}} G$. But by the above and as H is central in $G,(h G)^{p}=h^{p} G=0$. Hence $\underline{g}^{t p}=0$ as required.

The next lemma is an early example of a class of group ring results mown as 'intersection theorems'.

Iemma 9.10 Let G be a group with a normal gbelian subsroup A, and put

$$
H=\{x \in G:|A: C X(x)|<\infty\}
$$

(a normal subgroup of G containing A). If T is a field and I a non-zero ideal of $K G$, then $I \cap I I \neq 0$.

Proof See $[18 ; 7.4 .9]$ or $[15 ; 21.1]$.

We shall require two results relating group rings and polynomial identities.

Lemma 9.11 Iet K be a field and G an almost abelian group. Then KG satisfies a polynomial identity.

Proof See $[18 ; 5.1 .11]$ or $[15 ; 5.1]$. The crux of the proof is that if A is an abelian normal subgroup of G of finite index n, then $K G$ may be embedded in the $n \times n-m a t r i x$ ring over the commutative ring KA: Cf. Lemma 8.7.

A (right) annihilator ideal of a ring is a two-sided ideal which is tha right annihilator of some subset of the ring.

Pheorem 9.12 (Dassman) Let K be a field and G a group. Then the following are equivalent:
(a) KG has an annihilator ideal if KG such that KG / A satisiies a polynomial identity;
(b) $|G: \Delta(G)|<\infty$ and $|\Delta(G) \cdot|<\infty$. Prone See $[18 ; 5.2 .11]$ or $[17 ;$ Theorem 1].
llext we consider injectivity and endomorpinism dinension of irreducible kG-modules.

Lemma 9.13 (Farkas and Snider) Let K be a field and $G a$ group. The trivial $K G$-module K is injective if and only if G is locally finite and char $k \neq \pi(G)$.

Proof See $[18 ; 3.2 .12]$ or $[5 ;$ Theorem 1].

Lemma 9.14 Let K be a field and G an almost abelian group. Then every irreducible KG-module has finite endomorphism dimension.

Proof Use Lemma 9.11 and Theorem 8.8.

Lemma 9.14 has a partial converse:

Theorem 9.15 (Fartley) Let Z be a field and G a locally finite group with char $K \neq \pi(G)$. Then every irreducible KG-module has finite endomorphism dimension if and only if G is almost abelian.

Proof See $[18 ; 12.4 .16]$ or $[10 ;$ Theorem B]. This section's penultimate result is due to Handelman and Lawrence [7; Proposition III.3].

Lemma 9.16 Let K be a field and $G=A * B$ the free product of non-trivial groups A and B. Then $K G$ is strongly prime.

Proof Let $1 \neq a \in A, 1 \neq b \in B$, and put $X=\{a a, a b, b a, b b\} \subseteq G$. 'We shall show that $r\left(\gamma^{X}\right)=0$ whenever $0 \neq \gamma \equiv K G$. (Thus KG is actually 'uniformly' strongly prime.)

We say that a non-trivial element g of G has type Ai and length $\lambda(g)=2 n+1$ if g may be written in the form (necessarily unique)

$$
g=a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n} a_{n+1} \quad\left(1 \neq a_{i} \in A, 1 \neq b_{i} \in B\right)
$$

We define elements of types $A B, B A$ and $B B$, and their lengths, similarly. Any non-trivial element of G falls into exactly one of the four types. We define $\lambda(1)=0$.

Suppose $0 \neq \gamma, \overline{0} \in K G$ but $\gamma \bar{X} \delta=0$. Choose elements ∇ of supp γ and w of supp δ of maximal length; clearly $\nabla, w \neq 1$. Suppose v is of type ?A. (i.e. AA or $B A$) and w is of type A ? (there are three other cases, which may be handied similariy). Now \quad bbjE $\in \gamma^{X I}=0$, so vbbw supp ybbS; hence there must exist $v_{1} \in \operatorname{supp} \gamma$ and $w_{1} \in \operatorname{supp} \delta$ with $v_{1} \neq v, w_{1} \neq w$, but $v_{1} b b w_{1}=$ Vbbw. Then

$$
\begin{aligned}
\lambda(v)+2+\lambda(w) & =\lambda(v b b w) \\
& =\lambda\left(v_{1} b b w_{1}\right) \\
& \leqslant \lambda\left(v_{1}\right)+2+\lambda\left(w_{1}\right) \\
& \leqslant \lambda(v)+2+\lambda(w),
\end{aligned}
$$

whence $\lambda\left(\nabla_{1}\right)=\lambda(\nabla)$ and $\lambda\left(w_{1}\right)=\lambda(w)$. Since ∇_{1} bbw $w_{1}=$ vbbw, it follows from the uniqueness of the reduced form expression that $\nabla_{1}=\nabla$ and $w_{1}=W$, a contradiction.

In fact, 9.3 Handelman and Lawrence show, the coefficlent ring K need not be a field: it suffices for K to be
strongly prime. The modification required in the proof is elementary.

Lemma 9.17 Let G be a group, K a field with $|K|>|G|$, and V an irreducible right $K G$-module. Then $E=\operatorname{Znd}{ }_{K G}(V)$ is algebraic over K .

Proof $(\operatorname{see}[18 ; 7.1 .2,9.1 .6])$ If $O \neq \nabla \in V$, then $E-V$, $e \rightarrow e v$ is a K-monomorphism; moreover, V is an image of $K G_{\bar{K} G}$. Hence

$$
\operatorname{dim}_{\mathrm{K}} E \leqslant \operatorname{dim}_{\mathrm{K}} \nabla \leqslant \mathrm{dim} \mathrm{~K}_{\mathrm{K}} \mathrm{KG}=|G|<|\mathrm{K}|
$$

Thus if $e \in \Xi-K$, the elements $\left\{(e-a)^{-1}: a \in K\right\}$ of $د$ are linearly dependent over K : say

$$
\sum_{i=1}^{n} b_{i}\left(e-a_{i}\right)^{-1}=0 \quad\left(a_{i}, b_{i} \in K\right),
$$

where the a_{i} are distinct. Since the e-a i_{i} and their inverses comute, we find by multiplying by the common denominator that e satisfies the polynomial

$$
f(x)=\sum_{i=1}^{n} b_{i} \prod_{j \neq i}\left(X-a_{j}\right),
$$

which is non-zero since $f\left(a_{1}\right) \neq 0$. Hence e is algebraic over K.

Chapter IV

LOCALLY FINITE GROUPS

10. Preamble

In this chapter we examine consequences of supposing that $K G$ contains a minimal one-sided ideal N in the case where G is a locally finite group and K is an arbitrary field.

We commence in Section 11 by investigating properties of the endomorphism ring of N, using a local technique.

Then in Section 12 we consider consequences of the existence of N for the structure of G. le find that G must be a Černikov group (Theorem 12.1), and then use the results of Chapter II to deduce necessary and sufficient conditions for the existence of a minimal one-sided ideal (Theorem 12.2): namely, that G should have a normal abelian subgroup A of finite index such that K is non-modular for A and A satisfies conditions $51, S 2$ and 53 of Section 3.

In Section 13 we investigate consequences of the existence of N for the structure of $K G$ itself. Ne show in Lema 13.3 that the ascending Loewy series of KG reaches KG after finitely many steps; it follows that every non-zero KG-module has non-zero socle (i.e. KG is 'semiartinian').

The principal result of the section is that $K G$ has a finite series of ideals each factor in which is a direct sum of quasi-Frobenius rings (Theorem 13.4). We also show that the socle of KG is a direct sum of minimal two-sided ideals (Theorem 13.5).

Most of Section 14 is devoted to the determination of the 'controller' of the socle of $K G$, that is, the smallest normal subgroup C of G for which there is an ideal in KC which generates the socle of KG . Of course, if the socle is zero, this subgroup is trivial; otherwise it is a certain easily described subgroup of G depending only on the characteristic of K (Theorem 14.8). Ne use this result to obtain, in Theorem 14.9, an expression for the socle of KG . Inis expression is quite explicit except that it involves the socle of a finite-group algebra, and is therefore the best obtainable until the problem of characterizing such socles is solved.

In Section 15 : we use the knowledge of the structure of $\bar{K} G$ gleaned in Section 13 to classify indecomposable KGmodules, in a manner analogous to the partitioning of Indecomposables Ior a finite-group algebra into blocks; we also describe the injective and projective indecomposable KG-modules. Finally, we determine (for countable but not
necessarily locally finite G) the conditions under which all indecomposable $K G-m o d u l e s$ are irreducible.

It is convenient at this point to remark on the relationship between the left and right socles of KG. Since for any group G and field $K, g \mapsto g^{-1}$ induces an antiautomorphism of KG, the left socle of KG is zero if and only if the right socle is also zero. 'Then G is locally Ininte, we have the following stronger result (stated, but not completely proved, in $[14 ; \% 2])$.

Prooosition 10.1 Let K be a field, G a locally finite group, and $\alpha \in K G$. Then $\alpha K G$ is a minimal right ideal if and only if $K G x$ is a minimal left ideal. In particular,

$$
\operatorname{So}\left({ }_{K G} K G\right)=\operatorname{So}\left(K G_{K G}\right)
$$

Proof Suppose $\alpha K G$ is a minimal right ideal, and let H be any finite subgroup of G containing supp α. Then $\alpha K H$ is a minimal right ideal of $K H$ (since $\left.* K G \cong \alpha K\right|^{G}$). Moreover, KGx is the union of $K H \alpha$ over all such H, so it is enough to show that $K H x$ is minimal. Now $x K H \cong K H / r(x)$, so $r(x)=r(K H x)$ is a maximal right ideal. Since $K H$ is quasi-Trobenius (Corollary 9.5), its left and right submodula lattices are anti-isomorphic (see Proposition 8.1), and it follows that $\mathrm{Ki} \alpha=\operatorname{lr}(\mathrm{Ki} \alpha)$ is a minimal left ideal. This completes the proof.

Note that the last part of this proof may be extended to show that if H is finite then $S O_{n}(K H K)=S O_{n}\left(K H H_{K H}\right)$ for all values of n. For if $\alpha \mathrm{KH}$ has a series of length n with completely reducible factors, then so does $\mathrm{KH} \alpha$. However, the preceding local argument has no obvious analogue when $n>1$, and it is an open question whether for G locally finite So ${ }_{n}\left({ }_{K G} K G\right)=S o_{n}\left(K G_{K G}\right)$ for all n.

Let G be a locally finite group, K a field, and $\alpha K G$ (for some $x \in \mathbb{K}$) a minimal right ideal of $K G$. In this section we examine the division ring $E_{G}=$ End ${ }_{K G}(\alpha K G)$.

Let $H=\langle\operatorname{supp} \alpha>$, a finite subgroup of G. Then

$$
\mathcal{L}=\{F \geqslant H: F \text { is a finite subgroup of } G\}
$$

is a directed set of subgroups of G, i.e. any two members of \mathcal{L} are both contained in some common third member. Moreover, U $\mathcal{L}=G$. If L三 $\mathcal{L} \cup\{G \mid$ then $\alpha K L$ is a minimal right ideal of $K L$, so $E_{L}=\operatorname{Znd}_{K L}(x R L)$ is a division algebra over K by Schur's
 there is a K-algebra map $\Sigma_{F} \rightarrow \Sigma_{\mathrm{L}}, \psi \mapsto \varphi^{I}$, where for $\beta_{i} \in K$, $\gamma_{i} \in K L$,

$$
\begin{aligned}
Q^{I}=\varphi \otimes_{K F} K I: \alpha K \otimes_{K F} K L & \rightarrow \alpha K F \otimes_{K i} K L \\
\sum \alpha \beta_{i} \otimes \gamma_{i} & \mapsto \sum \varphi\left(\alpha \beta_{i}\right) \otimes \gamma_{i} .
\end{aligned}
$$

Since $\left.q^{I}\right|_{x K F}=q$, the map $Q \mapsto \varphi^{L}$ is one-to-one. Furthermore, if also $M \in \mathcal{L} \cup\{G\}$ and $F \leqslant L \leqslant M$, the diagram

commutes, since if $\varphi \in \mathrm{I}_{\mathcal{F}}$ then

$$
\begin{aligned}
& =\varphi^{\infty}{ }_{\mathrm{KF}} \mathrm{KM} \text {. }
\end{aligned}
$$

Thus the $\Sigma_{Z}(E \in \mathcal{X})$ and the $\Sigma_{F} \rightarrow E_{L}$ form a directed system
of K-algebras and K -algebra maps.

