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SUMMARY

The availability of data sets with large numbers of variables is rapidly increasing. The effec-
tive application of Bayesian variable selection methods for regression with these data sets has
proved difficult since available Markov chain Monte Carlo methods do not perform well in typ-
ical problem sizes of interest. The current paper proposes new adaptive Markov chain Monte
Carlo algorithms to address this shortcoming. The adaptive design of these algorithms exploits
the observation that in large p small n settings, the majority of the p variables will be approx-
imately uncorrelated a posteriori. The algorithms adaptively build suitable non-local proposals
that result in moves with squared jumping distance significantly larger than standard methods.
Their performance is studied empirically in high-dimensional problems and speedups of up to 4
orders of magnitude are observed.

Some key words: variable selection; spike-and-slab priors; high-dimensional data; large p, small n problems; linear
regression: expected squared jumping distance; optimal scaling

1. INTRODUCTION

The availability of large data sets has led to an increasing interest in variable selection methods
applied to regression models with many potential variables but few observations, so-called large
p, small n problems. Frequentist approaches have mainly concentrated on point estimates under
assumptions of sparsity using penalized maximum likelihood procedures (Hastie et al., 2015).
Bayesian approaches to variable selection are an attractive and natural alternative and lead to a
posterior distribution on all possible models which can address model uncertainty for variable
selection and prediction. A growing literature provides a theoretical basis for good posterior
properties in large p problems (see e.g. Castillo et al., 2015; Johnson and Rossell, 2012).

The posterior probabilities of all possible models can usually only be calculated or approxi-
mated if p is smaller than 30. If p is larger, Markov chain Monte Carlo methods are typically used
to sample from the posterior distribution (George and McCulloch, 1997; O’Hara and Sillanpéai,
2009; Clyde et al., 2011). Garcia-Donato and Martinez-Beneito (2013) discuss the benefits of
such methods. The most widely used Markov chain Monte Carlo algorithm in this context is the
Metropolis-Hastings sampler where new models are proposed using add-delete-swap samplers
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(Brown et al., 1998; Chipman et al., 2001). For example, this approach is used by Nikooienejad
et al. (2016) in a binary regression model with a non-local prior for the regression coefficients
on a data set with 7129 genes. Some supporting theoretical understanding of convergence is
available for the add-delete-swap samplers, e.g. conditions for rapid mixing in linear regression
model have been derived by Yang et al. (2016). Others have considered more targeted moves in
model space. For example, Titsias and Yau (2017) introduce the Hamming ball sampler which
more carefully selects the proposed model in a Metropolis-Hastings sampler (in a similar way to
shotgun variable selection, Hans et al., 2007) and Schifer and Chopin (2013) develop a sequen-
tial Monte Carlo method that uses a sequence of annealed posteriors. Several authors use more
general shrinkage priors and develop suitable MCMC algorithms for high-dimensional problems
(see e.g. Bhattacharya et al., 2016). Nonlocal priors (Johnson and Rossell, 2012) are adopted in
Shin et al. (2018), who use screening for high dimensions. Zanella and Roberts (2019) combine
Markov chain Monte Carlo and importance sampling ideas in their tempered Gibbs sampler.

The challenge of performing Markov chain Monte Carlo for Bayesian variable selection in
high dimensions has lead to several developments sacrificing exact posterior exploration. For
example, Liang et al. (2013) used the stochastic approximation Monte Carlo algorithm (Liang
etal., 2007) to efficiently explore model space. In another direction, variable selection can be per-
formed as a post-processing step after fitting a model including all variables (see e.g. Bondell and
Reich, 2012; Hahn and Carvalho, 2015). Several authors develop algorithms that focus on high
posterior probability models. In particular Rockova and George (2014) propose a deterministic
expectation-maximisation based algorithm for identifying posterior modes, while Papaspiliopou-
los and Rossell (2017) develop an exact deterministic algorithm to find the most probable model
of any given size in block-diagonal design models.

Alternatively, Markov chain Monte Carlo methods for variable selection can be tailored to the
data to allow faster convergence and mixing using adaptive ideas (see e.g. Green et al., 2015, §
2.4, and references therein). Several strategies have been developed in the literature for both the
Metropolis-type algorithms (Lamnisos et al., 2013; Ji and Schmidler, 2013) and Gibbs samplers
(Nott and Kohn, 2005; Richardson et al., 2010). Our proposal is a Metropolis-Hastings kernel that
learns the relative importance of the variables, unlike previous work (see e.g. Ji and Schmidler,
2013; Lamnisos et al., 2013). A similar strategy is used by Zanella and Roberts (2019) in a Gibbs
sampling framework. This leads to substantially more efficient algorithms than commonly-used
methods in high-dimensional settings and for which the computational cost of one step scales
linearly with p. The algorithms adaptively build suitable non-local Metropolis-Hastings type
proposals that result in moves with expected squared jumping distance (Gelman et al., 1996)
significantly larger than standard methods. In idealized examples the limiting versions of our
adaptive algorithms converge in O(1) and result in super-efficient sampling. They outperform
independent sampling in terms of the expected squared jump distance and also in the sense of
the central limit theorem asymptotic variance. This is in contrast to the behaviour of optimal
local random walk Metropolis algorithms that on analogous idealized targets need at least O(p)
samples to converge (Roberts et al., 1997). The performance of our algorithms is studied em-
pirically in realistic high-dimensional problems for both synthetic and real data. In particular, in
§ 4-1, for a well-studied synthetic data example, speedups of up to 4 orders of magnitude are
observed compared to standard algorithms. Moreover, in § 4.2, we show the efficiency of the
method in the presence of multicollinearity on a real data example with p = 100 variables, and
in § 4-3, we present real data gene expression examples with p = 22 576 and with p = 79 748,
and reliably estimate the posterior inclusion probabilities for all variables. The Supplementary
Material has results from three data sets with moderate p and high correlations used in Schifer
and Chopin (2013), indicating that our algorithms outperform most other methods in the liter-
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ature. The algorithms have the potential to be parallelized across the multiple chains and to be
applied to non-Gaussian models or more general prior structures.

