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Abstract 

Background: The corpus callosum is the largest white matter tract in the human brain, 

involved in inter-hemispheric transfer and integration of lateralised visual, sensory-motor, 

language, and cognitive information. Microstructural alterations are implicated in ageing as 

well as various neurological conditions.  

New Method: Cross-sectional diffusion-weighted images of 107 healthy adults were used to 

create a linear regression model of the ageing corpus callosum and its sub-regions to evaluate 

the impact of analysis by sub-region, and to test for deviations from healthy ageing 

parameters in 28 subjects with mild cognitive impairment (MCI). Alterations in diffusion 

properties including fractional anisotropy, mean, radial and axial diffusivities were 

investigated as a function of age. 

Results: Changes in DTI parameters showed age-dependent regional differences, likely arising 

from axonal diameter variation across cross-sectional regions of interest in the corpus 

callosum. Patterns suggestive of degeneration with healthy ageing were observed in all 

regions. Diffusion parameters in sub-regions projecting to pre-motor, primary, and 

supplementary motor areas of the brain differed for MCI versus healthy controls, and MCI 

subjects were more likely than healthy controls to experience a reduction in motor skills. 

Comparison with Existing Methods: Statistical analyses of the corpus callosum by five 

manually-defined sub-regions, instead of a single manually-defined region of interest, 

revealed region-specific changes in microstructure in healthy ageing and MCI, and accounted 

for clinically-evaluated differences in motor skills between cohorts.  

Conclusion: This method will support future studies of corpus callosum, enabling 

identification and measurement of white matter changes that are undetectable with the 

single ROI approach.  
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1. Introduction 

The topology of the human brain is constantly changing from birth, plateauing in adulthood 

and degenerating in later life. Both grey matter and white matter tissues in the brain are 

susceptible to ageing, with observations in post-mortem studies of healthy human brains of 

more severe age-related changes in white matter than in grey matter (Marner et al., 2003; 

Piguet et al., 2009). The corpus callosum is the largest white matter tract in the human brain, 

with more than 300 million fibres interconnecting the two cerebral hemispheres. Recent 

technological advances have found fibres of the corpus callosum projecting into prefrontal, 

pre-motor, supplementary and primary motor, and sensory areas of the brain (Hofer and 

Frahm, 2006), and involved in inter-hemispheric transfer and integration of lateralised visual, 

sensory-motor, language and cognitive information (van der Knaap and van der Ham, 2011). 

Corpus callosum anatomy has been divided into sub-regions based on geometry (Clarke and 

Zaidel, 1994; Witelson, 1989), connectivity (Hofer and Frahm, 2006), and statistically derived 

cohesiveness (Denenberg et al., 1991; Peters et al., 2002). Studies on effects of age, sex and 

handedness in the healthy brain have reported differences in these properties in the corpus 

callosum by sub-region (Peters et al., 2002; Prendergast et al., 2015; Reuter-Lorenz and 

Stanczak, 2000; Sullivan et al., 2001b; Witelson, 1989). 

 

Post-mortem studies have linked altered properties of the corpus callosum to normal ageing 

(Hou and Pakkenberg, 2012) as well as neurological disorders including schizophrenia 

(Woodruff et al., 1995), multiple sclerosis (Evangelou et al., 2000), Huntington's disease and 

progressive supranuclear palsy (Mann et al., 1993). Recent magnetic resonance imaging (MRI) 

studies have strengthened these conclusions with evidence of atrophy (Goldman et al., 2017; 

Granberg et al., 2015; Lee et al., 2016; Wang et al., 2015a), morphological changes (Ardekani 
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et al., 2014; Pardoe et al., 2015; Wolff et al., 2015), and demyelination in the human corpus 

callosum (Decker et al., 2018; Køster et al., 2018) and mouse models (Xiu et al., 2015). 

Diffusion tensor magnetic resonance imaging (DT-MRI or DTI) has also been applied to study 

the corpus callosum. DTI is an advanced technique that is used to image the diffusion 

properties of water molecules in tissue, providing a means to interpret the presence or 

absence of barriers to this diffusion (Le Bihan et al., 2001). DTI has been previously used to 

study the microstructural properties of the corpus callosum in healthy ageing and various 

neurological disorders (Hasan et al., 2005; Shahab et al., 2018; Sullivan and Pfefferbaum, 

2003).  