Lemma $11.1 \quad \mathrm{E}_{\mathrm{F}}=\lim \left\{\mathrm{E}_{\mathrm{F}}: \overrightarrow{\mathcal{E}} \boldsymbol{\mathcal { L }}\right\}$ is the direct limit of this system.

Proof It remains to be shown that given a K-algebra A and K-algebra maps $\theta_{F}: E_{F} \rightarrow A(F \in \mathcal{L})$ such that all diagrams

$$
\begin{aligned}
E_{F} & \rightarrow E_{L} \\
\theta_{F} & \downarrow_{L} \quad \theta_{L} \quad(F, L \in \mathcal{L} ; F \leq I)
\end{aligned}
$$

commute, there is a unique map $\theta: E_{G}-A$ making all diagrams

$$
\begin{align*}
& E_{F} \rightarrow E_{G} \\
& \theta_{\bar{F}} \downarrow \theta \\
& A
\end{align*}
$$

comute. Thus let $Q \in E_{G}$. Then $Q(\alpha) \subseteq \alpha K C$, so since G is Iocally finite we may choose $F E \hat{l}$ with $\underline{Q}(x) \in \alpha F F$. Then $\left.Q\right|_{x K F} \in E_{F}$, and we have $\left(\left.Q\right|_{i K P}\right)^{G}=Q$, since both are elements of E_{G} mapping α to $\varphi(\alpha)$, so they agree on $x K G$. Now define $\theta(\varphi)=\theta_{F}\left(\left.\varphi\right|_{\alpha K}\right)$. This is ind ependent of the choice of F by the commutativity of the first diagram above; for the same reason, θ is a K-algebra map. If $F \in \mathcal{Q}$ and $\psi \in E_{F}$, then

$$
\theta\left(\psi^{G}\right)=\theta_{F}\left(\left.\psi^{G}\right|_{\chi K}\right)=\theta_{F}(\psi)
$$

so the second diagram above commutes. To show that θ is unique, suppose that $\zeta: \mathrm{E}_{\mathrm{G}} \rightarrow \mathrm{A}$ is another K -algebra map making

commute. If $q \in \Sigma_{G}$ then choosing F as above

$$
\zeta(\varphi)=\zeta\left(\left(\left.\varphi\right|_{\alpha K F}\right)^{G}\right)=\theta_{F}\left(\left.\varphi\right|_{\alpha K F}\right)=\theta(\varphi),
$$

so $\zeta=\theta$ as required.

We remark that this result may be generalized: if H is any finite subgroup of G, \mathcal{L} is as above, and V is a finitely generated KH-module, then

$$
\operatorname{End}_{K G}\left(V^{G}\right)=\lim _{\rightarrow}\left\{\operatorname{lind}_{K G}\left(V^{F}\right): F \in \mathcal{L}\right\} .
$$

Lemma 11.1 enables us to reduce certain questions concerning E_{G} to the corresponding questions about E_{F}, an improvement since F is finite. This is illustrated in the following:

Theorem 11.2 Let K be a field, G a locally finite group, α KG a minimal right ideal of $K G$, and B_{G} the division ring End $_{K G}(x K G)$. Then
(a) E_{G} is locally a finite-dimensional separable K-algebra;
(b) if char $K=p>0, E_{G}$ is a field;
(c) dG is finite-dimensional over B_{G}.

Proof (a) By Lemma 11.1, any finite subset of E_{G} lies in the image of the map $\mathrm{E}_{\mathrm{F}} \rightarrow \mathrm{E}_{\mathrm{G}}$ for some $\vec{r} \in \mathcal{L}$. Since the map is one-to-one, this image is a subalgebra of E_{G} isomorphic to E_{z}, so it is sufficient to prove that Ξ_{F} is a finitedimensional separable K-algebra.

Since E_{F} is isomorphic to a subalgebra of $\mathrm{KF} / J(\mathrm{KF})$ and F is finite, E_{F} is Pinite-dimensional over \bar{K}. By Theorem 9.6 there exists a finite separable extension I of \mathbb{K} which is a splitting field for F. Then by Lemma 9.3, $\mathrm{E}_{\mathrm{F}} \otimes_{K} \mathrm{I} \cong$ Ind ${ }_{I F}(\alpha, I F)$. But $\alpha Z F$ is irreducible so $\alpha I F$ is completely reducible by Lemma 2.8(b). Since every irreducible LFmodule has endomorphism ring I, we see that End $I F(N L F)$ is isomorphic to a direct sum of full matrix rings over I. Hence E_{F} is a separable $K-a l g e b r a$ by Proposition 8.5. (b) (This part, which is well known in the finite case, is a modification of $[5 ;$ Lemmas 8 and 9].)

Since E_{G} is a division ring, we need only show that it is commutative. By Lemma 11.1 any two elements of E_{G} lie in a subalgebra isomorphic to \mathbb{E}_{F} for some $\vec{F} \in \mathcal{L}$, so we may assume that $G=F$ is finite.

Let \mathbb{F}_{p} be the prime field of Z. Since $J\left(\mathbb{F}_{p} G\right)$ is nilpotent, we have $J\left(\mathbb{F}_{\mathcal{F}} G\right) . \mathbb{K} \leqslant J(\mathbb{K})$. On the other hand, by proposition 8.4 $\mathbb{F}_{p} G / J\left(\mathbb{F}_{p} G\right)$ is a separable \mathbb{F}_{p}-algebra, so

$$
K G / J\left(\mathbb{F}_{\mathrm{p}} G\right) \cdot \mathbb{K} \cong\left(\mathbb{F}_{\bar{p}} G / J\left(\mathbb{F}_{\bar{p}} G\right)\right) \otimes_{\mathbb{F}_{\mathrm{p}}} K
$$

is semisimple, and $J(K G) \leqslant J\left(\mathbb{F}_{p} G\right) . K$. By Wedderburn's theorem on Pinite division algebras, $\mathbb{F}_{\hat{F}} G / J\left(\mathbb{F}_{\vec{F}} G\right)$ is a direct sum of matrix rings over fields. If I is one of these fields then by Proposition 8.4 again L is a separable \mathbb{T}_{p}-algebra, so

L $\overbrace{\mathbb{F}_{p}} K$ is semisimple and therefore a direct sum of fields.
Hence

$$
K G / J(K G)=K G / J\left(\mathbb{F}_{p} G\right) \cdot K \cong\left(\mathbb{F}_{i} G / J\left(\mathbb{F}_{p} G\right)\right) \theta_{i_{p}} \mathbb{K}_{\mathrm{p}}
$$

is also a direct sum of matrix rings over fields. Thus $E_{G}=\exists_{K G /}{ }_{K(K G)}(x K G)$ is a field.
(c) (cf. [11]) If $\exists \in \mathcal{L}$ then by Wedderburn's (other) theorem the dimension of $x K F$ over \vec{F}_{F} is equal to the multiplicity of $\times K$ as a right-module direct summand of $K \mathcal{K F} / J(K)$. Hence

$$
\begin{aligned}
\operatorname{dim}_{S_{P}} \alpha K F & \leqslant \operatorname{dim}_{K}(K F / J(K F)) / \operatorname{dim}_{K} \alpha K F \\
& \leqslant|F| /\left(|F: H| d i m_{I} \alpha K H\right) \\
& \leqslant|H| .
\end{aligned}
$$

Ie now show that also $\operatorname{dim}_{G_{G}} x K G|H|=n$ say, i.e. that any $\beta_{1}, \ldots, \beta_{n+1} \in a Z G$ are Iinearly dependent over E_{G}. For there exists $F \in \mathcal{L}$ with $\beta_{1}, \ldots, \beta_{n+1} \in x \mathcal{B}$, and then there exist $\varphi_{1}, \ldots, \varphi_{n+1} \in E_{F}\left(\right.$ not all zero) with $\sum_{i=1}^{n+1} \varphi_{i}\left(\hat{p}_{i}\right)=0$. Applying the K-algebra monomorphism $\mathrm{Z}_{\mathrm{F}} \rightarrow \mathrm{Z}_{\mathrm{G}}, \varphi \mapsto \varphi^{G}$, and recalling that $\left.\varphi^{G}\right|_{x K P}=\varphi$, we see that there exist $Q_{1}^{G}, \ldots, Q_{n+1}^{G} \in I_{G}$ (not all zero) with $\sum_{i=1}^{n+1} \varphi_{i}^{G}\left(\beta_{i}\right)=0$, as required.

Corollart 11.3 Let K be a field and G a locally inite group with $\operatorname{So}(\mathrm{KG}) \neq 0$. Then G contains a finite normal subgroup C such that G / C is linear over a division ring (which is a field if char $K>0$).

Proot Let α KG be a minimal right ideal of $K G$. Then
$C=C_{G}(\alpha \pi G)$ is a normal subgroup of G, and acts faithfully (by right multiplication) as a group of permutations of the finite set supp α, so is finite. Now G / C acts faithfully on α KG, which by Theorem $11.2(c)$ is a finite-dimensional vector space over the division ring $\exists_{G}=\ln d_{G G}(\alpha K G)$; that is, G / C is Innear over E_{G}. If char $K>0, E_{G}$ is a field by Theorem 11.2(b).

In this section we obtain necessary and sufficient conditions for $K G$ to contain minimal one-sided ideals when G is a locally finite group and K is any field. ile commence by singling out the most difficult step.

Theorem 12.1 Let K be a field and G a locally finite group. If $S o(K G) \neq 0$ then G is a Černikov group.

Proof Ne show first that any residually rinite subgroup \mathcal{F}. of G is finite. For let $\left\{H_{\lambda}\right\}$ be the set of all normal subgroups of H of finite index. The intersection of any two such subgroups is a third, and $\bigcap_{\lambda}=1$; so by Lemma 9.2, $\bigcap \underline{\underline{h}}_{\lambda} H=0$. By Lemana $2.3(\mathrm{a}), \bigcap_{\underline{h}_{\lambda}} G=0$, so as $\operatorname{So}(K G) \neq 0$ is contained in every essential right ideal, $h_{n} G$ is not essential in KG $_{\text {KG }}$ for some λ. BJ Lemma 2.4, H_{λ} is finite, and therefore H is too.

[^2]It follows by funcov's theorem (7.2) that G is a Černikot group.

Then I has positive characteristic, it is possible
to avoid this appeal to Sunkov's theorem (the proof of which relies on many of the deepest results of finite group theory); instead we use an approach similar to that of $[16 ; 3.2]$. Thus suppose char $K>0$. Let $\alpha K G$ be a minimal right ideal of $K G$, and $A=r(x G G)$ its right annihilator (a two-sided ideal). By Theorem 11.2, $\alpha K G$ is of finite dimension n say over $\Xi_{G}=$ End ${ }_{K G}(\alpha K G)$, which is a field. Each element of $K G$ acts $E_{G}-$ linearly on $\alpha K G$ by right multiplication, so there is a Kalgebra map $K G \rightarrow$ End $_{E_{G}}(\chi K G)$. This map has kernel Λ, so $K G / A$ embeds in (and by the Jacobson density theorem is even isomorphic to) $\operatorname{Bnd}_{\mathrm{E}_{\mathrm{G}}}(x \mathrm{KG}) \cong M_{\mathrm{n}}\left(\mathrm{B}_{\mathrm{G}}\right)$. Thus by Lemma 8.7, KG / A satisfies a polynomial identitJ. By Theorem 9.12, since A $(\neq K G)$ is an annihilator ideal, we have $|G: \Delta(G)|<\infty$ and $|\Delta(G) \cdot|<\infty$.

$$
\text { Let } C=C_{\Delta(G)}\left(\Delta(G)^{\prime}\right) . \quad \text { Then } C^{\prime}\left(\leqslant \Delta(G)^{\prime}\right) \text { is central }
$$

in C, so C is nilpotent of class 2. Prom above, every abelian subgroup 3 of C satisfies $M i n$, so C is a Černikov group by Lemma 7.3. Now $\Delta(G) / C$ acts as a group of automorphisms of $\Delta(G)^{\prime}$, so is finite; hence C has finite index in G, and G too is a Černikov group.