2. DESIGN OF THE ADAPTIVE SAMPLERS
2-1.  The Setting
Our approach is applicable to general regression settings but we will focus on normal linear re-
gression models. This will allow for clean efficiency comparisons independent of model-specific
sampling details (e.g. of a reversible jump implementation). We define v = (y1,...,7,) € I' =
{0,1}? to be a vector of indicator variables with ; = 1 if the i-th variable is included in the
model and p, = Z?=1 ~vj. We consider the model specification

y=al,+X,8,+e,  e~N(0,0°L,) (1)

where y is an (n x 1)-dimensional vector of responses, a, represents a g-dimensional column
vector with entries a, and X, is a (n X py)-dimensional data matrix formed using the included
variables. We consider Bayesian variable selection and, for clarity of exposition and validity of
comparisons, we will assume the commonly used prior structure

p(OZ?O-QvB’ya’Y) (8 0_2 p(B'Y | 02”7) p(r}/) (2)

with 8, | 02,7 ~ N(0,02V,), and p(vy) = hP7(1 — h)P~P+. The hyperparameter 0 < h < 1 is
the prior probability that a particular variable is included in the model and V/, is often chosen as
proportional to (XVT X.)~1, a g-prior, or to the identity matrix. In both cases, the marginal likeli-
hood p(y | ) can be calculated analytically. The prior can be further extended with hyperpriors,
for example, adopting h ~ Be(a, b).

We will consider sampling from the target distribution () = p(7|y) using a non-symmetric
Metropolis-Hastings kernel. Let the probability of proposing to move from model 7y to 7/ be

p
(7)) = 45> 7)) 3)
j=1

where n= (A, D) = (Al, .. .,Ap,Dl, .. .,Dp), QT],j(rYj = 0,’7;- = 1) = Aj and qrm'(’)/j =
l,fyé- = 0) = D;. The proposal can be quickly sampled, the parametrisation allows optimisa-
tion of the expected squared jumping distance, and multiple variables can be added to or deleted
from the model in one iteration. The proposed model is accepted using the standard Metropolis-
Hastings acceptance probability

Wp(v’)qn(v’m)) _ @

an(7,7) = min (1’ 7 (Y)an(7:7')

2-2.  In Search of Lost Mixing Time: Optimising the Sampler

The transition kernel in (3) is highly parameterised with 2p parameters and these will be tuned
using adaptive Markov chain Monte Carlo methods (see e.g. Andrieu and Thoms, 2008; Roberts
and Rosenthal, 2009; Green et al., 2015). These methods allow the tuning of parameters on
the fly to improve mixing using some computationally accessible performance criterion whilst
maintaining the ergodicity of the chain. Suppose that 1, is a p-dimensional probability density
function which has the form p, = H§:1 f- A commonly used result is that the optimal scale
of a random walk proposal for yi;, leads to a mean acceptance rate of 0.234 as p — oo for some
smooth enough f. The underlying analysis also implies that the optimised random walk Metropo-
lis will converge to stationarity in O(p) steps. This is a useful guide even in moderate dimensions
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and well beyond the restrictive independent, identically distributed product form assumption of
Roberts et al. (1997). Lamnisos et al. (2013) show that this rule can be effectively used to tune
a Metropolis-Hastings sampler for Bayesian variable selection. However, other results suggest
that other optimal scaling rules could work well in Bayesian variable selection problems. Firstly,
Neal et al. (2012) established, under additional regularity conditions, that if f is discontinuous,
the optimal mean acceptance rate for a Metropolis-Hastings random walk is e =2 ~ 0.1353 and
the chain mixes in O(p?) steps, an order of magnitude slower than with smooth target densities
f. Rather surprisingly, Lee and Neal (2018) show that the optimally tuned independence sam-
pler in this settings recovers the O(p) mixing and acceptance rate of 0.234 without any additional
smoothness conditions. Secondly, Roberts (1998) considered optimal scaling of the random walk
Metropolis-Hastings algorithm on I' = {0, 1}? for the product measures

L (Y1, - yp) = sPT (1 — )PP, vy=M,..,p) e, 0<s<.

If s is close to 1/2, the optimal O(p) mixing rate occurs as p tends to infinity if the mean accep-
tance rate is 0.234. If s — 0 as p — oo, the numerical results of § 3 in Roberts (1998) indicate
that the optimally tuned random walk Metropolis proposes to change two «y;’s at a time but that
the acceptance rate deteriorates to zero resulting in the chain not moving. This suggests the actual
mixing in this regime is slower than the O(p) observed for smooth continuous densities.

