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SUMMARY

The content of thIB thesis is a proof of the following
theorem: Let (T be a finite group admitting a fixed-point-
free coprime automorphism <x of order rst, where r,s and t
are distinct primes and rst is a non-Fermat number. Then
Gis soluble. A non-Fermat number is defined to be one
which is not divisible by an integer of the form ¢(“hl
(m>1) ; there are infinitely many non-Fermat numbers
which are the product of three distinct primes. Gis said
to admit A, a subgroup of Aut G, the automorphism group
of G, fixed-point-freely if and only if Cg(A) = {g € GI
a(g) = g for all &£ A}= {l}. The result provides a
solution to part of this well-known conjecture: let G

be a finite group admitting tha automorphism group A
fixed-point-freely and, if Ais non-cyclic; also assume |[j

is coprime to |G]. Then Gis soluble.



INTRODUCTION

Suppose G denotes a finite group and A a subgroup of
Aut G, the automorphism group of G. Then A is said to act
fixed-point-freely upon G (or, sometimes, Gis said to
admit A fixed-point-freely) if and only if Cg(A) =
{g e Gla(g> = g for all a£ A} ={I1}.

The following conjecture is well knowns-

Let Gbe a finite group admitting the automorphism

group A fixecUpoint-freely and, if Ais non-cyclic,

also assume [A] is coprime to |Gj. Then Gis soluble.

The nain result of this work (theorem 10.6) provides
a solution to part of this conjecture.

MAIN TKEOREM

Let Gbe a finite group admitting a fixed-point-free

coprime automotphism ocof order rat, where r, s

and t are distinct primes and rst is a nom-Fermat

number. Then Gis soluble.

A non-Fermat number is defined to be one which is not
divisible by an integer of the form T+l (m ~ 1). Observe
that there are infinitely many non-Fermat numbers which
are the product of three distinct primes.

The first significant step in establishing the ’fixed-
point-free conjecture' stated above was made by
J.G. Thompson £17] in 1958 who showed that when A has
prime order then Gmust, in fact, be nilpotent. More

recently, E.W. Ralston [I5], in 1971, verified the



Vi

conjecture when JA] is the product of two distinct primes.
These two results and the MAIN THEOREM above constitute
the present progress on the conjecture when A is of
square-free order.

In the case that A is non-cyclic, R.P. Martineau
[12 , u] has successfully resolved the conjecture when
A is an elementary abelian r-group, r a prime, (he has
actually proved slightly more; see [13]) and M .Pettet TIl4l
has dealt with the case when A is the direct sum of an
elementary abelian r-grodp and an elementary abelian
s-group (r and s primes) provided neither r nor a is a
Fermat prime.

A brief outline of the proof of the main theorem
follows.

After mustering together, in section 1, known results
which are required in the proof, section 2 sees the
appearance of the 'star group', the concept of 'star-
covering' and some important results concerning soluble
groups which admit fixed-point-free automorphisms (lemmas 2.10,
2.13, 2.15). Sections 3 and 5 are devoted to pinning
down the possible structure of the maximal «-invariant

y}-subgroups of a minimum counterexample G (to
theorem 10.6) w hereand rj are subsets of 7T(G). And
section 4 consists mostly of criteria for normal complements.

In section 8, it is shown that the «-invariant
Sylow subgroups of G of type {1,2,3} generate a soluble
Hall subgroup of G. Section 6 examines the consequences
of various interactions between the sets 77 asyM. and Tj

vary. The purpose of these so called ‘linking results’



is to aid the 'patching together' of G from information
about for different”™/i and rj with the aim of
factorizing G as the product of two properex-invariant
subgroups. It is left to sections 9 and 10 to show that
these resulting factorizations are inadmissible in a
minimal counterexample.

To the best of my knowledge, any work not otherwise

attributed is original



i. dotation and preliminary results

The notation employed in this work, except where
specified, corresponds to that of Gorenstein [8] and all
groups under consideration are assumed to be finite.

First, some well known properties of fixed-point-
free automorphisms will be listed. Let G be a group
admitting the automorphism oc fixed-point-freely.

(1.1) If His an oc-invariant normal subgroup of G, then

ocinduces a fixed-point-free automorphism of G/H.

(1.2) Let X be a conjugacy class of subsets of G.
If X is invariant under oc, then there exists a

unique element of X which is «-invariant.

An important consequence of (1.2) is:

(1.3) For each pe TI(G) there exists a unique
oC-invariant Sylow p-subgroup, P, of G. Further-
more, any a@—invariant p-subgroup of Gis contained
in P.

From (1.3) it fellows that if His an «.-invariant
subgroup of Gand, if P denotes the oc-invariant Sylow
p-subgroup of G, then Pr» His the (unique) oc-invariant
Sylow p-subgroup of H. Also, observe that if G possesses
an «-invariant Hall tt- subgroup H, then H is the unique
such subgroup, since H must be generated by oc-invariant
Sylow p-subgroups of G, p£7t ; clearly any«-invariant

7T-subgroups of G will be contained in H.



Proofs for (1.1),(1.2) and (1.3) may be located in
Gorenstein [8, ChapterlO,Sectionl]} his theorem 10.1.2
is the sane as (1.3) but the proof given also establishes

the above stronger statement, (1.2).

Combining (1.3) with a well known result of P.Hall's
gives:
(1.4) If Gis soluble andrris a subset of t«(G), then
there exists a unique «-invariant Hall = subgroup
of G, which contains every «-invariant n-subgroup

of G

(1.5) (Ralston [15, 2.123) Gis soluble if and only
if for each pair of primes p,q€ rt(G), the
corresponding «-invariant Sylow p- and g-

subgroups permute.

Now let G be a group with A a subgroup of AutG.
(1.6) (i) If His an A-invariant subgroup of G, then
so too are N&H) and CG(H).
(ii) [G,A], which is defined to be «Cg”~aig)!
g6 G, a€ A, is an A-invariant normal
subgroup of G.
(iii) 1If BMA, then [GBj and Cq(B) are A-invariant.

Further suppose that ( I4.]JAl) = 1.
(1.7) (i) G= Cg(A)[G . A]
(ii) [GA] =[[G,A],A].



(iii) 1f H~Cg(A) = C, then NGH) = UC(H)CG(H).

(iv) If His a normal A-invariant subgroup of
G, then C”~U) = Cg(A)n/H.

(v) If His an A-invariant normal subgroup of
G contained in CG(A), then [G,a] centralizes H.

(vi) If Gis soluble and CG(A) contains a Hall
Tf-subgroup, then G = CGA)0™,(G).

(vii) For each p €7t(G) there exists at least
one A-invariant Sylow p-subgroup and any
two A-invariant Sylow p-subgroups of G
are conjugate by an element of C&A). Moreover,
every A-invariant p-subgroup of Gis contained
in some A-invariant Sylow p-subgroup of G

(viii) If Gis abelian, then G= Cg(A) x [G,al.

(ix) If G= HxK is abelian with H A-invariant,
then there exists an A-invariant direct
summand of Hin G

(x) If His a subgroup of CGA) with CGH) -é H
and G is nilpotent, then G = Cg(A).

(xi) Suppose [G,A] -$-H where His an A-invariant
subgroup of G, then [G,a] = £h,a

(xii) If G= HK There Hand K are A-invariant

subgroups of G and K~ CG(A), then £g,a] H.

(xiii) If His an A-invariant subgroup of G, then

[h,a] <1 hcNg(h) (a) .

Parts (i)-(iv) are to be found in Glauberman [3]
whilst parts (v) and (Vi) are given, respectively, as

lemmas 7 and 8 of Glauberman [5] and parts (vii), (viii)



and (ix) are respectively 6.2.2, 5.2.3 and 3-3.2 of
Gorenstein [8].
Proof ( of parts (x)-(xiii))

(x) From (iii), N&C) = NC(C)CG(C) = CCQC) where
C = Cg(A) and therefore, as C&H) < H™ C,NGC) = C. By
a well known property of nilpotent groups it follows that
G= C= Cg(A).

(xt) As [GAjiS H, [[G,a],a] < [H,A] and hence
[GA] ~ [H,A] by part (ii). Clearly [HA] < [g,a] and so
[G.A] = [H,A].

(xii) Direct calculation yields this result.

(xiii) Parts (xi) and (xii) show that £nh,A] =
[HCN (h) (a) ,a] and then by (1.6) (ii) the result follows.

Some notation and definitions will now be introduced:
Hypothesis A Let G be a non-soluble group admitting a
fixed-point-free automorphism o with all proper
«-invariant subgroups of G soluble and G possessing no proper

non-trivial oc-invariant normal subgroups.

Hypothesis B |If hypothesis A holds with o< being of

square-free order.

Definition 1.8 Let d be a positive integer. Then d is
said to be a non-Fermat number if and only if dis not

divisible by an integer of the form 2®+! (m> 1).



Hypothesis C If hypothesis B holds, ( I«],]G]) =1 and

Joil=r~...rn is an odd non-Fermat number.

Hypothesis D If hypothesis C holds with n = 3«

If a.is a fixed-point-free automorphism of square-free
order with |o] = ...rn, then, for 14 i < n,”™ will
denote a fixed element of <pc> which is of order r~. When
n=3/0,0'j't and r,s,t will also be used in place of

JE2»Man”® ri»r2*r3*

Suppose G admitsafixed-point-freely and His an
«-invariant subgroup of G. Then will also be written
for where 736<«>. |If hypothesis A holds and HEf G,
then His soluble and so for each subset 7Tof tc(H) there
exists a unique «.-invariant Hall 7T-subgroup of H wiiioh
will be denoted by Hrt In some circumstances when
7i sytu/ji H™ will also be written as Hy ~. If/t and q are
subsets of T(G), 7*i is defined to be the set of

maximal «-invariant subgroups of G.

(1.9) (Glauberraan[7]) Let G be a p-soluble group (p a
prime) admitting a fixed-point-free coprime

automorphism group. Then G= Ng(J(P))Cg(Z(P)) Op, (G).

Results (1.10)-(1.16) with the exception of (1.13)
represent a slight generalization of some work of
Martineau ([12j,f13j). For the duration of these results
it will be assumed that hypothesis A holds and, in
addition, for (1.13)-(1.16) that (Jocl,|JG]) = 1. Further,

let Mand N respectively denote «-invariant nilpotent



Hall/<- and /~-subgroups of G. Hera/u. and are
assumed to be disjoint subsets ofniG). Let X
(respectively Y) denote the largest oc-invariant
subgroup of H (respectively N) which is permutable

with N (respectively M); note that suoh X and Y exist.

Thus { MY ,NXjC7 ~ ~ |, and MYn NX = XY.

(1.10) ('The uniqueness theorem' Let HK € N
with OMN(F(H)) / 1/ 0~ (F(H)) and let L be an
oc-invariant subgroup of F(H) such that
Ln O~MFH)) / 1/ LoO~NP(H)). If L (K, then
H= K.

An important corollary of (1.10)is:
(1.11)  Let with 0*(F(H)) / 1/ (F(H))
and let L be a non-trivial ot-invariant subgroup
of P(H)* Then (ng(L)}. )< H.
Remarks (i) The proof given in Martineau [12] for
lemma 4 translates into a proof for (1.10) since a
suitable analogue of lemma 3 [12} holds.

(i) A result of the type presented in (1.11)

has also been obtained by Ralston [I5].

To carry through the programme of extending
Martineau's results to nilpotentoc-invariant Hall
subgroups the following generalization of Glauberman's
factorization theorem (1.9) in required;

(1.12) Let G be a soluble group admitting a fixed-point



-free coprime automorphism group A and let N
be a nilpotent A-invariant Hall (*-subgroup of

G. Then G= <N&J(P)), C&Z(P))\WzZ* > 0 ,(G).
Proof By induction upon |G]+]i)]j3learly may assume that

pgr and let P denote the A-invariant Sylow p-subgroup
of Gand setyw = 7'sip}* Employing (1.9) yields that
G= Ng(J(P)) CG(Z(P))OpI(G). By a well known property
of soluble groups, OpI(N) ~ OplI(G) and so by induction

_up’(G) vV V'
%il(wﬁ!(o)) -0 P(6)n 0/*.1(OP1(G ))AO7!(G) = I) Now (112)

follows.

(1.13) Suopose Z(N) H€ /mu then MoH= (/)..(H)(HnX)

Proof Suppose the result is false. Let Q™ ( = QhH;
Q being the rt-invariant Sylow q-subgroup of G denote
the «-invariant Sylow qg-3ubgroup of (HnN) = N~ By (1.12)
H= <Nh@l(Q1)), CjjiziQ~™)! g€ 7r(N1)> 0,t(H). If Nfi(J(Q1))
and Gjj(Z(Q~")) are contained in NX for each ge tw(NY,
then H = 0M(H)(HNnNX) whence MnH = 0,,(H)(Hr\X).
Because hypothesis A holds,for each q€ TfiN~, NGJ(Q?M))
and CgiZiQ-j™) are soluble. For each q € tw(N-~, since
Z(Q)™ QnH = QAf CgnQj)) ™ {c6(Z(QX)) ™" is
contained in NX. Therefore, as the result is assumed
false there exists a qf such that NMJ(Q7™)) -~ NX
A contradiction can now be obtained by choosing

an oc-invariant g-subgroup maximal subject to



Z(Q) ™~ & and Ny(J(Q+)) X and mimicking -he latter

part of the proof of lemma 2.1 in Martineau [13].

(1.14)  1f MN/ Nil, then CXMY) / 1 A~ O~(NX).

(1.15) If H6 then
(i) ONFttO) / 1/ ON(F(H)f
(ii) Z(N), zZ(v) ~ H,
(iii) H= P(H) (XnH) (Yn H), and
(iv) XnP(H) =1 = YnP(H).

By restricting attention to ~ the following
strengthening of (1.10) may be obtained:

(1.16) If HK€  and L is a non-trivial
o(-invariant subgroup of F(H) which is also
contained in K, then H = K.

Proofs for (1.14), (1.15) and (1.16) may be culled

from section 2 of Martineau [I3j making use of (1.13).

Next some results concerning fixed-point-free

automorphisms of square-free order will be reviewed.

(1.17) (Thompson [17]) A finite group admitting a
fixed-point-free automorphism of prime order

is nilpotent.

(1.18) (Balston [I5j) A finite group admitting a
fixed-point-free automorphism of square-free

order rs is soluble.(r and s primes).



(1.19) Let Gbe a group admitting the coprime
fixed-point-free automorphism oc of square-free
order rsf and set p =<x8 and C =« r. Then
(i) G has Pitting length at most 2.

(ii) If neither r nor s is a Fermat prime,then
G/F(G) = (G/F(Q) X (GI/F(G))

(iii) 1If P = "Pqg Wherre P is the a-invariant
Sylow p-subgroup of G, then G has a
normal p-complement.

Remarks (i) By (1.18) G must be soluble and from

Berger [I], (i) follows.

(ii) This appears as theorem 3.3(b) of

Ralston [15].

(iii) The proof of lemma 3.2 in Ralston [15]
furnishes a proof for this result, as the solubility
of Gremoves the necessity for employing the Thompson

normal p-complement theorem.

(1.20) (Ralston [I5,theorem 4.1]). Let G be a group
admitting a fixed-point-free automorphism oc of
square-free order and let P be the «-invariant
Sylow p-subgroup of G If P =1 for
i =1f....n, then P is a dir(lect summand of G

The proof given in Ralston [15” is for n = 2 but

the proof works for any n.

(1.21) Suppose hypothesis D is satisfied and let P

and Q be «-invariant Sylow p- and q-subgroups
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of G. If \p / 1/ P«, N1 NQand T =
Q 1, then PQ = QP.

A proof for (1.21) may be extracted from section 6

of Ralston [15].

(1.22)

Suppose G is a p-soluble group admitting oc (not
necessarily of square-free order ) fixed-point-
freely. If P+ is an «-invariant p-subgroup of
G such that P+ =1 for all p €<06>*, then
P+se ONiG).

(1.22) may be established by a proof analogous to

the one given in Ralston [15] for lemma 3.5 ( and

does not require octo be of square-free order).

The remaining results of this section are not directly

concerned with fixed-point-free automorphisms.

(1.23)

([10, Satz 17.131) Lfet P be an extra-special
p-group of order pO'_& admitting a coprirne cyclic
automorphism group A which centralises Z(P)

and acts regularly upon P/z(P). Let G denote

the semi-direct product P with A. Suppose G iB
faithfully and irreducibly represented on the
K-vector space V, where Kis an algebraically
closed field and (char K,JG]) = 1. If X

denotes the character of this representation

of Gon V and p the regular character of A, then

5m. where m i s some

irreducible character of Aand 6 = +1 or -1
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(1.24) (Wielandt [IO,page 68Q]). If G =HK where
H and K are nilpotent Hall subgroups, then

Gis soluble.

(1.25) (Glauberman [6,theorem I(iv)]) Let Gbe a
finite group which admits a coprime automorphism
group A. If Cg(A) contains CE-r) where t is
an involution of G, then [G,a3 is a normal

nilpotent subgroup of G

(1.26) (Janko and Thompson [Il]) Let G be a non-r
abelian simple group, and let P G SylgG.
Assume that SCNj(P) = 0 and that if x is an
involution in P such that [PjCp(x)] 2,then
C&x) is soluble. Then Gis isomorphic to one
of the following groups:- PSL2(q) (> 2, A
Ml» psi15(5), PSU3(3) or PSUjUJ.

(1.27) (Gorenstein and Walters [9]) Let G be a finite
group with Og,(G) =1 and let P 6 SylgG.
Suppose that SCN7iP) § 0 and that the
centralizer of every involution of Gis soluble.
Then 02,(CG(x)) = 1 for every involution xeG.
(1.27) is a weaker version of theorem B of [9].
The definition and elementary properties of the
Thompson subgroup of a p-group can be found in

Gorenstein 8, chapter §j.



2. ON SOLUBLE GROUPS 71TH A FIXED-POINT-FREE

AUTOMORPHISM, AND THE DEFINITION OF THE 1STAR GROUF'.

Suppose G is a finite group admitting a fixed-point-
free automorphism oc . Let Hhe an «-invariant subgroup
of G and a subgroup of <<x>.

Definition 2.1 H*</f> =< CH™)] 1~ D< I3l > -

That i 89 is defined to be the subgroup of
H which is generated by the fixed point sets (in H) of
the non-trivial powers ofp .

When < = <«.> and there is no possibility of

confusion H <Xy will be written as H .

Remarks (i) (1.20) may be rephrased as: suppose Gis
a group admitting a fixed-point-free automorphism oc
of square-free order and assume that P_V: 1, where

P is the «-invariant Sylow p-subgroup of G. Then P is
a direct summand of G.

(ii) I1f p is of square-free order r~ ...rB, then

H</C> = < CHMj)|1 ~ *<»>e

(ii) If Kis ana-invariant subgroup of fi,
then K*</5><; H*</}> .
(iii) If <r>< <p> , then H*r>< H*</}>.

(iv) If (/yS), IH) = 1 and Nis an «-invariant



subgroup of H, then (H *~) = (H)*<p> (*ars denote
quotients by N ).

Proof (i) This follows as is generated by
O-invariant subgroups of G.

(ii) This is clear as GK(~ )™ Cy(pt) for all j,
1 < J< 1M

(iii) Transparent from the definition.

(iv) As (I£]. H) =1, by (1.7) (iv) (H™jj =

for all jf 1~ j< Ifl, and so it follows that
(H)*</3> =< <1?1> - < N i< Ips>

=~y

Lemma 2.3 Assume hypothesis A is satisfied and let P
denote the «-invariant Sylow p-subgroup of G. Let n be
a subset of tt(G) containing p, such that « =f acts
fixed-point-freely upon all «-invariant 7r-subgroups of
Gb or, in other words G" is a n'-subgroup. If R is

a non-trivial «-invariant p-subgroup of G containing

p*</3> and (P»I1"D = 1>then {»*<»)},, < (NgiP)}*.

Proof Choose R maximal with respect to the following;-
(1) R is an «-invariant p-subgroup,
(2) R< R, and
(3) (V R)I™ {NGR)"™ .
Clearly, there exists at least one such R.
Since R is non-trivial, because of hypothesis A,

Ng(R) is a proper «-invariant subgroup of G and

13
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therefore must he soluble. Hence K/R is soluble, where
K= {NgR}"_.

As (p,I/3]) = 1, (Np(R)/R) =1~ (1.7) (iv) and
so, from (1.21), Np(R)/®<IK/™ as K admits p fixed-
point-freely. Thus No(R)™? K which together with (3)
implies {Ng(R)3,.< INGR)}j_ = K< {N&Np(R)))n. Since
Np(R) also satisfies (1) and (2), Np(R) = R.
Consequently P = R and therefore {Ng(R)*_~ |Nqg(P)}

Corollary 2.4 1If <x>=<2> in lemma 2.3, then

ng(r)”™ ng(p).

Proof Immediate from lemma 2.3.

Lemma 2.5 Assume that the hypothesis of lemma 2.3 holds
and, in addition, that ocis of square-free order. Then,
setting K=(V R )},

(i) [P,Lj =[r,1]™ R, where L is any<-invariant
subgroup of K,

(ii) OjcP*~) = (~(P), and

(iii) If <oc>=<p> .then {cGP™)}p, = {CG(P)}pt.

Proof (i) Consider the chain R = Pg< Pl eee <@Pm= P
where PQ = R and P = Np(pi_i) for * = 1l» eeey” =
Clearly each P~ is ot-invariant. Prom lemma 2.3, L™

so each PN is L-invariant. As
NiNi-D)*</»>= 1» applying (!'=») to MPj/Pi.l) for
each i gives that [P,Lj = [... [P,IO, =.J *»8 R and
so [P,L] = [R,L].
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therefore must be soluble. Hence K/R is soluble, where
K= (VR)}™.

As (p, I\) =1, (Np(R)/€) *</;> =1 by (1.7) (iv) and
so, from (1.21), Up(E)/S <1 K/Il as K admits p fixed-
point-freely. Thus Np(R )0 K which together with (3)

implies {NG(R)}-- = K< (N&Np((R)”™ . Since
No(R) also satisfies (1) and (2), Hp(R) = R.
Consequently P = R and therefore {ng(R} " (P)}
Corollary 2.4 If <«> = in lemma 2.3, then

ng(r)<. ng(p).

Proof Immediate from lemma 2.3.

Lemma 2.5 Assume that the hypothesis of lemma 2.3 holds
and, in addition, that oc is of square-free order. Then,
setting K={V R)}Tr\P»

(i) [p,1] = [r,1]<: R, where L is any« -invariant
subgroup of K,

(ii) CK(P*</f>) = Cj”~P), and

(iii) 1f <«> =<p> .then {cGPA)}pl = {CG(P)}pt.

Proof (i) Consider the chain R = Pg< P~< ... < Pm=P
where PQ = R and P = Npo(pi_i) f°r i = 1» eeerme
Clearly each P™ is «.-invariant. Prom lemma 2.3, L "

V P> so each PAis L-invariant. As
(pi/pi-i>*</?>m 1» applying d*®) t0 L(pi/ti_i) for
each i gives that [p,Lj = [... [P,L],...] ,L] R and
so [P,L] = [R,L].
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(ii) If P1 =11,then the result 1b obvious,
</»

bo it may be supposed that P* .. / 1,Settin

v pp <f> g
R = P:<p and L cK(P~/j>) in part (i) gives
[°kpt €Ysp P - 1 01)4 80 CK(P <n>) *  CK(P) WhiOh
together with CK(P) -s® CK(P ™ >)»yields (" (P~A"™)
CK(P).

(iii) This follows from (ii) with 7T = tu(G).

Lemma 2.6 Let G be a soluble group admitting the square-
free automorphism a fixed-point-freely with P denoting
the «-invariant Sylow p-subgroup of G.If (p, jc]) =1
and Kis ana-invariant p'-subgroup of Gnormalized by

P »then K » Ot(G).

Proof Let G= G/OpI(G).As (p,Jc*) = 1,P* = P* by

lemma 2.2(iv). Thus [0p(G)*, K] & O((G)r*kK = 1 and bo
from lemma 2.5 (iii) it follows that [0p(G) , K] = 1.

By the Hall, Higman centralizer lemma, Cg(Op(G)) 0p(G)
and hence K= 1. Thus K < 0pl(G).

Lemma 2.7 Suppose G= PA, where P is a normal

p-subgroup of G and A = <3*> is cyclic with its order

a {2,p} = non-Fermat number.Let V be a F*G™module which
is faithful for G (PCI denotes the finite field of ¢
elements, g a prime) with (q,]J]GH) =1. If P has a non-
trivial «-invariant section upon which oc acts regularly,

then Cy(oc) / 1.
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Proof Recall that an automorphism group is said to

act regularly if and only if each of its non-triviel
elements act fixed-point-freelyi

Assume the result is false and choose G and V to
he a counterexample to the lemma subject to | + dim V
being minimal.lt iri.ll be shown for such a pair Gand V
that Cy(<x) must be non-trivial and hence it will follow
that no such counterexample exists.

Suppose P is a field which contains a copy of F~*,
then, it is well known that, dimp (Cy(oc)) =
dimp(C(p yj (<x)) .Thus, as the o%jective is to
demonstrate that Cy(oc) / 1, there is no loss in
considering V as a vector space over P,which will be
done with P chosen to be algebraically closed.

By hypothesis, there exists «-invariant subgroups
Wand Z of P such that Z W and the induoed action of
x upon W/Z is regular.Clearly AV and V satisfy the
hypotheses of the lemma and so, if W P, it would
follow that Cy(oc) ji 1 contrary to the choice of G and V.
Thus W= P.Further, it may be deduced that Wiz ( = P/Z )
has no non-trivial property-invariant subgroups. For,
suppose that is a subgroup of P containing Z for which
WVZ is such an «-invariant subgroup of W/Z, then, as
the hypotheses of the lemma hold for AW and V (observe
that « acts regularly upon WNZ (/ 1 )), it may be asserted
that Cy(<x) / |I. Hence P/Z is an elementary abelian p-group
and so, in particular, (i'(P)» Z. In fact, 0(P) = Z

Suppose otherwise and let bars denote quotients by (2((P).
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Appealing to Maschke's theorem gives P/tf(P) = P « Z x 2
where Z» is anof-invariant subgroup of P. If Z~ denotes
the inverse image of 2* in P,then ~ is a properof-invariant
subgroup of P which has of acting regularly upon Z"Z
(= / 1). Again, as I1Z™ < |P], Cy(<*) 5 1 whence it has
been shown tha{/ o(P) = Z

A further reduction of the minimum situation may be
obtained in the guise of being able to assume V is irreducible.
If Vis not an irreducible G-module, then Maschke's
theorem gives 7 = U ® Ug® ... © where each is an
irreducible G-module and f > 1. Since G acts faithfully
upon V and P is non-trivial, there exists at least one
such that P ~kerU.,. In view of P/0(P) being irreducible
under the action of of , Pnker ff(P). Observe that
[(Anker Uj), p] Pr\ker Uj~ 0(P) and so the regularity
of of upon P/0(P) demands that Ar>ker U™ = 1. Since
dim U. <. dim V and the pair G/ker and satisfy the
lemma's hypotheses, <), (cc) / 1 implying Cv(oc) / 1.

let Dbe a non-trivial normal abelian p-subgroup of G.Then,
an appeal to Clifford's theorem yields that VjD =
VI © ... ® Vd where each is itBelf the direct sum of
irreducible I>-modules which are pairwise isomorphic ( as
D-modules ). Usually the 7~ are called the Wedderburn
components of 7 (with respect to D). Por each g6 G,
the mapping ngt 7i*->7ig = {vg |v € 7~} is a permutation of
the Wedderburn components of 7 (with respect to D).
Moreover, this permutation representation of G (that is
mi. gt-’\md upon the set of Wedderburn components of 7 (with

respect to D) is transitive and, because P has been

CLRLLIY 0N o X jtp
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assumed algebraically closed, ker m= DCg(D). The aim of
the ensuing analysis is to show that the number of
Wedderburn components of V with respect to Dis one. So for
a contradiction suppose d > 1. Since d;>1, V may be
regarded as being induced up from a proper subgroup of G
More explicitly: if 1, g2» gd is a set of right coset
representatives of the stabilizer of in G (in the
permutation representation on the Wedderburn components),
then Mj. V,$ ... ©V, =V, ®V. ® ... ®YV, and so
V = Since the act of 'inducing2a module up,dis transitive,
it may be taken that Un S'V where U is an H-module and
His a maximal subgroup of G.

