

Combinatorial and computational aspects of
multiple weighted voting games

Haris Aziz, Mike Paterson and Dennis Leech

No 823

WARWICK ECONOMIC RESEARCH PAPERS

DEPARTMENT OF ECONOMICS

Combinatorial and computational aspects of
multiple weighted voting games

Haris Aziz
Computer Science Department

University of Warwick
Coventry, UK, CV4 7AL

Email: haris.aziz@warwick.ac.uk

Mike Paterson
Computer Science Department

University of Warwick
Coventry, UK, CV4 7AL

Email: msp@dcs.warwick.ac.uk

Dennis Leech
Economics Department
University of Warwick

Coventry, UK, CV4 7AL
Email: d.leech@warwick.ac.uk

Abstract

Weighted voting games are ubiquitous mathematical models which are used in economics, political science,
neuroscience, threshold logic, reliability theory and distributed systems. They model situations where agents with
variable voting weight vote in favour of or against a decision. A coalition of agents is winning if and only if the
sum of weights of the coalition exceeds or equals a specified quota. We provide a mathematical and computational
characterization of multiple weighted voting games which are an extension of weighted voting games1. We analyse
the structure of multiple weighted voting games and some of their combinatorial properties especially with respect
to dictatorship, veto power, dummy players and Banzhaf indices. An illustrative Mathematica program to compute
voting power properties of multiple weighted voting games is also provided.

Keywords: multi-agent systems, multiple weighted voting games, game theory, algorithms and
complexity, voting power.

I. INTRODUCTION

A. Motivation

Weighted voting games are mathematical models which are used to analyze voting bodies in which the
voters have different number of votes. In weighted voting games, each voter is assigned a non-negative
weight and makes a vote in favour of or against a decision. The decision is made if and only if the total
weight of those voting in favour of the decision is equal to or greater than the quota. Weighted voting
games are also encountered in threshold logic, reliability theory, neuro-science and logical computing
devices [1]. Nordmann et al. [2] deal with reliability and cost evaluation of weighted dynamic-threshold
voting-systems. Systems of this type are used in various areas such as target and pattern recognition,
safety monitoring and human organization systems.

Weighted voting games have also been applied in various political and economic organizations.
Prominent applications include the United Nations Security Council, the Electoral College of the United
States and the International Monetary Fund ([3], [4]). The weights of the players do not always indicate
the power the player has in affecting decisions. This has led to a significant literature on voting power
in WVG’s. The distribution of voting power in the European Union Council of Ministers has received
special attention in [5], [6], [7], [8], [9] and [10]. Voting power is also used in joint stock companies
where each shareholder gets votes in proportion to the ownership of a stock ([11], [12]).

B. Outline

Section II outlines preliminaries definitions related to voting games, voting power and complexity.
Section III covers the background and structure of multiple weighted voting games. In section IV, we
analyse combinatorial properties o multiple weighted voting games especially with respect to dictatorship,

1A preliminary version of the paper has been presented at ACID2007, Algorithms & Complexity in Durham conference.

veto power, dummy players. Section V outlines algorithmic considerations when computing voting power
of players in multiple weighted voting games. We then conclude in section VI.

II. PRELIMINARIES

A. Voting Games

In this section we give definitions and notations of key terms. The set of voters is N = {1, ..., n}.

Definition II.1. A simple voting game is a pair (N, v) where the valuation function v : 2N → {0, 1} has
the properties that v(∅) = 0, v(N) = 1 and v(S) ≤ v(T) whenever S ⊆ T . A coalition S ⊆ N is winning
if v(S) = 1 and losing if v(S) = 0. A simple voting game can alternatively be defined as (N, W) where
W is the set of winning coalitions.

Definition II.2. The simple voting game (N, v) where
W = {X ⊆ N,

∑
x∈X wx ≥ q} is called a WVG. A WVG is denoted by [q; w1, w2, ..., wn] where wi is the

voting weight of player i. Generally wi ≥ wj if i < j.

Generally, q > 1
2

∑
1≤i≤n wi so that there are no two mutually exclusive winning coalitions at the same

time. WVGs with this property are termed proper. Proper WVGs are also desirable because they satisfy
the criterion of the majority getting preference.

B. Voting Power

Definition II.3. A player i is critical in a coalition S when S ∈ W and S \ i /∈ W . For each i ∈ N , we
denote the number of coalitions in which i is critical in game v by ηi(v). The Banzhaf Index of player i
in weighted voting game v is βi = ηi(v)∑

i∈Nηi(v)
.

Definition II.4. In a simple game, a player with a Banzhaf index of zero is called a dummy.

Definition II.5. A Dictator is a player who is present in every winning coalition and absent from every
losing coalition.

The definition implies that the dictator is player 1 with the biggest weight, β1 = 1 and ∀i 6= 1, βi = 0.
This is because any other player cannot prove critical in any coalition. Any winning coalition has to
include the dictator and the opting out of any other player cannot make the coalition losing. For player
1 to be the dictator, w1 ≥ q and

∑
2≤i≤n wi < q. It is obvious that if a dictator exists, he is unique.

Definition II.6. A player has veto power if and only if the player is present in every winning coalition.