In Bayesian variable selection, it is natural to assume that the variables differ in posterior
inclusion probabilities and so we consider target densities that have the form

p
=[Impa—m)'s,  yer 5)

where 0 < 7; < 1forj =1,...,p. Consider the non-symmetric Metropolis-Hastings algorithm
with the product form proposal ¢, (y,7’) given by (3) targeting the posterior distribution given
by (5). Note that (-, -) = 1 for any choice of = (4, D) satistying

A .

Dij' =1 7—T]7rj’ for every j. (6)
To discuss optimal choices of 77, we consider several commonly used criteria for Markov chains
with stationary distribution 7 and transition kernel P on a finite discrete state space I". The mix-
ing time of a Markov chain (Roberts and Rosenthal, 2004) is p := min{¢ : max,er || P*(7,-) —
7(-)||lrv < 1/2} where || - |7 is the total variational norm. If I' = {0, 1}, it is natural to de-

fine the expected squared jumping distance (Gelman et al., 1996) as F; ( ?:1 | ,YJ(O) _ 7}1)‘2)

where v(?) and v(!) are two consecutive values in a Markov chain trajectory, which is the average
number of variables changed in one iteration. Suppose that the Markov chain is ergodic, then, for
any function f : ' — R, % Sl (v ™) B N(ELf, 02, ), where the constant J?D . depends
on the transition kernel P and function f. Consider transition kernels P; and Ps. If o2 S < g2 Po.f
for every f, then P; dominates P in Peskun ordering (Peskun, 1973). If P; dominates all other
kernels from a given class, then P is optimal in this class with respect to Peskun ordering. Apart
from toy examples, Peskun ordering can be rarely established without further restrictions. Hence,
for the variable selection problem, where posterior inclusion probabilities are often of interest,
we consider Peskun ordering for the class IL(I") of linear combinations of univariate functions,

p
L(T) =3 f:T>R:f(y) =ao+ > a;jfij(y) ¢ (7)
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We consider two proposals which satisfy (6). The independent proposal for which A; =1 —
D; = 7; and the informed proposal for which A; = min (1 L ) and D; = min (1, 1:” )
J

? 11—

The following proposition shows that the informed proposal has more desirable properties.

PROPOSITION 1. Consider the class of Metropolis-Hastings algorithms with target distribu-
tion given by (5) and proposal g,(7,~") given by (3) with the independent or informed proposal.
Let Vary f be the stationary variance of f under m,(v) and 79) := {1 — 7, 7;}. Then,

(i) the independent proposal leads to
(a) independent sampling and optimal mixing time p = 1;
(b) the expected squared jumping distance is E,(A?) = 2 Z§:1 (1 —m5);
(c) the asymptotic variances is O'%J =Varyf for arbitrary f and U%J =Var,f =

?:1 a?Varﬂ(j)fj for f e L(T);
(ii) the informed proposal leads to
(a) the expected squared jumping distance is FEr(A?) = 221;:1 min(1 — 7, 7;), which is
maximal;
(b) the asymptotic variance is GIQJ’f = 25:1 {2max(1 — m;,m;) — 1} a?Varﬂmfj for f €
IL(T") and it is optimal with respect to the Peskun ordering for the class of linear func-
tions IL(T") defined in (7).

Remark 1. The differences of the expected squared jumping distance and asymptotic variance
for the two proposals is largest when 7; is close to 1/2.

Remark 2. In discrete spaces, Schifer and Chopin (2013) argue that the mutation rate

an = /H(*y #) an(7,7") @y (v. ) () dv' dry,

which excludes moves which do not change the model, is more appropriate than average accep-

tance rate. The mutation rate is apy = 1 — ?:1 {(1 — 7Tj)2 + 77?} with independent sampling
andisay =1 — H?:l |27; — 1| with the informed proposal. Therefore, the informed proposal

always leads to a higher mutation rate.

Remark 3. Zanella (2019) discusses a framework for designing informed proposals in discrete
spaces and discuss optimal choices under Peskun ordering.

These results suggest that the informed proposal should be preferred to the independent
proposal when designing a Metropolis-Hastings sampler for idealised posteriors of the form
in (5). In practice, the posterior distribution will not have a product form but can anything
be said about its form when p is large? The following result sheds some light on this issue.
We define BF;(_;) to be the Bayes factor of including the j-th variable given the values of
Y—j = (V1,1 Yj—1,Vj+1, - - -, Vp) and denote by -y the vector v without ~; and ;.

_ BF;(m=1) : - A _
PROPOSITION 2. Let a = BF (00" If (i) a—1 or (ii) a - A < oo and BF;(y, =

0,70)h — 0 then p(y; = 1|y = 1,7%) — p(v; = 1|k = 0,70).

This result gives condition under which «y; and -, are approximately independent. Condition
(i1) is interesting in large p settings: 7; and -y, are approximately independent if p is large, and
so h is small, and BF;(vy; = 0,7) is not large, i.e. the evidence in favour of including ~; is
not large. This will be the case for all variables apart from the most important. Although this
result provides some reassurance, there will be some posterior correlation in many problems and
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the random walk proposal may propose to change too many variables leading to low acceptance
rates. This can be addressed by using a scaled proposal of the form

A; = (jmin <1,1ijﬂ_'>, D; = (jmin (1,1'%). (8)

J Ty

The family of these proposals for (; € [0, 1] form a line segment for (A;, D;) between (0, 0) and
(min (1, %) , min (1, 1;7)), which is illustrated in Figure 1. The independent proposal
J J

corresponds to the point on this line where (; = max(m;,1 — ;).

