A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/139217

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications



GROUP RINGS ,7ITE NON-ZERO SOCLE

James Stephen Richardson

A thesis submitted for the degree of Doctor of Philosophy
University of "“/arwiclc

Department of Mathematics August 1976



GROUP RINGS WITH NON-ZERO SOCLE

James Stephen Richardson

A thesis submitted for the degree of Doctor of Philosophy
University of 7arwick

Department of Mathematics August 1976



CONTENTS

Acknowledgements page

oumar/

Notation

V.

Introduction
1. Preamble

2. The socle: subgroups and field extensions

Periodic Abelian Grouos

3. Preliminaries

4. K-Inductive subgroups

5. Primitive idempotants in KG

6. The Loewy series of KG

Some background Results
7. On groups
8. On rings and algebras

9. On group rings

Locally Rinite Grouns
10. Preamble
11 . Endomorphism rings

12. Structure of G

36

47

53

56

63

73

77

S3



13. Structure of KG 86
14. A characterisation of the socle 94
15. Indecomposable modules 103

V. Non-locally-finite Groups

16. A conjecture 111
17. Some well-behaved group classes 114
18. Semiartinian group ring3 119

References 124



ACKNOWLEDGEMENTS

I 3hould like to express my deep appreciation and
gratitude to my supervisor Dr Brian Hartley for his
unfailing help and encouragement: he has been a constant,
cheerful source of inspiration, advice and hospitality to

me through three years.

I should also like to thank Professor J.A. Green
and Professor D.S. Passman for their useful suggestions,
and my friend Kenny Brown for the many stimulating conver-
sations which have so increased my appreciation of mathem-

atics and of the real world.

I am greatly indebted to the Association of
Commonwealth Universities and the British Council for the
scholarship which has supported me at Warwick, and to the
Universities of Virginia, "Warwick and Wisconsin for

additional financial assistance.



N hofiesh

IHTHAEY

The aim of this thesis is to investigate the circum-
stances under which group rings over fields have non-zero

socle, i1.e. contain minimal one-sided ideals.

After an introductory chapter, we consider the
special case 0j. a periodic abelian group and a non-modular
field (that is, a field of characteristic prime to the
orders of the elements of the group). This special case,
and the background material contained in Chapter 111, serve
as preparation for our principal results, which concern,

locally finite groups.

V/e establish necessary and sufficient conditions on
an arbitrary field K and a locally finite group 0 for the
group ring KG to contain minimal one-sided ideals: the most
important condition is that G should be a Cernikov group.
Me then examine the structure of KG when these conditions
are satisfied. Vie show that KG has a finite series of ideal3
each factor of which i3 a direct sum of quasi-Frobenius
rings, and characterize the socle of KG. Me also classify
indecomposable KG-modules, and determine (for countable but
not necessarily locally finite groups G) necessary and
sufficient conditions for all indecomposable KG-modules to

be irreducible.
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In the final chapter we consider non-locally-finite
groups, conjecturing that group rings of such groups never
contain minimal one-sided ideals. We establish the truth
of this conjecture for several classes of groups, and also

consider semiartinian group rings.
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NOTATION
(m,n) highest common factor of integers m and n
[m,n] lowest common multiple of m and n
o(m,n) order of m modulo n (Gf (m,n) =1

1 iIf x=y; 0 otherwise

K a field

char K its characteristic

K* its multiplicative group

K an algebraic closure of K

<Q the rational field

v a finite field of order pd

G a group

«(G) the set of primes p such that G has elements of
order p

A(G) the PC-centre of G

n(G) the subgroup of G generated by all elements of

prime order

0p (6) the largest normal p-subgroup of G
\/ a cyclic group of order pn
Cpo a Prufer p-group

KG, K[0] a group ring
Slipp X the support of «.£KG (see p. 2)

J(KG) the Jacobson radical of KG



N(KG) the nilpotent radical of KG
KQ) a certain subfield of K (see p. 21)
X £ KG X is a subset of K&

W X> - {*£ KG - «tX= 0}

rkgA = B1*EKG :X*=0}

CcS(D the controller of an ideal 1 of KG (8ee p. 95)
\Y a right KG-module

CGY) = {g€G :vg=v for all v£V}

AnnKG (V)= jJx £ KG :V* = 0]

SndKG(V) the ring of KG-endomorphi3ms of V

So (V) the socle of V

So* (V) the -x-th terra of the ascending Loewy series of
V (see pp- 4, 119)

H< G H is a subgroup of G

HAG H is a normal subgroup of G

vh=v h the restriction of V to KH

W a right KH-module

WG = V|G = y@RjQjKG, "tile induced module

Min the minimum condition on subgroups
PO9AQeee group classes (see p. 112)

onfeee  group-theoretical operations (see p. 112)



Chapter 1

INTRODUCTION*®

1. Preamble

Let X be a field and G a group. Our aim is to
investigate consequences of the supposition that the group

ring KG contains a minimal one-sided ideal.

Our central results, which concern the case of a
locall3lT finite group G, occur in Chapter IV. In preparation
for these we examine the special case of a periodic abelian
group G and a non-modular field X (Chapter I1l), and set down
some necessary background results of a more general, nature
(Chapter 111). In Chapter V we consider non-locally-finite
groups G. The contents of the various chapters will be

described in more detail in the first sections thereof.

In Section 2 we investigate the behaviour of the
socle of a group ring when either the group or the field is
extended, while the remainder of this section is concerned
with establishing some notation and definitions (see also

the list of notation commencing on page (Vvii)).

Let G be a group. By n(C-) we denote the set of
primes p such that G has elements of order p. If X is a
property of groups, we say that G is almost an X-group if

G has a normal X-subgroup of finite index.



Let K be a field. We denote the group ring of G
over K by KG, or sometimes K*g]. |IF

= ZT *=g £ KG d £K)
gEG g S

then the support of & is

SUPP ut {gf & : ag t 0}

a finite subset of G.

Let V be a (right) KG-module; ve always assume that
V is unitary. We denote by Ann”~0l) the annihilator of V in
KG (an ideal of TIG), and by End—lg(V) the ring of KG-endo-
morphisms of V. The composition length of V is the length
of a composition series for V, provided a finite such series

exists.

The augmentation ideal of KG is the kernel of the

map

(which is induced by the group homomorphism G — 1). Augment-

ation ideal3 of group ring3 KG, EH, etc. will be denoted g,
etc. If H is a normal subgroup of G then hG=h_KG =KG.h

i3 a two-3ided ideal of KG, being the kernel of the map

KG — k [g/HJ induced by the canonical group homomorphism

G — GJI. Yfe shall require the following well known result

on the augmentation ideal of a group ring:
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Lemma 1.1 If K is a field and G a group with generating set
then

g = H (g--DKG = H KG(g.--1)
i 1 i 1

Proof (see jjls; ) We prove the first equality.

Certainly, each g™~1 £ g. Conversely, suppose

@ = XT £ o £K
JEG g @ED >
so that X1 <x =0. Then
gEG 38
X = &-0 = XZ < (1) ,
geEG 8§

so if A=ZI(g"-1)KG, it is enough to prove that g-1£ A for

all g£ G. Let

H = {g£ G :g-1£ A}
If hEH then
gth-1 = ((-1)+ (gx-1)h £ A
and gMth-1 = (h-1)- (gx-1)g“1h £ A ,

so gih,gT*"he£H. Thus for all i we have g.jH=g”~1H =H, whence

H= <gi>H =CH. But 1£H so H=G as required.
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2- The socle: snb-croans arid field extensions

let R be a ring and 7 a left or right R-module. The

socle 30(7) of 7 is the sum of the minimal submodules of 7.
The ascending loewy series of 7 i3 defined inductively by

3og( = 0 ;

3°n+1(V)/3°n (@) = 3o0(7/30on (7)) (n-0,1,2,...)
For the ring R itself we shall usually denote the right socle
3o(H,,) by So(R); the left socle will always be denoted 30("R).
A submodulle 7 of 7 is essential in V if every non-sero
submodule of 7 has non-sero intersection with 7; we shall
write ess 7 when this ocorns. The following result is

well known:

Lemma 2.1 The socle of 7 is the intersection of the

essential submodules of 7.

Troof IT N is a minimal and 7 an essential submodule of 7,
then 0+ 1TO7< 30 M<7. Thus
30(7) « :less 7y = 3,

3ay.

Conversely, we show that every submodule ki of 3 i3
complemented in 3, so that 3 is completely reducible and
therefore contained in So(7). 3y Zorn"s lemma there exists
a submodule T of 7 maximal subject to KPiT=0. S claim

that i:®T i3 essential in 7. For if 1«7 with (-®T)0 1=0,



®

then _8i91 is a direct ara, 30 I;n @+ 1) =0. Thus 1<T by

choice of i, whence 1=0. Hence E«!;®!”, so Sail ® (EO ) as

required.

It will be useful to know when the augmentation ideal

of a group ring is essential.

Lenina 2.2 Let K be a field and G a group. Then g is not
essential in if and only if G is of finite order not

divisible by char K.

Proof If char X\ |Gj< 00 then KG-™ is completely reducible
by llaschke"s theorem, so no proper right ideal is essential.
Conversely, suppose IT is a non-zero right ideal with
im£=0- "h.2nir+g= Kz as £ is maxinal, so ITSKG/g is the

trivial KG-module. Let OF=C£ IT, and write

a _ % €K £K)
IT g£ G then

Z ¢ x = d = - ; Vg~1 = 2 VvV * *
XEG J J XEG O

whence <« =d. 40. Thus G=supp ot is Ffinites Moreover,

under the canonical nap KG — X,

- - «r E_ 1
XEG

maps to d Jg |- Since 01$ g, it follows that Jc{=0 in X.

Let KG be a group ring, H a subgroup of G, and 7 an
extension field of K. We shall require a number of results

relating the socles of KG, KH and ?G.
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Lemma 2.5 Let K be a field, H a subgroup of a group G, V
right KK-module, and V' =7®_.KG the induced module.
@ If x are submodules of V, then
ouO=rf o
(b)) IfW i3 a submodule of V and ess 7G, then # ess
(© If HSC- and W ess 7 then WG ess VG.
(@ If H«JIG, then 30("r)< So(V)G; in particular,

So(KG)  So(KH)KG

Proof Let 1 be a right transversal to H in G.

@ Since "KG-=0KHx, we have =0 7@®s. Thus
iH XET xEF
fVE = 0( © \<sx = 0 P)7x)«x = >*)<
1( XET ) XET ()? ) (Q )
(b) This follows immediately from (@)

(© (see also [3; 2.53) As H is normal, 7®x is a -
module for each x€ T, and ax ess Tax. Hence

Wr = Tax ess O 7®X = V®
XET XET

(@3 KH-3Ubmodule 30 a fortiori as KG-subaodule).

@ v lemma 2.1,
So(Y) = O! ¥:7 ess V} ,
so by (@ and (©)
3o(V\H)@& = 0! fr:Mess V)
> O0]U U ess 7GJ = 30o(VC)

Putting V= we obtain the particular case cited.
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?he hypothesis in (¢) and (d) that H is normal may

be weakened: for example, H ascendant or locally subnormal

in G is sufficient. The following easy but extremely useful

lemma, due to Hannah and O"Meara f8l , gives a variation of

(©) with no such hypothesis on H.

Lemma 2.4 Let K be a field and H an infinite subgroup of a

locally finite group G. Then the augmentation ideal hG is

essential in KGE’P'

Proof Suppose there exists non-seroot-S EG with «tKGOhG=0.

Since ! =< supp a&> is finite but H is not, there exists a
finite subgroup P of K with
17l > I /7 (dimK <D

Let O=<F,L>. Then <*KDn£D= 0, so

ID] > dim- (otkDefD)
= dimK oKD + dim.r\7 m
= hi (dimgoB)/ n |l + (21 -Dla 1/ 12l
> hi »

a contradiction.

Lerama. 2.5 Let E be a field and H a subgroup of a group G.

@ If 30(KG)nKH4=0 then So(KH)%O0.

(M) If |G:H|< oo, then 30(EG) =0 if and only if 30o(KH) = 0.

aifc*c
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Proof (@ Let 04s«<*€ 30(KG)nEH. Then adZ is cyclic and
completely reducible, so has the minimum condition on EG~
submodules. How otKG£ *KH] ™, so <EH has the minimum
condition on KH-subnodules, and in particular contains a

minimal submodule. Hence 3o0(XH)"0.

((9)) Since Hg is normal and of finite index in both
OEC-

H and G, we may assume H*G. Thus So(H!I) =0 implies

30(HG) =0 by Lemma 2.3(d). Suppose 30(KH)™0, and let 1 be

a minimal right ideal of KH. Then the restriction Ielﬁ:

n

i l[g of IG to KH is a direct sum of |G:H] irreducible Kfi-
3Ubmodulles, so has minimum condition. \ fortiori 1G has

minimum condition on KG-submodules, so 0™ 30(1G)4 30(KG).

We may obtain more precise information on the
behaviour of the socle under certain group and field
extensions U3ing the following results on “relative projact-
ivity" . Recall that an algebraic element of an extension
of a field X is called separable if its minimal polynomial
over K has no repeated roots; an algebraic field extension

is separable if all its elements are separable.

Lemma 2.6 Suppose either
@) A=KG end 3* KH, where K is a field and H is a normal
subgroup of a group G of finite index not divisible by

ohar K; or
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(b) 3 is an algebra over a field K and A=3#~7? where ?
is a finite separable extension of IL
IT V iIs an A-module and '! an A-subnodtile which as 3-subnodule
is a direct summand of 7, then is already a direct summand
as A-subraodule. In particular, if 7 is completely reducible

as 3-module it is completely reducible as A-module.

Proof See [15: 15.2, 15.4] or [18; 7.2.2, 7.2.3]. Part

(@ 1is Higman®s version of Kaschke"s theorem.

Lemma 2.7 Let K be a field and H a normal subgroup of a

group G such that char Kf |G:H|<oo. Then

(@ 30(KG) So(KH)KG ;

()  3o(kH)

30(KG)0 KH

Proof @ If I is a minimal right ideal of 7H then IG|]-,
is completely reducible; hence IG is completely reducible by
Lemma 2.6(a). Thus 30(KH)KG< So(KG), and (@) follows by

Lemma 2.3(d).

) This follows from (@) since if H is any subgroup
(not necessarily normal) of G and 3 is a right ideal of KH,
then 300 ICi=3. Per let T be a right transversal to H in G,

with 1€ T; then KG=® KHx, so
plen i

LRI = ZH O 3.®KHx

KH. 1 n® 3 X
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rma le4 F be an extension of a field and G a group.
@ 30(FG) * 30(KG)~.

() If ? is a finite separable extension of K, t"nen

30(?G) = 30(EG)?
and 30(2G) = So(?G)OKG
Proof Let be a basis of F over K.
@ A proof parallel to that of Lemma 2.3(d) may be

applied, using the basis (ax} instead of a transversal, and

noting that

FoR = © Ko

®

i
-
>
(@]
D

lo(KG)?[tg = 0 30(EG)w.;
is a direct sun of |?:K| copies of 30(KG), it is completely
reducible. By Lemma 2.6(b) it follows that 30(KG)? is al3o
completely reducible, so is contained in 30(?G). Hence by

(@), 30(FG)=30(KG)7. An argument similar to that of Lemma

2.7(b) now shows that

30(?G)NXG = 30XG)pn IG = 30(XG)
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PERIODIC A33LIAH GROUPS

3. Preliminaries

In this chapter we investigate consequences of the
supposition that the group ring KG.has non-zero socle in the
case when G is a periodic abelian group and E is a non-modular
field for G (i.e. char E*tw(G)). We establish two principal
results, which will both be of use in the investigation in
Chapter 111 of group rings of arbitrary locally finite groups
over arbitrary fields. Firstly, we determine necessary and
sufficient conditions for the socle of EG to be non-zero
(Theorem 5.3). Secondly, assuming the socle non-zero we
describe the ascending Loewy series in terms of augmentation
ideals of certain subgroups of G (Corollary 6.3), and show in
particular that the series reaches KG after a finite number

of steps (Corollary 6.4).

The necessary and sufficient conditions we shall obtain
for the socle of KG to be non-zero are the following:
31l: G satisfies Kin, the minimum condition on subgroups;
31: G i3 almost locally cyclic; and
33: |k(G)HE: k]<oo, where k is the prime field of E, and
k(G) is a certain algebraic extension of k, to be defined in

lection 1.
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The next two results provide information on the
structure of abelian groups satisfying conditions 31 and S2.
If G is an abelian group we denote by JI({C) the subgroup of
all elements of finite square-free order in G. A Prufer (or
auasicyclic) -row is isomorphic to the multiplicative group
of all pn-th complex roots of unity, where n=0,1,2,..., for

some fixed prime p; all proper subgroups of such a group

(denoted Co) are finite.

Theorem 1.1 I¥f G i3 an abelian group, the following are
equivalent:
(@ G satisfies Kin;
() G i3 periodic and -ft(G) is finite;
(©) G has a decomposition
G =7 x?21 X ... xX? (0"m<oo0) ,

where ? is finite and each P is a Prifer group.
Proof 3ee [6; 25.1, 3.1] .

Corollary 5.2 If G i3 an abelian group with Min, the
folio"wing are equivalent:

(@ G has a finite subgroup ? such that G/? is locally
cyclic;

() G is almost locally cyclic;

(© G has a decomposition

G =PxP Xeuw x’?il (O «m< 00)



(€X))

where ? is finite and the are Prufar p~-groups for distinct
primes p”~.
Proof @ =~(0) Let n= |?]<oo. Since G is abelian,

Gn= [gn :g€G|] 1is a quotient of G and indeed of G/F, as ?ri= 1.
Thus Gn like G/? 1is locally cyclic. But G/Gn has finite
exponent and satisfies Kin, so is finite by Theorem 3.1 (since
a Prufer group has infinite exponent). Hence G is almost

locally cyclic.