Suppose that H contains P;clearly H= P(Hp A) and
[G:n] is a prime.Observe that ker U cannot contain F
since P<3 G and thus P r\ ker U¢ 0 (P).As before,
[(ker Un A), P] ~ 0(P) implies that ker Un A =1 and so,
as |H =< | and the hypotheses of the lemma hold for
H/ker U and U, it may be inferred that C*H r\ A) 0 l.Henoe
Cy(«) 0 1.

Now consider the case that H does not contain P;
without loss H= (Pn H)(AnH). If A~ H, then
H P(ANE) ™ Gcontradicts the maximality of H So A~ H
and, by appealing to the fact that E/O(E) admits A
irreducibly, it follows that Po H= 0(E). Let ge P\ 0(p)
and set g* = {ga = a_lgalJ ae A}; clearly 1Ig™M = JA] It
is claimed that g” is contained in some set of right
cosets for 0(p) in P. Clearly it suffices to show that if
®1’ € are such that gl_1g2€ O0(E) then = g2
Suppose there is such a pair gx,g2 € g* for which
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gi_lg2 £ i~(P). Clearly g2 = gna for some a € A and so

g “lgla £ ~(p) whence, if a/ 1, gx£ (/(P) by the regularity
of Aon P/{/(P). But this then forces g £ ~(P) which is

not so. Thus a =1 and so gp = g2. Since a complete set of
right coset representatives for (/(P) in P is at the same
time a complete set of right coset representatives for H in
G, by choosing a complete set of right coset representatives
containing g~ for some g £ P\O0(P), it may be seen that,

as V= U, Cy(oc) / 1 in this case also.

Hence the objective, namely showing that d = 1, has
been attained, and consequently G= CGD) and Dis cyclic.
The first assertion follows from ker m= DCGD) and G
acting transitively upon the Wedderburn components of V with
respect to D, whilst the second is a consequence of the
faithfulness of Gon V and V |p being the direct sum of
pairwise isomorphic irreducible D-modules combined with the
fact that a non-cyclic abelian group cannot possess a
non-trivial faithful irreducible representation over an
algebraically closed field. It may thus be deduced that P
has class at most 2 (otherwise there would exist a
characteristic abelian subgroup of P not contained in Z(P)),
Z(P) is cyclio and is centralized by A. Let a€ A and
set P = P/P' then, by (1.7)(viii), P =Cp(a) x [p, a].

If Cp(a) / 1, then the inverse image of [p, a], [p, a](/(p),

in P would be a proper «-invariant subgroup of P whence,

as the necessary hypotheses hold for [p, a]?f(P) and V, Cy(oc) ™ 1
could be deduced. Therefore for each a6 A”, Cp(a) =1

and so Cp(a)™ P'. Evidently P/P' must then be an elementary

abelian p-group (if oc does not act irreducibly upon p/p*,



20

then induction may again be used) and consequently

(dp) < P'< Z(P) < Cp(A). The irreducibility of P/0((P) as
antx-module implies 0((P) = P" = Z(P) = Cp(A). Suppose

X, y 6 P; then [?c,.ylp = [xp, Y] (see 8, page 19, lemma 2.2(i)
implies as xp € Z(P), that [x, y]p = 1. Thus P' has

exponent p as well as being cyclic and so |P|

p.
The position now allows the use of (1.23); so (in

the notation of (1.23)) X]JA = (pm5),0 + (6 +1 or -1).
If 6 =+1, then will contain the regular character

as a constituent which means that Cy(oc) would be non-trivial.
Thus 5 = -1. Moreover, if + I/1A1 > 1, X]A would have

the regular character as a constituent , so it may be
asserted that pm+ 1 = |JA]. Recalling that A is odd, the
only possibility available is p =2 and so JA] 1b not; a

non-Fermat number. This gives the final contradiction.

Definition 2.8 Let G be a group admitting a fixed-point-free
automorphisma , H an «.-invariant subgroup of G and
Then His said to be star-covered with respeot to = if and

only if for eaoh«.-invariant subgroup Kof H, K =

Remarks When <p> =<x>and confusion is unlikely, H will
just be referred to as being star-covered.Observe that

if His amoc-invariant subgroup of G which is star-covered
with respect to p, then all o<-invariant subgroups of H
are likewise star-covered with repect to Al s o note
that, if His an x-invariant subgroup of G such that all

its ¢¢i-invariant Sylow subgroups arc star-covered with
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respect top , then so too is H star-covered with respect

to fl «

Lemma 2.9 Let G he a finite group admitting a fixed-point-
free automorphism«, H be an «-invariant subgroup of G
and S£<«.>. Assume that (JH[].I™]) =1 and let Mand N be

normalo<-invariant subgroups of H.

(ii) If HM is star-covered with respect to

and Mn N = H.

Proof (i) Suppose / Hthen, as N~
(H/N)*<p= (H~<p)N/N = H*<p/N / H/N. Thus H*</?>= H.
(ii) As Nn M= 1, NM)i STn. Therefore N= N ">

because of lemma 2.2(iv) and the fact that HM is star-

Lemma 2.10 Suppose Gis a soluble group admitting the
coprime fixed-point-free automorphism « of odd order.

Let Hand K denote, respectively, the «-invariant Hall

7Z- and K'-subgroups of G and suppose <p> is a subgroup of
<x>for which Ipl is a non-Fermat number and Cg("3) = 1.

Then H/0_(G) is star-covered with respect top.

Proof By induction upon |G|; let G denote a counterexample
of minimal order. As (/«],]G]) =1, clearly it may be
assumed that O”G) = 1 and so to derive a contradiction

it will suffice to show that H is star-covered with respect
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toyS ) also note that, by the Hall, Higman oentralizer

lemma, CE(OiC,(G)) =-0~. (G). Further, H may be assumedlrt](()juction
be a p-group (p a prime). For, if Jee(H)[ J> 1, then applying”
to PK (P denoting the «-invariant Sylow p-subgroup of H)
for each p € tc (H) ®x gives that each of the of-invariant
Sylow subgroups of H is star-covered with respect to fl
and henoe H must be star-covered with respect to
As His not star-covered with respect to ft, there
exists an ~-invariant subgroup D of H such that D jt
Since the hypotheses of the lemma hold for DO_,(G) (and
CG(0_,(G))~ O~NiiG)), it may be supposed that G = DONCG).
Suppose that fhc(0”,(G))] >1 and let ge 7C(QN (G)) }
set ij = '\ -~q}.Applying induction to both D{o”,(G)}q
and D{0o~,(6)} gives that D/C~O",(G)}q) and D/CDC{p~, (G)} )

are both star-covered with respect to j3,Since 0~ (0™, (G )N

0n™,(0), GD{07r,(G)}g) n Gj({5N (G ) = 1 and consequently”

by lemma 2.9(ii)» D= D”™".Thus it may be supposed that
7T(0™(G)) * {q} and so Gm DOq(G). Note that, as D/ D<~">t
there exists a non-trivial «-invariant section of D upon
which p acts regularly, namely D/j((D)D*<">,

An examination of Gyields that the necessary
hypotheses for the application of lemma 2.7 hold with
<n"> = A, D= P and 0q(G) = V. Consequently CQ (g)(/?) / 1
which contradicts the hypothesis CKW?) = 1. Therefore
it follows that D = whence H is star-covered

/>
with respect to fS.

Remark There exist exanples showing the hypothesis that \p\

be an odd non-Fermat number is necessary in lemma 2.10.

Smo» * o e i 0o« qii fj-i»*WmV.
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A particular case of lemma 2.10 is singled out in:

Lemma 2.11 Assume the hypotheses of lemma 2.10 and,
in addition, thatp is of prime order. Then

(i) H=0~G)CE(p), and

(ii) G has Tr-length one.

Proof (i) This follows directly from lemma 2.10 as
H= Qr(G)H”~">=0720)0").-

(ii) Consider G/IONG) = G= HK As H= G"C/S) and
Cg™6) = 1 clearly K G (by (1.7) (xi)), and hence G=0/~"

Lemma 2.12 Again suppose the hypotheses of lemma 2.10
hold with p again assumed to have prime order. If K<JG

and [H, C~/S)] = 1, then \R,p] ~ Onh(K).

Proof Induct upon | if Gis a counterexample of minimal
order, by using induction, it may be shown that Ch(K) = 1
and that K is a g-group (q a prime). A further use of the
minimality of G and a well known property of (/(K) allow
the assumption that 0(K) = 1. Employing Maschke's theorem
( and the minimality of G) gives that Kis a minimal
normal «-invariant subgroup of G. Therefore either

G”7ip) = K or G™p) = 1. The former implies [H, k] =1
whilst the latter, by lemma 2.11, gives [h,"~] * 1, hence

Gis not a counterexample to the lemma.

Lemma 2.13 If the assumptions of lemma 2.10 hold and D

is an oc-invariant subgroup of H, then D= D D).
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(In particular H= H*™O0"G).)

Proof This follows from lemma 2.10 and lemma 2.2(iv).

An indication of the type of use to rtiich lemma 2.13
can he put in a’minimal situation' (to the 'fixed-point-

free conjecture') is given ins

Lemma 2.14 Suppose G satisfies hypothesis A and, further
that |Jao is an odd non-Fermat number coprime to |d. If
P denotes an «-invariant Sylow p-subgroup of G which is
not star-covered and L™ and L£ are two proper «-invariant

subgroups of G containing P, then OpiPL-j*n Op(PL2) ¥ 1.

Proof As P is not star-covered, there exists an

«-invariant subgroup D of P for which D*V D. From lemma 2.10
D/ (DnOpiPL”?)) is star-covered (for i = 1,2). Thus, if
NDnOp(PL1)n Op(PL2)

1, then lemma 2.9 (ii) would be
w
applicable giving D= D . Thus DoOp(PL”™ nOp(PL2) / 1 and

consequently OpiPL-j) N\ Op(PL2) ¥ 1.

Lemma 2.15 Let the hypotheses of lemma 2.10 hold.
Moreover, suppose His nilpotent, Dis an oc-invariant

subgroup of H containing 0°(11) and D. Then 3 = H.

Proof From lemma 2.13, Nh(D) = NH(D)**p (NH(D)n Q~H)) =
NHD)y*<~> °rt(H) ~ D~ HH(D). As His nilpotent, it follows
that D= H.
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Suppose, for the remainder of this section, Gis a
group which admits fixed-point-freely the automorphism

of square-free order © .rn. Set A ={1,2,...,n}.

Definition 2.16 Let P he amjc-invariant Sylow p-suhgroup
of G. Then P is said to he of type P (where P is a
subset ofA) if and only if ieP implies P 0 1 and

*j

i implies P«i s 1.

Remark If G also satisfies hypothesis B, then (1.20) shows

that G can have at most 2°-! possible types of o(-invariant

Sylow subgroups.

Lemma 2.17 Let P be an oc-invariant Sylow p-subgroup of G

of type P and set p Then for each g6 ir(G)\{p},
[p, Cays)3 = 1 (Q being the oc-invariant Sylow g-subgroup
of G).

Proof This will be by induction on |§ + |a] . Select the
pair G and « to be a counterexample to the lemma with
I + kI minimal. First, two observations: by Thompson's
theorem (1.17), n>1 and, by Ralston’s result (1.20),
PO 0. Let j€EP = As Cg(o(j) admits «leee
fixed-point-freely, Cg”dj) satisfies the conclusion of
the lemma. Namely [cp(«-j), cc (« = 1 Wfiere

pvj™i (because in cG(ocj) Cp(otj) is of type PN{j}).
However Cc ™ )(K) = CGUf) n CG(<*j) = C&”). Thus, for
each jgP , [Cp(oc..), Cg(0)] = 1 and consequently
fp*, Cq(p)J = 1. Choose Dto be maximal with respect to

ft
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being an «-invariant p-subgroup containing vfoich is
centralized by Cg(s). If NGD) ¢ G, then using induction
on Ng(D) gives [lip(D), Cqi~)] = 1 whence No(D) = P.
Whereas NG(D) = G, as D¢ 1, allows induction to be
utilized on G/D. Observe that P/D will be of type A
where A C P and hence [p, Cq(£)]< D where £=TJ;i* Since
AELP, CQ(p) € Cq(6) and so 1 = [[p, CQ(")]t CQU/?)] =

[p, Cg(™)] . Thus either way [p, Cq(™)] = 1 and so this

supposed counterexample has been found wanting.

Definition 2.18 = <P]P is an«-invariant Sylow

p-subgroup of G such that Qo(«xx®) =1~ (fori =1,...,n).

Lemma 2.19 Suppose G satisfies hypothesis B and assume
that any finite group which admits a fixed-point-free
automorphism of square free order rpeeermis soluble when
m< n, Then:

(i) L, IngN 177 **1—4*i+1* *foin™ ™ t3 ~ »
i e A (wx =711(1M)).

(ii) Por each i iA , is nilpotent.

(iii) Let H and K be proper «-invariant subgroups of
G whose orders are coprime and let H denote the largest
«-invariant subgroup of H permutable with K. If 7iis a
set of primes, H_ will denote the largest «-invariant
subgroup of H_ which permutes with K. If H/ H, then the
«-invariant Hall 7T-subgroup of His L. ,
Proof (i) Since Gis non-soluble, CG«".. o)

is a properoc-invariant subgroup of G and therefore soluble.
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The result now follows from lemma 2.17.

(ii) Clearly may suppose n > 1, and without loss
set 1 = 1. Let P and Q be, respectively, (norj-trivial)
ix-invariant Sylow p- and qg-subgroups of G such that
P«1 = Q(_I =1 (p/ q). Suppose P and Q are, respectively,
of type A and P. Thus A, P C{2,.,.,nJ and, as hypothesis
3 is present, yri

To establish the lemma, it must be shown that
[p, Q) = 1* This may be achieved by demonstrating the
existence of an«-invariant {p,q}-subgroup for which
PnH” and Q”™H” are both non-trivial. Then if His a
maximal «-invariant {p,q}-subgroup of G containing H® His
nilpotent as = 1. By hypothesis B, Sg(Pr\ H) is
soluble {N&Pr> H)}p>g * Np(P \ HNQ(P™> H) 5 H and the
maximality of H gives Np(P r\ H) H. Hence No(P "\ H) = P H
and so Pn H= P, Thus P~ Hand, similarly, Q H
implying (P, q =1 (as His nilpotent).

If AnP then may take Hq = P" where
j 6 AN\P . ° 3

"So it may be supposed that AnP= Set
v =Zi'eANi 8111 if=7Mp°~Ni- Then, using lemma 2.17,

[?, "1 = EQ* Since &/HandAnP= I,
Gpl isa {p.,qjj'-subgroup. Now hypothesis Brequires that

G be non-soluble whence * 1- Thus Ng(G”) is soluble
and contains both P and Q in its (unique) .x-invariant Hall
{p,q}-subgroup. This completes the proof of (ii).

(iii) Since H is just the subgroup of H generated
by all the «-invariant subgroups of H which permute with

K, it follows that Hj. < H. Now, because H H His a
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proper «.-invariant subgroup of G and hence, by

hypothesis B, HKis soluble.Consequently, there exists an
«-invariant Hall {7T ~7t(K)}- subgroup of HKj or, in other
words, (H*" K = K(H*_ . Therefore, as 1C is just the
subgroup of H_ generated by all the «-invariant subgroups
of H_ which permute with K, (H)»”~ H~ Thus H~= (H)»

and (iii) is verified.

This section closes with some additional remarks and

notation.
Remarks If Gsatisfies hypothesis C, Then:

(i) For each non-trivial «-invariant subgroup H G) of
G, N((H) and C~H) must be soluble and hence for any set
of primes,7f, both Ng(H) and Cg(H) must possess (unique)
«-invariant Halltz- subgroups.

(ii) If M N are nilpotent o<-invariant Hall subgroups
of G and Hé/T/*,"*,/, with 1 J MoH <3 H, then M<H;

(iii) Let HM H and K be««-invariant subgroups of G
with (H, IK) = 1 and H* a subgroup of H containing
H5S> (8*<*>). If K™ Ng(H**Ng(H ) and Kg = 1» then
H = HACjjiK). (This may be seen by selecting a K<x>-invariant
Sylow p-subgroup of H, Pa H, (for each p 67C(H)) and
applying (1.20) to each factor in the 'normalizer chain’

between Prv” and PnH).

Notation (with n = 3 and {i,j,k} = {1,2,3})
For each i and each (distinct) pair j and k define
to be the group generated by the «-invariant Sylow

subgroups of type [j,k} and the group generated by
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the oC-invariant Sylow subgroupyof type {i}. Set 7t~ =TI (L")
A

and7Tjk ='rT(l,jk)* 50te tha't Li = “Li ( when
subgroups of G are placed in the same bracket it is to be

understood that they permute pairwise). In this situation

lemma 2.19(i) gives UJ" {G =1 =

I} ILA’]
Most of the lemmas and theorems to follow are
either proved under the assumption of hypothesis D or

have the conclusion that hypothesis D cannot hold.
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3. ON THE NUVBER OF MAXIMAL PC-INVARIANT ) -SUBGROUPS

For lemmas 3«1 and 3.2 assume that hypothesis A is
satisfied and suppose that Mand N are (respectively) nilpotent
~N-invariant Hally«.- and y-subgroups of G with X
(respectively Y) the largest ¢(¢-invariant subgroup of M
(respectively N) which permutes with N (respectively M).
Also assume that/,nr) = $
Lemma 3.1 For (ii), (iii) and (iv) also assume that
(Gl lech) = 1.

(i) OyiXY) = 0~M(MY)a X and ONXY) = 0?2(NX)n Y.
(ii) 1f 0~A(MY) 4 1 4 0% (NX), then MN= NM

(iii) If J then ONIXN) - 1 - 0y (MY).
(iv) If He 7 and oc of square-free order.

yu
then 07 (H)* J (H)* .

Proof (i) Clearly *(MY)/-» X < (™"(XY) and a well known
property of soluble groups gives, as Y normalizes
the /j'-subgroup O~XY) , the reverse inequality.

(ii) Suppose 0 (MY) / I / (™(NX) but MN/ NM
As MN/ NM 0*t(MY) / 1 /ONNX) by (1.14). Since
MY 3 NX, the 'uniqueness theorem'(1.10) yields that
ONIMY~AX = I=0~M(NX)nY. Hence from part (i), F(XY) =1
which is incompatible with XY being a non-trivial
soluble group. Consequently, it may be deduced that
0N (MY) 1/ 0~M(NX) implies that MN= NM

(iii) Suppose H€ ft and that O0,t(NX) / 1;



observe that zZM) ~ {~(~(N X))} = NX. As Z(M) ~ H
by (1.15) (ii). [Z(M), 0~(H)] is an J™group and,
because ZM) < Z(X) implies that Z (M )0 ™ t(NX) by
the Hall, Higman centralizer lemma, £z(M) , 0O~ (H)j is
contained in 0™ “"t(NX). Clearly, [z(M), 0~ (H)J must be
contained in O™(NX).

As HE<HN | [ Z(M), must be non-trivial
because of (1.15)(iv) and hence application of (1.11)
yields that F(H) ™~ Ing([z(M), 0N, (H)]DI*™"™ NX Thus
F(H) HNNX whence NX = Hby (1.10), This is against
the definition of M and so it may be concluded that

/ (/ implies ONINX) = 1 and, similarly, ONMY) = 1.

(iv) If, say, O (H)~= 1 for some He
then, from (1.20), [(™“(H),(HnN)] =1 which implies,
as Z(N) < (H~N), that O”MH) ~ X. However (1.15) (iv)
states that ~(H )~ X = F(H)/X = 1. Thus OMH)* / 1
and, likewise, 0~(H) 1 where H €(# ,

Remarks (i) Clearly parts (i),(ii) and (iii) of lemma
3.1 hold for any fixed-point-free coprirae automorphism
group in the type of minimal situation typified by
hypothesis A.

(ii) Part (ii) of lemma 3.1 has also been
obtained by Glauberman and Martineau (unpublished) and

by Pettet [14].

Lemma 3.2 If (JG], Jec]) = 1 and N = 1 where p

and |<~>] is a non-Fermat prime, then 2%
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N =ft
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Proof Since 71 _,
--------- /M7

follow if it can be shown that~”™ ~ = 4f . So euppose

:-EMY.NX} | the lemma will
16 i note that X/ 1 ~1™MhY. Now
= J*N”™ where = Mnl® and N = HnE” and, from
lemma 2.11(i), Mi =1~ (“(H”, M= (*(MjM7™and X =
O”NOCOXg . Hence [m, O™MY) , 0™% ) and,
by lemma 3.1 (iii), X = X
I f = ~| ~ken, as Gj(MY) ~ MY (1.7Xx) vyields that
M= Mp and so, as Y. =1, Y =[ MY"~]* MY. Hence, as
Y/ 1 and MN/ NM it may be assumed that
Set M_= 0~(MY)n MY} note that £27, / 1 as
Mn ~il(MY) = 5~ implies that [M ] «[ ]
Claim that (Ng (jjy) M since (% (M))g S=
H by» respectively, (1.7)(xiii) and
(1.11) and hence (Ng (my) (%)),, $ ONMY)/™* = MM Since
YNA\N” normalises both M and (MY), an application of
(1.17) to (YnN1)(NO (>«=)(%)/M”) yields that
A(M Y )N = MCOND (jjy) (M i)~0 ®In
As {* (Y n N ~~ Z(N”™), the uniqueness theorem
for ,(1.16), yields that ferCYn N is contained
in at least one of H NX or MY. The latter possibility
implies that YnP~) = YnOyiH-") ji 1 and so cannot
occur. If {cflYnNg)® ~ :< NX then, as X<; and

A(M Y )M A My A(M Y )N = MEMAMMY) (“D)(Y ) NI
= MN A similar conclusion may be drawn when

NG~"NoHIi)}» ~HX for then » Nmi) n
~No M) = and hence "(™MMy) (%) = M*
Consequently, ONMY) ~ and so Mi* Hence
= [M-jMNI"OMHN. As is non-trivial and

it *m2*m Jiu



[Mqg,~>]<] M, the uniqueness theorem applied to Hq forces
M~ which contravenes the definition of . This
contradiction arose from the assumption that”~i’” (ff and

so it may he deduced that il ™| 2.

When, say, hypothesis C holds lemma 3.2 deals with
the interaction between nilpotent oc-invariant Hall
subgroups at least one of which has some otq acting
fixed-point-freely upon it. The succeeding lemmas
examine the possibilities between Sylow subgroups of
type {I,2,..., n} ( though mostly with n= 3 ).

Let P and Q denote oC-invariant Sylow p- and q-
subgroups of G both of type {l,2,...,n} and let

Lemma 3.3 Suppose hypothesis C holds and N[ Sfe
Let HQ = PqQQqé€c#p>q = where Pq = Pr»Hqg and
Q = Qh Hg. Then (Np(J(Pq)))*"~£PqQ.

Proof Suppose the contrary; that is No(J(Pq)) <; Pq.
Thus No(J(Pq)) = No(J(Pq))*(Np((Pq))nOp(PY)) =
PGNQ (pY)(J(pi)) ”sy lemma 2.13. Observe that , for

any non-trivial characteristic subgroup R of Pq,
Ng(R) <mY. Thus NQ(J(PQq)) Y.
Suppose NQi(J(Pq)) / 1. Evidently, Ng”UiPQ))

Q(PY). Hence Ng”~(J(Pq)) normalizes (py)J(PQq)).
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Also, claim that Ng (JiP”)) normalizes PAnOpiPY),
since [Pjrn Op(PY), Ng («TiP-MJ”~is an«-invariant p-group
contained in »H (J(Pj)) = PNg (J~)), [Pj/'OplFT),

Ng (J~))]1~ P-LnOpiPY).

1 Now, "ypjiGKPi» = (PinOp(PY))CHo (j (Pi)) (Ngi (J(P1)))
because Ng”CJiP™) normalizes both NQ (py)(j (pi)) and
P-AnOpiPY), and the latter group contains
N (PY)(J(13>)#- As {cg(Ngi (J(P1)))}' ZiQ~”, (1.15) (iv)
and (1.16) show that either Go (Ng*(J(P”™))) ~. X or P/,
However, as Go (Ng®(J(P”))) is not star-covered and,
because Op(QX) = 1, X is star-covered by lemma ?.10,
cp (Ngi (J(P1))) € x. Thus CpiNQ"CJICP™)) Ry and hence
NO PY)QA@D) “ Pi~0p(PY).

Consequently NpiJiP™)) = (py)”™j 1™ = P1 8314
thus P = B which contradicts the definition of
Therefore Ny (J(P™)) =1 and so YnQ” = Cg”™ zCP?)
because of Glauberman's factorization theorem (1.9)»
Thus [ziP-j~n OpC”) fQj=Ilwhich, as Z(Q)~ Ql# gives
1~ ZtPAnOpiHA™)N X which cannot occur because of
(1.15) (iv).

Thus, it may be concluded that No(J(P?)) ~ P™.

Hypothesis D will be imposed upon the remainder
of this sectionj set n
Lemma 3.4 Let 6"~ . If¥YQr< %, Q™Y and < X,
then PY = {~p .q 8314 = (@>P,g*

Proof First, observe that as <# / f(, Oq(PY) =1 = Op(QX
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and so, as [op(PY)T, YnOq(QX)] =1 = [0O"MQX)™, XnOp(PY)],

YnOg(@X) » Qt and XnOp(PY) ™~ P~ by lemma 2.12. Thus

0 (QX)-~0 (@X) and 0_(PY)_~ 0 (PY) and hence

Og(Q X~ =1 =0OpiPY)™. Since P~ X and Q ~Y, by

lemma 2.10, P_ and Q_ are star-covered with respect

to (respectively) p<r and/or because Oq(PY) = Op(QX) = 1.
As Q ~Y and YnOqin) =1, = 1 and so,

by lemma 2.12, [P~, <f] centralizes 0q(H”") (where P™ =

Pni”). Suppose [Pltc] / 1, then, as Op~(J(P1))"™ J(PM),

must have [j CPj%) ~ 1. Since Z(P™), 0g(HMN ~

In&]li (Pi)»on))lp g from (1.10) it follows that

(NpiJiPPO)O)™ {M([JiPDH),~])} 1% . Consequently P,

NpiJiPM)N < PN and therefofe, as NpQ(Pi))T =

N (J(PDHIT ™~ r>, No(J(p!))T ~ pl al80 whence

Np((PM)™™ P-p. However, by lemma 3.3» this cannot

occur and so it may be deduced that QPi»<r]s 1. A*

Cp™l) Pg» this leads to P = from whence it

follows , as Oq(PY) = 1, that Y = Y~ = Q™ Thus

W= (Mp.qg*
Similar considerations also yield QX = {GT}p>q .

for i = 1,2,35

Pro°f Suppose the result is false. Thus, without loss

it may be assumed that R Xand QY™ Y and so ~>00
H " P1QLl where Px = Pn% and @ = Q n”™.