1 P

0.8

0.6
a
0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

A
J

Fig. 1. The solid black segment shows maps pairs (A;, D;)
corresponding to 7 = 1/3 and ¢; € [0, 1] in (8). The inde-
pendent proposal (i), marked with a triangle, is a shrunk
version of the informed proposal (ii), marked with a bullet.

In the next section, we devise adaptive MCMC algorithms to tune proposals of the form (3) so
that A;’s and D;’s lie approximately on this line. Larger values of (; tend to lead to larger jumps
whereas smaller values of (; tend to increased acceptance. These algorithms aim to find a point
which balances this trade-off. We define two strategies for adapting n: Exploratory Individual
Adaptation and Adaptively Scaled Individual Adaptation.

With both forms of adaptation, we run independent parallel chains which share the same pro-
posal parameters of the proposal and refer to this as multiple chain acceleration. Craiu et al.
(2009) showed empirically that running multiple independent Markov chains with the same
adaptive parameters improves the rate of convergence of adaptive algorithms towards their tar-
get acceptance rate in the context of the classical adaptive Metropolis algorithm of Haario et al.
(2001) (see also Bornn et al. 2013). At this point, it is helpful to define some notation. Let
n® = (A® D®) and () be the values of 1 and ~ at the start of the i-th iteration, and 7' be
the subsequently proposed value. Let a; = a, ;) ('y(i), ~') be the acceptance probability at the i-th
iteration. We define for j = 1, ..., p,

A _ ity £ and =0 ) _ [ 1ity) #9 and 5 =1
J 0 otherwise ’ J 0 otherwise

and the map logit, : (¢,1 — €) — Rby logit,(z) = log(x — €¢) —log(1 — 2z —¢), where 0 < ¢ <
1/2. This reduces to the usual logit transform if € = 0.

2-3.  Remembrance of Things Past: Exploratory Individual Adaptation

The first adaptive strategy is a general purpose method that we term Exploratory Individual
Adaptation. It aims to find pairs (A;, D;) on the line segment defined by (6) which lead to
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good mixing. Proposals with larger values of A; and D; will tend to propose more changes to
the included variables but will also tend to reduce the average acceptance probability or mutation
rate. The method introduces two tuning parameter 77, and 7y;. There are three types of updates for
A® and D which move towards the correct ratio A;/Dj and then along the segment, where the

slope of the segment depends on 7;. Unless otherwise stated, A;Hl) = Ag.i) and D](.Hl) = Dj(.i):
1. Both the expansion step and the shrinkage step change Agiﬂ) and D](Hl) for j in

WAFi) and 7D(i) to adjust the average squared jumping distance whilst maintaining that
ASZH) / DJ(.7’+1) ~ A§Z)/ Dj@. The expansion step is used if a promising move is proposed,
when a; > 77, and sets Aéiﬂ) and D(iH) larger than A(i) and Dj(i) respectively. Similarly,
the shrinkage step is used if an unpromlsmg move has been proposed, when a; < 77, and

AgZH) nd D(H ) are set smaller than A( " and D(l)
2. The correctlon step aims to increase the average acceptance rate by correcting the ratio be-

tween A’s and D’s. If 7, < a; < 717, we set A(ZH) > A( 9 and D(Hl) D(l if 7 b _ 4

and AEZH) < Agz) and D;Hl) > D§ D if 7’4(1) 1.
The following updates achieve these properties
togit, AV = togit, AL + 5 x [7/Vdi(rur) + 7 Vdi(rr) - {1 —di(r)}], ©
logiteD](-iJr ) — = logit, D + ¢; X [’yj ()d (tr) + v Al )d (1) — {1 —d;( U)}} (10)

forj =1...,pwhered;(7) =1(a; > 7)and ¢; = O(i~*) for some constant 1/2 < A < 1. The
gradient fields of these updates are shown in the Supplementary Material. The transformation im-

plies that € < A( D <1l—cande< D() < 1 — € and we assume that 0 < e < 1/2. It also im-
plies dlmlmshmg adaptation since the derivative of the inverse logit is bounded, see Lemma 2.
Based on several simulation studies, we suggest to take 77, = 0.01 and 7y = 0.1. As discussed
in § 2.2, targeting a low acceptance rate is often beneficial in irregular cases, so we expect this
choice to be robust in real data applications. In all our simulations with this parameter setting,
the resulting mean acceptance rate was between 0.15 and 0.35, i.e. in the high efficiency re-
gion identified in Roberts et al. (1997). We also suggest the initial choice of parameters such
that Ag.l) / D](.l) ~ h/(1 — h) as this summarises the prior information on 7;/(1 — 7;), and in
particular D](.l) = 1 and A;l) = h often works well. The parameter e controls the minimum and
maximum values of A; and D;. In the large p setting, A; ~ € for unimportant variables and the
expected number of those unimportant variables proposed to be included at each iteration will be
approximately pe (since the number of excluded, unimportant variables will be close to p). This
expected value can be controlled by choosing ¢ = 0.1/p. The exploratory individual adaptation

algorithm is described in Algorithm 1 and we indicate its transition kernel at time 7 as PE(I[)*