 

The corpus callosum is reportedly the white matter structure most affected by age (Sala et 

al., 2012), with some studies also revealing differences in the extent to which its sub-regions 

are affected (Ota et al., 2006). These variations between the sub-regions have been suggested 

as indicative of the differing effects of age in the corresponding parts of the brain they project 

to (Lebel et al., 2010; Ota et al., 2006). However, there are conflicting study results in the 

literature with some indicating a larger effect of age in the anterior corpus callosum than in 

the posterior (Hasan et al., 2005; Lebel et al., 2010; Ota et al., 2006; Sullivan et al., 2001a, 

2001b), and a few suggesting the opposite (Bennett et al., 2017). MRI and DTI studies of the 

corpus callosum have also been carried out for various neurological disorders including mild 

cognitive impairment (MCI) and Alzheimer's disease (AD) (Ardekani et al., 2014; Lee et al., 

2016; Wang et al., 2015b). Results of these studies indicate degeneration of the corpus 

callosum in disease that exceeds changes arising from healthy ageing. 
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The corpus callosum incorporates a heterogeneous bundle of fibres connecting the 

hemispheres of the brain. Different segments of this fibre bundle have been observed to be 

of different sizes or diameters, likely depending on the region of the brain they project to 

(Aboitiz et al., 1992). This may have an impact on the quantitative parameters measured in 

vivo, particularly in DTI. In previous DTI investigations of the corpus callosum in healthy ageing 

and disease, it has been treated as a single region of interest (ROI), and/or by sub-region (Ma 

et al., 2009, Bennett et al., 2017, Feng et al., 2018, Ota et al., 2006, Lebel et al., 2010). While 

a single ROI approach is easier to implement, the heterogeneity of the corpus callosum may 

be better represented through a region-wise analysis. This, in turn, may be influenced by the 

choice of scheme used to define the sub-regions.  Here, we investigated DTI properties of the 

corpus callosum as a function of age and tested for cohort differences between ageing healthy 

controls (HC) and individuals with MCI, examining how this is influenced by segmenting the 

corpus callosum as a single ROI and by sub-region. Strategies for segmentation of the corpus 

callosum were explored. The data available to this study were acquired in the axial plane, but 

the corpus callosum is better delineated in the sagittal plane, so at the outset comparisons 

were made between atlas-based and manual delineation of the corpus callosum to determine 

the most appropriate strategy for this study. Having selected a manual delineation approach, 

the Hofer and Frahm scheme (segmenting in the sagittal plane to create pre-defined 

fractions), was used to divide the corpus callosum into five sub-regions for analysis (Hofer and 

Frahm, 2006). 

 

2. Materials and Methods 

Data used in this study were obtained from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database (http://adni.loni.usc.edu). ADNI was launched in 2003 as a public-private 
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partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI 

has been to test whether serial MRI, positron emission tomography, other biological markers, 

and clinical and neuropsychological assessments can be combined to measure the 

progression of MCI and early AD.  ADNI consists of a series of multi-site data acquisition 

studies, with ADNI-1, ADNI-2, and ADNI-GO completed to date; ADNI-3 is ongoing. This study 

used data from ADNI-3, in order to utilize DTI data acquired at higher spatial resolution than 

in the previous ADNI studies. The primary inclusion criterion was that the image data were 

acquired with a set of fully-matched scan parameters. Prior studies confirm the importance 

of ensuring a consistent set of acquisition scan parameters to avoid introducing experimental 

uncertainty into the quantitative results, where their selection reportedly affects diffusion 

tensor estimation in DTI (Landman et al., 2007; Zavaliangos-Petropulu et al., 2019, Zhu et al., 

2009).  Application of this criterion to the full cohort in ADNI-3 produced a choice of three 

study cohorts (Siemens, GE, or Philips), and the largest of these at the time of analysis 

(Siemens) was selected, providing 140 subjects (107 HC, 28 MCI, 5 AD).  All these HC and MCI 

subjects were included in the present study.  Although the sample sizes for HC and MCI 

differed, this was carefully considered and accommodated for in the choice of statistical 

methods for comparison between the groups.  The 5 AD cases were excluded because power 

calculations to determine study group size, based on prior-published ADNI-2 data, indicated 

that the AD group was too small to include for comparison with the HC and MCI.   

 

The scan sequence details of images included in this study are: field strength = 3 T, echo time 

(TE) = 56 ms, repetition time (TR) = 7200 ms, b = 0, 1000 s/mm2, number of diffusion weighted 

images = 48, number of non-diffusion weighted images = 7, voxel size = 2 mm x 2 mm x 2 mm 

and approximate scan time = 7 mins 30 s.  
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The ADNI-3 subject images selected for use in this study were collected at the baseline visit 

for each participant. Ideally, longitudinal data from individuals would be used to analyse 

changes in DTI parameters as a function of age. In practice, a preliminary analysis (using the 

lower-spatial-resolution longitudinal data sets from ADNI-2 (Supplementary Figure S1) 

confirmed an insufficient number of participants in the ADNI-3 study cohort to support a 

longitudinal analysis. Instead, a cross-sectional analysis of the data from ADNI-3 was 

performed; this had the advantage of enabling inclusion of all HC and MCI subjects imaged 

using Siemens scanners during ADNI-3. 

 

Gender has been reported to be a significant risk factor for MCI and AD, with the longitudinal 

rate of cognitive decline in MCI observed to be greater in women than in men (Laws et al., 

2018, Lin et al., 2015). Gender-dependence of the patterns of change in DTI parameters of 

the white matter have also been observed (Kanaan et al., 2012); however, this finding is 

contradicted by others where no gender differences were observed (Inano et al., 2011). This 

apparent difference may be accounted for by factors other than gender dominating the white 

matter changes (de Schotten et al., 2011). For this reason, differences in DTI parameters as a 

function of gender were specifically tested for in the ADNI-3 cohorts studied here.   

