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Aspect-Invariant Sentiment Feature Learning: Adversarial
Multi-task Learning for Aspect-Based Sentiment Analysis

ABSTRACT

Neural models with attention mechanisms have achieved remarkable
performance in Aspect-based Sentiment Analysis (ABSA). In most
previous studies, the information about aspects in sentences is con-
sidered important for the ABSA task and therefore various attention
mechanisms have been explored to leverage interactions between
aspects and context. However, some sentiment expressions carry the
same polarity regardless of the aspects they are associated with. In
such cases, it is not necessary to incorporate aspect information for
ABSA. In fact, in our experiments, we find that blindly leveraging
interactions between aspects and context as features may introduce
noise when analyzing those aspect-invariant sentiment expressions,
especially when facing with limited aspect-related annotated data.
Hence, in this paper, we propose an Adversarial Multi-task Learn-
ing Framework to identify the aspect-invariant/dependent sentiment
expressions automatically without requiring extra annotations. In
addition, we use a gating mechanism to control the contribution of
representations derived from aspect-invariant and aspect-dependent
hidden states when generating the final contextual sentiment repre-
sentations for the given aspect. This essentially allows the exploita-
tion of aspect-invariant sentiment features for better ABSA results.
Experimental results on two benchmark datasets show that extending
existing neural models using our proposed framework achieves supe-
rior performance. In addition, the aspect-invariant data extracted by
our framework can be considered as pivot features for better transfer
learning of the ABSA models on unseen aspects.
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1 INTRODUCTION

Aspect-based sentiment analysis (ABSA) aims at inferring the senti-
ment polarity of a specific aspect expressed in a sentence [20, 2171%
For example, in the sentence ‘The food is good, but the service is

!This work focuses on sentiment analysis of aspect categories.
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terrible’, there are two aspects mentioned: ‘FOOD#QUALITY’ (cor-
responding to the aspect entity ‘food’) and ‘SERVICE#GENERAL’
(corresponding to the aspect entity ‘service’). Here, each aspect
consists of an entity and an attribute. The sentiment polarity of the
aspect ‘FOOD#QUALITY is positive while the sentiment polarity
of the aspect ‘SERVICE#GENERAL’ is negative.

Thanks in part to the availability of copious annotated resources
for some aspects, recent attention-based models can effectively dis-
tinguish the sentiment polarities of different aspects in the same sen-
tence [9, 18, 41]. Despite remarkable progress made in ABSA, most
existing work only focused on how to extract contextual sentiment
information for specific aspects [8, 23, 27, 32, 45], or learn aspect-
dependent features for sentiment classification [14, 16, 28, 40]. How-
ever, in some cases, polarities carried by sentiment expressions are
aspect-independent and blindly incorporating the associated aspect
information may confuse the sentiment classifier, especially when
facing with limited aspect-related annotated data. Hence, we argue
that separating aspect-invariant sentiment expressions from aspect-
dependent ones could potentially lead to improved ABSA results. To
be best of our knowledge, there is no prior work focusing on identify-
ing the aspect-invariant and aspect-dependent sentiment expressions
with no supervised information.

To separate aspect-invariant sentiment expressions from aspect-
dependent ones, we have the following observations:

o If a sentiment expression is aspect-invariant, we can simply
replace its associated aspect entity with another one without
inverting the polarity. In this way, it is possible to automat-
ically generate synthetic training instances to augment the
training data.

o If a sentiment expression is aspect-dependent, then simply
replacing its aspect may change its polarity or derive a noisy
sample. We could train a discriminator by adversarial training
to identify those synthetic training instances and the original
training examples.

To illustrate our idea, we give examples shown in Figure 1 where
some sentence examples are paired with their corresponding aspects
and polarity labels. In Figure 1(a), suppose there are no training
examples for the aspect ‘LOCATION#GENERAL’ in the training
set, in such cases, many existing sentiment analysis systems may
fail to detect the aspect-specific sentiment polarity of ‘Oh yeah the
view was good too.” enclosed in the green box. However, there are
training examples for other aspects such as ‘SERVICE#GENERAL’
which share a similar sentiment expression as shown in the sentence
enclosed by the red box. We could generate a synthetic training
example enclosed in the blue box by replacing the word ‘service’
with the word ‘location’. With the augmented training data, models
could better capture such aspect-invariant sentiment features and
thus generate better ABSA results. However, for sentence contain-
ing aspect-dependent sentiment expressions, we cannot generate
synthetic training examples by simply replacing the aspect entity
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(a) Example of extracting aspect-invariant sentiment

positive]

The food quality is high

The food price is high
\
FOOD#QUALITY positive] FOOD#PRICES negative]

(b) Example of aspect-dependent sentiment deriving opposite sentiment

The service was slow

SERVICE#GENERAL positive]

(c) Example of aspect-dependent sentiment deriving noise

’ RESTAURANT#GENERAL

Figure 1: Sentence examples paired with their aspects and po-
larity labels. (a) All three sentences share the same sentiment
expression. The sentence enclosed in the red box is seen in the
training set, while the sentence enclosed in the blue box is the
synthetic training example generated by replacing the aspect
entities from ‘service’ to ‘location’. The created synthetic ex-
ample would allow the detection of the polarity of the unseen
test example enclosed in the green box; (b) Examples of aspect-
dependent sentiment expressions. Although these two sentences
share the same sentiment expression, they express opposing po-
larities. (¢) Examples of another type of aspect-dependent sen-
timent expressions, in which, the word ‘slow’ can be used to
modify ‘service’ but not ‘restaurant’.

