Supporting Information

Exploring Precision Polymers to Fine-tune MRI Properties of Iron Oxide Nanoparticles

Aaron M. King,[†] Caroline Bray,[§] Stephen C. L. Hall,[§] Joseph C. Bear,[‡] Lara K. Bogart,^{\parallel} Sebastien Perrier,[§] Gemma-Louise Davies*[†]

[†]Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

§Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.

[‡] School of Life Science, Pharmacy and Chemistry, Kingston University, Penryhn Road, Kingston-upon-Thames, KT1 2EE, U.K.

"UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London W1S 4BS, U.K.

CORRESPONDING AUTHOR: Gemma-Louise Davies

E-MAIL: gemma-louise.davies@ucl.ac.uk

Figure S1. Aqueous size exclusion chromatography (SEC) of P(AMPS) polymers (Degree of polymerisation (DP) of 20, 100 and 400 with $M_{n,SEC}$ values measured to be 8,100, 17,600, and 41,300 g mol⁻¹ respectively as determined by conventional calibration using Agilent GPC/SEC software.)

Figure S2. Transmission electron microscope images of P(AMPS) stabilised iron oxide nanoparticles, labelled according to Table 1, following drying in an applied parallel magnetic field (2250 Gauss). Scale bar $2 \mu m$.

Figure S3. Magnetisation (mass susceptibility) of P(AMPS) stabilised iron oxide nanoparticles (A-E) plotted against magnetic field, measured between field strengths of -15 kOe to 15 kOe. Inset showing lack of hysteresis loop indicating superparamagnetic behaviour.

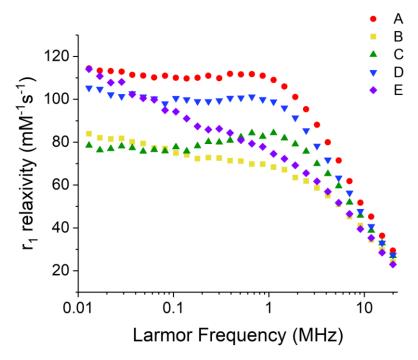

Figure S4. Raman spectra of P(AMPS) stabilised iron oxide nanoparticles (A-E) exhibiting a peak at 670 cm⁻¹ and shoulder at 702 cm⁻¹ indicating the A_{1g} modes of magnetite and magnement respectively. A broad peak at 368 cm⁻¹ represents the T_{2g} mode of magnetite, and another at 494 cm⁻¹, attributed to the E_g mode of magnetite.

Figure S5. Powder X-ray diffraction patterns of P(AMPS) stabilised iron oxide nanoparticles (A-E). Dashed lines represent the expected peaks positions at 13.8°, 16.2°, 19.6°, 25.5°, and 27.8° readily indexed to the (220), (311), (400), (511), and (440) planes for cubic inverse spinel type iron oxides according to JCPDS database card number 39-1346.

Figure S6. Fourier transform infrared (FT-IR) spectra of a) P(AMPS) stabilised iron oxide nanoparticles (A-E), and b) P(AMPS) ((P(AMPS)20, P(AMPS)100), and P(AMPS)400, with respective $M_{n,SEC}$ of 8,100, 17,600, and 41,300 g mol⁻¹) The stretches between 3600-3000 cm⁻¹ (representing OH stretching vibrations from surface hydroxyl groups and physisorbed water groups), and the stretch at 650-500 cm⁻¹ (correlating to the Fe-O stretch) are observed for the 5 P(AMPS) stabilised nanoparticles, with stretches at 1370–1340 cm⁻¹ and 1080–1030 cm⁻¹, indicative of O=S=O and C=S stretching vibrations, respectively, of functional groups on the P(AMPS) chains.

Figure S7. ¹H NMRD profiles, measured at 25 °C, of P(AMPS) stabilised iron oxide suspended in 0.1% Xanthan Gum. The r_1 values have been calculated in terms of total mM [Fe] content of the samples, as measured by ICP-OES.

Table S1. Theoretical and experimental molecular weight of the P(AMPS) used in this study.

Degree of Polymerisation	[AMPS] ₀ : [CTA] ₀ : [VA-086] ₀ (mol L ⁻¹)	$M_{\rm n,th}^{\rm a} \ ({ m g\ mol}^{-1})$	$M_{\rm n,SEC}^{\rm b} \ ({ m g \ mol}^{-1})$	\mathcal{D}^{b}
20	20:1:0.033	4,800	8,100	1.10
100	100 : 1 : 0.167	23,000	17,600	1.16
400	400 : 1 : 0.667	91,000	41,300	1.51

Theoretical M_n values were calculated using the following equation; $M_{n,th} = ([M]_0 * p * M_M/[CTA]_0) + M_{CTA}$; b Experimental $M_{n,SEC}$ and D values were determined by size exclusion chromatography in 20% methanol / 80 % of 0.1 M NaNO₃ in milli-Q water eluent using a conventional calibration obtained with PEG/PEO standards. The dispersity, D, was calculated according to $D = M_W/M_n$, where M_W is the weight-average molar mass and M_n is the number-average molar mass.

Table S2. Total initial concentrations of iron salts and P(AMPS) used in the preparation of P(AMPS) stabilised iron oxide nanoparticles.

Sample	[Fe] (mM)	[P(AMPS)] (mM)	Total [Fe]:[P(AMPS)] ratio
A	30	0.300	100:1
В	50	0.020	2,500:1
С	50	0.008	6,250:1
D	50	0.008	6,250:1
Е	50	0.008	6,250:1

Table S3. Room temperature ⁵⁷Fe Mössbauer parameters as deduced from best fits to the data presented in Figure 4a, obtained using the "centre of gravity" model, with fitting to spectra performed using Recoil.

Sample	α^{a}	Linewidth (mm/s)	< <i>H</i> > ^b (kOe)	<i>σ</i> <h> ^b (kOe)</h>	FWHM ^d (kOe)
A	0.06 ± 0.15	0.27	408.6	20.1	45
В	0.13 ± 0.06	0.31	400.5	28.5	63
С	0.10 ± 0.07	0.34	375.3	20.8	50
D	0.14 ± 0.05	0.30	390.8	36.2	60
Е	0.13 ± 0.06	0.32	392.0	25.6	54

^a α is the numerical proportion of Fe atoms in the magnetite environment as determined by the 'centre of gravity' method with the corresponding uncertainty given as error bars; ^b The mean static hyperfine field, <H>, and the standard deviation of the mean, $\sigma_{\text{<H}>}$. ^d FWHM is the full width at half maximum.