First, it will be shown that]<#] = 1. Suppose |/*|>1

then, by>virtue of the uniqueness theorem (1.16) for
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elements of~*C, it follows that PH", =1 for all
H 6 Consequently, as Z(P),Z(Q) for all
Ht X , Z(P) ™~ PN and Z(Q)-< Q", because of lemmas

2.12 and 1.15(iv). Further, observe that, as P" =
OpO™) (Pxn X) and OpC™Nn X = .1 P~ = O pi™ (P~ XN
and hence, as F/’ = P—,p’\ X, Ov(H_ig_ / 1] similarly
OqtHiL * 1. iL
If, say, Z(P)", Z(P™, <I7.T>» then, lemma 2,10 forces
OqCHi”™ to lie in Y which is not compatible with
(1.15) (iv). So Z(P™ - ZiV~*<ot> and, likewise, ZiQ» =
z(Qyo<c(Tx/ If tOfch Z(p)Y<xr 6111 z(p)~r are non-trivial
then, as and GNT are nilpotent, QNr N Y whence
OqiHiIn - 0 7~) = 1. Prom (1.20), fy, O0qH1j)1] =1
and again 0gq(H™, < Y which is not possible. Similar
considerations apply to Z(Q},,j
Thus there are (essentially) two distinct casess-

and Z(Q)-—v1l

Z(P) = ZiP~and Z(Q)

ZiQ)™, or
Z(P) * ZtP ™ and Z(Q) = ZiQL™MV
If the former holds then, because of (1.15)(iv),

OpH™, / 1/ 0ogqH™_ for all and hence, by (1.16)
this implies that 1. This disposes of the first
possibility.

Consider the case Z(P) = ZiP)® and Z(Q) = Z(Q)"T.

Clearly O0gqH)™ / 1 ji °piHc-for 611 HE e Therefore,
because of (1.16) and the assumption that \Jt/>1,
neither F,’[Ql_ nor P(rQr can be contained in an element of#
Consequently, in view of OpiH)*/ 1 and 0q(H)~/ 1 for
any H6,# , it follows that P-j- X and Y, Lemma 3,5

may now be applied to give FY m {®cip q 611 x = {G}p g*
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In particular, Z(P) - Z(P)*<r“ [z(P),z] ™~[Pn HfzJsO p(H)
for any and so, toy (1.11), P-S H vhich shows that
the second possitoility cannot occur.
Thus,#« and therefore there are (essentially)

four different possitoilitiess-

(i) Rfy < %, P_Q”PY and P*"Q"QXj

(ii) P~ N~ H and PN, PPQr~™ FYj

(iii)  RQ, PcQ.ME1 and PrQr ~ PY; or

(i) For this case lemma 3.4 is avallatole to give that

PY = and QX = {g] ~ . Thus, as Oq(PY) =1 and

PY has Fitting length at most 2, P<3 PY and, so since

Y - Y™ and Pl , P=PI1CpQLlnY). If {c ™~ n Y)}lp>q
PY then, toy (1.7)(x), Q = Q ™ whence QX = i Gecrr™),g»

which implies, as X/ 1, that PQ = QP. Thus either

(Cag(Yn QM)}p H™N or XQ; the first possitoility leads

to P = Px which is against the definition otj™. . Hence

P=PIX = Q@(HMNX. As X=PT and X/ P, 1/ [P,r] "0~%)

which implies, toy virtue of (1.11) that P~AH~. This

shows that (i) cannot occur.

(ii)  A» Q.Qt Y, (“(H~ = 0OqgfH”~ =1 and so tooth

[p 4] and [Pp,Tj centralize Oq(H”) from lemna 2.12.

Hence, if tooth [pN<7*" and £P-"»'r3 are non-trivial then

Np(J(p’\)y\L" P1 which cannot occur toy lemma 3.3.

Therefore, without loss, may take Pp - P~~whioh then

gives, as CptP~sS P, P = P~ By (1.7) (vi), [y.<d

Oq(PY) and so Y » Y . Consequently, PTQT 1IN which

implies that {*-gF’X}P»<1 = 1 whence PQ = QP toy (1.21).
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(iii) As QeY, OgHp)~ =1 and so it may I> asserted
that [PItT]$'Op (O”MHp)). If [PItrd is non-trivial,
then Np(J(Pp)) Pp which is untenable by lemma 3.3.
Therefore Pi = P1 and hence P = P # Further, as
Oq(FY) =1, Y =Yt * Q™ Without loss it may be supposed
that [xnPIfc]/1.

Since XnP” normalizes both Oq(QX) and Og(Q X)nQit -

@(QX) = (Og(QX)MQL)COMQX)( [xnPIf<r]) as Oq(QX)n
O“(QX)O" The uniqueness theorem, (1.10), dictates that
either CQ([xnHp,c]) ¢ Y or QL. Thus (respectively)
either Oq(QX) - (0g(QX)/O Qp)(Oq(QRX)n Y) or (QX) -
Og(@X)NQ1). Since X = X, Q- O@X)Qr - O(X)Y and
so (whichever possibility for Og(QX) occurs) = YQp m
YOq(Hp). AsY = Q*(/ Q), this gives 1 / [q,t] Qg (Hp)
and thence Q”~ Hp which contradicts the definition
Consequently (iii) cannot arise.

(iv) This possibility is easily vanquished by lemma 3.3.

The proof of lemma 3.5 is now complete.

Lemma 3.6 Suppose PQ / QP.
(i) 1f P,, P™ PT-SX, then = 0.
(ii) If P~ X and QN Y, then
Op(FY)n X ji 1 ji 0g(QX)o Y and K = 0.

Proof (i) Suppose and let H€ e« As P*~ X and
XnOp(H) = 1, 0p(H)

1 which, by lemma 3.1(iv) is
pf.
(ii) First note that X/ 1/ Y. Initially it

will be shown that Op(PY)n X/ 1 ™~ Oy(QX)nY; this will
be done by considering each case in turn.

impossible. Thus

m* e« [IIMIM IIHIIUU
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Suppose Op(PT)n X = 1. As £ ~ X, clearly Op(PY), =1
and so by lemma 2.12 [bp(PY), [ Y]] = 1.

If [Y,~j] ™~ 1, then by the Hall-HIlgman centralizer
lemma Oq(PY) ~ 1. Moreover, lemma 3.1(11) shows that C
must be empty. Because ~H”™ X, ~ normalizes both Og(QX)
and Oq(QX)"Y and, as Oq(QX) Og(QX)oY, Og(RX) =
°0 (QX) ) (ONMNQXY\Y ). It is claimed that Cp”) * X
For suppose Cp(~,)™'X then CQ (gX) (">) M Y
Q(RX)™. Y. Recalling that \y,p\ ~ 1 the uniqueness
theorem (1.10) yields that Ng(Y)*”: Y. Consequently, from
lemma 2.15, it follows that Y = Q. Thus Cp(®,) -¢J. and,
in particular, Z(P)™ X. However Xr»Op(PY) = 1 and so
Z(P)*Op(PY) = 1 which contradicts the conclusion of (1.14).

Therefore it may be taken that [y,/jJ = 1 whence
P=(PY)™, Hence [¥ ,f> Q(PY) which gives,
as Xr>Op(PY) =1, [x,/d] =1 and so X = ~,. Further,

[yt/0] = 1 also yields that Q~= The preceding
observations imply that Og(QX) = CQ (aX) (X) Oq(QX)™ .

As X is non-trivial either Cg (gX) (X) ~ Y or where

QL = QnHI 8114 « If cog(QX)(X) ~ @ then»
together with the fact that Q = (%,,Oﬁ(QX), it follows that
Q = 0. The other possibility yields that Q= @Oq(QX) =
= @(Hp), (because Y™ @) and so if Q/ then an
applicationof (1.11) would force Q”~ H” Therefore 0=0",
and so XQ = CdrO}P»Q.; I f OP(XQ) / 1 then P=P = X and

3° @XQ) = 1 which, in turn, gives Q1 QX by 1.19(1).
ThusQ = YCqg(X) as Q*<<r<>«Y. If K 1 0 then, as X / 1,
CQX) ~ Y implying Q =Y. Whereas, if ,/C ji then, because
of the uniqueness theorem (1.10), Z(P) N~ X which also

yields Q=Y.



Hence (PY)n X ™ 1.

Suppose ONXQ)Oi> 1. Clearly Oq(QX) o0q(QxX)T
and so £x</] and [ X,x] both centralize Oq(QX). By
hypothesis, $ X and hence at least one of [x, < and
[X,t] must he non-trivial. Thus Op(XQ) / 1. Further,
from lemma 3.1(ii) and (iii) it follows that ** gt
aid Oq(PY) = 1. If [x<?2Q =1 then, as Cp(X) ~ X, P = P,_
which leads to Y = Y~. Thus = PY N IMQN 8111 80
\&pr}p“ ! Employing (1.21) gives PQ » QP, A similar
conclusion follows if [X,ZJ = 1. Hence Qx,00/ 1 ™ |x,y).
Consequently Np(X)E’\ X.

Let D= Op(PY)n X (= Op(XY), by lemma 3.1(i)). If
[d,03 =1 then 0 (XY) ~ X* and hence Y = Y because, by
lemma 3.1(i), Oq(XY) = Oq(QX)nY = 1. Prom 1.7(vi),
X = X"MOpiXY) XC' However X = X(’)\ has already been excluded.
Hence (d,<r] ~ 1 and likewise [D,t] / 1. Applying the
uniqueness theorem to XQ gives that NpCDY, Np(D™ *= X
( this is possible since [d,c] / 1/ £d,t«J and [D** and
[D,T] centralize Oq(XQ)). Clearly NpiDjg ~ P $ X and
hence N o~ jfD ~, ~OpiFYj~*V* MP(PY) Xnv N =
implying that NQ (py)(D)*X D.

As Y normalizes Op(PY) and D,Y normalizes NQ (py) (D

and so Ng (pY)(I>) = DCN ~(Y ). Because Y ¥ 1 and
m. PY ,XQ}, Y )~ PX which yields that CN
pgq (PYXQL G(Y)"PXwhich yields that ON ' ) (¥)

N XoOp((PY) = 1) whence NQ (pY) (D) = D. Thus
D (PY) ~ X which, when combined with Np(X)*"~ X, and
lemma 2.15 yields P = X.

Therefore Oq(XQ)nY / 1.
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Next it will be demonstrated that = Sfe Since PY
/[ XQ, XnOp(PY) / 1 ~ YnOq(RX) and both (Xr\

0 (FY))Oq(PY) and (Y N\Og(QX))OMQXJ are contained in
PYN\QX, by (1.10), it may be concluded that Og(PY) =

1 = Op(QX). As [XAOp(FY), YNOQX)] =1, it follows
that XnOp(FY) centralizes OMNQX)™ and Og(QX)™ and

that YnO™NQX) centralizes Q(FY” . Thus X nOp (PY) p A~
and YnOq(Q@X)~» QV, by lemma 2.12, because Og(FY) =1

= @ (XQ.

By hypothesis PV X whence, as < is fixed-point-
free, OpiPY)» = 1 from which it may be asserted., as
Qg(FY) =1, that Y = Y. Hence Q*= Q” Claim that /I Q
for if ert: Q then X = )(r because OP(XQ) = 1 hence
giving 1 XnOp(FY) ~ P~~~ which cannot occur.

Now suppose there exists = PMQMNMEN, where PA -

and Q™ = QMH-N As Y < QN lIQel Since
Q"N = Q™ would force Q= QN Q. ™ Q7. Conse<luelvb™
[((Q1l),/0] ? 1 and as [j(Q1)"0] <-0~(1") employing (1.11)
it may be deduced that Ng~Q ~))* = NqiJiQ-M)" Q.
By lemma 3»3 this cannot happen and so a contradiction
has been obtained.

Thus dt * 0.

Lemmas 3.5 and 3.6 taken together yield:
Lemma 3.7 If PQ/ QP, then |71p Q]= 2.
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4. NORVAL P-COMPLEMENTS

This section contains, with the exception of lemma 4.6
and corollary4.7, results whose conclusion is the

existence of a normal p-complement.

Lemma 4.1 Let Gbe a group admitting a coprime automorphism

group A. If Cg(A) contains a Sylow p-subgroup of G and

0&U) = °P’,PtCG(A,)» then G“ V .p «» -

Proof Let R be a non-trivial subgroup of P where

P € SylpG and P~ CGA) = C. Prom (1.7)(iii)» NGR) =

H (R)Cg(R) and so NG(R)/CGR)~ NC(R)/ CC(R). Because

Cg(A) has a normal p-complement, Ng(R)/Cq(R) must be a
p-group. A well known result of Probenius ( see [8,7.4.5(a)] )

yields the desired conclusion.

Lemma 4.2 Suppose Gis a soluble group admitting the
coprime automorphism % of order rs, where r and s are
distinct primes. Letp - 'i8 and <r="r and let P be a
ii-invariant Sylow p-subgroup of G. If ~ =",

then G has a normal p-complement.

Proof Suppose the result is false and choose Gto be
a counterexample of minimal order. Observe that, as P
i® the only 5-invariant Sylow p-subgroup of Gby(1.7) (vii),

the hypotheses of the lemma carry over to 5-invariant
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subgroups of G and ¢(-invariant quotients of G. If
Op,(G) / 1, then applying induction to G/Opl(G) it may
be deduced that G has a normal p-complement. ThuB
familiar properties of soluble groups give that 0p(G) / 1
and that ¢ (j(Op(G)) ~-Op(G). Prom the latter property,
G= Op(G)Q where Qis a (non-trivial) (f-invariant Sytlow
g-subgroup of G, p q and, moreover, Q possesses no
non-trivial proper ((-invariant subgroups. If 0(Op(G)) / 1,
then, by induction, £op(G),q] ~ 0(Op(G)) whence, from
a well known property of the Frattini subgroup of a
p-group, [Op(G),j] = 1. Thus, it may be assumed that
0(0Op(G)) =1 and further, because of Maschke's theorem,
Op(G) must be a minimal normal ;(-invariant subgroup of G.
Clearly, CQ = 1.

If G~= 1, then (1.20) is applicable to give that

G = Op(G)x Q. Thus & = / 1. Note that as Gy = ~, = PA,

from (1.7)(vi), both and G™ have normal p-complements.

Therefore, if either Q= or Q = (Xf, then 1/ Py = PY
COp(G)(Q) 1. Thus Q, 1 and so Q<)(> is

a Probenius group which is faithfully and irreducibly
represented on Op(G). By a well known result this
representation, when «restricted to <J(> contains the
regular representation of <)*> and, under these
circumstances, P\I/ * FI’:, :'P<r cannot hold. Thus a
contradiction has been reached and the verification of

the lemma is finished.

i> :n Trnnr™viTrr
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lemma 4.3 Suppose Gis a soluble group admitting the
coprime fixed-point-free automorphism oc of square-free
order rst. Assume that PN = P~ = INM-P,~ and

PT = ~,rPaT where P is the «-invariant Sylow p-subgroup

of G. Then G has a normal p-complement.

Proof Deny the result and let Gbe a counterexample of
minimal order. As the hypotheses of the lemma holdt~for
«-invariant subgroups of G and «-invariant quotients
of G, using a reduction of the type given in lemma 4.2
yields that G= (G)Q where Q is an«.-invariant Sylow
g-subgroup with g/ p and Q possessing no non-trivial
proper «-invariant subgroups. Again, Op(G) may be taken
to be a minimal normal «-invariant subgroup of G and
V o« «» - i-

If one of Q* or P*is trivial, then (1.20) gives
G = Op(G)x Q and consequently it may be supposed that
p* 1/ Q* Without loss it may be assumed that 1
and so, as is ot-invariaat, Q= Q™ By (1.19) (iii),
& j3&» and & must have normal p-complements and so
Pr~ Cp(Q) " Hence PN = P~ = P*, |f either or Q"
is non-trivial, then similarly, it would follow that
P*<iCp(Q) and so PYy = P~ = @Gcrm leinma 4.2 shows that
G has a normal p-complement. Therefore there is no

counterexample and so the lemma is established.

Lemma 4.3 when combined with work in section 2 gives

rise to:
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Lemma 4.4 Suppose hypothesis Dis satisfied and let P
be an «-invariant Sylow p-subgroup of P, p£7t(G), which
is not star-covered. If ZQJ(P)™, = Z(J(P) ™~ Z@J(P)) ,
ZAMP))r = ZNItPINZFJIP))N and Z(J(P))N.*

Z(J(P)MNT Z(I(P) then P is contained in a unique maximal
«-invariant subgroup, K, of G. Moreover, K = Cg(R) where

R is a non-trivial «-invariant subgroup of Z(P).

Proof Let and K2 be two maximaloc-invariant subgroups
of G which contain P. Since and K2 are soluble, by
lemma 2.14, as P is not star-covered, Op(K~)/o0Op(K2) jt 1
and, from (1.9), Kt = N~ U iP)~(ZiP))0pl(1n) for

i =1,2. As Ng(Z(J(P))) is soluble, by lemma 4ws3,

Ng(Z (J(P)))/Cg(Z(J(P))) is a p-group. Set R = O™MK"n
O0p(K2)N\Z(P)) as OpiK-~r» 0p(K2) is non-trivial, R is
non-trivial. Thus K-"Kg~CgiR) ? G. The maximality of

I"and K2 forces = Cg(R) = K2 and the lemma is proven.

Suppose G satisfies hypothesis D and P is an
«-invariant Sylow p-subgroup of Gvbere p6x(G). If,
p is odd and say, ~ =1, then, because of the Thompson
normal p-complement theorem [19] and lemma 4.3, P~ = P
cannot occur. The purpose of the next result is to give
some information which will be of relevance to this
type of situation when p = 2.
Lemma 4.5 Suppose G admits a coprime automorphism 't of
order rs, where r and s are distinct primes; set p

and 4305 . Assume further that G = PH, where P is a

in« l«, , t I
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i(-invariant Sylow 2-subgroup of Gand His a”-invariant
soluble'Hall 2'-subgroup of G.If P» = P=G" Np(H),

then G has a normal 2-complement.

Proof Let G be a counterexample of minimal order. Note
that for each q €-rt(G) there is a unique j(-invariant
Sylow g-subgroup of Gby (1.7)(vii), from which it follows
that all \-invariant subgroups of G satisfy the
hypothesis of the lemma. By lemma 4.2 it may be assumed
that Gis not soluble. If S(G), the largest normal
soluble subgroup of Gis non-trivial then, as the
hypotheses of the lemma carry over to G/S(G), and His
soluble, G/S(G) is soluble. Hence Gis soluble and so
S(G) must be trivial. Observe that Z(P)n G~ =1 for, if
P=2Z(P)n &/ 1 then pH( <Np(HH / G) is a non-trivial
normal soluble subgroup of G A further consequence of
S(G) = 1 is that P is a maximal j(-invariant subgroup
of G for if P<- K<- G where Kis a j(-invariant subgroup
of G, then (KnH)XKis a non-trivial normal soluble
subgroup of G.

Prom (1.18), it may be assumed that G ~ 1. Let
X g be an involution. Now, Cqg(x) is a proper
i(-invariant subgroup of G and so, by induction, CQGXx)
has a normal 2-complement (namely Cjj(x)) . Since Z(P)CH(x)
admits Y fixed-point-freely with Z(P», = zZ(P)~_= 1,
[z(P) ,CH(x)I =1 by (1.20), which implies that CH(x)"
CEHZ (P)). Consequently CH(x) = 1 as CG(Z(P)) is a proper
i(-invariant subgroup of G containing P. By (1.17)
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H must be nilpotent and so by Wielandt's result (1.24),
Gis soluble.

This contradiction completes the proof of lemma 4.5.

The next result is of interest in its own right.
Lemma 4.6 Suppose Gis a finite group admitting a coprime
automorphism group A with C&A) soluble. If C&A) contains
a Sylow 2-8ubgroup of G, then Gis soluble.

Proof By induction on ]|G]. Choose Gto be a counter-
example of minimal order to the lemma and let P
denote a Sylow 2-subgroup of G which is contained in
CG(A). Prom the Peit, Thompson theorem [2], it may be
supposed that P~ 1. If His an A-invariant subgroup
of Gand let P denote an A-invariant Sylow p-subgroup
of H By (1.7)(vii) there exists y 6 Cg(A) such that
prnoP C&A) and so PS C&A). Since A-invariant
quotients of G satisfy the hypotheses of the lemma, G
cannot have any non-trivial proper normal A-invariant
subgroups. Clearly G must be characteristic simple and
so G= G’X ... XGg where the G”, which are non-abelian
simple groups, are pairwise isomorphic and comprise
the set of minimal normal subgroups of G. Evidently

P =P]LX ... \Pn where P = PnGi. For each a € CG(A),
a(G”™) must be one of the G but as 1/ P ™~ GY>a(Gh)
it follows that a(G”) = G" for all a€ A Thus Gis a
non-abelian simple group.

Claim that SCN3(P) J for if SCN3(P) = 0, then
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by (1.26) since for each xe P*CG(x) is soluble and G
is a non-abelian simple group, Gis one of the
follbwing groups:- PSL(2,q) (g > 3), A®, Mh* PSL(3,3)
or PSU(3,4). However, none of these groups can be
counterexamples to the lemma. Now a result of Gorenstein
and Walters (1.27), may be applied to give that
02'(Cg(x)) =1 for each involution x of G. Thus if x
is an involution oontained in P, then,as CG(x) is soluble,
by (1.7)(vi) CG(x> = 02,(CGEXx)) Cchx)(A) = Cc(x\(/x)(A)
<Cg(A).

This gives the desired contradiction since under
these circumstances, Glauberman has shown (see(1.25))
that [G,Aj is nilpotent and so G = Cg(A)[G,a] must be

soluble.

The preceding lemma may be used to give a partial
solution to a conjecture of Thompson's (see [4,problem 4])
Corollary 4.7 If G, a finite group, admits the coprime
automorphism group A and for each a € CG(a) is
soluble, then G contains an A-invariant soluble subgroup

which admits A faithfully.

Proof The proof is immediate from the Peit, Thompson

theorem [2] and lemma 4.6.

9 e(«at.
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1 THE STRUCTURE OF MAXIMAL (-INVARIANT UBGROUIS

Hypothesis D will be assumed to Hold for the
remainder of this work ( though the next two lemmas
hold in a much wider context). Let Mand N be
X-invariant nilpotent Hall Subgroups of G with X and Y

having the same meaning as at the beginning of section 3.

Lemma 5.1 Suppose MN4 NMand N = 1. If 0, (XN) 4 1.
r A
then Y = 1.

Proof Suppose Y/ 1. If X = )§then by (1.7)(x), as
Cy(X) < X, M= whence, as » =1 and Y/ 1, MN= NM
Thus it may be assumed that 1 4 [x,"] O~XN). By
lemma 2.11(i), [x~0]”~ [Myo] » “(MY) and, with the help
of (1.10), it may be shown that (NQ (my)(x n~u(MY))) ~
Xn~r(MY). Clearly, as Y normalizes both O™MY) and
XnOW(MY), Ng™ i* U o O”~MY)) = (XnO~A(MY)) -
°N) (MY) 0*(MY) YAy~ as Y/ 1, Y 4 Nand

iCrj ~ »NX}t NMY) X which gives that X  0™NMY).
In particular, [m”~J $ X and so [M] = [x,"] OMN(XN).
Hence MN= NM by (1.11) as is a non-trivial normal
subgroup of Mand from this contradiction it may be

inferred that Y = 1.

Lemma 5.2 Suppose MN/ NMand 1L, = 1, then X = NU(N)



Proof By lemma 2.11(ii), XN has ~-length one so
X = (MXN)NA(N). If OjXN) =1 then X <% (N) and so
X = Nn(N). On the other hand, OXN) ¥ 1 yields, from
lemma 5.1, that Y = 1. Then, as ZM) X, (1.13) implies
that N = OMNXN)Y = 0->(XN) whence X = NVN) .

Thus X = Nh(N).

Let ={l1,2,3}.
lemma 5.3 If L~NjP ¥ PLij where P is an«-invariant Sylow

p-subgroup of G of type {l,2,3}, then

{LidNo (Lij)*P)

Proof Prom lemma 3.2 \*K 1= 2. Since
P»rh2
»lj) <~> =1.%“ "'SsHo., that
£
and that (L7j) = e Hence, from lemma 2.5(iii)»
% - 8l1™ so cp(lij) ¥ 1. By employing lemmas

5.1 ard 5.2 the result follows.

Lemma 5.4 If L~ ¥ Ljli, then *1 ={V 1A ),
*ITW > -
Proof Prom lemma 3.2, | «it"'rﬁlz 2: then a double

application of lemma 5.2 gives the result.

Lemma 5.5 |If L~ 5 PL™ where P is an cX-invariant Sylow
p-subgroup of type (1,2,3), then one of the following
holds (without loss may set i = 1 and, because of lemma

3.2, may take = {fY, XL-J)s-

S -
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(i) < Y, and furthermore
(a) X =15
(b) either or Z(L™M™ Y;

(c) Y = Ne (P) and so **pfir - (PN”?iP).1J]
(d) if za[) ~Y, then Zz~) = ZiLj»

(e) P(rT=1,

(f) P is not equal to P, P or P";

(g) *pr / 1171 P

(ii) P(r»PT ~ X with OpUI™) ~ 1, and furthermore

(@) X = Npilj) = Hp(LL*Op(LL)]

(b)) Y =1, so ™ -{Nptt™*I~p}*

(¢) Z(P) = Z(P) ~ NpO™M)}

(d) either NpfNp~))*< ~pilQ.) or p = p?
(that is either P is not star-covered
or P = )i or

(iii) P~.P~is X with OpiX]?) = 1, and furthermore

(a) P* =\ 2 X = NpCLjb
Vo o=1j

(c) Y = NAP)-C L~,

(d) if Ljp =1Lj*, then P=\p

Proof It will first be demonstrated that either B, P $
Xor l« , It $ Y, This will be achieved by showing that
5" t
H _ N
either of Pq<r X and Ir}_t_ Y or Pf $ X and IOIg,T Y
imply that PQ = QP. Because of the symmetry of the arguments
it will suffice to examine the case when P(i__"x and
1 <Y.
X
As Plg_ ™ L™P and | =1, lemma 5.2 implies that
X = Np(L™). Observe that, if Op(XL”™) J 1» "then lemma 5.1

may be applied with the result that X =1 which is not so.

«»i*tlm™ 1til» i.f
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Hence OpCXI™) = 1 and so Pr < X AP~ by lemma 2.11(i).
As X normalizes both L* and Y with Y containing
1~,1n = cLi ([x,'d)Y by lemma 2.12. Clearly [x,V]/ 1
since PNsi XsS™ . As C~Afx.rJ)~ Y forces 1N = X,
whereas PI™ / L”P, therefore CL™([x,x]) ~¢Y. Hence
cp(Cx,r] ) ~ X~ P~ which, from (1.7) (x) implies that
P=Yp and so Y$I PY. Since Y /I, this yields that
PI™ = LjP.
Thus either 1 iY or PAp~~X. Shall now proceed
to verify the remainder of the lemma.
(i) L*~ Y

(a) Prom lemma 5.2, X = Np(L”) and as X also normalizes
Y j_ = YCLAX). If X/ 1 then, necessarily,

C-j~™"X) Y giving 1™ = Y. Therefore X = 1.

