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computational models: property testing and data streaming. We present a novel framework closely18

linking these areas in the setting of general graphs in the context of constant-query complexity19

testing and constant-space streaming. Our main result is a generic transformation of a one-sided20

error property tester in the random-neighbor model with constant query complexity into a one-sided21
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1 Introduction34

We consider the fundamental question of understanding the relative power of two important35

computational models: property testing and data streaming. We present a novel framework36

closely linking these areas in the setting of general graphs in the context of constant-query37

complexity testing and constant-space streaming. We first provide a new analysis of constant-38

query property testers (in the random-neighbor model, see Definition 6) for general graphs39

and develop the framework of canonical testers for general graphs. Then, using the concept of40

canonical testers, we provide a generic transformation of a one-sided error property tester in41

the random-neighbor model with constant query complexity into a one-sided error property42

tester in the streaming model with constant space complexity.43
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16:2 Testable Properties in General Graphs and Random Order Streaming

Property testing. A fundamental task in the study of big networks/graphs is to44

efficiently analyze their structural properties. For example, we may want to know if a graph45

is well-connected, has many natural clusters, has many copies (instances) of some specific46

sub-structures, etc. Given that modern networks are large, often consisting of millions and47

billions of nodes (web graph, social networks, etc.), the task of analyzing their structure has48

become recently more and more challenging, and the running-time efficiency of this task49

is becoming of critical importance. The framework of property testing has been developed50

to address some of these challenges, aiming to trade the efficiency with the accuracy of the51

output, with the goal of achieving very fast algorithms.52

In (graph) property testing, one of the main challenges is to characterize properties that53

are testable with a constant number of queries in various computational models. Typically, a54

tester has query access to a graph (e.g., random vertices or neighbors of a vertex for graphs),55

and its goal is to determine if the graph satisfies a certain property (e.g., is well-clusterable)56

or is far from having such a property (e.g., is “far” from any graph being well-clusterable;57

see, e.g., [18, 19, 20, 39]). To be precise, we define testers as follows. Given a property Π,58

a tester for Π is a (possibly randomized) algorithm that is given a proximity parameter ε59

and oracle access to the input graph G. If G satisfies property Π, then the algorithm must60

accept with probability at least 2
3 . If G is ε-far from Π, then the algorithm must reject61

with probability at least 2
3 . If the algorithm is allowed to make an error in both cases, we62

say it is a two-sided error tester ; if, on the contrary, the algorithm always gives the correct63

answer when G satisfies the property, we say it is a one-sided error tester. Further details of64

the model depend on the data representation. In the main model considered in this paper,65

property testing for general graphs, we will consider the random neighbor oracle access to the66

input graph (cf. Definition 6), which allows to query a random neighbor of any given vertex1.67

In our model, we will say that G is ε-far from a property Π if any graph that satisfies Π68

differs from G on at least ε|E(G)| edges. To analyze the performance of a tester, we will69

measure its quality in term of its query complexity, which is the number of oracle queries it70

makes.71

In the past, a large body of research has focused on the analysis of various graph properties72

in different graph models, for example, leading to a precise characterization of all properties73

that can be tested with constant query complexity [1, 3] in the so-called dense model (graphs74

with Θ(n2) edges), and some partial results for bounded-degree graph models (see, e.g.,75

[5, 13, 17, 18, 20, 21, 35]). However, our understanding of the model of general graphs, graphs76

where each vertex can have arbitrary degree, is still rather limited. We have seen some major77

advances in testing graph properties for general graphs, including the results of Parnas and78

Ron [36], Kaufman et al. [28], Alon et al. [2], Czumaj et al. [11, 14] (see also the survey in79

[18, Chapter 10]). The main challenge of the study in the model of general graphs is a lack80

of good characterization of testable properties and of a good algorithmic toolbox for the81

problems in this model. Still, the importance of the general graph model and lack of major82

advances have been widely acknowledged in the property testing community. For example, it83

1 Our model is in contrast with the other two widely used property testing models for graphs with
arbitrarily large maximum degree: In the adjacency list model [36, 30], the algorithm can perform both
neighbor queries (i.e., for the i-th neighbor of any vertex v such that i ≤ deg(v)), and the degree queries
(i.e., for the degree deg(v) of any vertex v); In the general graph model, the algorithm is allowed to
perform vertex-pair queries (i.e., for the existence of an edge between any two vertex pair u, v), in
addition to neighbor and degree queries [28, 2, 18]. Still, we believe that the random neighbor oracle
model considered in this paper is the most natural model of computations in the property testing
framework in the context of very fast algorithms, especially those performing O(1) queries. We note
however, that our analysis can be generalized to other models of general graphs (cf. the full version).
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is recognized that the general graph model is “most relevant to computer science applications”84

and “designing testers in this model requires the development of algorithmic techniques that85

may be applicable also in other areas of algorithmic research” (see [18, Chapter 10.5.3]).86

Graph streaming algorithms. One important way of processing large graphs in modern87

data analysis is to design graph streaming algorithms (see, e.g., [31, 34]). A graph streaming88

algorithm obtains the input graph as a stream of edges in some order and its goal is to89

process and analyze the input stream in order to compute some basic characteristics about90

the input graph. For example, we want to know whether the graph is connected, or bipartite,91

or to know its approximate maximum matching size. Following the mainstream research in92

data streaming, we focus on algorithms that make only a single pass over the graph stream.93

Since in the single pass model every edge is seen only once, the central complexity measure94

of data streaming algorithms is the amount of space used to store information about the95

graph, with the golden standard in streaming being sublinear space. Unfortunately, it is96

known that for many natural graph problems sublinear space o(n) is not possible when the97

edges are arriving in a single pass and in arbitrary order, where n is the number of vertices98

of the input graph [23].99

There have been several approaches to cope with this inherent limitation of the streaming100

setting for graph problems. While some of the early works in graph streaming algorithms101

approached this challenge by allowing more than one pass over the input, the single-pass model102

is still considered to be the most interesting and the most natural scenario for streaming103

algorithms. The Ω(n) space lower bound (e.g., for testing if the graph is connected or104

estimating the size of transitive closure [23]) led to a significant number of papers designing105

semi-streaming algorithms, which are algorithms using O(n polylog(n)) space, so only slightly106

larger than linear in the number of vertices (see the survey [31]). This model leads to sublinear107

algorithms for dense graphs, where m, the number of edges, is ω(n polylog(n)). For the108

very natural setting of sparse graphs, semi-streaming algorithms are useless, since with109

O(n polylog(n)) space one can store the entire input graph (all arriving edges). Therefore,110

one can trivially solve any graph problem. Some works consider special classes of graphs.111

For example, it is known how to approximate the matching size within a constant factor112

in polylogarithmic space for planar graphs or graphs with bounded arboricity (see, e.g.,113