 

To understand if gender influenced DTI parameters with ageing, HCsub (74 age- and gender-

matched healthy subjects (37 F; 37 M)) was created as a subset of the main HC study group. 

Subject demographics are summarised in Table 1. The rationale for creating HCsub was to test, 

using multiple regression, whether the DTI parameters were influenced by gender, and 

thereby to determine whether the main cohort HC or the subset HCsub was most appropriate 

for use in the study of the relationship between DTI parameters and ageing. 
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Table 1: Age and gender distribution of subjects in the main healthy control (HC) and mild 

cognitive impairment (MCI) cohorts, and the gender- and age-matched HC subgroup (HCsub) 

as a subset of the HC cohort; M: male, F: female. 

Age range 

(years) 

Healthy controls Mild cognitive impairment 

Cohort M F M F 

55-60 
HC - 1 

- 2 
HCsub - - 

61-65 
HC 5 8 

1 - 
HCsub 5 5 

66-70 
HC 7 24 

2 1 
HCsub 7 7 

71-75 
HC 5 10 

4 4 
HCsub 5 5 

76-80 
HC 11 9 

3 4 
HCsub 9 9 

81-85 
HC 8 9 

1 - 
HCsub 8 8 

86-90 
HC 6 2 

1 2 
HCsub 2 2 

90-96 
HC 1 1 

1 2 
HCsub 1 1 

Total 
HC 43 64 

13 15 HCsub 37 37 

 

 

DTI scans were processed in the subject space using FSL (FMRIB Software Library, University 

of Oxford) which is a comprehensive library of tools for brain imaging data analysis (Smith et 

al., 2004). Eddy-current-induced artefacts in the scans were corrected using the 
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‘eddy_correct’ command (Jenkinson et al., 2002). The skull was removed, and the brain 

extracted from the artefact-corrected image using the ‘bet’ tool of FSL and visually verifying 

the output. Weighted fitting of the diffusion tensor on the brain was achieved using the ‘dtifit’ 

command (Jenkinson et al., 2012) and four scalar maps – fractional anisotropy (FA), mean 

diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) – were computed from the 

Eigen values of the tensor. 

 

2.1 Selection of corpus callosum segmentation strategy 

The ADNI DTI data were acquired in the axial plane, so ROI delineation to segment the corpus 

callosum would ideally be performed in the same plane to obtain the most accurate 

measurements.  However, the corpus callosum is not easily visualized in the axial plane, and 

in previous studies it has been segmented in the sagittal plane (Ardekani et al., 2014, Ota et 

al., 2006, Westerhausen et al., 2004).  To address this constraint, we tested several strategies 

to segment the corpus callosum, comparing the results for atlas-based and manual 

segmentation in the sagittal plane with the data obtained from the axial acquisition plane 

(considered ground truth).  A small group of ten subjects was sampled from the cohort for 

this purpose, to enable comparisons between strategies at an individual level. The result from 

this process was used to select the strategy for use with the full cohort. 
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Figure 1: (a) Segmentation in the axial acquisition plane: circular ROIs (see inset) placed in the 

corpus callosum in the axial plane to sample median FA values to be used as ground truth; (b) 

Strategy using atlas-based mask of corpus callosum (ICBM-DTI-81 atlas) to estimate mean and 

median of pixel-wise values; (c) Strategy using manual segmentation of the corpus callosum 

on FA image reconstructed in the sagittal plane to estimate mean and median of pixel-wise 

values; (d) Extended manual segmentation of the corpus callosum in the sagittal plane into 

five pre-determined regions based on the Hofer and Frahm scheme (schematic adapted with 

permission from Hofer and Frahm (2006)). 
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Step 1: Measurement in the axial (acquisition) plane using circular ROIs on axial FA 

image: The corpus callosum was identified on axial FA maps using anatomical 

landmarks such as the ventricles. Segmenting the whole structure in the axial plane 

was not attempted, because poor boundary definition had strong potential to increase 

experimental uncertainty in the results. Instead, using the method illustrated in prior 

studies (Bartzokis et al. 2010, Li et al., 2009), FA values were sampled with circular 

ROIs of varying radii (to avoid partial volume effects), placed throughout all axial slices 

where the corpus callosum was clearly identifiable (Figure 1a, inset). Although 

previous studies have used the mean value from these ROIs, the heterogeneous 

distribution does not necessarily follow a normal distribution. Although mean and 

median values were very similar, checks on the individual distributions for the 10 

subjects sampled for this step supported our use of the median to accommodate non-

normal distributions of pixel FA values. 

 

Step 2: Measurement using atlas-based delineation of ROI: The ICBM-DTI-81 atlas 

(Mori et al., 2008) provided with FSL, was used to obtain a mask of the corpus callosum 

using the labelled regions corresponding to the genu, the body and the splenium. Each 

subject’s FA map was registered to the Montreal Neurological Institute (MNI) 

coordinate system (Figure 1b), and the mean and median values of FA were measured 

in the ROI using the mask.  