Ye now deduce the necessary and sufilicient conditions sought.

Theorem 12.2 Let K be a field with prime field k and $G a$ locally finite group. Then KG contains minimal right ideals if and only if:
(a) G is a Černikov group with characteristic divisible abelian subgroup a of finite index;
(b) char $K \notin \pi(\mathrm{~A})$;
(c) A is locally cyclic; and
(d) $|k(A) \cap K: k|<\infty$.

Proof In view of Theorem 12.1 we may restrict our attention to groups G satisfying (a). Since by Lemma $2.5(b)$ So (KG) $\neq 0$ if and only if So(KA) $\neq 0$, it suffices to show that so $(\mathbb{Z A}) \neq 0$ if and only if A satisifies (b), (c) and (d).

Suppose So(KA) $\neq 0$, and let $\propto \mathbb{Z A}$ be a minimal (right) ideal. If char $K=p>0$ then by Lemma 9.9, $O_{p}(A)$ is contained in $C_{A}\left(x K_{A}\right)$, which is finite (since it acts faithfully on supp \downarrow). Since A is divisible, $O_{p}(A)=1$, i.e. (b) holds (as of course it does if char $\mathrm{K}=0$). By Theorem 5.6, (d) holds, and A is almost locally cyclic; since it is divisible, we have (c).

Conversely, if (b), (c) and (d) hold, then So(KA) $\neq 0$ by Theorem 5.6.

13. Structure of XG

In this section we investigate the structure of the group ring IKG when K is a field and G a locally finite group such that $S o(K G) \neq 0$. In the Iight of Theorem 12.2, we introduce the following hypothesis, which will be assumed (except where specifically noted) throughout Section 13.

Hyoothesis 13.1 K is a field with prime field k and characteristic $p \geqslant 0$, and G is a Cernikov group with characteristic divisible abelian subgroup A of finite index n. The group A satisfies $p \notin \pi(A)$ and has a direct decomposition

$$
A=P_{1} \times \ldots \times P_{m} \quad(m \geqslant 0)
$$

Where the P_{i} are Prüfer groups for distinct primes p_{i}. Finally, $|k(A) \cap K: k|<\infty$, so $S o(K G) \neq 0$.

Lemma 13.2 Let M be a right KA-module.
(a) If M is irreducible, M^{G} has composition length at $\operatorname{most} \mathrm{n}=|\mathrm{G}: \mathrm{A}|$.
(b) If M is completely reducible, $3 o_{n}\left(M^{G}\right)=M^{G}$.

Proof (a) Since $A \Delta G,\left.N^{G}\right|_{A}$ is a direct sum of n irreducible KA-modules, so has composition length n. A fortiori, M^{G} has composition length at most n.
(b) Since $3 o_{n}$ and $-G$ preserve direct sums, we may assume Mirreducible. The result then follows from (a).

The bound on the 'Loewy height' of H^{G} in (b) may be improved: a Naschke-type argument shows that n may be replaced by $\left|G / A: O_{p},(G / A)\right|$. A similar remark applies to the next lemma.

Iemma 13.3 If V is any right KG-module then

$$
\operatorname{So}_{n(m+1)}(V)=\nabla .
$$

In particular, if $V \neq 0$ then $S o(V)$ is essential in V.

Proof Since the first property in question is inherited by images and direct sums, it is sufficient to verify it for $V=K G_{K G}$. By Lemma $13.2(b)$, if $i \geqslant 0$ then

$$
\left.\frac{S o_{i+1}(K A) K G}{S o_{i}(K A) Y G} \cong \frac{S o_{i+1}(K A)}{S o_{i}(K A)}\right|^{G}
$$

has a series of length n with completely reducible Pactors. By Corollary 6.4, So $m+1(K A)=$ KA. Hence $K C_{\text {K }}$ has a series of length $n(m+1)$ with completely reducible factors.

If $V \neq 0$ and $i f$ is a non-zero submodule of V, then
So $n(m+1)(N)=W$, so $W \cap S O(V)=S o(V) \neq 0$. Hence So (V) is essential in V.

We shall write

$$
S_{i}=S o_{i}(Z A) K G \quad(0 \leqslant i \leqslant m+1)
$$

so that each S_{i} is an ideal of $K G$, and $S_{m+1}=K G$. fe now show that each factor S_{i+1} / S_{i} (considered as a ring, generally without unit olement) of the series

$$
0=S_{0} \leqslant S_{1} \leqslant \ldots \leqslant S_{m+1}=K G
$$

is a direct sum of quasi-Probenius rings. Recall that a centrally primitive idempotent in a ring is a primitive idempotent of the centre of the ring.

Theorem 13.4 For $0 \leqslant i \leqslant m$,
(a) if ε is a centrally primitive idempotent in $\mathrm{KG} / \mathrm{S}_{\mathrm{i}}$ then $\varepsilon\left(K G / S_{1}\right)$ is a quasi-Frobenius ring;
(b) $S_{i+1} / S_{i}=\Theta\left\{\varepsilon\left(K G / S_{i}\right): \varepsilon\right.$ is a centrally primitive idempotent in $\left.K G / S_{i}\right\}$.

Proof Let $Q=K G / S_{i}$ and $R=K A / S O_{i}(K A)$. Te preface the proof with three observations. Firstly, consider the following diagram:

Here the first row is exact, so the second row, obtained from the first by tensoring with the flat module $\mathrm{KA}^{\mathrm{KG}}$, is also exact; in other words, $R^{G} \cong Q$ as $K G-m o d u l e s . ~ T h e ~$ vertical arrows are KA-module embeddings of the form

$$
M \cong M \otimes 1 \rightarrow M \otimes{ }_{K A} K G=M^{G} .
$$

Now the first two vertical maps are K -algebra morphisms, so the embedding $R \rightarrow R^{G} \cong Q$ is also a K-algebra morphism; we shall identify R with its image in Q under this embedding.

Secondly, suppose that M is any $K A-m o d u l e$ and $m \in M$, so that mKA is a submodule of M. Since $K A$ is 1 ilat, mKa/G is a submodule of M^{G}, and we have

$$
\begin{aligned}
\left.\mathrm{mKA}\right|^{G} & =m K A \otimes_{K A} K G \\
& =m \otimes_{K A} K G \\
& =(m \otimes 1) K G=m K G \leqslant M^{G} .
\end{aligned}
$$

Thirdly, suppose that e is a primitive idempotent in R. Now G acts on $K A$ by conjugation, leaving $S O_{i}$ (KA) invariant, so G acts on R. Let T be a right transversal in G to $N_{G}(e)=\left\{g \subseteq G: e^{g}=e\right\} ;$ then $|T| \leqslant n$ since $A \leqslant N_{G}(e)$. Let $\hat{e}=\sum_{x \in T} e^{x}$; then \hat{e} is independent of the choice of T, and (since distinct primitive idempotents in R are orthogonal) is an idempotent in R. By the first observation above, we may consider \hat{e} and each e^{x} as idempotents in Q; since G leaves \hat{e} invariant, \hat{e} is central in Q. In the $K A-m o d u l e ~ R$, we have

$$
\hat{e} K A=\bigoplus_{x \in T} e^{x_{K A}} ;
$$

therefore, by the second observation above (taking $M=R$, $m=\hat{e}$)

$$
\hat{\theta} Q=\hat{e} K G=\left.\hat{e} R A\right|^{G}=\left.\bigoplus_{x \in T} e^{x} K A\right|^{G} .
$$

Now R is an epimorphic image of KA , so is locally vedderburn
 for each $x \in T$. Hence by Lemma $13.2(b)$, 拎 has composition length (as right $K G-m o d u l e)$ at most n^{2}. Similarly \hat{y}, has

Pinite composition length as left KG-module. Since $\hat{\text { en }}$ is an epimorphic image of the ring $K G$, and its $K G-$ and $\hat{e q}-3 u b m o d u l e$ lattices coincide, it follows that $\hat{e} 2$ is an artinian ring. Furthermore, each $e^{\mathrm{X}} \mathrm{KA}$ is an injective KA-module (Lemmas 9.14, 3.8, 8.10), so by Lemma 9.4(b), $\hat{e} Q$ is injective as
 KG-module, we conclude that $\hat{e} Q$, is right self-injective, and therefore a quasi-Frobenius ring.

We now turn to the proof of the theorem. Let ε be a centrally primitive idempotent in Q. By Lemal 13.3, there exists non-zero $x \in \operatorname{So}\left(\left.\varepsilon Q\right|_{K G}\right)$. Then by Leman 2.3(d),

$$
\alpha \in \operatorname{So}\left(0_{K G}\right)=\operatorname{So}\left(R^{G}\right) \leqslant \operatorname{So}(R)^{G},
$$

so by Lemma $3.9(d)$ there is a primitive idempotent $e \in R$ such that in Q we have $e x \neq 0$. Since $\hat{e} e=e$ and $\varepsilon x=x$ we have $\hat{e}_{i} \neq 0$, whence $\hat{e}_{\varepsilon}=\varepsilon$ as ε is centrally primitive. Hence εQ is a ring direct summand of \hat{Q}, so is quasi-Frobenius. Thus we have (a). Furthermore,

$$
\hat{e} \in S O(R)=S o\left(K A / S o_{i}(K A)\right)=S o_{i+1}(K A) / S o_{i}(K A):
$$

say $\hat{e}=\hat{\beta}+S o_{i}(K A)$ where $\beta \subseteq S o_{i+1}(K A) \leqslant S_{i+1}$. Then in Q,

$$
\varepsilon=\hat{e}_{E}=\left(\beta+S_{i}\right) e \in S_{i+1} / S_{i}
$$

To complete the prooi of (b), note that by Lemma
3. $9(\mathrm{~d}) \mathrm{So}(\mathrm{R})$ is the direct sum of subrings $\hat{e} R$ as e runs over a system E of representatives of the G-conjugacy classes of primitive idempotents in R. Hence (using the second observ-
ation above)

$$
S_{i+1} / S_{i}=\operatorname{So}(R)^{G}=\bigoplus\{\hat{e} Q: e \in \varepsilon\}
$$

Bach $\hat{e} \mathrm{Q}$ is artinian, so may be written in the form $\varepsilon_{1} Q \oplus \ldots \varepsilon_{s} Q$ where the ε_{j} are centrally primitive idempotents in Q.

Theorem 13.5 Let K be any field and G any locally finite group. Then So(KG) is a direct sum of minimal (two-sided) ideals.

Proof We may assume that $S O(K G) \neq 0$, and hence that \#ypothesis 13.1 holds. Let Q be a homogeneous component of So $\left(K_{K G}\right)$. Then Q is an ideal, and by Proposition $10.1, K G^{Q}$ is completely reducible. Let P be a homogeneous component of $K G^{Q}$, again an ideal. As $S o(K G)$ is the direct sum of such ideals P, it is sufiicient to show that P is a direct sum of minimal ideals.