Algorithm 1. Exploratory Individual Adaptation (EIA)
fori=1t0i=M
sample v ~ g, (v?,+) and U ~ U(0,1);
if U<a,@ (v%),4/) then 'y("fl) =1/, else v+ .= 4()
update ACTD using (9) and DUFD using (10)
endfor
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2-4.  Remembrance of Things Past: Adaptively Scaled Individual Adaptation

Algorithm 1 learns two parameters Ay) and DJ(.Z) for each variable and, we shall see, can
slowly converge to optimal values if p is large. Alternatively, we could learn 71, ..., 7, from
the chain to approximate the slope of the line defined by (6) and use the proposal (8) with the
same scale parameter for all variables. We term this approach the Adaptively Scaled Individual
Adaptation proposal. In particular, we use

AW = ¢ min {1, ey (1 — wj()>} and DV = ¢ min {1, (1 — wj()) /fr]@} Y
for j=1,...,p where 0 < (9 < 1 is a tuning parameter and fr](-z) is a Rao-Blackwellised es-
timate of the posterior inclusion probability of variable j at the :-th iteration. Like Ghosh and
Clyde (2011), we work with the Rao-Blackwellised estimate conditional on the model, marginal-
izing over «, 3, and o2, in contrast to Guan and Stephens (2011) who condition on the model
parameters. We assume that V, = g}, , where I, is the ¢ X g identity matrix. After N posterior

(V) the Rao-Blackwellised estimate of ; = p(7; = 1|y) is

P& APBE (/)

~ —J

TN (k) i (k %
NS a4 9B (1)

samples, v, ...~

12)

(k)
(k) _ . . 7 (k) _ #vlj+1+a
where hj = h if h is fixed or hj = W

0 of -
(0 le),FZ(ZqTZw%-Av) tand A = yty —y" Z,FZ7y. 1f ; = 0,
Dy Ty

if h ~ Be(a,b). Let Z, =[1, X,]|, A, =

—n/2
ALyl —y 2, F 7 )2 7

-1/2 _
BFJ(’Y_J) :dj g 1/2 J

A

with dj- = x]ij +g71— (x]TZV)F(ZWTJ:j). If v; = 1, we define z; to be the ordered position of
the included variables (z; = 1 if j is the first included variable, etc.), then

/ A —n/2
—1/2
BFj(y-y) =d; "g7'/? { }

’ A= dj(yT 2y F sy41)?

where dj = 1/F.;41,2;+1. These results allow the contribution to the Rao-Blackwellised esti-
mates for all values of j to be calculated in O(p) operations at each iteration if the values of
F and A, which are needed for calculating the marginal likelihood, are stored. Derivations are
provided in the Supplementary Material. The value of ¢ (@) js updated using

logit ¢+ = logit ¢ + ¢i(a; — 7), (13)

where 7 is a targeted acceptance rate. We use € = 0.1/p as in Algorithm 1. We shall see in
Lemma 2 that adaptively scaled individual adaptation also satisfies diminishing adaptation by
verifying that the Rao-Blackwellised estimate in (12) evolves at the rate 1/7 and reiterating the ar-
gument about inverse logit derivatives. To avoid proposing to change no variable with high prob-
ability, we set (0D = 1/AGHD if COHD AL+ < 1 where AGHD =2 Py min(w§l+1), 1-—
W§z+1)). This ensures that the algorithm will propose to change at least one variable with high
probability. The adaptively scaled individual adaptation algorithm is described in Algorithm 2
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and we indicate its transition kernel at time ¢ as P;*(ZS)I. We use x = 0.001 to avoid the estimated
probabilities becoming very small.

Algorithm 2. Adaptively Scaled Individual Adaptation (ASI)
fortr=1to1 =M
sample 7' ~ g, i) (v®,.) and U ~ U(0,1);
if U<a,nm (YD, ~") then 4+ := o/ else y(F1) = ()
Update frgiﬂ), . ,fr,(,iﬂ) as in (12) and set ﬁj(-iﬂ) =K+ (1—2k) frj(-iﬂ)
Update (Y as in (13)

Calculate AT = ((+D) min {1, 7y (1 - fr](.””)} forj=1,....p
Calculate DJQH) = ¢+ min {1, (1 - ﬁj(Hl)) /7"r§i+1)} forj=1,...,p

endfor

3. ERGODICITY OF THE ALGORITHMS

Since adaptive Markov chain Monte Carlo algorithms violate the Markov condition, the stan-
dard and well developed Markov chain theory can not be used to establish ergodicity and we
need to derive appropriate results for our algorithms. We verify validity of our algorithms by es-
tablishing conditions introduced in Roberts and Rosenthal (2007), namely simultaneous uniform
ergodicity and diminishing adaptation.