or attribute with other aspect entities or attributes as the result-
ing polarity may be inverted. In Figure 1(b), the sentiment word
‘high’ is positive for the aspect ‘FOOD#QUALITY’ but negative
for ‘FOOD#PRICES’. In some other instances, simply adopting
aspect-dependent sentiment expressions to generate synthetic train-
ing examples may derive noise, such as the sentence enclosed by the
dotted red box in Figure 1(c). Hence, separating the aspect-invariant
sentiment features from aspect-dependent ones should be considered
for improving the performance of ABSA.

In this paper, we propose an adversarial multi-task learning frame-
work to extract aspect-invariant sentiment features, and distinguish
aspect-invariant sentiment expressions from aspect-dependent ones
by adversarial training. We first generate fake cross-aspect sam-
ples by replacing the aspect entities in the original training samples
with other aspect entities but keeping the original polarity labels
unchanged. If the original training sample contain aspect-invariant
sentiment expressions, then the polarity label of a synthetic example
should be correct and the discriminator would not be able to distin-
guish between the real training example and the fake example. If the
original sample contains aspect-dependent sentiment expressions,
then it is likely that the polarity label of the fake example would be
wrong and the discriminator can easily identify the fake example. In
this way, we can use adversarial training to obtain a large number of

aspect-invariant and aspect-dependent training instances. For differ-
ent types of sentiment expressions, the representation composition
is controlled by a discriminator-based gate to capture sentiment fea-
tures better by judging if the aspect-based representation is needed or
not. Hence, the ABSA performance can be improved by augmenting
training examples containing aspect-invariant sentiment features,
especially for those aspects with limited training examples in the
training set. In addition, aspect-dependent features are not blindly
incorporated during representation learning and will only be added
if necessary. The main contributions of our work can be summarized
as follows:

e The ABSA task is approaches from a new perspective that
aspect-invariant sentiment features are leveraged for senti-
ment analysis, especially for those aspects with limited train-
ing examples.

e A novel multi-task discriminator is proposed for learning
aspect-invariant/dependent sentiment features in an adversar-
ial way.

o As a general adversarial multi-task learning framework, our
proposed method can be easily combined with any ABSA
models or other neural networks to generate improved results.

To the best of our knowledge, our work represents the first study of
extracting aspect-invariant and aspect-dependent sentiment features
by adversarial learning for ABSA.

2 RELATED WORK

2.1 Aspect-based Sentiment Analysis

The task of aspect-based sentiment analysis (ABSA) can be regarded
as a fine-grained sentiment analysis task, which needs to leverage in-
formation from both context and aspects [3, 5-7, 11, 17, 35-37, 44].
Xue and Li [44] proposed a gated CNN model to selectively output
the sentiment features according to the given aspect based on gating
units. Chen et al. [1] proposed a memory network-based framework
with multiple-attention mechanism to capture sentiment features
separated by a long distance, so that it is more robust against irrele-
vant information. Tang et al. [37] utilized two LSTMs to extract the
contextual sentiment dependencies for a given aspect. Resoundingly,
thanks to the ability of attention mechanisms, the majority of current
approaches attempt to enforce models to pay more attentions to the
given aspect in the training process [1, 9, 10, 12, 18, 25, 38, 41].
For example, an attention-based LSTM by means of using an indi-
vidual aspect embedding is able to focus on the aspect and capture
the intra-sentence relations [41]. There is also an interactive atten-
tion network with context representation and aspect representation
learned separately and interactively to well represent the context and
its corresponding target [25]. In addition, with the development of
graphical neural networks, an aspect-specific graph convolutional
network (GCN) based on dependency trees was proposed to learn
contextual dependencies for a given aspect [46]. Recently, based
on the remarkable success of BERT [4], Song et al. [34] proposed
an attentional encoder network to draw hidden states and semantic
interactions between target and context words. Sun et al. [35] con-
structed an auxiliary sentence from an aspect and convert ABSA to a
sentence-pair classification task based on fine-tuning the pre-trained
model from BERT. In addition, Li et al. [19] exploited coarse-to-fine
task transfer and proposed a multi-granularity alignment network
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for simultaneously aligning aspect granularity and aspect-specific
feature representations across domains. This work authentically
borrowed knowledge from an abundant source domain of the coarse-
grained aspect category task to a small-scale target domain of the
fine-grained aspect term task. However, it did not address the prob-
lem of limited annotated data for some aspects in the training data.

Almost all the aforementioned models assume contextual senti-
ment information towards a specific aspect is essential for ABSA,
which is however not always the case. Blindly incorporating aspect-
related sentiment features may lead to degraded sentiment classifi-
cation performance, as will shown in our experiments. To address
this issue, a better network for leveraging aspect-invariant sentiment
information should be considered.