() (©) By Theorem 3.1, since G satisfies Win, there is a
decomposition

G = FxP1lx ... Xx (Oincoa)
with ? finite and each ?i a Prufer group. How PyX...xP
like G is almost locally cyclic, but has no proper subgroup

of finite index, so is itself locally cyclic. Thus no two P/

can be p-groups for the same prime p.
© ™ @ G/F = pix.*.*pn is locally cyclic.

Via remark that (@) and (b) remain equivalent if G is

any periodic abelian .group.

To foreshadow the significance of condition 33, we
observe that it always holds if G is finite or Cis a finite
extension of k, but if K is algebraically closed then 33

holds only if G is finite. /ren G is a locally cyclic group



with iin, it is convenient to consider a condition equivalent
both to 13 and to the existence of minimal ideals in KG:
namely, the existence of K-inductive sub.-routs in G. ;e call
a finite subgroup H of G K-inductive if every irreducible KH-
module faithful for H remains irreducible when induced up to
G. ?or our study of K-inductive subgroups in Section 4, we
shall require a field-theoretic lemma (3.7). The next four

results, and the associated definitions, are standard.

Lemma 3.3 If 3 is a finite extension of a field F, the
following are equivalent:

(@ 3 is a splitting field of some polynomial over ?;

() every irreducible polynomial over ? with a root in 3

splits as a product of linear factors over 3.

Proof See [12; Theorem 10, p. mZ2],

Yhen the equivalent conditions (@) and (b) hold, 3
is called a normal extension of ?. Xotice that it follows
from (@ that if F<K< 3 are fields with 3 normal over F,

then 3 is also normal over K.

Lemma 3.4. The separable elements in an algebraic extension

form a subfield.

Proof See jj2; Theorem 11, p. ¢6]-
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In extension 3 of a field F is simple if 3=7(0) is

generated over ? (as a field) by a single element O.

Lemma 3.5 Any finite separable field extension is simple.

Proof dee [ n; PP. 54, 59].

Lemma 5.6 Suppose 3" and are extensions of a field F
lying in some common extension of F. Then the following are
equivalent:

(@ The canonical map

31*%?32 > 372 > >> l«ifi

is an isomorphism;

(b) there exists a basis of 3, over F which is linearly
independent over 3.;

(c) any subset of 3. linearly independent over ? is

independent over 30.

Proof @ ~(b) Let be a basis of 3, over F, so that
3,=07?¢i. Then

31 s2 = e )
Applying the canonical isomorphism, we find that

31s2 = © 3Wi ”

so tJ} is a basis of 3*3? over 3™ and in particular linearly
independent over 3.. dince any linearly independent set may
be extended to a basis, we nay prove similarly that (@)

implies (©).
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b ~ @ Let be a basis of 3, over '? which is linearly
independent over 3*. As above

318?32 = ® (3Isad)
It ®v (ot"€3™) maps to zero in 33.,, i.e.
~N.»>37=0, then each ou is aero. Thus the canonical map

(which is always onto) is an isomorphism. Similarly, (©)

implies (@).

when (a)-(c) hold, 3™ and 3? are said to be linearly

disjoint over 3.

Lemma 3.7 Let D and 3 be subfields of some field, and
suppose that 3 is a finite normal separable extension of
DH 3. Then

(@ D and 3are linearly disjoint over DO 3;

() 1if ? isa subfield of3 containing DO 3 then3DO0 3=3.

Proof (@ 3ylLemma 3«5, 2 contains an element Owith

3= (DO 3) (V). Let f be the minimal polynomial of 6 over DO 3.
Then f is in fact irreducible over D. 3or if f=gh, where g
and h are monic polynomials over D, then the roots of g and

h are roots of f, so lie in 3 by Lemma 3.3(b). The
coefficients of g and h are (plus or minus) elementary
symmetric functions in the roots, so lie in DO 3. But f is

irreducible over DOE, so over D too.



an

If n is the degree of f, then (1,9,...,0n1} is a
basis of 3 over DO 3, consisting of elements which are

linearly independent over D. 30 D and 3 are linearly disjoint

over DO 3.
() let {t0jJJ be a basis of D over DO 3, with = 1. Then
30=~2" . 3y (@), the © are linearly independent over 3.
Suppose
3 = ~ PDO 3 (one?)
Then («*.-3)J10. + X~UDIi = 0 (*.-0,%, £3)
(= =i} "1

so £=*_,£?. Thus 3DO 3= 3.

The next two lemmas will explain the usefulness of
the assumption, made throughout this chapter, that K is a
non—-modular field for O We say that a E-algebra satisfies
a condition X locally if every finite subset is contained in
an X-subalgebra. In particular an algebra is locally
Wedd erbium if every finite subset lies in a semisimple

artinian subalgebra.

Lemma £.3 If G is a locally finite group and K a field with

char K$7(G), then EG is locally 7&adderburn.

Proof If 3 is a finite subset of KG, then
H = <suppe:at3i>
is a finite subgroup of O Then EH contains 3 and i3 semi-

simple artinian by Easchke*s theorem

Srikes

Hiltf '<
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Recall that an element e of a ring is an idempotent

Q .
iXx e"= e4=Q. ldenpotents e and f are orthogonal if
ef=fe=0. ¢in idempotent is primitive if it cannot be

expressed as the sum of two orthogonal idempotents.

Lemma 3.9 Let A be a locally Wedderbum algebra. Then

(@ every non-zero right ideal of A contains an idempotent;

() a right ideal is minimal if and only if it is
generated by a primitive idempotent;

(©) 30(A™) contains and is generated by all primitive
idempotents of A;

() if A is commutative then

do(A) = £Biel :e is a primitive idempotent in A}

Proof (@ Let I be a right ideal of A containing a non-
zero element and choose a semisimple artinian subalgabra
3 containing ci. Now (@) certainly holds in 3 (since every
non-zero right ideal ir a direct summand so is generated by

an idempotent). Hence «1 (c”™Ai I) contains an idenpotent.

) Let e be a primitive idenpotent in A and | a non-
zero right ideal contained in eA. By (@), |1 contains an
idempotent f. Then f£ eA, say f=eot, whence ef=e'at=e*=f.
How e= fe+(e-fe), and we easily have (fe) = fa, (e-fe) *=
e-fe, fe(e~fe) = (e-fe)fe=0. A3 e is primitive, either fe=0

or e-fe= 0. IT fe=0 then f=f" =fef=0, a contradiction.
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Hence esfel I» so 7—e.l. Thus eA is a minimal right ideal.

On the other hand, if I is a minimal right ideal of
A, then by (@ | contains an idempotent e. Since 0] eA« I,
we have 1=eA. Moreover, if

e = el+e?, 0160 = e,el = 0, e?’— en * 0,
then O4el=eet€ 1, so efl=e.|]A, and e0=e.,ef e0e”A=0, a

contradiction. Thus O is primitive.

© Since So(A.) i8 the sum of the minimal right ideals,

(©) follows immediately from (b).

@ This follows from (c). The sum is direct 3ince
primitive idempotents e and f in a commutative ring are
either equal or orthogonal: if efi O then as ezef+e(1-T)
we find that e= ef; similarly f=ef. Thus if enMe,,...,€

are distinct primitive idempotents, then

=<

e.AO e.A « e.. "
1 i=2 1 1 \' O

(since if dif e™A then ot= e.a.).

Thus we are led to investigate the primitive idem-
potents in MG: this is done in Section 5. As well as the
question of the existence of primitive idempotents, we
consider (for almost locally cyclic groups G with Min) the
connection between primitive idempotents and irreducible

EG-nodulles. :/en 33 holds, there is a one-to-one onto
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correspondence between primitive idempotents in IG and
isomorphism classes of irreducible KG-modules W%ith finite
centralizer (i.e. finite kernel in G); moreover there are
only finitely many non-isomorphic such modules having any
fined finite subgroup of G as centralizer (Theorem 5.5).
But if 35 fails to hold the situation is quite different:
there are no primitive idempotents in KG, but given any
finite subgroup 0 of G such that G/C is locally cyclic,
there exist 2 * non-isomorphic irreducible KG-modules with

centralizer C (Theorem 5*5).

In Section 6, as mentioned above, we examine the

ascending Loevy series of KG when 31, 3 and 35 hold.
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i. K-—Inductive subgroups

Let G de a periodic abelian group and K a field with
char Xq.7?(G). Let X be an algebraic closure of X, and K
its multiplicative group. We denote by K(G) the I"-su"oalgebra
of X generated by all images of honomorphisns G — R*; as G is
periodic, K(G) is in fact a subfield of K. Since the torsion
subgroup of X is a direct product of Prufer groups, one for
each prime not equal to char X, if G is locally cyclic then
X has exactly one subgroup isomorphic to G; the elements of

thi3 subgroup generate K(G) as a K-algebra, for any quotient

of G is isomorphic (albeit unnaturally) to a subgroup of G.

Lemma .1 Let H be a finite cyclic group and K a field with
char K"7r(H). Then there exist irreducible KH-raodules
faithful for H, and all such modules have dimension |K(H) :

over X.

Proof K(H)* has a unique subgroup isomorphic to H, so we
may choose a monomorphism 0: H — K(H) . Then K(H) becomes a
XH-module with H-action given by

v.h = vh8 , VEXMH), hEH
If O=j=w-£K(H) then since Ha generates X(H) as K-algebra,
V.KH ssvK(H) = K(H). Thus K(H) is an irreducible XH-module;

it is faithful for H as 0 is one-to-one.
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Let 7 be any irreducible EH-module faithful for H.
Then 7 is isomorphic to KH/M for some maximal ideal M of KH.
Now KH/M is a field, containing (since V is faithful) a
multiplicative subgroup isomorphic to H which generates it
over K. It follows that KH/M is algebraic over K, and thence
isomorphic to the field K(H). Thus
dim,.!' = dim™KH/M - iK(H) K] ,

completing the proof.

If K is a field, G a group, and 7 a KG-module, we

write

Cg(V) = |9£G :vg=v for all vE 7}

Lemma <t,2 Let G be a periodic abelian group, H a subgroup
of G containing fI(G), and K a Ffield with char X4 7r(g). Let
V be an irreducible KH-module faithful for H, and " a non-
zero submodule of the induced module VJ=V®~jJKG. Then 7 is

faithful for G.

Proof Since G is abelian, the restriction 7G irr of 7G to H
is a direct sum of copies of 7. As 7 1is irreducible, Wr{’ is
also a direct sum of copies of 7. Suppose 1Ffgf Cr (/).
There exists an integer n such that 1=Fn£ X1(G) «H. But
then 14gn£ C,("7) = C~(7), a contradiction as 7 is faithful

for H. Hence 7 is faithful for G.
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Let £ be a field and G a locally cyclic "-roup with
Kin such that char IC"7y (G). A finite subgroup K of G will
be called K-inductiva in G if whenever 7 is an irreducible
KH-module faithful for H, the induced nodule 7" 1is an

irreducible KG-module.

Lemma <1.3 A finite subgroup H of G is K-inductive if and
only if the following two conditions are satisfied:
(@ H contains TI(G);

() whenever L is a finite subgroup of G containing H,

we have
IK(L):E(H)] = iLsHI

Proof Suppose H is K-inductive in G. 3y Lemma 4.1 there
c
exists an irreducible KH-module V faithful for H; then V

is irreducible.

@ Suppose .0.(G)"H; then there exists a finite non-
S - a, -
trivial subgroup L of G with HL-HxL. now 7" is reducible:

indeed { v«X :V€ 7} is a proper submodule. A fortiori V7
X

is reducible, a contradiction. 3o0.FfI(G)sH.

()] Let L be a finite subgroup of G containing H. Then

7 “like 71 is irreducible; by (@ and Lemma 2 7™ is

faithful for L. Hence using Lemma 1.1,
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KW KM | = XL :X] 7 IKH) K]
= din, V“/dim.AV
= JL :H ,
since = V®-a1XL-

Now suppose (@) and (b) hold. We may express G as
the union of a chain
H = Hg < <Hp < ...<G
of finite subgroups, let V be any irreducible XH-module
faithful for H. By (@ and Lemma ¢.2, any irreducible
submodule of V1r1 is faithful for so has dimension

BI() :K] by lemma 4.1. But by (b) and Lemma 4.1»

IKO™N) XU = |X(HI) KM | IKH) K]
= |Hi :Hi dimKV
= dim..VHi
Hence is itself irreducible. Now V “may be regarded as

the union of the VH*’I, so is also irreducible. Thus H is

E-inductive in G.

Corollary 4.4 A finite subgroup 3 if G is K-inductive if
and only if there exists an irreducible XH-module V faithful

n
for H and such that V is irreduci ile.

Proof If such a V exists then by the first half of the
proof of Lemma 4.3 H satisfies (@ and (b); then by the
second half H is K-inductive. The converse follows from

lemma 4.1.
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Corollary A.c If the finite subgroup li of contains a

K-inductive subgroup H., H itself is K-inductive.

Proof We have n(C-)« <H, and, for any finite L contain-

ing H,

IKW) : K(H) | KW :2(™)1 7 IKH) s2(M)1
= L :H11/ |H:H1I

= |1:H]

Proposition 1.6 IfH<KG and L is finite then in any case

we have

IK(L):K(H)] ¢ L :Hj

Proof If n= |L :H] and the subgroup of E(I)* isomorphic to
1 is generated by then i1jpSKfH), so the polynomial f(X) =

has degree a over X(H) and % as a root. Hence

IO :EMI = NSO KH) |Sa.

Lemma 4.7 Let 7 and K be subfields of some field. Then
IK? :?] s \Z :KPi?l

(Here the ring IC7 nay or may not be a field.)

Proof Any basis of X over IP? also 3x?.rs IC7 over 2.

Theorem A.3 Let G be a locally cyclic group with Kin, and Z
a field with char ICNTr(G). If there exists any K-inductive
subgroup in G, there exists a unique minimal K-inductive

subgroup in G.
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Proof Sines K—inductive subgroups are finite, it is
sufficient to show that if H. and Hp are X-inductive in G,
then so is H, PilL,. 3+ let H1 be K-inductive, and HP any
subgroup of G. Then

n G2) « fFI(C-)nH, <
Moreover, if L is a finite subgroup of H9 containing H.nH2»
then H10 H2=H10 L, so

IK(L) :KO, OH2)]

1Z(L) K(H1HI) |
N IKW) K(H1)0 EQL)]
}  IK(LK(Ht) :KCHY) I
by Lenina 4.7. Clearly K(L)K(H.)~K(LH1), and in fact we have
equality, since if 97;LH. —_Ki: is a homomorphism, then
LeH® =Z(L)Z(H1). So as is K-inductive in G,
IKL) :K(H10H2)| ~ [K(LHL) KHDI
= J1H1L : |
= L :H10 L|
= | :hlnn2i
But |K(L) :K(H10H2)]< |L :H. OHP|] by Proposition 4.6, so by

Lenina 4.3 H, OH, is K-inductive in H2.

Thus if V is an irreducible X*H.0 -module faithful
for HAH, , then Vvl is irreducible, and faithful for KO by
Lemma 4.2. If now HP is also K-inductive in G, then Vu i3
irreducible; hence H.OH2 is K-inductive in 0 by Corollary

4.4. This completes the proof.
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/e shall now investigate more closely the conditions
under which a locally cyclic group with Min contains inductive

subgroups for various fields.

Lemma 4.9 Let G be a locally cyclic group with Min. Then

SL(G) 1is (Q-inductive in G.

Proof Suppose L is a finite subgroup of G containing
H= i1(G), and let £ be a primitive |Ll-th root of unity.
Then
IQ(L) : < = !<D(e) : ©i = A~ (iX.]) ,
where @ is the Euler function. Thus
I<IO <M1 = CIL] ) 7 H)
= Q@(L ZHIIHD/?GHD
= JL:H .,
for MO =tet(H) and if p is a prime dividing an integer m,
then g>(pm) = p<f(m). Hence ri(G)--H is I1)-inductive in G by

Lemma 4.3.

IT m and n are positive integers, their highest
common factor is denoted by (m,n). If (m,n)=1, we shall
denote by o(m,n) the order of m modulo n, i.e. the smallest
positive integer r such that n divides mr-1. If G is a

locally cyclic group with Min, say

where the p” are distinct primes and 1<n.< 00, then
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~ - p-I will be cal? ed the nupemntv.r .1 number «Assoc-
iated v/ith G. evidently the concepts of divisibility and

highest comnon factor extend to supernatural nunbers.

the following is a 3lightly strengthened form of

[9 ; 2.2]:

larm i.10 Let G be a locally cyclic group with Kin* and
(F j- a Finite field of order pa, with p£ ~(1) . Let IT be

the supernatural number associated vrith G, and put

n = (T,2".3.5
r = o(pu,n) ,
®» - (T,pdr-1)

Then the unique subgroup H of order m in G is fr¢.-inductive

in G.

Proof Since n | ve have n |n, "..hence 0(g)«H. Let
L be a finite subgroup of G containing H. Then L is cyclic
and FOa(l) is the smallest extension (Fit of IFt such that
L may bo embedded in tF*«, i.0. such that £= Ji | divides
Jor =i = p" "-1 . Tlonce t is the smallest positive integer such
fnas Ptl pdt—i' , SO we have

iMQO :E1 =t — o(pd.D)
by Le:me. 1.3, to show that 1 is Tftbi-inductive in G it is

sufficient to prove that |a@®) : Fa@Di- |l :H] , i.e. that

if r Ji \'n then
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o(pad) /o(p .M = i/m
ifots that o(pd ,m)=r, Ffor 3ince n| m, r=o(pd,n) |o(p~,m),
whille as m |pur-1, o(pd,m) |r. le shall prove by induction
on -2/n (more precisely, on the sum of the exponents in the
prime power factors of i/m) that if o(pd ,-0=t and pd™-1 = k»l,

then (k,ir/m) =1, and t/r=I/m.

Firstly, let | =m, so t=r. Trite pdr-1 =km. Then

(m ,ID= (pdr-1 ,M=m, so (k,U/m) =1. Also t/r=1=¢/m.