The target posterior specified in § 2-1 on the model space I is

mp(y) = mp(v | ) o< p(yly) () (14)

with p(y|v) available analytically, and the vector of adaptive parameters at time i is
N =4O DY e [e1—g®=A, with 0<e<1/2, (15)

with the update strategies in Algorithm 1 or 2. P, (7, -) denotes the non-adaptive Markov kernel
corresponding to a fixed choice of 7. Under the dynamics of either algorithm, for S C I' we have

Py(v,5) =P (v(i“) €s ‘ 710 = 5,9 =)
= a1, )an(v, )+ I € 8) D gy, ) {1 —an(v.7)}.  16)

v'eS ~v'el’

In the case of multiple chain acceleration, where L copies of the chain are run, the model state
space becomes the product space and the current state of the algorithm at time i is Y&~ (@) =
(vb @ 4k (i)) € I'". The single chain version corresponds to L = 1 and all results apply.
To assess ergodicity, we need to define the distribution of the adaptive algorithm at time ¢, and
the associated total variation distance: for the I-th copy of the chain {~"(®) }°yand S C T define

£h® {(’yl,n),S} =P <’yl’(i) €S ’ Ab0) = b p(0) = 77) , and

et i) = 120 {0k, = mOllre = s 140 {3, ), 8} - my(S)]
Serl’
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We show that all the considered algorithms are ergodic and satisfy a strong law of large numbers
(SLLN), i.e. for any starting point v®* € I'”" and any initial parameter value € A, we have:

ergodicity:  lim T'(+%,n,i) = 0, foranyl=1,...,L; and (17)
11— 00

L k
1N 1,G)y k=00 :
SLLN: 7 ; Z ; f(y"") — mp(f) almostsurely, for any f : I' — R.(18)

To this end we first establish the following lemmas.

LEMMA 1 (SIMULTANEOUS UNIFORM ERGODICITY). The family of Markov chains defined
by transition kernels P, in (16), targeting mp(y) in (14), is simultaneously uniformly ergodic for
any € > 0 in (15), and so is the multiple chain acceleration version. That is, for any § > 0 there
exists N = N(0,€) € N, such that for any starting point v** € T'V and any parameter value
n e A

15 (v#F, ) = 7P (v < 6.
LEMMA 2 (DIMINISHING ADAPTATION). Recall the constant 1/2 < X\ <1 defining the
adaptation rate ¢; = O(i_)‘) in (9), (10), or (13), and the parameter x. > 0 in Algorithm 2. Then

both algorithms: exploratory individual adaptation and adaptively scaled individual adaptation
satisfy diminishing adaptation. More precisely, their transition kernels satisfy

SUIF) HP7;<1'+1>(% ) - ;(i> (v, )l < Cii}\v for some C' < o0, (19)
~E

where e stands for EIA or ASI.
Simultaneous uniform ergodicity together with diminishing adaptation leads to the following

THEOREM 1 (ERGODICITY AND SLLN). Consider the target y(y) of (14), the constants
1/2 < X <1 and € > 0 defining respectively the adaptation rate ¢; = O(i~*) and region in
(9), (10), or (13), and the parameter k > 0 in Algorithm 2. Then ergodicity (17) and the strong
law of large numbers (18) hold for each of the algorithms: exploratory individual adaptation,
adaptively scaled individual adaptation and their multiple chain acceleration versions.

Remark 4. Lemma 2 and Theorem 1 remain true with any A > 0, however A > 1 results in
finite adaptation (see e.g. Roberts and Rosenthal, 2007), and A < 1/2 is rarely used in practice
for finite sample stability concerns.

4. RESULTS
4-1.  Simulated Data
We consider the simulated data example of Yang et al. (2016). They assume that there are

n observations and p regressors and the data is generated from the model y = X 3* + ¢ where
e ~ N(0,0%I) for 2 = 1. The first 10 regression coefficients are non-zero and we use

2]
g =SNRy/ TP 3929 33 23 -23,0,...,007 c RP.
n

The i-th vector of regressors is generated as x; ~ N(0, £) where X, = pl =kl In our examples,

we use the value p = 0.6 which represents a relative large correlation between the regressors.
We are interested in the performance of the two adaptive algorithms relative to an add-delete-

swap algorithm. The adaptive algorithms do not lead to Markov chains and so the traditional
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estimator of the effective sample size based on autocorrelation is not applicable. We define the
ratio of the relative time-standardized effective sample size of algorithm A versus algorithm B
tobe rap = (ESSa/ta)/(ESSp/tp) where ESS 4 is the effective sample size for algorithm A.
This is estimated by making 200 runs of each algorithm and calculating 74 5 = (s%tg)/(s4ta),
where t 4 and ¢ are the median run-times and 3124 and 32B are the sample variances of the posterior
inclusion probabilities for algorithms A and B.

We use the prior in (2) with V, = 91 and h = 10/p, implying a prior mean model size of 10.
The posterior distribution changes substantially with the SNR and the size of the data set. All
ten true non-zero coefficients are given posterior inclusion probabilities greater than 0.9 in the
two high SNR scenarios (SNR=2 and SNR=3) for each value of n and p and no true non-zero
coefficients are given posterior inclusion probabilities greater than 0.2 in the low SNR scenario
(SNR=0.5) for each value of n and p. In the intermediate SNR scenario (SNR=1), the number
of true non-zero coefficients given posterior inclusion probabilities greater than 0.9 are 4 and 8
for p = 500 and 3 and O for p = 5000. Generally, the results are consistent with our intuition
that true non-zero regression coefficients should be detected with greater posterior probability
for larger SNR, larger value of n and smaller value of p.

Table 1 shows the median relative time-standardized effective sample sizes for the exploratory
individual adaptation and adaptively scaled individual adaptation algorithms with 5 or 25 multi-
ple chains for different combinations of n, p and SNR. The median is taken across the estimated
relative time-standardized effective sample sizes for all posterior inclusion probabilities.