 

Step 3: Measurement using manual delineation in the sagittal plane: In the manual 

segmentation approach, the FA image was first reconstructed in the sagittal plane, 

and the mid-sagittal slice of the brain was estimated using the method developed by 



12 
 

Freitas et al., 2011. Two slices each on either side of the mid-sagittal slice were 

segmented along with it to yield a volume of the corpus callosum consisting of five 

mid-sagittal slices (Figure 1c). The mean and the median of the FA values of the pixels 

in this ROI were estimated. 

 

Fractional anisotropy (FA) values measured using the strategies of manual segmentation in 

the sagittal plane, and atlas-based segmentation, were compared to determine which gave 

values in best agreement with those obtained manually from the axial plane (which, as the 

plane of data acquisition, was treated as ground truth for the purpose of these comparisons).    

 

For subsequent region-wise analysis, the corpus callosum was segmented into sub-regions in 

ImageJ, using the pre-defined fractions for the sagittal plane indicated in the Hofer and Frahm 

scheme (Hofer and Frahm, 2006) (Figure 1d).  It is noted that while the corpus callosum is a 

bundle of fibres connecting the left and right hemispheres of the brain (Figure 1a), analysis 

using segmentation performed in the sagittal plane parsed this bundle of fibres cross-

sectionally from anterior to posterior (Figure 1c), sampling its properties within a window of 

five sagittal slices. 

 

Manual segmentation was performed in ROIEditor (Region of Interest Editing Tools v. 1.8). 

Statistical tests, including linear regression and ANCOVA for the variation in FA, MD, RD, and 

AxD with age, were conducted using software package R using other relevant factors such as 

gender and disease group as covariates. For region-wise analysis, measurements from each 

sub-region were tested separately. Measured parameter values and codes written in R to 

carry out the analyses are available at http://wrap.warwick.ac.uk/138931 

http://wrap.warwick.ac.uk/138931
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3. Results and Discussion 

3.1 Effects of gender on age-related changes not found significant in the cohort studied 

To test for the effects of gender, multiple linear regression analyses of FA, MD, RD and AxD 

were carried out on cohort HCsub. Age, gender, and the effect of their interaction were 

considered as factors. All four parameters exhibited linear trends with age in the age range 

analysed, in agreement with previously reported observations in the literature (Lebel et al., 

2010; Ota et al., 2006). A consistent difference was observed between male and female 

patterns of changes with age, in regression plots of MD, RD and AxD, although this was not 

statistically significant. Such an offset was not observed for FA. The corresponding figures and 

regression equations are given in Figure S2 and Table S1 in Supplementary Materials. Since 

analysis of the HCsub cohort did not indicate that gender was a statistically significant factor 

for DTI parameters as a function of age, subsequent analyses were conducted on the larger 

cohort HC using methods appropriate for application to differently sized study groups. 

 

3.2 Comparison of corpus callosum segmentation methods 

The results from the comparison of strategies for segmentation of the corpus callosum are 

shown in Figure 2. The primary constraint of the atlas-based ROI approach is evident in Figure 

1b, where the mask of the corpus callosum is misaligned with the target structure evident in 

the image contrast. The mean and median of the FA in this ROI (Figure 2: Atlas ROI (mean) 

and Atlas ROI (median)) were estimated and compared with the manually-segmented axial 

data (ground truth) and manually-segmented regions in the reconstructed sagittal plane. 

Atlas-based measurements resulted in a significant reduction in the estimated mean and 

median FA, likely due to partial volume effects. Potential issues with accuracy in the ICBM-

DTI-81 atlas are addressed in a prior study (Rohlfing 2013).   



14 
 

 

Figure 2: Measured values of FA in 10 subjects, using different segmentation schemes. 

Median of pixel-wise FA from multiple circular ROIs placed in the axial corpus callosum (Figure 

1a) are considered ground truth. Corresponding box plots for each strategy show the 

distribution of offsets from ground truth for the 10 subjects. The experimental uncertainty in 

the data that can arise in subject comparisons from differences in scan sequence parameters 

(Zhu et al., 2009) has been avoided by only using images acquired using fully matched 

parameters; experimental uncertainty from other sources such as eddy current artefacts have 

been reduced by post-processing. In regions with high FA such as the corpus callosum, the 

reported experimental uncertainty in FA has been very small (Zhu et al., 2009).  
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By contrast, as shown in Figure 2, median values from the manually segmented ROI in the 

sagittal plane were closest to ground truth for the 10 sampled subjects.  The slight offset of 

the FA values obtained manually in the sagittal plane compared to those from the axial plane 

may have arisen from i) the constrained sampling in the axial plane (reinforcing the need for 

ROI delineation in the sagittal plane), and/or from ii) interpolation errors arising from the 

sagittal reconstruction process. However, the similarity of the values, and the consistency of 

their distribution, indicated that this slight offset in the measured FA value would not affect 

the cohort-level relationships observed in subsequent regression analysis, and manual 

segmentation in the sagittal plane was subsequently used to obtain MD, RD, and AxD for the 

full cohort study.   