"Tov suppose that a |i|tq | M, where q is a prime,
let t= o(pd,0) and pd™-1 = Ki.by induction we may assume

that (k, Il/mM) =1 and t/r= -i/m. e then have

pdtci = (@ + k£)q
= 1 +qgkl + yj(g-D&kMD2 + ... + kDd°* .
let q,|IT be prime. If 4s9 then as qg™ || we have
pdi,g ~ ~ + okl (mod ?q9ql) -
IT g- =g we have q so (since for s=2,...,9-1D)
dta

= 1 + aki + (ki)d (mod iq2) ,

whence pd*: = 1 + gkl (mod iq'™)

provided g>2. but if a=2 then 2 | ¢q | Twhence 2° |[n ]a |(,
and again we obtain

p”“1l = 1 + rkl (mod ig~)

In particilar we see that iq |p1%+-1, so ¥ = o(pd .,*j.)

divides to. Moreover, ?! in, so t=o(pd,i) |f. If
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i |p"™-1=ki, than | | k. But m|]i | to |[M, so then (] divides
N/m, a contradiction a3 (k ,N/m) = 1. Hence 2q4pu'-1l. Thus
t|tl]tg, but t4tl, so o(pe,in)=t" =tg.. ,e have

t"/r = tg/r = ~g/m.

*

Now write pMI—lzk'*q. By the above congruences,
if ql i3 any prime divisor of N, we have
k*iq a k?a (mod ?99.)) ,
whence k" s k (mod ql1)
Thus if g1 | k" , IT/m) then a. | (k ,N/m) =1, a contradiction.
Hence (k1,N/n)= 1. This completes the induction, and the

proof.

The subgroup H we have constructed is in .almost all

cases minimal inductive, as we now show.

Proposition =.11 vith notation a3 in Lemma 1.10, H i3 the
minimal qgn-inductive subgroup of 0 unless

@ 1201 = 4

() o =3 (@od 4); and

(© o(pu,/4) is odd,
in which case the subgroup of index 2 in H i3 minimal

induetive.

Proof /e remark first that if (@ hold3 then 4 |n, so
o(p~, ) 1o "l,n) =r: thus 4 divides (N,p*r-1)=m, and (©)

makes senn.

O~
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Suppose that Il is not minimal inductive. lien H
contains a prooer inductive subcroup L. By Corollary 4.5 we
may choose L maximal in H» so that gq= Ja : L] is prime. Let

fo= L 1= m/a.

Suppose n | Since | |m, we then have
r =o(pd.n) |o(pd.£) |o(pd.m) =r
(see the proof of Lemma 4.10). Hence vising Lemma 4.3(b),

IH:L|

q

1RJi) - Fpi®O |
o(pd,m) 7 o(pd, i)

= 1,
a contradiction. Thus nj"i.. But by Lema. 4.5(a), £1(0) "L,
whence (T, 2.5.5.7....) divides |I. Hence we see that 2" ||n
(that is, Qm,n) =2") but 2 JJL. Since n |m and g is prime,

it foliow/3 that q=2 and 2" |Im. OFf course, p=F2.

TF (X,y)=1 then o(pd,xy)= [o(pd,X) ,0o(pd,y)3 (the
least common multiple). VW/rite m=2i =2~z, so that 2"z.

7rom above,

S o(pd ,m £o(pd,2~) , o(pd.2)]
o(pd M ~ [o(pd.2) , o(pd,z)]

a
whence (as o(p,2) = 1) we obtain
fo(pd,2“) ,o(pd ,z)3 = 2.o(d,z) -

Since the value of o(pd ,2w) must be either 1 or 2, we see
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;hat on; (whence (b)) and 2< o( ("'hence (©)).

As 2~ |n, we have

2 = o(pd,22) 1 o(pd,nN) = r ,
so p~d-1 divides pdr-1. But 2 |pd-1 and 22 | pd+1, so
25 1P2d-1 |Pdr-1. Now 22 #m=((IT,pdr-1), so 22 I, 1i.e.

(@ holds.

Conversely suppose that (@), () and (¢) hold, and
let L be the subgroup of index 2 in H. Since Z~ |n |m= |H],

clearly 11(G) sL. Moreover, -.witing ph |=2]1] =72z, so that

2)( s, we have

Lifpj.(H) : liyd) | o(pd, IHI ) 7/ o(pd,iLl)

£0(pd ,2~),0(pd ,~)]
[o(pd.,2) , o(pd,s)I

= o(pd,22) = 2 = iH:11

(by (¢) then (b)). Since H is inductive, it follows by

Lemma 4.3 that L is too.

Finally, if L1 is an inductive subgroup of L, we see
as before that |L : | is a power of 2. But 11(G) $ Lj whenc

2 divides ILJ, and 2 |]j L] , so L1=L. Hence 1 i3 minimal

inductive.
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In passing from prime fields (covered by Lemmas 4.9
and 4.10) to arbitrary fields, we shall apply Lemma 3.7, the

relevance of which is explained by the following:

Lemma 1.12 If L is a finite cyclic group, k a field with
char k*rr(L), and T a field with k< T< k(L), then k(L) is a

finite normal separable extension of T.

Proof As k(L) 1is the splitting field over T of the
polynomial X~ -1 , it is a finite normal extension of T.
lines
ﬁ\xETli!'l) y = (C/Z3L]-1, px11"1) = 1,
-1 has no repeated roots, ITow k(L) is generated over
by the roots of X"Li-1, so by Lemma 3.4 k(L) is separable

over |I.

theorem 1.13 Let K be any field, k its prime field, and G a
locally cyclic group satisfying Min with char k$?r(&). Then
G has a K-inductive subgroup if and only if

|k(G)nX:k] < oo0.
(Here kK(G)OK is a subfield of E, in which k and k(G) are

embedded.)

Proof Suppose that H is a K-inductive subgroup of G and L
is a finite subgroup of G containing H. Then by Proposition

4.6 we have

k@ k@I > L KW KM |
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(as H is IT-inductive). Tov ;L =kLI"H), so by Lemma 4.7

"L XMI ik(LK(H) K |
« k@ :k(1)OZ(H)]
* k@ k@I
(as k(H)<k(L)OK(H)). "e now have
k@ k(LnKHT = [kL):kHIT .
whence k(L)Oh e Kk(L)Piz(H) = k(H)

.Is G is locally finite it follows that k(G) n X< k(H). Hence

K@) OK :k] s [k(H):K] h] < oo.

Conversely, suppose that |k(G)O I"':Kk] < OQ say
k(GO r=k(™ *..., 3 ) (Cin view of Lemma 3.3, we could
actually assume that 3=1). 3y Lemma 4.9 or 4.10, as k is
prime fi3ld, G contains a k-inductive subgroup H~. Since "
is locally finite, there exists a finite subgroup H of G
containing H1 and such that ™ ,... £ k(K). Then

k(GrKC = k(1,...,iB) < k()
Ye shall show that H is K-inductive in G. Note Ffirst that

il(G) s by Lemma 4.3(a).

Let L be a finite subgroup of G containing H. Then
k(L)OK < Kk(G)OK « I
Hence taking G=H, H=k(L), and 7=k(H) in Lemma 3.7(b) (and

applying Lemma 4.12), we obtain

K(H)OK(L) = Kk(H)KOk(L) = k(H)
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By Lemma 3.7(a), K(H) (=D) and Ile@.) (= J) are linearly
disjoint over their intersection k(H). Hence a basis for
k(L) over k(H) also constitutes a basis for Iv(L)= K(H)k(L)
over E(H). Thus

K@ KM 1 = kO -kEH 1 = IL:H
as H?Hj is k-inductive by Corollary 4.5. By Lemma 4.3, H

is K-inductive in G.

Coroliar-/ 4.1=1 Let K be any field, k it3 prime field, and G
a periodic abelian group with char k”"w(G). Suppose that
[k(G)P.17: k] < oo. Then every locally cyclic quotient of G

satisfying Min contains a -"-inductive subgroup.

Proof |If G. is any quotient of G, every image of G in Ic* is
also an image of G, and therefore k() < k(G). ITov apply

Theorem 4.13.
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a. Primitive idsnootants in KG

Let G be an abelian group and K a field. If «£KG,
*1e - 4rite
Ga(w) = JgEG :otg=a4al]
Since G is abelian, (%}Q]) is in fact the centraliser CU (110

of aKG considered as a XG-module. |If e is an idempotent in

KG, we say that e is faithful (for G) if CG(e) = 1.

Lerama 5.1 Let G be a periodic abelian group and K a field
with char K$fr(G). Suppose KG contains a primitive idem-
potent e. Then G satisfies Min and is almost locally cyclic.
If e is faithful, G is locally cyclic, and < 3upp e> i3

K—inductive in G.

Proof Let H=< supp e>, a Tfinite subgroup of G. Chen eKH is
an irreducible XH-module and elPP]” = eXG an irreducible KG-
module by Lemmas 3.3 and 3.9(b). A3 in the proof of Lemma
4.3, it follows that ¢1(G) % H, whence ¢1(G) is finite and G
satisfies Min (Theorem 3.1). |If e is faithful for G 30 for

H, then H is K-inductive in G by Corollary 4.4.

The group C=Cn(e) 1is finite, since it act3 faith-
fully (by multiplication™ as a group of permutations on the
finite set supp e. The irreducible KG-module eKG, considered
as a ring, 1is actually a field ?. The homomorphism G — P

g » eg has Kernel 0. Hence 0/C embeds in ? so is locally
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cyclic. Thus G 3 almost locally cyclic by Corollary 3.2.
IT e is faithful then C=1 and G itself is locally cyclic.

This completes the proof.

We shall now investigate the circumstances under
which KG contains primitive idempotent3 faithful for G,
given that G is locally cyclic and satisfies Min. We shall
need the following technical lemma (which will also be used

in Sections 6 and 15).

Lemma 5.2 Let G be a periodic abelian group and K a field
with char KA"TFiG). Let { be a family of finite subgroups
of G such that every finite subset of G lies in some member

of i. Given {e” :L£ -L } such that for Lj ,L,€i1 , e 1is a

primitive idempotent in KL, , and eT,.e, i 0, there exists a

[ TN
maximal ideal M of KG such that

(@ for each LE £ , MOKL= (1-e )KL (in particular,
eL$ M);

® CO(KG/M) = U{CG(eL) :LSE |

Proof Let
M = Ul @@-eL)KL :LE1 3} .

We show first that M is an ideal iIn KG. If LMNL2AN , there

exists LEL with I < L. Since
eL = eLzeL + (I-eLt)eL <i=1>2)

13 primitive in KL and (ejJ e "= eL el 40, we conclude that
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cyclic. Thus G +3 almost locally cyclic by Corollary 3.2.
IT e is faithful then C=1 and G itself is locally cyclic.

This completes the proof.

We shall now investigate the circumstances under
which KG contains primitive idempotent3 faithful for G,
given that G is locally cyclic and satisfies Min. We shall
need the following technical lemma (which will also be used

in Sections 6 and 15).

Lemma 5.2 Let G be a periodic abelian group and K a field
with char k4~(G)- Let £ be a family of finite subgroups
of G such that every finite subset of G lies in some member

of ¢. Given {e" :LE ( such that for L~,L,si , e 1is a
primitive idemootent in KLi’ and %p\g&zi 0, there exists a
maximal ideal M of KG such that

(@ for each LE , MO KL= (1-e-)KL (in particular,
eLi M);

® CG(KG/M) = U{CG(eL) :LEE |

Proof Let
I = Uf (-eL)kL -LEL ) .
We show first that M is an ideal iIn KG. If Lj,L2£ i-, there
exist3 L€C with L1L2< L. Since
ex. = elieL + (l-eL+)re[. (1=1 »2)

is primitive in KL and (e”elL)~= e~"0, we conclude that
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eL eT = el* whence (I-eT )(1-eT)=1-eT . Thus
Li

(l-eL )KL1 + (1-eL )KL2 C (l-eL)KL ¢ M

Hence M is additively closed, and therefore clearly a K-
subspace of KG. IT L1££ and g£ G, there exists LEi1 with
<L1,g> <L, and we have
(1-em)KLg s (I-eL)Klg
= (1-eL)XKL € M ,

whence M is indeed an ideal of KG.

Suppose for some LE £ , e~CM. Then (1-en Hk]|
for 3ome , and we have eT = (01— )sj; whence e™= 0,
a contradiction. Thus
(1-eL)KL ¢ MO KL ~ KL
Since char K™ (L) and e” is primitive in KL, (I-eL)KL is a

maximal ideal of KL, so we have (@).

To show that M is a maximal ideal of KG, suppose
that <£KG-M, and let 3upp &c LE”™ . Then ~£ KL-(MO KL), so

1£ (MOKL) +olKL ? M+XKG. Hence M+xKG = KG as required.

Let Lj£ £ , XEC~(e”™ ), and oCEKG. Choose LEJL with

<X, Ssupp o, *> c L
As before eL e™e”, so xECG(eL). Thus
ux-xyen «.(xeL-eL) = 0 ,
whence oix-o. £ (1-eL)KL ¢ M ,

i.e. M) x=x+M. It follows that
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Conversely let x £ CG(KG/M), so that x-1 € M, and there
exists LEE with x-1€ (1-eL)XI. Then eL(z-1)=0, so

XECG(e™). This completes the proof of (b).

Theorem 5.3 Let 5 be a locally cyclic group with Min and K
a Ffield with char K*"7r(G). Then the following are equivalent

(@ KG contains a faithful primitive idempotent;

() G contains a K-inductive subgroup;

(©) there are only finitely many non-isomorphic
irreducible KG-modules faithful for G;

(d) there do not exist 2¥ non-isomorphic irreducible
KG-modules faithful for G;

(© |k(G)OK: k]<oo, where k is the prime field of K.
Furthermore, when (@)-(e) hold, there is a one-to-one onto
correspondence between faithful primitive idempotents of KG
and isomorphism classes of irreducible KG-modules faithful

for G.

Proof (@ implies (b) by Lemma 5.1» and (b) is equivalent

to (e) by Theorem 4.13.

Now suppose H is a K-inductive subgroup of G, and V
is an irreducible KG-module faithful for G. Since H i3

finite, Vg is completely reducible, so it contains an
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irreducible KH-submodule W say. Then VTr=> Wx, and
U X£G

Wx*"SW as KH-modules since 0 is abelian. Hence CHW) =
CMCVr)=1. So as H is K-inductive, WG is irreducible. But
there is a non-zero KG-map WG V, wl®X ®wx, so V= .

Thus every irreducible KG-module faithful for G is isomorphic
to Wn for some irreducible KH-module W faithful for H. (Note
that W= eKH and V = eKG for some idempotent e in KH which is
faithful and primitive in KG.) There are only finitely many
non-isomorphic such V, and therefore only finitely many non-

isomorphic irreducible XG-raodules faithful for G. Hence (b)

implies (¢). Trivially (¢) implies (d).

The last part of the theorem now follows also. For
if e is a faithful primitive idempotent in KG, then eKG is
an irreducible KG-module faithful for G; as we have just
shown, every such module arises in this way. |If e and f are
idempotents in KG and eKG= fKG, then if 0: eKG - fNG is an
isomorphism, we have 9(e) = F0(e) = 0(e)f; applying al we

obtain e=ef. Similarly f=fe, so e=*f.

To prove that (d) implies (&), we shall assume that
KG contains no faithful primitive idempotent, and exhibit
2 s non-isomorphic irreducible KG-modules faithful for G.
Let
IG = Lg A A L2 M L0 NG

be a chain of finite subgroups with union G.
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For n=0,1,2,... let Tn denote the set of all
n-tuples with each entry either 0 or 1. By induction we
shall construct for each integer n a finite subgroup of
G and for each <?£Tn a faithful primitive idempotent e” in

Firstly, let Hqgq=Lqg=D.(G). By Lemma 4.1, HHQ contains

a faithful primitive idempotent e.

Now suppose inductively that we have constructed Hn
and (" tgpCT~}. By Lemma 4.2 each is faithful for G, so
by hypothesis is not primitive in KG. Hence we may choose a
finite subgroup Hn+! of G containing HAL~TI and such that
for each 9 £ Tn, e” decomposes in KHn+”; say

A | = e@»0)Hn+l ® e@ ,l)KHn+l ® ee= »
where and e ]J are primitive idempotent3 in KHn+1.
By Lemma 4.2, since e,KHn+l = e(KHjH- “, e((?) and e(?>1)
are faithful for Hn+~. Thus we have chosen e®, for each

<p"E£ Tn+le This completes the inductive construction. Note

that
G
Let gp=(@" ,a2»aj,---) be an infinite sequence of 0"s
and 1"s. Write eQ(™M) -eand en@=9(i -,a ) (n=1,2,..).

If 1€msn then by our construction eCcp)en (@) =en () 40. By
Lemma 5.2 with ®& = {Hq ,H" there is a maximal ideal

M=Mc? of KG with l1l-en(<PH)eM(™) and e~c”~M~) for all n,

and
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GQ (KG/M()) = CGEen®@) = 1

Tb.u3 V(<E) = KG/M(c™) is an irreducible KG-module faithful for

Ge

If M=~ ciien V(@ and V(y) are not KG-isomorphic.
For if g and differ first in the n-th place, then
en ®"en™Y™ = 0; hence en(® = en(Y)(1L" £ sO en”
annihilates V(). But 1l-en(M)€ M(y), so en(®™ acts as the

identity on V(i®). This completes the proof of the theorem.

In [i; 2.12\ (see also {J8; 14.4_3(ii)}) S.D. Berman
proves a result related to part of Theorem 5.3; namely, if G
is an infinite abelian p-group and K is a field with char K™ p
and "of the first kind with respect to p* (a condition equi-
valent to |k(CpCo)OK: k]<£0), then KG contains a primitive

idempotent if and only if G=CJcoxF where F is finite.
r

We now extend parts of Theorem 5.3 from locally
cyclic to abelian almost locally cyclic groups. The result
which we shall obtain (Theorem 5.5) is also a generalisation

of [9; 2.51. We shall require:

lemma 5.A Let K be a field, G a periodic abelian group with
char K$"'7t(G), and C a finite subgroup of G. Then the
canonical projection 9: KG - k [g/c] determines a one-to-one

map from the 3et of primitive idempctents e in KG with



C(@®)=G onto the set of faithful primitive idempotents in

kCGy/c], (Both these set3 might be empty.)