(b) If Iy , then may suppose, without loss
that Ir) Hence / 1 and so

As X=1 and P~ 1,
the only possibility is that ZiLp) Y.

(c) If then applying lemma 4.3 to PY gives
that P s™FY whilst, if Z(1~) ~ Y, then, from (1.13),

P = Q(PY)X = Op(PY). Hence Y = N ~P).

(d) If z(LL)~Y then by lemma 2.13 and (1.11), as
PL-1jL LjP, Z™)* «Zz ™). If Z(),_ ZiLp)™, then
Z(L1)n O_ (P™I™) / 1 by lemma 2.13 hence
(NGizi“"Q "IP~jlp~r"~"O piP~™), Li. As
is p-closed this contradicts (a). Hence ZiL™MN™ ~ Z(Lp)™. .
Similar considerations also show that Z(Lj)™ ™ ZiLM"N.

Thus ZA)A = ZdA)A - Z A)* = ZilA).



53

(e) As [p~, Lj =1, clearly P~~~ X = 1.
f) If P=P_or P_, -then, as P =1, P could not
(") o T oTr
be of type {1,2,3}.
Suppose P =~ . Ab 1 vy Y and 4_ = 1 this

clearly forces PL™ = LP which contradicts one of the

hypotheses of the lemma. Thus P = cannot occur either.
(g) Suppose (say) that P~j- = 1 then 1
and so [p~, 10 ] = 1. If Y then zC~») = zZz ~ )~

and so P~A"N'X whereas, if Z(L™N)<?CY then n

and again PG_’\X. Thus P = 1 ia impossible; so too,
by similar arguing, is P~r=1.
(ii) Pr ,P. ~X with Op(XL1) / 1
That Y = Np(I*) and X =1 follow (respectively) from
lemmas 5.2 and 5.1. Furthermore NpiL”?) = No(i*!'™ Cp (LN
follows from lemma 2.11(i) and hence Z(P"~, = Z(P)~ Np(L?).
I f y If then, by (1.10) and lemma 2.12,
(Np(Np(Ir™)™) =z Np(Ir?) and so (Np(Np(L#))) ~ Np(L?).
On the other hand [NpiL?") y>] = 1 implieSjas Cp(Np(L™))<
Np(Li), that P = Pj so establishing part (d).
liii) PrJPr gX with Op(XL1) =_1
(a) By lemma 5.2, X - Npi”). Since it is assumed that
OpiXL-") = 1, it follows that [Xy>J = 1 and so p™ = p, ~ X
(b) This is immediate from (a).
(¢) As Pa, PTA X = Npd~), [Y, O(PY)c.]= [Y, Op(PY)J = 1
and hence, by lemma 2.12% £y , <Y and [Y,t] centralize
Op(PY). Suppose ON(PY) y 1. As 1N « 1~. or YJn =
would imply that OpiXL”) is non-trivial this means that

both [y.,<t] and [y ,tJ must be non-trivial. By employing
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the uniqueness theorem 1.10 may obtain that

N " V Y)T~ Yj that 13 NLI(Y~A ~ Y* Now» X "
normalizes both Y and Nj~(Y) whence Np®» = CN ~ (X)Y.
Because X/ 1 it may be deduced that Cp~(X) giving
NI (Y) =Y which, in view of Lp being nilpotent, implies

Y = Lp.
Thus it may be concluded that Q_ (PY) « 1 and so
Y~ Ln__. Moreover, as P =1, it follows that

P = [p,<rcJ<yPY aid therefore Y = N-j~P).
(d) Suppose P/ ™ and let Lp = Lp/0(Lp). By lemma 2.2(iv),
Ly - Ly* = I%_I&T (because Li is abelian). As Ry™ X
= N-p(Lp) and [p®,rj = P~, P~ acts by conjugation upon
Lp with the result that Lp = Lp CGi~*Cp™). If Cp(P™M™: X,
then clearly P = ]», thus Cp~P™M™: Y L p from (c).
Hence, as Cj~CP”?) = Cj~rCP”), CjniP™) <€ Ig”and therefore
Lp = Lp . By similar arguments, Lp = Lp. Using a well

- X
known result about the Prattini subgroup of a nilpotent
group, it may be deduced that L, = In . As G, is

X xot r

nilpotent, lemma 4.1 shows this situation to be at

variance with the supposed non-permuting of P and Lp.

Thus Ip = Lp* implies that P =Y .

Remark If PLp / LpP ( with P as in lemma 5.5 and
~p,ftp ={?Y, XLp}),then the proof of lemma 5.5 also
shows that if one of P<] or PX is contained in X then
this implies that both must be contained in X.

Similarly, if one of 1« or L, t is contained in Y, then
X

both must be contained in Y.
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lemma 5.6 Let P and Q be ct-invariant Sylow p- and
q-subgroups of Gof type {1,2,3} which do not permute
( and let 73~ = {PY, Qx}). Then, with possible
interchanging of p and g and rearrangement of and T,
one of the following occurs
(i) P*~ X, and furthermore
(@) Y =1, so ™ p>q = {p, XQK
(b) Z(P) » X and X = No(Q);
(c) Z(P) is contained in one of PT* P~
or
(d) (Suppose in (c), Z(P) < P~) <3n=1
and Q™M~~"~ 1/ QN
(e) Q cannot be equal to either Qr" QJ_ or QX.

or (ii) e X and Q_, ' < Y, and furthermore
(a) XoOp(®PY) J 1/ YnOq(QX);
(b) Og(PY) = Op(XQ) =1 and so XnOp(PY)$
P~ and YnOQq(QX)™ QN
(c) Y~ @ and so Q*'= (also « 1);
(d) @~ Qr (so Qis not stai”covered);
(e) for all non-trivial x -invari art subgroup
Kof Pj, Nb(R)-£ X;
(f) X = X~AX"
@ z(p)™ xaT;
(h) [P.f] = Op(PY);

(1) 5 = ( and hence &g has a normal
p-complement);
J) XX Q

W X/ Xror X (so PpT/ 1/ Bz);
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(n Np(X)ft" X so P is not star-covered
either;

(m) either P is contained in a unique
maximal x-invariai t subgroup of G or

J(P) APY and J(P"~ = 1.

Proof Prom lemma 3.5, without loss, one of the following
cases occur: P*-~X or P} X and Y.

First, the additional assertions made when P]Ct X
holds will be proven.
(i) P*~g X

(a) Now P = Op(PY) X since, by lemma 2.10, P = Q(PY)P*.
Clearly Y acts upon @ (PY) and (PY)/* X, the latter
group containing Q@ (FY)*. Thus Op(PY) = (Op(PY)o X) OQ (py) W
and so P = XCp(Y). If Y /I, then (YY)~ X which
would give P = X and this establishes (a)

(b) If, say, / R°*<Tt>then Op(<”,) / 1 and so
('Op(OP(CF'))}’P»l Z(P), (% which then implies, as Y =1
and QY ~ 1, that Z(P)~ X. Therefore may suppose that
BB = RO" ¥ Pq= Pr¥cpzy @nd Perm B "o 1T s
clear, as P is of type {1,2,3}, that at least two of
P<r-r Pt are non-trivial. Suppose Fpc and P"z
are non-trivial. If either of or CY is non-trivial
then as G, and G” are nilpotent it. would follow that
Z(P) ~ X. Thus it may be assumed Qr'J = (Y)”b = 1 whence

« 1. Since {<;(*/>>}p,q”™ Z(P), and Y = 1,
Z(P) X. Thus Z(P) X and an application of (1.13)
yields that X = No(Q)
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(c) The proof of (c) depends upon the two following
observationsj-
(= ZPV = 2 PP g
2(p)y ™ z(P) *
(c)'"" at least two of zZPAT, ZiP)» and
Z(P)err are trivial,
(c)' If, say, Z(P)ZS-V Z(PE, *<5~_|_.>then Z(P)r»OP(ep) ~Nl
and this gives P, Q" < {ng(Z(P) "™ OpiC"))}Pj<l (because
N = °q({@®)}pta)) which contravenes (a). Similar
considerations apply to Z(P)(T and Z(P)t .
(c)' If this assertion were false then could
choose ZiP~g. and Z(P)*r (say) to be non-trivial.
Because Y = 1, QNt = Qipa- = 1 and hence [¢, , QY =1
which produces yet another compromising situation with
Qo
Returning to the verification of (o), because of
(c) "' it may be supposed, without loss, that Z(P)pX
z@p(r = 1. Combining this with (c)' gives Z(P%j Z(P),

= ZtP)» = Z(P)*. As Z(P) ~ X and PQ ~ QP, Z(P) = Z(P)*
and so (c) is established.
(d) As zZ(P) .CP~ clearly Y =1 and if, say,
= 1 then [P#, = 1 implying 1 Y - 1.
Consequently =1and Q7 1/ Q\T.

(e) If Qis equal to either or Q then, as Q =1,
Q could not then be of type {1,2,3}. Q= @ would force
Z(P) = [z(P)y>] N Op(XQ)(= Cp(Q)) which contradicts
the assumption that PQ ™ QP.
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I I i a n d a5<~r>"jr.

Parts (a) and (b) have already been dealt with in
lemma 3.6.

(¢c) This is clear as Q(PY)» =1 and Og(PY) = 1.

d) If Q=@ then, as Op(XQ) =1, it follows that
X = W whereas, by (b), X~ / 1 so contradicting the
fixed-point-freeness of o(.

(e) Let R be a non-trivial of-invariant subgroup of
Po~ X and suppose Np(R) » X. As Q* = Q©, Og(QX) = Og(Xy™
Q (gx)) = °g~™xJo because Cg(R) » Y< Hence
Q =Q*0q(QX) = @ which is prohibited by (d) and therefore
it may be inferred that Np(R)."L X.

(f) Since Y =Y, X=02XY"™ = (Op(PY)n XIX~ =
X7_1F1% = Xf3kn (that it is a direct sum follows from
the fact that X(rt =[x,aJ , = [x,(Tx] and P™*n X~ = 1).

(g) Prom (e), Z((P) <€ Np(©~,)-~ X and, as X/ ?,

Z(P)» = 1 giving Z(P) » XN,

(h) Since Y = , clearly [p.,/d ~» Q(PY) so
[*./»] = [0p(PY)flo]. Further, OpiPY® ~ (PY)n X~
giving Q(PY”~ = 1 whence [Op(PY)yo] = Q(FY).
Consequently [p,”0] = (PY).

(i) It will suffice to show, because of Ralston's
result (1.19) (ii), that OpiP~ ) = 1. As XY = XY/Op(XY) =
(Xi)~, it follows that OpiP~fy,) =s£Op(XY) = 1 so
giving O piP”") < (XY)

X~ . Hence OpO™MQ”™) =1 as
required.

(j) Observe that X~

Op(XY) implies that [y,0<¢] =Y
centralizes (XY) and also that, by (i),Y = PP .
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Hence Y XY and so, as Q= Oq(QX)Y, it follows that
Q= (QX) so proving (j).

(k) Suppose it were tha case that X = X~then (e)
forces P = P™ whence, as Q =1 and ~ Y, Og(PY)
4 1 contradicting (b). Likewise for XT

(1) Proa (k) [x,<r] and [x,x] are non-triviaL and
also are clearly subgroups of Pr' Hence using (e),
No(X)(r< No([X,(T]) <X and Np(X)™ < No([X.t]) X
Combined with the fact that Pr’\," X, (1) follows.

(m) Suppose J(P)» = 1. Then J(P)< [P,p] = O(FY)
and so by a well known property of the Thompson
subgroup, J(P) = J(Op(PY)) implying that J(P) <l PY.

Thus to establish (m) it will be sufficient to show

maximal «-invariant subgroup of G. Applying (e) gives

Z (J(P))~AX. Because X~ = JNOXHT, X~r« XAXA 8L(L

Xr = X~AX” it follows that Z(J(P)) = ZUiPj~rZU1tP))™,
Z(J(P))<r= ZilJiPjI~AZUiP))~ and Z((P))T = Z{(P)sr
Z(J(P)) . Since, by (1), P is not star-covered, lemma
4.4 shows that P is contained in a unique maximal

ec-invariant subgroup of G.

Definition 5.7 Set {i,j,k} ={1,2,3} and let P be an
«-invariant Sylow p-subgroup of G of type {l1,2f3}] P is
said to be of:
Type | if there exists an oc-invariant Sylow qg-subgroup
Q of Gof type (1,2,3\ such that PQ/ QP and P ~
NP(Q)5



60

Type Il if there exists an «-invariant Sylow
g-subgroup Q of Gof type {I,2,3} such that PQ/ QP
and Q *¢ NQ(P);
Type 111 (i) if there exists an <x-invariant Sylow
q-subgroup Q of Gof type -(1,2,3} such that PQ/ QP
and P, ( X and &G <3 Y,

OLi <j <k
Type IV (.i,k) if there exists an «-invariant Sylow
q-subgroup Q of G of type {I,2,3} such that PQ W QP
and Q $X and P , 2. ~ 11

< «J *k
Type V if P permutes with all <X-invariant Sylow

subgroups of G of type {1,2,3}.

Remark By lemma 5.6, every oc-invariant Sylow subgroup
of Gof type {1,2,3} is of type I,1I1,111( ),’IV( , ) or
V though at the moment, excepting type V, there is

no reason why these types should be ?well defined'.
This and related matters will be examined in section 7.

Sometimes, types Il1(i) and jV(;j, k) will just

be written as (respectively) types IlIl and IV and by the
phrase P is of type | with respect to Qit is meant that
Qis of type {I1,2,3}, PQ ™ QP and P*:<:Np(Q). Analogous
interpretations hold

with respect to Q.

i fietiiii . * Se* i
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6. LINKING THEOREMS.

This section is devoted to the examination of
possible relations between certain ~ut/f as//a an<* ™

vary. Again set {l1,2,3j = {iij»k}.

Lemma 6.1 Let L, M, and N be nilpotent oi-invariant Hall
subgroups of G. Suppose the following hold:
(i) NL = LN and M. = LM
(ii) MNji NM and
(iii) N* Y (Y being the largest <x-invariant
subgroup of N peiroutable with M where p (E<<<>)
acts fixed-point-freely upon L.
Then 07(114) = 1 where 7t=7r(L) ( and hence L is
star-covered with respect to X, if 'l (E<</>) is acting

fixed-point-freely upon M).

Proof By lemma 2.10, N = 0~(NL)N and so N = 0~(NL)Y.
The largest ¢/-invariant subgroup of NL permutable with

Mis YL and hence L normalizes both O®NL) and ON(NL>>Y"
0~M(NL)*>0 Hence, as L™ = 1, 0~(NL) = (O~MNL)n Y)CQ (MLj(L)
and consequently N = YO”L). Thus it now follows that

if OMLM) is non-trivial then ON(L)™ Y giving N=Y

which contradicts assumption (ii).

../[-An example of the use to *hich lemma 6.1 will be

put is given in the next result (which is of interest
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in connection with lemma 5.5(i)).

Lemma 6.2 Let P and Q denote oc-invariant Sylow p-

and g-subgroups of Gof type {l,2,3}, and suppose

PQ = QP, PL+ = I™P and QL™ ~ L™Q. If, further, P is not
star-covered, then Nj™MNQ).

Proof The proof follows immediately from the preceding

lemma.

Lemma 6.3 If P denotes an tf-invariant Sylow p-subgroup
of G of type {I,2,3}, then at least two of P,!”™ and.

Lj permute.

Proof Suppose the lemma is false and (without loss)
that i =1 and j = 2. Thus L~g ”~ LgLIf PL1 ™ NI*
and PLg / L2P is assumed to hold; the proof is broken
up into cases which depend upon the form of ~p fij-
and % ,v let ~p .V “ {FT1’ LIXI} and % .~2 =
{FYg, LgXg}. (Mote that the arguments are symmetric
with respect to and L2).
Casal P, PIr~ XL and \p, PT < X2.

If, furthermore , Op(L1X1) / 1 and Op(LgXg) / 1,
then by appealing to lemma 5.4(H), Y4 =Yg =1,
Z(P) = ZiP~sS XIN *2» X1 = Jip(®l) and Xg = Np(L2™*
As L1L2 ~ LgL”™, without loss of generality , it may be
taken that Ir~~c tt~Lg) (/ I™). Now, Z(P) iiNpCL~™n
Np(L2) so normalizing Ni~(Lg) and hence, as Z(P)™_ - 1,
CI~(z(P)) ji 1. This, however, is against &« 1.

Now suppose Opil*X”) jt 1 and Op(LgXg) = 1. By lemma
5.4(ii) and (iii), zZ({P) = Z(P?D XN & Np(L™) and

irani.i 1,1 ' 1n4l . *, » <>.»*: « Jill
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B, PT » X2 = N (L2) < P~ Clearly, Z(P) = Z(P"™ si
Np(Lp)n Np(l12) and, aa either Lp" or
L2 ~ Np (Lp), it follows that at least one of
CIl(Z(P)J and Cr2(Z(Pj) is non-trivial. The former
cannot occur as = 1 and the latter is dealt with by
using lemma 5*5(iilH c) which gives C’IJZ(Z(P)) n L?/’\T'
whence L2 = Np~Lp) C~ZtP)) =~ (1~ L2 =~ (1p)
and this contradicts the assumption that LpL2 ™ Lj™p.

Finally, consider the possibility that both
p(LpXp) and Op(L2X2) are trivial. Then from lemma
5.8(iii)(a), ~» = P*= Pj- which implies that P is not
of type 1,2,3 C
Nase 2 PN, PT X~ and Lyjs. sSYO.

From lemma 5.5, Xp = %>(L]), 2 = NL and either
P2 = L2 or Z(L2) —Z(L27r Y2. Suppose b2 Np (Lp),
then clearly L2 ~ Hp~™(Lp) \Np~(P)* Hence L2t normalizes
both P and Np(l/j_), the latter subgroup containing P~
and therefore, as Np(Lp) / P, Cp([l2 ,<r]) is non-trivial.
If it is the case that Z(12) = Z(L2Y\r Y2, then
Cp(Z(L2)) is non-trivial which is against the shape of

Whereas, if L2 = L2 then (as [ip ,O]l=1 )

Cp(L2) = Cp(L2*) = Cp(L2”™) / 1 which again does not
agree with the supposed form of

Thus it may be concluded that Lp» Np~(L2) and so
Nj, (12) ft 1', If Z(L2) = Z(L2) ~ Np~(P), then
[r (12), Z(L2)] «1 and consequently Z(L2)< Np~(Lp),
again giving Z(L2) < Np”iP)» Np~Lp). A contradiction
to this configuration may be deduced as before.

Therefore L2~ = 12~ and so by lemma 4.3 ~3
NL1AL2AL2 yielding, aa Np~L2) / 1 and Ip is nilpotent,

mmmme ¥ | | K iMIi . *, »
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that BiL2 = L2L1* Tbis disposes of case 2.
Case 3 Lx*~ and L * Yg.

Applying lemma 5.5(i) to this situation gives
* - le Vo o*1*V T im r1*V
Clearly this configuration is untenable.

The proof of the lemma is complete.

The next two results will be required in the proof
of theorem 6.6.
Lemma 6.4 Suppose Lj_Lj ™ LjLj_ an<® N LMLy and
L be a hon-trivial ~-invariant subgroup of
Nx (Lj). If Lj ~ NL (Li), then CL (L) NL (1*.).

Iy d 3 d
Proof Aa L < Nj™Lj*)N\Nj~(Lj), L normalizes (Lj)
(~Lj~ J and hence, since * 1, Lj ® (L)NL (1n).
k k d p i -

Now suppose OL (L) NL (Lk). Observe that [NL C~™)» ~lc)
j4 1 because otf?erwise OII__(L) n n (" v%/ould
give Lj = NI (1™) so cothradictingA jJ4 LALA. Thnua
o~ (Lj,~ (1™)) (= CL (Ljj)) ? 1 and applying lemma 5.1
it IJfoIIows that N.Ek(x,‘é) =1. However, by hypothesis,
1~ 1”2~ NI~(Lj) so giving a contradiction. Thus

Ct.W~ANI1.0 "
3 3

Corollary 6.5 Assume the hypotheses of lemma 6.4 hold.
Then LnZil™) = 1.

Proof This comes directly from lemma 6.4.
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Theorem 6.6 Suppose that no two of L”, I and

permute. Then one of the following occurs:

(i) L1,L2t = L2’ = L3* or

(iij = 1", = L2, L3(r= 13*
Proof By lemma 5.4, as no pair of L, L2 and permute,
r»™MfT - (LiHSh.)” 1-3% (Lj)} for 6 {1,2,3}, i/ 3.

First, it will Be established that it is not possible
for both L2” and to be contained in Ng(I™). Suppose
the contrary , and suppose also, without loss of
generality, that {®~(L™)}..~» ~ ~ LpN® (L2). Consequently
L =~ n nt~(L2) which, together with L2

implies, by lemma 6.4, that Cj~I™ )=~"NI1"~(Lj).
Therefore ZiL™) ~ %~ (L2) and = 1. However, as
L2~ =1, ZiL™M» fixed-point-freely and hence
[z(L5),L2] = 1 which is against LgL”™/ L~Lg. This shows
that L2”and cannot both be contained in NG(I«iJ.
Similarly, and (respectively L~™and L27") cannot
both be contained in NG(L2) (respectively Ng(L™)).

Because of the form of n fori,j6 {1,2,3},
1/3» together with the COﬂCll]:IS?OI’]S of the preceding
paragraph one of the following must hold:

@ NLI(L2), 120" nl2(3" and NN or

(b) Li"SsN~d,), L2~ H 2(J”~) ~ L N nL™(L2)*

The succeeding arguments are applicable to both
cases (a) and (b) so, without loss of generality, it
will be supposed that case (a) holds.

The next part of the proof is concerned with showing

el11 1. . t:» 1»* » . e
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that In_> L. . Suppose In ~ In . Now, as L? =1
xcl "L'r Y X cr

and L-i NT (L9), it may he deduced that
0_ (LgTNj’\iIIiI(‘:;))}landhence thatziL™)™ No(12).
Moreover, as LAL2 T* Z(L™M ~ L~ If, additionally,
Ziln)y » then ZtL-") < N ~lg) and so,
as L% ’\NIZ(Ij) already,corollary 6,5shows this
situation cannot occur. Hence Z(L1) ~ NI~(Lj).

Suppose, for the moment, that L3~ " N/ANL-N),
Because Z(li") ~ L C i) G3 * Z(1iM3 e 1 and,
since ZCI™) ~ NACLj) and [nI (17n) *<f] ? 1* Z(L3)~
NI ~(L”™). Furthermore, [z(L3),ct] fi 1 would imply that
ZCI™) ~ N~ (13) and so Z(Lj) s~L~. Consider the group
NN (1j)Z(Lj). Since Z(I>3) ~ 13 ahd L2 e 1»
[N~ (1i3), Z(1in)) = 1« Now 1 Lan and so
Z(13) <TN1 (I<2). Hence a contradiction in the form of
the situati%n occurring in corollary 6.5 with
Z(13) <Sj (li2)~i (1i™) and Ni~(1i2) das "been
reached. Therefore = Nj~LN).

If °7r3(LINL3(la)) / 1 then* a3 L3<r> f13M3c-~ 1X
follows from (1.7) (x) that = Lj , (Iq) which
is against N LNIN. Consequently L3 = N-ALA) A

| Next, it is claimed that Lj = L~. As L2~ normalizes

both L3 and L3 ( = L3 ), L3 = |83 CL"(L2 )= Suppose
L-i / L-*o. Because of lemma 5.1 and the fact that
N?"(Lj; is non-trivial, clearly CL™MNL2M) ~ Nj-~IN).
Thus Z(L2) <: NN~(L3) and, obviously, Z(L2)™ = 1.
Hence Z(L2)NL (L2) admits p fixed-point-freely which
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implies, as 1/ N1 (L2~ that Z(12) ~ ~NindIN) -
However, this means that Z(L2 N (I™MJn N~ILj)

which as corollary 5.5 shows, is untenable and thus the
above claim, that 1-3, = 1é/°,is substantiated.

If CLA()) (= °7Tr2NL2M'3M'37  is non“ferivial tllen»
because L2Lj ¥ IMNI~Mt 2("2~ ~ L2 . On the other hand,
cL2n"3n = N S™WVe3 N2p ~A-~N2 e N the ~ormer case occurs
then [N£~(L2), Z(l12)] = 1 because = 1. Since
HA(L2) ¥ 1, Z(L2) <, NjJCL”?) in addition to zZ(12) »

Nt (L*) and another application of corollary 6.5 shows
this cannot happen. Therefore, must have LP < LP .
The same line of argument as used in the prev~i;)usT
paragraph to show L* = L* will also yield that LP = 1? .
In brief: if L2 / L2 then 0 (Lj")  NjALA) * *
lemma 6.4, hence Z(L"N) ~ (L2) and Z(L™) = 1$ as

N (Iq) ¥ 1 and Nj~LN) Z(L™) admits € fixed-point-freely,
Z(LN) <= nnd the desired contradiction again comes from
corollary 6.5. Recall that zZ(L») ~ so,

as I™lig ¥ 1j2%i» Z(1™) ™~ B . Now, it —1 implies

[Ni~(Li), Z(L™)] = 1 which in turn implies ZCI?)

Ni~(Lj) and so corollary 6.5 is applicable. Therefore

L(If’p N L?T cannot occur either and this contradiction
establishes that L)r(]cr>. Ir),(_c.

Since I'3C”™ n1 (lg) * invoking the same kind of
argument as used above in establishing that Ly = L"rf,
and L2 = L2 , it may be demonstrated that =LA,

By similar arguments, L2 = L2 and = Lj may be

obtained so giving part (i-J in the statement of the
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theorem. Of course (b) gives rise to part (ii), so the

proof is finished.

Theorem 6.7 let P and Q be ot-invariant Sylow subgroups

of type If PQ = QP» PLj = LjP and QL"=L"Q,then at least
one of Pj_ = L”™P, and QL = L’\Q holds.

Proof Suppose the lemma is false and set i = 1 and
j = 2. Thus the following is assumed to hold:

PQ = QP, PL2 = L2F. QLi = 1]Q»
PLX ji LgP and QL2 / L2Q.

and Ljr~ then W q= (gn™CQ), 12} and
= iPNIlip> h )’ Furthermore, P~ =1 = @0r and
hence PL2 and QL™ admit, respectively, g~ and”™ox acting

fixed-point-freely. Consequently, as 12* <rTz™ 127 and

for if not then 1~ < Kp”™) =1. Similarly

Q@TP.) =1 and so F(Q”P.) = 1 which contradicts a
well known property of soluble groups.

(2) It is asserted that if 172 = I"2L1 then ‘tlie
configuration (+) is impossible. So suppose 1712 = INMI*
Because of (1) it may be assumed that (say) Q n
Ng(L2). Employing lemma 6.1 to Q, and L2 yields that
0~ (L~Lg) = 1 and hence = Ig”. Consequently P™» n
N p(li). Repeating the preceding argument using P in

place of Q gives = | whence F(Lqgl2) = 1.
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This establishes the assertion.

Thus may assume for the remainder of the proof that
Lpli2 ~ X~Lp.