It is evident that a dictator has veto power but a player with veto power is not necessarily a dictator.
Moreover there can be two or more players with veto power.

Example II.7. In the WVG, [5; 3, 2, 1], player 1 is not a dictator but it has veto power. Player 2 also has
veto power.

C. Complexity

Definition II.8. A problem is in complexity class P if it can be solved in time which is polynomial in the
size of the input. A problem is in the complexity class NP if it its solution can be verified in time which
is polynomial in the size of the input of the problem. A problem is in the complexity class NP-HARD if
any problem in NP is polynomial time reducible to that problem. NP-HARD problems are as hard as the
hardest problems in NP.

III. MULTIPLE WEIGHTED VOTING GAMES

A. Introduction

Definition III.1. Let (N1, v1), . . . , (Nm, vm) be simple games. Then a simple game (N, v) = (N1, v1) ×
. . . × (Nm, vm) is the product of these games where N =

⋃m
t=1 Ni and v(S) = 1 if and only if for all

1 ≤ t ≤ m, vt(S ∩ Nt) = 1. If all Nis of the games (N1, v1), . . . , (Nm, vm) coincide then, the product
(N, v) of these games is called the meet of the games. (N, v) can simply be written as (N, v1 ∧ . . .∧ vm)
and v(S) = 1 if and only if for all 1 ≤ t ≤ m, vt(S) = 1. A meet-multiple weighted voting game
(meet-MWVG) is a meet of multiple weighted voting games.

Taylor and Zwicker [1] refer to the meet of multiple weighted voting games as vector weighted games.

Definition III.2. Let (N1, v1), . . . , (Nm, vm) be simple games. Then a simple game (N, v) = (N1, v1) +
. . . + (Nm, vm) is the sum of these games where N =

⋃m
t=1 Ni and v(S) = 1 if and only if there exists

a t, 1 ≤ i ≤ m such that vt(S ∩ Nt) = 1. If all Nis of the games (N1, v1), . . . , (Nm, vm) coincide
then, the product (N, v) of these games is called the join of the games. (N, v) can simply be written
as (N, v1 ∨ . . . ∨ vm) and v(S) = 1 if and only if there exists a t, 1 ≤ i ≤ m such that vt(S) = 1. A
join-multiple weighted voting game (join-MWVG) is a join of multiple weighted voting games.

Definition III.3. A coalition S is blocking if its complement S is losing. Then Gd = (N, W d) is the dual
of the game G = (N, W) where W d is the set of all blocking coalitions.

Taylor and Zwicker [1] prove the following proposition:

Proposition III.4. (Taylor & Zwicker) Let G1 = (N1, v1) and G2 = (N2, v2) be simple games. Then
(G1 + G2)

d = G1
d ×G2

d and (G1 ×G2)
d = G1

d + G2
d.

We can get the following corollary from this proposition:

Corollary III.5. For simple games Gi = (Ni, vi) for all i = 1, . . . , n, (
∑

Gi)
d =

∏
Gi

d

From now on when we mention, MWVG, we will assume the meet of the respective games unless
otherwise stated. MWVGs are utilized in various situations. The treaty of Nice made the overall voting
games of the EU countries a triple majority weighed voting game with certain additional constraints.
MWVGs are useful in multi-criteria multi-agent systems.

B. Structure

We define Si as the set of coalitions not including player i. Then Si can be partitioned into three
mutually exclusive sets:

Si = Wi(v) ∪ Ci(v) ∪ Li(v)

where
• Wi(v) is the set of coalitions not including player i which are winning in the multiple game v
• Li(v) is the set of coalitions not including player i which are losing in the multiple game v even if

player i joins the coalitions.
• Ci(v) is the set of coalitions not including player i which are losing in the multiple game v but

winning in v if player i joins the coalitions.
The number of coalitions in which player i is critical in the multiple game v is ηi(v) = |Ci(v)|. In a

2-game MWVG, i is critical in a coalition c if (c ∈ Ci(v1)∧c ∈ Ci(v2))∨(c ∈ Wi(v1)∧c ∈ Ci(v2))∨(c ∈
Ci(v1) ∧ c ∈ Wi(v2)). In a MWVG, i is critical in a coalition c if

(∀j : (c ∈ Ci(vj) ∨ c ∈ Wi(vj)) ∧ (∃j : c ∈ Ci(vj))

We define W (v) as the set of winning coalitions in v and W (vi) as the set of winning coalitions in vi.
In that case

W (v) = W (v1) ∧W (v2)... ∧W (vm)

Similarly if we define L(v) as the set of losing coalitions in v and L(vi) as the set of losing coalitions
in vi. In that case

L(v) = L(v1) ∨ L(v2)... ∨ L(vm)

C. Trade robustness, Dimension

Definition III.6. The dimension of (N, v) is the least k such that there exist WMGs (N, v1), . . . , (N, vk)
such that v = (N, v1) ∧ . . . ∧ (N, vk)

Deineko and Woeginger [13] show that it is NP-hard to verify the dimension of multiple-weighted
voting games. In [14], it is pointed out that the dimension of a game is at most the number of maximal
losing coalitions. This kind of configuration is not very helpful though in estimating the actual dimension
of a MWVG.