Proof ITf ad£KG we write O(@)=a. Let v denote the
idempotent

j *
ICI fee

so that v=1. If ot€ cKGO vKG then
oo = vi € ~cKG = 0
(since if x£ C then v(X-1 )=ux-u =0). Thus
kerO n vkG = gkKG n vkG = O

(In fact it is easily 3een that KG = cKGO uKG.)

Let X be the set of idempotents e in KG with
cgee)nC, and Y the set of all idempotents in k [g/cJ. We
claim that 0 maps X bijectively onto Y. For suppose e”EX
(i=1»2). Since C< CG(ei), yei=ei" so if =0 we have
e"fker0O OVKG =0, a contradiction. Thus er£ Y. If e=¢€p
then el-e2£ ker On vkKG=0, so el=e2. If *£Y (XEKG) put
f= ik Then f=Vx=od (so T40); moreover

f-f2 = V@-«) £ kerOn vKG = 0

and C(Xf) = Cqg(w) ~ CcG(v) ~ C ,
so F£ X.

We next claim that if e£ X then C*(e) =CG(e)/C. For
if g£ CG(e) then eg=eg=e, so gGE£ Cg(). Conversely,

suppose gCECN(i); then eg=e, so eg-ef£ ker9 D vkG = 0, whence
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gCC~nie). It follows that C(,(e) =C if and only if e is

faithful for G/C.

To complete the proof it is sufficient to show that
e£X is not primitive in XG if and only if e is not primitive

in k [g/c]. Thus suppose

e=el + e2 , ele2 =0 , ei =ei "0 -
Since eei= e” we have C Cr(e) <Cq (e”), so e™CX. Hence
e= e + e2 , efe2 =0 » ®F =®1 ~ 0

Conversely, suppose

I =X +»2, @&=0=* 5?= £0 *
and let = as before. Then
e-f1~-f2 = v(e-i#J- ) £ ker6 n vxG = 0 ,
and similarly fl1f2=v = 0. Hence
e=Ff1L+ f2 , fif2 = 0 , f\ = f+ + O.

Theorem 5.5 Let K be a field, k its prime field, and G an
abelian almost locally cyclic group with Min such that

char k<$7T(G). If |k(G)OK: k] = 00, then KG contains no
primitive idempotents. Suppose that |k(G)OK: k] < co. If
C is any finite subgroup of G such that G/C is locally
cyclic, then KG contains a non-zero finite number of primi-
tive idempotents e with CE,(e) =C, and there is a one-to-one
onto correspondence between such idempotents and isomorphism

classes of irreducible KG-modules V with 0~(7)= C.
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-ro°n Suppose that KG contains a primitive idempotent e;
we show that |k(G)O X k] < 00. let C=CG(e). By Lemma 5-4,
the image of e in k[g/c! is a primitive idempotent faithful
for G/C. Thus G/C is locally cyclic, and by Theorem 5-3

|k(G/C)OK : k] < oo.

Since every image of G/C is an image of G, we have
k(G/C) £k(G). Now let P=k(JJ0p(G)), where the product is
taken over those primes p such that 0Jr (©) is finite. Then
|P:k]<oo since G satisfies Min. Moreover k(G)=P.k(G/C).
Por k(G) is determined by the exponents of the primary
components of G, and since C is finite, if exp O~(G) = &
then exp Or(G/C): 00. Hence by Lemma 4.7,

IK@G) :Kk(@G/C) | = [P-K(G/C) :K(G/C) | = |P:k] < oo .

Now k(G/C) 1is a union of Ffinite normal separable-
extensions of k(G/C)OK (see Lemma 4.12); Lemma 3.7(a)
together with a local argument shows that k(G/C) and K are
linearly disjoint over k(G/C)OK. In particular, any subset
of k(G)OK which is linearly independent over k(G/C)OK is a
subset of k(G) which is linearly independent over k(G/C), so

[k(G) OK :k(G/C) OK] < k(@) :k(@Q/C) | < 00.
Me now have

kG nK K] = |k(G)O K :k(G/C) n K] |[k(G/C)nK K] < o0

Now suppose that |k(G)OK; k] <00, and that G is a
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finite subgroup of G such that G/C is locally cyclic. Since
k(G/C)«k(G) we also have |Jk(G/C)OK :Kk]< CO. In view of
Lemma 5.4» an application of Theorem 5.3 to k£g/c]yields the

remaining statements of Theorem 5.5.

To conclude this section, we draw together the
results we have obtained to give necessary and sufficient
conditions for the existence of minimal ideals in the group

ring of a periodic abelian group over a non-modular field.

Theorem 5.6 Let K be a field with prime field k and G a
periodic abelian group with char k*"~(G). Then So(KG) is
non-zero if and only if

(@ G satisfies Min;

() G is almost locally cyclic; and

(© |k(G)OK :K] < Co.

Proof Sy Lemma 3.9» So(KG)4=0 if and only if KG contains

a primitive idempotent. Hence if So(KG)”0 then (@ and (b)

hold by Lemma 5.1» and (c¢) hold3 by Theorem 5.5. Conversely,
if (@, (M and (¢) hold then by Corollary 3.2 G has a finite
subgroup C with G/C locally cyclic, so KG contains primitive

idempotents by Theorem 5.5.
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I's now investigate the ascendine Loewy series of the
eroup ring of a periodic abelian >roup over a non-modular
field. linee this series is of little interest §if its terms”
are aero, we are led in the light of Theorem 5.6 and Corollary
3.2 to introduce the following hypothesis, which will be

assumed throughout this section.

me_ypothesi3 6.1 K is a Ffield with prime field k, and G is a

periodic abelian group with char rG) and having a
decomposition

G = Fx?1x ... xPa (0im<o0) ,
where F is finite and the are Prufer p.—groups for

distinct primes p.. Finally, |k(G®) nK :k|< co, so that

Jo (KG) 4=0.

/e shall describe the ascending loewy series of KG
in terns of the augmentation ideals of the P.;. 7e commence

with the socle itself.

dheor 2 Go(KG) = 21G0...KnnG .

Proof le remark that when m=0 (30 that G is finite and
KG r, completely r Ilucible) the empty intersection is to be

interpreted as KG itself. Thus we shall assume that m 1.
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Jy lemma 3.2, y. is essential in ;or each i1, so
is essential in KG by Leona 2.3(c)- Inus 30(KG) * /ig"G

by Leona 2.1.

Conversely, suppose that 0”~af /J2”~G. Let H=
< supp ac>, and write
o = ol + ... +oter ,

where the e" are orthogonal primitive idempotents in I'll, and
oce~0 for each j. Since e*KH is irreducible, oce.KH= eMT,
so there exists 8. £ KH such that e.=ote.A.; thus e.£(lo.G.
Hence it is sufficient to show that if H is a finite subgroup
of G, e is a primitive idenpotent in KH, and esf*p.G, then

e£30(KG), 1i.e. if e” 30(KG) then eM

Choose a chain
H = Hg « H1 « ... G
of finite subgroups with union G. If f is a primitive
idempotent in KH for some n>0, consider the set of all

sequences (fn,f ..) such that

n.i-
() f.is a primitive idenpotent in K¥. for all j2n;
an  fm=f
(i)

Vej+i for all j3}n.
IT r? O we shall say that f is r-stationarv if for all such

sequences (fn, F+l"") and all j>0 we have fn+r::fn+r+j

ilote tliat if

f = FTet+_. ..+ ™
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v/here the " are orthogonal primitive idempotents in IHNn+"»
then ¥ i3 r—stationary (for r~ 1) if and only if each f! is
(r-1)-stationary. Moreover f is O-3tationary if and only if
it is primitive in KG. Hence if f is r-stationary and we
write f as a sum of orthogonal primitive idempotents in
KHjj+j» then each such idempotent will be O-stationary; thus

by Lemma 3-9(c) we have F£30(KG).

iTov let e be a primitive idempotent in I with
endoilG). Then e= e" is not r-stationary for any r. Hence
among the Ffinitely many orthogonal primitive idem™otents in
131 whose sun 13 eQ, there oust exist one, say s,, which is

not r-statione.ry for any r. 3milarly we may cho036 a

primitive idesjpotent 132 which satisfies - e9 and
is not r-stationary for any r, and so on. In this way we
obtain a sequence e,=e,e, ,e0,... such that e" is a primitive

idempotent in aH*, and a,ei+l = e”.1.

Consider the chain of subgroups CM(eQ) «CC(el)i ...,
®

and suppose that C=1/C,,(e.) is finite; then 0=C,, (a ) for
i=0 F 1 Aon

some n. lor i}r_, i3 an irreducible module faithful

for H.,/C, so H./C is cyclic; hence G/C is locally cyclic.

Thus by Coroliar’,” 4.14 G/C contains a >"-inductive subgroup.

Thus T:a may chocse a>n so that H /C is K-inductive in G/C

(Corollary 4.3). But ey is a primitive idempotent in Zng
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T ith =C, go e_ 1is oripitive in KG, i.e. O-stationary
a contradiction. It follows that C is infinite, whence hy
Lsrana 5.2 (with £ = {Hq .H.,. __ 1) there is a maximal ideal H

of KG such that e= 8.,J1-1 and Cr (KG/;i)=C is infinite. Then
Cq (K&/I1) contains P. for some i, whence ohi <K. Thus

e4 0g 3C& as required.

As an example we may take G to be a Priifer yrouo CP,» and
K a subfield of the complex numbers with |JQ(C o00)nK :Q j< oo;

then 30(KG) =g, a result obtained by Muller in [14].

Corollary 5.5 7or O<i«m,

SOi(KG) = JT g.G ,

where the intersection is taken over all subsets | of

11*..-,m} with 1 elements.

Proof le proceed by induction on i: the- case 1=1 is the

theorem we have just proved.

The canonical maps KG induce a
KG—map
m
K -—a © KG/g.G
with kernel C\p =30(KG). Hence we have a KG-nonomorphi ar.
N TKG/To(KG) —> © KG/o G
Jj=1 -l

luppose 1< i<m Then
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30i (T / Go(KG) = 3ot_1(l:g/30(ICGY))

Y 1 (g, 3oi_l1CG:aR2 &) -

hence
n
0. (KG) = ~ i*~£KG : ct+0.GE 30. .(KG/p .G)j
= =3 i1l -1
i i i i 2 = 2
3y induction on i, since G/'S FxP.lx.--xPj._l.x.gﬂ.x---me,
3°i_i (EG/u G) = (g/G+g.G) / n.G
I1.]=1-1 ££1 i T
J J
where the intersection is taken over &3.1 subsets I'j of
{1,...,m}- {} with i-1 elements. Hence we have
50.(KG) = A o0 . 21 (oyG+n.G) ,
=1 lijl-i-i  Zel.

an expression easily seen to be equal to the one desired.

CoroG-Irr" P. The ascending Loe.rj series of KG reaches

after exactly n+l steps, i.e. GoH(KG): KG = 3Om’—r1 (KG).

Proof By the previous corollary with 1=m, we have

30 KG) = z1 2,G
3=1 ;]
m <P1° e o J 30 that by
m |
T -1)KG =
3=1 v°° 3 3=

KG. Moreover,
KG/3oa (KG) = KG/gG = -LG/A]
3y Kascake’s theorem, since G/A3J? is finite, k [g/a] 1is

completely reducible as k JG/a]-module, and therefore also
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ZG-aodulo. Hones

So(KG/So, (KG)) = KG/30_(EG) ,

i»€. (-*-0) = At.

la remarie that the ascending Loevry series of EG
enables ns to classify irreducible EG—modules as follows.
For a given irreducible EG-module M there is a unique integer
\£ {0,...,m} such, that M is a composition factor of
30™M+1(EG)/30N(EG) . Further, X is equal to the number of
Prufer factors P.I IUWhich are contained in CW(M)- 7e
also remark that every indecomposable EG-module is irreducible.
The proofs of these results will, be given in a more general

setting in Section 15.
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7. On gro™-iocs

In th+3 chapter we record a number of results which
will be needed in our study of the socle in group rings of
locally finite groups (Chapter 1V) and non-locally-finite
groups (Chapter V). In Section 3 we present the material
required on rings and algebras, and in Section 9 we con-
sider group rings specifically, while this section deals
with the necessary group theory, mentioning PC-—groups,
Eernikov groups, and linear groups. Por the most part we
are content to state results only, referring the reader to

the literature for proofs.

An PC-group is a group in which each element has
only a finite number of conjugates. ‘je define the PC-centre
of a group G as

AG-) = ((XEG : |G:Cg x)\<°0o]

The following result is well known:

Lemma 7.1 If G is any group, A(G) is a characteristic
subgroup of G. The torsion® elements of AdO1 form a locally

finite subgroup with torsion-free abelian quotient.

Proof "See [13; 4.1.6] or 03; 19.3].
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A Cernikov group is an almost abelian group satis-
fying Min. 3y Theorem 3.1 we see that Cernikov groups may
be characterized as finite extensions of direct products of
finitely many Prifer groups. |In determining those locally
finite groups whose group rings may have non-zero socle
(Section 12) we shall require the following deep result of

%unkov:

Theorem 7.2 1¥ G is a locally finite group every abelian

subgroup of which satisfies Min, then G is a Cernikov group.

Proof See [I13; 5.8].

When considering group rings over fields of positive
characteristic, the full force of Sunkov®"s theorem will not
be needed: the following far more elementary special case

will suffice.

Lemma 7.3 I¥ G is a nilpotent group every abelian subgroup

of which satisfies Min, then G is a Cemikov group.

Proof See [13; 1.G.4 (or even 1.G.3)]-

If S is a division ring, a linear group over 3 is a
group of linear transformations of a finite-dimensional

vector space over E.

Theorem 7.4 Let G be a finitely generated linear group over

a field K. Then



(5

(@ if char K=0 then for any prime q, G is almost
residually finite-q-°;

(b) if char K=p>0 then G is almost residually finite-p.
Proof This follows immediately from [24; 4.72»

Theorem 7.5 (Schur) A periodic group which is linear

over a field is locally finite.

Proof See [24; 4.9].
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8. On nr™3 :,nmalgebras

In this section we discuss quasi-Probenius rings,
separable algebras» a theorem of Kaplanslcy, locally

m/adderburn algebras» and strongly crime rings.

If X is a subset of a ring A, we denote by <, (X) and
r,(X) respectively the left and right annihilators of X in
A. When confusion is unlikely the subscript . -will be

omitted.

Proposition 3.1 If A is a right and left artinian ring,
the following are equivalent:

(@ A. is injective;

®) § is injective;

(©) for every right ideal R and left ideal L of A we have

r¢(R)) =R , E£(() =1L
Proof See [22; X17.3.1, XIV.3.3].
M artinian ring A satisfying (a)-(c) is called

quasi-frobenius. ITote that from (c¢) it follows that taking

annihilutors induces an inclusion-reversing bijection

between the lattices of right and left ideals of A.

Proposition 1.- 3very irreducible right module for a quasi-

Frobeniua ring is isomorphic to a minimal right ideal.

Proof 3ee [22; X1Vv.3.2, XI1.5.1].
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Proposition . ¢:he following properties of =right nodule
I- over a quasi-frobenius ring .. are equivalent:

(@ i is injective;

(b) N is projective;
©) for a family {} of primitive idenpotents
in A

Proof 3ee [22; XIV.3.6].

e next consider separable algebras. An algebra A
over a field K is called separable if A® P is semisimple
for every field extension 7 of K. (:fe remark that if A is
an algebraic field extension of I, this definition agrees
with that given in Section 2: see [4; 71.93.) Hots that a
separable algebra is in particular semisinple: take f —K.
Recall that a field is perfect if every finite extension is
separable; in particular, prime fields and fields of charac-

teristic cero are perfect.

Proposition S, ¥ livery 3enisimple algebra over a perfact

field is separable.

Proof lee [I13; 7.3.9] or [I; $}7, Ho. 53=

Prono-litlor. ?."" A finite-dimensional X-algebra A is separable
if and only if there exists an extension ? of K such that

A®--? is isomorphic to a direct sun of full matrix algebras
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Proof See [4; 71.2].

The importance for our purposes of separable algebras

derives from the following corollary to a theorem of Bourbaki:

Theorem 9.6 The tensor product of two separable algebras is

again separable.

Proof See [I8; 7.3.1id] or [4; 71.16].

Recall that an algebra A over a field K is said to
satisfy a polynomial identity if there is a non-zero poly-
nomial F(X™»...,Xm) in non-commuting indeterminates

over K such that f(@©@ ,... ,Im)=0 for all & ,...,&€ a.

Lemma 8.7 The ring Mn(K) of nxn-matrices over a field K

satisfies a polynomial identity.

Proof See (IB; 5.1.6~. (In fact, K could be any commut-

ative ring.)

The next theorem, which characterizes primitive

polynomial-identity algebras, is due to Kaplansky.

Theorem 8.3 Suppose an algebra A over a field K satisfies a
polynomial identity and has a faithful irreducible module V.
Let E be the division algebra End.(V). Then t=dim-Vis
finite, and A is isomorphic to the ring MM(S) of txt-matrices

over E.
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Proof See [18; 5.3.4] or [I5; 6.4].

Kaplan3ky"s theorem has the following corollary,

which is probably well known.

Corollary 3.9 Let A be a locally Redderburn algebra (with
unit element) satisfying a polynomial identity, and let MA
be a module with a finite composition series. Then M is

completely reducible.

Proof Since the property of being a locally Wedderburn
algebra (like that of being semisimple artinian) is inherited
by epimorphic images, we may assume that M, is faithful. Let
O =Mg < Ml< _..< Mr=M

be a composition series, and set

T+ = AnnAMi/N+_1) (i=z1,...,r)
and T=r\li. Then MTr=0 so Tr=0, whence T=0 by Lemma
3.9(a). Each A/T™ is primitive and satisfies a polynomial
identity so is artinian by Theorem 8.8. Hence A, which i3
isomorphic to an A-submodule of ©A/Ta, is 3emisimple

artinian. Thus MA is completely reducible.