No' $P_{K G}$ is a direct sum of copies of some minimal
right ideal V. By Theorem 13.4(b), as

$$
V \leqslant S O(K G) \leqslant S O(K A) K G=S_{1},
$$

there is a centrally primitive idempotent $\varepsilon \in \mathcal{K} G$ with $V \varepsilon=V$.
Then $P=P_{\varepsilon} \leqslant \varepsilon \mathbb{Z} G$, which is artinian by Theorem 13.4(a). Hence
$P_{\text {KG }}$ is a direct sum of finitely many copies of V. Similarly
K^{2} is a direct sum of finitely many copies of some minimal
left id \ln. N. Let $B=K G / A n n_{T G G}(V), C=K G / A a n_{K G}(V)$, and let
$C^{O D}$ be the opposite ring of C. Then P considered as a $\mathrm{KG}-$ bimodule has the same structure as P considered as a right $B Q_{K} C^{O p}-$ module, so it is sufficient to show that the latter module is completely reducible.

As G is almost abelian $K G$ satisfies a polymomial Identity (Lemma 9.11). Hence B is primitive and satisfies a polynomial identity, so by Theorem 8.8 is isomorphic to a matrix ring $M_{t}(E)$ over $E=\operatorname{Hnd}_{B}(V)=\operatorname{End}_{K G}(V)$. Similarly, $C^{O D} \cong M_{U}(P)$ say, where $I=\operatorname{Znd} K_{G G}(i)$. By Theorem $11.2(\mathrm{a})$, each of E and F is locally a finite-dimensional separable Kalgebra. By Theorem 8.6 the tensor product of separable algebras is semisimple, so $E \theta_{K} F$ is a locally Wedderburn algebra. Hence $B \otimes_{K} C^{00} \cong M_{t u}\left(E \otimes_{K} F\right)$ ia also locally fedderburn. Let $G^{\circ p}$ denote the opposite group of G. Then $B B_{K} C^{\text {op }}$ is an epimorphic image of $K G \otimes_{K} K G^{\circ p} \cong K\left[G \times G^{O D}\right]$, which satisfies a polynomial identity as $G \times G^{\circ 0}$ is almost abelian. The conclusion now follows from Corollary 8.9, since P has a
 module.

Theorem 13.4 has another consequence (which can also be demonstrated more directly: see $[20 ; 3.2]$). Note that $K G$ is semiorime if and only if G has no finite normal subgroup of order divisible by the characteristic of K (cf. Theorem 14.4).

Corollary 13.6 Let K be any field and G any locally finite group such that $K G$ is semiprime. Then $S o(K G) \neq 0$ if and on? y if KG has a ring direct summand which is isomorphic to a full matrix ring or O_{r} a division ring D.

Proof If ε is a central idempotent in $K G$ such that $\varepsilon K G \cong M_{t}(D)$, then $O \neq S o(\varepsilon K G) \leqslant S O(K G)$. Conversely, if So(KG) $\neq 0$ we may assume Hypothesis 13.1 , and then by Theorem 13.4 (with $i=0$) KG contains a centrally primitive idempotent ε such that ε eKG is quasi-Frobenius. Then $\mathrm{E} K G$ is semiprime (lise $K G$) and artinian, and contains no central idempotents other than ε. Hence $\& K G$ is isomorphic to a matrix ring $\operatorname{li}_{t}(D)$ over a division ring D.

הe remark that if K has positive characteristic then by Theorem 11.2(b) D is necessarily a field. In any case, if $S o(K G) \neq 0$ then by Theorem 12.1 G is almost abelian, so D satisfies a polynomial identity (Lema 9.11), and is therefore finite-dimensional over its centre ($[18 ; 5.3 .4]$ or $[15 ; 6.4]$).

We now turn to the problem of finding an explicit characterization of the socle of KG when G is locally finite. Since no such characterization is known in the case of a Pinite group, the expression we obtain (in Theorem 14.9) involves the socle of a finitemgroup algebra. A major step towards this expression is the deternination (in Theorem 14.8) of the 'controller' of the socle. The concept of the controller of an ideal in a group ring was introduced by Passman $[18 ;\} 8.1]$; for convenience we shall prove two of his resuits, on which the idea is based.

If H is a subgroup of a group G and K is any field, it is easy to see that the map

$$
\pi_{H}: K G \rightarrow K H, \quad \sum_{g \in G} \lambda_{g} g \mapsto \sum_{g \in G} \lambda_{g} g \quad\left(\lambda_{g} \in K\right)
$$

is a kH -bimodule homomorphism.

Lemma 14.1 Let K be a field, H a normal subgroup of a group G, and I an ideal of KG. Then

$$
(I \cap \mathrm{KH}) K G \leqslant I \leqslant \pi_{H}(I) K G .
$$

Furthermore, if either inclusion is an equality then both are.

Proof (cf. $[18 ; 1.1 .5,1.1 .6]$) The first inclusion is clear. Suppose $\alpha \in I$, and let T be a transversal to H in G. Then x may be written in the form

$$
x=\sum_{x \in T} \alpha_{x^{x}} \quad\left(x_{x} \in K H\right) .
$$

If $x, y \in T$ then $\pi_{H}\left(x y^{-1}\right)=\delta_{x, y}$. Since π_{H} is a left KH-module map, we have

$$
\pi_{H}\left(\alpha y^{-1}\right)=\sum_{x \in T} \alpha_{x} \pi_{H}\left(x y^{-1}\right)=\alpha_{y} .
$$

Thus

$$
d=\sum_{x \in T} \pi_{H}\left(\alpha x^{-1}\right) x \in \pi_{H}(I) X G,
$$

since $\alpha x^{-1} \in I^{-1}=I$. This establishes the second inclusion.

$$
\begin{aligned}
& \text { If } I=\pi_{H}(I) K G \text { then } \pi_{H}(I) \subseteq I \cap K H \text {, whence } \\
& I=\pi_{H}(I) K G \leqslant(I \cap T H) K G \quad .
\end{aligned}
$$

Conversely, if $I=(I \cap K H) K G$ then

$$
\pi_{H}(I)=(I \cap K H) \pi_{H}(K G) \subseteq I,
$$

whence $I \geqslant \gamma_{H}(I) K G$.

$$
\text { : When }(I \cap K H) K G=I=\pi_{H}(I) K G \text {, we say that } H \text { contro?s } I \text {. }
$$

Lemma 14.2 [18; 8.1.1] Let K be a field, G a group, and I an ideal of $K G$. Then there exists a unique normal subgroup $G(I)$ of G such that $H \approx G$ controls I if and only if $H \geqslant C(T)$.

Proof Let w be the intersection of all normal subgroups of G which control I. We shall show that $\mathcal{X}_{i j}(I) \subseteq I$. Let $\alpha \in I$ and supoose

$$
\text { suppe }-W=\left\{g_{1}, \ldots, g_{n}\right\} \quad(0 \leqslant n<\infty) .
$$

For each $i=1, \ldots, n$ there exists a normal subgroup H_{i} controlling I such that $g_{i} \notin H_{i}$. Then

$$
\begin{aligned}
\pi_{: W}(\alpha) & =\pi_{H_{1} \cap H_{2} \cap \ldots \cap H_{n}}(\alpha) \\
& =\pi_{H_{1}}\left(\pi_{H_{2}}\left(\ldots \pi_{H_{n}}(a) \ldots\right)\right) \\
& \in I,
\end{aligned}
$$

since $\pi_{H_{i}}(I) \subseteq I$ for each i. By Lemma 14.1, W controls I, and is therefore clearly the unique minimil controlling subgroup for I.

If H is any normal subgroup of G containing iv then

$$
I \geqslant(I \cap K H) K G \geqslant(I \cap K: J) K G=I,
$$ so H controls I. The result now follows with $\mathcal{G}(I)=i$.

The suogroup $C(I)$ is callod the controller of the ideal I. We shall need:

Lemma 14.3 Let I be an ideal of $K G$ and $L=\ell(I)$ its left
annihilator. Then $G(I) \leqslant G(I)$.

Proof It is enough to show that $H=C(I)$ controls L, i.e. that $\pi_{H}(L) \subseteq L$. Now

$$
\begin{aligned}
\pi_{H}(L) I & =\pi_{H}(L) \pi_{H}(I) K G & & \text { since } H \text { controls } I \\
& =\pi_{H}\left(L . \pi_{H}(I)\right) K G & & \text { since } \pi_{H} \text { is a right } K H-m a p \\
& \leqslant \pi_{H}(L I) K G & & \text { since } H \text { controls } I \\
& =0, & &
\end{aligned}
$$

so $\pi_{H}(I)=\ell(I)=L$.

Passman has determined the controller of the nilpotent radical $M(K G)$ of $K G:$

Theorem 14.4 Let K be a iield of characteristic $p \geqslant 0$ and G any group. Then $G(N(K G))=\Delta^{p}(G)$, where

$$
\left.\Delta^{P}(G)=<x \in \Delta(G):|x| \text { is a power of } p\right\rangle
$$

Proof When $p>0$ this is $[18 ; 8.1 .9(i)]$. When $p=0$, $N(K G)=0 \quad[18 ; 4.2 .13]$ so $U(N(K G))=1=\Delta^{p}(G)$.

Since if G is finite the socle and the nilpotent radical of KG are each other's annihilators, it follows from Lemma 14.3 that in this case $\Delta^{p}(G)$ is also the controller of the socle. When G is merely locally finite, the situation is more complicated, since in the light of condition (d) of Theorem 12.2, we must expect $\mathcal{P}(S O(K G))$ to depend on K itself and not just on the characteristic. However, this dependence turns out to be rather crude: for a group G satisfying conditions (a)-(c) of Theorem 12.2, $\mathcal{C}(\mathrm{SO}(\mathrm{KG}))$ can take only two values - 1 (1ff K is so large that So $(K G)=0$) or $A \triangle^{D}(G)$. Before investigating this we prove two general lemmas.

Lemma 14.5 Let K be 3 field and G a group. Suppose So (KG) is essential in $K G_{K G}$, and controlled by $H \leqslant G$. Then

$$
S O(K G)=S O(K H) K G \text {, }
$$

and

$$
\text { So }(K G) \cap K H=\text { So }(K H) \text { ess } K H_{K H} \text {. }
$$

Proof By Lemma $2.3(b)$, since (So (KG) $\cap \mathbb{K A}) K G=S O(K G)$,
So (KG) $\cap \mathrm{KA}$ is essontial in $\mathrm{KH} \mathrm{KH}_{\mathrm{H}}$, so contains So(KH). Thus

So $(K G) \geqslant S o(i H) K G$, and equality holds by Lemm 2.3(d). Hence also $\operatorname{So}(K G) \cap \mathrm{KH}=\mathrm{So}(\mathrm{KH}) \mathrm{KG} \cap \mathrm{KH}=\mathrm{So}(\mathrm{KH})$.

Lemma 14.6 If K is a field of characteristic $p \geqslant 0$ and G is a group, then the finite-p' residual

$$
\cap\{N \leq G: p \nmid|G: N|<\infty\}
$$

of G controls So(KG).

Proof By Lemmas 2.7 and 14.2.

For the remainder of this section, we again assume Hypothesis 13.1: in view of Theorem 12.2, this assumption entails no loss of generality.

Lemma 14.7 $\Delta^{P}(G)$ is finite.

Proof We may easily reduce to the case where $G=\Delta^{p}(G)$. In particular G is an $F C$-group, so its minimal subgroup A of finite index is central. If x and y are p-elements of G with $x A=y A$, then there exists $g \in A$ with $x g=y$. Since g is a central p^{\prime}-element, $\langle x\rangle=\langle y\rangle$. But G is generated by its p-elements, so may be generated by $|G: A|$ (or feser) elements. Hence G is finite.