Table 1. Simulated data: median values of 7 5 g for the posterior inclusion probabilities over
all variables where B is the add-delete-swap Metropolis-Hastings algorithm and A is the ex-
ploratory (EIA) or adaptively scaled individual adaptation (ASI) algorithm

5 chains 25 chains
SNR SNR
(n,p) 0.5 1 2 3 05 1 2 3
(500,500) EIA 49 1.8 5.5 5.1 1.2 1.5 2.4 2.3

ASI 1.7 213 31.8 75 20 36.0 427 12.6
(500,5000) EIA 8.7 22 718.0 815 7.1 29 22672 1472
ASI 299 1269 2053.1 22713 535 3533 123195 76123
(1000, 500) EIA 59 163 7.7 42 1.6 80.7 4.4 1.8
ASI 419 2.1 16.9 120 328 340 27.9 14.4
(1000, 5000) EIA 2.2 22 91672 113 5.6 2.5 15960.7  199.8
ASI 154 370 4423.1 30.8 549 534 115582 7364

The result show a wide variation in the relative performance of the adaptive algorithms and
the add-delete-swap algorithm. As is common in work on Bayesian variable selection, see e.g.
Zanella and Roberts (2019), each result uses a single data set and so the results have to be
interpreted in a holistic way. Clearly, the adaptively scaled individual adaptation algorithm out-
performs the exploratory individual adaptation algorithm for most settings with either 5 or 25
multiple chains. The performance of the exploratory individual adaptation and, especially, the
adaptive scaled individual adaptation algorithm with 25 chains is better than the corresponding
performance with 5 chains for most cases. Concentrating on results with the adaptively scaled
individual adaptation algorithm, the largest increase in performance compared to the Metropolis-
Hastings algorithm occurs with SNR=2. In this case, there are three or four orders of magnitude
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improvements when p = 5000 and several orders of magnitude improvements for other SNR
with p = 5000. In smaller problems with p = 500, there are still substantial improvements in
efficiency over the add-delete-swap Metropolis-Hastings sampler.

The superior performance of the adaptively scaled individual adaptation algorithm over the
exploratory individual adaptation algorithm is due to the substantially faster convergence of the
tuning parameters of the former algorithm to optimal values. Plotting posterior inclusion proba-
bilities against A and D at the end of a run shows that, in most cases, the values of A; are close
to the corresponding posterior inclusion probabilities for both algorithms. However, the values
of D; are mostly close to 1 for adaptively scaled individual adaptation but not for exploratory
individual adaptation. If D; is close to 1, then variable j is highly likely to be proposed to be
removed if included in the model. This is consistent with the idealized super-efficient setting (ii)
in Proposition 1 for 7; < 0.5 and leads to improved mixing rates for small 7; since it allows
for variable to be included more often in a fixed run length. This can be hard to learn through
exploratory individual adaptation since variables with low posterior inclusion probabilities will
be rarely included and so the algorithm learns D; slowly for those variables.

4.2, Behaviour of the exploratory individual adaptation algorithm on the Tecator data

The Tecator data contains 172 observations and 100 variables. They have been previously
analysed using Bayesian linear regression techniques by Griffin and Brown (2010), who give a
description of the data, and Lamnisos et al. (2013). The regressors show a high degree of multi-
collinearity and so this is a challenging example for Bayesian variable selection algorithms. The
prior used was (2) with V, = 1007 and i = 5/100. Even short runs of the exploratory individual
adaptation algorithm for this data, such as 5 multiple chains with 3000 burn in and 3000 recorded
iterations, taking about 5 seconds on a laptop, show consistent convergence across runs.

Our purpose was to study the adaptive behaviour of the exploratory individual adaptation
algorithm on this real data example, in particular to compare the idealized values of the A;’s and
D;’s with the values attained by the algorithm.

We use multiple chain acceleration with 50 multiple chains over the total of 6000 iterations.
The algorithm parameters were set to 77, = 0.01 and 77 = 0.1. The resulting mean acceptance
rate was approximately 0.2 indicating close to optimal efficiency. The average number of vari-
ables proposed to be changed in a single accepted proposal was 23, approximately twice the
average model size, meaning that in a typical move all of the current variables were deleted from
the model, and a set of completely fresh variables was proposed.

Figure 2(a) shows how the exploratory individual adaptation algorithm approximates set-
ting (ii) of Proposition 1, namely the super-efficient sampling from the idealized posterior (5).
Figure 2(b) illustrates how the attained values of A;’s somewhat overestimate the idealized val-
ues min{1, 7; /(1 — 7;)} of setting (ii) in Proposition 1. This indicates that the chosen parameter
values 77, = 0.01 and 77 = 0.1 of the algorithm overcompensates for dependence in the poste-
rior, which is not very pronounced for this dataset. To quantify the performance, we ran both
algorithms with adaptation in the burn-in only and calculated the effective sample size. With a
burn-in of 10 000 iterations and 30 000 draws, the effective sample per multiple chain was 4015
with exploratory individual adaptation and 6673 with adaptively scaled individual adaptation.
This is an impressive performance for both algorithms given the multicollinearity in the regres-
sors. The difference in performance can be explained by the speed of convergence to optimal
values for the proposal. To illustrate this, we re-ran the algorithms with the burn-in extended to
30 000 iterations: the effective sample per multiple chain was now 4503 with exploratory indi-
vidual adaptation but 6533 with adaptively scaled individual adaptation, indicating that the first
algorithm had caught up somewhat. As a comparison, the effective sample size was 1555 for
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add-delete-swap and 15039 for the Hamming ball sampler with a burnin of 10 000 iterations.
However, the Hamming ball sampler required 34 times the run time of the exploratory individual
adaptation sampler, rendering the latter nine times more efficient in terms of time-standardized
effective sample size.