We define the endomorphism dimension of an irreduc-
ible module to be the dimension of the module over it3
endomorphism ring (which is a division ring by Schur®s

lemma).
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Lemma 8.10 (Parkas and Snider) Let A be a locally Wedder-
burn algebra and V an irreducible right A-module of finite

endomorphism dimension. Then V is an injective A-module.

Proof [5; Lemma 3] Assume that V is not injective, so
that by Baer'3 criterion [22; 1.6.5] there is a right ideal

I of A and an A-map 1 — V which cannot be lifted to A.

Let S be the set of finite-dimensional semisimple
subalgebras of A. Let d , and put
D(B) = <{VEV :>@=va for all a€ 10B} .
Then D(B)4=0 since (like every B-module) is injective.
If we D(3) and
iy(lI0OB) = (vEV :va= 0 for all a€ m Bj
(a B-submodule of V), then easily
D(B) = w+ yinB)
Since A is locally Wedderbum, every element of 1 lies in
some member of , SO our assumption is that

nfD(3) :BE& | = O

Let B=3nd~(V). Since dim™ V is finite, we may
choose Bq £<” such that d=dim3 ¢v (inB0O) is minimal. By
the empty intersection there exists Bj £ with

D(30) D(31) .
Now Bg and Bl are finite-dimensional and A is locally

"_Vedderbum, so there exists B2£ ~ with BqgUBj? B2. Then
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0 + D(32) ¢ D(Bg)O0 D(B1) % D(30)
Thus if wg D(B,) we have
w o+ = D(32)
% D(Bgq) = w + iv(10BO) ,

contradicting the minimality of d.

The following technical result of Hartley (O;

Theorem CI} will be used in Section 15»

Theorem 8.11 Let A be a locally Wedderburn algebra of
countable dimension, and V an irreducible A-module. Then
exactly one of the following alternatives holds:
(i) V has finite endomorphism dimension and is injective;
(i) V ha3 infinite endomorphism dimension and may be
embedded in an indecomposable A-module of composition length

two.

Proof The Ffirst alternative comes from Lemma 8.10. Por
the construction of the indecomposable A-module of the

second alternative, see €£10J.

Recall that a ring R i3 prime if whenever ot,?£R
and aRJ = 0 either a or ™ i3 zero, or equivalently, if
r(*R) =0 for all non-zero <*€R. Handalman and Lawrence [7]
call R (right) 3trongly prime if for each non-zero a£ R
there i3 a finite subset X of R with r(d.X) =0. The next

lesult i3 [7; IV, Corollary 2]; we give a different proof.
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Lemma 8.12 |If R is strongly prime then So(R) is either 0O

or R.

Proof Suppose that So(R) 4=0, and let *R be a minimal right

ideal. Let X be a finite subset of R with r(«.X) =0. Then

the obvious map
Rir
is one-to-one. Since o™R M«R, ot”"R is either zero or a.R, and

it follows that Rr is completely reducible, i.e. So(R)=R.
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9. On group rings

mx® commence this section of background material on
group rings with a series of miscellaneous elementary and

well known lemmas.

lemma 9.1 let K be a field, H a subgroup of a group (-, and
SH. Then
@ r>;c6ry = rizii(eoKG ;
() < i3 regular (i.e. not a nero-divisor) in K& if and

only if it is regular in KH.

Proof () Certainly v.-3(t)IC-* r-r, (at). Conversely,
suppose M£r.,p(X). Let T be a right transversal to H in G,

and write

Then 0 = xS = < @t £ KH)
SIET W

so a”;,= 0 for each x, whence p £ r*"Co0 and ~£ r— ,(1)£G.

() Part (b) follovw/s at once from (@) and its left-hand

analogue.

enma 9.2 (..'allace p23; 2.V]) Let K be a field and G a
group with a fanily {
I\ =1; ad
@ XEA

© if XufAthen "

hen O  hj.G = O.
XA =
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TOO=  hippoze 0M.xC /°\N'x j *;e may assume 1£ supp a (by

replacin Xx by C: " where X£ supp &). lince supp X 1is
finite, &y (@ and (b) there exists 0£A with HOO SU00 « =
{L}. Now «.£ G, 30 if «= Ag (A €X) then in k [g/H Jwe

g£G
have

TTX vt K e

whence \ =0, a contradiction.
Lemma 9.3 Let L be an extension of a field K, G a group,
and 7 a KG-module of finite X-dintension. Then

SndL& V®T L) h 3ndra(V)®ulL .
Proof Cee jy'l’; 29. c3*

The next result is certainly well known: see for

example \_p 2,53» "-"ksre it is stated without proof.

Lertma °.i Let X be a field, H a subgroup of a group G, and
7 an injective right Id-nodule. Then

(@ L= HonTg(liG,7) 1is an injective right XC-module;

() if |G:H|<00, V is isomorphic to K, 30 is also

inj ective.
Proof (The action of KG on M is as usual given by
DHCw) = (PEITI “»icKG) 2

@ By Baer®"s criterion for injectivity [22; 1.S.5J, it

is sufficient to show that any XG-map :1 — I from a right



(€5)

ideal of /'} is the restriction of a map M. — L. define
a +ino<s:lw»Vs acm @&)(). Since v is injective, there
is a Ifi-man ? making
0 » IH
T >
\
define a Kc—map 9: g= 75’
KG we have
@ ® = @om
= ?2M)
= aCo,) ocsS!
= L@@
CHODIUY
- MG .
so that &[T =0 as required.
) Let 2 be a right transversal to d in G, so that
TT - © V®s
and uG = © x"1IH

A routine verification shows that

Wb w. ¢ -V et
” - X XEZ xEF x

(v,,EVi a*_£EK)

and

SLEW 2 <D :
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(where the last sum is meaningful since fj 00) are

mutually inverse KG—mans.

ve remark that the proof of part (&) actually gives a
more general result: if 3 is a subring of a ring 3 (with the
same 1) and V is an injective right R-module, then 3omO (3r,,V)

is an injective right 3-module.

Corollas 9.5 |If K is a field and G a finite group, then KG

is a auasi-7robenius ring.

Proof KG is finite-dimensional so artinian. faking H=1

in Lemma 9.4(h) we see that KC-SK1 Ja i3 right self-injective.

Recall that if G is a finite group, a field L is s
splittang Held for G, if Zxkiy(v):L for every irreducible

LG-raodule V.

theorem 9.6 Let G he a finite group and K any field. Then
K has a finite separable extension L which is a splitting

field for G.

Proof This result is proved in [4; 69.11] \mder the
additional hypothesis that K is perfect. |If K has charac-
teristic aero this hypothesis is of course satisfied.
Juppose K has characteristic p>0. 3y the result cited
(applied to the perfect field it) there is a finite field ?

of characteristic p which is a splitting field for G. Let T
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be a composite of K and P (i.e. a quotient of H7 by a
maximal ideal). ihen L is a finite separable extension of

L» 3ince it is generated over I (like 7 over ) by roots of
unity. Moreover L, which contains a oop;/ of 7, is a splitting

field for G.

The next three results concern the Jacobson radicals

of group rings.

Lemma 9.7 Let K be a field, and H a normal s™bgroumsr of

finite index n in a group G. Then

QKGN € JEDKEC- « I
Proof Gee [13;7.2.7] or [15; 16.5].

Theorem 9.8 Let X be a field and G a soluble group with

char X$ ®@G)- Then JKG)=0.

Proof Gee [I3; 7.4.6] or [15; 13.9]. (% shall only

require the simpler case of an abelian group.)

If G is a locally finite group and p a prime, we

denote by 0~(0) the unique largest normal p-subgroup of G.

Letma. 9.") Let G be a locally finite group, ICa field of

characteristic p>0, and 7 an irreducible KG-—nodule. Then

p(fp « CCQV)

Proof Let p=0 (©6). ;e must show that V.nO ss0 for every

r~4.7ir.-j q*4pf'
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irreducible VvV, i.e. that gG « J(KG). Hence it is sufficient

to show that gG is a nil ideal. Let

n
* = Ai(XI-1)g. £ dG (Xx€K, x+£P, Si£G) ,

and put H=<x+, g+ :i=1 ,N> _ Since xt£ PO Hi Op(H),

we may assume that G=H is finite. As PiJG w& have
(gG)n =gnG, so it is enough to prove that if G is a finite

p-group then g i3 nilpotent.

We proceed by induction on |g | (following [13; 3.1.6]).-

IT |G]=p and G=<x> then

gP = ((X-1)XB)p by Lemma 1.1
= (X-1)*XG as KG is commutative
=  (Xp-1)KG since char K=p
= 0.

If |6] =pm (m>1) let H be a central subgroup of G of order
p- The image of g under KG — k[G/h] lies in the augmentation
ideal of KLG/H], which i3 nilpotent by induction. Hence for
some t we have g~"hG. But by the above and as H 13 central

in G, (hG)p=hpG=0. Hence =0 as required.

The next lemma is an early example of a class of

group ring results known as ’intersection theorems”.

Lemma 9.10 Let G be a group with a normal abelian subgroup
A, and put

H = |x£G: JA?Ca(x ) (< oo}.
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(a normal subgroup of G containing A). If K is a field and

I a non-zero ideal of KG, then 10KH”O.

Proof See [I18; 7.4.9] or j15; 21.1].

V/e shall require two results relating group ring3

and polynomial identities.

Lemma 9.11 Let K be a field and G an almost abelian group.

Then KG satisfies a polynomial identity.

Proof See [i8; 5.1.11] or]i5; 5.11. The crux of the proof
i3 that if A i3 an abelian normal subgroup of G of finite
index n, then KG may be embedded in the nxn-matrix ring over

the commutative ring KA: cf. Lemma 8.7.

A (right) annihilator ideal of a ring 13 a two-3idad
ideal which is the right annihilator of some subset of the

ring.

Theorem 9.12 (Passman) Let K be a field and G a group.
Then the following are equivalent:

(@ KG has an annihilator ideal A4KG such that KG/A
satisfies a polynomial identity;

® I6:A(G)I<00 and ]&(G)' |< 00.
Proof Gee (j8; 5.2.1ff or [I7; Theorem T].

Next we consider injectivity and endomorphism

dimension of irreducible KG-modules.
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Lemma 9.13 (Parkas and Snider) Let K be a field and G a
group. The trivial KG-module K is injective if and only if

G is locally finite and char K™M"(G).

Proof See [I8; 3.2.12] or B ; Theorem 1] .

Lemma 9.14 Let K be a field and G an almost abelian group.
Then every irreducible KG-module has finite endomorphism

dimension.

Proof Use Lemma 9.11 and Theorem 8.8.

Lemma 9.14 has a partial converse:

Theorem 9.15 (Hartley) Let X be a field and G a locally
finite group with char K*"<f(G). Then every irreducible
KG-module has finite endomorphism dimension if and only if

G is almost abelian.

Proof See (I8; 12.4.163 or [jO; Theorem b].

This section®s penultimate result i3 due to Handelman

and Lawrence |7> Proposition 111.33.

Lemma 9.16 Let K be a field and G=A*3 the free product of

non-trivial groups A and B. Then KG is strongly prime.

Proof Let 1+a£ A, 1+tb£ B, and put X = {aa,ab,ba,bbj s G.
We shall show that r(~X)=0 whenever 0"gSKG. (Thus KG is

actually “uniformly®™ strongly prime.)
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V/e say that a non-trivial element g of G has type AA
and length A(g)=2n+1 if g may be written in the form
(necessarily unique)

g = a”b™a2b2e.- an™nan+i Or aSA, 1~"bMNE3)
We define elements of types A3, 3A and B3, and their lengths,
similarly. Any non-trivial element of G falls into exactly

one of the four types. We define X(1)=0.

Suppose 0 ZW“,<GEXG butjX7=0. Choose elements v of
supp g and w of supp5 of maximal length; clearly v,w=}= 1.
Suppose v is of type ?A (i.e. AA or BA) and w is of type A?
(there are three other cases, which may be handled similarly).
Now jjbbE£ 2JXS=0, so vbbwif 3upp ”~bbS; hence there must exist
V.] £ supp £ and w* £ supp’s with v* 4=v, ~Nw> but vhbbwh =

vbbw. Then

X(V) + 2 + X(W) X(vbbw)
= A(v"bbw?)
AOAQUIE) + 2+ Xo@L)
* AW + 2+ X(W)

whence X(v1)=»X(v) and A(wl)= \@). Since v bbw® =vbbw, it

follows from the uniqueness of the reduced form expression

that vli=v and wl=w, a contradiction.

In fact, as Handelman and Lawrence show, the coeffic-

ient ring X need not be a field: it suffices for X to be
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strongly prime. The modification required in the proof

is elementary.

Lemma 9.17 Let G be a group, K a field with [k |>]g ], and V
an irreducible right XG-module. Then S=SndK;G(V) is algeb-

raic over X.

greof (see MI8; 7.1.2, 9.1.6]) |If 0=)=vEV, then 3 -V,
e Vv ev 13 a X-monomorphisra; moreover, V is an image of Th
Hence
dim™B « dimrV « dim™*XG = kl< KN
Thu3 if ef£ 3-X, the elements |(e-a)-1 :a£X} of 3 are lin-

early dependent over K: say
21 bm(e-a.)l = O - ,b.l£ X,
X

where the a”™ are distinct. Since the e~ and their inverses
commute, we Ffind by multiplying by the common denominator

that e satisfies the polynomial

n
fX) = H b Jr(x-a.) ,
izl 1 j+i J

which is non-zero 3ince f(@" )40. Hence e is algebraic over

X.



Chapter IV

LOCALLY FINITE GROUPS

10. Preamble

In this chapter we examine consequences of supposing
that KG contains a minimal one-sided ideal N in the case
where G is a locally finite group and K is an arbitrary

field.

We commence in Section 11 by investigating properties

of the endomorphism ring of N» using a local technique.

Then in Section 12 we consider consequences of the
existence of N for the structure of G. We find that G must
be a Cernikov group (Theorem 12.1), and then use the results
of Chapter Il to deduce necessary and sufficient conditions
for the existence of a minimal one-sided ideal (Theorem 12.2)
namely, that G should have a normal abelian subgroup A of
finite index such that K is non-modular for A and A satisfies

conditions 31, S2 and S3 of Section 3.

In Section 13 we investigate consequences of the
existence of N for the structure of KG itself. We 3how in
Lemma 13.3 that the ascending Loewy series of KG reaches KG
after finitely many steps; it follows that every non-zero

KG-module has non-zero socle (i.e. KG is "3emiartinianl).
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The principal result of the section is that KG has a Ffinite
series of ideals each factor in which is a direct sum of
quasi-Frobenius rings (Theorem 13*4). We also show that the
socle of KG is a direct sum of minimal two-sided ideals

(Theorem 13.5).

Most of Section 14 is devoted to the determination
of the "controller’ of the socle of KG, that is, the smallest
normal subgroup C of G for which there is an ideal in KC
which generates the socle of KG. Of course, if the socle is
zero, thi3 subgroup is trivial; otherwise it is a certain
easily described subgroup of G depending only on the charac-
teristic of K (Theorem 14.8). We use this result to obtain,
in Theorem 14.9, an expression for the socle of KG. This
expression is quite explicit except that it involves the
socle of a finite-group algebra, and is therefore the best
obtainable until the problem of characterizing such socles

is solved.

In Section 15 we use the knowledge of the structure
of KG gleaned in Section 13 to classify indecomposable KG-
modules, in a manner analogous to the partitioning of
indécomposables for a finite—group algebra into blocks; we
also describe the injective and projective indecomposable

KG-modules. Finally, we determine (for countable but not
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necessarily locally finite G) the conditions under which all

indecomposable KG-modules are irreducible.

It is convenient at this point to remark on the
relationship between the left and right socles of KG. Since
for any group G and field K, g & g-" induces an anti-
automorphism of KG, the left socle of KG is zero if and
only if the right socle is also zero. When G is locally
finite, we have the following stronger result (stated, but

not completely proved, in jJ4; $2]).

Proposition 10.1 Let K be a field, G a locally finite
group, and a € KG. Then aKG is a minimal right ideal if and
only if KG* i3 a minimal left ideal. In particular,

30 (kgKG) = 3o (KCkg)

Proof Suppose wKG is a minimal right ideal, and let H be
any finite subgroup of G containing supp oi. Then <*kH is a
minimal right ideal of KH (since *KG =«.KH|G). Moreover,

Keot is the union of KHoc over all such H, 30 it is enough to
show that KH* i3 minimal. Now oH=KH/r(ct), so r(x.) = r(KH*)
is a maximal right ideal. Since KH is quasi-Probenius
(Corollary 9-5), its left and right submodule lattices are
anti-i3omorphic (see Proposition 8.1), and it follows that
HR*= ¢;r(KHx) is a minimal left ideal. This completes the

proof.



Note that the last part of this proof may be extended
to show that if H is finite then 3oji( KH) = 3on (KHjQj) for all
values of n. For if «KH has a series of length n with com-
pletely reducible factors, then so does KHoi. However, the
preceding local argument has no obvious analogue when n>1,
and it is an open question whether for G locally finite

S°n (gGKG) = 3on KGKG™ for all n*
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11. Endomorphism rings

Let G be a locally finite group, K a field, and *XKG
(for some U£KG) a minimal right ideal of KG. In this

section we examine the division ring E® = End"G (0tKG).

Let H=<suppoC>, a finite subgroup of G. Then
£ = |?7”H:P is a finite subgroup of G|
is a directed set of subgroups of G, i.e. any two members of
£ are both contained iIn some common third member. Moreover,
UE =g. IfLEE£ U {&} then i*KL is a minimal right ideal of
KL, so EL=End”™ixKL) 1is a division algebra over K by Schur-s
lemma. If 7,LE £u (G} and F<L, then «KL="KF®” KL. Hence

there is a K-algebra map ET - 2, @ow where for (~CKF,

Si€KL,
AL =~>Bk7KL :  oOi.KRBRK7KL —"m otKF <€gp KL
Since c¢LjAK ,=~, the map of i3 one-to-one. Furthermore,

if also MS £ U {6l and F*L< M, the diagram

EF h

commutes, since ifa £ Sg then

(r z p KL)®KLKM "®2p (KLSg-j-KM)

Q?®k? km =

Thus the Sp (7£ £ ) and the Ep - E™ form a directed system
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of K-algebras and K-algebra maps.