First, suppose P and Q are not star-covered. As both
P and Q are not star-covered, a double application of
lemma 6.2 shows that P~, P_~ Npil®*) and Q, Ng (L2).
Furthermore it is the case that both [Np(Lp),yo] and
[ng(12),<t] are non-trivial. For, suppose [Np(Lp),/o] = 1.
Then P*= F; As Qis not star-covered, by lemma 2.14,
0q(PQ) \NONQLp) / 1 and hence either (PQ) -“Np(Lp)

nl
that P = P'Op(PQ) = P whereas P has been assumed to

or 0_ (QL;i) n N_T_L(P). The former possibility implies

not be star-covered. Thus 0~ (QLp)-*T NpiPJ Lp

and so Lp = Lp . However lemma 5.5 (iii)(d) also

yields that P = P~ Thus it may be deduced that
[Np(Lp)~>] t 1 and, likevdse, that [NQ(Lp),<r] ~I.
Clearly rip = {p, No(Lp)Lp} and » g ~={qg, Ng(L2)L2}.

As LpL2 / L2I1 i't may be fcalcen "that 1 / Lp~ ~
HLp(L2>* Since ng(12”~> Qo “ d Q = OqgiQLpJO™, Q = NQ(L2)C
where C = cQ(Np~(L2)). Claim that C must be star-covered
for if it were not then, by lemma 2.13, Cr\Oq(PQ) / 1
hence giving Op(PQ) ~ Np(Lp) which, by lemma 2.15,
forces P « Np(lp) as (Np(Np(Lp) No(Lp).

Now Ng(Na(L2)) = Na(L2INc(Na(12)) and as NQ(NXL2))*<
Ng(L2), it follows that NeQ\g(L2)) = NeUlg(L2))*":
Ng(Ng(L2))M"™: Ng”™2;. Therefore Ng(Ng(.L2)) = Ng(L2) which
implies that QL2 = LgQ. This settles the lemma when both

P and Q are not star-covered.
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Next consider the situation: P is not star-covered
and Q is star-covered.

Because P is not star-covered, lemma 6.2 is available
to give that , QM NqiLg). As Qis star-covered,
[Ha(L2)»JST / 1 is untenable and so Q_= Q* = Q whence

fyl Furthermore may deduce that

art2 = {9 4
°F =1 8L( hence that L2.i* star-covered. For
[p.<t] PQ and [p,(r] ~ Op(PL2) which, as [P, O] [/ 1
because P i3 not star-covered, implies that 0™ (PL2)
nL2(q) = 1.
As L2N2 5| 2lg, either ANANL2) or I, A~
NI (Iq). If the latter alternative occurs then,as L2
is- star-covered, [n127L1~/°~ [/ 1 is impossible and so
L2~ = 12~ = L2. Consequently [Nq(L2)yo] centralizes
L2 and, in particular, [QX, L2l = 1. Since Q"T= If
QLg admits fixed-point-freely and therefore
[@ . Iq] =1 because Ig* T>« Ig™. Now CMQMN) > L2, Iq
so forcing IgL2 = L2Iq. Therefore ALAN2”™ musl: hold.
Since (% Q ™ N(LP) also and L-_.w_ =1, it follows
that Q= NQ(L2)CQ(IgT). Let L2 = L2/0{12). Then L2 =

L?PLPT, by lemma 2.2(iv), as LE’_is star-covered.

Since Iqg_C n11(L2) 8,1 =1, 12 = 1*2 Ci~™g-r)* Hence*
if 12 L2, then Cq (Ig”~) ™~ 1 from which it follows
that Cg(Lx ) ™ Ng(L2) ( because of the shape of W~ ).
Therefore as 12Q/ QL2, L2~= 72 whence L2 ~= L2.

It is asserted that Z(Q) w£ Z(QLqg). Since [Ng(L2),t]J
is non-trivial, Z(Q) m=Ng(L2) and hence Z(Q) < Q"
Combined with the fact that QL™ admitspr fixed-point-

freely so giving [g", Lg] = 1 the assertion is now clear.
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Suppose Oq(PQ) / 1. Hence 1 / Z(Q)n Oq(PQ) and
consequently CjzZ(Q \NOg(PQ)) ~ O (PQ), Lp. Recall that
P is not star-covered so Op(PQ) ™ 1. Clearly, in this
situation, NjACP) is not possible. Thus P
HpCL”. However, if Np”) AN then P = (PQ)P* =
which is against P being not star-covered. Whereas
[Np(L™),~c] 1 also produces a contradiction because
Hp(Np(L1))*'£c NpU”) together with (PQ) (C Npd”®)
implies, by lemma 2.15, that P = Np(L”). Therefore
g(PQ) = 1 must hold and so Q = Ng(J(P))Cqg(Z(P)), from
Glauberaan's factorization theorem.

Observe that if Z(J(P))" , then L2Q qgl2
because, as P is not star-covered, L2 = 0~ (1))L2N
and Q = Cg@JQ™ with D= (PL2)n Op(PQ) ™ Z(P) 1);
since NQ(12) and LNQ ? QL2, Ug(D) ~ Ng(L2)
and so Cj~(D) would have to be trivial hence L2 = L2 .
Since it has already been shown that L2 = L2 4
lemma 4.1 demonstrates that the assumption LgQ / QI2
was incorrect.

It will now be shown that Perr =1. For when this
has been done it will then be the case that PL2 admits
OT fixed-point-freely and so will have Pitting length ~ 2.
Recalling that 0~ (PLg) =1, so P ~?PL2 whence
H(J(P)), OQ(Z(P)) =< Ng(L2) so giving a contradiction
in the fom of L2Q —QIi2.

Towards the above end it will be assumed that
P~ / 1 from which a contradiction will be derived.
Hence, by lemma 5.5 (ii), ={~(1~1~, pi(i.e. Y - 1),
Suppose L2) / 1 then 2(17) hence,
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as L2 = "2 * 92r-m » NONNLE Z(LM)iIN
However, this forces Zil™*)~ Y = 1 as [zCI?), Npilrj®

= 1. Thus Ou (NT (Lo)L9) = 1 and therefore In* = In
(1~ £

X XCT
Claim that if , then L2 and Q permute.
For = Ig” implies that Np(L™) = Cp(l«i)(HpCIr™)),~ thence

[ltzt PT] = 1* As \s , L2] = 1, were it the case
that POT / 1 then = I~Lg so giving
L~i2 = li2Ll* Thus ~Z = 1 and so px acts fixed-point-
freely upon PQ. Since 0q(PQ) = 1 = 0~ (PL2), P PQ

and L2 = NL™(J(P)) C™MiZCP)) from which it follows that

QL2 = L2Q«

Therefore it may be inferred that n = LN,
As PX *Np(Irn), = Cj~(P_)L-j~ and clearly CjniP.) [/ 1.
Moreover, as 72» = {NpiL~L™, P], ZP»™_ =1. As

Z(P) < NpCLM™ and [z(P), PN =1, by (1.6) (iii), Z(P)
normalizes [i”, PYJe Now [p”, 1737 Ir*_together with
Z(P_ = 1 gives that [[?_> liJ > Z(P)J = 1. The shape
of Mp dictates that [p», ij =1 so P_~ Cp(Li)»

If JP~_/ 1 then, clearly, Z(J(P)) <: NpCL"®) and,
as Z(J(P)) ~ gives L2Q = QL2» it follows that
[Z(J(P)),p] 1 1 which in turn implies that Po~"Npd").
Thus P Np(L™) and consequently, from lemma 6.1,
o~QL-1) = 1. However [z(Q), 1] =1, so Oq(QI1) 1 1.
Therefore JiP)» = 1 in which case J(P)™ [p,C3” 0p(PI2)
giving J(P) <p PL2. Moreover, as J(P)L2 admits C fixed-
point-freely, [ L2, J(P)] = 1. Hence Q = Ng(J(P))Cqa(Z(P))

Ng(12) which Ib the final contradiction to the
assumption PGT/ 1.

This settles the cases P is not star-covered and

Q is star-covered.
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To finish the proof it only remains to examine
the configuration (+) when both P and Q are star-covered.
If P, B_™ Npd”) and (*, @ -s£Ng(L2) then as
both P and Q are assumed star-covered, P = and
Q= Q"™ Clearly [Qyo] is non-txivial and so, as
1, O7NiQN) Nj~(P) = 1 whence
because (QL’\}iX =1 and L* Further, as
Q=Q must also have Il & Irj and_so  a lqg._which
yields, from lemma 4.1, that G has a normal 71”~-complement.
Therefore, without loss, it may be assumed that
Np(Li) ~ P~, P* and L2*" Nj~Q) = A contradiction
will now be deduced in the guise of showing that
= I”™Ni* Sinc® p IB star-covered, P = P, and so
™pf7r = (NpUDla.* PI* Because =1» Q¥ @ and
so, as has been deduced before, Q™"CQL") ™ Y (the
largest o”-invariant subgroup of perrautable with
P) = 1. Therefore, as QU admitspr fixed-point-
freely = Lj~Mand so L2 < N~iLN). ~
/ 1 then as [I>2»/°] ~ 0~ (PL2) ~ f°ll°wa "that
Jjp. TT™ V PL2>» h. “ d henCe that
P = OpiPLgiPA~ N p~). Thus 12~ NIj2(L1)~ L2~ = 1%
and, in view of this fact, 0~(1”) = 1» otherwise
12* = L2 = L2 which would contradict QL2 / L~3.
Therefore L2 * and, as Qs QL™ L2 ~
which forces IZX: 12 . Applying lemma 4.3 to PL2
gives P PL2, hence [p, O”iPIMNA] = 1. From L™ = Lj»,
it follows that [p”., L-j] = 1 whence C"Pg.) ,0_-~MPL2)

and so because (PL2) =1» L2 I Zrew2(PL2) A HL2t]a)*

EE» " B« T Il %% I># « -]
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This completes the verification of theorem 6.7.

The next linking result is of a very similar
nature to theorem 6.7.
Lemma 6.8 Let P and Q he «-invariant Sylow p- and
q-suhgroups off G of type {1,2,3} which permute. If
PL-jjc = LjjjP and QI™ = I*Q, then at least one of PL™ = L/P
and QL™ « Lj™Q must hold.

Proof Suppose the lemma is false and set i = 1,
j = 2, k= 3* that las
PQ = QP, P7"23 ~ 123 QN =
PN N 1P and QL23 A 237 e } )
Prom the assumption QL23 ¥ L23Q, Z(Q) ~ Q~inote that

[123» @] = 1) and 80» as [Q”» LI = "» [Z(Q)* LI™ = 1%
Further, observe that L23 = L23 4 1<23 ~or ~23 = ™3
when combined with lemma 4.1 would violate hypothesis
D.

Now suppose Q is not star-covered, then, by lemma 6.1
L-j*£ N-j~(P) and so P~, P~ A ftp(L-~). Moreover, as Q
is not star-covered, OCPQ) Y 1 so Z(Q)nONPQ) / 1
which gives Op(PQ) ~ NpCL”?). Because of lemma 2.15,
there is now no alternative other than P = Fr’ and so

= ip» Hpda>Li™ Also as [Qyo] / 1, because Q

is not star-covered, it follows that 0- ~(IqQ), P
»J[Q,”~] ) and hence that O”iL™"Q) = 1; evidently L~
is star-covered.

As PL23 admits err fixed-point-freely with
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I23* <[Txy a 1» CN 123~ s 1* Clearly L23X1 = 711723
is untenable because,if 1521l = ™1723* ~hen L23 ~ ~23*

would produce P, 3*~ NO7Tr (L23L1~* Tkus /
L~j. As =1, PA, PFr iCNpil?) and 1~ = 17* jt

follows that for at least one of R_,and P, (say PV)
C,T1 (Pc) ¢ 1 and CTI (Po') is not contained in Li<

"

Clearly (CgiP™M)}r 2~ 2~ 1>23» CjNiPA) 51114 teca”8e

cLi(Pj ~L1(Crit follows that 07 (123 123)) / 1

which in turn implies that Z(L-i)-» Li . Prom the
(Te

latter consequence, it may be inferred that
fz(1™), Np(L™M] =1 whence Z(L™)a Y ( the largest
ctf-invariant subgroup of permuting with P) = 1}
a contradiction. Thus it has been shown t~at the
configuration (+) cannot occur when Q is not star-
covered.

So now suppose Q is star-covered. Then ( without
loss) [Ng(L23),c] =1 and hence, as CqiL”™) / 1,
Q=0QN If [p,<] is non-trivial, then 1 3 07 (PL27%
is contained in the largest ~-invariant subgroup of
L23 permutable with Q which does not agree with
lemma 5.1. Therefore P = PG‘ and, clearly, must also
have PCz = 1 (if P / 1 then P, P~ Npil®) so giving
P = P~ < Np(I<i)). But then P*» = P~ = 1 which is at
variance with the supposed type of P.

The lemma is now proven.
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Lemma 6.9 Suppose permutes with P but not with Q,
where P and Q are o<-invariant Sylow subgroups of type
{1f2,3}. Moreover, if PQ/ QP, then N. (Q) and
P*"~ Np(Qi) cannot both hold.

Proof Assume the hypotheses of the lemma 'jdth (say)

i =1 and also that both L* Nj~iQ) and No(Q) hold.
Recall from lemmas 5.5 and 5.6 that N =A™, NIMNQ)al
and 732 = {p, Np(Q)Q}. Thus, if 0_ (PL,) ~0 (PL,)

then 0~ (PLp)f\ (~(L-j*QJ ~ 1 whence
{(Ng(V PL1>~ V 1l9V )}p.g> V PLI)’ V (as
and therefore Op(PLp) Np(Q). As this leads to
P - OpiPL-"P*™ No(Q), it may be concluded that 0O~(PL"™)__~
CLj-"FLp) and, similarly, that (~(PL-~ ~ Q~iPLM".
Using lemma 4.3 gives [(~(PL-~, p} = 1. If Opi®o™o) ™ 1
then {* (O piP ™))}~~~ CL-iPLp), and so O ~P L~
H~(Q) which, as Lj*-~ N-7iQ) already forces I"Nj”NiQ).
Thus =1 all so P™ = Prom lemina 5.6 (i)(d),
V and, as at least one of P* and PYr

must be non-trivial, say, ”00-» qfrr™ "<t 071 (PLi)
again implying that LjQ = QL™

Thus, in the given circumstances, Lp\L’\ Nj~iQ) and

P*~- Np(Q) cannot hold simultaneously.

Lemma 6.10 Let P be an of-invariant Sylow p-subgroup of G
of type {l,2,3} which is not star-covered. If P permutes
with 1~ and L™ but not L”, then either L = L-jI™ or
ZJ(P)) ~ Npdn).
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Proof Without loss, may take i =1, j = 2 and k = 3»

Assuming the hypotheses of the lemma hold, together with

814 a contradiction will
be deduced.

Evidently, as [ p =1, JiP7™j- = 1. 1t is
claimed that either or 12 = L2 . Observe that,
as J(P), and L2 admit fixed-point-freely and P is
not star-covered, may obtain and L2 =

Cl2(DL2o wtth d ~ ) D= °p(pLI)r' °p(PL2) n Z(P) by use
of Glaubenman's factorization theorem (1.9)» Since L2 7~
LgL”, it may be deduced that either Cj™D) <* Nj~(L2) or
(D) NI (L) holds. Suppose the former occurs; it
will now be shown that Ny~ (L2) < Ig™. were the case
that [Nj~(L2),<r] ft 1, then CL_L2) / 1 whence, by lemma 5.1,
NL (™) = 13~ ~ combined with
on~rd~.Cr] fil, yields that NI~ (12).
Now lemma 2.15 contradicts the supposition that 1jL2 ~ L211
because QMCPL-™N-" 0-7(1)) Tbere™ore Ni™M(L2)N
L~and hence 1™ = - L~ If C-AD)™ N~LAN
were to hold, then it would give L2 = L2*. Consequently,
the above claim has been substantiated. Without loss,
it will be assumed that In = In holds. One consequence of
Lx = L”is that TJL ~ = {i",xCr Further,
because P is not star-covered and [p, <r]:i<3 EL?, it may be
deduced that 0~ (PI12)~ NL (1n) = Prom ~1 = L~™and
I~ =1 it follows that P = OpiPL~0-r and so J(P) ~
Q(PL1). Hence J(P) = JiOpCP~)) and hence J(P) PI™,
Also, L2 = NL2(J(P))CL2(Z(P))07_2(PL2) = CNUIiP)).
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Observe that Pﬁ’a 1 is untenable for then PL,
mwould admit p<T fixed-point-freely whence, as 0~ (PL2) = 1,
P <pPL2 which implies that Lp, L2~ Ng(J(P)).
Consequently, Cp(L”) ~ 1 and thus _ = ]pf L*Np(L™M} with
P>V ~ NP(L3)C

It is clear from lemma 6.1 that if IpLj = I”Lp then
Q" (LpLj) must be trivial and so Lp = Lp”. I<emma 4.1 shows
this situation to be at variance with hypothesis D. Hence
LpLj ™ LjLp. Clearly ~ Np (Lp) . If Cp (Lp) were non-trivial
then Z(Lj) ~ L3%cr whicll gives \p(L3), Z(L™)] =1 so
contradicting the form of . Thus Np~(Lp) N A=
Suppose L3 = Lj* / Lj. Clearly CL (»,) / 1. If JtP)» ~ 1,
then the shape of 'PIP»<7i3 would dictate that Z(J(P))-~ I\*P(La).
Therefore J(P?__) =1 and, as J(P) <3 PL—A and Lpr =1 it
follows that [J(P), Lp] = 1. Hence Lp, 123$C &Z(P))
implying LpL2 m L2Lp. Thus it may be inferred that Lj = Lj
Therefore it follows that P~A™ Cp(L™). If 1 ~ 1 then,
as [p”, LpY =1, LpL3 = LjLp which cannot occur. Hence
P a 1. But then PL2 admits <rr fixed-point-freely with
the result that P<;PL2 (recall 07 (PL2) = 1) thence Lp, L2

AN g(J(P)). With this contradiction the proof is complete.



7. LINKING THEORBMS BETWEEN oc-INVARIANT SYLOW
SUBGROUPS OF TYPE fl.2.5>.

This section describes some of the possible
interactions between ~-invariant Sylow subgroups of G

of type I, 11,111, iand IV.

Lemma 7.1 Let Q be an ~-invariant Sylow qg-aubgroup of
G of type Il. Then Q cannot, additionally, be of type
I, 11l or IV.

Proof Let P be an ot-invariant Sylow p-subgroup of
type | with respect to Q. Without loss may suppose
Z(P) = ZiP)"Np(Q) and (so) <3 = 1» If Q were also
either of type | or type IV then, from lemma 5.6(i)(b)

But then [z(Q), Np(Q)} = 1 which contravenes the form
of 'Tip ™~ and hence it may be inferred that Q cannot be
of type I or IV. Were Qto be of type Ill then Q* = X
some i 6 {1,2,3}. In view of the prevailing situation
in Q 0 = but then [, Z(P)} = [Qr, z(P)) =1
which contradicts the supposed form of VX and

P<1
finishes the proof of the lemma.

Lemma 7.2 There does not exist an¢¢i-invariant Sylow

subgroup of G woich is both of type IIl and IV.



80

Proof Let P be an «-invariant Sylow p-subgroup of G
If Pis of type Ill then, from lemma 5.6(H) (g, k),
P P, and P are all non-trivial. Whereas if P is
<%
of type IV then again from lemma 5.6 (ii)(c) one of P ,P and
P must be trivial. Clearly these two possibilities

are incompatible.

Lemma 7.5 Let P be an oi-invariant Sylow p-subgroup of G

Then P cannot both be of type | and type I11.

Proof Suppose the contrary; that is, there exists

Sylow g- and w-subgroups Q and Wwhich are (respectively)

of type Il and type IV with respect to P. Without loss

it may be taken that Z(P) = ZiP )~ N p(Q) and (so)
=1.Setmpw={PY, wx). As Z(P) » P~ has already

been fixed, the only possibility, because of lemma 5.6 (H),

concerning P and Wis:- P~ X and V¥ WX’\ Y.Note XiP’\NX’\Q).

F.—
Since and WAT are trivial from (1.21), QN= WQ
Now W= WOwWQ) = WjOWWQ) = Consider
{(~@)lg.,.p”™ CP(Q)» Cw@Qi)* If CwWwv3) ~ ~  then

W= w which is forbidden by lemma 5.6 (ii)(d). Therefore
Cp(Q) X. As Np(X)™™ X and Np(Q)/Cp(Q) is star-covered
it follows that X = Np(Q). In particular, P*~X.
However lemma 5.6 (i) shows that in this situation Y
must be trivial, which is not so. Thus it may be

concluded that P cannot be simultaneously of types |

and H I.
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Lenrna 7.4 Let PItP2, % and "2 X-invariaat Sylow
subgroupb of G.

(i) Further suppose P2 is of type |I with respect to
O-tand Z(P~)P~ (and so =1).

(@) If P2 Is of type | with respect to QIt then

Z(P9)
<IT
(h) If P1 i8 of type | with respect to Q2, then
Q =1

(ii) Further suppose P~ is of type Il11(i) with respect
to Qt and set {i,j,k}= {1,2,3}.
(a) If P2 is of type 111(h) (it € {1,2,3}) with
reBpect to Qf then h = i.
(b) If Pl is of type IlI(h) (he {1,2,3}) with
respect to Q2, then h = i.

Proof (i)(a) Because is of type Il with respect to
Pl <and Z(pl>”" pl™)* V =1" Qv [/ 1 ¥ Qr fron
lemma 5.6 (i). Clearly Z(P2) ~ P2~ is the only possible

candidate, for Z(P2) ™~ P2 {saqy) dictates, by lemma 5.6 (i),
that @, = 1.

(b) Since zZ(P~N N PAST' the shape of

P pi ,Q, J=1sivedlatQp “

(ii)(a) As P-1is of type 11I(i) with respect to
QlI* by lemma 5.6 (ii), = Qot . IT P2 is of type IH(I)
with respect to and h/ i, then =Q* = Q»

whence Q” cannot be of type {I,2,3/» Thus h = i.

(b) Since P~ is of type HI (i) with respect
to Q,, Z(P-i) ™~ P- , by lemma 5.6(ii) and, if h/ i
again from lemma 5.6 (ii) this would give ZiP-») p-n

contradicting the fixed-point-freeness of «. Hence h = i.



82

lemma 7.5 Let P and Q be (i.-invariant Sylow p- and
g-subgroups of G which do not permute. Additionally,
let Nbe an X-invariant nilpotent Hall/~-subgroup of
G which pennutes with both P and Q. Then:

(i) If Pis of type I with respect to Q, then
Cg(Ni) = 1 for all non-trivial x-invariant
subgroups of N.

(ii) If Pis of type IlIl with respect to Q, then N

is star-covered.

Proof (i) As P~”™ Np(Q), the arguments given in lemma 6.1
may be used to produce P = Np(Q)Cp(N). If CgClIy ~ 1
for some non-trivial ¢~-invariant subgroup of N,

then the shape of would force C:p(N)™" NP(Q) so

p.d
giving PQ = QP. Therefore (i) holds.

(ii) Suppose M = R/FY, QX (with Vr* < X,

=)
Q. (% ~Y) and that N |2- not star-covered. Then either
Op(PN) $ X or OyQN) =Y. The first possibility, as
Np(X)*~X, produces P = X (using lemma 2.15) whereas
the latter gives Q = Oq(QN)Q* = (as Y €= = Q¥*).
Both conclusions are inadmissible because P is of type

Il with respect to Q. Hence N must be star-covered.

Lemma 7.6 Let P be of type IV with respect to W. If,
further, P is of type | (say) with respect to Q then

Wis contained in a unique maximal oC-invariant subgroup
of G
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Proof Deny the lemma. Clearly, by lemma 7.1, Q/ W.

If WQ QWNthen, by lemma 7.1, Wcould only be
of type | (with respect to Q. Then {~Q)}p P*, wr
and hence the 111, IV configuration between P and W
would be impossible, by lemma 5.6(i) . Thus WQ = QW.

Before continuing fix the following notations-
Z(P) = Z(P)_ $ pr(Q) (and hence Qr‘t = 1) ; because P
iB of type IV, P* = some i e {1,2,3~. Clearly P*
= PN or P_ so, without loss, it may be taken that
P~ = PN and, if w = -"PX, WJ-, having assumed that
P = necessarily: ~ f P~A”Y and W™ X. Prom lemma
5.6(ii), X = NWMP) = Xr x Xi<r and Z(W) ~ XN,

By lemma 5.6(H) (m), as Wis not assumed to be
contained in a unique maximal ~-invariant subgroup
of G J(W)_I_ = 1.

If Sis anon-trivial characteristic subgroup
of Qthen N~ (S) X = NMP) because {ng(S)] ~ =
Np(QNw(S) and P~~ T, by lemma 5.6 (i), hence
NAYS)< X. In particular NWJ(Q)), CWZ(Q )™ X.

If CFf(Z(Q)) ™ 1 then, as CwWZ(Q)) normalizes both
P and Np(Q )™ p*, P = Cp(Cff(Z(Q)))Np(Q) which then
yields, as {cG(CWMZ(Q)))}p>w  Cp(CWMZ(Q))). Z(Q). that
Cjtw(z(Q))) ™ Np(Q), because of the shape of and
hence P = Np(Q). Consequently, must have CWZ(Q)) =1
and so W= Nw(J(Q))OwWWQ).

It is claimed that JW)-<g WQ is untenable. Suppose
that J(W)<1 WQ then, as JW)r =1, [j(W), [aq, “ 1.
lemma 5.6 (i)(e) states that [g,t] / 1 and so
{n([Q,td))p™ " (= p*), j(w). So either P*™ Y or
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JW) ~ X. The first alternative is ruled out by
lemma 5.6 (i) and the second gives J(W)™ W* which
implies, as CWJ(W))<. J(W), that W= H7 and
contradicts lemma 5.6 (ii)(l). Hence the claim iB
verified.

Suppose that it has been shown that No(Q) =
P = P~ As NFf(J(Q)) normalizes both P and Np(Q)
UP*), [nw(3(Q)). PI*"NP(@Q =R . Clearly [NffU(Q))" ., p]
= [mw(J(Q) ~ir* [NW((Q))/?r, P]]
[NWMJ(Q)) £, p] ™ P*. Since, from lemma 5.6 (ii)(b),
OMPX) = 1 it follows that NvMJ(Q)™)Yr = 1 and so
NJ(Q)) = [NWJ(Q )),H ~ [xt/locr] ~ W . Hence W=
NV(J(Q))OwWQ) = WOWMWQ and so JW)C £w,t]”~ OMWQ)
which implies that J(W)"3 WQ and this possibility has

1 because

already been excluded. Thus the desired contradiction
follows once Np(Q) = P* = PI has been established.
Suppose that Np(Q) / P*. If Oq(@QW) / 1 then
iNG(°q(QW)})> v™Ws cp(Q) and hence Cp(Q) ~ P~. Therefore
No(Q) = Cp(QNp(Q)* = Cp(Q)Px = P_. Hence it may be
assumed that ONQW)
As Z(P) = ZiP)"~ Np(@Q and L, = {p. No(Q)Q},

it follows that Sq/ 1 for all non-trivial

1 and so Q is star-covered.

characteristic subgroup”S,of G.If, furthermore, S is

abelian then S S_I_Sr . For, as Qis star-covered and

Z(P) normalizes both S and S"S™ = Slé(rx_y S=S 0g(Z(Q))
= Sk<trxys Sq_?(". Moreover, when S is abelian,

g = SI"r"T,L1
Now, if 1 yi NWJ(Q)) (®NWP)) then
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{CGNW(I(Q)j.)}pf<l> Cp(NWCI(Q)) ), ZUiQ))" because,

from the previous paragraph, ZJQ)™ = Z(J(Q))™_Z(J(Q)].T.
As Z(J(Q)~, / 1, this gives Co(NW(J(Q) ) "Mp(Q) and
hence P = Cp(Nff(J(Q)) YNp(Q)™ Np(Q). Thus it may be
deduced that NvJ(Q))g = 1 and also, as NWJ(Q))™: X

= W xXar, that NFf(J(Q)) ~ W. Hence W= Nf(J(Q) )OWWQ)

= VerW(\/\Q) and so a contradiction has been obtained in

the form of J(W) <1 WQ This establishes that Np(Q) = P*

and so completes the proof of the lemma.
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8. ON THE SUBGROUP GENERATED BY oc-INVARIAMT SYIOff
SUBGROUPS OF G OF TYPE (1.2.3>.