[15, 10, 32, 6]).114

Another, central approach to address the linear space lower bounds for graph streaming115

problems that recently received increasing attention is the random-order streaming model,116

where the edges arrive in random order, i.e., in the order of a uniformly random permutation117

of the edges (see, e.g., [8, 26, 29, 31, 33, 37, 4, 27, 9, 16]). The assumption about uniformly118

random or near-uniformly random ordering is very natural and can arise in many contexts.119

One might also use the random-order streaming model to justify the success of some heuristics120

in practice, even though there exists strong space lower bound for (the worst case of) the121

problem. Furthermore, some recent advances have shown that some problems that are hard for122

adversarial streams can be solved with small space in the random order model. For example,123

Konrad et al. [29] gave single-pass semi-streaming algorithms for maximum matching for124

bipartite and general graphs with approximation ratio strictly larger than 1
2 in the random125

order semi-streaming model. Kapralov et al. [26] gave a polylogarithmic approximation126

algorithm in polylogarithmic space for estimating the size of maximum matching of an127

unweighted graph in one pass over a random order stream. It is not known if such trade-offs128

between approximation ratios and space complexity are possible in the adversarial order129

model. Finally, [37] showed that in the random-order streaming model, even with constant130

space, one can approximate the number of connected components of the input graph within131

APPROX/RANDOM 2020



16:4 Testable Properties in General Graphs and Random Order Streaming

an additive error of εn, the size of a maximum independent set in planar graphs within a132

multiplicative factor of 1 + ε, and the weight of a minimum spanning tree of a connected133

input graph with small integer edge weights within a multiplicative factor of 1 + ε. However,134

for the first and third problems in adversarial order streams, there exist n1−O(ε) space lower135

bounds [24]. While these results demonstrate the strength of the random-order streaming136

model, Chakrabarti et al. [8] proved that Ω(n) space is needed for any single pass algorithm137

for graph connectivity in the random-order streaming model, almost matching the optimal138

Ω(n logn) space lower bound in the adversarial order model [40]. This poses a central open139

question in the area of graph streaming algorithms, of characterizing graph problems which140

can be solved with small, sublinear space in the random-order streaming model.141

The main goal of our paper in the context of streaming algorithms, is to address this142

task and to enlarge the class of graph problems known to be solvable with small space in the143

random order streaming model in a single pass. Our main focus is on the most challenging144

scenario: of achieving constant space2.145

1.1 Basic Definitions and Overview of Our Results146

In this paper, we extend the approach recently introduced by Monemizadeh et al. [33] (see147

also [37]) to demonstrate a close connection between streaming algorithms and property148

testing in the most general setting of general graphs. Monemizadeh et al. [33] show that for149

bounded-degree graphs, any graph property that is constant-query testable in the adjacency150

list model can be tested with constant space in a single pass in random order streams.151

In this paper, we show that similar results hold also for general graphs. To this end, we152

design a novel framework of canonical testers for all constant-query testers for general graphs153

and apply it to design a generic method of transforming any constant-query tester (with154

one-sided error) for graph properties into a constant-space tester (with one-sided error) in155

the random-order streaming model.156

We consider the random neighbor query oracle model for general graphs, which allows157

the algorithm to query a random neighbor of any specified vertex (cf. Definition 6).158

I Definition 1 (Property testers in the random-neighbor model). Let Π = (Πn)n∈N be a graph159

property, where Πn is a property of graph of n vertices. We say that Π is testable with query160

complexity q, if for every ε and n, there exists an algorithm (called tester) that makes at161

most q = q(n, ε) oracle queries, and with probability at least 2
3 , accepts any n-vertex graph162

satisfying Π, and rejects any n-vertex graph that is ε-far from satisfying Π. If q = q(ε) is163

a function independent of n, then we call Π constant-query testable. If the tester always164

accepts graphs that satisfy Π, we say that it has one-sided error. Otherwise, we say the tester165

has two-sided error.166

We notice that the definition above is generic and can be applied to any of the query oracle167

models (see e.g. [18]). However, since our main query oracle model is the random-neighbor168

model, only for that model we will use the terminology from Definition 1 without a direct169

reference to the query oracle model. We first present canonical testers in this model. In order170

to do so, we introduce a process called q-random BFS (q-RBFS) starting with any specified171

vertex v, i.e., a BFS of depth q that is restricted to visiting at most q random neighbors for172

2 Throughout the entire paper, we will count the size of the space in words (assuming that a single word
can store any single ID of a vertex or of an edge), i.e., space bounds have to be multiplied by O(log n)
to obtain the number of bits used. With this in mind, we use term constant space to denote space
required to store a constant number of words, or IDs, that is, O(log n) bits.
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every vertex (see Definition 7). We call the subgraph obtained by a q-RBFS a q-bounded173

disc. Our first result is informally stated as follows.174

I Theorem 2 (informal; cf. Theorem 10). If a property Π = (Πn)n∈N is testable with q = q(ε)175

queries in the random-neighbor model, then it can also be tested by a canonical tester that176

1. samples q′ vertices;177

2. performs q′-RBFS from each sampled vertex;178

3. accepts if and only if the explored subgraph does not contain any (forbidden) graph F ∈ F ,179

where q′ depends only on q, and F is a family of rooted graphs such that each graph F ∈ F180

is the union of q′ many q′-bounded discs.181

We remark that similar canonical testers have been given for dense graphs [22], bounded-182

degree graphs and digraphs [21, 12]. Actually, our proof for the above theorem heavily builds183

upon [21, 12], though our analysis requires some extensions to deal with general graphs (of184

possibly unbounded degree). To formally state our result regarding testing graph properties185

in streaming, we introduce the following definition.186

I Definition 3 (Property testers in the streaming model). Let Π = (Πn)n∈N be a graph property,187

where Πn is a property of graph of n vertices. We say that Π is testable with space complexity188

q, if for every ε and n, there exists an algorithm that performs a single pass over an edge189

stream of an n-vertex graph G, uses q = q(n, ε) words of space, and with probability at least 2
3 ,190

accepts G satisfying Π, and rejects G that is ε-far from satisfying Π. If q = q(ε) is a function191

independent of n, then we call Π constant-space testable. If the tester always accepts the192

property, then we say that the property can be tested with one-sided error. Otherwise, we say193

the tester has two-sided error.194

Our main result and our main technical contribution is the transformation of a one-sided195

error property tester in the random-neighbor model with constant query complexity into a196

one-sided error property tester in the streaming model with constant space complexity.197

I Theorem 4 (Main Theorem). Every graph property Π that is constant-query testable with198

one-sided error in the random-neighbor model is also constant-space testable (space measured199

in words) with one-sided error in the random order graph streams.200

Applications. We believe that the main contribution of our paper is the general transfor-201

mation presented in Theorem 4. However, we admit that the number of properties testable202

with one-sided error with a constant number of queries in the random-neighbor model is203

rather limited. Still, we can apply our transformation to, for example, the property of being204

(s, t)-disconnected (i.e., there is no path between s and t), see, e.g., [41]3. Furthermore, our205

transformation actually holds when the input graph is restricted to come from a certain206

class of graphs such as planar graphs, minor-free graphs, or bounded-degree graphs. Since207

bipartiteness in planar graphs (or minor-free graphs) is testable in the random-neighbor208

model [11], it is also one-sided error testable in random order streams in constant space;209

notice that this result stands in contrast to the n1−O(ε) space lower bound for adversarial210

order streams for (property) testing bipartiteness in planar graphs [24]. Further, recent211

3 The constant-query tester from [41] performs degree queries and neighbor queries, but it is straightforward
to simulate it in the random-neighbor model. Indeed, the algorithm in [41] only needs to repeatedly
perform a constant-length random walks from s and reject if only if one path from s to t is found. Such
an algorithm can be trivially simulated in the random-neighbor model, as each step of a random walk
just needs to query one random neighbor of the current vertex.