Lemma 11.1 B\ =1lim j& :?£ £ | is the direct limit of this

system.
Proof It remains to be shown that given a K-algebra A and
K-algebra maps : * A (PC (L) such that all diagrams

Ep

A

commute, there is a unique map 0 : E® — A making all diagrams

%
(PCi.)

A
commute. Thus let G?£ E~. Then c™M(ot)CakG, so since G is
locally finite we may choose F£ jt with g £ oKF. Then
Cp-pE Bp, and we have i¢gp)0=~"> since both are elements
of 3q mapping to c\(d), so they agree on xXG. Now define
o = Op(M|x*p) - This is independent of the choice of F by
the commutativity of the first diagram above; for the same
reason, Q is a X-algebra map. If PCE, and £ Ep, then
e<f0> - ep°|iKP) - -
so the second diagram above commutes. To show that d is
unique, suppose that X : 3 - A i3 another K-algebra map

making

(c L)
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commute. If c£ Eg then choosing F as above

- <> >

so C=S as required.

We remark that thi3 result may be generalized: if H
is any finite subgroup of G, « 1is as above, and V is a

finitely generated KH-module, then

EndKG(VG) = lim (2ndiQ,(\P) :FE £ } .

Lemma 11.1 enables um to reduce certain questions
concerning Eg to the corresponding questions about Ep, an
improvement since F is finite. This is illustrated in the

following:

Theorem 11.2 Let K be a field, G a locally finite group,
¢KG a minimal right ideal of KG, and Eg the division ring
EndKG (*KG). Then

(@ Eg is locally a finite-dimensional separable
K-algebra;

() if char K=p>0, EG is a field;

(©) 1KG is finite-dimensional over Eg.

Proof (@ By Lemma 11.1, any finite subset of Eg lies in
the image of the map 3p — Eg for some FE£ £. Since the map
is one-to-one, this image is a subalgebra of Eg isomorphic

to E®, so it i3 sufficient to prove that 3p is a finite-

dimensional separable K-algebra.

Witr <
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Since Bp is isomorphic to a subalgebra of KF/J(KF)
and F is finite, Bp is finite-dimensional over K. 3y Theorem
9.6 there exists a finite separable extension L of K which i3
a splitting field for P. Then by Lemma 9.3» 3p<S>gL =
2ndLp(a.LF) = But atXP i3 irreducible so oil? is completely
reducible by Lemma 2.8(b). Since every irreducible LF-
module has endomorphism ring L, we see that End“p(ailP) is
isomorphic to a direct sum of full matrix rings over 1.

Hence Ep is a separable K-algebra by Proposition 8.5.

((0)) (This part, which is well known in the finite case,

is a modification of [5; Lemmas 8 and 9].)

Since E¢ is a division ring, we need only show that
it is commutative. 3y Lemma 11.1 any two elements of B” lie
in a subalgebra isomorphic to Bp for some F£

, SO we may

assume that G »P is finite.

Let 11’5 be the prime field of K. Since J(FPG) is
nilpotent, we have J(FJ G) .K*"J(KG). On the other hand, by
r
proposition 8.1 FjG/IJ(ITpG) is a separable Ip-algebra, 30

KG/J(FG).K S (FG/I(F.0))8. K
P P P p

is semisimple, and J(KG) <J(F‘:G)-K- By V/edderbum®3 theorem
on finite division algebras, Skg/\]( iJKG) is a direct sum of

r
matrix ring3 over fields. |If L is one of these fields then

by Proposition 8.4 again L is a separable t'-algebra, so
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LS_K 1is semisimple and therefore a direct sum of fields.
FP

Hence
K6/I(XG) = KG/I(IF,6).K = (IF.6AE,E) )8,,pX

is also a direct sum of matrix rings over fields. Thus

SG = 3ndKGNJAKGA(XEG) is a Tield.

(© (f. [11]) |If ?e£ then by Wedderburn®s (other) theorem
the dimension of *KF over 3, is equal to the multiplicity of
XKF as a right-module direct summand of KF/J(XF). Hence
dim™ oxkKF B dimg(XF/j(KF)) / dim-ocXF
* |1/ (|F:H!dims <KH)
< HH -
Ve now show that also dim—_,‘G:<.)G« I[Hl =n say, i.e. that any
£ «.KG are linearly dependent over Eg. For there

exists ?€.£ with N ,...»8n+l £ xXF, and then there exist

n+l
91,... <+l £ Ep (not all zero) with =0. Applying
Q

the K-algebra monomorphism Ep — Eg, , and recalling
that ¢ | = 9» we see that there exist ) ,(pr(;+1£ 3G

n+l r
(not all zero) with ®?(£.) = 0, as required.

i=1 1 1

Corollary 11.3 Let K be a field and G a locally finite
group with So(KG) 40 Then G contains a finite normal
subgroup C such that G/C is linear over a division ring

(which is a field if char K>0).

Proof Let oiXG be a minimal right ideal of KG. Then
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Cs*C,, (¢,-KG) is a normal subgroup of G, and acts faithfully
(by right multiplication) as a group of permutations of the
finite set suppoc, 30 i3 finite. Now G/C acts faithfully on
¢KG, which by Theorem 11.2(c) is a finite-dimensional vector
space over the division ring 3" = Bndg.G (t<KG); that i3, G/C is
linear over E&. |If char K>0, 3Q is a field by Theorem

11.2(b).
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12. Structure of G

In this section we obtain necessary and sufficient
conditions for KG to contain minimal one-sided ideal3 when G
is a locally finite group and K is any field. We commence by

singling out the most difficult step.

Theorem 12.1 Let K be a field and G a locally finite group.

IT So(KG) F0 then G is a Cernikov group.

Proof We show first that any residually finite subgroup H.
of G is finite. For let (Hx} be the set of all normal
subgroups of H of finite indez. The intersection of any two
such subgroups is a third, and >=1; so */ Lemma 9.2,
(®)hAH=0. By Lemma 2.3(a), F'IhxG=0, so a3 So(KG) 40 is
contained in every essential right ideal, is no™
essential in KGgE for some A, 3y Lemma 2.4, H-~ is Ffinite,

and therefore H is too.

If 3 is any abelian subgroup of G, then £1.(3) is a
direct product of elementary abelian groups, so is residually
finite, so finite by the above. 3y Theorem 3.1, 3 satisfies

Min.

It follows by Sunkov®s theorem (7.2) that G i3 a

Cernikov group.

When K has positive characteristic, it is possible



to avoid thi3 appeal to Sunkov®s theorem (the proof of which
relies on many of the deepest results of finite group theory);
instead we use an approach similar to that of [16; 3.2~\. Thus
suppose char K>0. Let otkG be a minimal right ideal of KG,
and A=r(xKG) it3 right annihilator (a two-sided ideal). 3y
Theorem 11.2, «KG is of finite dimension n say over 3G =
B<IKG™SG) " wh-cil i3 a 3ach element of KG acts
linearly on «.KG by right multiplication, so there is a K-
algebra map KG — BndﬁG(ouKG). This map has kernel A, so KG/A
embeds in ( and by the Jacobson density theorem is even iso-
morphic to) Bndr, («.KG)=M (3P). Thus by Lemma 8.7, KG/A

G n G
satisfies a polynomial identity. By Theorem 9.12, since
A (”KG) is an annihilator ideal, we have jG: A(G) |< Q@

and JA(G)> |]< 00.

Let C=QA G)YCA(G)* ). Then C (< A(G)1) is central
in C, so C is nilpotent of class 2. Prom above, every
abelian subgroup 3 of C satisfies Min, 30 C i3 a \(llernikov
group by Lemma 7.3. Now A(G)/C acts as a group of auto-
morphisms of A(G) =, so is finite; hence C has finite index

in G, and G too is a Cemikov group.

Ve now deduce the necessary and sufficient conditions

sought.
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Theorem 12.2 Let K he a field with prime field k and G a
locally finite group. Then KG contains minimal right ideal3
if and only if:

(@ G is a Cemikov group with characteristic divisible
abelian subgroup A of finite index;

(b) char n(A) ;

(©) A is locally cyclic; and

@ |k() OK :K] < oo.

Proof In view of Theorem 12.1 we may restrict our attention
to groups G satisfying(@). Since bylLemma2.5(b) 30(KG)=0
if and only if 30(KA) 4s 0, it suffices toshowthatSo (KA)™O

if and only if A satisfies (b), (¢) and (d).

Suppose So(KA) 4=0, and let .xXKA be a minimal (right)
ideal. If char K=p>0 then by Lemma 9.9» OX'(A) is contained
in C.(*KA), which is finite (since it acts faithfully on
supp o0. Since A is divisible, Op(A)=1, i.e. (b) holds
(as of course it does if char K=0). By Theorem 5.6, (d)
holds, and A is almost locally cyclic; since it is divisible,

we have (c).

Conversely, if (b), () and (d) hold, then 3o (KA)4=0

by Theorem 5.6.
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13. Structure of KG

In this section we investigate the structure of the
group ring KG when K is a field and G a locally finite group
such that 30(KG)”™O. In the light of Theorem 12.2, we intro-
duce the following hypothesis, which will be assumed (except

where specifically noted) throughout Section 13.

Hypothesis 13.1 K is a field with prime field k and charac-
teristic p”0, and G is a Semikov group with characteristic
divisible abelian subgroup A of finite index n. The group A
satisfies p~rr(A) and has a direct decomposition

A = Pl x ... X (m~0)
where the P~ are Prufer groups for distinct primes p~.

Finally, |k(A nK K] < 0°, so So(KG)4=0.

Lemma 13.2 Let M be a right KA-module.
(@ If M is irreducible, Mp ha3 composition length at
most n= |G:A] .

() If M i3 completely reducible, Son(M*)=M".

Proof (@ Since A<>G, >1°" is a direct sum of n irreducible
KA-modules, so has composition length n. A fortiori, MG has

composition length at most n.

- p -
b) Since 3on and — preserve direct sums, we may assume

M drreducible. The result then follows from (a).
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The bound on the “Loewy height® of Mp in (b) may be
improved: a Maschke-type argument shows that n may be

replaced by |G/A :Og,(G/A)|- A similar remark applies to
the next lemma.
Lemma 1.3 If V i3 any right KG-module then

s°h<«.+0 i7) " 7 =
In particular, if V40 then So(V) is essential in V.

Proof Since the first property in question is inherited by

images and direct sums, it is sufficient to verify it for

V::KGKG, By Lemma 13.2(b), if i"?:0 then
Soi+1(XA)KG 30i+1(XA)
Soi (KAYXG So+ (KA)

has a series of length n with completely reducible factors.
By Corollary 6.4, Som+~(XA) = KA. Hence KG¥G has a series of

length n(m+1) with completely reducible factors.

If V~0 and W is a non-zero submodule of V, then

S°n(m+i)(w)= 30 WO So(V) =So(V) 40. Hence 30o(V) is

essential in V.

We shall write
S = Soi (KA)KG (O«i<m+1l) ,
so that each S” is an ideal of KG, and Sfiil =KG. /& now

show that each factor 3i+1/Si (considered as a ring,

generally without unit element) of the series
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0 - sO 6 S1 < ee= * gn+l = KG

is a direct sum of quasi-Frobdenius rings. Recall that a
centrally primitive ideranotent in a ring is a primitive

idempotent of the centre of the ring.

Theorem 13.1 For O«i”™m,
@ if £ is a centrally primitive idempotent in KG/S»
then eCKG/S”™) is a quasi-Frobenius ring;

00 3i+1/3i = (KG/3™ £ 1is a centrally primitive

idempotent in KG/SM

Proof Let Q=KG/3™ and R =KA/So"iKA). Vie preface the
proof with three observations. Firstly, consider the

following diagram:

0 —» 30, —-> KA —-> R —-» 0
i i i
0 ~>30J(KA)|IG -> kalg -> rg -> 0

| ]
0 —* 30i(KA)KG -» KG -* g -2 O

Here the first row is exact, 30 the second row, obtained
from the first by tensoring with the flat module ~"KG, 1is
also exact; in other words, Rn::Q as KG-modules. The
vertical arrows are KA-module embeddings of the form

M = Mai —-* MO"NKG = M°
How the first two vertical maps are K-algebra morphisms, so
the embedding R — Rn = Q is also a K-algebra morphism; we

shall identify R with its image in Q under this embedding.
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Secondly, suppose that M is any KA-module and m£ M,
so that mKA is a submodule of M. Since "EG i3 flat, mKA|G

is a submodule of M°, and we have

mXA |G mXA KG = m KG

(m® 1)EG mKG C MG

Thirdly, suppose that e is a primitive idempotent in
R. Now G acts on KA by conjugation, leaving So™(KA)
invariant, so G acts on R. Let T be a right transversal in
G to NG(e) = |gEG -es=¢€}; then [c]<n since A< (e). Let

sS. r ex; then e is independent of the choice of T, and
XET

(since distinct primitive idempotents in R are orthogonal)
is an idempotent in R. By the first observation above, we

may consider e and each ex a3 idempotents in Q; since G

leaves e invariant, e is central in Q. In the KA-module R,
we have
SKA = © exKA ;
XET

therefore, by the second observation above (taking M=R,
m= e)

eQ = eKG

eKAlc = ® exKA |G

XET
Now R 13 an epimorphic image of KA, so is locally .v edderbum
(Lemma 3.8); thus by Lemma 3.9(b), exKA= exR is irreducible

for each x£T. Hence by Lemma 13.2(b), eQ has composition

length (as right KG-module) at most n . Similarly 8Q has
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finite composition length as left KG-module. Since eQ is an
epimorphic image of the ring KG, and its KG- and eQ-3ubmodule
lattices coincide, it follows that eQ is an artinian ring.
Furthermore, each exKA is an injective KA-module (Lemmas
9.14, 3-8, 8.10), so by Lemma 9.4(b), eQ is injective as
right KG-module. Since any eQ-module may be considered as a
KG-module, we conclude that eQ is right self-injective, and

therefore a quasi-Frobenius ring.

We now turn to the proof of the theorem. Let £ be a
centrally primitive idempotent in Q. By Lemma 13.3, there
exists non-zero x £ So(tQ )- Then by Lemma 2.3(d),

£ So(QKG) = 30QR°) < So(R)G ,

so by Lemma 3.9(d) there is a primitive idempotent e£R such
that in Q we have eo.”0. Since ee=e and tx=* we have
et 40, whence et=i as £ is centrally primitive. Hence tQ
is a ring direct summand of eQ, so is quasi-Frobenius. Thus
we have (@). Furthermore,

e £ So (R) = So(Kii/3oi (KA)) = So++l (KA)/ 3o+ (KA)
say "="+So+x(KA) where ££ 30i+l (KA) * 3x+1. Then in Q,

£ = et = @B+Si)E £ 3i+i/3j -

To complete the proof of (b), note that by Lemma
3.9(d) So(R) i3 the direct sum of subrings eR as e runs over
a system 2, of representatives of the G-conjugacy classes of

primitive idempotents in R. Hence (using the second observ-
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3i+1l/3i = So(R)G = 0(eQ:ef g.}
Each eQ i3 artinian, so may be written in the form

e|Q®.-SC>e Q where the £3 are centrally primitive idem-

potents in Q.

Theorem 13.5 Let K be any field and G any locally finite
group. Then So(KG) is a direct sum of minimal (two-sided)

ideals.

Proof We may assume that 30(KG) =0, and hence that Hypo-
thesis 13.1 hold3. Let Q be a homogeneous component of

So (KG"g). Then Q is an ideal, and by Proposition 10.1,

is completely reducible. Let P be a homogeneous component
of g_Q, again an ideal. As So(KG) is the direct sum of such
ideals ?, i1t is sufficient to show that P i3 a direct sum of

minimal ideals.

Now PgQ is a direct sum of copies of some minimal
right ideal Y. By Theorem 13.4(b), as
V. « SoKG) « So(KAKG = § ,
there is a centrally primitive idempotent € KG with Ye =V.
Then P=Pe< eKG, which i3 artinian by Theorem 13.4(a). Hence
PQ. i3 a direct 3um of finitely many copies of V. Similarly

_ ? 13 a direct sum of finitely many copies of some minimal

left ideal W. Let B=KG/AnnKG(Y), C=KG/Ann™*(W), and let
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C0? be the opposite ring of C. Then P considered as a KG-
bimodule has the same structure as P considered as a right
B Cop-module, so it is sufficient to show that the latter

module is completely reducible.

As G is almost abelian KG satisfies a polynomial
identity (Lemma 9.11). Hence B is primitive and satisfies
a polynomial identity, so by Theorem 8.S is isomorphic to a
matrix ring Mt (3 over B= Sndg(V)=SndKG(V). Similarly,
C°~"SMU() say, where ?=End”™,(W). By Theorem 11.2(a), each
of B and ? is locally a finite-dimensional separable K-
algebra. By Theorem 8.6 the tensor product of separable
algebras is semisimple, so Ss”? is a locally Wedderbum
algebra. Hence B cee=Mru (B ?) 13 also locally ."/edder-
burn. Let G°”~ denote the opposite group of G. Then B cen
is an epimorphic image of KG KGO™"=k @ x G°~1, which
satisfies a polynomial identity as G xGop is almost abelian.
The conclusion now follows from Corollary 8.9, since P has a
composition series as B-module 30 a fortiori a3 3®gCop-

module.

Theorem 13.4 has another consequence (which can also
be demonstrated more directly: see [20; 3.21). Note that KG
is semiprime if and only if G has no finite normal subgroup
of order divisible by the characteristic of K (cf. Theorem

14.4).
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Corollary 13.6 Let K be any field and G any locally finite
group such that XG is semiprime. Then So (KG)4=0 if and. only
if KG has a ring direct summand which is isomorphic to a

full matrix ring over a division ring D.