2.2 Adversarial Multi-task Learning

By extracting shared and transferable information from related
tasks, multi-task learning can leverage latent correlated features
from data [24, 33, 42]. In the task of ABSA, He et al. [9] con-
sidered ABSA as two subtasks: document-level and aspect-level
classification, and transfer knowledge from document-level data to
improve the performance of aspect-level sentiment classification.
Further, He et al. [10] utilized an iterative message passing scheme
to explicitly model the interactions between tasks. Multi-task learn-
ing could be combined with adversarial training, which has achieved
promising performance in various natural language processing (NLP)
tasks [2, 15, 22, 39, 43]. Among them, Wu et al. [43] applied ad-
versarial training in relation extraction within the multi-instance
multi-label learning framework, which revealed the effectiveness of
adversarial training for relation extraction. Liu et al. [22] proposed
an adversarial multi-task learning framework for text classification,
in which the shared and private feature spaces are inherently disjoint
by introducing orthogonality constraints.

In sentiment analysis, Wang et al. [39] proposed a user-attention-
based CNN model with adversarial cross-lingual learning framework
to enrich the user post representation in personalized Microblog
sentiment classification, and Chen et al. [2] proposed an adversarial
deep averaging network to transfer the knowledge learned from
labeled data on a resource-rich source language to low-resource
languages in the task of cross-lingual sentiment classification. Li
et al. [18] considered ABSA as an end-to-end task, and proposed a
selective adversarial learning method to learn an alignment weight
for each word, where more important words can possess higher
alignment weights to achieve a local semantic alignment and capture
domain-invariant word representations by employing adversarial
training. Inspired by the recent successful work [2, 22], we propose
a novel framework to extract aspect-invariant sentiment features for
improving aspect-based sentiment classification.

3 METHODOLOGY

In this section, we describe our adversarial multi-task learning frame-
work, which is demonstrated in Figure 2, in details.

3.1 Fake Cross-Aspect Sample Generation

Ideally, we would expect a sufficient number of training examples
annotated for each aspect in the task of ABSA. However, this is rarely
the case in reality. In existing ABSA datasets, we often observe

Aspect Fake/Real

C]assiﬁer k%'Dlscnmmator
ABSA Model E M j<—[ j

C Word Embeddings j

Real Samples Fake & Real Samples

Sentiment

Feature Extractor

Figure 2: The architecture of the proposed adversarial multi-
task learning framework. There are five main components: the
embedding layer, the feature extractor ¥, the discriminator D,
the ABSA model M and the sentiment classifier C. Lines in dif-
ferent colors show the propagation of information from differ-
ent components.

imbalanced training examples with some aspects associated with
abundant annotated data while others having only limited annotated
instances. The goal of fake cross-aspect sample generation is to
automatically generate high-quality training samples so as to enrich
the training dataset.

There are many possible ways to generate synthetic fake training
examples. One simple approach we consider is to replace an aspect
mention or attribute in a sentence with another aspect term which
shares some similarity with the original aspect mention/attribute?.
The rationale behind this is that we expect sentiment expressions
of these related aspects are also similar. For example, as shown in
Figure 1(a), to generate the fake training example for the aspect
‘LOCATION#GENERAL’, we select the training instances which
are annotated with the attribute ‘#GENERAL’ and replace its corre-
sponding entity mention with the aspect entity ‘location’.

3.2 Adversarial Multi-Task Learning Framework

As demonstrated in Figure 2, our adversarial multi-task learning
framework consists of two branches: aspect-based sentiment pre-
diction and aspect-invariant features extraction. As a universally
applicable framework, the proposed framework can be easily com-
bined with existing ABSA models? directly.

We first assume a sentence is represented by a sequence of words
{w1, wa, ..., wp}, and it may contain one or more aspects associ-
ated with different sentiment polarities, i.e. positive, negative, and
neutral. Each word in the sentence can be represented by an m-
dimensional embedding x € RK, where k is the dimension of word
embeddings. For each input sentence, the embedding layer maps the
corresponding embedding vector for each word from the full word
embedding matrix V € RFXILI o get the input embedding matrix

2In our experiments, we ignore the training examples whose entities were annotated
with ‘NULL’, since they are unable to locate a specific entity and only accounted for a
small part of the training set.

3Such as ATAE-LSTM, RAM, GCAE etc., which will be discussed in the Experiments
section.
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X € R where n is the length of sentence and |L| is the vocabulary
size of the dataset. The embedding layer is usually initialized with
pre-trained embeddings such as GloVe [29] and BERT [4], then they
are fine-tuned during the training process. Each aspect can also be
represented as an m-dimensional embedding a € R¥, which is the
average of its entity and attribute word embeddings.

After that, a feature extractor ¥ is utilized to extract the aspect-
invariant sentiment features, and meanwhile separate them from
aspect-dependent sentiment features and noisy features. Here, the
feature extractor can be any neural model, such as bi-directional
LSTM (Bi-LSTM):

/= F(X,) = Bi-LSTM(X,;, b/_, 07), (1
where Bi-LSTM(-) is the shorthand computation of Bi-LSTM, X; €

RX is the input of word embedding at the current time step, hii1
the hidden output at the last time step, 6/ denotes all the parame-
ters of the feature extractor . Then the hidden output of feature
extractor F(X) = h/ can be fed as into the discriminator D to
identify the aspect label and the sample label (fake r real). For sen-
timent prediction of fake cross-aspect samples, we feed ¥ (X) into
the sentiment classifier C to get the output distribution. Here, we
utilize the soffmax function to obtain the output distribution of the
discriminator and the classifier.