APPROX/RANDOM 2020



16:6 Testable Properties in General Graphs and Random Order Streaming

constant-query complexity testing of H-freeness in planar or minor-free graphs [14] shows212

that also testing H-freeness is one-sided error testable in random order streams in constant213

space.214

Furthermore, our techniques can also be used to transform any constant-query tester (with215

one-sided error) in the random neighbor/edge model (cf. the full version) to the random-order216

streaming model, where the random neighbor/edge model allows to sample an edge uniformly217

at random. Therefore, for example, since the property of being Pk-free (there is no path218

of length k) is constant-query testable in the random neighbor/edge model with one-sided219

error [25], Pk-freeness is also constant-space testable with one-sided error in the random220

order graph streams. Similarly, it is not hard to see that the property of being d-bounded221

(the maximum degree is at most d) is constant-query testable in the random neighbor/edge222

model4, and therefore this property too is constant-space testable with one-sided error in the223

random order graph streams.224

The contribution of our paper goes beyond just establishing a connection between property225

testing and streaming. While the concept of canonical testers has been used in graph property226

testing before (cf. [22, 21, 12]), our study and characterization of canonical testers for general227

graphs (Theorem 2 and Theorem 10) is new. We believe that this study will shed light on228

our understanding of constant-query testable graph properties and will lead to new results229

for property testing in general graphs. For example, Czumaj and Sohler [14] recently used230

our canonical testers as a tool in their proof of a complete characterization of constant-query231

testable properties in general planar graphs [14] after a preliminary version of this work232

appeared.233

1.2 Challenges and Techniques234

The result about constant-space streaming algorithms for bounded-degree graphs by Monem-235

izadeh et al. [33] is obtained by noting that any constant-query complexity tester basically236

estimates the distribution of local neighborhoods of the vertices (see, e.g., [12, 18, 21]) and237

emulating any such algorithm on a random order graph stream using constant space. Unfortu-238

nately, this approach inherently relies on the assumption that the input graph is of bounded239

degree. This limitation comes from two ends: on one hand, there has not been known any240

versatile description of testers for constant-query testable graph properties of general graphs,241

and on the other hand, the streaming approach from [33] relies on a breadth-first-search-like242

graph exploration that is possible (with constant space) only when the input graph has no243

high-degree vertices. A follow-up paper [37] made the first attempt to address the challenge244

of dealing with general degrees, and considered some problems in which one can ignore high245

degree vertices (e.g., for approximating the number of connected components or the size of a246

maximum independent set in planar graphs).247

One important reason why the earlier approaches have been failing for the model of general248

graphs, without bounded-degree assumption, was our lack of understanding of constant-249

query complexity testers in general graphs and the lack of techniques to appropriately250

emulate off-line algorithms allowing many high-degree vertices. In this paper, we advance251

our understanding on both of these challenges.252

A general and simple canonical tester. To derive a canonical tester for constant-query253

testable properties in the random-neighbor model, we introduce the process q-random BFS254

4 If G is ε-far from the property, then at least Ω(ε|E|) edges are incident to a node with degree at least
d + 1. Thus, we can simply sample a constant number of edges and check if either of its endpoints has
degree at least d + 1.
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(q-RBFS): it starts from any specified vertex v, and then performs a BFS-like exploration of255

depth q that is restricted to visiting at most q random neighbors at each step (see Definition 7256

for the formal definition). We call the subgraph obtained by a q-RBFS a q-bounded disc. With257

the notion of q-RBFS and q-bounded discs, we are able to transform every constant-query258

tester for properties of general graphs into a canonical tester that works as follows: it samples259

q random vertices, performs a q-RBFS from each sampled vertex, and rejects if and only if260

the (non-induced) subgraph it has seen (which is a union of q-bounded discs) is isomorphic to261

some member of a family F of forbidden subgraphs (see Theorems 2 and 10). Furthermore,262

such a canonical tester preserves one-sided error, while the query complexity blows up263

exponentially. We believe that the exponential blow-up is necessary, even for bounded-degree264

graphs, as adaptivity is essential for property testing in sparse graphs [38, 7]. This is in265

contrast to the dense graph model for property testing, in which a quadratic blow-up of the266

query complexity of canonical testers was known [22].267

Canonical testers provide us a systematic view of the behavior of constant-query testers268

in the random-neighbor model. They further tell us that in order to test a constant-query269

testable property Π, it suffices to estimate the probability that some forbidden subgraph in270

F is found by a q-RBFS starting from a randomly sampled vertex. Slightly more formally,271

we define the reach probability of a subgraph F ∈ F to be the probability that a q-RBFS272

starting from a uniformly chosen vertex v sees a graph that is isomorphic to F . In particular,273

if we can estimate these reach probabilities in random order streams, then we can also test274

Π accordingly.275

The problem with this approach is that it is hard to estimate the reach probabilities276

of subgraphs in F . The main challenge here is that a forbidden subgraph F ∈ Fn may be277

the union of more than two or more subgraphs obtained from different q-RBFS that may278

intersect with each other.279

A refined canonical tester. To cope with the challenge mentioned above of estimating280

the reach probabilities of subgraphs in F , we decompose each forbidden subgraph F ∈ Fn281

into all possible sets of intersecting q-bounded discs whose union is F and then try to recover282

F from these sets. In order to recover F from such a decomposition, we have to identify and283

monitor vertices that are contained in more than one q-bounded disc of F .284

We refine the analysis of the canonical tester and separate the q-bounded discs explored285

by each q-RBFS and keep track of their intersections (cf. Theorem 17). We first observe286

that for every input graph G and every ε, there exists a small fixed set Vα ⊆ V of all vertices287

whose probability to be visited by a random q-RBFS from a random vertex exceeds some288

small threshold α (depending on q and ε, but independent of n). In other words, with289

constant probability, the subgraphs explored by multiple q-RBFS in the canonical tester will290

only overlap on vertices from Vα. Furthermore, we prove that the degree of all vertices in291