Proof ITt is a central idempotent in KG such that
E£KGSMt (D), then 0 "So(eKG) < So(KG). Conversely, if

So(KG) ~ 0 we may assume Hypothesis 13.1 » and then by Theorem
13.4 (with 1 =0) KG contains a centrally primitive idem-
potent t such that ¢(KG is quasi-Frobenius. Then ¢XG is
semiprime (like XG) and artinian, and contains no central
idempotents other than t. Hence ¢KG is isomorphic to a

matrix ring M*(D) over a division ring D.

We remark that if K has positive characteristic then
by Theorem 11.2(b) D is necessarily a field. In any case,
if So(KG)” 0 then by Theorem 12.1 G is almost abelian, so
D satisfies a polynomial identity (Lemma 9.11)» and is
therefore finite-dimensional over its centre (CI8; 5.3.41

or [15; 6.4]).
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14. A characterization of the socle

We now turn to the problem of finding an explicit
characterization of the 3ocle of KG when G is locally finite.
Since no such characterization is known in the case of a
finite group, the expression we obtain (in Theorem 14.9)
involves the socle of a finite-group algebra. A major step
towards this expression is the determination (in Theorem
14.8) of the "controller®™ of the socle. The concept of the
controller of an ideal in a group ring was introduced by
Passman [18 ;88 .I] ; for convenience we shall prove two of his

results, on which the idea i3 based.

IT H is a subgroup of a group G and K is any field,
it is easy to see that the map

T\, : KG —* KH, X b y* X g X €
H gEG A~ gEH g S

is a KH-bimodule homomorphism.
Lemma 14.1 Let K be a field, H a normal subgroup of a group
G, and 1 an ideal of KG. Then
(IOKH)KG < 1 < 7h (1KG
Furthermore, if either inclusion is an equality then both

are.

Proof (cf. [18; 1.1.5, 1.1.6]) The first inclusion is
clear. Suppose I, and let T be a transversal to H in G.

Then ik may be written in the form
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ot z: UX U X€KH)
XET

If x,yET then TA(xy~1)=Sx>y. Since 7« is a left KH-module

map, we have

= T -
XET x U ) «y
Thus ot = ZT 77 «X1)x € TF (DHKG ,
XET H H
since ob¢‘1 € Ix~1 Thi3 establishes the second inclusion.

IT 1=tuh (1)KG then th (1) c m KH, whence
I = 7H(IDKG « (10KH)KG

Conversely, if 1=(10XH)KG then
WH@) = (inKH)7rH®KG) 9 1

whence 15 rt*"(1)KG.

When (I10KH)KG= 1= 7V(1)KG, we say that H controls 1.

Lemma 14.2 [I8; 8.1.1] Let K be a field, G a group, and 1
an ideal of KG. Then there exists a unique normal subgroup

Q (D of G such that HAG controls 1 if and only if Hi G(T).

Proof Let W be the intersection of all normal subgroups of
G which control 1. We shall show that 7*(1) cl. Let <& 1
and suppose

suppu. - W = (OsnCoc?)
For each i=1,...,n there exists a normal subgroup con-

trolling 1 such that Then
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e 1

since t (I)c I for each i. By Lemma 14.1» W controls 1,
Hi

and is therefore clearly the unique minimal controlling

subgroup for 1.

If H is any normal subgroup of G containing W then
I > (inXH)KO > (inKWKG = 1

so H controls I. The result now follows with G(l)=¥.

The subgroup G(1) 1is called the controller of the

ideal 1. We shall need:

Lemma 11.3 Let 1 be an ideal of KG and L= (1) if3 loft

annihilator. Then 6 (L)<- G(I).

Proof It is enough to show that H= G(1) controls L, i.e.

that 7Gj(L) S L. Now

ORI = 1@&L)TE()KG since H controls 1
ANL-Trjji) )KG since i3 a right KH-map
i ~h (LIKG since H controls 1
0

so *h (L) S ¢(l)=L

Passman has determined the controller of the

nilpotent radical 1l(KG) of KG:
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Theorem 14.4 Let | be a field of characteristic p~0 and G
any group. Then <3(N(KG)) = £p(G), where

APG) = <x€A(G): |x] is a power of p>

Proof When p>0 this is [I8; 8.1.9(i)l. When p=0,

N(KG)=0 [18; 4.2.13] so G(N(KG))=1 = A P(G).

Since if G is finite the socle and the nilpotent
radical of KG are each other®s annihilators, it follows from
Lemma 14.3 that in this case A P(G) is also the controller
of the socle. Y/hen G is merely locally finite, the situ-
ation is more complicated, since in the light of condition
(d) of Theorem 12.2, we must expect G(30(KG)) to depend on
K itself and not just on the characteristic. However, thi3
dependence turns out to be rather crude: for a group G
satisfying conditions (@)-(c) of Theorem 12.2, C(30(KG))
can take only two values - 1 (iff K is so large that
So(KG) =0) or AAP(G). Before investigating thi3 we prove

two general lemmas.

Lemma 14..5 Let K be a field and G a group. Suppose So (KG)

is essential in and controlled by HAG. Then
So(KG) = So(KH)KG ,
and So(KG)nKH = So(KH) ess KHgjj-

Proof By Lemma 2.3(b), since (So(KG)OXH)KG= So(KG),

30(KG)OKH i3 essential in KH”, 30 contains So(KH). Thus
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So(XG)"30(XH)XG, and equality holds by Lemma 2.3(d). Hence

also So(XG)0O XH = 30(XH)XGO KH = 30(KH).

Lemma 11.6 |IFf X is a field of characteristic 0 and G is
a group, then the finite-p" residual
Hf N-gG :p\ |G:N] < oo |

of G controls 30(XG).

Proof By Lemmas 2.7 and 14.2.

For the remainder of this section, we again assume
Hypothesis 13.1: in view of Theorem 12.2, this assumption

entails no loss of generality.

Lemma 11.7 AP() is finite.

Proof Vie may easily reduce to the case where G= A5 (0).

In particular G i3 an FC-group, so its minimal subgroup A

of finite index is central. |If x and y are p-elements of G

with xA=yA, then there exists g£ A with xg=y. Since g is

a central pT-element, <x>=<y>_. But G is generated by its
p-elements, so may be generated by |G:A] (or fewer) elements.

Hence G i3 finite.

Theorem 14.3 Assume Hypothesis 13.1, and let D= A P(G). Then
<S (Bo(KG)) = AD.
Moreover, So(KG) = 3o0(X[ADI)XG

and So(XG)NX[ADI = So(x RdD)
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Proof We show first that J(KG) is the left annihilator of
So(KG). Certainly in view of Proposition 10.1 we have
J(KG).So(KG)=0. For the converse it is sufficient to show
that ((So(KG)) i3 a nil ideal. Thus let *£ i(So(KG)) and
put H=<supp<x.>. Now rKG(i)> So(KG), so by Lemma 13.3»
rKG(@t) is essential in KGKQ.. By Lemma 9.1(a), rKG(w) =
rj~g"ikG; hence is essential in KHgg (Lemma 2.3(b))

so contains So(KH). But H is finite, so by Corollary 9.5
and Proposition 8.2, So(KH) contains a copy of every irreduc-
ible left KH-raodule. It follows that « £ J(KH), whence is

nilpotent as required.

However, by Lemma 9.7 and Theorem 9.8, since G is
almost abelian-p®, J(KG) is nilpotent. Thus
¢(Bo(KG)) = J(KG) = N(KG)
Hence by Theorem 14.4 and Lemma 14.3,

D = G (NC(KKG)) < G(So(KG))

Recall that A=P” x ... xBm» where the P~ are Priifer
groups. By Lemma 2.4, p~G is essential in KGKG, whence
So(KG) <Bi:. Let C= G(So(KG)) and T=CnPi; then

So(KG) O KC * pxGOKC = tC
(where the equality hold3 3ince ~G is the set of elements
of KG whose coefficient sum on each right coset of P™ is
zero). Hence by Lemmas 13-3 and 14.5, tC is essential in

KC.r,,> whence t is essential in KT by Lemma 2.3(b). 3y Lemma
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2.2, T is not a finite p"-group, so must be infinite. There-

fore Pi=T«C. We have now shown that AD« G(So(KG)).

We next prove that Cj,(A)=H say controls So(KG).
Let I be a minimal ideal of XG. Since A has no proper sub-
group of finite index, it follows from Lemma 9.10 that
in KH+ 0. Hence as I is minimal, (I0KH)KG*1, so
by Lemma 14.1. Since 30(KG) 1is a direct sum of minimal
ideals (Theorem 13.5), we have ~"(SoCXG))s 30(KG), i.e. H

controls So(XG) as required.

Since A 13 the minimal subgroup of finite index in

G, and abelian,
H = Cg(® = A(G) 5 AD
Kurthermore, H/AD is a fini.te p"-group since D= A”(G)
contains all p-element3 of H. Hence AD controls 3o(XH) by
Lemma 2.7. By Lemma 14.5 twice we now have
So(KG) = So(KH)KG = So(K[AD])KG

and So(k Cad]) = so(KH)nx[AD] = so(kg)o x [ad]

Thus AD controls So(KG), and the proof is complete.

We are now ready to give our characterization of

the socle of KG.

Theorem 14.9 Assume Hypothesis 13.1 and let D= Z\P(G). Then

So(KG) 30(KA)So(KD)KG

= io0 30 (KD)KG
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Proof Note that the second equality holds by Theorem 6.2.

Let “"£ So(KG). By Lemma 2.3(d), $£So(KA)KG, so by
Lemma 3.9(d) there is an idempotent e (not necessarily
primitive) in So(KA) with ejsj. 3y Lemma 2.3(d) again,
$£ So(KD)KG, so

X = e$ £ So(KA)30(KD)KG

It remains to be shown that 30(KA)So(KD)KG < 30(KG).
By Theorem 14.8, So(KG)= So (K[AD]DKG, so we may assume that
G=AD. Since by Lemma 14.7 D is finite, there exists a
finite separable extension F of K which is a splitting field

for D (Theorem 9.6). By Lemma 2.8(b) we have

So(KA)30(KD)KG = 30(KA)30(KD)7G n KG
= 30(FA)So(iD)PG n KG
and 30(FG)OKG = 30(KG) ,
so we may assume that K=F_. Let M and N be minimal right

ideals of KA and KD respectively; we must show that

MN< 30(KG).

We claim that is a minimal right ideal of
KA"SgKD=k Ca xT)] - Let V be a non-zero submodule of
say 2_mpani£V, where jni} is a (finite) K-ba3i3 of N, m™E M,
and m1?0. As K is a splitting field for D, Endj”~CNjsK, so
by the Jacobson density theorem the map KD — 3nd™(N) is onto.

Hence for each j there exists 53£ KD with n-SJ-: n. and
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n"Sj=0 (it 1). Thus for each £V. As M=m"KA,

clearly V=M N as required.

Since G=AD and D« A(G)=Cg (A), there is a K-
algebra epimorphism 0: XA<€g. KD —KG, induced by aesd ad
(aE A, dED). Thus Mli=8 (M«g N) is either a minimal right
ideal of KG or zero, and is contained in So(KG) in either

case.
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15. Indecomposable modules

In this section we classify indecomposable KG-modules
when K is a field and G a locally finite group such that
50 (KG)4=0, in a manner which generalizes the classification
into blocks of indecomposable modules for a finite-group
algebra. We also describe the injective and projective
indecomposable KG-modules. To conclude the section, we
consider a more general question: for arbitrary K and G,

when is every indecomposable KG-module irreducible?

In view of Theorem 12.2, we shall again assume
Hypothesis 13.1» until further notice. As in Section 13» we
set

St = Sox(KA)KG (0<i«m+1)

Proposition 15.1 Let M be an indecomposable right KG-module.

(@ There exists a unique integer X = AME£ {0,...,m{ such
that M3X =0 but MSX+l = M.

(b) There exists a unique centrally primitive idempotent
t£ KG/3X such that Ms, =M.

(©) If M is injective than M has finite composition length
and is isomorphic to a direct 3ummand of (KG/3x)t#g.; converse-
ly each indecomposable direct 3ummand of (KG/3x)”g is inject-

1ve.

(d If M is projective then M is also injective, and
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X(M)=0. Thus the projective indecomposable KG-modules are

exactly the indecomposable direct summands of KG/.

Proof Firstly we remark that if IT is an indecomposable
direct summand of (KG/Sj™” (0«A«m) then by Lemmas 13.3
and 2.3(d), 043o(M) < So(KG/Sx) " 3x+i/™a.” wnence 7 Theorem
13 .4 (b) there exists a centrally primitive idempotent \j iIn
KG/SX with 30 (N)tj|=0. Since N = ilij® N(1-;j) is indecomposable,
N=N" is a direct summand of rj(KG/3™). In particular, N like
g(KG/3x) is an injective KG-module of finite composition

length (see the proof of Theorem 13.4(a)); furthermore
N3X+1 =1T 3ince Y£ 3a+i/3a-

(a,b) Let X be the greatest integer such that M3” =0 ; then
A<m as Sm+l = XG. Jlov M may be considered as a KG/3™-module,
and M(3"+./3X)40. Thus there exists a centrally primitive
idempotent £€ KG/3”™ with Me i1 0, and then M=Ke. since M is
indecomposable. Hence MS~+1 =M. The uniqueness of X and £

i3 clear.

©) Since tKG/S™) is an epimorphic image of KG, M is
injective (as well as indecomposable) when considered as an
£(KG/SX)-module. 3y Proposition 8.3, M i3 isomorphic to a
right direct summand of s(KG/3"), and hence to a direct
3ummana of (KG/S™)~. The remaining assertions of (¢)

follow from the above remark.
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@ M is projective and indecomposable when considered
as an t(KG/S™)-module, and hence by Proposition 8.3 M is
cyclic, as E~G/S™)- or KG-module. Thus M is isomorphic to
a direct summand of KG”™,. By the above remark, M is inject-

ive, and M31 =M, whence X(M)=0.

For an irreducible KG-module M we can provide an

alternative characterization of the integer X(H).

Proposition 15.2 Let M be an irreducible right KG-module
and i1 an integer with O« i~m. Then the following are
equivalent:

@ 1=XMW;

() M is isomorphic to a submodule of 3"+l

=

© is isomorphic to a composition factor of (Si+1 /SDEG
(d) the kernel CM"(M) of M in A contains exactly i of the

Prufer direct factors P™,...,Pm of A.

Proof @ ™»(b) We have M3i=0 but MSi+1 =M, whence M is
an irreducible KG/S™module with M(Si+1/3+)=M. By Theorem
13.4(b) there i3 a centrally primitive idempotent t£ KG/SN
with Hs=»M. Then M is am irreducible fc(KG/3i)-module, so by
Proposition 8.2 (since e(KG/3%) is quasi-Frobenius), M is

isomorphic to a right ideal of eiKG/3”, whence to a sub-

module of ( /3] )kg"

() =S»(c) Thi3 is trivial.
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(c) =£>(@) Suppose MS U/V where Since
US1 =&Si «V, we have MSjL% (U/V)St =0, so X(I11)7?i. If uf U/S L

then by Theorem 13.4(b) there exist distinct (and therefore

orthogonal) centrally primitive idempotents in
ZS/3i with

u — ugj -ee HUENA N~ H/OAY(ENMN/SN)  »
since each lies in S~N/S/™. Thus US1+1 =U, whence

M3i+1 = (U/V)Si+l =U/V4=0, and X(M) * i.

(a)<~>(d) Note that (@) holds if and only if i is the
greatest integer such that MS~=0, 1i.e. such that S"£
Ann*c(M). Since M is irreducible, AnnKG(M) is a prime ideal.
By Corollary 6.3»

S, = So, (KAKG = n E» . «

1 1 I1]=i J£1I “3

Hence S. s Ann™(M) 1if and only if for at least i values of

J. IPIG< ANNKG(M), i.e. Pj<Ca(M).

We now cease to assume Hypothesis 13.1» and consider,
for arbitrary K and G, the question of when all indecompos-
able HG-modulles are irreducible. In @; Theorem 2.7~ Berman
shows that it is sufficient for G to be periodic abelian and

K non-raodular for G. We extend hi3 result in the following:

Theorem 13.3 Let G be a periodic almost abelian group and K
a field with char K*-niG). Then every indecomposable KG-

module i3 irreducible.
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Proof Let A be a normal abelian subgroup of finite index

in G, and V an indecomposable right KG-module.

Suppose F i3 a finite normal subgroup of G contained
in A, and e is a primitive idempotent in 1C?. As in the proof
of Theorem 13.4» we let T be a right transversal in G to
MR ={ge G :es=¢€}; then T is finite since A*NG(e). Let

« zZ >

XET

; then e is independent of the choice of T, central

in KG, and (since the ex are distinct primitive idempotents
in K?, so orthogonal) an idempotent. Since G/A is finite,
we may choose, among all finite ? in A normal in G and all
primitive idempotent3 e in KF satisfying 40, an ? and an
e with NQ(e) minimal. Since V is indecomposable, Ve=V, so

e acts as the identity on V.