Theorem 14.9 Assume Hypothesis 13.1 , and let $D=\Delta^{p}(G)$. Then

$$
\Theta(S O(K G))=A D .
$$

Moreover,

$$
S O(K G)=S O(K[A D]) K G
$$

and

$$
S O(K G) \cap K[A D]=\operatorname{So}(K[A D])
$$

Proof Ne show first that $J(K G)$ is the left annihilator of So(KG). Certainly in view of Proposition 10.1 we have $J(K G) . S O(K G)=0$. For the converse it is sufficient to show that $\ell(S O(K G))$ is a nil ideal. Thus let $\alpha \in \ell(S O(K G))$ and put $H=\langle\operatorname{supp} \alpha\rangle$. Now $r_{K G}(\alpha) \geqslant \operatorname{So}(K G)$, so by Lemma 13.3, $r_{K G}(\alpha)$ is essential in $K G_{K G}$. By Lemma $9.1(a), r_{K G}(x)=$ $r_{K H}(\alpha) K G$; hence $r_{K H}(\alpha)$ is essential in $K H_{K H}$ (Lemma 2.3(b)) so contains So(KH). But H is finite, so by Corollary 9.5 and Proposition 8.2, So(KH) contains a copy of every irreducible lest KH-module. It follows that $\alpha \in J(K H)$, whence α is nilpotent as required.

However, by Lemma 9.7 and Theorem 9.8 , since G is almost aoelian-p', $J(K G)$ is nilpotent. Thus

$$
\ell(S O(K G))=J(K G)=N(K G) .
$$

Hence by Theorem 14.4 and Lemma 14.3,

$$
D=G(N(K G)) \leqslant C(S O(K G))
$$

Recall that $A=P_{1} \times \ldots \times P_{m}$, where the P_{i} are Prüfer groups. By Lemma 2.4, $\underline{\underline{p}}_{i}{ }^{G}$ is essential in $K G_{K G}$, whence $S O(K G) \leqslant \underline{\underline{p}}_{i} G . \quad$ Let $C=G(S o(K G))$ and $T=C \cap P_{i}$; then

$$
\operatorname{So}(K G) \cap K C \leqslant \underline{\underline{p}}_{i} G \cap K C=t C
$$

(where the equality holds since ${\underset{D}{i}}^{G}$ is the set of elements of $K G$ whose coefficient sum on each right coset of P_{i} is zero). Hence by Lammas 13.3 and 14.5 , $t C$ is essential in $K_{\text {KC }}$, whence $t i s$ essential in KT by Lemma 2.3(b). By jemma
2.2, Tis not a finite p'-group, so must be infinite. Therefore $P_{i}=T \leqslant C$. ive have now shown that $A D \leqslant G(S O(K G))$.

We next prove that $C_{G}(A)=H$ say controls $S O(K G)$.
Let I be a minimal ideal of KG. Since A has no proper subgroup of finite index, it follows from Lemma 9.10 that $I \cap K H \neq 0$. Hence as I is minimal, ($I \cap K f) K G=I$, so $\pi_{H}(I) \subseteq I$ by Lemma 14.1. Since $S O(K G)$ is a direct sum of minimal ideals (Theorem 13.5), we have $\pi_{i}(S O(K G)) \subseteq$ So(KG), i.e. H controls $\mathrm{So}(\mathrm{KG})$ as required.

Since A is the minimal subgroup of finite index in G, and abelian,

$$
H=C_{G}(A)=\Delta(G) \geqslant A D .
$$

Furthermore, $y / A D$ is a finite p'-group since $D=\Delta^{p}(G)$ contains all p-elements of H. Hence $4 D$ controls $30(E A)$ by Lemma 2.7. By Lemma 14.5 twice we now have

$$
S O(K G)=S O(K G) K G=S o(K[A D]) K G
$$

and $\operatorname{So}(K[A D])=S O(K H) \cap K[A D]=S O(K G) \cap K[A D]$.
Thus $A D$ controls $S O(K G)$, and the proof is complete.

We are now ready to gite our characterization of
the socle of KG.

Theorem 14.9 Assume Hypothesis 13.1 and let $D=\triangle^{p}(G)$. Then

$$
\begin{aligned}
\mathrm{So}(\mathrm{KG}) & =\operatorname{So}(\mathrm{KA}) \mathrm{So}(\mathrm{KD}) \mathrm{KG} \\
& =\left(\bigcap_{i=1}^{m} \underline{p}_{i} \mathrm{~A}\right) \mathrm{So}(\mathrm{KD}) \mathrm{KG}
\end{aligned}
$$

Proof
Note that the second equality holds by Theorem 6.2.

Let $\gamma \in \operatorname{So}(K G)$. By Lemma 2.3(d), $x \in \operatorname{So}(\mathrm{KA}) K G$, so by Lemma 3.9(d) there is an idempotent e (not necessarily primitive) in So(KA) with ey=x. By Lemma 2.3(d) again, $\gamma \in \operatorname{So}(K D) K G$, so

$$
X=e x \in \operatorname{So}(K A) \operatorname{So}(K D) K G \quad .
$$

It remains to be shown that $S O(K A)$ So (KD) $K G \leqslant S O(K G)$.
By Theorem 14.8, So(KG) $=$ So(K[AD])KG, so we may assume that $G=A D$. Since by Lemma 14.7 D is Pinite, there exists a finite separable extension F of K wich is a splitting field for D (Theorem 9.6). By Lemm 2.8(b) we have

$$
\begin{aligned}
S O(K \cap) S O(K D) R G & =S O(K A) S O(K D) F G \cap K G \\
& =S O(F A) S O(F D) F G \cap K G \\
S O(F G) \cap K G & =S O(K G) \quad
\end{aligned}
$$

and
so we may assume that $K=F$. Let M and N be minimal right ideals of KA and KD respectively; we must show that MN \leqslant SO (KG) .
'Ve claim that $M \otimes_{K} N$ is a minimal right ideal of $K A \otimes_{K} K D \cong[A \times D]$. Let V be a non-zero submodule or $M \otimes_{K} N$: say $\sum m_{i} n_{i} \in V$, where $\left\{n_{i}\right\}$ is a (Ininite) K-basis of $N, m_{i} \in \ln$, and $m_{1} \neq 0$. As K is a splitting field for $D, \operatorname{Fnd}_{K D}(N)=K$, so by the Jacobson density theorem the map $K D \rightarrow \operatorname{Znd}_{\mathbb{K}}(N)$ is onto. Hence for each f there exists $\delta_{j} \leqslant W$ with $n_{i} \delta_{j}=n_{j}$ and
$n_{i} \delta_{j}=0(i \neq 1)$. Thus for each $j, m_{1} \otimes n_{j} \in V$. As $M=m_{1} R A$, clearly $V=M \otimes_{K} N$ as required.

Since $G=A D$ and $D \leqslant \Delta(G)=C_{G}(A)$, there is a $K-$ algebra epimorphism $\theta: K A \otimes_{K} K D \rightarrow K G$, induced by a\&d \mapsto ad $(a \in A, d \in D)$. Thus $M N=\theta\left(M \otimes_{K} \mathbb{N}\right)$ is either a minimal right ideal of KG or zero, and is contained in So(KG) in either case.

In this section we classify indecomposable KG-modules when K is a field and G a locally finite group such that $S O(K G) \neq 0$, in a manner which generalizes the classification into blocks of indecomposable modules for a finite-group algebra. He also describe the injective and projective Indecomposable KG-modules. To conclude the section, we consider a more general question: for arbitrary K and G, when is every indecomposable KG-module irreducible?

In $\forall i e w$ of Theorem 12.2, we shall again assume Hypothesis 13.1, until further notice. As in Section 13, we set

$$
S_{i}=S o_{i}(K A) K G \quad(0 \leqslant i \leqslant m+1)
$$

Proposition 15.1 Let M be an indecomposable right KG-module.
(a) There exists a unique integer $\lambda=\lambda(\mathrm{M}) \cong\{0, \ldots, \mathrm{~m}\}$ such that $M S_{\lambda}=0$ but $M S_{\lambda+1}=M$.
(b) There exists a unique centrally primitive idempotent $\varepsilon \in \mathrm{KC} / \mathrm{B}_{\lambda}$ such that $\mathrm{M}_{\varepsilon}=\mathrm{M}$.
(c) If in is injective than M has finite composition length and is isomorphic to a direct summand of ($\left.\overline{G G /} / S_{\lambda}\right)_{\text {IG }}$; converseIy each indecomposable direct summand of ($\left.\overline{K G /} / \mathcal{S}_{\lambda}\right)_{\mathrm{KG}}$ is injective.
(d) If M is projective then M is also injective, and
$\lambda(M)=0$. Thus the projective indecomposable KG-modules are exactly the indecomposable direct summands of $\mathrm{KG}_{\mathrm{KG}}$.

Proof Firstly we remark that if N is an indecomposable direct summand of $\left(K G / S_{\lambda}\right)_{K G}(0 \leqslant \lambda \leqslant m)$ then by Lemmas 13.3 and $2.3(\mathrm{~d}), \quad 0 \neq \mathrm{So}(\mathbb{N}) \leqslant \mathrm{So}\left(\mathrm{KG} / \mathrm{S}_{\lambda}\right) \leqslant \mathrm{S}_{\lambda+1} / S_{\lambda}$, Whence by Theorem 13.4(b) there exists a centrally primitive idempotent η in $K G / S_{\lambda}$ with $S o(N) \eta \neq 0$. Since $N=N \eta \oplus N(1-\eta)$ is indecomposable, $N=N \eta$ is a direct summand of $\eta\left(E G / S_{\lambda}\right)$. In particular, N liks $\eta\left(K G / S_{\lambda}\right)$ is an injective KG-module of finite composition length (see the proof of theorem 13.4(a)); furthermore $N S_{\lambda+1}=\mathbb{N}$ since $\eta=S_{\lambda+1} / S_{\lambda}$.
(a,b) Let λ be the greatest integer such that $\mathrm{HS}_{\lambda}=0$; then $\lambda \leqslant m$ as $S_{m+1}=T G G$. Now M may be considered as a $K G / S_{\lambda}$-module, and $M\left(S_{\lambda+1} / S_{\lambda}\right) \neq 0$. Thus there exists a centrally primitive idempotent $\varepsilon \in K G / S_{\lambda}$ with $M \varepsilon \neq 0$, and then $M=\operatorname{li} \varepsilon$ since M is indecomposable. Hence HIS $_{\lambda+1}=M$. The uniqueness of λ and ε is clear.
(c) Since $r\left(\mathrm{KG} / \mathrm{S}_{\lambda}\right)$ is an epimorphic image of KG , M is injective (as well as indecomposable) when considered as an $\varepsilon\left(\bar{K} G / S_{\lambda}\right)$-module. By Proposition 8.3, M is isomorphic to a right direct summand of $\varepsilon\left(K G / \sigma_{\lambda}\right)$, and hence to a direct summana of ($\left.K G / S_{\lambda}\right)_{K G}$. The remaining assertions of (c) follow from the above remark.
(d) M is projective and indecomposable when considered as an $\varepsilon\left(K G / S_{\lambda}\right)$-module, and hence by Proposition 8.3 M is cyclic, as $\varepsilon\left(K G / S_{\lambda}\right)$ - or $K G-m o d u l e$. Thus M is isomorphic to a direct sumand of $E G_{K G}$. By the above remark, IN is injective, and $M S_{1}=M$, whence $\lambda(M)=0$.

For an irreducible $K G-m o d u l e ~ M$ we can provide an alternative characterization of the integer $\lambda(\mathrm{M})$.

Proposition 15.2 Let M be an irreducible right KG-module and i an integer with $0 \leqslant i \leqslant m$. Then the following are equivalent:
(a) $\quad i=\lambda(M) ;$
(b) M is isomorphic to a submodule of $\left(s_{i+1} / S_{i}\right)_{E G}$;
(c) M is isomorphic to a composition factor of $\left(S_{i+1} / S_{i}\right)_{K G}$;
(d) the kernel $C_{A}(M)$ of M in A contains exactly i of the Prüfer direct factors P_{1}, \ldots, P_{m} of A.