 

3.3 Linear regression analysis of HC reveals age-related changes that vary between sub-

regions, with evidence that axon diameters are a factor 

Plots of linear regression analysis of FA, MD, RD and AxD on cohort HC, are shown in Figure 

3. For all four diffusion parameters, age was a significant factor contributing to the changes 

observed (p < 0.001). Similar analyses were performed to investigate whether patterns of 

change with age were different in the sub-regions of corpus callosum (Figure 3e-h). (See 

Supplementary Materials for the corresponding regression equations.)  Analysis of covariance 

(ANCOVA) revealed that the measured values of FA, MD, and RD differed significantly (p < 

0.001) between the sub-regions when controlling for age (Table 2). Tukey's tests were 

performed for pairwise comparisons between the sub-regions for significantly differing values 

of the measured parameters (Figures 3 i-l). Estimates of the effect size of region on the 

distribution of FA, MD, RD, and AxD are shown in Table 2. Partial omega-squared (ω2), being 

a bias-corrected effect size estimator, has been used to describe the effect sizes in this study.  
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Figure 3: Scatter plots of DTI parameters versus age with linear regression lines: (a) fractional 

anisotropy, (b) mean diffusivity, (c) radial diffusivity, and (d) axial diffusivity in the whole 

corpus callosum. Figures (e)-(h) are the same type of scatter plots but stratified by corpus 

callosum sub-region. The significance of age as a contributing factor to the observed trends, 

and the r-squared values, have been given in the Supplementary Tables S2 and S3. Figures (i)-

(l) show the results of Tukey’s multiple comparison tests between regions, with colours 

indicating corresponding significance levels. Values of MD, RD, and AxD are in 10-3 mm2/s.  
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When the effect or the sample size is small, ω2 may carry negative values resulting from the 

bias correction (Okada, 2016). 

 

A post-mortem study (Aboitiz et al., 1992) has shown that when parsing the corpus callosum 

cross-sectionally, the anterior region has the highest density of thin fibres. This starts 

decreasing towards the posterior regions and reaches a minimum before increasing again 

towards the posterior end. An opposite trend is observed for the density of fibres with a larger 

diameter. This density distribution of axonal diameter has been visualised in Figure 4a, in an 

ROI that provides a cross-sectional view of the corpus callosum. Another study (Barazany et 

al., 2009) has reported a positive correlation between RD and axon diameter in the corpus 

callosum of rat brain, potentially due to larger diameters leading to lower packing density and 

a subsequent increase in perpendicular diffusion. This relationship has been found to hold 

true in our study in the human corpus callosum as visualised in Figure 4b, even though we 

followed a different scheme of sub-division. The regional variations observed in DTI 

parameters in the cross-sectional corpus callosum ROI (Table 2) could likely be due to the 

varying density of axons with larger and smaller diameters that connect different regions of 

the two brain hemispheres (Figure 4a). An interesting finding here was that regional variations 

did not affect AxD values of the corpus callosum; this may be due to the relatively simpler and 

unidirectional nature of axons in the regions analysed. Our analysis suggests that variations 

in DTI properties between sub-regions in the corpus callosum are significant. Therefore, 

studies investigating the diffusion properties of corpus callosum in ageing or disease may be 

better served by analysing each sub-region separately. This has scope to reduce the variance 

observed in measured data, since our analysis indicates that at least 25% of variance can be 

explained by region-wise differences in the case of the parameters FA, MD, and RD (Table 2). 
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Table 2: Results of ANCOVA between regions 1 – 5 in HC, testing for the effects of regional 

differences after controlling for the effects of age.  

Parameter Cumulative p-value (ANCOVA) ω2 

FA < 0.001 0.295 

MD < 0.001 0.291 

RD < 0.001 0.330 

AxD 0.006 0.019 

 

 

Figure 4: (a) Density distribution of small and large diameter axons in the corpus callosum; 

picture adapted with permission (Aboitiz et al., 1992). (b) Distribution of FA and RD values in 

the corpus callosum sub-regions were observed to follow a similar trajectory. Although the 

sub-division scheme used in this study is different to that used in (a), it can be observed that 

the minimum and maximum density for smaller and larger diameter fibres occur in region B3 

(isthmus) which is approximately the same as region 4 in the Hofer scheme; where the 

minimum and maximum for FA and RD distributions have respectively been observed. 
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3.4 Comparison between MCI and healthy ageing: data indicating motor-related 

impairment in MCI reveal merits of corpus callosum analysis by sub-region 

The effects of MCI on the corpus callosum and its sub-regions were investigated using data 

from cohorts HC and MCI (Figure 5). Initial tests were carried out on the whole corpus 

callosum ROI using ANCOVA (Figure 5a); they revealed subtle but significant differences 

between HC and MCI groups in FA, RD, and AxD, after controlling for the effects of age 

(Supplementary Table S4). Opposing changes in the magnitudes of RD and AxD (decrease and 

increase respectively), for patients with MCI compared to HC, may have masked any changes 

in MD (Supplementary Material Figure S3).  