Taylor and Zwicker [1] defined the trade-robustness of simple games: a simple game (N, v) is k-trade
robust if no trading among j ≤ k winning coalitions W1, . . . Wj that leads to losing coalitions L1, . . . , Lj

in such a way that |{p : i ∈ Wp}| = |{p : i ∈ Lp}| for each i ∈ N . A simple game is trade robust if it
is k-trade robust for all k. They proved that a simple game is trade robust if and only if it is a WVG.
However we observe that MWVGs are not even swap-robust which is robustness for a more restricted
notion of trading in which a one to one player exchange between any two winning coalitions does not
render both coalitions losing:

Example III.7. Let (N, v) = (N, v1∧v2) where v1 = [20; 18, 5, 0, 5, 5, 2, 5] and v2 = [20; 0, 5, 18, 5, 5, 2, 5].
We see that coalitions {1, 3, 6} and {2, 4, 5, 7} are winning in v. However if we have a trade so that the
resultant coalitions are {2, 3, 6} and {1, 4, 5, 7}, then both coalitions are losing.

IV. PROPERTIES OF MWVGS

A. Unity and zero in MWVGs

We define u as the unanimity WVG in which a coalition is only winning if it is the grand coalition
N = {1, 2, ..., n}. Every player has veto power in u. We know that in u, all players are critical only in
N and therefore have uniform Banzhaf Indices. Similarly we define s as the singleton weighted voting
game in which every coalition is winning except the empty coalition.

Proposition IV.1. In the meet of WVGs, the unanimity WVG acts as a zero and the singleton WVG acts
as a unity.

Proof: For a WVG (N, v) and a unanimity WVG (N, u), we notice that for any coalition c to be
winning in (N, v ∧ u), it must be winning in both (N, v) and (N, u). This the grand coalition is the only
winning coalition. So v ∧ u = u.

For a WVG (N, v) and a singleton WVG (N, s), we notice that for any coalition c to be winning in
(N, v ∧ u) it just has to non-empty. So v ∧ s = v.

So for v = v1 ∧ ... ∧ vm, if ∃j : vj = u, then v = u. This implies that even if player i is a dictator in
one game of the MWVG, it does not mean it is a dictator in the MWVG. Moreover, even if a player is
a dummy in all the games apart from the unanimity game vj , then that player will have Banzhaf power
of 1/n.

Example IV.2. v = v1 ∧ v2 where v1 = [3; 4, 1, 1] and v2 = [3; 1, 1, 1]. Player 1 is a dictator in v1 but it
is not a dictator in v.

B. Identifying players with dictator, veto or no powers
Assuming that we are given

∑
wi = W , we notice that a dictator in a single WVG is verifiable in

O(1) time. This is because we just need to check the two conditions of the player 1 being a dictator:
w1 ≥ q and

∑
2≤i≤n wi < q. Similarly, a dictator in a multiple m-WVG is verifiable in O(m) time. We

need to verify that {i} wins in the MWVG and that N \ {i} loses in the MWVG.
Moreover, it is evident from the definition that in a WVG, a player i has a veto power, if and only if

N \ {i} is a losing coalition. Thus, we can check whether a player has veto power in O(1) time. One can
extend this idea to MWVs. We present an algorithm to compute players with veto power in a MWVG.
The algorithm has time complexity O(mn).

Algorithm 1 VetoPlayersInMWVG
Input: m multiple weighted voting game (MWVG), (N, v1 ∧ ... ∧ vm) where the games (N, vt) are the
weighted voting games [qt; wt

1, ...w
t
n] for 1 ≤ t ≤ m.

Output: vetoplayerset

1: vetoplayerset← {}
2: for i = 1 to n do
3: isvetoplayer← false
4: for j = 1 to m do
5: if wj(N)− wj

i < qj then
6: isvetoplayer← true
7: end if
8: end for
9: if isvetoplayer then

10: vetoplayerset← vetoplayerset ∪ {i}
11: end if
12: end for
13: return vetoplayerset

Unlike, dictators and veto players, it is not easy to identify dummies in MWVGs. In fact, Matsui et
al. [15] show that it is even NP-hard to identify players with zero powers or players with same powers
in a single WVG.

C. Inherited properties of constituent games
Proposition IV.3. For MWVG, v = v1 ∧ ... ∧ vm:

1) ∀i : player 1 is a dictator in vi =⇒ player 1 is a dictator in v
2) ∀j : player i is a dummy in vj =⇒ player i is a dummy in v
3) ∃j : player i has veto power in vj =⇒ player i has veto power in v
4) ∀j : vj is proper =⇒ v is proper.

Proof:
1) Let player 1 be a dictator in vi for all i = 1, . . . m. Thus ∀i, 1 ≤ i ≤ m, wi

1 ≥ q and
∑

2≤j≤m wj < q.
This means that {1} is winning in v and {2, ..., n} are losing in v

2) We know that ∀j, Ci(vj) = {}. Then by definition, Ci(v) = {}.
3) If for some t = 1, . . . ,m, N \ {i} /∈ W (vt), N \ {i} /∈ W (v).
4) Since all WVGs vts are proper, 1 ≤ t ≤ m, if vt(S) = 1 then vt(S) = 0 If v(S) = 1, then by

definition vt(S) = 1, for 1 ≤ t ≤ m. Then vi(S) = 0 for all t which implies that vt(S) = 0.