For the branch of sentiment prediction for a specific aspect, the
input embedding matrix X € RF*" and the aspect embedding a € RK
are fed into the ABSA model M and output the hidden feature
representation h'™:

h™ = M(X) = ABSAModel(X, a, ™), 2)

18

where 0™ represents the parameters of the ABSA model. To capture
the aspect-invariant sentiment features, we feed the hidden outputs
from the ABSA model M and the feature extractor ¥ into the
sentiment classifier C to obtain the sentiment polarity of a specific
aspect:

v = C(X) = softmax(W - [hf W] +b), 3)

where y© is the predicted sentiment distribution. Here, we also utilize
the softmax function for sentiment prediction. [-,-] represents a
concatenation of two feature representations.

3.3 Multi-Task Learning for ABSA

The key purpose of multi-task learning is to share latent features
extracted from related tasks [2, 10]. Here, the feature extractor
aims at reconciling the features learned from different tasks with the
help of the multi-task discriminator D.

Aspect Discrimination. The sentiment expressed in a sentence
might depend on a specific aspect. Here, a discriminator 9 is
adopted to predict the aspect category given a sentence input by
minimizing the cross-entropy loss of predicted and true aspect distri-
butions for all N training samples:

N A
TO0a) ==, ) yllogD(F (X)), @)
i=1 j=1

where A is the number of aspect classes, y{ is the ground-truth
distribution of aspect, 6, represents all the parameters of D.

Algorithm 1 The training procedure of our adversarial framework

Require: embedding matrix sets of samples X; aspect embedding
sets A; the size of dataset N, N,; hyperpamameters «, f and A.

1: fori=1to N do
2 X=X
3 a= Ai

4. » Aspect and fake sample discrimination

50 feross = F(X)

6 Ja = CrossEntropy(D(f cross))

7:  » Sentiment discrimination

8 Jsc = CrossEntropy(C( feross)) — @ Jq

9: > Aspect-based sentiment prediction

100 fp,=M(X a)

11:  Jac = CrossEntropy(C( f,)) + ATsc

12: end for

13: Update all the parameters to minimize the loss

Fake Sample Discrimination. To capture aspect-invariant senti-
ment features from the generated cross-aspect samples, the discrimi-
nator D is also adopted to classify whether a given input sample is
real or fake by minimizing the cross-entropy loss of predicted and
true distributions:

N
T*(64) = = ) 7]logD(F (X))
i=1 (5)

+(1=2))log(1 = D(F (X)),
where z{ is the ground-truth distribution of fake or real sample.

Sentiment Discrimination. For sentiment discrimination of cross-
aspect samples, the sentiment features extracted by ¥ are fed into
classifier C to extract aspect-invariant sentiment information and
discriminate noisy and aspect-dependent sentiment features. The
objective to train the classifier C is defined as minimizing the cross-
entropy loss of prediction and true distributions:

N S
T (Osc) == > " p]logC(F (X)), ©)

i=1j=1

where S is the number of sentiment classes, p{ is the ground-truth
distribution of sentence-level sentiment polarity, s, represents all
the parameters of sentence-level sentiment discrimination.

Aspect-based Sentiment Prediction. For aspect-based sentiment
prediction, the aspect-invariant sentiment features extracted by # are
fed into existing ABSA models. With the help of the aspect-invariant
features, the ABSA model M can learn better sentiment features for
those aspects with limited training samples. The objective function
is defined as:

Ny S
T Oac) = =" Y a}logC(M(X)), @

i=1j=1

where N, is the number of real samples, q{ is the ground-truth
distribution of aspect-based sentiment polarity, 8, represents all the
parameters of aspect-based sentiment prediction.
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Figure 3: Three schemes of our adversarial multi-task learning framework.

3.4 Adversarial Training

The training procedure of our adversarial framework is depicted in
Algorithm 1. The feature extractor ¥ aims to extract aspect-invariant
sentiment features that could help an ABSA model M to predict
sentiment polarity for any aspect and confuse the discriminator D
to detect aspect label and fake sample by adversarial training. In
another words, if a well-trained discriminator 9 can not detect the
aspect label and fake sample based on the features learned by 7,
then those features are aspect-invariant and could be exploited to
improve aspect-based sentiment prediction.

In pursuit of the adversarial goal, the discriminator D is designed
to impede the feature extractor ¥ to learn aspect-invariant sentiment
features from input sentences. In addition, the sentiment classifier C
needs to predict the sentiment polarity of the input sentence. Here,
adversarial training performs min-max optimization that can be
divided into two parts: minimizing the cross-entropy loss of sentence-
level sentiment prediction and maximizing the cross-entropy loss of
the discriminator. Hence, the adversarial loss can be defined as:

T Osc) = T (0sc) — aJ (6a), (®)

where « is the weight that controls the interaction of the loss terms,
and 7 (6;) denotes the overall loss of the discriminator D, which is
defined as:

T (0q) = T°(0a) + BT (6a) 9)

Finally, we simultaneously minimize the cross-entropy loss of sentence-
level sentiment prediction and aspect-based sentiment prediction to
exploit the aspect-invariant sentiment features:

J(©) =T (Oac) + AT (BOs¢), (10)

where O represents all the parameters of the adversarial multi-task
learning framework, A is the parameter to control the influence of

J(0g).