This example and the previous one show that the simplified posterior (5) is a good fit with
many datasets and can indeed be used to guide and design algorithms.

1r .
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0.2 0.2} ./-.’ . ..-.
¥
. L
0 0.2 0.4 0.6 0.8 1 0 02 0.4 06 08 1
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(a) Limiting values of the (A, D;) pairs align (b) The attained values of A;’s overestimate
at the top ends of the segments of Figure 1, with the idealized values min{1, 13r } of set-
Dj’s close to 1, corresponding to the super- ting (ii) in Proposition 1, indicating low depen-
efficient setting (ii) of Proposition 1. dence in the posterior.

Fig. 2. Tecator data: the adaptive parameter n = (A, D) for
the exploratory individual adaptation algorithm.

4.3.  Performance on problems with very large p

Bondell and Reich (2012) described a variable selection problem with 22 576 variables and 60
observations on two inbred mouse populations. The covariates are gender and gene expression
measurements for 22 575 genes. Three physiological phenotypes are recorded, and used as the
response variable in the three data sets called PCRi,7 = 1, ..., 3. We use prior (2) with V., = gI
where g is given a half-Cauchy hyper-prior distribution and a hierarchical prior was used for ~y by
assuming that h ~ Be(1, %) which implies that the prior mean number of included variables is
5. We summarize the results using PCR1, while a more complete analysis of all PCR data is in the
Supplementary Material. Another data set, denoted SNP data, relates to genome-wide mapping
of a complex trait. The data are weight measurements for 993 outbred mice and 79 748 single
nucleotide polymorphisms (SNPs) recorded for each mouse. The testis weight is the response,
the body weight is a regressor which is always included in the model and variable selection
is performed on the 79 748 SNPs. The high dimensionality makes this a difficult problem and
Carbonetto et al. (2017) use a variational inference algorithm, varbvs, for these data. We have
used various prior specifications in (2), and present results for a half-Cauchy hyper-prior on g
and h = 5/p. Complete results for these data are also provided in the Supplementary Material.

For all datasets, the individual adaptation algorithms were run with 77, = 0.05 and 7y = 0.23,
and 7 = 0.234. The exploratory individual adaptation algorithm had a burn-in of 2 150 iterations
and 10 750 subsequent iterations and no thinning, and the adaptively scaled individual adaptation
had 500 burn-in and 2 500 recorded iterations and no thinning, which gave very similar run
times. Rao-Blackwellised updates of 70 were only calculated during the burn-in and posterior
inclusion probability for the j-th variable was estimated by the posterior mean of ;. In addition,

405

410

415

420

425

430



435

440

445

450

455

14 J. E. GRIFFIN, K. G. LATUSZYNSKI AND M. F. J. STEEL

we show results for the add-delete-swap algorithm and the weighted tempered Gibbs sampler of
Zanella and Roberts (2019), which were the most promising alternatives. Three independent runs
of all algorithms were executed to gauge the degree of agreement across runs. Using MATLAB
and an Intel i7 @ 3.60 GHz processor, each algorithm took about 25 minutes for the PCR data
and around 2.5 hours for the SNP data.

] ASI ] EIA ] ADS wTGS
05 * 105 05 05
&' ’
0 0k 0t “ 0
0 05 1 0 05 1 0 05 1 0 05 1
1 5 1 1 1
05 05 05 05
o* e
0 0 0 “ 0
0O 05 1 0 05 1 0 05 1 0 05 1

Fig. 3. PCR1 data: comparisons of posterior inclusion
probabilities from pairs of runs with random g and h using
adaptively scaled individual adaptation (ASI), exploratory
individual adaptation (EIA), add-delete-swap (ADS), and
weighted tempered Gibbs sampling (WTGS)

Figures 3 and 4 show the pairwise comparisons between the different runs for each data set.
The estimates from each independent chain for the adaptively scaled individual adaptation algo-
rithm are very similar and indicate that the sampler is able to accurately represent the posterior
distribution. The weighted tempered Gibbs algorithm performs equally well in the SNP data but
show worse performance on the PCR1 data set. The exploratory individual adaptation algorithm
does not seem to converge rapidly enough to effectively deal with these very high-dimensional
model spaces in the relatively modest running time allocated. Clearly, the add-delete-swap sam-
pler is not able to adequately characterise the posterior model distribution for the PCR data with
dramatically different results across runs but perform much better for the SNP data.
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Supplementary material available at Biometrika online includes proofs, derivations, details of
adaptive parallel tempering versions of the algorithms, using the approach of Miasojedow et al.
(2013), and further results. Code to run both algorithms is available from https://warwick.ac.
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Fig. 4. SNP data: comparisons of posterior inclusion prob-

abilities from pairs of runs with random ¢ and fixed h

using adaptively scaled individual adaptation (ASI), add-

delete-swap (ADS), and weighted tempered Gibbs sam-
pling (WTGS)
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