Counter-Examples IV.4. The converses for the previous proposition do not hold:
1) v = v1 ∧ v2 where v1 = [4; 5, 1, 1] and v2 = [2; 5, 1, 1]. Although player 1 is a dictator in v, it is not

a dictator in v2.
Moreover, even if there is WVG vi in which player 1 does not have the biggest weight, it can still
be the dictator: v = v1 ∧ v2 where v1 = [2; 5, 1] and v2 = [2; 2, 3]. Player 1 is a dictator in v.

2) Let v = v1 ∧ v2 where v1 = [5; 3, 2, 1] and v2 = [5; 3, 2, 2]. Player 3 is a dummy in v but not a
dummy in v2.
In fact a player can be a dummy in v even if he is not a dummy in any of the games: Let v = v1∧v2

where v1 = [7; 4, 3, 3, 1] and v2 = [8; 7, 3, 3, 1]. Player 4 is a not a dummy in v1 and v2 but a dummy
in v.

3) Let v = v1 ∧ v2 where v1 = [5; 3, 2, 1] and v2 = [6; 5, 2, 1]. Player 2 has veto power in v but does
not have veto power in v2

4) Let v = v1 ∧u where v1 = [5; 4, 3, 2, 2] and u = [4; 1, 1, 1, 1]. We see that although v1 is not proper,
v is proper.

Proposition IV.5. For MWVG, v = v1 ∧ ... ∧ vm, if ∃i : player 1 is a dictator in vi, then player 1 has
veto power in v.

Proof: If player 1 is a dictator in vi, he is in every winning coalition of vi. Therefore for any coalition
c which is winning in v, if the dictator opts out of c, c loses in vi and therefore loses in v.

V. COMPUTATION OF VOTING POWER

A. Complexity
Proposition V.1. The problem of computing the Banzhaf indices of players or even identifying dummies
in a multiple weighted voting game is NP-Hard.

Proof: Matsui and Matsui [15] show that it is NP-Hard to compute the Banzhaf indices of players or
identifying dummies in a single weighted voting game. show that it is NP-Hard to compute the Banzhaf
indices of players or identifying dummies in a single weighted voting game. Their proof is by a polynomial
time reduction of the Partition problem.

Let V be a set of WVGs, m, an integer and let fm be a function, fm : V 7→ V such that fm(v) =
∧

mv.
We notice that a player i is critical in a coalition S ⊂ N for WVG v if and only if it is critical in coalition
S for fm(v). Therefore fm is a polynomial time function which reduces an instance of a single WVG to
an instance of a MWVG.

Klinz and Woeginger [16] devised the fastest exact algorithm to compute Banzhaf indices in a WVG.
In the algorithm, they applied a partitioning approach that dates back to Horowitz and Sahni [17]. The
complexity of the algorithm is O(n22

n
2). This partitioning approach is not suitable for MWVGs though.

A useful website for voting power analysis is available at [18].

B. GF for MWVGs
The generating function method provides an efficient way of computing Banzhaf indices if the voting

weights are integers [15]. Algaba et al. [19] outline a generating function method to find the Banzhaf
indices of players in a multiple weighted majority game. Their algorithm m-BanzhafPower computes the
Banzhaf index of the players in O(max(m, n2c)) time where c is the number of terms of B(x1, ..., xm) =∏n

j=1(1 + x
w1

j

1 ...x
wm

j
m) =

∑wt(N)
kt=0,1≤t≤mbk1...kmx1

k1 ...xm
km . The coefficient, bk1...km of each term x1

k1 ...xm
km

is the number of coalitions such that wt(S) = kt for t ranging from 1 to m.
One can make generating functions, Bi(x1, ..., xm) for each player i by excluding its influence from the

considered coalitions just like in the single WVG case. Therefore Bi(x1, ..., xm) = B(x1, ..., xm)/((1 +

x
w1

i
1 ...x

wm
i

m)). These generating functions can be encoded in the form of a coefficient array which gives a

clear picture and make the computation of coefficients easier. We present the algorithm due to Algaba et
al. with some modifications to avoid extra computations and also to compute the total number of winning
coalitions:

Algorithm 2 VotingPowersOfMWVGs
Input:MWVG: [qt; wt

1, ...w
t
n] for 1 ≤ t ≤ m.

Output: Number of winning coalitions w and Banzhaf indices: {w, (β1, . . . , βn)}.
1: B(x1, ..., xm)←

∏n
j=1(1 + x

w1
j

1 ...x
wm

j
m)

2: coeff = Coeff(B(x1, ..., xm))
3: For kt from qt to wt(N), 1 ≤ t ≤ m,

w ← Sum(coef[k1, . . . , km])
4: for i = 1 to n do
5: if i 6= 1 and wt

i = wt
i−1 for t = 1, . . . ,m then

6: ηi ← ηi−1

7: else
8: Bi(x1, ..., xm)← B(x1,...,xm)

(1+x
w1

i
1 ...x

wm
i

m)

9: coeffi = Coeff(Bi(x1, ..., xm))
10: For kt from qt − wt

i + 1 to wt(N \ i) + 1, 1 ≤ t ≤ m,
si
1 ← Sum(coef i[k1, . . . , km])

11: For kt from qt + 1 to wt(N \ i) + 1, 1 ≤ t ≤ m,
si
2 ← Sum(coef i[k1, . . . , km])

12: ηi ← si
1 − si

2

13: end if
14: end for
15: η ←

∑n
i=1 ηi

16: for i = 1 to n do
17: βi ← ηi

η
18: end for
19: return {w, (β1, . . . , βn)}

For a bi-weighted voting game which is a meet of its respective games, the critical region, Ci for a
player i is shaded in Figure 1. The corresponding figure for the join of games is provided in Figure 2.