Vα is at least linear (in n), and with constant probability, two random q-RBFS subgraphs292

will not share any edge. Since Vα has constant size, each q-bounded disc can be viewed as a293

colored q-bounded disc type such that each vertex in Vα is assigned a unique color from a294

constant-size palette. This way, it is possible to reversibly decompose each F ∈ Fn into a295

multiset of colored q-bounded disc types (actually, there may be many such multisets for296

each F ): since the q-bounded discs that are explored by different q-RBFS intersect only297

at vertices in Vα, F is obtained by identifying vertices of the same color. See Figure 1 in298

Appendix A for an example.299

These properties are crucial to describe the forbidden subgraphs in terms of the graphs300

seen by the q many q-RBFS that the canonical tester performs and a constant-size description301

of their interaction, i.e., how they overlap.302
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16:8 Testable Properties in General Graphs and Random Order Streaming

Simulation in the streaming. In the streaming, in order to simulate q-RBFS, it is303

natural to consider the following procedure called StreamCollect (q-SC, see Algorithm 2304

in Appendix B) to explore the subgraph surrounding any specified vertex. That is, it305

maintains a connected component C that initially contains only the start vertex. Whenever306

it reads an edge that connects to the current C and the augmented component may be307

observed by a run of q-RBFS, it adds the edge to C.308

Note that one important feature of random order streams is that we would see the right309

exploration (as in the query model) with constant probability, while it is challenging to verify310

if the subgraph we collected from the stream is indeed the right exploration (cf. [33, 37] for a311

more detailed discussion). In our setting, as we mentioned, another technical difficulty is to312

analyze whether subgraphs found by running the stream procedure multiple times intersect313

in exactly the same way as the q-bounded discs that are found by q-RBFS.314

With the refined canonical tester, which specifies how different q-RBFS procedures315

intersect, we are able to simulate one-sided error constant-query testers in the random-316

neighbor model for general graphs in the random-order streaming model. Since the considered317

property Π is one-sided error testable in the random-neighbor model, it suffices to detect a318

forbidden subgraph F in the family F corresponding to Π with constant probability. That is,319

it suffices to show that if the graph is far from having the property, then for any forbidden320

subgraph H that can be reached by the canonical tester with probability p, it can also be321

detected by multiple StreamCollect subroutines with probability at least cp for some322

suitable constant c.5323

In order to do so, we first decompose the forbidden subgraphs that characterize the324

property into colored subgraphs, where each subgraph corresponds to a run of q-RBFS and325

vertices in Vα are colored with a unique color. Then, we prove that for a sufficiently large326

sample of vertices, the q-SC subroutines starting from these sampled vertices will collect, for327

each colored subgraph H, at least as many instances of H as the canonical property tester328

sees. Suppose that the input graph is far from the property. Since the subgraphs observed329

by the canonical tester intersect only at vertices in Vα, i.e., colored vertices, with constant330

probability, it is possible to stitch a forbidden subgraph by identifying vertices of the same331

color in the analysis.332

The analysis of this procedure is two-fold. First, we show that if a single run of q-RBFS333

from v sees a certain colored q-bounded disc type with probability p (where the colored334

vertices are Vα), then a single run of q-SC from v sees this disc type with probability cp for335

some suitable constant c (see Corollary 20).336

The second step (which is the main technical part) is to show that if the probability337

that a q-RBFS from a random vertex sees a colored q-bounded disc type ∆ is p, then with338

constant probability, for a sufficiently large sample set S, the calls to q-SC from vertices in339

S will also see a q-bounded disc type ∆, even though there are intersections from different340

q-SCs (see Lemma 21). Then we can show that if the input graph is far from the property,341

with constant probability, we can stitch the colored q-bounded discs to obtain a forbidden342

subgraph F ∈ F (see Theorem 4).343

5 Note that this is not sufficient for simulating two-sided error testers. Let us take the property connectivity
(which is 2-sided error testable in random-neighbor model) for example. If the input graph is a path
on n vertices, then a q-RBFS will detect a forbidden subgraph (i.e., a path of constant length that is
not connected to the rest) corresponding to connectivity with small constant probability, while a q-SC
might see a forbidden subgraph with high constant probability. That is, in order to test connectivity,
we need to be able to approximate the frequencies of the forbidden subgraphs, for which our current
techniques fail.
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Finally, we remark that colors are only used in the analysis as the streaming algorithm344

can identify intersections of multiple q-SC by the vertex labels. However, the colors are345

crucial to the analysis: without colors, we cannot guarantee that the q-bounded disc types346

found by multiple q-SCs can be stitched in the same way as the q-bounded disc types found347

by q-RBFS. Here is an example: Consider some constant-query testable property Π such that348

the set of forbidden subgraphs F contains a graph F that is not a subgraph of any single349

q-bounded disc type (i.e, it is the union of at least two intersecting q-bounded disc types).350

For the sake of illustration, a concrete example is provided in Figure 2 in Appendix A. In351

order to reject, the canonical property tester needs to find at least two intersecting q-bounded352

discs such that their union contains F as a subgraph. However, even if we bound, for each353

uncolored q-bounded disc type ∆, the probability that q-SC finds ∆ by some constant fraction354

of the probability that q-RBFS finds ∆, this is not sufficient to conclude that the probability355

that multiple q-SCs find a copy of F is bounded by a constant fraction of the probability356

that multiple q-RBFS find a copy of F . The reason is that q-SC might only find copies of ∆357

that are not intersecting, while q-RBFS might tend to find copies of ∆ that intersect. Again,358

see Figure 2 for an example. Therefore, we need to preserve, for each q-bounded disc type359

∆, the information which of the corresponding vertices in the input graph are likely to be360

contained in more than one q-RBFS for the analysis.361

2 Preliminaries362

Let G = (V,E) be an undirected graph. We will assume that the vertex set V of G is363

[n] = {1, . . . , n}, and we let deg(v) denote the degree of v ∈ V . Sometimes, we use V (G) to364

denote the vertex set V of G and E(G) to denote the edge set E of G. We let S(G) denote365

the input stream of edges that defines G. In this paper, we consider streaming algorithms366

for random order streams, i.e., the input stream S(G) to our algorithm is drawn uniformly367

from the set of all permutations of E. We are interested in streaming algorithms that have368

constant space complexity in the size of the graph, where we count the size of the space in369

words, i.e., space bounds have to be multiplied by O(logn) to obtain the number of bits370

used, see also Footnote 2.371

A graph G is called a rooted graph if at least one vertex in G is marked as root. Let us372

define the notion of a root-preserving isomorphism.373

I Definition 5. Given two rooted graphs H1 and H2, a root-preserving isomorphism from374