Proof (a) \Rightarrow (b) We have $M S_{i}=0$ but $M S_{i+1}=M$, whence M is an irreducible $\mathrm{KG} / \mathrm{S}_{\mathrm{i}}$-module with $\mathrm{M}\left(S_{i+1} / S_{i}\right)=M$. By Theorem 13.4(b) there is a centrally primitive idempotent $\varepsilon \in K G / S_{i}$ With $M \leq=M$. Then M is an irreducible $\varepsilon\left(\pi G / S_{i}\right)$-module, so by Proposition 8.2 (since $\varepsilon\left(K G / S_{i}\right)$ is quasi-Frobenius), M is isomorphlc to a right ideal of $\varepsilon\left(\mathrm{KG} / \mathrm{S}_{i}\right)$, whence to a sub$\operatorname{modul} \theta$ of $\left(S_{i+1} / S_{i}\right)_{K G}$.
(b) $\Rightarrow(c)$ This is trivial.
(c) \Rightarrow (a) Suppose $M \cong U / V$ where $S_{i} \leqslant V \leqslant U \leqslant S_{i+1}$. Since $U S_{i} \leqslant S_{i} \leqslant V$, we have $M S_{i} \cong(U / V) S_{i}=0$, so $\lambda(M) \geqslant i$. If $u \in U / S_{i}$ then by Theorem $13.4(b)$ there exist distinct (and therefore orthogonal) centrally primitive idempotents $\varepsilon_{1}, \ldots, \varepsilon_{k}$ in $K G / S_{i}$ with

$$
u=u \varepsilon_{1}+\ldots+u \varepsilon_{k} \in\left(\delta / S_{i}\right)\left(S_{i+1} / S_{i}\right)
$$

since each ε_{j} lies in S_{i+1} / S_{i}. Thus $U S_{i+1}=U$, whence $M S_{i+1} \cong(U / V) S_{i+1}=U / V \neq 0$, and $\lambda(M) \leqslant i$.
$(a) \Leftrightarrow(d)$ Note that (a) holds if and only if i is the greatest integer such that $\mathrm{MS}_{\mathrm{i}}=0$, i.e. such that $\mathrm{S}_{\mathrm{i}} \leqslant$ $A n n_{K G}(M) . \quad$ Since M is irreducible, $A n n_{K G}(M)$ is a prime ideal. By Corollary 6.j,

$$
S_{i}=S o_{i}(K \lambda) K G=\bigcap_{|I|=i} \sum_{j \in I} \underline{p}_{j}^{G} .
$$

Hence $S_{i} \leqslant A n n_{K G}(M)$ if and only if for at least i values of $j, \underline{p}_{j} G \leqslant A n n_{K G}(M)$, i.e. $P_{j} \leqslant C_{A}(M)$.

We now cease to assume Hypothesis 13.1, and consider, for arbitrary K and G, the question of when all indecomposable KG -modules are irreduciole. In $[1$; Theorem 2.7] Berman shows that it is sufficient for G to be periodic abelian and I non-modular Por G. We extend his result in the following:

Theorem 15.3 Let G be a periodic almost abelian group and K a field with char $K \notin \pi(G)$. Then every indecomposable $K G-$ module is irreducible.

Proof Let A be a normal abelian subgroup of finite index in G, and V an indecomposable right $K G-m o d u l e$.

Suppose F is a finite normal subgroup of G contained in A, and e is a primitive idempotent in $\overline{\mathrm{N}}$. As in the proof of Theorem 13.4, we let T be a right transversal in G to $N_{G}(e)=\left\{g \in G: e^{g}=e\right\}$; then T is Pinite since $A \leqslant N_{G}(e)$. Let $\hat{e}=\sum_{x \in T} e^{x}$; then \hat{e} is independent of the choice of T, central $\pi \in T$
in KG, and (since the e^{x} are distinct primitive idempotents in KF, so orthogonal) an idempotent. Since G/A is finite, we may choose, among all finite P in A normal in G and all primitive idempotents e in K satisfying $V \hat{Q} \neq 0$, an F and an e with $N_{G}(e)$ minimal. Since ∇ is indecomposable, $V \hat{e}=V$, so \hat{e} acts as the identity on V.

Iet

$$
\mathscr{L}=\{I \leqslant A: F \leqslant L \leqslant G,|L|<\infty\} ;
$$

since $|G: A|$ is finite, every finite subset of A lies in some member of \mathcal{X}. We shall construct primitive idempotents f_{I} in $K L$ ($L \in \mathcal{L}$) to which we may apply Lemma 5.2. Iset $L \in \mathcal{L}$, and consider the various idempotents in $K 工$ of the form \hat{f}, Whers \vec{I} is a primitive idempotent in $K L$. Since these idempotents are central in $K G$, and have sum 1 , and since V is indecomoosable, there is exactly one such idempotent, say η, such that $V \eta \neq 0$. Then η acts as the identity on ∇, so $\hat{e} \eta \neq 0$.

If e $\eta=0$, then for $x \in G, 0=(e \eta)^{x}=e^{x} \eta$, whence $\hat{e} \eta=0$, a contradiction. Thus e $\eta \neq 0$, so since K is semisimple artinian we may choose a primitive idempotent $f_{\mathcal{L}}$ in KI with f_{I} e $\eta=0$. In particular $f_{I} \eta \neq 0$; since η is the sum of some G-conjugacy class of primitive idempotents in K, it follows that $\hat{\mathrm{f}}_{\mathrm{L}}=\eta$, so $\hat{\mathrm{f}}_{\mathrm{L}}$ acts as the identity on V. Also $\mathrm{I}_{\mathrm{I}} e \neq 0$, whence

$$
f_{L} e=f_{L_{L}}
$$

as f_{I} is primitive; hence $N_{G}(e) \geqslant N_{G}\left(f_{L}\right)$. For if $g \in G$ and
 $e^{\sigma}=e$. By the minimality of $N_{G}(e)$, we have $N_{G}(e)=N_{G}\left(f_{L}\right)$.

Suppose $I_{1}, I_{2} \in \mathcal{Z}$ with $I_{1} \leqslant I_{2}$. Then $\widehat{I_{1}}$ and ${\hat{I_{I_{2}}}}$ botin
 en above) is also non-zero. Thus for some $x \in G, f_{L_{1}} f_{L_{2}}^{x} \neq 0$, and then $f_{L_{1}} \Psi_{I_{2}}^{X}=f_{I_{2}}^{X}$ as $\mathrm{I}_{\mathrm{I}_{2}}^{X}$ is primitive in KL_{2}. Since $f_{I_{2}} e=f_{I_{2}}$ (from above), we have

$$
f_{I_{1}} f_{I_{2}}^{\mathbf{X}} e^{x}=\mathbf{I}_{I_{1}} f_{L_{2}}^{\mathbb{Z}} \neq 0
$$

so $f_{L_{1}} e^{x} \neq 0$ whence $f_{L_{1}} e^{\pi}=f_{L_{1}}$. But Irom above $f_{L_{1}} e=f_{L_{1}}$, so $e e^{x} \neq 0$ whence $x \in H_{G}(e)=N_{G}\left(f_{I_{2}}\right)$. Thus

$$
\mathbf{f}_{L_{1}} f_{L_{2}}=f_{L_{1}} f_{I_{2}}^{\mathbf{x}} \neq 0
$$

Whence $f_{L_{1}}{ }^{f}{L_{2}}=f_{I_{2}}$.
Now given any $L_{1}, I_{2} \in \mathcal{L}$, let $L_{1} L_{2} \leqslant L E \mathcal{L}$. Then
$f_{L_{1}} f_{L}=f_{L}=f_{L_{2}} f_{I}$, so $f_{L_{1}}{ }_{L_{2}} \neq 0$. Thus we may apply Lemma 5.2 to obtain a maximal ideal M of $K A$ such that for all $I \in \mathcal{L}$,

$$
\mathrm{M} \cap \mathrm{KI}=\left(1-\mathrm{P}_{\mathrm{I}}\right) \mathrm{KL} .
$$

Let T be a (inite) right transversal to $N_{G}(e)$ in G.
We claim that

$$
A^{n n n_{K A}}(V) \geqslant \bigcap_{x \in T} M^{x}
$$

For let $\alpha \in \bigcap_{x \in T} M^{x}$, and say supp $\alpha \subseteq I \in \mathcal{L}$. Then for $x \in T$,

$$
\begin{aligned}
x \in M^{X} \cap B L & =(M \cap K L)^{X} \\
& =\left(1-f_{\mathrm{I}}^{\mathrm{X}}\right) K L
\end{aligned}
$$

so $f_{L^{\alpha}}^{x}=0$. But $N_{G}\left(f_{I}\right)=N_{G}(e)$, so $\hat{f}_{L}=\sum_{X \in T} f_{L}^{X}$, whence $\hat{f}_{I^{\alpha}}=0$. Since \hat{P}_{L} acts as the identity on V, we have $x \in A n n_{\text {_it }}(V)$.

Thus $\mathrm{Kl} / A n n_{\mathrm{KA}}(\mathrm{V})$ is an image of the completely reducible KA-module $\mathrm{KA} / \bigcap_{\mathrm{x} \in \mathbb{T}} \mathrm{M}^{\mathrm{X}}$, so is a semisimple artinian K algebra. Thus its module V_{A} is completely reducible. By Lema 2.6(a) V is completely reducible as $K G-m o d u l e ; ~ s i n c e ~ V ~$ is indecomposable, it is irreducible.

> Ne now consider necessary conditions for indecompos- able KG-modules to be irreducible, comencing with:

Lemma 15.4 Let K be a field and G a group such that every indecomposable KG-module is irreducible. Then G is locally finite and char $K 末 \pi(G)$.

Proof The injective hull of the trivial KG-module K is indecomposable so irreducible; that is, K is injective. Now use Lemma 9.13.

When G is countable, we can establish necessary and sufficient conditions. The follawing result extends a theorem of Hartley:

Theorem 15.5 If K is a field and G is a countable group, the following are equivalent:
(a) G is periodic and almost abelian, and char $K \notin \pi(G)$;
(b) every indecomposable KG-module is irreducible;
(c) every irreducible $K G$-module is injective.

Proof (The equivalence of (a) and (c) is [10; Theorem A].)
(a) \Rightarrow (b) This is Theorem 15.3.
(b) \Rightarrow (c) If (b) holds then by Lemmas 15.4 and 3.8 , KG is locally Wedderburn, so Theorem 8.11 applies. But (b) precludes alternative (ii) of that theorem from occurring, so we have (c).
(c) $\Rightarrow(3) \quad[10]$ Given (c), Lemma 9.13 shovs that G is locally finite and char $K 末 \pi(G)$. By (c) and Theorem 8.11, every irreducible KG-module has finite endomorphism dimension, so G is almost abelian by Theorem 9.15.

Chapter V
 NON-LOCALLY-FINITE GROUPS

16. A conjecture

In this chapter we investigate the existence of minimal right ideals in group rings of groups which are not locally finite. The results we shall obtain all provide evidence in support of

Conjecture 16.1 Let G be a non-locally-finite group and $K a$ field. Then So(KG) $=0$.

In Section 17 we show that this conjecture is valid for certain group classes, in particular for a class of generalized FC-soluble groups, which includes all radical and all locally soluble groups (Theorem 17.3), and for free products (Proposition 17.4). We also show that if K has characteristic $p(\geqslant 0)$ then residually finite-p' groups G satisfy Conjecture 16.1 (Proposition 17.5); we deduce that groups linear over a field of characteristic zero or not equal to p also satisfy the conjecture (Corollary 17.7).

A ring is called (right) semiartinian if every nonzero right module has non-zero socle. Recalling from Lemma 13.3 that if a group ring of a locally finite group has nonzero socle then it is semiartinian, we are led to consider a
weaker form of Conjecture 16.1:

Conjecture 16.2 If \mathbb{Z} is a field and G a group such that $K G$ is semiartinian, then G is locally finite.

We establish some special cases of this second conjecture in Theorem 18.4.