We give an example of how Algaba et al. have utilized the generating functions to compute Banzhaf
indices in MWVGs.

Example V.2. Let v = v1 ∧ v2 where v1 = [7; 5, 2, 1, 1] and v2 = [5; 3, 2, 1, 1]. The generating function
of the overall game is B(x1, x2) = (1 + x1

5x2
3)(1 + x1

2x2
2)(1 + x1x2)

2. B(x1, x2) can be encapsulated
by a coefficient array (see Figure 3) which gives the coefficients of each term. Similarly the coefficient
arrays of the generating function for each player can be computed (See Figures 4, 5 and 6). The shaded
region signifies those coalitions in which the player is critical. The sum of the values in the shaded area
then gives the Banzhaf value of each player.

Therefore, number of swings of players 1, 2, 3 and 4 are 5, 3, 1 and 1 respectively. Thus βi = 1/2,
βi = 3/10, βi = 1/10 and βi = 1/10.

C. Analysis and Improvements

The enumeration algorithm to compute Banzhaf indices of players in a MWVG has an exponential
time complexity because of the need to compute and analyse each possible coalition. The generating

2
1

2)(
2

inj j wwx −∑ ≤≤

. . .

2

2
qx

. . .

22

2
iwqx −

. . .
2

2x 2x 1

1

1x

11

1
iwqx −

.

.

.

1

1
qx

.

.

.

 2
1x
.
.
.

 1
1

1)(
1

inj j wwx −∑ ≤≤

Fig. 1. Analysis of the effect of excluding a player i coalitions in a bi-weighted voting game which is a meet of its respective games.

function method can be more time efficient but involves more storage of data. It requires the computation
of B(x1, ..., xm) and Bi(x1, ..., xm) for players, for 1 ≤ i ≤ n. The storage requirements increase even
more if B(x1, ..., xm) is encoded in a coefficient array. This makes the storage dependent on the sum of
the weights in each component game.

Proposition V.3. The space complexity of the generating function method to compute Banzhaf indices of
players in a MWVG is c +

∑
1≤i≤n ci + k where c is the number of terms of B(x1, ..., xm) and ci is the

number of terms in Bi(x1, ..., xm). Moreover

c +
∑

1≤i≤n

ci ≤ c + nc ≤ (n + 1)(
∏

1≤t≤m

(1 + wt(N)))

Proof: The proposition follows from the fact that the generating function method requires computation
of B(x1, ..., xm), the generating function of the over all-game and Bi(x1, ..., xm), the generating function
of each player i.

We can utilize the following observation to control the time and space required in computing Banzhaf
indices via the generating function method where coefficient arrays are used:

Proposition V.4. The power indices of players in weighted voting game v = [q; w1, ..., wn] are the same
as the power indices in the weighted voting game λv = [λq; λw1, ..., λwn]

Proof: The proof is trivial. We notice that the set of coalitions for which player i is critical is the
same for both games v and λv. This means that the Banzhaf indices of players in both games are the
same.

2
1

2)(
2

inj j wwx −∑ ≤≤

. . .

2

2
qx

. . .

22

2
iwqx −

. . .
2

2x 2x 1

1

1x

11

1
iwqx −

.

.

.

1

1
qx

.

.

.

 2
1x
.
.
.

 1
1

1)(
1

inj j wwx −∑ ≤≤

Fig. 2. Analysis of the effect of excluding a player i coalitions in a bi-weighted voting game which is a join of its respective games.

This scaling of the WVGs into WVGs with smaller weights keeps the properties of the WVG invariant.
Moreover, we have identified players with same voting weight to avoid re-computation of their generating
functions and their underlying coefficient arrays. Whereas the Mathematica programs to compute Banzhaf
indices of multiple weighted voting games with 2 or 3 games are available, the appendix gives the
Mathematica code to compute Banzhaf indices of an arbitrary number of players. In case the space
complexity of the generating function method is high, the generating function and the corresponding
coefficient array for each player can be computed, and then cleared after extracting the number of swings
of that player.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have examined the computational and combinatorial aspects of multiple weighted
voting games especially with respect to voting power. The computational complexity of computing
cooperative game theoretic solutions of weighted voting games has been examined by Elkind [20]. It
will be interesting to analyse the algorithms and complexity to compute other game theoretic solutions of
multiple weighted voting games.

ACKNOWLEDGMENT

Partial support for this research was provided by DIMAP (the Centre for Discrete Mathematics and its
Applications). DIMAP is funded by the UK EPSRC. The first author would also like to thank the Pakistan
National ICT R & D Fund for funding his research.