The purpose of this section is to show that all
«-invariant Sylow subgroups of G of type {l,2,3} are
of type 7 or, in other words, that the «-invariant

Sylow subgroups of G of type {l,2,3} generate a soluble
Hall subgroup of G.

Theorem 8.1 If P is an «-invariant Sylow p-subgroup

of Gof type {1,2,3} then P is of type V.

Proof Assuming that the theorem is false, a suitable
contradiction will be derived.
The proof will be presented in a series of

lemmas and broken do»/n into three nain cases*

Case(l) Only types I, Il and V can occur;

Case(2) Only types Ill, IV and V can occur;

Case(3) Types I, IIl, Ill and IV all can occur.
Case (1) For lemmas 8.2 to 8.6, P will denote an

«-invariant Sylow p-subgroup of G which is of type |
with respect to Q and, additionally, it will be
supposed that zZ(P)» P~ (so =1).

Lemma 8.2 (i) Q permutes with L™
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(ii) 2 B "~.3 B "5
(iii) Q permutes with at least one of L2 and

and (iv) Q permutes with L™,

Proof (i) Suppose L27Q 4 QL2j ‘ttlen* as L23NQMI23»
it
admits OX fixed-point-freely with L2j <~ 3®

Ng(L23~~ L23NQAL23~ 8111 therefore> since NQ(125) 4 1,
L23Q = QL23*

(ii) Since [i™g* = [1i3* Q,~] = 1* fr0IB
lemma 7.5(i) both of L"2 and I”™j must be trivial.

(iii) As {<>,}*,rrvr = 1» from lemma 2.5(ii),
[L2, QT = [ij, QN =1. If QL2/ L2Q and QL™ ~ L?Q then
as L~ = szj_: 1. Z(Q)™- Ql't which is at variance with
the fact that QCYT: 1%

(iv) Suppose that LjQ 4 QI”« As Z(P)< V-r»
L"P = PL™ and hence, by lemma 6.9, n (Q). Hence
Qpt @ ~SQ(LL). If [NLi(Q)flo] 4 1 then Z(Q)<
which yields that [z(P), Z(Q)J = 1 contradicting the
form of /rYP*!. Thus Q* = 9 but then, from (1.19)(iii),
[Pa, Q~] = [p”, Q] = 1 again contradicting the form
of mp*g_' erm
Lemma 8.3 Suppose PLi = LiP for some i£ {1,2,3} and
let Wbe an oc-invariant Sylow w-3ubgroup of type {1, 2,3}

which permutes with P. Then W permutes with L~

Proof Suppose LYW 4 WL", clearly / 1/ W Prom
lemma 6.2, as P is not star-covered, NL (W),
i

First consider the case i = 1. Then / 14 In
n<r 1T
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and hence, aa [p , Ll =1, [z(P), 17] * 1. Because

P ia not star-covered, OJr(P\N) ¥ 1 whence 0r (PW)/IZ(P) ¥ 1
and consequently OwmPW) N 11M1»7N). Since NAL?N) ¥ W

and 1~M(1™) ~ WA, W the only conclusion that may be
drawn, in tl ot of lemma 2.15, is that W= Wj. Clearly W
must permute with Q as Wis not a suitable candidate

to be of type I (if W8/ QW, then by lemma 6.1 W would
have to be of type I). So lemma 6.1 becomes available
and yields that OWWQ) = 1. Therefore, as WQ admits <IT
fixed-point-freely, W= WW®, from (1.19) (ii).
Consequently, by (1.19)(iii), & has a normal

w-complement and so, as W= ¥ 1), lemma 4.1 implies
that G does not satisfy hypothesis D. Thus for i =1,
WA — LW

Now examine the case i = 2; as for the case i =1,

it will first be shown that W2 ¥ LgW implies that WQ = QW.
Since WL.2 / IgW, L2 must be non-trivial and so if
L2Q = QL2 then, as [lI2, @J =1, lemma 7.5(i) shows this
cannot occur. Thus L2Q ¥ QL2 and» as ™p<r¥ i by lemma
5.6(i) (d), Q® QM""™Nqg(L2) with NQYNQ(L2))*if NQ(L2).
Now, suppose that QN ¥ WQ The prevailing
hypotheses demand that, by lemma 7.1 Wbe of type I.
Hence, from lemma 7.4 (i)(a), ZW) < W and so
Z(W) Nwv(L2). As 0~z Ng(L2), ZW) normalizes Q and
Ng(L2)( ¥ Q) , it follows that Cq(Z(W)) ¥ 1» But this
is not possible by lemma 5.6(i)(a) and so it may be
concluded that. QV = WQ
At least one of [nw(L2) ~>Jand [N~iLg),~! must
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be non-trivial; suppose [N~(L2),yoJ is non-trivial.
Because Oq(QW)n NQ(12) oNQWYN , Og(QWN and MA(L 2)
normalizes Og(QW) and Oq(@QMW/~\Nq(L2), Oq(QW) =
(Ga(@QW)n Na(L2) )Ca (Qw) ([n™(L2) tH*])= By lemma 7.5 (i),
@ (aw) ([NWiL2*»/0 '} musl: be trivia:L* Therefore
Q@M ™ Ng(L2) which, when combined with Ng(Ng(L2))*~
Ng(12) and lemma 2.15, forces Q= Ng(I>2). Thus the

lemma holds for i = 2. When i = 5, a similar argument
to that presented for i = 2 will suffice.
Lemma 8.4- Suppose Lj, permutes with P, where i = 2 or 3.

Then LA = INLA.

Proof Suppose the lemma is false and, without loss,
set i = 2; note that L"P = PL™N As £12, Q =1, if
Qj. (L”™) is non-trivial then {~#(Q~" P, Qx

star-covered. Prom lemma 8.2 (iii), I™Q = QL1 and hence,
by lemma 6.1, O7C_,\(L-1Q) = 1 and so L-(..IS also star-
covered.

L« (because either

hen LN, (L2),pj / 1 would mean could not be
stajvcov;red and so 12 = L2* = Lg). The pemmuttability
of Lj and Q is excluded by lemma 7.5(i)
Cg(L2) / 1 and QL2 ™ L2Q, if Lg= L2 , then
Wr:ich caFr,mot occur.

Thus 1» = L-,  and furthermore,as LO=1, 1/ L, ~
> i~ o(r ['T§
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either 1 / CQ (j™qg)(Hj~dg)) ~ CgHI™N(L2)) or

0(1~0) "N qg(L2). The first possibility contradicts

the conclusion of lemma 7.5(i), whereas the second
possibility, since Ng(Ng(L2) Ng(L2), forces QL2 = LgQ.

Hence the lemma is established.

Lemma 8.9 Suppose U and V are «-invariant Sylow
u- and v-subgropps of type -fl,2,3} both of which permute
with P. Then UV = VU.

Proof As only Sylow subgroups of types I, Il and V
are assumed to occur, if UV / VU, without loss, it
may be supposed that V is of type | with respect to U.
Hence V Ny(U) and so, from lemma 6.1, Op(PV) = 1.
However, as P is of type I, P is not star-covered.

Therefore UV = VU.

Lemma 8.6 If PI™ / LjP (where i = 2 or 3)» then QI™ “I™Q.

Proof Deny the result, and suppose i = 2. Since

Z(P)»p , [Z(P), Nt (P)J =1 and hence if L2*?£

N]J.Z(P), then this implies, as NLFZ(P) N 1, that
VIPt'I12 has a form contrary to that given in lemma 5.6(i).
Therefore h* ~ N (P) hence , Pr ~:Np(L2) and, in
particular, Z(P) = ZCP)™™ No(L2).

Now [L2, Qt ~= 1 implies that , Qt <.Nqg(L2).
Since Z(P) normalizes Q and Ng(L2) (/ Q) , clearly

Cg(Z(P)) must be non-trivial. Tnis violates the
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conclusion of lemma 5.6(i)(a) and hence lemma 8.6 is

proven.

Lemma 8.7 If QL and Q2 are (X-invariant Sylow subgroups

which do not pennute with P. Then

Proof As case (1) holds P must be of type I with respect
to Q" and Q2 because of lemma 7.1. Prom lemma 7.4 (i)(b),

as Q- =1, it follows that Q, = Q, =1 and hence,
QT QxCrz Q*<TX
by (1.21), - Q2.
It will now be shown that case (1) is untenable. To
this end, for the three ensuing lemmas, P will denote

some fixed «-invariant Sylow p-subgroup of Gof type |
(as theorem 8.1, is assumed to be false together with
the assumption of case (1), there must exist at least
one such P). Also assume Z(P) ~ P<f~'|’

Define H=<ff,L .L [LP=PL ,L P =PL and WP =
PW, Wix—nvariant Sylow subgroup of type (1,2,3}>and
K=<W,L_L_JLUP/ PL_,L_PB3PL_ and W ~PW, W
«-invariant Sylow subgroup of type (1,2,3}> . Further, set
H- = <wjw is an «-invariant Sylow subgroup of R of type
(1,2,3}> and K+t =< WjWis an ©(-invariant Sylow subgroup
of Kof type {I,2,3>>

Lemma 8.8 G= HK

Proof First recall from lemma 8.2(ii) that I2 = L~ = 1}
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also, as LoQ = QI23 (where Qis an «-invariant Sylow
subgroup of type Il with respect to P) and 123/ L23
(if L2~/ 1)} if L23 is non-trivial, then Lg™P / PL23
because of lemma 6.1. Clearly PL™ = L~P and from
lemmas 8.5 and 8.7 both Hrand K+ are soluble Hall
subgroups of G.

Suppose both L2 and do not permute with P.
Thus lemma 6.3 yields that “ON3IN2* AMso i emma 8*6
shows that both L2 and permute with K+. Applying
lemma 8.3 gives L"H+ = H+ and so G= (1 2LNL2j k)
= HK since L2j clearly permutes with 12L7"K+.

Suppose L2 permutes with P but Lj does not
permute with P. Using lemmas 8.6 and 8.3 gives
respectively that LK+ = K+Lj and that both and
L2 permute with H-. Thus G = (H+L~L2) (KALAMIN) = HK by
virtue of lemma 8.4.

Suppose L2 and permute with P. By lemma 8.2 (iii)
it may be supposed that QLN = L”Q and hence, as
[L3» Q~] = 1» lemma 7.5(i) demands that be trivial.
Again, use of lemmas 8.3, 8.4 and 8.6 gives G= (H+L,I>2)
(K+L23) = HK

This exhausts all the possibilities and

therefore lemma 8.8 follows.

The next result will be used in showing that the
factorization obtained in the previous lemma is

inoomoatihie with hypothesis D.
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Lemma 8.9 Let P be of type | with respect to Q and
assume PN N IMP (i = 2 or 3). If Z(J(P))i= No(Q),
then Z (J(P))~™ Np(Lzt).

Proof Suppose the lemma is false (and assume i = 3).
Recall that, from lemma 8.6, QL™ = L"Q and observe that
L,V st (P) because Z(P) = Z(P) renders L_*”~ NI_,(JO
J iii or ? £3
impossible.
If (say) Z(J(P)) [/ Z@(P)) * , then
n2
‘p(pc -V nz@J(P)) * 1 “dK (Op(pcrV nZ(J(p)))"P"
Z((J(P)), I, . As P . P, Ng(Lx), the remark
\Y% Q r r

succeeding lemma 5,5 demands that Z(J(P)) No(L3).
Therefore Z(J(P)) = Z((P)) * and, for similar
n <fzy
ZJ(P)) * . AsPr 6 1,),
(( ))P «r-ty S PE CE( Iz
clearly Z(J(P))ptr = 1 may be assumed hence Z(J(P)) ,

reasons, Z(J(P))F>

Z{(p)) <zZz@(P)) . Thus Zz(J(P) »m- Z(J(P)L. and so
[z(3(P)) ,€J * = i. Since L3* =1, Oq(L3Q) = 1 would
dictate that Q= Q™ which would contravene the type of
Q (see lemma 5.6 (ii)). Hence, as [z(J(P)), "t1* =1,
[Z(J(P)), T] , L, MNGOa(L3Q))}pt7™ and, therefore,
[Zz@(P)), T] ~C p(L3). If fz(J(P)),c]1/ 1 then Z((P))s~*
Np(L3). Hence [z(J(P)),tO must be trivial.

Claim that N¢3(?)..= 1 (from lemma 5.5 NJ3(P) is
the largest oc-invariant subgroup of Lj permutable with P).
For if not then, as Z({J(P))-¢é PX and L, =1,
[z(J(P)), Nt (P)J =1 Whence Z(J(P))-C Np(L3). Therefore
7rivtir = {13H(L3), pj and so, if one of CL (Z(Q)) or
Nr (J(Q)) is non-trivial, then Z({J(P)) is forced to



94

be contained in Np(L”). Thus, applying Glauberman;s

factorization theorem, and, as =1,

[L3, [Q.'O] = 1. Since [Q.r] 1, (>F[Q, x])>p, " PA,
and so Z(J(P)) ™~ No(lj) which has been assumed not

to hold. Eence the lemma is established.

Lemma 8.10 G does not satisfy hypothesis D.

Proof Observe that one of the following two possibilities
must hold: either Z(J(P)) ™~ No(Q) for eachoi-invariant
Sylow subgroup Q which is of type Il with respeot to
Por ZQUMP)p = ZQ(P)) g.ZiliP))™, ZUIP)» =
ZUtPNZiJiP))™ and Z(J(P))t = ZiJiPj~rZiJiP))N.

The latter possibility, combined with lemma 4.3
and the fact that P is not star-covered, gives that
H~”C, (D) inhere 1 / D=0 (H)n Z(P). Clearly Z(P) = Z(P)_-£:
No(Q) for each Q of type Il with respect to P, so
Z(P) » Ng(K+). If Lgj is non-trivial then LgjlV PL2j
and hence Z(P)™ Np(L2j). If Lg(L3) does not permute
with P then, as ~ ,Pr~ Hp(L2) VA~ ANp(L3)), it
follows that Z (P )N p(L2) (Z(P) ™~ No(L3)) also. These
remarks taken together give that G= CG(D)K with
D< ZP) =m Ng(K) ( / G and clearly Ghas a non-trivial
proper normal of-invariant subgroup, namely D

When the first possibility holds, Z(J(P)) » No(K+)
and if LjP ~ PL™ then, by recourse to lemma 8.9,

Z(J(P)) < Np(L3) also. Similarly, J PL2 leads to
ZJ(P)) ™~ H(L2). If L23 ~ 1 then L23P / PL23 and, as
[I<23* K+] = 1, this produces Z(J(P)) ~ Np(L23) as well.
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Thus Z(J(P)) » No(K). Let D= Q(H)*Z(P) {¥ 1). Then
(from Glaubennan's factorization theorem) D ~ Z(J(P)) »
Ng(K) and so DG (*Nqg(K)) is a non-trivial proper
normalinvariant subgroup of G

Consequently G does not satisfy hypothesis D.

Case(2) The first few lemmas under the assumption of
case(2) parallel some of those of the preceding case.
Until stated otherwise P will denote an
iie-invariant Sylow p-suhgroup of type Il with respect
to Q. Further the following notation will also he fixed:-
p>q = {PY, QX} with PMS X and @, Qr - Y. Thus
referring to lemma 5.6 (ii): Z(P) = ZiP)» X = N (Q),
Y*"Q”N so Q™ =1 and Q* = Q™

Lemma 8*11 (i) Q permutes with 1*"3 and ~23*
(ii) 172 =713 =

Proof* (i) As — 1> M3 =1 and CgQ™) ~
<<rc>

clearly QLgj = L25Q.

Consider Lp2* Since Z(P) =< P ™, IA_pP = 8
so, in particular, PL™ = Ig™P* SuPPose L12G ™ QIlqg2 bhen
Morp.0 “ («' 112NQ(112)) With QT A OQ(L12>* Observe
that = 2" M2AMYT* Since L*"p ¥ 1 and G
satisfies hypothesis D, Lpp ¥ Lp”~ hence °jr.-(p112n~/ 1.
ana .0 {»0(07ri2(PL12))}piq> V h ~ 1" P. Therefore
CqiLip)™d Y and hence NgCL”) ~ @ leading,
because of (1.7) (x)» to Q = Q\ which is contrary to
lemma 5.6 (ii)(d). Thus L12Q = QL"2* That L ~ —QL"
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follows by similar reasoning.

(ii) Suppose L12 is non-trivial. Then, because
hypothesis D holds, L12* Aa L12 Permutes with
both P and Qthis situation is impossible in the light

of lemma 7.5(ii). Again, similar arguing gives = 1.

Lemma 8.12 |If and Q2 are x-invariant Sylow subgroups
of type {l1,2,3} which are of type IV with respect to
P, then QjQg = QgQp.

*1221 Let ~Apfgi =17, XIQI} and 7 ~ = (pY2, X2Q2>.

Then from lemma 7.4(ii)(b), the shape of Y* forces

P/0< Xg* QU7» Qit ~ Y1 5111 P~ x2» Q2@ Q2t~ Y2* Thus

Qi = Qo =1 and hence Q-.Q, m Q9Q, by (1.21).
1<rz d(rr E R i

Lemma 8.13 If I"P / PLt, where i = 2 or 3, then LjQ = QL.
Proof Suppose L"Q/ Q™ then (taking i = 2), as [@, L2J =
Q”, Ox "N g(L2). Since zZ(P) ~ , it may also be

deduced that P®, P~.N.p(L2). Consequently Z(P) = zZ(P)"x"
No(L2)r\ No(Q) and therefore, as NQ(L2) ~ Q©,

Q= Ca(Z(P))Na(L2). However QQ(Z(P))< Y Q "~ NJ)L2)
giving Q = Ng(L2) which contradicts the original
supposition.

Thus 1MQ = QLN

Lemma 8.14 Let Wbe an «-invariant Sylow subgroup of
type {1,2,3} which permutes with P. If, further, it is
assumed that J(P) =1, then L1W=WL"
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Proof Suppose the contrary. Since PL~ = L~P, and P

is not star-covered, by lemma 6.2, L~A*"~ Nj™NW).

Thus W, W_™NTFf(L™). Furthermore, as Z(P)P~ | [z(P), LI
= 1 whioh forces OWPW)~ NAML?) (because Z(P)/-\

Op(PW) / 1). Lemma 2.15 demands that W= W, and so

[Pt/0]~ P »; hence [p,(>] -c 0 (PW)n O(PLj). By

assumption, J(?) © and so, By a well known

property of the Thompson subgroup, J(P) is a characteristic
subgroup of both Op(PL”) andOp(PW). Therefore

{i~J(P))}wn > 1~, W from which it follows that
UJw = wL~

Lemma 8.15 If L™ (i = 2 or 3) permutes with P and
JiP)» =1, then I = LilLi*

Proof Without loss, examine the lemma for i

2}
note PL~ = LpP. Suppose LpL2/ LgL™ As [z(p)* LI =1
and P is ndt star-covered, Op(PL2)\ Z(P) ~ 1, hence
TR<PIL2>"N% < |I>-

If Op(PL2 / 1 then by lemma 5.6 (H) (e)
Z(Op(PL2))™ X = X~Xx I f ZiOpiPLg)™ / 1 then a
furhter application of lemma 5.6(ii)(e) yields that
p(BL2) -C X . Since Np(X)~< X it follows, from
lemma 2.15, that P = X which contradicts the type of P.
Thus Z(OP(PLQ«).:)yo = 1 and therefore Z(0 (PL?)) " XVT < P«T.
Hence N]Z(Op(PL2))) ~1~, Lg because [i*, P~] =1
so giving L-*2 = Lgl™.

Thus it may be deduced that Op(PL2~ = 1 from
which it follows that OptPLM"OMIPL-M admits

fixed-point-freely. Hence Q~(PL1)
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Thereforet depending on whether L, NI (L«)
wr =1

or L2 &~ Nyp <*I). either 1-/\:1/; or

L2 = L2 (because (“(PI™) "NL (12) and 0 (PLgX

If L2 = L2 then [P,/e] » Op(PL2)n OpiPI™) and,
as J(P™~ = 1* this gives J(P) normal in both LP and
L~. Hence I"L2 = LgL"™

Therefore L1 = I:,<r and, since Lg,\: 1 and

i~2 /7 L~ “ih' N1(L2)L2™ Ab 1 ~
PL™ and £p,G~] <C Op(PL2) it may be deduced that

TT2<PL2) ~

= 1-
As [z(P), ~] =

1 and J(P) [P, ("~ (P17,
Cin(Z(P)) = X_= Nj~({J(P)). Taken together with the
fact that LO = CT (Z(P))NT (J(P)), it follows that

* h2 h2

L~AL2 = Lol which gives the required contradiction.

lemma 8.16 Suppose U and V are oc-invariant Sylow
subgroups of type {1,2,3} both of which permute with
P. Then UV = VU.

Proof Because case(2) holds, if Uv/ VU, without loss,
V may be taken to be of type IlIl and U of type IV.
Since P is not star-covered, lemma 7.5(11) shows this

configuration to be impossible.

Lemma 8.17 If L2 and Lj permute with P, then

Proof It will first be demonstrated that OpiPLgX, / 1 /
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Op(PLM~™. This follows from the fact that £x, ff] ~
[P, cr] < Op(PL2) 32 lemma 5.6(ii)(]Jc) that
1/ [x,cr] P*. Similarly for Op(PI13" .

Consequently by lemma 5.6 (ii)(e), Z(Op(P12))
and Z(Op(PLj)) are contained in Np(Q) = X *» XX
If (say) Z(Op(PLg))™ 1 then, using lemma 5«6 (ii)(e),
Op(PL2)~ X and so, as No(X) X, lemma 2.15 gives
PQ = QP. Hence Z(Op(PL2)), Z(0p(PL2)) < X~ and therefore
[z(Op(PL2)), L2]= [z(Op(PL3)), 13] «1. As P is not
star-covered, O (PI2)n O (PL3) / 1. Prom 1 /
P (PL2)NOp(PL3)<J Op(PL2) it follows that Op(PL2)n
O (PL3)r> Z(Op(PL2)) jt 1. However Op(PL2)N O p(PL3)™ Z(0p(PL2))
is normal in P so Op(PI12)n Q(PI3)n Z(0p(PL2)) <3 Op(PL3)
hence Op(PL2) AN (P13) n Z(Op(PI2))n Z(©Op(PL3)) / 1. In
particular, Z(Op(PI12))n Z(Op(PL3)) ~ 1 and thus

LjLg = LglLj.
lemma 8.18 If PLN = L™ (where i = 2 or 3) then I™Q =
QLi*

Proof As in the proof of lemma 8.17 it may he asserted
that Z(Op(PL2))~ X~ and hence £z(0p(PL2)), Lgl = 1.
If L2Q/ QL2 (say), then as Q mQT < ng(L2) (with Q*= 0")
and Z(Op(P12))~1 No(12)n Np(@, Q = NQ(12)CQ(Z(0p(PL2)))
= Ng(L2)Q™ (because ZOp(PI12))n Z(P) / 1) = ng(l2) is
obtained.

Hence QL2 = L2Q must hold; the result for i = 3

may be established in a similar manner.
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Remark Lemma 8.18 shows that if is any M-invariant
Sylow subgroup of type 17 with respect to P and
FLi = LiP (i = 2 or 3)» then > ONQN.

Lemma 8.19 Suppose J(P~ =1 and that PLi jL L"P for

i = 2o0r 3. If i = 3, assume that Z(J(P))G n Z(J(P))_Pk

and, if i = 2, assume that Z(J(P))T Z(J(P))W, then:
(i) L~ does not permute with aay oc-invariant Sylow

subgroup of type {I,2,3} which permutes with P; and
(ii) For any Gh which is of type IV with respect to

P and any ~-invariant Sylow subgroup Wof type {1,2,3}

which permutes with P, N NACQY'«

Proof Assume the hypotheses of lemma 8.19 and that
i = 3. Observe that L"P ~ PL™ and Z(P)» P~ dictates
that P,, PAN piLj). As ZUCPn~"~ZUiP))",
Z(J(P) )n ONPAL™M) /1 and so, as P~ML”™is "7”-closed,
> J(P), L™i The remark
following lemma 5-5 is relevant here and hence
J(P) -6 No(L3). Clearly J(P) = J(p}-Ci(p)™ 3) and*
since P is not star-covered, obviously J(P) ~ J(P)_~.
I f (QL3) ~ 1 (by lemma 8.13, 15 and Q permute),
then (NgQO™ U-3Q )}p ™ Cp(L3), Q. In particular,
°J(P)(L3) = X~x b and so, as JP)» =1,
°J(P)(L3) giving J(P) 2= Px which, as has been
mentioned, cannot occur. Therefore 0™ (QLj) = 1 and
consequently L2 = L].q_as QL’Z‘ admits 0'x fixed-point—

3
freely.
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Now (i) will be established. Let Wbe an «.-invariant
Sylow subgroup of type {1,2,3} such that PW = WP and
suppose WLN « LjWw.

As J(P) ~ Np((L”™) and J(P) P_ by considering
J(P)PT it follows, as fj(P)P ,-I'J - [J(P),t] S Cp(L5),
that PT~ Np(lj). Hence P"~ Np(L"). By appealing to
lemma 6.1, it may be seen that OMWLj) = 1. Since

=1 and L™ = L, it may be inferred that W= W~
Consequently = 1 which is against the type of W. Thus
it may be concluded that WL ™ LW and so (i) follows.

Now consider part (ii) j use the notation given
in the statement of (ii).

Suppose N QMW. Tlie Prevailin6 circumstances
taken together with lemma 7.2, dictate that Wmust be
of type IlIl vdth respect to Q™ As 'S "Np(Q), by
lemma 7 .4(ii) (a) and (b), it may be deduced that
Nv(Qh) =

Consider (ii) when = @W. Observe that lemma
7.5(ii) may now be employed to deduce that Wis
star-covered. Prom (i) , W™ WL and moreover, as Lj =
L"ncr: L.> it is evident that V\</r, Vg" I\M\(L.,). Since
Wis star-covered, W= V¥ and so, from (I1.19(iii))

Q <3 Q W. As P.~ Ni(Q), it follows from lemma 7.4 (ii)(b)
tﬁzt P.;E)I'prinjJ F’also. Hence Qh+ = Gh and so, by
coroII;ry 2.4, ~ NG(Qh). Thereforep(ii) is proven.