In Section 17 we shall employ the notation of grouptheoretical classes and operations (see [21; Section 1.1]). The group classes we mention include the following:

F	:	Pinite groups
$\underline{\underline{F}}^{\prime}{ }^{\prime}$:	finite p'-Jroups (where p is a prime)
$\stackrel{\text { T, }}{=}$,	:	finite groups
A	:	abelian groups
B	:	FC-groups
(G)	:	the class of all groups isomorphic to a fixed
		group G, together with all trivial groups.

Ne shall use a number of group-theoretical operations. If \mathbb{X} is a group class, $w \theta$ deinine the following group classes:

LX : locally-X groups (i.e. groups in which every finite subset lies in an X-subgroup)

QK : residually-X groups
PK : groups with an ascending (transfinite) series with each factor in X

ST: subgrcups of groups in X.

Each of these operations is a closure operation, i.e. satisfies $A^{2} \underset{=}{2}=A \underline{X}$ for $211 X$. We also require the closure operation $\langle\hat{p}, \boldsymbol{L}\rangle$, whose closed classes are the classes which are both ṕ and L-closed $[21 ;$ p. 5].
ive shall need an easy lemma concerning products of group classes:

Proof Let $G \in \underline{\underline{Y}}-L \underline{X}$, so that G has a normal subgroup $H \in \underline{\underline{Y}}$ with $G / H E_{L} \underline{X}$. If $\left\{g_{1}, \ldots, g_{n}\right\}$ is a finite subset of G then $\left\{g_{1} H, \ldots, g_{n} H\right\}(\varepsilon G / i)$ is contained in some 关-subgroup W / H of $G /$. . When $\left\{g_{1}, \ldots, g_{n}\right\} \subseteq W E \underline{Y}$ as required.

17. Some well-behaved group classes

Abusing set-theoretic notation, we define

$$
\underline{\underline{S}}=L \underset{\equiv}{\underline{E}} \cup\{G: S o(K G)=0 \text { for all fields } K\} ;
$$

thus Conjecture 16.1 is true if and only if S is the class of all groups.

Proof Suppose that $G \in L \underline{\underline{E}} \cdot \frac{A}{\underline{A}}-\underline{\underline{S}}$, so that $G \neq L \underline{\underline{\underline{S}}}$ contains a locally finite normal subgroup H with G / H abelian, and there exists a field K with $S O(K G) \neq 0$. Since $G / H \neq L \stackrel{F}{\underline{F}}, G$ contains an el.ement x of infinite order modulo H. Now $\langle x, H\rangle \leqslant G$, so by Lemma 2.3(d) we may assume $G=\langle x, A\rangle=\langle x\rangle H$. By Lerma 2.3(d) again, So(iH) $\neq 0$. Hence oy Theorem 12.2, H contains a locally cyclic subgroup A of finite incex such that char $K \neq \pi(A)$. Then also $\langle x, A\rangle$ has finite index in G, so by Lemma $2.5(\mathrm{~b})$ we may assume that $H=A$. Then in particular every subgroup of H is characteristic, and char $K 末 \pi(G)$.

By Lemma 14.6 , since $G / H \cong\langle x\rangle$ is residually finite-p' for any p, G controls $S o(K G)$, so there exists non-zero $\alpha \equiv$ So (KG) $\cap \mathrm{KH}$. Then $\approx K G$ is completely reducible and cyclic, so has the minimum condition on KG-submodules. Since <supp $x>$ is a finite characteristic subgroup of H, there exists $r>0$ such that $\alpha^{x^{r}}=\alpha$. Now

$$
x K G \geqslant \alpha\left(x^{r}-1\right) K G \geqslant \ldots \geqslant \alpha\left(x^{r}-1\right)^{t_{K G} \geqslant \ldots,}
$$

so by the minimum condition $\alpha\left(x^{r}-1\right)^{t}{ }_{K G}=\alpha\left(x^{r}-1\right)^{t+1} K G$ for some $t \geqslant 0$. Then (since α and x^{r} commute) there exists $\gamma \in \mathbb{Z}$ with $\left(x^{r}-1\right)^{t} \alpha=\left(x^{r}-1\right)^{t+1} x \gamma$.

Let $N=\left\langle x^{r}\right\rangle$. Then if $0 \neq \delta E l_{K N}\left(x^{r}-1\right)=l_{K N}(\underline{\underline{W}})$ (by Lemma 1.1), we find as in the proof of Lemma 2.2 that supp $\delta=W$, which is impossible. Thus $x^{r}-1$ is regular in $K N$, so too in KG (by Lemma 9.1(b)). Hence $x=\left(x^{r}-1\right) \alpha y$. Since $\alpha \neq 0$, also $\alpha \gamma \neq 0$: write

$$
\alpha \gamma=\sum_{n=M}^{N} x^{n} \beta_{n} \quad\left(M \leqslant N ; \beta_{n} \in K H ; \beta_{M}, \beta_{N} \neq 0\right)
$$

Then

$$
\begin{aligned}
\mathrm{KH} \ni \alpha & =\left(x^{r}-1\right) \sum_{n=M}^{N} x^{n} \beta_{n} \\
& =z^{r+N} \beta_{N}+\ldots-x^{M} \beta_{M},
\end{aligned}
$$

where we have show only the greatest and least powers of x. Hence $\mathrm{r}+\mathrm{N}=\mathrm{N}=0$; so $\mathrm{r}=\mathrm{M}-\mathrm{N} \leqslant 0$, a contradiction.

The following rather technical lemma allows us to improve on Lemma 17.1.

Lemma 17.2 Let $\underline{\underline{Z}}$ be a group class such that LTE $\underline{\underline{K}} \subseteq \underline{\underline{S}}$. Then

(b) $\underline{\underline{\underline{x}} \underline{\underline{I}} \subseteq}$;
(c) LF. $\mathrm{F} \cdot \underline{\underline{\underline{X}}} \subseteq \underline{S}$;

 supficient to show that $L \underline{\underline{3}}=\underline{\underline{\underline{S}}}$. Thus let $G \in L \underline{\underline{S}}$ and suppose
there exists a field K with $S o(K G) \neq 0$: we must show that $G \in L \stackrel{F}{\underline{F}}$. Let $g_{1}, \ldots, g_{n} \in G$ and $O \neq \alpha \in \operatorname{So}(K G)$, and put
 with $H \leqslant L \in S$. Now $0 \neq \alpha \equiv S O(K G) \cap K L$, so by Lemma $2.5(\mathrm{a})$, So $(K L) \neq 0$. Hence $L \in L \underset{\underline{F}}{ }$, whence $<g_{1}, \ldots, g_{n}>\in \underline{\underline{F}}$ as required.
(b) Let $G \in \underline{\underline{X X}}$: say $H\{G$ with $H \in \underline{\underline{S}}, G / H \in \mathbb{X}$. Suppose K is a field with $\operatorname{So}(\mathrm{KG}) \neq 0$; then by Lemma $2.3(\mathrm{~d}), \operatorname{So}(\mathrm{KH}) \neq 0$, so $H \in L$. Hence $G \in L \underline{\underline{F}} \cdot \underline{\underline{X}} \subseteq$.
(c) Let $G \in L \underset{E}{(P I X}$, so that there is an ordinal ρ and an ascending series

$$
G_{0} \leqslant G_{1} \leqslant \ldots s G_{x} \leq G_{x+1} \leqslant \ldots \leqslant G_{p}=G
$$

such that $G_{O} \in L \underline{\underline{F}}$ and $G_{\alpha+1} / G_{x} \in \underline{\underline{X}}$ for all $x<p$. We proceed by induction on ρ. Suppose first that ρ is not a limit ordinal; then by induction $G_{p-1} \in \underline{\underline{S}}$, so $G \in \underline{\underline{S X}} \subseteq \underline{S}$ by (c). Now assume that $\rho(>0)$ is a limit ordinal, and let H be a innitely generated subgroup of G. Then $H \leqslant G_{\alpha}$ for some $x<\rho$, and by induction $G_{a} \in \underline{\underline{S}}$. Hence $G \in \underline{\underline{S}}=\underline{\underline{S}}$ by (a).
(d) Let

$$
\stackrel{T}{\underline{=}}=\{G: L \underline{\underline{E}} \cdot S(G) \subseteq \underline{\underline{S}}\}
$$

(where $s(G)$ is the class of groups isomorphic to subgroups

by (a). Hence $\mathrm{L}=\underline{\underline{\underline{T}}}$. Similarly,
by (c), whence $\stackrel{P}{\underline{T}}=\underline{\underline{T}}$. We conclude that $\langle\mathcal{P}, L\rangle \underset{\underline{T}}{\underline{T}}=\underline{\underline{T}}$.

$$
<\dot{P}, L>\underline{\underline{\underline{X}}} \subseteq<\dot{P}, L>\underset{\underline{T}}{\underline{\underline{T}}}=\underline{\underline{T}} \text {. }
$$

Theorem 17.3 If B is the class of FC-groups, then

Proof In an FC-group the periodic elements form a locally finite normal subgroup with abelian quotient group (Lemma
 17.1 and $17.2(d)$.

We remark that the class $\langle\dot{P}, L\rangle$ 응 contains, for example, all radical (i.e. hyper-(locally nilpotent)) groups, and all locally (PC-)soluble or (FC-)hypercentral groups.

Proposition 17.4 Let $G=A * B$ be the free product or nontrivial groups A and B. Then $G E S$.

Proof If K is any field then by Lemma 9.16 KG is strongly prince. Hence by Lemma 8.12, $30(T \hat{G})$ equals 0 or IG. The latter case is impossible by Leman 2.2, as G is infinite. de now consider residually finite groups. By definition, $\underline{E}_{0}=$?

Proposition 17.5 Let K be a field of characteristic $p \geqslant 0$, and $G \in R \underset{=}{F} p^{\prime}$. II $S O(K G) \neq 0$ then $G \in \underset{=}{\underline{F}}$.

Proof By Lemma 14.6, the identity subgroup of G controls $S o(K G)$, i.e. $S o(K G)=(S o(K G) \cap K) K G$. Thus $S O(K G) \cap K \neq 0$, Whence $T \subseteq S O(K G)$, i.e. $S o(X G)=K G$. Fence G is finite by Lemma 2.2.

Corollary 17.6 If p and q are distinct primes, then $R{\underset{F}{p}}^{\prime} \cap R{\underset{\underline{F}}{q}}, \subseteq \quad \underline{S}$.

It follo:s both from Proposition 17.4 and from
Corollary 17.6 that Iree groups lie in S.

Corollary 17.7 Let G be a Inear group over a field F.
(a) If char $\vec{Z}=0$ then $G E$.
(b) If there is a fieid K with char $\mathbb{I} \neq$ char F and So $(T G) \neq 0$, then $G \in L \stackrel{F}{\underline{F}}$.

Proof In case (a) suppose K Is any field with So(KG) $\neq 0$. In either case put $q=$ char $K(\geqslant 0)$. By Theorem 7.7, $G \in L\left(2{\underset{F}{q}}^{=}, \cdot \underline{F}\right)$. If $g_{1}, \ldots, g_{n} \in G$ and $0 \neq \alpha \in \operatorname{So}(K G)$ then $H=\left\langle g_{1}, \ldots, g_{n}, \operatorname{supp} \alpha\right\rangle \in{ }_{\underline{F}}^{\underline{F}}, \cdots$,
and $S o(\mathrm{LE}) \neq 0$ by Lemma 2.5(a). Thus $\mathrm{H} \in \mathrm{F}$ by Lemma 2.3(d) and Proposition 17.5. Hence $G \in L$.