1

2x

2
2x

3
2x

4
2x

5
2x

6
2x

7
2x

1

1

0

0

0

0

0

0

0

1

1x

0

2

0

0

0

0

0

0

2

1x

0

0

2

0

0

0

0

0

3

1x

0

0

0

2

0

0

0

0

4

1x

0

0

0

0

1

0

0

0

5
1x

0

0

0

1

0

0

0

0

6

1x

0

0

0

0

2

0

0

0

7

1x

0

0

0

0

0

2

0

0

8

1x

0 0 0 0 0 0 2 0

9

1x 0 0 0 0 0 0 0 1

Fig. 3. Coefficient array of B(x1, x2).

REFERENCES

[1] A. Taylor and W. Zwicker, Simple Games: Desirability Relations, Trading, Pseudoweightings, first edition ed. New Jersey: Princeton
University Press, 1999.

[2] L. Nordmann and H. Pham, “Weighted voting systems,” IEEE Transactions on Reliability, vol. 48, no. 1, pp. 42–49, Mar 1999.
[3] D. Leech, “Voting power in the governance of the international monetary fund,” Annals of Operations Research, vol. 109, no. 1, pp.

375–397, 2002.
[4] J. Alonso-Meijide, “Generating functions for coalition power indices: An application to the IMF,” Annals of Operations Research, vol.

137, pp. 21–44, 2005.
[5] E. Algaba, J. M. Bilbao, and J. Fernandez, “The distribution of power in the European Constitution,” European Journal of Operational

Research, vol. 176, no. 3, pp. 1752–1755, 2007.
[6] J. Bilbao, J. Fernandez, N. Jimenez, and J. Lopez, “Voting power in the European Union Enlargement,” European Journal of Operational

Research, vol. 143, no. 1, pp. 181–196, 2002.
[7] A. Laruelle and M. Widgren, “Is the allocation of voting power among EU states fair?” Public Choice, vol. 94, no. 3-4, pp. 317–39,

March 1998, available at http://ideas.repec.org/a/kap/pubcho/v94y1998i3-4p317-39.html.
[8] J.-E. Lane and R. Maeland, “Constitutional analysis: The power index approach,” European Journal of Political Research, vol. 37, pp.

31–56, 2000.
[9] D. Leech, “Designing the voting system for the council of the european union volume,” Public Choice, vol. 113, no. 3, pp. 437–464,

1962.
[10] D. S. Felsenthal and M. Machover, “Analysis of QM rules in the draft constitution for Europe proposed by the European Convention,

2003,” Social Choice and Welfare, vol. 23, no. 1, pp. 1–20, 08 2004.
[11] G. Arcaini and G. Gambarelli, “Algorithm for automatic computation of the power variations in share tradings,” Calcolo, vol. 23, no. 1,

pp. 13–19, January 1986.
[12] G. Gambarelli, “Power indices for political and financial decision making: A review,” Annals of Operations Research, vol. 51, pp.

1572–9338, 1994.
[13] V. G. Deineko and G. J. Woeginger, “On the dimension of simple monotonic games.” European Journal of Operational Research, vol.

170, no. 1, pp. 315–318, 2006.
[14] J. Freixas and M. A. Puente, “A note about games-composition dimension,” Discrete Appl. Math., vol. 113, no. 2-3, pp. 265–273, 2001.

1

2x

2

2x

3

2x

4

2x

1

1

0

0

0

0

0

2

0

0

 1

1x
0

2

1x

0

0

2

0

0

3

1x

0

0

0

2 0

4

1x

0

0

0

0 1

Fig. 4. Coefficient array of B1(x1, x2).

[15] T. Matsui and Y. Matsui, “A survey of algorithms for calculating power indices of weighted majority games,” Journal of the Operations
Research Society of Japan, vol. 43, no. 7186, 2000, available at http://citeseer.ist.psu.edu/matsui00survey.html.

[16] B. Klinz and G. J. Woeginger, “Faster algorithms for computing power indices in weighted voting games,” Mathematical Social Sciences,
vol. 49, no. 1, pp. 111–116, January 2005, available at http://ideas.repec.org/a/eee/matsoc/v49y2005i1p111-116.html.

[17] E. Horowitz and S. Sahni, “Computing partitions with applications to the knapsack problem,” J. ACM, vol. 21, no. 2, pp. 277–292,
1974.

[18] D. Leech, “Voting power algorithms website,” http://www.warwick.ac.uk/∼ecaae/, 2007.
[19] E. Algaba, J. M. Bilbao, J. R. Fernandez Garcia, and J. J. Lopez, “Computing power indices in weighted multiple majority games,”

Mathematical Social Sciences, vol. 46, no. 1, pp. 63–80, 2003.
[20] E. Elkind, L. Goldberg, P. Goldberg, and M. Wooldbridge, “Computational complexity of weighted threshold games,” AAAI-07 (Twenty-

Second National Conference on Artificial Intelligence), 2007.