H1 to H2 is a bijection f : V (H1)→ V (H2) such that 1) if u is the root of V (H1) then f(u)375

is the root of V (H2), and 2) that (u, v) ∈ E(H1) if and only if (f(u), f(v)) ∈ E(H2). If376

there is a root-preserving isomorphism from H1 to H2 then we say that H1 is root-preserving377

isomorphic to H2 and denote it by H1 ' H2.378

3 Canonical Constant-Query Testers in General Graphs379

In this section, we present our main result on the canonical testers for constant-query testable380

properties in general graphs. After starting with some basic definitions, we will present381

two canonical testers for constant-query testable properties in general graphs. Our first382

canonical tester is of a general form (see Section 3.2) and our second tester (see Theorem 17383

in Section 3.3) is slightly more refined, allowing for a more natural use later in the setting of384

streaming algorithms in Section 5.385

We note that in this paper we focus on one specific model of access to the input graph,386

the random-neighbor model. It is possible to extend some of our analysis (of canonical testers)387
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to some other graph access models, though (cf. the full version).388

3.1 Random BFS and Bounded Discs389

Property testing in query oracle model. Since we consider general graphs, without any390

bounds for vertex degrees, we have to carefully define the access provided to the input graph391

in the property testing framework. The access to the input graph is given by queries to an392

oracle representing the graph. There have been several oracles considered in the literature for393

general graphs, but our main focus is on the random-neighbor model, which we consider to394

be natural for graphs with unbounded degree, especially in the context of properties testable395

with a constant number of queries.396

I Definition 6 (Random-neighbor model). In the random-neighbor model, an algorithm is397

given n ∈ N and access to an input graph G = (V,E) by a query oracle, where V = [n]. The398

algorithm may ask queries based on the entire knowledge it has gained by the answers to399

previous queries. The random neighbor query specifies a vertex v ∈ V and the oracle returns400

a vertex that is chosen i.u.r. (independently and uniformly at random) from the set of all401

neighbors of v.402

Notice that in the random-neighbor model, since V = [n], the algorithm can also trivially403

select a vertex from V i.u.r. We believe that the random-neighbor model is the most404

natural model of computations in the property testing framework in the context of very fast405

algorithms (especially those of constant query complexity), and therefore our main focus406

is on that model. However, we want to point out that some of our results are sufficiently407

general to apply to a larger variety of the query oracle models, though we will not elaborate408

about it here (cf. the full version).409

We describe the first canonical testers of all constant-query testers (in the random-410

neighbor model) for general graphs, both, for one-sided and two-sided errors. With this411

canonization, we can model all graph properties testable with a constant number of queries412

using canonical testers; see Theorems 10 and 17 for formal statements.413

To formalize our canonical testers for all constant-query testers in the random-neighbor414

model, we will use the following two definitions of constrained random BFS-like graph415

exploration and of bounded discs.416

We begin with the definition of a q-RBFS process, which starts at some vertex and417

explores its neighborhood in a BFS-like fashion, conditioned on a bound of the depth and418

the breadth of the exploration (see Definition 7 for formal definition and Algorithm 1 in419

Appendix B for the detailed implementation).420

I Definition 7 (q-random BFS). Let q > 0 be an integer and G be a simple graph. For any421

vertex v ∈ V (G), the q-random BFS (abbreviated as q-RBFS) explores a random subset of422

the q-neighborhood of v in G iteratively as follows. First, it initializes a queue Q = {v}423

and a graph H = ({v}, ∅). Then, in every iteration, it pops a vertex u from Q and samples424

q random neighbors su,1, . . . , su,q of u. For every edge e = {u, su,i}, it adds su,i and the425

directed edge (u, su,i) to H. Furthermore, if su,i has distance less than q from v in H and426

su,i has not been added to Q before, su,i is appended to Q. When Q is empty, all edges in H427

are made undirected (without creating parallel edges) and H is returned.428

Any output of q-RBFS algorithms can be described in a static form using the concept of429

bounded discs.430

I Definition 8 (q-bounded disc). For a given q ∈ N, graph G = (V,E), and vertex v ∈ V , a431

q-bounded disc of v in G is any subgraph H of G that is rooted at v and can be returned by432
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RandomBFS(G, v, q). In this case, vertex v is called a root of the q-bounded disc H and433

the maximum distance from v to any other vertex in H is called the radius of H.434

All q-bounded discs that are root-preserving isomorphic form an equivalence class.435

I Definition 9 (q-bounded disc type). Let H be a q-bounded disc. The equivalence class of436

H with respect to ', i. e., the existence of a root-preserving isomorphism (see Definition 5),437

is called the q-bounded disc type of H.438

3.2 Canonical Testers: A General Version439

Now we present the proof of our first main result. We show that any tester with query440

complexity q = q(ε, n) in the random-neighbor model can be simulated by a canonical tester441

that samples q′ = O(q) vertices and rejects if and only if the union of the subgraphs induced442

by the q′-RBFS from the sampled vertices belongs to some family of forbidden graphs.443

I Theorem 10 (Canonical tester). Let Π = (Πn)n∈N be a graph property that can be tested in444

the random-neighbor model with query complexity q = q(ε, n) and error probability at most 1
3 .445

Then for every ε, there exists an infinite sequence F = (Fn)n∈N such that for every n ∈ N,446

Fn is a set of rooted graphs such that each graph F ∈ Fn is the union of q′ many447

q′-bounded discs;448

the property Πn on n-vertex graphs can be tested with error probability at most 1
3 by the449

following canonical tester:450

1. sample q′ vertices i.u.r. and mark them roots;451

2. for each sampled vertex v, perform a q′-RBFS starting at v;452

3. reject if and only if the explored subgraph is root-preserving isomorphic to some F ∈ Fn,453

where q′ = cq for some constant c > 1. The query complexity of the canonical tester is qO(q).454

Furthermore, if Π = (Πn)n∈N can be tested in the random-neighbor model with one-sided455

error, then the resulting canonical tester for Π has one-sided error too, i.e., the tester always456

accepts graphs satisfying Π.457

3.3 Canonical Testers Revisited: Identifying Vertices in the458

Intersecting Discs459

Theorem 10 provides us a canonical way of testing constant-query testable properties (in460

the random-neighbor model) by relating the tester to a set of forbidden subgraphs Fn for461

every n ∈ N. However, as we mentioned in Section 1, it is hard to directly use Theorem 10462

to design and analyze our streaming testers due to the intersections of q-RBFS. In order463

to tackle this difficulty, we decompose each forbidden subgraph F ∈ Fn into all possible464

sets of intersecting q-bounded discs whose union is F . In order to recover F from such a465

decomposition, we have to identify and monitor vertices that are contained in more than one466

q-bounded disc of F .467

Identifying vertices with large reach probability. Now we prove that with constant proba-468

bility the q-bounded discs found by q-RBFS will only intersect on a small set of vertices Vα469

and the discs will not intersect on any edge.470

We begin with a useful definition on the probability of reaching a vertex from a q-RBFS.471

I Definition 11. For each vertex v, the reach probability r(v) := rq(v) of v is the probability472

that a q-RBFS starting at a uniformly randomly chosen vertex reaches v.473
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In the following lemma, we give an upper bound on the size of the set of vertices with474

constant reach probability, which also implies that with constant probability, the number of475

vertices visited by at least two q-RBFS that the canonical tester performs is small. For any476