Ve now consider semiartinian group rings. rirstly, we note that Handelman and Lawrence [7] prove, for a field K and a group G, that if $K G$ is strongly prime then G has no non-trivial locally finite normal subgroup; they conjecture that the converse also holds. If this is correct then conjecture 16.2 is a consequence. For suppose $K G$ is semiartinian, and let $L(G)$ be the product of all locally finite normal subgroups of G. Then $L(G)$ is locally finite, and

$$
L(G / I(G))=1 .
$$

Now $K[G / L(G)]$ is an image of $\bar{J} G$ so has non-zero socle; if it is strongly prime we conclude from Jemmas 8.12 and 2.2 that $G / L(G)$ is finite, whence G is locally finite.

Semiartinian rings may be characterized in terms of their transfinite ascending Loewy series. For a (rigit) module V ise define $\mathrm{So}_{0}(V)=0$, and

$$
\begin{gathered}
S o_{\alpha+1}(V) / S o_{\alpha}(V)=\operatorname{So}\left(V / S o_{\alpha}(V)\right), \\
S o_{\lambda}(V)=\bigcup_{\beta<\lambda} S o_{\beta}(V)
\end{gathered}
$$

Ior any ordinal α and any limit ordinal λ. Note that the property $30_{\alpha}(T)=V$ is equivalent to the condition that 7 has an ascending series of type α with completely reducible factors, so is inherited by submodules, images, and direct sums.

Lerma 18.1 The ring R is semiartinian if and only if So $_{\alpha}\left(R_{R}\right)=R$ for some ordinal α.

Proof If α is an ordinal of cardinal larger than $|R|$ then $S o_{\alpha+1}(R)=S o_{\alpha}(R)$, i.e. $S o\left(R / S o_{\alpha \alpha}(R)\right)=0$, so if R is semiartinian then $R / S o_{\alpha}(R)=0$. Conversely, if $S o_{\alpha}(R)=R$ then we see that $\mathrm{So}_{x}(\nabla)=V$ first for free and then for arbitrary right R-modules V. Thus if $\nabla \neq 0$ then $30(V) \neq 0$.

Lemma 18.2 Given a group G and a field K, suppose for some ordinal \times that $3 o_{\alpha}\left(g_{K G}\right)=g$. Then either G is locally finite or $\mathrm{So}_{2 \alpha}\left(\mathrm{KG}_{\text {KG }}\right)=K G$.

Proof Suppose that G is not locally finite, so that there exist $g_{1}, \ldots, g_{n} \equiv G$ such that $\left.H=<g_{1}, \ldots, g_{n}\right\rangle$ is infinite. The obvious map

$$
p: K G_{K G} \rightarrow \bigoplus_{i=1}^{n}\left(g_{i}-1\right) K G
$$

has kernel $r_{\text {KG }}\left(\left\{g_{1}-1, \ldots, g_{n}-1\right\}\right)=r_{\text {KGG }}$ (Gh) (by Lemma 1.1). If $0 \neq \gamma \in r_{K G}(G \underline{\underline{n}})$ we find (as in Lemma 2.2) that supp $\gamma \supseteq H$, a contradiction. Hence φ is a monomorphism. Zor each i,
 $3 O_{\alpha}\left(\mathbb{K G} G_{G G}\right)=K G$.

Lemma 13.3 Let K be a field and A a normal subgroup of a group G.
(a) If V is a right FH -module, α is an ordinal, and
$S o_{\alpha}\left(V^{G}\right)=V^{G}$, then $S o_{\alpha}(V)=V$.
(b) If KG is semiartinian then so is KH.

Proof (a) We show by induction that for all ordinals α, $S o_{\alpha}\left(V^{G}\right) \leqslant S o_{\alpha}(V)^{G}$: the desired result is an immediate consequence. The case $\alpha=1$ is Lemma 2.3(d), and if α is a limit ordinal the proof is clear. Suppose that α is not a limit ordinal, and that $S o_{\alpha-1}\left(V^{G}\right) \leqslant S o_{\alpha-1}(V)^{G}$. Then

$$
\left(S o_{\alpha}\left(V^{G}\right)+S o_{\alpha-1}(V)^{G}\right) / S o_{\alpha-1}(V)^{G}
$$

is an image of $S o_{\alpha}\left(V^{G}\right) / S o_{\alpha-1}\left(V^{G}\right)$, and is therefore completely reducible. Thus

$$
\begin{aligned}
\left(\operatorname{So}_{\alpha}\left(V^{G}\right)+S o_{\alpha-1}(V)^{G}\right) / S o_{\alpha-1}(V)^{G} & \leqslant \operatorname{So}\left(V^{G} /{S o o_{\alpha-1}}(V)^{G}\right) \\
& =\operatorname{So}\left(\left(V / S o_{\alpha-1}(V)\right)^{G}\right) \\
& \leqslant\left.\operatorname{So}\left(V / S o_{\alpha-1}(V)\right)\right|^{G} \text { by } 2.3(d) \\
& =\left.\left(\operatorname{So}_{\alpha}(V) / S o_{\alpha-1}(V)\right)\right|^{G} \\
& =\operatorname{So}_{\alpha}(V)^{G} / \operatorname{So}_{\alpha-1}(V)^{G}
\end{aligned}
$$

and $S O_{\alpha}\left(V^{G}\right) \leqslant S O_{\alpha}(V)^{G}$ as required.
(b) This follows from part (a) and Lemma 18.1.

We can now prove some special cases of Conjecture
16.2, if we impose two rather stringent conditions on K.

Theorem 18. A Let G be a group nnd K an a? gebraically closed field with $|K|>|G|$. Suppose thet $K G$ is semiartinien, and thet at lesst one of the following conditions holds:
(a) char $\mathrm{K}=0$; or
(b) G is periodic; or
(c) G is finitely generated and has no proper subgroup of finite inder.

Then G is finite.

Proof Let α be the least ordinal such that $\mathrm{So}_{\alpha}(K G)=\mathbb{K} G$ (see Lemma 18.1). Since $1 \in K G, x$ is not a limit ordinal. ile proceed by induction on x. If $\alpha=1$ then $K \mathcal{G}_{\text {-G }}$ is completely reducible, so G is finite by Lemma 2.2.

Thus suppose $\alpha>1$, and let $T=30_{\alpha-1}$ (KG). Now $K G / T$ is completely reducible: sgy

$$
\bar{K} G / T=V_{1} \oplus \ldots V_{r},
$$

where the V_{i} are irreducible richt $K G-$ (and $K G / T-$) modules, and r is finite since $1 \in K G$. Since $K G / T$ is semisimple artinian, ∇_{i} is finite-dimensional over its endomorphism ring E_{i} for each i. By Lema 9.17 , since $|K|>|G|$, each E_{i} is algebraic over K ; but K is algebraically closed, so $\mathrm{E}_{i}=$ K. Now $G / C_{G}\left(V_{i}\right)$ acts faithrully by rignt multiplication on the finite-dimensional K-space V_{i}, so is linear over K.

Let $H=C_{G}(K G / T)=\bigcap_{i=1}^{r} C_{G}\left(V_{i}\right)$. Then G / H emoeds in the
direct product of the groups $G / C_{G}\left(V_{i}\right)$, so is also linear over K. In case (3), since $\operatorname{So}(\mathrm{K}[G / G])=\operatorname{So}(K G / g H) \neq 0$, G / H is locally finite by Corollary 17.7(3). In case (b), G/H is
locally finite by finitely generated, G / H is (almost) residually finite by Theorem 7.4(b); thus $H=G$ since G has no proper subgroup of finite index.

Since H acts trivially on KG / I we have

$$
h \mathrm{hG} \leqslant T=50_{\alpha-1}(\mathrm{KG})
$$

whence $S O_{\alpha-1}(\underline{\underline{n}} G)=$ hG . By Lemma 18.3(a), $S O_{\alpha-1}(\underline{h})=\underline{\underline{h}}$. Then by Lemma 18.2, either H is Locally finite, or $\mathrm{So}_{\mu-1}(\mathrm{Kif})=\mathrm{FH}$. In the latter case H is actually finite, by induction on α. (Note that i satisfies the same hyotheses as G : KA is semiartinian by Lemma 18.3(b); in case (c) we have already seen that $E=G$.)

Thus in any case both H and G / H are locally finite, so G is too. If k is the prime field of K and A is any infinite periodic abelian group with char $k \neq \pi(A)$, then $|k(A) \cap \vec{H}: k|=|x(A): k|=\infty$, since \bar{k} is algekraically closed. Hence it follows from Theorem 12.2 that G is finite.

RPFIRENCES

1. S.D. Berman, 'Group algebras of countable abelian p-groups', Publ. Math. Debrecen 14 (1967) 365-405 (Russian).
2. N. Bourbaki, Algèbre, Chapter 8, Hermann, Paris, 1958.
3. 'V.D. Burgess, 'Rings of quotients of group rings', Canad. J. Math. 21 (1969) 865-875.
4. C. $\%$. Curtis and I. Reiner, Representation Theory of

Finite Groups and Associative Algebras, Interscience, New Yor's, 1962.
5. D.R. Farkas and K.L. Snider, 'Group algebras whose simple modules are injective', Trans. Amer. Nath. Soc. 194 (1974) 241-248.
6. L. Fuchs, Infinite tbelian Groups, Volume I, Academic Press, New York and London, 1970.
7. D. Handelman and J. Lamence, 'Strongly prime rings', Trans. Amer. Math. Soc. 211 (1975) 209-223.
8. J. Hannah and K.C. OMeara, 'raximal quotient rings of prime group algebras', Proc. Amer. Math. Soc. (to appear).
9. B. Hartley, 'A class of modules over a locally finite group I', J. Austral. Jath. Soc. 16 (1973) 431-442.
10. 3. Hartley, 'Injective modules over group rings', Quarterly J. Math. (1977).
11. B. Hartley and J.3. Richardson, 'The socle in group rings' (submitted).
12. N. Jacobson, Lectures in Abstract Algebra, Jolume III Theory of Fields and Galois Theory, Van Nostrand, Princetion, New Jersey, 1964.
13. O.H. Kegel and B.A.F. Vehreritz, Locally Finite Groups, North-Folland, insterdan, 1973.
14. $\%$. Müller, 'Radikal und Socisel in Gruppenalgebren über lokalendlichen Gruppen', Arch. Math. (Basel) 25 (1974) 476-482.
15. D.3. Passman, Infinite Group Rings, Marce? Dekker, New York, 1971.
16. D.S. Passman, 'Mnimal ideals in group rings', Proc. Amer. Nath. Soc. 21 (1972) $81-86$.
17. D.S. Passman, 'The type I part of a group ring', Commnications in Alg. 2 (1974) 469-473.
18. D.3. Passman, The Algeoraic Structure of Gsoup Rings, , iley-interscience, 1977.
19. J.S. Richardson, 'Primitive idempotents and the socle in group rings of periodic abelian groups', Compositio Math. 32 (1976) 203-223.
20. J.S. Richardson, 'Group rings with non-zero socle' (submitted).
21. D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Part 1, Springer-Terlag, Berlin, 1972.
22. B. Stenström, Rings of Quotients, Soringer-Verlag, Berlin, 1975.
23. D.A.R. Vallace, 'The Jacobson radicals of the group algebras of a group and of certain normal subgroups', Nath. 2. 100 (1967) 282-294.
24. B.A.F. Vehrfritz, Infinite Iinear Groups, SpringerVerlag, Berlin, 1973.

[^0]: If m and n are positive integers, their highest common factor is denoted by (m, n). If $(m, n)=1$, we sinil denote by $o(m, n)$ the order of modilo $n, i . e$ the smellest positive integer r such that n divides $m^{r}-1$. If G is a locally cyclic sroup with Min, उaサ

[^1]: $G \cong C_{D_{1}^{n_{1}}} \times \ldots \times C_{D_{k}^{n_{n}}}$
 where the p_{i} are distinct primes and $1 \leqslant n_{i} \leqslant \infty$, then

[^2]: If 3 is any abelian subgroup of G, then $\Omega(B)$ is a direct product of elementary abelian groups, so is residually Ifnite, so finite by the above. By Theorem 3.1, B satisfies Min.