3.5 Three Schemes of Our Framework

To demonstrate different scenarios in deploying our proposed frame-
work, we explore three different structures to extract and transfer
aspect-invariant sentiment features for improving the performance
of aspect-based sentiment prediction, as shown in Figure 3.

Integration structure (ISF). In the first scheme, we integrate the
feature extractor F with an ABSA model M, i.e. M is also used as
¥ . As demonstrated in Figure 3(a), the aspect-invariant sentiment
information and aspect-based sentiment information are both learned
by the ABSA model M.

Concatenation structure (CSF). As demonstrated in Figure 3(b),
a recurrent model Bi-LSTM is used as the feature extractor ¥ to
extract aspect-invariant sentiment features from data, which are
subsequently concatenated with the hidden output of the ABSA
model M:
h=h/ @h™, (11)
and fed into the sentiment classifier C.

Gate fusion structure (GSF). The last scheme is a gated fusion
structure, as demonstrated in Figure 3(c). Bi-LSTM is also used
to learn aspect-invariant sentiment features. Different from CSF,
feature combination is performed by a fusion gate:

h = (h""W" +b™) ® o(h/' WS + b)), (12)

where o denotes the sigmoid function.

4 EXPERIMENTS
4.1 Datasets and Experimental Setting

We conduct experiments on two benchmark datasets of the restau-
rants domain from Semeval 2015 Task 12 [31] and Semeval 2016
Task 5 [30] (Sem15 and Sem16). The task of ABSA aims at pre-
dicting the sentiment polarity (i.e. positive, negative or neutral) for
each aspect mentioned in the sample. Each training and test sample
in the datasets consists of the review sentence, aspect entity, aspect,
and the sentiment polarity towards the aspect*. We use GloVe [29]
to initialize word embeddings for all non-BERT models, and use
the pre-trained uncased BERT-base [4] model for all BERT-based
models. The weight coefficients of «, f and A are 0.5, 0.1 and 0.5
respectively. We randomly initialize W and b for all experiments. To
reconcile the training of multi-task, we pre-train the discriminator
D for 20 epochs.

4We remove sentences containing no aspects. The remaining sentences contain one or
more aspects.
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4.2 Comparison Models

We compare our proposed adversarial multi-task learning framework
(including three schemes, i.e. ISF, CSF and GSF) with 10 baseline
models, including BERT:

o TD-LSTM [37]: A target-dependent LSTM model, which
incorporates aspect information into LSTM.

e ATAE-LSTM [41]: An attention-based LSTM model which
better takes advantage of aspect information.

o MemNet [38]: An attention-based memory network, which
applies attention multiple times on the word embeddings for
sentence representation to capture the importance of each
context word.

o RAM [1]: A recurrent attention-based memory network which
captures sentiment features separated by a long distance.

o TAN [25]: An interactive attention network with context rep-
resentation and aspect representation learned separately but
interactively.

e AOA [13]: An attention-based network models aspects and
sentences jointly to capture the relations between aspects and
context.

e MGAN [7]: A multi-grained attention network which cap-
tures the word-level interaction between aspects and context.

o GCAE [44]: A gated CNN model which effectively controls
the flow of sentiment according to the given aspect informa-
tion.

o AEN [34]: An attention encoder network, which eschews re-
currence and employs attention-based encoders for the mod-
eling between context and aspect.

o BERT [4]: The vanilla pre-trained uncased BERT-base model,
which adopts “[CLS] sentence [SEP] aspect [SEP]” as inputs.

o ISF+models: The models based on our integration structure
framework.

e CSF+models: The models based on our concatenation struc-
ture framework.

o GSF+models: The models based on our gated fusion struc-
ture framework.

4.3 Main Experiment Results

The main experimental results on two benchmark datasets are re-
ported in Table 1. We can draw a conclusion that the ABSA models
based on our adversarial multi-task learning framework (all three
schemes, i.e. ISF+models, CSF+models and GSF+models) achieve
better performance than competitor models for both accuracy and
Macro-F1. Among them, the best improvements of accuracy and
Macro-F1 are 5.25% (CSF+AOA) and 6.32% (GSF+MemNet) re-
spectively on sem15. For the Sem16 dataset, our framework im-
proves accuracy by 4.84% (GSF+RAM) and Macro-F1 by 8.75%
(GSF+MGAN). Among the baselines, BERT gives the best results
on both Sem15 and Sem16 datasets. Nevertheless, when integrated
with our proposed framework, significant improvements of 2.57-
3.13% in accuracy and 2.50-3.63% in F1 are observed compared
to the vanilla BERT model. The results verify that our proposed
adversarial multi-task learning framework can be easily combined

SWe have also tried BERT-large in preliminary experiments, and found that BERT-
large integrated with our framework also achieves state-of-the-art performance for
aspect-based sentiment classification on two benchmark datasets.

Table 1: Main experimental results on Sem15 and Sem16. Acc.
represents accuracy, F1 represents Macro-F1 score, 1 denotes
the model based on our framework. Average results over 10
runs are reported, best scores for each baseline are in bold.