α, 0 ≤ α ≤ 1, we let Vα := {v ∈ V : r(v) ≥ α}. For a fixed q, let cj :=
∑j
i=0 q

i = qj+1−1
q−1 .477

I Lemma 12. For any 0 < α < 1, it holds that |Vα| ≤ cq

α .478

We further show that with high probability, two q-RBFS starting from vertices chosen479

i.u.r. will not share an edge (i.e., will not visit the same edge).480

I Lemma 13. Let 0 < α ≤ 1. Let n ≥ qcq

α2 . Let u, v be two randomly chosen vertices. Let481

Hu and Hv denote the subgraphs visited by two q-RBFS starting at u and v, respectively.482

Then with probability at least 1− qcq · 2α, no edge will be contained in both Hu and Hv.483

Colored q-bounded disc types. To identify vertices in Vα, we assign them unique colors484

for the analysis. We call a disc r-colored if in addition to uncolored vertices in the disc, some485

vertices in the disc may be colored with at most r colors, each color being used at most once.486

Two colored q-bounded disc types ∆1 and ∆2 (cf. Definition 9) are called to be isomorphic487

to each other, denoted by ∆1 ' ∆2, if there is a root-preserving isomorphism f from ∆1 to488

∆2 that also preserves the colors, i.e., if and only if u ∈ V (∆1) is colored with color c, then489

f(u) ∈ ∆2 is colored with color c.490

I Definition 14. Let q > 0 be an integer. We let Hq := {∆1, · · · ,∆N} denote the set of all491

possible r-colored q-bounded disc types, where N is the total number of such types.492

For any given colored q-bounded disc type, we have the following definition on the493

probability of seeing such a disc type from a q-RBFS.494

I Definition 15 (Reach probability of colored q-bounded disc types). Let G = (V,E) be a495

graph with n vertices such that each vertex in Vα is assigned to a unique color. Let ∆ ∈ Hq496

be a colored q-bounded disc type. The reach probability of ∆ in G is the probability that497

a q-RBFS from a random vertex in G reveals a graph that is (root- and color-preserving)498

isomorphic to ∆, that is ReachG(∆) := Prv∼V,BFS [RandomBFS(G, v, q) ' ∆] .499

For a given vertex v, the reach probability of ∆ from v in G is the probability that a500

q-RBFS from v in G induces a graph that is (root- and color-preserving) isomorphic to ∆,501

that is ReachG(v,∆) := PrBFS [RandomBFS(G, v, q) ' ∆] .502

Recall from Definition 8 that a q-bounded disc of v in G is any subgraph H of G that is503

rooted at v and can be returned by RandomBFS(G, v, q). In order to estimate the reach504

probability of a colored q-bounded disc type, we consider for each starting vertex v, the set505

of all possible colored q-bounded discs, denoted Cv, that one can see from a q-RBFS from v.506

I Definition 16 (Reach probability of a colored q-bounded disc). Let G = (V,E) be a graph507

in which all vertices in Vα are uniquely colored. Let v be a vertex in G. A colored q-bounded508

disc of v is a q-bounded disc of v in G in which all vertices in Vα colored. We let Cv denote509

the set of all possible colored q-bounded discs of v.6 For any fixed colored q-bounded disc510

C ∈ Cv of v, the reach probability of C from v is the probability that a q-RBFS from v sees511

exactly C, that is, ReachG(v, C) := PrBFS [RandomBFS(G, v, q) = C] .512

6 Note that the number |Cv| of colored q-bounded discs of v can be a polynomial of n.
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By our definition, the q-RBFS from a vertex v in the colored graph G (with vertices513

in Vα colored) will return exactly one colored q-bounded disc of v. For each colored q-514

bounded disc type ∆, we let Cv(∆) denote the subset of Cv which contains all colored515

q-bounded discs of v that are isomorphic to ∆. Therefore, we have the following observation:516

ReachG(v,∆) =
∑
D∈Cv(∆) ReachG(v,D) .517

Canonical testers with distinguished vertices in the intersecting discs. Now, we give a518

refined characterization of the family of forbidden subgraphs corresponding to any constant-519

query testable property in general graphs, which establishes the basis of our framework520

for transforming the canonical constant-query testers in the random-neighbor model to the521

random-order streaming model.522

In our next theorem, we will consider partially vertex-colored graphs and q-bounded523

discs: we color each vertex in Vα with a unique color from a palette of size |Vα|. Recall from524

Lemma 12 that |Vα| ≤ cq

α . We obtain canonical testers of constant-query testable properties525

by forbidden colored q-bounded discs instead of forbidden subgraphs (that can be composed526

of more than a single q-bounded disc). See Figure 1 in Appendix A for an example.527

I Theorem 17. Let Π = (Πn)n∈N be a graph property that is testable with query complexity528

q = q(ε). Let α ≤ 1
24q′cq′

, where q′ is the number from Theorem 10 for a canonical tester529

with error probability 1/6. There is an infinite sequence F ′ = (F ′n)n∈N such that for any530

ε > 0, n ≥ q′cq′

α2 , the following properties hold:531

F ′n is a set of graphs, and for each graph F ∈ F ′n, there exists at least one multiset S of532

q′ many cq′/α-colored and rooted q′-bounded disc types such that 1) the disc types are533

pairwise edge-disjoint, and 2) the graph obtained by identifying all vertices of the same534

color in the bounded discs of S is isomorphic to F .535

For any n-vertex graph G = (V,E) such that each vertex in Vα is colored uniquely, let536

Sq′ denote the set of q′ subgraphs obtained by performing q′-RBFS starting at q′ vertices537

sampled i.u.r. Then,538

if G ∈ Πn, with probability at least 2
3 , there is no F ∈ F ′n such that F is isomorphic to539

a graph from Sq′ ,540

if G is ε-far from Πn, with probability at least 2
3 , there exists F ∈ F ′n such that F is541

isomorphic to a graph from ' Sq′ ,542

where the probability is taken over the randomness of Sq′ .543

Furthermore, if Π can be tested with one-sided error, then for G ∈ Πn, with probability 1,544

there is no F ∈ F ′n such that F ' Sq′ .545

4 Estimating the Reach Probabilities in Random Order Streams546

Given a canonical tester T for a property Π that is constant-query testable in the random-547

neighbor model, we transform it into a random-order streaming algorithm as follows. Recall548

from Theorem 10 that T explores the input graph by sampling vertices uniformly at random549

and running q-RBFS for each of these vertices. Only if the resulting subgraph contains an550

instance of a forbidden subgraph from a family F , it rejects. It seems natural to define a proce-551

dure like q-RBFS for random order streams, namely a procedure StreamCollect(S(G), v, q)552