Lemma 8.20 Suppose PLN = L™P (for i = 2 or 3) and W

is an «-invariant Sylow w-subgroup of type {1,2,3} such
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ttiat PW = WP. Then WL2 LgW (respectively WA~/ LW
implies that W= (respectively W= WH),

Proof Let Wbe as in the statement of the lemma with
wi2 ft 12w

Observe that either W= W: or "N~dg), <r] / 1.
For, as P is not star-covered, Lg* ("™)* hy-lenma 6,2,
and consequently ff, < NFf(L2). If [nw(L2), O]« 1
then, as P is not star-covered, either 0_ (PLO)™. MI (W)
or OW(PW)™ N”7iLgK The latter immediately elves W= W»
(because of lemma 2,15) whilst the former, as (\N)A"
L2~N (see lemma 5'.5(iii)(o)), implies that L2 = EZ i
This situation (plus the fact that G satisfies
hypothesis D forbids L2 = ®”T) gives (by considering
Lg/~iLg)) that either CMNWA) or CFfW) <: ~(Lj) ("W.)
whence W= W>> Thus to complete the proof of the lemma,
it will suffice to show that [nw(L2), 0'] / 1 cannot
hold.

Suppose then that [mw(12),(€t] ~ 1; clearly Wis not
star-cohered. Furthermore Wcannot permute with Q
because of lemma 7.5(ii). From lemma 7.2 (as case(2)
holds) Wmust be of type Ill with respect to Q; thus

N = {wz, NWQ)Qj with (by courtesy of lemma 7.4 (ii)(a))
N~ NWQg) and Off, Q «é Z

It will now be shown that NmL2) *"Nw(Q). As PL2 =
LgP* by lemma 8.18 L2Q = QLg. Observe that the largest
oC-invariant subgroup of L2Q permutable with P is LgY.
A3 Y and LgQ admits <TT fixed-point-freely,
Q = CQ(L2)Yef
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Consider {cG(L2"}q,w* If cgq(L2 ~» 2Z~ » then
Q= (%Y = (% which is against lemma 5.6 (ii)(d). Thus
Cw(L2) ( MNw(L2),(tf] ) Is contained in Ny(Q) and so

N [NWQ)f<d . By lemma 5.6(ii)(e and f),

1 vi [nw(L2),CT] hence % ( [mw(L2),<]) ~ HWQ) and so
Nav(L2) *£ HWQ).

A contradiction may now he obtained as follows:
NmL2) ~ NWQ) implies that NFf(Q) and so
[OowW2)”~, Z] = 1. However, lemma 5.6(ii)(b) demands that

Oq(\NZ) =1 and so Z" Qt Tgus %At- which contravenes
the fact that Q is of type {1,2,3} and therefore the
possibility <r3 / 1 is excluded.

Hence lemma 8.20 is verified.

Lemma 8.21 If JAP~ ft 1, then hypothesis D does not
hold for G

Proof Prom lemma 5.6(ii)(m ), P is contained in a

unique maximal o<-invariant subgroup H of G. Moreover

H = Cg(D) where Dis a non-trivial £<-invariant subgroup

of Z(P). The combined effect of lemmas 8.11, 8.12 and

8.13 is to show that the group generated by the ©(-invariant
Sylow subgroups of type (1,2,3), L and L which do not
permute with P, is a soluble Hall subgroup, say K, of G
Clearly KK = G. Por any (~-invariant Sylow subgroup of K
of type {1,2,3}, Z(P) = Z(P) *"~(Q")5 further» if

say PL2 / LgP, then, because Z(P) = Z(P)» n ~ Np(L2)

and so Z(P) ~ No(L2). Should L23P / PL25 occur then,

as [~2V
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evidently Z(P)™ Np(12j) also. Hence Z(P) HH(K)
and so Dn is a non-trivial proper normaloC-invariant
subgroup of G?

Therefore, when J(PIF ~ 1, 0 cannot satisfy

hypothesis D®

In view of lemma 8.21, for the remainder of case(2)
it will he assumed that P is of type Ill with respect
to Q (with P. ~ N_(Q)), and that J(PIl = 1. Observe that

r * r

lemmas 8.14 and 8.15 now become available.
Lemma 8.22 P permutes with L™, L2 and Lj.

Proof Deny the lemma; it is already known that
PLp = L™P, thus it is being assumed that P does not
permute with at least one of L2 and L”,. Most of the
proof is directed, under these assumptions, to Bhowing
that at least one of Z(J(P))N,™ Z{J(P))T and Z(JjP))"<
Z(J(P)™_ must hold; to this end it will be supposed that
neither possibility occurs, and from this a contradiction
will be deducedi

Suppose, further that, PL2/ L2P and PLj ™ I™P.
Then L2, Lj, L2j and those oC-invariant Sylow subgroups
of type IV with respect to P generate a soluble Hall
subgroup, K, of G by lemmas 8.11, 8.12 and 8.13. As
in lemma 8.21, it may be deduced that Z(P) » Np(K). By
lemma 8.19(i) applied to both L2 and L”», it follows that

no <x-invariant Sylow subgroup of type {I,2,3} which
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permutes with P permutes with either of L2 or L™
Furthermore 12 and Lj * (a demonstration of
this may be extracted from the beginning of the proof
of lemma 8.19) and so it follows for eachoc-invariant
Sylow subgroup Wof type {1,2,3} that permutes with
P that W, sENw(L2) and W», -cN~Lj). In
particular, for each such W, WA~ N~2iLgInN) -

If H denotes the subgroup of G generated by 1n
and the «-invariant Sylow subgroups of type {1,2,3}
which permute with P, then His a soluble Hall subgroup
by lemmas: 8.14 and 8.16. Appealing to lemma 8.19(ii)
and recalling that 0KR3, «J = 1» 1* follows that

N Nr(K). Since J(P)™, =1, from lemma 2.12
(Ng(J(P))}p, = {0GI(P))}pI{MG(I(P))}pf)Ov and so,
using (1.9), it may be seen that. H= (~(D)!", where
D“ QMH)h Z(P) (™ 1). It is now clear that G= KK =
“ Ch(D)Ng(K) cannot satisfy hypothesis D.

So when PL2 ~ LgP and PL™ 7 IMP hold, it may be inferred
that at least one of Z(J(P))0~51gZ(J(P))*C and Z(J(P)_?_ si
Z(J(P))d occurs:

How consider the case when (say) PL2 » IgP and
PL5 ~ L5P. Since Z(J(P))r~-2Z(J(P)) (by assumption),
as before, from lemm”™ 8.19(ii) W = ~(Q”) where is
any «-invariant Sylow subgroup of type IV with respect
to P and Wis any «-invariant Sylow subgroup of type
{1,2,3} such that PW = WP, also L, =L, .

0 w7

It is now aimed to show that 12 - 1; suppose

otherwise. As PN pil~), LgL™ “ 131,2 wourd compel,

because of lemma 6il and ®» LA implying L2<) 1%273»
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P and Lj to permute. Hence L2Lj r lijLg and, as Lj ** Lj

it follows that VI— — * {Jiy Nj. (L2)12}i Appealing

to lenmas 8.13 andnéiitg gives that QL2 m IRQ and QLj = L"Q,
Since Q™ fft "3 “ =8N~ and 12 = 1» it follows that

0j. (QL2) (Ij) = 1. Thus, as QLg admits Q'x fixed-
point-freely, Q”™J QL,,.. Moreover, » 1~ implies, by
(1.19) (iii), that Qid QL™ whence LgLj “

Consequently L2 must be trivial.

Proceeding as in the previous case when both 12
and Lj did not permute with P, it is possible (because
L2 = 1) to obtain G= KK with HY, Z(P) ~ N(K) (here
H is the subgroup of G generated by and those
o(-invariant Sylow subgroups of type {lI,2,3} which permute
with P and , Kis the subgroup of G generated by the
remaining oc-invariant Sylow subgroups); again, G cannot
satisfy hypothesis D.

Thus, without loss, it may be taken that Zz(J(P))~_~
Z(J(P))T. Consequently, ss J(P) =1, Z{J(P))* = Z(J(P))T.
1, Z(J(P))<1FY and so
ZJ(P)) = ZU(P))TCz(J(p))(QT) (since Q ~Y ). If
Cag@t) ¢Y (™Q~) then (1.7)(x) forces Q= Q% which

is contrary to lemma 5.6 (ii)(d). Therefore °z(J(P))~"T"

)
\
By lemma 5.6(ii)(m), as J(P) =

X = Xgc* B0 Si-71"«» because J(P) =1, CZ(J(P)) (QT><
Hence Z(J(P)) = Z((P)) . Now [z(J(P)), [Y,t]] =1 and
1/ As before, CQ(fY, T] )™ Y is untenable
so Z(J(P))™ X and hence Z(J(P)NT P ™.

Referring to lemma 4.4 shows that P is contained
in a unique maximal «™-invariant subgroup of G. Arguing

as in lemma 8.21, it may be shown that hypothesis D does
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not hold for G This completes thevproof of lemma 8.22.

The next result sounds the death knell for case(2).
Let H4 and K+ denote (respectively) the subgroups
generated by the «-invariant Sylow subgroups of type

{I,2,3} which do permute and not permute with P.
Lemma 8,23 G does not satisfy hypothesis D.

Proof Suppose G satisfies hypothesis D. As P permutes
with 12 and L™ by lemma 8.22, it may be inferred,

using lemma 8.17, that LgL™ = L~Lg. Also, as it is

assumed that J(P™ = 1: lemma 8.15 shows that L~AL2 = LgL"
and L~Lj = L~ALAN Invoking lemmas 6.3, 8.12, 8.1i and

8.18 yields that G= (H+L1)(K+L2L3L23) ~ (say) HK (clearly
H and K are soluble Hall subgroups). Observe that

K admits ctefixed-point-freely.

It is claimed that L2 =L2”~and Lj = L’é (and
hence K+ K). If, say, H-L2 *= In*" then, as L~L2 = L2Im.
G= (™ "™ 2)(K+L3L25) also and so L2 = L2*<rr ” L2%

On the other hand, if HL2 / L2H+ let Wbe an
a-invariant Sylow subgroup of H- such that W2 ft L2W.
By lemma 8.20, W= W¢. Hence, as Wclearly cannot be of

whence LQ = LO* = LO . For analogous reasons, L* = L .
2 2 <CTt> 2t 5 \V/

L2H / H-L2 then the argument presented in the
preceding paragraph may be used to show that 0 10(QL9) o 1
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and clearly this is incompatible with Cj~*(K+) / 1. Thus
LJI+ = HL2 and so G = (H”LjLQ) Consequently,
as L2 commutes with L~"L23 bo giving CL (K+)™I K,

(CT (K)+)G is a non-trivial proper norr/r\1al «-invariant
subgroup of G, Therefore ) = 1.

Let L be the subgroup of H generated by those
ot-invariant Sylow subgroups of type{l,2f3} which permute
with K. Since K+-"3K+L2lj, the largest normal
(n(K+)uvr2n)'-subgroup of KL must be a Tt(L) group. In
view of the present circumstances, the largest normal
(/i(K+) U '-subgroup of KL must be trivial. Hence
as [12j, G\ }In™ ,] =1 and for each «-invariant
Sylow subgroup of K+, = Qhn, ~ f°lloi,s from
lemma 2.6 that Lg) = 1. Thus for each
«-invariant Sylow subgroup Wof L, and
consequently, because of (1.19)(iii), K~ K* 17,
Employing corollary 2.4, yields that L~"'Ng(K+).

Now let Wdenote an «-invariant Sylow w-subgroup
of H which is not contained in L. If W& ~ KfWthen,
by lemma 5.6 (ii)(i), G} has a normal w-complement
and so a further application of corollary 2.4 gives
that 77~ si Ng(k+). Suppose Wis such that W& = K+W. Then
W does not permute with L2LjL2j. Since [Q, L2j]“ 1
and / Qf it is clear that L2j and W must permute.
Thus either WL.2 / L2Wor W/ 1YW holds and so, from
lemma 8.20, either W= W or W= W. Either way @ will
have a normal w-complement and, so, again enlisting

the aid of corollary 2.4, this gives H < NGK+).
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Therefore H/OtgNG(K+). Since Z(P)"N &K+)t JiP~ =
and K+$> K, mimicking the arguments given in the third
paragraph of the proof of lemma 8.22, it may be shown
that G = Ng(K+)C&D) where Dis a non-trivial
«-invariant subgroup of Z(P)( ™ Ng(K+)).

It is now clear that G cannot satisfy hypothesis D

and so lemma 8.23 is established.

Case(3)
Lemma 8,24- G does not satisfy hypothesis D.

Proof In view of cases(l) and (2) having been settled,
it may be assumed that G possesses «-invariant Sylow
subgroups of types I, I, IIl and IV.

Let U be an «-invariant Sylow subgroup of G of
type Il with respect to V. It is claimed that if P is
an x-invariant Sylow subgroup of type I, then P must
be of type IV with respect to U. Suppose P is not bf
type IV with respect to U; clearly P ~ V and also, by
lemma 7.3, P~ U. If PU/ UP, then by lemma 7.1, as P
is of type | and Uis of type Ill, neither P nor U can
be of type Il and so either Uis of type IV or P is of
type IV. As the latter alternative is excluded for the
moment, it follows that U must be of type IlIl and IV
which is contrary to lemma 7.2. Hence PU = UP.
Further, it will also be shown that P permutes with V.
Suppose PV VP; again, by lemma 7.1, neither P nor
V can be of type Ill As V is already of type IV, from

lemma 7.2, V cannot be of type Ill and therefore P must
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be of type 1111 By lemma 7.3, this situation cannot
occur and so PV = VP.

Since P is of type I, P is not star-covered and
now lemma 7.5(ii) shows that this configuration is
untenable. Thus the claim is established.

Now lemma 7.6 is applicable and yields that U
is contained in a unique maximal «-invariant subgroup
Hof G, moreover, H= C”iD) where Dis a non-trivial
«-invariant subgroup of Z(U).

Those oc-invariant Sylow subgroups of type
{1,2,3} which do not permute with U must be either of
type | or type IV (U cannot be of type Il or IV as U
is already of type Ill; see lemmas 7.1 and 7.2). Hence
the oc-invariant Sylow subgroups of type {l,2,3} which
do not permute with U must all be of type IV (with
respect to U).

By appealing to lemmas 6.3, 8.10(i), 8.12 and
8.13 (the latter three results clearly apply to this
situation), it may be deduced that the group K,
generated by the a-invariant Sylow subgroups» of type IV
with respect to V, the and L~ which do not permute
with V forms a soluble Hall subgroup. Clearly G= KK
and it is possible, arguing along the same lines as in

lemma 8.21, to obtain that Z(U) ~ N&K) whence lemma 8.24

follows.

Since it has been shown that cases(l), (2) and (3)

are incompatible with G satisfying hypothesis D, theorem 8.1

is now proven'’



9. FACTORI ZATION THEOREMS

The two main results of this section are concerned
with showing that if G factorizes in a particular way
as the product, of two proper«-invariant subgroups,
then G cannot satisfy hypothesis D. The configurations

that are studied here will make an encore in section 10.

Theorem 9.1 Suppose G = KI™ whereK is an «-invariant
soluble subgroup of G, i€ {I,2,3) and (]|, JLj ) = 1.
Then G does not satisfy hypothesis D.

Proof Deny the theorem and suppose i « 1} let K denoté
the largest «-invariant subgroup of K permutable with

?". As L, =1 and hypothesis D holdsfor G, 0 ~ (KL®) =1
and hence K= NK(1~) (~ ), by corollary 2.11(i) and
(ii). Observe that 1™ ~ 1.

As; [in, = 1, clearly Kadmits Cr fixed-point-
freely. let Wbe a non-trivial «-invariant Sylow
w-subgroup of K which permutes with ﬁ’\. The fact that
G possesses no non-trivial proper normal «-invariant
subgroups forces OWK) and OnvWL.]) to both be trivial
an d so, as pr Kert » b W\ WW  whioh implies,
by lemma 4.1, that G has a normal w-complement
Therefore, no (non-trivial) «-invariant Sylow subgroup

of £ is contained in K.

First, it is aimed to show that K#,
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1 f 1n2 are fc°th non-trivial, this is

easily accomplished a® [k, 1M3] = [ 172] “ 1 3uQ
is nilpotent. So it may be supposed that at least

one of and is trivial. If 3 =1, then ﬁ’\ = Ljn
(say) and hence [i”™, K, J= 1 which, as Gis supposed to
satisfy hypothesis D, implies that K admits <fixed-
point-freely and so is nilpotent by Thompson's result*.
Consequently, by a theorem of Wielandt's (1.24), Gis
soluble. Therefore it may be supposed that A LNMAN3
with 17 ji 1.

Additionally, it will be assumed that K+ (the
Hall subgroup of K generated by the «-invariant Sylow
subgroups of K of type {1,2,3}) is non-trivial. It
is asserted that does not permute with any (non-
trivial) oC-invariant Sylow subgroup of K+ nor with 1n
(i = 2 or 3) provided L™ ~ 1. Of course, if 1™ = "
this has already been shown to be the case. So suppose
13/ 1. Let Wbe a (non-trivial) «-invariant Sylow
w-subgroup of K+? If WL” = Lj™W, "then, as /[ L~ *
0_ (WL~) / 1 so giving W-K. Thus /[ WNW 30
M I3 = {"» LL3NWLL3)}* Clearly NwL13) x K and

so NFAL13~~ Hence» as CWYL13~ ~ 1» w- W I it
were the case that LYW= WA then IO LjW so forcing

W~NKj therefore "W/ WLAN It only remains to show
(assuming Lg / 1) that L-~g / LgL™ (tecause when /1
it follows that Lj”~ Kand so Lj »1). If I"Lg = LgL"
then, in order to ensure that L2~ K does not occur,

On (L~L2) must be trivial and so = 1~ . Prom the fact

that 1~ = 1~ |, as LjW ji WI™ where Wis an «-invariant
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Sylow subgroup of K+, it may be deduced that zZ(W)»
However recall that ¥ I"W 814 so» since £1*3» W] = 1,
a contradiction has arisen. Hence L"L2 ~ L2711 61114 80
the assertion has been verified.

It will now be demonstrated that the following
is impossibles that there is a Sylow p-subgroup P of
K+ such that ZzZil™) = Zil™M)™N,«™ N-j~(P). SuPP°sing
there is such a P it will be shown that Z(L"™) (¢ZiL”™))
is contained in a proper «-invariant subgroup of G
together with K, whence it would follow that G could
not satisfy hypothesis D. Let Q be any (non-trivial)
oi-invariant Sylow g.-subgroup of K+. As QL1 ¥ I5jQ» by
lemma 5.5, either L~, 10 N-~iQ) or Q®, CAANqglIN).
For the first possiblity, zil®) = Z(L™M)~AA
for the second (I (17), ZIL-~jJ = 1 implies, as Ngil®) / 1,
that ZU~)~ N-~Q). Thus Z~) < NACK*). If L2 is
non-trivial then LANI>2 ¥ 8114 80 eitller N NN (L2)
or L27~=? NL NI I f NL1AL2N then elearly 2(17M)*?
Nit_~NL2) and if L2 I~(1~) then 1~(17~) / 1 which
together with [n™ (17), Z(L™M1 = 1 gives ZiL™) N-~dj?)«
Similarly, if ¥ 1, it may also be deduced that
Zdn) < Thus zZtI~) ~ NI (K+L2L3). As the
oc—invariant Sylow subgroups of K for which ¢+ and «+ both act
fixed-point-free are direct summands of K, Ng(K+L2L3)
also contains Ki

If P is an oc-invariant Sylow subgroup of K+ for
which Np(L”), then from lemma 5.5(i)(b and d)
either zd”) = Zil™M)A. A~ N~P) or I = 17~. The first

possibility is precluded by the conclusion of the
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previous paragraph; for the second possibilty, the
supposed properties of G combined with lemma 4.3 and
the Thompson normal p-complement theorem dictate that
~A(~) = {2} Observe that (by lemma 4.3) all proper
X-invariant subgroups of G have normal 2-complements
and so, clearly, K must be trivial. In particular, =1
and so 1™ » AL’\. As &.and & both have normal
2-complement8, by exploiting the 'normalizer chain' of
an <x-invariant Sylow subgroup (and the fact that all
proper o'-invariant subgroups of G have normal
2-complements) it may be demonstrated that = n
NjjiP) for each «-invariant Sylow subgroup P of G for
which at least one of PN and Pc is non-trivial. Since
L* < N~iK~IgLj), it follows that 1~ = I"tS-N~UO.
Thus G fulfills the conditions of lemma 4.5 and so G
must itself have a normal 2-complement which is against
hypothesis D. Hence for each oi-invariant Sylow subgroup
P, of K+* P~, PT AN pfLL).

Suppose (say) that Lp (Lj.) ~hen, as 7~2n~1 A
1~2 (note L2 jL1), (L2). If C~Lg) / 1 then
Zil™M)~N N (1~) and zZzdn) Lp . Let P be some (non-trivial)
OC-invariant Sylow p-subgroup of K+. Then [ [NpiL?), cr], 2(1M)]

1 because Pa_, Pt Npd~)™ K< Yip and hence
either Z(Lp) NL (P) © (by lemma 5.5) or
Cp([Npd~Jcr] ) "Hpd™M)~ . The first possibility
has been shown not to occur and the second forces P = P
«® Nj~(P) ~ NMj- » c™ear that, since PL™N ~ LAP,
N”iP) must be trivial and so - {p, Npd™)In}L
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to be untenable. Thus Z(P)» = 1 and consequently Z(P) <(rx>
= 1 which then gives [z(P), N~P)] =1 and Z(P) < 0p(K).
Hence, since K has Pitting length, at nost two, Z(P) ™ Z(K)
and, as Z(P) :< Np(I™) < K, this shows that G cannot
satisfy hypothesis D. Thus it may be inferred that

Lgx N"’Z(Ih)' A similar argument applies to give that
Lj ~ N (L) (note that when / 1, then =1).

Therefore, when K f 1, it has been shown that

Now the case K+ = 1 will be considered; because
lj, / 1 gives Lj =1 so making it possible to apply
Wielandt's result to deduce that G is soluble, it may be
taken that /i’\ = L~. For this case, in order to establish
that 1C, K_ NgCI?), it will suffioe, due to the
symmetry of the arguments, to demonstrate that the two
possibilities L~ ~ (1j), Nj~dp) and

n (1j)» 1<2 ~ nt (NN camnot occur.

First consider the possibility L1er s LjIV *

v % (Lg). Since implies, by lemma 4.3»
and the Thompson normal p-complement theorem,that
7™17~) = {2} which in turn, using similar arguments for
the analogous situation when K+ / 1, gives that G must
have a normal 2-complement, it may be assumed that (say)
N LA Thus Cil2nr ~ 1 8111 80 zNIM A~ NjnNiln) and
zZdn) n (N1 (13)). Consequently Z(L") NL (LglLj).
As K = LgLgjLj, N~LgLj) >K , Zil™) which implies G
camnot satisfy hypothesis D and so this deals with the

situation when:L. NT (L,) and L, NT (LO).
\Y *T 5 J-T 2
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If O”APLg) / 1 then K (07r2(EL2))}pfir> P, (~(Lg)
which is incompatible with the assumption that
C~niLg) / 1. Hence 0™ (PL2) = 1 and consequently , as
PLa admits <1 fixed-point-freely and P “ » Is2 " B2

= Lg which implies that G has a normal /Tg-complement.

Thus it may be supposed that (Lg) “ 1 and
hence L, <: L, . Therefore L,* = L and 1» L,. For
i X o i Ler T a

suppose L <L ; occurs; one consequence of this is that
L-~ must be trivial because PL™ ™ L™P together with
L~ = LN gives Z(P) ~ Pg. whence PL-~ » L~P whioh implies
that = 1; thus L~ = and hence, by (1.7) (xii),
[0, G3$ K/G so giving rise to a non-trivial proper
normal ex-invariant subgroup of G

As P~ (P still denotes some fixed
(non-trivial) cx-invariant Sylow subgroup of K+), =
W Vv * " °l1Per>- V. 7 th* >V « * Vr*
this gives which cannot hold. Thus P~y ~
N~iP) and so Z(P)» =1 and Z(P) < Npil®) < K. If
CL (N2 N then Cq(Ci1 ~(Lg)) ~ Li* ~2 wbicll io
against L~Lg / LgL-~. So CL n aa CL1IAN 2N
already, gives CA”ilg) = 1 8nd 80 C(j(r2~r~ K*

As 127<(7T'e>= N 2r* nN2=nN 80 N eGMA2N
whence [jiL (Lg), PTJ ~ C&Lg) ~ K. Moreover, as
PT  Np(L™), [Hj~*(L2), PX]~L1 and therefore

Knl~ = 1. Recalling that 1# nl 172N

and hence 1™ , P m1l. If zZz(P)» / 1 then 1~ ~ NL (P);
However, it is already known that Pg., Px ~ Np(L®) and

the remark succeeding lemma 5.5 shows such a situation



How suppose that (L3), I»r™ Hj, (I>i)
occurs. |If n then L1~ = / 1™ and 1N =
L~Ct d 2x) with Cj, (Lg™) ™ 1N (since implies

that [G.-c] / G). If C~d”™) ™~ ~(Lg) then, as
Cﬁ’\(LZr)A iﬁ' , Ct (L<§p / 1 and hence, by lemma 5.1,
(L™ =1 whereas L2”_is non-trivial and contained in
NN (L™N). Thus Cjn~dg (~g) wtlence zdg)~ “ ™ and
Z(Lg) N (L™) (¢K). As K admits Jx fixed-point-freely
* = = n ivi N
and Z(LCJ <o Z(I(,Q'P. 1, Z(Léo,} "02' (K) giving Z(L2)"1 K
which then implies that Gpossesses a non-trivial
proper «-invariant subgroup.
In the light of the preceding arguments it may
be supposed that ; hence ~1 ud
therefore ZzZil~) ~ NL (Lj) with ZCI™) :< L~. Now it is

aimed to show that L, = L, , so suppose L, ~ L, . Then,
» Bar ? 3<r

as [L3, €] ~ QmM3CL2L3™ and {NG~L3» Q\

>°7r2(LW * V. IfV W A NI2(Li) thCn L2 "
(12L5) ~ NI (17). While if L-~si Njil~) then

N ~dglj) and so N~LgI™M) N~ K, L~. The fact that
G is supposed to satisfy hypothesis D forces ZiL™MN™ = 1.
But then O'acts fixed-pblnt-freely on zZCIMNIN (L7N)
and so [zil”™), N (L™~jJ - 1. Since NL (L”™) is non-trivial,
Z(L™) NN (Lg) whence Z(L™)N N~(Lgl<j) which, as
before, contradicts the assumption that hypothesis D
holds. Hence » Lj and so, as Z(L™)™ N~ (Lj),
2(1n) 1~ from whioh it follows, since L2 « 1, that
iH2(LlI)» 2(37~)] *=!e Because NL (1n) / 1, again Zd")
N-~dg) and therefore Z(L") (Lglj) = Again this
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leads to the conclusion that G must contain a non-trivial
proper normal oi-invariant subgroup.
Hence, when K+ = 1, it nay also be deduced that

Vv w -
Let P be an «-invariant Sylow p-subgroup of K.