 

It is worth noting that the measured values for FA in MCI were higher than those for HC, and 

that the values for MD and RD were lower in MCI than for HC. This contradicts previous 

reports which showed trends of lower FA and higher diffusivities in degeneration (Amlien et 

al., 2013; Liu et al., 2013; Nowrangi et al., 2013; Wang et al., 2013), but seems to suggest a 

role for inflammation in MCI as indicated by increasing FA and decreasing diffusivities (Gupta 

et al., 2008; Nath et al., 2007; Renoux et al., 2006). This reportedly suggests either intracellular 

inflammation with inflow of extracellular water in the axons or decreased extracellular space 

due to cellular infiltration by inflammatory cells (Renoux et al., 2006). Neuroinflammation in 

MCI and Alzheimer's disease has not been extensively studied in this context. Advanced 

diffusion models of the brain such as those quantifying extracellular free-water volume are 

emerging markers being used to study neuro-inflammation (Pasternak et al., 2016, 2012), but 

are outside the scope of this study. 
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Figure 5: (a) Linear trends of FA, MD, RD and AxD, for HC and MCI groups, in the whole corpus 

callosum, with corresponding density plots (smoothed histograms) (b)  Density plots of FA, 

MD, RD and AxD visualised separately in the corpus callosum sub-regions. Values of ω2 and 

their p-values for differences in measurements between HC and MCI are shown on the plots 

where they were observed to be statistically significant. * denotes p < 0.05 and ** denotes p 

< 0.01. ω2 and their p-values for the remaining figures have been given in Supplementary 

Tables S4 and S5. Values of MD, RD, and AxD are in 10-3 mm2/s. 
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Investigation of region-specific measurements provided a better insight into differences 

between HC and MCI subjects (Figure 5b). Supplementary Table S5 summarises the results of 

analysis using ANCOVA, controlling for the effects of age. Values of MD, RD, and AxD differed 

significantly (p < 0.05) between HC and MCI in region 2, and that of AxD differed significantly 

(p < 0.05) in region 3. This indicates that degenerative changes observed in MCI are dominant 

in regions 2 and 3 of the corpus callosum; and that they may be more extensive in region 2 

than in region 3. It must be noted that although the effect sizes of MCI in regions 2 and 3 for 

the significantly different DTI parameters (Supplementary Table S5) were higher than in other 

regions, their values were still small. This might be accounted for by subtle differences 

between HC and MCI during the early stages of cognitive impairment.  

 

Physiological interpretations for RD have included demyelination, and that for AxD have 

included axonal degeneration (Song et al., 2002, 2003). They suggest that the corpus callosum 

integrity is likely to be diminished in MCI, potentially playing a role in progression to 

Alzheimer's disease. In a prior study with data from ADNI-2 participants, DTI properties in 

several white matter structures were compared for patients with MCI, Alzheimer’s disease 

patients, and healthy controls (Nir et al., 2013). They found widespread anisotropy and 

diffusivity alterations in elderly patients with Alzheimer’s disease. They also reported that 

diffusivity measures were more sensitive to microstructural alterations than FA and could 

detect subtle differences in patients with MCI compared to controls. This was supported by 

the results from the analysis of corpus callosum sub-regions in the present study that revealed 

alterations in MD, RD, and AxD between MCI and HC.  
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Region 2 of the corpus callosum projects to pre-motor and supplementary motor areas, and 

region 3 to primary motor areas of the brain (Hofer and Frahm, 2006). An effect of MCI, 

indicated by significantly different diffusivity measurements in regions 2 and 3 as reported in 

this study, may help explain motor impairments seen in MCI and pre-clinical Alzheimer’s 

disease (Buchman and Bennett, 2011; de Paula et al., 2016; Förstl and Kurz, 1999; Wirths and 

Bayer, 2008). Neurophysiological examination data, accompanying individual ADNI-3 

participant scans, was used to test this hypothesis. These data were collected as part of the 

screening process and provide preliminary information about a range of functional networks 

including motor, visual and auditory systems. They are summarised in Table 3 and show that 

a higher proportion of MCI subjects than HC were reported to show tremors, abnormal 

reflexes and impaired gait. It is interesting to note that this pattern was observed only in 

motor-related functions, and not in the results of visual or auditory examinations. This 

suggests that an impairment in motor skills is observed for MCI, supporting our results that 

indicate alterations in the corpus callosum regions projecting to motor areas of the brain. 

 

The results of our study agree with data from previous studies (Snir et al., 2019; de Laat et al., 

2011; Bhadelia et al., 2009) that show significant correlations between altered FA in the genu 

of the corpus callosum and abnormal gait function. It must be noted that our study found an 

increase in FA in these regions of interest whereas these studies report a decrease in FA. Due 

to the non-specific nature of DTI, it is difficult to establish the exact nature of pathological 

changes that may be occurring in the corpus callosum in MCI. A decrease in diffusivity values 

in regions 2 and 3 of the corpus callosum may indicate demyelination or axonal degeneration 

(Song et al., 2002, 2003), in the commissural tracts in the anterior parts of the corpus 
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callosum, resulting in diminished processing of information in the pre-motor, supplementary 

motor and primary motor areas of the brain. 