(q-SC ), and let the streaming algorithm reject only if the union of all q-SC contains an553

instance of a graph from F . However, this raises a couple of issues.554

It seems hard to analyze the union of the subgraphs obtained by q-SC and relate it to555

the union of subgraphs observed by q-RBFS because the interference between two q-SC is556

APPROX/RANDOM 2020



16:14 Testable Properties in General Graphs and Random Order Streaming

quite different from the interference of two q-RBFS. Therefore, we use Theorem 17, which557

roughly says that we can decompose each forbidden subgraph into colored q-bounded disc558

types. This leads to the following idea: First, we prove that for any colored q-bounded559

disc type ∆, if q-RBFS finds an instance of ∆ in the input graph with probability p (where560

colors correspond to intersections of multiple RBFS), then q-SC finds an instance of ∆ with561

probability cp for some suitable constant c. Then, we prove that if S is a sufficiently large562

set of vertices sampled uniformly at random, for each colored q-bounded disc type ∆, the563

fraction of q-bounded discs found by q-SCs started from S that are isomorphic to ∆ is564

bounded from below by the probability that a q-RBFS from a random vertex sees a colored565

q-bounded disc that is isomorphic to ∆. Finally, in the next section, we conclude that if566

q-RBFS finds a forbidden subgraph F ∈ F with probability p, then the fraction of q-SC also567

finds this subgraph with probability cp (for some suitable constant c) because it will find the568

corresponding colored q-bounded discs that assemble F .569

Collecting a q-Bounded Disc in a Stream. In our streaming algorithm, we need to570

collect a q-bounded disc from a vertex v. We do this in a natural and greedy way: We start571

with a graph H = (U,F ) with U = {v} and F = ∅. Then whenever we see an edge (u,w)572

from the stream that is connected to our current graph H and adding (u,w) to H does not573

violate the q-bounded radius of H, and the degree of u or the degree of w in H is still less574

than q2q, we add it to F (and possibly add one of its endpoints to U); otherwise, we simply575

ignore the edge. Note that the algorithm does not assign colors to the subgraphs it explores.576

The procedure StreamCollect is formally defined in Algorithm 2 in Appendix B.577

Relation of One q-SC and One q-RBFS In the following, we show that for any vertex v,578

and any colored q-bounded disc C of v, the probability of collecting C from v by running579

StreamCollect on a random order edge stream is at least a constant factor of the580

probability of reaching C from v by running a q-RBFS on G. The statements in this581

subsection hold for a single run of q-SC.582

We emphasize that the coloring does not need to be explicitly given. It is sufficient if it583

can be applied when random access to the graph is given. In particular, we may assign each584

vertex in Vα a unique color. This enables us to identify the vertices where multiple q-RBFS585

may intersect, which is crucial to apply Theorem 17 later.586

I Lemma 18. Let G be a vertex-colored graph. There exists a constant c∗(q) depending on587

q, such that for any colored q-bounded disc C of G, it holds that the probability (over S(G))588

that StreamCollect(S(G), v, q) contains C is at least c∗(q) · ReachG(v, C).589

The following lemma performs the step from q-bounded discs to q-bounded disc types.590

I Lemma 19. Let ∆ be a fixed colored q-bounded disc type. Let Xv,∆ denote the indicator591

variable that StreamCollect from v collects a subgraph that contains a colored q-bounded592

disc of v that is isomorphic to ∆. Let Yv denote the indicator variable that RandomBFS593

from v sees a colored q-bounded disc of v that is isomorphic to ∆. Then it holds that594

ES(G)[Xv,∆] ≥ c∗(q) · ERBFS [Yv] , where c∗(q) is the constant from Lemma 18.595

Now we consider the probability of seeing a colored q-disc type ∆. Note that ES(G)[Xv,∆] =596

PrS(G)[StreamCollect(S(G), v, q) contains a subgraph F with F ' ∆]. Furthermore, it597

holds that ERBFS [Yv] = ReachG(v,∆). Thus, we have the following lemma.598

I Corollary 20. For any colored q-bounded disc type ∆, the probability (over S(G)) that599

StreamCollect(S(G),v,q) contains a subgraph F with F ' ∆ is at least c∗(q)·ReachG(v,∆) .600
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Relation of Multiple q-SCs and q-RBFS In the above, we related a single run of q-RBFS601

and a single run of q-SC. In particular, Corollary 20 states that if a q-RBFS starting from v602

finds some colored q-bounded disc type ∆ with probability p, q-SC finds the same type ∆603

with probability Ω(p). However, the forbidden subgraphs that the property tester aims to604

find may be composed of more than one q-bounded disc. Therefore, we need to prove that605

if multiple runs of q-RBFS find q-bounded disc types ∆1, . . . ,∆k whose union contains an606

instance of a forbidden subgraph F ∈ F ′n, then multiple runs of q-SC will find ∆1, . . . ,∆k607

with probability Ω(p).608

We now show our main technical lemma on estimating the reach probability of q-bounded609

disc types in random order streams. Again, the coloring of vertices in G is implicit and only610

used for the analysis.611

I Lemma 21. Let G = (V,E) be a graph defined by a random order stream and let all vertices612

in Vα be colored. Let q > 0 be an integer and let c′q :=
∑q+1
i=0 q

2qi. Let δ > 0, and let S denote613

a set of vertices that are chosen uniformly, where s := |S| ≥ max
{

1
20
√
αq2q·c′q

,
5000|Hq|
c∗(q)δ3

}
, α :=614

c∗(q)4δ8

109|Hq|2q2qc′q
. Let J := {Hv : Hv = StreamCollect(S(G), v, q), v ∈ S} denote the set of615

colored q-bounded discs collected by StreamCollect from vertices in S. For each type616

∆ ∈ Hq, let X∆ denote the number of graphs H in J such that H contains a subgraph F617

with F ' ∆.618

Then it holds that with probability at least 1− 1
100 , for each type ∆ ∈ Hq, q∆ := 1

c∗(q) ·
X∆
s ≥619

ReachG(∆)− δ , where c∗(q) is a constant from Corollary 20.620

5 Testing Graph Properties in Random Order Streams621

Now we transform constant-query property testers (with one-sided error) into constant-space622

streaming property testers, and prove Theorem 4. The main idea is to explore the streamed623

graph by StreamCollect and look for the forbidden subgraphs in Fn that characterize Π624

(see Theorem 10). However, in the underlying analysis, we use the (reversible) decomposition625

of the forbidden subgraphs in Fn into F ′n (see Theorem 17) to prove the following: if T finds626

the colored q-bounded discs ∆1, . . . ,∆k that compose a forbidden subgraph F ∈ F ′n with627

probability p, then the streaming tester will find at least as many copies of ∆1, . . . ,∆k as628

T (see Lemma 21) and can stitch F from these copies. With these tools at hand, we can629

incorporate our analysis from previous sections to complete the proof of Theorem 4 (see630

Appendix C).631

6 Conclusions632

We gave the first canonical testers for all constant-query testers in the random-neighbor633

model for general graphs and show that one can emulate any constant-query tester with634

one-sided error in this query model in the random-order streaming model with constant space.635