Let

JL = |JL<A:?24L4G, |L|]< 00} ;
since |G:Al is finite, every finite subset of A lies in some
member of d. . We shall construct primitive idempotents
in XL (LE 1 ) to which we may apply Lemma 5.2. Let L£¢; ,
and consider the various idempotents in KL of the form ?,
where f is a primitive idempotenfc in KL. Since these idem-
potents are central in KG, and have sum 1, and since V is
indecomposable, there is exactly one such idempotent, say

3uch that Mj 4=0. Then ] acts as the identity on V, so erj 40.
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If erj=0, then for xXx£G, 0= (e”)x = ex/}], whence ei”*=0, a
contradiction. Thus ei”™~0, so since KL is semisimple artin-
ian we may choose a primitive idempotent " in KL with
fLe™rO. In particular fArjiO; since f is the sum of some
G-conjugacy class of primitive idempotents in KL, it follows
that f~=7jJ, so f* acts as the identity on V. Also f*e”O,
whence

fLe = fL
as f~ is primitive; hence (e)> (f~). For if g£ G and
=, then fre®= (Fre)®=fF = fjj= e, so e®e 4=0 whence

e~=e. 3y the minimality of NG(e), we have N*(e) = NG (F-jO.
Suppose with L1=L2. Then 4 and f both
act as the identity on VvV, so fT fT +0. Hence fT fT (like
ny L2 L1 L2
ej above) is also non-zero. Thus for some X£G,
and then f~ 2 =t* as f* is primitive in KL2. Since
f]’ze: sz (from above), we have

A, TR = fLfL, + 0 -

so fL ex 0 whence fL ex=fL . But from above fL e=fL , so
1 1

eex 40 whence x£ NG(e)=NG(fL ). Thus
f[.l*'ll_'2 = fL fL2 + 0 -~
whence fT f'lg =fI .

p Up

Now given any Lj,L2£ jL, let L"Lp»LE,2L. Then



(109)

~ fA~~L~~L ~N* 30 n Thus we may apply Lemma 5.2

to obtain a maximal ideal M of KA such that for all LE ¢(»

MO KL = (1 - FL)KL

Let T be a (Finite) right transversal to NG (e) ik G.

We claim that

Arn-..V) > n Mx .

XET
For let ot€ M*, and say supnoL cL€ . Then for x£ T,
XET
«@ £ Iyr™KL = (mo kI )x
= (1-fJ)KL ,

so foi.= 0. But UG(FL)=NQ(e), 30 fL=2Z ¥> whence fL«=0.
XET

Since * acts as the identity on 7, we have xEAnn~ (V).

Thus KAZAnn”~tV) 1is an image of the completely reduc-

ible KA-raodule XA /7 =")Mx, so is a semisimple artinian X-
XET

algebra. Thus its module Vt is completely reducible. By
Lemma 2.6(a) 7 is completely reducible as XG-module; since 7

is indecomposable, it is irreducible.

We now consider necessary conditions for indecompos-

able XG-modules to be irreducible, commencing with:

Lemma 15.4 Let K be a field and 0 a group such that every
indecomposable KG-module is irreducible. Then G is locally

finite and char X~MG) .
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Proof The injective hull of the trivial KG-module K is
indecomposable so irreducible; that is, K i3 injective. Now

use Lemma 9.13.

When G is countable, we can establish necessary and
sufficient conditions. The following result extends a

theorem of Hartley:

Theorem 1S.5 |If K is a field and G is a countable group,
the following are equivalent:
(@ G is periodic and almost abelian, and char K"7r(G);
() every indecomposable KG-module is irreducible;

(©) every irreducible KG-module is injective.

Proof (The equivalence of (@ and (c) i3 00; Theorem AJ.)

@ () This is Theorem 15.3.

) ~() If () holds then by Lemmas 15.4- and 3.8, KG 1is
locally Wedderburn, so Theorem 8.11 applies. But (b) pre-
cludes alternative (ii) of that theorem from occurring, so

we have (c).

© ~(@ 01°3 Given (), Lemma 9.13 shows that G i3 locally
finite and char K$7r(G). By (c) and Theorem 3.11, every
irreducible KG-module has finite endomorphism dimension, so

G is almost abelian by Theorem 9.15.



Chapter V

NON-LQCALLY-FINTT3 GROUPS

16. A conjecture

In this chapter we investigate the existence of
minimal right ideals in group rings of groups which are not
locally finite. The results we shall obtain all provide

evidence in support of

Conjecture 16.1 Let G be a non-locally-finite group and K a

field. Then So(XG)=0.

In Section 17 we show that thi3 conjecture is valid
for certain group classes, in particular for a class of
generalized ?C-300luble groups, which includes all radical
and all locally soluble groups (Theorem 17.3), and for free
products (Proposition 17.4). We also show that if K has
characteristic p (~0) then residually finite-p®* groups G
satisfy Conjecture 16.1 (Proposition 17.5); we deduce that
groups linear over a field of characteristic zero or not

equal to p also satisfy the conjecture (Corollary 17.7).

A ring is called (right) semiartinian if every non-
zero right module has non-zero socle. Recalling from Lemma
13.3 that if a group ring of a locally finite group ha3 non-

zero socle then it is seraiartinian, we are led to consider a
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weaker form of Conjecture 16.1:

Conjecture 16.2 If 1 is a field and G a group such, that KG

is semiartinian, then G is locally finite.

We establish some special cases of this second con-

jecture in Theorem 18.4.

In Section 17 we shall employ the notation of group-
theoretical classes and operations (see [21; Section 1.1M).

The group classes we mention include the following:

F finite groups
£p finite p"-groups (where p is a prime)
So* finite groups
4 : abelian groups
1 - FC-groups
o - the class of all groups isomorphic to a fixed
group G, together with all trivial groups.
We shall use a number of group-theoretical operations. If X

is a group class, we define the following group classes:
1X ; locally-X groups (i.e. groups in which every
finite subset lies in an X-subgroup)
ax : residually-X groups
pX : groups with an ascending (transfinite) series
with each factor in X

$X : subgroups of groups in g-



Each of these operations is a closure operation, i.e. satis-
. 2, -

fies A ~=Ag for all We also require the closure oper-
ation < p,1>, whose closed classes are the classes which are

both p- and L-closed [21; p- 5-\.

We shall need an easy lemma concerning products of

group classes:
Lemma 16.3 I1f X and Y are group classes then Y_.1X c 1 (YX).

Proof Let GEY.I1X> so that G has a normal subgroup H€Y
with G/ZHE1]. If {g1l,... is a finite subset of G then
{g", ... (? G/3) is contained in some ¢-subgroup W/H of

G/H. Then {gl,... ,gn IS W€ YX as required.
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17. Some well-behaved group classes

Abusing set-theoretic notation, we define
§ = 1] U {G :So(KG) =0 for all fields K} ;
thus Conjecture 16 .1 is true if and only if S is the class

of all groups.
Lemma 17.1 1F.A ¢ 3.

Proof Suppose that GE£ IF.A- 3, so that G4 uF contains a
locally finite normal subgroup H with G/H abelian, and there
exists a field K with 30(KG)=}=0. Since G/H™ug, G contains
an element x of infinite order modulo H. Now <x,H>i1>G,

so by lemma 2.3(d) we may assume G=<x,H>=<x >H. 3y
Lemma 2.3(d) again, So(KH)”0. Hence by Theorem 12.2, H
contains a locally cyclic subgroup A of finite index such
that char K<fcw(A). Then also <x,A> has finite index in G,
so by Lemma 2.3(b) we may assume that H= A. Then in partic-

ular every subgroup of H is characteristic, and char X"n-(G).

By Lemma 1A.6, since G/H=<x> 1is residually finite-p~
for any p, H controls So(KG), so there exists non-aero
a£So (KG) n KH. Then xKG is completely reducible and cyclic,
so has the minimum condition on KO-submodules. Since
< supp x> i3 a Ffinite characteristic subgroup of H, there

exists r>0 such that «* =ad Now

«.K6G 3 «(xXr-21)KG 3 ... 3 *(xr-1)tKG 3
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so by the minimum condition gn.@r-1)"KG=a.(xr-1)t+1 KG for

some t~0. Then (since a. and xr commute) there exists "£ KG

with (xr-1)K = (xr-1)t+1xy.

Let W=<xr>. Then if O+ Sc ¢KWXxr-1)* 0 W) by
Lemma 1.1), we find as in the proof of Lemma 2.2 that
supp S =W, which is impossible. Thus xr-1 is regular in KV,
30 too in KG (by Lemma 9.1 (b)). Hence x= (xr-1)A". Since

0, also dig” 0 : write

Then

where we have shown only the greatest and least powers of x.

Hence r+N*K=0; so r =M-N<O0, a contradiction.

The following rather technical lemma allows us to

improve on Lemma 17.1.

Lemma 17.2 Let | be a group class such that Lg.g <§8. Then
@ ug.lLXa 3=13 ;
® gX QI ;

(© 1FpXc § ;

(d if X=sX then §. < P»>->X c ¢

Proof (@ By Lemma 16.3» F?-"-X c u(i-g.X) c to, so it i3

sufficient to show that >3=3. Thus let G£ 1S and suppose
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there exists a field K with SoCKG”™0: we must show that
GEIF. Let g.],---,gn£G and 0”<1£30(KG), and put

H=<g”,...,gn, supp d>_. Since G£1S, there exists K G
with H<LE£S. Now O~ £ So(KG)n XL, so by Lemma 2.5(a),

So(KL)™0. Hence LE£1F, whence <g|i..>,gn> £] as

required.

() Let GESX :-3ay HsG with HE S, G/H£g. Suppose K
is a field with So(KG)4=0; then by Lemma 2.3(d), So(KH)4:O0,

so HE 1?. Hence GE£ ig.£S 8-

© Let GE£ u?.$X, so that there is an ordinal p and an
ascending series

Gg 3GJ £ ... 5G4 i X+l N eee W Gp =G
such that Gg€ vg and GotHl /Gx £X for all X<p. Ne proceed by
induction on p. Suppose first that p i3 not a limit ordinal
then by induction G £S, so GE |[X s 8 by (¢). Now assume
that ~(>0) i3 a limit ordinal, and let H be a finitely
generated subgroup of G. Then H$ G for some a.<>, and by

induction GM"£3. Hence GE£i~S=S by (a)-

@ Let

| = {G : Lg.s(0) s S)
(where s(G) is the class of groups isomorphic to subgroups
of G). Then clearly sg=T and Lg.g <3. Let G£ Then

IF.s(G) G Lg.-su"g c Lg.t-sT = 1IF.if < S
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by (@). Hence 1T=£. Similarly,

L?.spT ¢ IP.psT = LP.p] c S

by (c¢), whence PT=T. We conclude that <P ,L>T=T.

Now >?sX=1IP.X ¢ 3, so X«T. Therefore
<P,1>x £ <p,1>T = |

In particular, Lg.<PJg>X9 3. Thus by (b), g-<P,L>g s g.

Theorem 17.3 1f g is the class of FC-groups, then

3.<P,L>3 ¢ 3

Proof In an FC-group the periodic elements form a locally
finite normal subgroup with abelian quotient group (Lemma
7.1). Hence 1?.B=u?.A, and the theorem follows from Lemmas

17.1 and 17.2(d).

/
We remarl-c that the class <P ,u>B contains, for
example, all radical (i.e. hyper-(locally nilpotent)) groups,

and all locally (FC-)soluble or (FC-)hypercentral groups.

Proposition 17.4 Let G=A*B be the free product of non-

trivial groups A and B. Then GEg.

Proof IT X is any field then by Lemma 9.16 KG is strongly
prime. Hence by Lemma 8.12, 30(XG) equals 0 or XG. The

latter case is impossible by Lemma 2.2, as G is infinite.

We now consider residually finite groups. 3y

definition, Fq ,=P.
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Proposition 17.5 Let K be a field of characteristic p "0,

and IT So(XG)4=0 then G£ P.

Proof By Lemma 14.6, the identity subgroup of G controls
So(XG), i.e. So(XG)= (30(KG)n K)KG. Thus So(XG) 0X4=0,
whence 1S So(KG), i.e. So(KG)=XG. Hence G is Ffinite by

Lemma 2.2.

Corollary 17.6 If p and q are distinct primes, then
RiIp.nRIg- s | -
It follows both from Proposition 17.4 and from

Corollary 17.6 that free groups lie in 3.

Corollary 17.7 Let G be a linear group over a field P.
@ If char ?=0 then GE|>.
() |If there is a field K with char K4char P and

30(XG) 40, then GE£ u].

Proof In case (@) suppose K is any field with So(KG) ~ 0.
In either case put gq=char K (@ 0). By Theorem 7.4,
G€ u(algl -P). If S1»***»Sn€G 31 04=*£So (KG) then
H = <gl,...»gn» suppd> e aB~_.P ,
and 3o (KH)4=0 by Lemma 2.5(a). Thus HE£ ? by Lemma 2.3(d)

and Proposition 17.5. Hence CGEi-?.
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13. Camiartininn group rings

We now consider semiartinian group rings. Firstly,
we note that Handelman and Lawrence [7] prove, for a field X
and a group G, that if KG is strongly prime then G has no
non-trivial locally finite normal subgroup; they conjecture
that the converse al3o hold3. [If this is correct then Con-
jecture 16.2 is a consequence. For suppose XG is semiartin-
ian, and let L(G) be the product of all locally finite normal
subgroups of G. Then L(G) is locally finite, and

L(G/L(G)) = 1

How k [g/L(G)] 1is an image of XG so has non-zero socle; if it
is strongly prime we conclude from Lemmas 8.12 and 2.2 that

G/L(G) 1is Ffinite, whence G i3 locally finite.

3emiartinian rings may be characterised in terms of
their transfinite ascending Loewy series. For a (rignt)

module V we define 3oq(V)=0, and

3ou+l (V)/30* (V) = SoiV/SoriVv)) ,
So. (V) = LJ 3of(V)
$<\ P

for any ordinal a and any limit ordinal X. Hots that the
orooerty 30" (V)-— 7/ is ©equivalent to in®© condition tnat T nas
an ascending series of type d.with. completely reducible
factors, 30 i3 inherited by submodules, images, and direct

3UIH3.
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Lemma 18.1 The ring R is semiartinian if and only if

So”iRp) =R for some ordinal ou

Proof If is an ordinal of cardinal larger than |r | then
3ol R) = So* (R), i.e. So(R/So™~(R))=0, so if R is semi-
artinian then R/30,x(R) =0. Conversely, if 3o0a(R)=R then
we see that 30™N(7) =Y first for free and then for arbitrary

right R-modules V. Thus if V40 then 3o(V) 40.

Lemma 18.2 Given a group G and a Ffield K, suppose for some
ordinal & that So~g”~) =g- Then either G is locally finite

or So”CKG™) = IG.

Proof Suppose that G is not locally finite, so that there
exi3t g,»...>gn£G such that H=<g1l ,on > 1is infinite.
The obvious map

<? : XGkg. - © («1-1)1®
has kernel r~6(fgl1-1,...>gn~1} = rgff@G™ (by Lemma 1.1).
If 04="€rKG(Gh) we Ffind (as in Lemma 2.2) that supp ™~ 2H,
a contradiction. Hence ™ is a monomorphism. -or each i,

gjfeg, so 3ofi((g+-1)KG)= (g+-1)KG. It Ffollows that

30N (KG™Ng ) = KG.

Lemma 13.3 Let K be a field and H a normal subgroup of a
group G.

(@ IfV is a right KH-module, a i3 an ordinal, and
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S0.i1VG)=VG, then So« (V)= V.

(b) If EG is semiartinian then so is EH.

Proof (@) We show by induction that for all ordinals u,
SoN(VG) "Son. (V)G : the desired result is an immediate conseq-
uence. The case oi=1 is Lemma 2.3(d), and ifm is a limit
ordinal the proof is clear. Suppose that ot is not a limit
ordinal, and that Soct» (MG)<So”~(V)G. Then

(So* (VG) + So(t_1(V)G)/ So(t_1(V)G
is an image of So®\G)/So~ 1(VG), and is therefore completely

reducible. Thus

(So6I(VG ) + Sodt_1(V)G)/Soet 1(V)G < So0~/S0~V)O0)
= So((V/Soai_1(V))G)
30(V/30a{ 1(V)) |6 by 2.3(d)
= (Sost(V)/So™_1(V)) 6
= SoBI(V)G/Soot 1(V)G ,
and So*(VG)s So*.(V)G as required.
®) This follows from part (a) and Lemma 18.1.

We can now prove some special cases of Conjecture

16.2, if we impose two rather stringent conditions on K.

Theorem 18. A Let G be a group and K an a],gebraically closed
field with |K|> |G]. Suppose that KG is semiartinian, and

that at least one of the following conditions holds:
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(@ char K=0; or

() G is periodic; or

(©) G is finitely generated and has no proper subgroup
of finite index.

Then G is finite.

Proof Let be the least ordinal such that Sooi(KG)=XG
(see Lemma 18.1). Since 1lf KG, x is not a limit ordinal.
V/e proceed by induction on tl. If &= 1 then K—G is com-

pletely reducible, so G is finite by Lemma 2.2.

Thus suupose &t>1, and let T=So .(KG). How KG/T

is completely reducible: say
KG/T = V1® ... ® Vr ,

where the are irreducible right KG- (and KG/T-) modules,
and r 13 finite since 1£ KG. Since KG/T is semisimple
artinian, Vz is finite-dimensional over its endomorphism
ring for each i. By Lemma 9.17, since | |>]g |, each
is algebraic over K; but K is algebraically closed, 30

E.=K. Now G/CG(Vi) act3 faithfully by right multiplication

on the finite-dimensional K-space so 13 linear over K.

r
Let H :Cé(KG/T): _C)1 Cr(V.). Then G/H embeds in the
1=

direct product of the groups G/Cq (V\\), 30 is al30 linear
over K. In case (@), sinc9 3o(K|_G/HI )= So(KG/gH) 0, G/H is

locally finite by Corollary 17.7(a). In case (b), G/H is
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locally finite by Theorem 7.5. In case (c), since G/H is
finitely generated, G/H 13 (almost) residually finite by
Theorem 7.4(b); thus H=G since G has no proper subgroup of

finite index.

Since H acts trivially on KG/T we have
TG s T = 3ooC1KGE ,
whence So~(hG) =hG. By Lemma 18.3(a)., So ,j(lj)=h. Then
by Lemma 18.2, either H is locally finite, or 30”_1(EH) = KH.
In the latter case H i3 actually finite, by induction on
(Note that H satisfies the same hypotheses S3 G: KH is semi-
artinian by Lemma 18.3(b); in case (c) we have already seen

that H=G.)

Thus in any case both H and G/H are locally finite,
so G is too. If k i3 the prime field of K and A is any
infinite periodic abelian group with char k"MA), then
|kK(A)HK: K] = |[k(A) :K|] = oo, since K is algebraically closed.

Hence it follows from Theorem 12.2 that G is finite.
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