1

2x

2

2x

3

2x

4

2x

5

2x

1

1

0

0

0

0

0

1

1x

0

2

0

0

0

0

2

1x

0

0

1

0

0

0

3

1x

0

0

1

0

0

0

4

1x

0

0

0

0

0

0

5
1x

0

0

0

1

0

0

6

1x

0

0

0

0

2 0

7

1x
0

0

0

0

0 1

Fig. 5. Coefficient array of B2(x1, x2).

1

2x

2

2x

3

2x

4

2x

5

2x

6

2x

1

1

0

0

0

0

0

0

1

1x

0

1

0

0

0

0

0

2

1x

0

0

1

0

0

0

0

3

1x

0

0

0

1

0

0

0

4

1x

0

0

0

0

0

0

0

5
1x

0

0

0

1

0

0

0

6

1x

0

0

0

0

1

0

0

7

1x 0 0 0

0

0

1 0

8

1x 0 0 0

0

0

0 1

Fig. 6. Coefficient array of B3(x1, x2) and B4(x1, x2).

APPENDIX

Mathematica Code to compute Banzhaf Indices of players in a Multiple Weighted Voting Game

In[44]:= H∗:Mathematica Version:5.2, Package Version:1.10 ∗L

H∗:Name:Compute_Banzhaf _Indices _of _MWVG ∗L

H∗:Authors:Haris Aziz Hharis.aziz@warwick.ac.ukL ∗L

H∗:Summary: The program takes as input a multiple

weighted voting game with integer weights and quotas. It uses the

generating functions to compute the Banzhaf index of every player∗L

H∗:References: Computing power indices in weighted multiple majority games

by E.Algaba, Mathematical Social Sciences 46 H2003L pages 63−80.∗L

w = 885, 2, 1, 1<, 83, 2, 1, 1<<; q = 887<, 85<<;

Print@"weights: ", MatrixForm@wDD; Print@"quotas: ", MatrixForm@qDD;

m = Part@Dimensions@wD, 1D; Print@"There are ", m, " weighted voting games"D

n = Part@Dimensions@wD, 2D; Print@"There are ", n, " players"D;

Array@symmwithprevious, nD; symmwithprevious@1D = False;

For@i = 2, i < n + 1, i++, symmwithprevious@iD = True;D;

For@i = 2, i < n + 1, i++ ,

For@j = 1, j < m + 1, j++, If@w@@j, iDD != w@@j, i − 1DD, symmwithprevious@iD = False;,DDD;

For@i = 1, i < n + 1, i++, If@ symmwithprevious@iD,

Print@"Player ", i, " has same weights as player ", i − 1D,

Print@"Player ", i, " does not have same weights as player ", i − 1D DD;

Bfunction = Product@1 + Product@x@iD^w@@i, jDD, 8i, 1, m<D, 8j, 1, n<D;

longBfunction = Expand@BfunctionD; Print@"Bfunction = ", BfunctionD;

Print@Array@x, mDD; maincoefmatrix = CoefficientList@longBfunction, Array@x, mDD;

Print@"CoefficientMatrix for the main GF is ", MatrixForm@maincoefmatrixDD;

For@j = 1, j < n + 1, j++ , b@jD = BfunctionêH1 + Product@x@iD^w@@i, jDD, 8i, 1, m<DL;

longb@jD = Expand@b@jDD; Print@"Generating Function of player ", j, "=", b@jDD D

kk = 8<; For@j = 1, j < m + 1, j++, kk = Append@kk, 8q@@j, 1DD + 1, Total@w@@jDDD + 1<DD;

winningmatrix = Take@maincoefmatrix, Part@kk, 1D, Part@kk, 2DD;

numofwinningcoalitons = Total@winningmatrix, mD;

Array@x, mD; Array@coefmatrix, mD;

coefmatrix@1D = CoefficientList@longb@1D, Array@x, mDD;

Print@"Coefficient Matrix of player", 1, " =", MatrixForm@coefmatrix@1DDD;

For@j = 2, j < n + 1, j++ , If@symmwithprevious@jD, coefmatrix@jD = coefmatrix@j − 1D,

coefmatrix@jD = CoefficientList@longb@jD, Array@x, mDD;D;

Print@"Coefficient Matrix of player", j, " =", MatrixForm@coefmatrix@jDDDD;

d = Table@0, 8m<, 8 n<D;

For@t = 1, t < m + 1, t++, For@i = 1, i < n + 1, i++, d@@t, iDD = q@@t, 1DD − w@@t, iDDDD;

e = Table@0, 8m<, 8n<D;

For@t = 1, t < m + 1, t++,

For@i = 1, i < n + 1, i++, e@@t, iDD = Total@w@@tDDD − w@@t, iDDDD;

For@i = 1, i < n + 1, i++, ll@iD = 8<;D;

For@i = 1, i < n + 1, i++, For@t = 1, t < m + 1, t++,

ll@iD = Append@ll@iD, 8d@@t, iDD + 1, Part@Dimensions@coefmatrix@iDD, tD<D;DD

example.nb 1

Print H"Computing Small1 matrices"L;

small1@1D = Take@coefmatrix@1D, Part@ll@1D, 1D, Part@ll@1D, 2D D;

Print@"small1@", 1, "D = ", MatrixForm@small1@1DDD

For@i = 2, i < n + 1, i++, If@symmwithprevious@iD, small1@iD = small1@i − 1D,

small1@iD = Take@coefmatrix@iD, Part@ll@iD, 1D, Part@ll@iD, 2D DD;