Our transformation between constant-query testers and streaming algorithms with constant636

space provides a strong and formal evidence that property testing and streaming algorithms637

are very closely related. Our results also work for any restricted class of general graphs and638

other query models, e.g., random neighbor/edge model. It follows that many properties639

are constant-space testable (with one-sided error) in random order streams, including (s, t)-640

disconnectivity, being d-bounded degree, k-path-freeness of general graphs and bipartiteness641

and H-freeness of planar (or minor-free) graphs.642
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A Missing Illustrations from Section 1755

u
v

Figure 1 Consider the graph on the left, which can be decomposed into colored 3-bounded disc
types (which are rooted at u and v in this example) in more than one way. However, it is always
possible to recover the original graph by identifying vertices of the same color. Furthermore, every
mapping is bijective because every color is assigned at most once per disc. If the colored vertices
correspond to the vertices in Vα, every forbidden graph F ∈ Fn from Theorem 10 corresponds to a
decomposition into edge-disjoint colored q-bounded discs F ′ ∈ F ′

n in Theorem 17, which intersect
only at colored vertices.

u v
x

y

z

x

y

z

Figure 2 The above graph, which is composed of 3-stars and a ω(1)-star with root z and which
should be thought of as a subgraph of some larger graph, illustrates the need for colors in our
analysis of the streaming property tester. Although the 2-bounded discs of u, v x and y are all
3-stars (with constant probability over the randomness of the neighbor queries), exploring u and v

by q-RBFS does not result in finding a 6-star, while it is likely to find a 6-star by exploring x and y.
Even if we prove that the probability that a q-SC finds uncolored 3-stars is lower bounded by some
constant fraction of the probability that q-RBFS finds uncolored 3-stars, we still cannot rule out
that q-SC might tend to find leaves of the small stars (like u and v) while q-RBFS tends to find
leaves of the big star (like x and y). Observe that here, z is the only vertex that is likely contained
in two different q-RBFS due to its high degree.

B Missing Pseudocodes from Section 3 and 4756

The pseudocodes for the q-random BFS and for collecting a q-bounded disc from a vertex in757

stream are given below.758
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Algorithm 1 q-random BFS

function RandomBFS(G, v, q)
Q← empty queue; enqueue(Q, v)
∀w ∈ V : `[w]←∞
`[v]← 0
H ← ({v}, ∅) with v as root
while Q not empty do

u← pop element from Q

for 1 ≤ i ≤ q do
su,i ← query oracle for random neighbor of u
add vertex su,i and edge (u, su,i) to H
if (`[u] < q − 1) ∧ (`[su,i] =∞) then

`[su,i]← `[u] + 1
enqueue(Q, su,i)

return undirected H without parallel edges
end function

Algorithm 2 Collecting a q-bounded disc from a vertex in stream

function StreamCollect(S(G), v, q)
U ← {v}
∀u ∈ V : du ← 0, `u ←∞
`v ← 0;F ← ∅
H = (U,F ) with v marked as root
for (u,w)← next edge in the stream do

if ({u,w} ∩ U 6= ∅) then
if (u ∈ U ⇒ (`u < q ∧ du < q2q) ∨ (w ∈ U ⇒ (`w < q ∧ dw < q2q)) then

U ← U ∪ {u,w}
F ← F ∪ (u,w)
du ← du + 1; dw ← dw + 1
`u ← min(`u, `w + 1); `w ← min(`w, `u + 1)

return H

end function

C Missing Proofs from Section 5759

Proof of Theorem 4. We let q0 = q0(ε) denote the query complexity of Π. Let n = |V |.760

We present our testing algorithm. Let q = c · q0 for some constant c from Theorem 10.761

Let α = c∗(q)4δ8

109|Hq|2q2qc′q
, where c′q =

∑q+1
i=0 q

2qi, and δ = 1
200|Hq| . If n ≤ n0 := qcq

α2 , then762

we simply store the whole graph. If n > n0, we proceed as follows. Let Fn be the763

set of forbidden subgraphs that characterize Π as stated in Theorem 10. We sample764

s ≥ max{ 1
20
√
αq2q·c′q

,
5000|Hq|
c∗(q)δ3 } vertices S ⊆ V and run StreamCollect(S(G), v, q) for765

each v ∈ S to obtain a subgraph Hv = (Vv, Ev) of G. If H = ∪v∈SHv contains a forbidden766

subgraph F ∈ Fn, the tester rejects, otherwise it accepts. See Algorithm 3 for details.767
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Algorithm 3 Testing graph property Π in random order stream

function StreamTest(S(G), n, ε,Fn)
S ← sample s vertices u.a.r. from V

for all v ∈ S do
Hv ← (Vv, Ev) = StreamCollect(S(G), v, q)

H ← (∪vVv,∪vEv)
if there exists F ∈ Fn such that H contains a subgraph F then

Output Reject
else

Output Accept
end function

The space complexity of the algorithm is s · qO(q0)
0 = Oq0(1) words. For the correctness of768

the algorithm, we note that for any property Π that is constant-query testable with one-sided769

error, then with probability 1, we will not see any F ∈ F ′n if the graph G satisfies Π.770

On the other hand, if G is ε-far from satisfying Π, then by Theorem 17, with probability771

at least 2
3 , the subgraph Sq spanned by the union of q-bounded discs rooted at q uniformly772

sampled vertices from G will span a subgraph that is isomorphic to some F ∈ F ′n. Note773

that, in contrast to the algorithm above, the analysis uses the decomposition of forbidden774

subgraphs in Fn into colored q-discs given by Theorem 17. The key idea is to use the q-775

bounded discs that StreamCollect collects and the implicit colors (which are not observed776

by StreamCollect, but can be used in the analysis to identify vertices in Vα) to stitch777

forbidden subgraphs from F ′n that are discovered by RandomBFS. We prove that with778

sufficient probability, for each colored q-bounded disc ∆, StreamCollect finds at least779

as many copies of ∆ as RandomBFS, and therefore, it can reproduce the same types of780

forbidden subgraphs from F ′n.781

By Markov’s inequality and the union bound, the probability that at least one q-RBFS782

in the canonical tester for Π will return a colored q-bounded disc that is isomorphic to a783

disc ∆′ such that ReachG(∆′) < 2δ = 1
100|Hq| is at most 1

100 . Let D be the set of all colored784

q-bounded discs ∆ such that ReachG(∆) ≥ 2δ.785

By Lemma 21, with probability at least 1 − 1
100 , for every ∆ ∈ D, the number of786

graphs Hv obtained by StreamCollect that contain a subgraph isomorphic to ∆ is at least787

100|Hq|·ReachG(∆) ≥ 1. By (implicitly) coloring all vertices in Vα, it follows from Theorem 17788

that H contains a forbidden subgraph from F ′n with probability 1− 1
100 −

1
100 >

2
3 . J789
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