Model Sem15 Sem16

Acc. (%) F1(%) | Acc. (%) FI (%)
TD-LSTM | 7639 5870 | 8355 6026
ISF+TD-LSTM 7730 60.54 | 8562  63.23
CSF+TD-LSTM{ 7884 6101 | 8632  65.07
GSF+TD-LSTM 7766 6196 | 8697  65.77
ATAE-LSTM | 7848 5977 | 8419  62.89
ISF+ATAE-LSTMT | 79.80 6201 | 8583 6437
CSF+ATAE-LSTM{ | 81.42 6349 | 8634  66.20
GSF+ATAE-LSTM7 | 80.67  63.85 | 87.53  65.46
MemNet | 7759 5747 | 8435 6171
ISF+MemNet 79.68  60.70 | 8674  63.68
CSF+MemNet{ 80.52  63.16 | 87.53  65.62
GSF+MemNet 8130  63.79 | 8823  66.52
RAM | 7917 6229 | 8388 6373
ISF+RAM 8133  63.64 | 8658 6525
CSF+RAMT 8237 6470 | 8720  67.37
GSF+RAM{ 8282 6587 | 8872 6835
IAN | 76.84 5855 | 84.82  60.65
ISF+IANY 7971 6191 | 8626  62.25
CSF+IANT 8138 6290 | 8642  64.16
GSF+IAN7 80.81  63.2 | 88.02  63.96
AOA | 7738 5879 | 8594  63.05
ISF+AOA 80.72 6126 | 8742 6433
CSF+AOA 82.63 6325 | 8854  66.87
GSF+AOAT 8235 6349 | 8890  67.12
MGAN | 7826 5846 | 8514  59.87
ISF+MGAN' 80.24  60.62 | 87.46  64.63
CSF+MGANT 8205 6208 | 87.53 6761
GSF+MGAN{ 83.13 6276 | 88.50  68.62
GCAE | 7755 5743 | 84.66  60.89
ISF+GCAEf} 79.17 6070 | 8594  64.37
CSF+GCAEf 80.67 6127 | 8720 6594
GSF+GCAET 81.78 6193 | 87.86  66.35
AEN | 7802  60.12 | 8578 6435
ISF+AENT 7987 6199 | 8690  65.38
CSF+AEN{ 8092  63.54 | 8813  67.20
GSF+AEN7 82.10  64.29 | 87.64  68.12
BERT | 8241 6435 | 88.60  73.62
ISF+BERTY 8412 6587 | 8925 7478
CSF+BERTY 8462 6653 | 9129 7557
GSF+BERTY 8504  67.98 | 9173  76.12
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with existing ABSA models and achieve the state-of-the-art perfor-
mance for predicting aspect-based sentiment. One main reason is
that the proposed framework can leverage aspect-invariant sentiment
features from cross-aspect samples for better learning sentiment
features of those aspects with limited annotated samples.

In this paper, we explore three schemes of the proposed frame-
work to demonstrate the versatility of our method. Experimental
results show that all the three structures can improve the perfor-
mance of aspect-based sentiment prediction over baseline models.
It can also be observed that the concatenation structure (CSF) and
the gated fusion structure (GSF) perform better than the integration
structure (ISF) on both Sem15 and Sem16 datasets. This indicates
that employing an independent feature extractor # for the extraction
of aspect-invariant features is more effective compared to simply
using an existing ABSA model. Overall, the gated fusion struc-
ture (GSF) performs better than other two schemes, showing that
aspect-invariant sentiment features are better captured by the gating
mechanism.

4.4 Ablation Study

To investigate the impact of different components of our proposed
adversarial multi-task learning framework, we conduct experiments
based on RAM model and report the results of different structures®.
As shown in Table 2, Simply incorporation fake samples (w/ fake)
only leads to marginal improvements since some of the fake samples
may introduce noise to the training process. When integrating multi-
task learning (w/ multi) into our framework, the performance can
be preeminently improved for all three submodules (w/ a, w/ s and
w/ a+s). Among them, models with fake sample discrimination
(w/ s) achieve more noticeable improvement in comparison with
those without (w/ a), which demonstrates that incorporating fake
sample discrimination can reduce the negative impact of noisy fake
samples and better extract aspect-invariant sentiment features. In
addition, compared with models with single-task discrimination, the
multi-task learning models with both aspect discrimination and fake
sample discrimination achieve better results in general for all the
three structures with more significant results for both CSF and GSF,
which demonstrates the effectiveness of the proposed multi-task
learning for ABSA. Here, the reason why significant improvement
can not be achieved by ISF with multi-task learning may be that, it
is laborious for a single model to learn various discrepant features
concurrently.

It is also worth noticing that significant improvement can be
achieved by multi-task learning integrated with adversarial training
(w/ adv.+multi+fake w/ a+s). This verifies that compared with pure
multi-task learning, adversarial multi-task learning can better disen-
tangle aspect-dependent sentiment features and noisy features from
aspect-invariant sentiment features by adversarial training, which
eventually leads to superior performance in ABSA.

4.5 Impact of the Training Data Size

To further demonstrate that our adversarial multi-task learning frame-
work can extract aspect-invariant sentiment features to improve

To demonstrate the generalizability of the proposed framework, from here on, we adopt
RAM as ABSA model M in the following experiments, while similar results can also
be achieved by regarding other baselines (including BERT) as M.