Print@"small1@", i, "D = ", MatrixForm@small1@iDDDD;

For@i = 1, i < n + 1, i++,

sum1@iD = Total@small1@iD, InfinityD; Print@"sum1@", i, "D = ", sum1@iDDD;

g = Table@0, 8m<, 8n<D;

For@t = 1, t < m + 1, t++,

For@i = 1, i < n + 1, i++, g@@t, iDD = Total@w@@tDDD − w@@t, iDD + 1;DD;

mm@1D = 8<; For@i = 1, i < n + 1, i++, mm@iD = 8<;D ;

Array@errorcheck, nD;

For@z = 1, z < n + 1, z++, errorcheck@zD = 0;D;

For@i = 1, i < n + 1, i++,

For@t = 1, t < m + 1, t++, mm@iD = Append@mm@iD, 8q@@t, 1DD + 1, g@@t, iDD<D;

If@q@@t, 1DD + 1 > g@@t, iDD, errorcheck@iD = 1;,D;D D;

For@i = 1, i < n + 1, i++, If@errorcheck@iD == 1, small2@iD = 8<,

small2@iD = Take@coefmatrix@iD, Part@mm@iD, 1D, Part@mm@iD, 2D DD;

Print@"small2@", i, "D = ", MatrixForm@small2@iDDDD;

For@i = 1, i < n + 1, i++, If@small2@iD == 8<, sum2@iD = 0,

sum2@iD = Total@small2@iD, InfinityDD; Print@"sum2@", i, "D = ", sum2@iDDD;

totalswings = 0;

For@i = 1, i < n + 1, i++, swings@iD = sum1@iD − sum2@iD;

totalswings = totalswings + swings@iD; Print@"swings@", i, "D = ", swings@iDDD;

For@i = 1, i < n + 1, i++, banzhafindex@iD = swings@iDêtotalswings;

Print@"Banzhaf Index of player", i, " is ", banzhafindex@iDDD;

vetoplayerlist = 8<;

For@i = 1, i < n + 1, i++, isvetoplayer = False; For@j = 1, j < m + 1,

j++, If@HTotal@w@@jDDD − w@@j, iDDL < q@@j, 1DD, isvetoplayer = True;, D D;

If@isvetoplayer, vetoplayerlist = Append@vetoplayerlist, iD;

Print@i, " has veto powers"D, Print@i, " does not have veto powers"DDD

Print@"Number of winning coalitions = ", numofwinningcoalitonsD;

weights: J 5 2 1 1

3 2 1 1
N

quotas: J 7
5
N

There are 2 weighted voting games

There are 4 players

Player 1 does not have same weights as player 0

example.nb 2

Player 2 does not have same weights as player 1

Player 3 does not have same weights as player 2

Player 4 has same weights as player 3

Bfunction = H1 + x@1D x@2DL2 H1 + x@1D2 x@2D2L H1 + x@1D5 x@2D3L

8x@1D, x@2D<

CoefficientMatrix for the main GF is

i

k

jj

1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 1

y

{

zz

Generating Function of player 1=H1 + x@1D x@2DL2 H1 + x@1D2 x@2D2L

Generating Function of player 2=H1 + x@1D x@2DL2 H1 + x@1D5 x@2D3L

Generating Function of player 3=H1 + x@1D x@2DL H1 + x@1D2 x@2D2L H1 + x@1D5 x@2D3L

Generating Function of player 4=H1 + x@1D x@2DL H1 + x@1D2 x@2D2L H1 + x@1D5 x@2D3L

Coefficient Matrix of player1 =

i

k

jjjjjjjjjjjjjjjj

1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1

y

{

zzzzzzzzzzzzzzzz

Coefficient Matrix of player2 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0

0 2 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Coefficient Matrix of player3 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

Coefficient Matrix of player4 =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

example.nb 3

small1@1D =

i

k

jjjjjj
2 0 0

0 2 0

0 0 1

y

{

zzzzzz

small1@2D =

i

k

jjjjjj
1 0 0

0 2 0

0 0 1

y

{

zzzzzz

small1@3D =

i

k

jjjjjj
1 0 0

0 1 0

0 0 1

y

{

zzzzzz

small1@4D =

i

k

jjjjjj
1 0 0

0 1 0

0 0 1

y

{

zzzzzz

sum1@1D = 5

sum1@2D = 4

sum1@3D = 3

sum1@4D = 3

small2@1D = 8<

small2@2D = H 1 L

small2@3D = J 1 0

0 1
N

small2@4D = J 1 0

0 1
N

sum2@1D = 0

sum2@2D = 1

sum2@3D = 2

sum2@4D = 2

swings@1D = 5

swings@2D = 3

swings@3D = 1

swings@4D = 1

Banzhaf Index of player1 is
1
����
2

Banzhaf Index of player2 is
3
�������
10

Banzhaf Index of player3 is
1
�������
10

Banzhaf Index of player4 is
1
�������
10

1 has veto powers

2 does not have veto powers

3 does not have veto powers

example.nb 4

4 does not have veto powers

Number of winning coalitions = 5

example.nb 5