 

Table 3: Summary of neurophysiological examinations of ADNI subjects, showing the 

percentage of subjects with abnormal results. The data shows an increase in motor-related 

abnormalities in MCI, compared to other functions tested. 

Examination HC 

% affected 

MCI 

% affected 

Visual impairment 5.6 3.6 

Auditory impairment 6.5 7.1 

Presence of tremors 8.4 21.4 

Abnormal tendon reflexes 7.5 10.7 

Abnormal plantar reflexes 0.9 3.6 

Abnormal gait 8.4 21.4 

 

4. Conclusions 

Analysis of FA, MD, RD and AxD revealed that the properties of the corpus callosum are better 

characterised when segmented as five sub-regions, as opposed to as a single structure. Using 

this approach revealed changes in corpus callosum regions 2 and 3 of MCI subjects compared 

to HC, changes which were undetectable using the single ROI approach. The significance of 

the MCI-associated change is that regions 2 and 3 project to pre-motor, supplementary motor 

and motor areas of the brain. The DTI alterations in these regions were supported with 

evidence from ADNI-documented neurophysiological exams of these subjects, confirming 

that patients with MCI were more likely than HC to experience motor-related deficits, 
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compared to other impairments.  A limitation to the interpretation of the neuroscience 

findings, enabled by the method adopted for this study, is the lack of detailed information 

about motor functions in the ADNI neurophysiological exams conducted as part of screening. 

The ADNI evaluations only indicate the presence or absence of abnormalities. Availability of 

detailed test results in the future may help estimate the correlation between DTI parameters, 

tremors, reflexes and gait, providing insight into the extent of the role of corpus callosum in 

motor impairment as observed in MCI and potentially, pre-clinical Alzheimer’s disease.  

 

In summary, we anticipate that the method demonstrated in this study will advance the 

detection in a clinical setting of alterations to the structure of the corpus callosum, and 

corresponding impacts on brain function, using this comparatively simple method to obtain 

the ROIs and supporting statistical analysis. 
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Supplementary Material 
 

 

Figure S1: Results of a longitudinal analysis of DTI images of age-matched 14 HC and 14 MCI 

subjects between 65 and 75 years old from ADNI-2, acquired with the same set of scan 

parameters. The plots show the trajectories of average FA, MD, RD, and AxD values for each 

cohort over a time period of 1 year. ‘b’ denotes baseline, ‘3’, ‘6’, and ‘12’ denote a 3-month, 

6-month, and 12-month follow-up after the baseline visit. Although the longitudinal analysis 

gives a valuable insight into differences between HC and MCI cohorts, this is limited to a 1-

year time span. Moreover, the results indicate a pattern of change with respect to the 

baseline, and not with the participant age itself. 
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Figure S2: Multiple regression plots of (a) fractional anisotropy (FA), (b) mean diffusivity (MD), 

(c) radial diffusivity (RD), and (d) axial diffusivity (AxD) in the corpus callosum of subjects from 

cohort HCsub. The contribution of each factor, i.e., age, gender and their interaction, to the 

observed linear relationship is tested using the null hypothesis about its correlation with the 

DTI parameters; an output p-value is obtained based on testing the null hypothesis that the 

factor has no effect. The factor is considered significant if ‘p’ is less than 0.05. p(age:gender) 

denotes the p-value for the effect of interaction of age and gender on the DTI parameters. 
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Figure S3: Plots showing the relationships between MD, RD and AxD of HC and MCI subjects. 

Equations using diffusion tensor eigen values, RD = (λ2 + λ3)/2, AxD = λ1 and MD = (λ1 + λ2 + 

λ3)/3, imply a linear relationship between MD and RD + AxD. These equations are used to 

generate plots that show a decrease in RD and an increase in AxD in MCI individuals compared 

to HC, for a given value of MD. The plot on the right suggests that these opposing patterns 

(represented by RD + AxD) bring the MD values of HC and MCI subjects closer to each other, 

resulting in a non-significant difference. 
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Table S1: Linear regression equations modelling ageing in the corpus callosum of subjects in 

HCsub, stratified by gender. 

DTI parameter Males Females 

Fractional anisotropy 0.75 – 0.0012 * age 0.77 – 0.0015 * age 

Mean diffusivity 0.54 + 0.0045 * age 0.59 + 0.0036 * age 

Radial diffusivity 0.22 + 0.0035 * age 0.23 + 0.0032 * age 

Axial diffusivity 1.3 + 0.006 * age 1.34 + 0.005 * age 

 

 

Table S2: Linear regression equations modelling ageing in the whole corpus callosum ROI of 

subjects in cohort HC. 