Table 2: Experimental results of different variants based on
ISF, CSF and GSF structures. a and s represent aspect discrim-
ination and fake sample discrimination respectively. ‘“fake”,
“multi” and ‘““adv.” represent fake samples, multi-task learning
and adversarial training respectively. = denotes the complete
framework.

Model | Semls | Seml6
[Acc. (%) F1 (%) | Acc. (%) FI (%)
baseline | 7917 6229 | 8388  63.73
w/ fake | 7930 6254 | 84.03 63.85
o/ i | VS 8021  63.02 | 8597  64.45
fak w/ a 7986 6273 | 85.62  64.23
ISF Hake  G/ars | 8045  63.08 | 8583 6437
Wi adv. | w/s S1.12  63.85 | 86.62 64.97
+multi | w/a 80.97  63.50 | 86.53  64.73
tfake | w/ats+| 8133  63.64 | 8658  65.25
o/ i | VS 80.03 63.12 | 8640 64.78
fak w/ a 7978 62.88. | 8595  64.02
CSF Hake  w/aes | 8012 63.05 | 8657  65.10
W/ adv. | W/ 8127 6339 | 87.06 66.73
+multi | w/a 80.83  63.10 | 86.85 65.82
tfake | w/ats+| 8237 6470 | 8720  67.37
wf i | VS 80.15 6327 | 8643  65.02
ik w/ a 7963 6295 | 8582  64.13
GSF Hake  lw/ars | 8023 63.64 | 8682 6535
Wi adv. | W/ 8132 6468 | 8815 67.96
tmulti | w/a 80.67 64.07 | 87.56  66.87
tfake | w/a+s+| 82.82 6587 | 8872  68.35

aspect-based sentiment prediction for aspects with limited annotated
samples, we conduct experiments by employing different proportions
of annotated data from training datasets and incorporating different
proportions of fake cross-aspect samples. The results are shown in
Figure 4. According to Figure 4(a) and (b), we can observe that all
the three proposed structures of our framework (ISF, CSF and GSF)
achieve better performance in comparison with the baseline on both
Sem15 and Sem16 dataset. For small proportion of annotated data
(< 40%), our three structures can still achieve remarkable perfor-
mance (CSF and GSF in particular), that is, when the annotated data
is critically insufficient, our framework can still achieve appreciable
performance. This implies that extracting aspect-invariant sentiment
features can significantly improve the performance of predicting
aspect-based sentiment, especially for those aspects with limited
annotated data.

In addition, Figure 4(c) and (d) show the performance of using
different proportions of fake cross-aspect samples (here, the total
number of synthetic cross-aspect samples is 4,873 on Sem15 and
6,310 on Sem16). We observe that the performance of the baseline
(the original ABSA model) fluctuates with the increasing number
of fake cross-aspect samples. This shows that simply adding fake
training samples may introduce noise to the model as some of the
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Figure 4: Performance of using different proportions of anno-
tated data on Sem15 and Sem16. (a) and (b) show different per-
centages of annotated data. (c¢) and (d) show different percent-
ages of fake cross-aspect samples.

generated synthetic training instances may contain inconsistent sen-
timent features, which are vulnerable to slash the learning ability of
the model. Our three structures, on the contrary, achieve best results
with the increase number of fake samples. The performance im-
provement is more noticeable when the size of fake samples is small
(< 40%). This indicates that the proposed adversarial multi-task
learning framework can extract aspect-invariant sentiment features
from fake cross-aspect samples more effectively, and essentially
filtering out noisy signals automatically.

4.6 Detailed Results for Aspect-Invariant
Sentiment Extraction

In this subsection, we conduct detailed experiments to verify that the
fake cross-aspect samples can be fed into the proposed framework to
learn aspect-invariant sentiment features for improving aspect-based
sentiment prediction, particularly for aspects with limited annotated
data. More concretely, we manually annotate sentiment expressions
(i.e. aspect-invariant or aspect-dependent) of samples identified by
the multi-task discriminator . As demonstrated in Figure 5(a),
among cross-aspect samples which are identified wrongly by the dis-
criminator P (indistinguishable fake/real), over 90% of them contain
aspect-invariant sentiment expressions on both Sem15 and Sem16.
Examples of such cross-aspect training samples are shown in the
first row of Figure 5(b). On the contrary, among those cross-aspect
samples which are identified correctly by our discriminator (distin-
guishable fake/real), only about half of them contain aspect-invariant
sentiment expressions. Some aspect-dependent fake examples are
shown in the second row of Figure 5(b). Clearly, these fake samples
need to be filtered as otherwise, they will confuse the learning of
ABSA model.

100 9327 91.18 93.98 9082
~ 80
% 60 55.62 6228 4
52.66
g mEm distinguishable fake
§ 40 B indistinguishable fake
& 20 I distinguishable real
I indistinguishable real
0 seml5 seml6

(a) Proportion of aspect-invariant samples.

Type Real sample Fake sample Result]

I love this ambience

aspect- I love this place real

nvariant I love this food

aspect- . | ambience was slow fak
service was slow ake

dependent restaurant was slow

(b) Discrimination results of typical fake samples.

Figure 5: Results of aspect-invariant sentiment features ex-
tracted by our framework. v represents that samples con-
tain aspect-invariant sentiment expressions, which could be ex-
tracted to improve aspect-based sentiment prediction for as-
pects with limited annotated data. X represents that the gener-
ated samples contain aspect-dependent sentiment expressions,
which introduce noise and should be filtered by our framework.