By lemma 2.10, {K}p, - Oot(K)({K}p, and therefore
G= - "(LJHOpPp.OOP). As P = Op(K)P*<<rt>,

K VvV Vv C°p(K>» °p*(K)T = !» X follows
that [P, Op,(K)] » Since [p, Op,(K)]  0p,(K)P,

were [p, Opt(K)J non-trivial then [p, Op,(K)JG would
be a non-trivial proper«-invariant normal subgroup of G
Thus [p, 0p1l(K)] =1 and, as K has Pitting length at
nost 2, K = B~(P)0 ,(K) which implies that P <1 K

Hence K is p-elosed for each pé K (K) and so K
is nilpotent whence, by a result of Wielandt's, Gis
soluble. Therefore G cannot satisfy hypothesis D and

the proof is complete.

lemma 9.2 |If P is a star-covered «-invariant Sylow
p-subgroup of G of type {I1,2,3}, then P permutes with

at least two of L~, Lg, L~

Proof Suppose PL1 / L~P and PL2 / LgP. Additionally,
assume that n (P). By lemma 5.5(i)(e and g),
Perx * If Ao<r A 1A “ d 8o L2 = ff,(P) Is excluded.
Therefore ~ , PN~ Hp(Lg) and so, as P is star-covered,
P = Pg, whioh Is, from lemma 5.5 (i)(f), at variance with

N ~P). Consequently P~ N Hp(L™) and P,,, PT
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Hp(Lg) is the only possibility. However, P being
star-covered demands that P = Pg = P~ which is contrary
to the type of P. Thus P permutes with at least two

of L~ Is2 and

Let L denote the subgroup of 6 generated by the
«-invariant Sylow subgroups of type {1,2,3}; from

theorem 8.1, L is a soluble Hall subgroup of G.

Theorem 9.3 If G= (LI"HL”"jL2j) <ud all «-invariant
Sylow subgroups of G of type {I,2,3} are star-covered,

then G does not satisfy hypothesis D.

Proof Suppose the result is false. Let L be the subgroup
of L generated by the oc-invariant Sylow subgroups of L
which permute with LgLj 80,1 I«"t L+ be the subgroup

of L generated by the «-invariant Sylow subgroups of L
which do not permute with Lgly Clearly L = L+L and
1IV>L = 1.

(1) Because of theorem 9.1, it may be assumed that
Lg/ 1/ Lj. A further restriction may be placed upon
G in the form of : L+ permutes with one of Lg and L
and, further, if:T(say) L+L2 = LgL~vthen, for each
cX-invariant Sylow subgroup P of L+, PL™~ / L~P. This
may be seen as follows: for each «-invariant Sylow
subgroup P of L+, from lemma 9.2, P must permute with
at least one of (and only one) Lg and Lj. If the above
assertion were false, then it would be possible to find

«-invariant Sylow subgroups P and Q of L+ such that
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PLg * PLj ¥ L"P, QLN m L"Q &nd QLg / Ig\i this
type of configuration has already been ruled out of
contention by theorem.6.7. Without loss, it will be
assqped that L+Lg “ Lgl+. Clearly then L permutes with
12.

(2) If Pis a non-trivial oc-invariaat Sylow subgroup
of L+ for which P?, I- Wp(L?), then 1~ is not equal
to either L, or L, . First observe that, as P is

Vv 3r

star-covered and P,,, P "N 2ilL,), P = P, and therefore
P' 'a P 3 ~t

Ap,7T3 - f£*e

Suppose that Lé = } thia immediately yields

v

[p,, 1jJ] = 1. Since 'B™ * 1, Pig admits pa fixed-point-

freely and so [, Lg] = 1. As , Lgn] « 1,

[(Lgljlgj), P =1 and hence P*G(-™ LI™) is a non-trivial

proper normal .~-invariant subgroup of G. Thus 1-.’/ l,>.
Next consider L_ = L, s of course this gives :

[P~, Lj] =1. It will be shown that under the prevailing
conditions Lg™ = 1. First, observe that if Lg™P ~ PL23

then zZz(P)™ P which contradicts L™ ¥ PLj. Whence

if 1x23 N th.en i*23 ~ 7”23

yields that {n™O”™- (I'23”)Ilp ,7itj ~ ~3* Nena® N23 =
Now, as (PL~™. =1, [p”, 1] = 1 and therefore = LN
which leads to G* (LIg)(L™Ij) with J(L™Lj) * = 1*

Consequently hypothesis D cannot hold and so 1™ ¥

(3) If Lgj / 1, then (i) for each oc-invariant
Sylow subgroup P of 1+, FLgj ¥ I-23P and (ii) for each
o(-invariant Sylow subgroup P of L, PLg"™ *“ 7"23n*

(i) Suppose PL Lg™P where P is an oc-invariant

23
Sylow subgroup of L+, then, as Lgj / 1 and hence Lg™ ¥ 1>23*
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(pL23™}p n* L3 whereas P ~L+. Therefore
PL23 / L25P.
(ii) Let P lie an oc-invariant Sylow subgroup of L
and suppose PL2~ ™ L23P* As P is star-eovered, either
P = or P,. These possibilities give rise respectively
to Lji*pLjP or Lg-~LgP and hence PL23 “ 1'23P* So (‘we)
is verified.

(4) L+ / 1. For L+ m 1 implies that L = L and so,
appealing te (3)(il), it follows that L permutes with
(L2L3L23). Henee G = (11~ 3123)~" which is dealt with
in theorem 9*1« Thus L+ / 1.

(3) It is claimed that for eachnon-trivial «-invariant Sylow
subgroup P of L+, 3~, PA"HpilLj). Suppose otherwise
and let P be an «-invariant Sylow subgroup of L+ suoh
that L3 ~ (P). Since Z(P)~ P~ is incompatible
with the supposed shape of PL23 ~ ~23P is
impossible. Thus, with regard to 3(i), L23 Bust be trivial.

Suppose Q is a non-trivial «-invariant Sylow subgroup of
L+ such that Q® Q™" Ng(L3). By assumption Qs
star-covered whence Q = QT and thus 9.7 =
(L8, Ng(L5)L3}; Prom lemma 5.5(i)(b and d) either Z(li®) =
»L (?) L3N« Since Nqilj) is
non-trivial, if Z(i®) = Z(Lj)», then [z(L3), ffQ(L3)] =1

which is against the shape of Vi while L,

9.713
yields that N~Lj)~] 13~ (13) by lemma 4.3. Thus @, @™
(1) cannot hold. Consequently L j*~ (L+).
As L3*sE H”~P), P~ =1 and so L2] - 1.

Thus, as 1*1 ={13, Nt (P)p}f (~(LjLg) must be
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trivial henee L2 —1j2 end n A farther
consequence of 0'1-2(LJLO) =1 is that L-J~p / L’-?S‘ and so,
from lemma 5.5(i)(b and d), it follows that Z(L™) 1
Z(I_J_)pj He (L+). It is asserted that I_J is a normal
subgroup of L~LjL, By lemma 2.11(11), this would follow
if it could be shown that O~.ilgL”~L) ¢ 1. If O©
were non-trivial then, as o~ ( L =1, it would have
to be a 7f(L)-group and so be contained in L. Hence
{On ((LjiLin))n would be a non-trivial proper
normal ¢(-invariant subgroup of e, Thus Q. ,(Lgl™"L) =1
and so LglLjL.
Hext, it will be demonstrated that Z(L™)$

dj.) - consider the possibility L~L3 * NN,
since fp~, 13 * 1 and » p8ic® - {13. n13(PH * QL iLIL3) = 1
whence and so, as L™, ALN2 ¢ 1210 %
Consequently G = (L"L"L)Lj which, by theorem 9.1, may
be discounted. Thus it may be taken that L-jLj ~ LjL™.
If 1, ~ He (L,) then the desired conclusion follows as

5<T 13
Z(Lj) = The other alternative
gives, in particular, H”U<3) ji I which, when combined with
[Z(L3), N~d-j)] - 1, also yields Z(L3)

Therefore Z(L3) < NL (L+K) which, together

with L3 "3 L“L and G ® (1"L3) (LY = (I*2737) >N »
gives that hypothesis D is violated yet again and so
(5) is verified.

(6) Here it will be shown that having 1+ / 1 and

each <*-invariant Sylow subgroup P of L+ such that pAn

*p(lj) also incompatible with hypothesis D. In view
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of all «.-invariant Sylow subgroups of type (I1,2,3} being
star-covered, L+ m

If Pis anoc-invariaat Sylow subgroup of L+
then P = PT, PL2 - LgP and PLj ¥ LjP. Thus, if [12,t] ¥ 1»
then {¥ g( )ip ~ P, O”7iLglLj) as P = P™,
that 0~ (LgLj) = 1. Consequently - which is
forbidden by (2). Hence L« m L« . Since (PL«) ~ =1
and "by lemma 6.1, o™ (LgL™) « 1.

In the same manner as in (5), it may now be
established (using the fact o (L™") =1 and (3)(ii))
that (1 2™ N (L2lN>27 )) clearly LA "~ (N2/37231) *

If LjI~ = I~Lj then, as L? ¥ Lj (by (2)) and
so 0 (I™Lj) ™~ 1* L1L23 = 123L1 8180 Whence G =
(L1L3sL2sL)(L+L2) which, as L+L2 $ GV, implies that
[& ,f] ¥ G So it nay be supposed that LjL™ ¥ |

I f »-~(Lj), then (L+II y3*

(Lj). As L+L™ admits ~><rfixed-ppint-freely and
(because N (L 2L3L23D) G = Hg(L3)(L+L1l), by
mimicking the last part of the proof of theorem 9.1 it
may be proven that L+L”™ is nilpotent. Thus, if P is an
«-invariant Sylow subgroup of L+, then [P,L"] =1
yielding, since , L2~*% 1, that I"Lg = LgL™. Clearly
G= (L'™LgL) (L3L23) and so theorem 9.1 »ay again be
applied.

Therefore it may be taken that L- ~ NT (L,).
If CL (14) / 1 then FZpi7r = [P, LaNp(L3)l- ‘dictates that
°n- “pli) =land BO» as (pLiJo<r = i* Li = =
Consequently Z(L3) ~ L3 _so giving [z(Lj), Np(L3)J =1

which is oontrary to the form of Henoe o™ (1) =1



and so L- 6 1, . So 1 Lji ~Lj (b 2)). Thus, as
® Ly A LUy (2)

<ip(L3), 13- L3 Since O (»,) / 1,
Z(P), 1 and Z(P) ~ Hp(L3). As PI™ adults pc fixed-

point-freely, L, = Ne (Z(P))0._-(PL,) and so, because

Z(?)0 =1, [Z(P), - 1. Therefore Z(P) i£ Hpd”™)/-» Np(L3)
and so, additionally, Z(P) also normalizes an»y (~Ls3 ),
The shape of TV'Pt?Lj and LJ_, / I\rl'J (Li) demand that
z(P) ©

How (L+L1) admits p<rfixed-point-freely and
so (L+L») = (P)°p, (L+I™). Prom the previous
paragraph, Z(P) ~ P~ whence £z(P), j(P)] m 1.

Since P,i<~c.><NpCL3) j4P, clearly 0~1~) / 1 from
which it follows that 1/ D» Z(P)r» 0 (I1+11) (- NG13)).
Thus G = (L~Lj1j2j) (LLN) = (N2/3N*23n N MM =

and once again hypothesis D is seen to be out of the
question.

This completes the proof of theorem 9.3.
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10. CONCLUSIONS

Lemma 10.1 At least two of L™, L2 and Lj permute.

Proof Deny the lemma; clearly L”,, L13 and L2”™ nay he
assumed to he trivial. Clearly theorem 6.6 is available

and thus it may he taken that L, = L~ , L9 = Lo and

. P
Lj = Lj . Hence;

AT - M 1
- ih - [<e>

13> 7
Should 2 6 TT™UTTg™'I™ (2 e~fT(G) hy the Peit,

Thompson result [~2]) then, hy lemna 4.6, G must he
soluble. Thus, if P denotes the (~-invariant Sylow
2-subgroup of G, P must be of type {I,2,3}. If two of
L~, L2 and L™ do not permute with P then, hy virtue of
lemma 6.3, they would permute with each other. Therefore
there are (essentially) two eases requiring examination;
(i) P permutes with L2 and L™ hut does not permute with
I~; and (ii) P permutes with L™, L2 and Ly Because
of lemma 4.6 it will be supposed that P is not equal
to w, Pp or Px.

(i) As L»= L~ and P~/ L7P, it follows that
Pj.* 2 ~ ~p™I™ and, furthermore, [p”, LN =1
because Npi™) = Opd™) (Np~)) . Sinee [p¢, Lj] - 1
and 1'jl'j L~LA, it may he deduced that ~,3 = 1 and

so PL2 admits p<r fixed-point-freely. Now [p,<r] op(PL2)
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and [P, rr\ <8PI3 bo (PLg) » »L (Lj) « 1. Since
Opd”™) / 1» fHpd~J.x] / 1 and, because [p,t] ™ op(I13),
it aay be inferred that PLNY N N (1M =1.
Consequently PLNh =1 - 0™ (PLg) so giving Lg *
Hi (P) and Lj » N~(J(P))CL~(Z(P)). Clearly L? is
forced to be contained in NL (L2) and so thiB disposes
of (i) .

(ID Aal/ [pflo] » OpiPL™ and [pt/0] <3 PL2, it
nay be concluded that 07i\ (PLJ_,.)’\E I—mi(Lg_) = 1. Likewise
it aay be shown that 0 (PL~ =1 for i “ 1,2,3 and
hence L = »j~UiP)}» (zZ(P)) for i =1,2,3. It is
elaiaed that for eaeh i (= 1,2,0r 3) NT (J(P)) 7/ 1/
QL (Z(P)); for suppose (say) that 1™ = Nj~((P)). Then,
because of the shape of , H (J(P)) « 1 and so

h,713 L3
Lj = (Z(P)). Moreover, since NL (L™) * 1, it follows
that (Z(P)) =1 and so Lg = 5~ (J(P)) whence L"Lg = LgL".
If 1~ = Cj~iZiP)), an analogous sequence of arguaents
will also produce LjL2 = LgL™. ®™nce ke sane
reasoning works for i = 2 or 3, the elaia is verified.
So Ne (J(P)) ft 1/ C/'I\'_(Z(P)) and NL (J(P) ~ 1/

CL (Z(P)) and 20 the fact that Il\j"(LZ) =N *o%ces L2 =
Nt (J(P))Cr (Z(P)) < 11~(1n). This finishes (ii) and

the proof of the lemma.

Lemma 10.2 If P is an oi-invariant Sylow subgroup of G
of type {I,2,3} which is not star-covered, then P

permutes with at least two of L™, L2 and L™i
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Proof Suppose it is the case that P does not permute

with both 12 and An appeal to lemma 6.3 gives that
liALAN = L3L2.
It will first be shown that , P -~Ifp(L2) and

»p(L3) with Z(P) - ZiPi*™ITpiLginHpd-j).
Towards this end, suppose that (say) L,*~I UT (P) ;
because of lemma 5.5(i)(e and g), L2v’\ Nj, (P) is not
possible so ? , PT ANp(L2). Further Np(L2) ~ P~
cannot occur since \pfj- = 1. Consequently Cp(12) ji 1 and
so, by considering the form of 72 it may be

P»/Cj’
inferred that 0~ (Lgl®) =1, henee 12 = L2 i This leads

to Z(P) PN which violates the supposition NL (P).
Thus , PA”~ Np(L2) and S, PA™ Np(L3)} note that
P~rs P* = is not possible. If both Cp(L2) and Cpilj)

are non-trivial, then Z(P) = ZiP)™-~. Np(L2)n Np(I3);
whereas if Cp(L2) / 1 = Cp(L3) then Z(P) = ZiP)";? ®pU>2)
whence Z(P) - ZfPANPANDPpdj) i: P..

As z(P) ™~ 2 | IA’\P = PALp. Talcing into consideration
the fact that [Lj, L™31 “ 1 “-[12, and P does

not permute with Lg and L~f it may be concluded that

h.2 L13 = 1*

Let Wbe an «”-invariant Sylow subgroup of L (here

L has the same meaning as in section 9) and suppose

j/l W1. With the complicity of lemma 6.2, it may be
taken that Wf, ~ NWL1). Further, [118 Z(P)] - 1 and
Op(PW) / 1 coerce Ow(PW) into being contained in Nff(L1)
whence, with the aid of lemma 2.15, it may be asserted
that W= V\Ir (Hote this line of argument has also

appeared in lemmas 8.3 and 8.14). Consulting lemma 5.5
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yields that Wpermutes with 1'2L3* Since ‘Up = W/~ WW
(because of hypothesis D), O™WIligL”) ™~ 1 and, without loss,
[O~v/Lgl~her] ji 1. As ff = K and P <: M (12)rv Np(L3),
P="9®(PW) - Npd™NOpiPW), (i = 2,3). Now, from O (PW)

NOp (PW) (L 3)COp (PW)( fWs 3)* So i NGA°w™ WL2L 3% p 3"
*Op(PW)( tWo ff3)» LV I f COp(PW)( tWwecU) ~ W then

remark following lemma 5.5. Thus there is no such Wand
hence G = (LL1)(LgL~"L"™).

If Lp3/ 1, then PL23 5*L23P (°'bieirwi8e p would be
required to permute with 12 and L”). Consequently Z(P) ~
Np(L213L23). If ZCliP)~ = ZCIJIPT~Z1JTP)) , Z({(P))(r=
ZUiP~ZUIiP))™ and ZQP)™. = Z(()NT zQ3(P) ~
then (1 /) D= Z(P) n 0~(117) ZiLL™) rv Np(L2L3L23) and so
Dn is a non-trivial proper normal ~-invariant subgroup of G
if zU 7)) = z(j (p) ~g-z1JiP)™ , z(j(p))<r= z(i (P))/<_z(j (p))Cc
and Z(J(P))C = Z(J(P))pc Z(J(P)VO_r does not hold then it
may be deduced that either J(P) No(12)r» Np(Lj), J(P) Npo(L2)
or J(P)<S Np(L3).

If J(P) ™ Np(L2)rvNp(L3), then J(P) ~ NpCLgLjL")
whence (OpCLLAr, Z(J(P))G (< (IMNiI"N pU 21 ) is a
non-trivial proper normalcx -invariant subgroup of G.

Thus, the proof will be completed when (without loss)
the situation J(P)”~ Np(Lg) and J(P) Np (I>3) has been
successfully analysed;

As it is supposed that J(P)™ No(L2), J(P) =

°J(P) (L2)J PV and> since v * w -V 1% 1
implies that J(P) ~ Np(L3). Thus 0~ (LgL3) = 1 so L3<5



129

find "2 a 12 # that if ~23 ~ 3Af then Np(L2) *
No(L25) * No(L5) and so I»5 * 1. Clearly Np(I»3) ~ Np(L2)
an* so H(L3)» VPO™N). Now[»pUj) ., TJ ™ p(L3) and
alao, sines Lg = Lg , ENp(L3),T] CpiLp). As G does
not posses* any non-trlvial proper noraal -invariant
subgroups Np(I3) =P~ and so P* = P (“"Np(Lg)).

Observe that P J P.since P « L would give Z(P)"
NpiLgl?™) OZ(LL™) so contravening hypothesis D; let Q
be an a-invariant Sylow qg-subgroup of L, p/ q. If
QLp = LgQ, then leaaa 6.1 is available and yields that
Oq(QLi,) m 1. However, as ch_:l and L3A= L/(h>, this
would require Q = contrary to Q being of type [I1,2,3}.
Thus QLp » L2Q and, as L2 = I®2 * Q » Ng(L2). Since
J(P) ™~ Np(L2) and P is not star-covered, it follows
that ~Np(Lg),t] , which is contained in Cp(L2), is
non-trivial. Moreover, as P* = P”, [Np(Lg) , T ] “"Op(lI™).
Clearly, then 0~(11™ ) Ng(L2) whence (by lemmas 2.10
and 2.15) Q Qc' Hence, by eaploying lenna 5.5, it nay
be seen that QL = LjQ. Two consequences of Q = (& are

that N 0q(@QL3)NnC QL2). Clearly >
0_ (QLj), Lg. Should it be the ease that = 1™,
then would be a non-trivial proper normal ;~-invariant

subgroup of G. Therefore it aay be taken that

NI (Q?) ji Ly Further, since Q = Q7 oncQLj) ~
NI (Q ) hence L? = NL Hence, as Lg 1, L2
noraalizes L_,> and N:‘I"3(Qj, it nay be inferred that

CL A 1# Mow COI>sider {Hj(L2”p, 28 ~ CL3~MI2 "

As Np(La) Np(L3) is excluded since J(P) ™~ No(13),

it aay be inferred that CL (Lg) ™~ Nj~(P) with CL™(L2)
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also normalizing Np(L2) ~ P*. Therefor® P = ~pi~gJOpiC” (Lg))
and clearly CpiC”™ (Lg)) must he contained in No(L2)
which contradieta PL2 / LgP.

This reaolTes the aituations J(P)”™ Np(l0) hut
J(P) ~ Np(L™) and ao it may he concluded that P permutes
with at least two of L”, L2 and L~.

Lemma 10,3 Each «-invariant Sylow subgroup of G of

type {1,2,3} permutes with at least two of L~ L2 and Lj.
Proof This result follows from lemmas 9.2 and 10.2.

Lemma 10.4 With a possible re-ordering of 1,2,3, either
G* (LLgLjLp™M»™ or G= (LL™) (LgL™Lgj) .

Proof The proof will he broken into two parts depending
on whether or not all of L~g, L-~ ®*d L2j are trivial.

So, first suppose that (say) L2~ ™~ 1. Clearly
?_gAL’\ = ﬁ’\IA_g. Suppose P is an «-invariant Sylow
subgroup of L which permutes with Lg”. Since
[1-23» (L2L3L21L31) J “ 1 and L23 ~ L23 » N&°'~,(PL23~" P»
Lg, ao giving that P permutes with LgL”™. Let > denote the
group generated by those x—invariant Sylow subgroups of L which
permute with Lg™ and let L denote the ~-invariant Hall
7c(L+)'-subgroup of L. if Qis an «-invariant Sylow
subgroup of L then, clearly, Z(Q)”~ V ¢ and hence
QLi = LjQ. Consequently G = (LgL3L+)(LL-?). In order that

hypothesis D be preserved, L~g and must be trivial,
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and thus 5 = (LgLjLg”~L*) (LL-") . If the eonolusion of the
lemma were false then there would exist an «-invariant
Sylow subgroup, P, of L+ suoh that PL™ / L”P and,
clearly, L would have to he non-trivial. Thus there
exists anoc-invariant Sylow subgroup of G, Q suoh that
QL2j / L23™* In addition» Pli23 = L23P 814 = Ny
but lemma 6.8 asserts that a configuration of this kind
is untenable. Consequently, either G= (HigLjLgj)!™ or
G- (LLjMLgljL™).

Now suppose that L2 “ 173 “ Lgj “ ™ and
furthermore, because of lemma 10.1, it may be assumed
that L2L5 = i,3L2* If P is 81 *_invarian'b Sylow subgroup
of L, then, by lemma 10.3, P permutes with at least
two of 1~, Lg and Lj. Hence P permutes with at least
one of and (lgL”). Therefore G= (LgljLI)(LI™) where
L+ and L are subgroups of L which are generated (respectively)
by those «-invariant Sylow subgroups of L whish permute
with (LgLj) and 1~. Again, if the lemma does not hold
then it is possible to select <~invariant Sylow
subgroups P and Q of (respectively) L+ and L such that
PI™ ji LjP and Q(LgLj) / (LgL™Q (so nay suppose that
QL2 ft L2Q). Since PL2 - LgP and QI™ = I™Q, theorem 6.7
denies the credibility of this situation. Therefore, in

this case also, either G= (LLgI™)! or Gm (L2L™N)(LLN).

Lenaa 10.5 If G= (LI™)(LgLjI™)* then G does not
satisfy hypothesis D.

r
Proof Suppose the result is false; let L be the subgroup
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of L generated by the «»(-invariant Sylow subgroups of L
which permute with (Lglj) and let L+ be the subgroup
of L generated by the «»(-invariant Sylow subgroups of L
which do not permute with Hence L = 1+L with
L+a L - 1.

Theorem 9.1 allows the assumptions: L/ 1, L2/
1/ Lj. Also, as in the proof of theorem 9-3, it may be
supposed that (say) 1+li2 m li2L+ (so LI2 m I~ ) 81)4 that
for each (j(-invariant Sylow subgroup Q of L+, QL3 / 1-Q.
Because of theorem 9*3, L must contain anof-invariant
Sylow subgroup P such that P is not star-covered.
Further, it is asserted that P must lie in L+.

If L23 = 1, then G= (LI™)(LgLj) = (L+I1)(£1213)

and so if P< L, it would follow that OpiU~™)0 is
a non-trivial proper normal ocGinvariant subgroup of G
Hence, when L23 =1, P< L+.

Suppose L23 r 1 and that P~ L. If PL23 = ~23p» Tlen
a non-trivial proper normal oc-invariant subgroup of G
may be constructed as in the previous paragraph. Thus
A*23 N AN Ap,7t™ * {1<23Np (i,237* wiin™ [1%23» ml«
If ZUiP))~ [/ 1, then J(P)™ Np(L3) and hence
G= (LgLjLg~CILi) = Hg(L23)N(G(D"ML1™) where D =
ZfPinOpd~) ( ft 1). Since DiLLI ~ ZJ(P)) < N&L23),
G cannot satisfy hypothesis D. Whereas, if Z(J(P)» =1,
Glauberman’s factorization theorem combined with
lemma 2.12 gives LI™ - 0-~(1))]™ with D= OpdlIn~r* zZ(P) (/ 1).
Therefore, as Z(P), NGN23NT ® = ®GN23N ®(HD)
and again hypothesis Dis violated. Thus it has been

shown that P <LL+S
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I f “ Lgl»!* then G= (LMY which
has been dealt with in theorem 9.1. So it may he assumed
that Since p is Jot »tar-eovered, P permutes
with and 1 hut does not permute with. Lj * lemma 6.10
is applioaole to give that Z(J(P))™ Hp(Lj). Clearly
P~, P¢.jJNpTLj) must hold and, using lemma 6.1 on Lj,
Lp and P, it may he deduced that 0~ (LpL”) = 1 so

yielding that; Lplj. Consequently Gm (117)(LpL~Lpj) =
NG(D(Lr,I')N G(L3) (again D=0O0"~U"n Z(P) ( ~ D) and
because D(LIfj.) < Z(J(P)) hypothesis D is again

impossible. This finishes the proof of the above stated

lemma.

Sufficient information has now been amassed to prove

the main result of this work.

Theorem 10.6 let Gbe a finite group admitting a fixed-
point-free eoprime automorphism «of order rst, where
r,s, and t are distinct primes and rst is a non-Fermat

number. Then Gis soluble.

Proof Suppose the theorem is false and choose Gto be
a counterexample of minimal order. Clearly all proper
oc-invariant subgroups of G must be soluble. Further,

if His a non-trivial proper normal «-invariant subgroup
of Gthen, by (1.1), « induces a fixed-point-free
automorphism on G/H and so G/H would then have to be
soluble. Thus G does not possess any non-trivial proper

normal oc-invarlant subgroups. The assumption that rst



la coprime to | combined with the Feit, Thompson
theorem ([2]) means that rst may be taken to be an odd
number. Consequently G satisfies hypothesis D.
However, taken together, theorem 9.1 and lemmas
10.4 and 10.5 show that there do not exist any finite
groups for whioh hypothesis D holds. Therefore no
minimal counterexample exists and the theorem is now

proven.

134
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