DTI parameter Equation r2 p-value  

Fractional anisotropy 0.79 – 0.0018 * age 0.11  < 0.001 

Mean diffusivity 0.53 + 0.0045 * age 0.34 < 0.001 

Radial diffusivity 0.18 + 0.004 * age 0.23 < 0.001 

Axial diffusivity 1.31 + 0.0057 * age 0.3 < 0.001 
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Table S3: Linear regression equations modelling ageing in the corpus callosum sub-regions of 

subjects in cohort HC. 

DTI parameter Region 1 r2 p-value  

FA 0.9 – 0.0026* age 0.12  < 0.001 

MD 0.44 + 0.0052 * age 0.29 < 0.001 

RD 0.01 + 0.0054 * age 0.23 0.84 

AxD 1.29 + 0.0055 * age 0.19 < 0.001 

DTI parameter Region 2 r2 p-value  

FA 0.78 – 0.0017 * age 0.028  < 0.001 

MD 0.39 + 0.0065 * age 0.27 < 0.001 

RD 0.07 + 0.0056 * age 0.16 0.42 

AxD 1.08 + 0.0079 * age 0.17 < 0.001 

DTI parameter Region 3 r2 p-value  

FA 0.78 – 0.0015 * age 0.012  < 0.001 

MD 0.54 + 0.0044 * age 0.102 < 0.001 

RD 0.22 + 0.0034 * age 0.04 < 0.05 

AxD 1.19 + 0.0067 * age 0.07 < 0.001 

DTI parameter Region 4 r2 p-value  

FA 0.84 – 0.003 * age 0.04  < 0.001 

MD 0.49 + 0.0062 * age 0.15 < 0.001 

RD 0.1 + 0.0065 * age 0.1 0.5 

AxD 1.27 + 0.0064 * age 0.07 < 0.001 

DTI parameter Region 5 r2 p-value  

FA 0.86 – 0.0015 * age 0.05  < 0.001 

MD 0.56 + 0.003 * age 0.19 < 0.001 

RD 0.15 + 0.0027 * age 0.115 < 0.01 

AxD 1.47 + 0.0027 * age 0.04 < 0.001 
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Table S4: Linear regression equations modelling ageing in the whole corpus callosum ROI of 

subjects in cohort MCI (corresponding equations for cohort HC given in Table S2). Here r2 

denotes the proportion of variance in the DTI parameters explained by age through linear 

regression modelling (data includes subjects from both HC and MCI cohorts). ω2 denotes the 

effect size of disease (MCI) in the DTI parameter, with a significance level denoted by the 

corresponding p-value. 

 

Parameter MCI equation r2 ω2 p-value  

FA 0.77 – 0.001 * age 0.02 0.13  < 0.001 

MD 0.67 + 0.0025 * age 0.13 -0.006 0.68 

RD 0.26 + 0.0022 * age 0.08 0.05 < 0.01 

AxD 1.57 + 0.0024 * age 0.06 0.042 < 0.01 
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Table S5: Linear regression equations modelling ageing in the whole corpus callosum ROI of 

subjects in cohort MCI. r2 denotes the proportion of variance in the DTI parameter explained 

by age through linear regression modelling. ω2 denotes the effect size of disease (MCI) in the 

DTI parameter, with a significance level denoted by the corresponding p-value. 

Parameter Region 1 MCI equation r2 ω2 p-value  

FA 0.82 – 0.0013 * age 0.035 -0.007  0.89 

MD 0.62 + 0.003 * age 0.12 0.004 0.21 

RD 0.21 + 0.002 * age 0.11 -0.001 0.35 

AxD 1.55 + 0.002 * age 0.002 0.003 0.24 

Parameter Region 2 MCI equation r2 ω2 p-value  

FA 0.817 – 0.002 * age 0.04 -0.006 0.7 

MD 0.55 + 0.005 * age 0.076 0.063 < 0.005 

RD 0.109 + 0.005 * age 0.082 0.024 < 0.05 

AxD 1.52 + 0.003 * age 0 0.062 < 0.005 

Parameter Region 3 MCI equation r2 ω2 p-value  

FA 0.8 – 0.0015 * age 0 -0.004 0.47 

MD 0.77 + 0.002 * age 0 0.012 0.11 

RD 0.33 + 0.002 * age 0 -0.006 0.65 

AxD 1.78 - 0.0001 * age 0 0.025 < 0.05 

Parameter Region 4 MCI equation r2 ω2 p-value  

FA 0.75 – 0.0015 * age 0 0.008 0.15 

MD 0.78 + 0.002 * age 0 -0.007 0.92 

RD 0.39 + 0.002 * age 0 -0.004 0.51 

AxD 1.68 + 0.0014 * age 0 0.008 0.15 

Parameter Region 5 MCI equation r2 ω2 p-value  

FA 0.78 – 0.0004 * age 0 -0.007 0.86 

MD 0.72 + 0.001 * age 0.007 0.001 0.29 

RD 0.31 + 0.0008 * age 0 0.006 0.18 

AxD 1.56 + 0.0017 * age 0 -0.005 0.6 

 

 