4.7 Visualizations and Qualitative Analysis

To qualitatively demonstrate how the proposed framework improves
the performance of ABSA, we visualize the intermediate vectors
extracted by the feature extractor ¥ via t-SNE [26] and analyze what
sentiment features are learned from the real testing instances which
are indistinguishable by the discriminator. The results are reported in
Figure 6. We can observe from Figure 6(a) and (b) that the interme-
diate vectors from indistinguishable and distinguishable samples are
clearly separated by the discriminator ©. In addition, Figure 6(c) and
(d) demonstrate that the proportion of indistinguishable instances
containing aspect-invariant sentiment expressions is near 90% in
both Sem15 and Sem16, and about 90% of the aspect-dependent
sentiment features are discriminated by the discriminator O on both
Sem15 and Sem16. This verifies that the proposed framework can ef-
fectively distinguish and extract aspect-invariant sentiment features
by adversarial multi-task learning.

4.8 Analysis of Gated Fusion Structure (GSF)

As reported earlier, the Gated Fusion Structure (GSF) achieves
the best performance in all comparison experiments. To further
analyze how the fusion gate better incorporates aspect-invariant
sentiment features for improving aspect-based sentiment prediction,
we demonstrate in Figure 7 the visualization of intermediate vectors
learned by the fusion gate and the distribution of vector values. From
Figure 7(a) and (b), we can observe that aspect-invariant and aspect-
dependent sentiment features are better separated for both Sem15
and Sem16, which verifies the effectiveness of using the proposed
GSF scheme for better incorporating aspect-invariant sentiment
features. In addition, Figure 7(c) and (d) show that the peak values



Aspect-Invariant Sentiment Feature Learning: Adversarial Multi-task Learning for Aspect-Based Sentiment AnalysisConference’17, July 2017, Washington, DC, USA

‘- indistinguishable‘

* * distinguishable & g o K B3 »
(b)

n n B
(a)
100 100
89.01 89.8 88.42 90.27

Proportion (%)

20 B aspect-invariant
10.2

B aspect-invariant
9.73

B aspect-dependent

B aspect-dependent

ilistinguishable distinglishable _ inbistinguishable distinguishable
(c) Distribution of proportion on Sem15 (d) Distribution of proportion on Sem16

Figure 6: Visualizations of intermediate vectors. (a) and (b)
demonstrate intermediate vectors output by the feature ex-
tractor 7 on Sem15 and Sem16 respectively. Red dots repre-
sent those ‘indistinguishable’ real samples that can not be dis-
criminated by a well-trained discriminator D, cyan dots repre-
sent ‘distinguishable’ real samples by the discriminator. (c) and
(d) show the distribution of real testing instances containing
aspect-invariant and aspect-dependent sentiment expressions
on Sem15 and Sem16 respectively. Blue bars denote the pro-
portion of aspect-invariant instances in ‘indistinguishable’ and
‘distinguishable’ categories. Red bars denote the proportion of
aspect-dependent instances of these two categories in all aspect-
dependent instances.

of intermediate vectors of indistinguishable samples are lager than
distinguishable samples on both Sem15 and Sem16. And further,
most values of the distribution from indistinguishable samples fall
to the right of the peak value, while the values of the distinguishable
gather at the left of the peak value. This verifies that the fusion gate
of the GSF framework can boost the transfer of aspect-invariant
sentiment by increasing the value of elements of the intermediate
vectors.

4.9 Effect of Off-the-shelf Aspect-Invariant Data

To explore the availability of the aspect-invariant sentiment features
for improving the prediction of aspect-based sentiment in the task
of ABSA, we output the aspect-invariant samples learned by our
feature extractor # and feed them with different proportions into
all baseline models. Here, we adopt different baseline models as
M to train the framework, and select the top 300 aspect-invariant
samples for the Sem15 dataset and 400 aspect-invariant samples
for the Sem16 dataset from the generated aspect-invariant data. The
experimental results are demonstrated in Figure 8. We can observe
that with the increasing number of aspect-invariant samples, the
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Figure 7: Visualizations and value distributions of intermediate
vectors learned by the fusion gate.
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Figure 8: Performance of different proportions of aspect-
invariant samples on Sem15 and Sem16.

accuracy of aspect-based sentiment prediction increases for all of the
baseline models on both Sem15 and Sem16 datasets. This indicates
that the proposed framework can indeed extract aspect-invariant
samples, and feed them as additional annotated data into existing
ABSA models for the improvement of ABSA performance. One
possible reason is that aspect-invariant sentiment features would
benefit the learning of a better sentiment classifier for those aspects
with limited annotated data.

S CONCLUSION

In this paper, we have proposed a novel adversarial multi-task learn-
ing framework to extract aspect-invariant sentiment features from
cross-aspect data via adversarial training. The generated fake training
instances containing aspect-invariant sentiment features can effec-
tively boost ABSA performance, especially for aspects with limited
annotated data. Experimental results on two benchmark datasets
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show that the proposed framework can be easily combined with
existing neural network-based ABSA models and capture aspect-
invariant sentiment features effectively for improving ABSA per-
formance without requiring additional annotated data, and thereby
achieve state-of-the-art performance in the ABSA task.
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