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SUMMARY

This thesis describes a new approach to steady-state forecasting 

models based on Bayesian principles and Information Theory. Shannon's 

entropy function and Jaynes' principle of maximum entropy are the essen

tial results borrowed from Information Theory and are extensively used 

in the model formulation. The Bayesian Entropy Forecasting (BEF) models 

obtained in this way extend beyond the constraints of normality and 

linearity required in all existing forecasting methods. In this sense, 

it reduces in the normal case to the well known Harrison and Stevens 

steady-state model. Examples of such models are presented, including 

the Poisson-gamma process, the Binomial-Beta process and the Truncated 

Normal process. For all of these, numerical applications using real 

and simulated data are shown, including further analyses of epidemic 

data of Cliff et al, (1975).
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CHAPTER 1 : INTRODUCTION

1.1) Scope of the Thesis:

The past eight years have witnessed an unprecedented growth in the 

field of forecasting. The first major advance, of course, was Box and 

Jenkins' very clear formulation of forecasting models in 1970. However, 

their solution of the least square prediction problem was still shackled 

to the fundamental ideas of Wiener and Kolmogorov. Undoubtedly this was 

one of the most important contributions to the subject.

At almost the same time, Harrison and Stevens developed an important 

approach to forecasting using important results of Kalman and Bucy, already 

extensively used in Control Theory problems, together with Bayesian 

statistical theory. This approach gave rise to the so called "Bayesian 

Forecasting Methods" which offered something quite different from the 

Wiener and Kolmogorov theory. It is well known that the three basic assump

tions on which all the previous forecasting methods are based are:

- stationarity of the underlying process,

- mean square prediction error as a forecasting criterion,

- predictor as a linear function of past observations.

These were partially overcome by the advent of the Bayesian approach. For 

instance, the stationarity of the underlying process is not required and 

also, by its distributional predictive nature a criterion of optimality 

other than the mean square error is possible.

Despite the above improvements and its simple, elegant formulation, the 

Bayesian approach as it stands still has its limitations. For instance, the 

models are still linear, where the observation noise and parameter disturbance
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are additively related to the observation and system equations respectively, 

and (from the linear least square property of the Kalman filter) it is 

efficient only for the Normal process.

These two restrictions consitute the prime motivation for this disserta

tion. Our principal aim in this thesis is to develop an extension of 

Harrison and Stevens' approach in which the constraints of linearity and 

normality are not required. With this extension we are not merely satisfy

ing the four essential basic foundations of the Bayesian Approach, namely:

(i) Parametric formulation.

(ii) Probabilistic information on the parameters at any given time,

(iii) Sequential model definition.

(iv) Uncertainty as to the underlying model, 

but furthermore, we include the following two properties:

(v) Non-linear general formulation.

(vi) Unrestricted to any sort of distribution.

However, the original target of an unconditional formulation 

applicable to any kind of model has not been entirely reached. In this 

thesis we discuss only steady state models: a particular but important 

subclass of all models. On the other hand, we feel that this work has 

gone an appreciable way towards the original goal and further extensions, 

which might include a broader class of models such as the linear growth, 

seems quite feasible following the same argument.

The extension was made possible by the use of Shannon's entropy,
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a crucially important measure of uncertainty and Jaynes' principle of 

maximum entropy. By the incorporation of Shannon's entropy into a Bayesian 

framework, the steady state linear normal model can be redefined in terms 

of the entropy function and, using the fact that entropy is an unrestricted 

measure of uncertainty, the extension follows naturally.

1.2) Organization of the Thesis

The thesis could be classified into three main parts. Part I (Chapter 2 

and 3) is devoted to the definition and characterizations of the entropy 

function, as well as its main properties. In chapter 3 we show the mathematical 

formulation of Jaynes' principle of maximum entropy to assign the least 

prejudiced probability distribution for a random variable and some of its 

most important properties.

In Part II (Chapter 4; the theoretical Bayesian Entropy Forecasting 

(BEF) model for a steady state system is defined and described, starting 

from the steady state linear normal model. It also includes a brief survey 

of time series modelling and a summary of some of the most important forecast

ing methods.

Part III (Chapters 5 to 8) deals with some applications of the model 

to different processes such as:

- Poisson-Gamma single state process (Chapter 5).

- Poisson-Gamma multistate process (Chapter 6).

- Binomial-Beta single state process (Chapter 7).

- Truncated normal process (Chapter 8).
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For each of these we show the relevant numerical results concerning their 

application to simulated and real data. Of particular interest is the 

analysis of the measles epidemic data in chapters 5,6 and 7.

Finally, the thesis is complemented by 7 appendices (A to G) 

containing mainly tables and figures related to the numerical results of 

the applications in Part III.

1.3) Thesis Terminology and Notations.

Throughout the thesis we use several notations, some of them standard 

and some others newly defined for the particular topic under consideration. 

However, in order to avoid confusion we try to clarify any unfamiliar nota

tion on its first appearance and thereafter where necessary. On the other 

hand, we make use of some standard abbreviations such as: r.v. (random 

variable), pdf (probability density function), IR (real numbers), R+

(positive real numbers), Z (integers).

All the probability distributions that we shall use in the thesis are 

defined in terms of density functions over Euclidean spaces with respect to 

Lebesgue measures, lie adopt either "p" or "f" as a generic symbol for 

a probability density function. Also, we use the conventional distinction 

between a random variable and its realisation as a value, i.e. capital letters 

X,Y, etc. representing random variables and lower case letters x,y etc. 

representing their realised values.

To conclude, the term "parameter" is extensively used in the thesis 

to mean the random variable representing the "level" of the steady state 

process. The Greek letter 0, sometimes suffixed 6t> is the generic
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symbol we use to represent for the level to avoid misunderstanding with parameter* 

of a probability distribution, which are usually represented by the conven

tional Greek letters a, 6, y , p, a etc. lie reserve the term Yt for 

the random variable representing the process observation in the model

formulation.
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CHAPTER 2: ENTROPY FUNCTION

2.1) Historical Remarks

The word cntAopy has had a long and controversial evolution in 

science. In the original greek its literal meaning is VianA (omnallon 

and it was with this literal sense that in 1850 Clausius [ see Tribus 

1961a and 1969 ] introduced the word cntnopy in his work as a quantity 

associated with transformations from work effects to heat effects in 

thermodynamics. It was only at the beginning of this century that it 

was used again, this time in a completely different subject, in the 

works of S. Boltzmann and M. Planck in Statistical Mechanics. They 

proposed a general procedure for determining the distribution of the 

total energy of a system among its elemental single components, when the 

assumption is made that all such elemental single components are in

dependent and identically distributed. The Boltzmann H-fiunctloni 

which originated from their work, is used a great deal in statis

tical mechanics [ Planck. 1950; Mackey 1957 ].

It was, however, only in 1948 that it became universally known due 

to the work of C.E. Shannon in the context of communication theory 

[Shannon & Weaver, 1949 ]. In his work Shannon developed thoroughly 

a new and useful axiomatic quantitative study of the acquisition, 

production and transmission of information, named afterwards Shannon’ A 

Tn(omatlon Thcoay . This work produced again another definition of an 

cntAopy (¡unction', in this case, a quantitative measure of the missing 

information in a message or in a probability distribution. As remarked 

by Shannon, Information Theory is very broadly based, in the sense that
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it applies to all kind of systems for which the given information is in

complete, that is, for those systems where uncertainty is involved.

More generally, information theoretic concepts are relevant to any 

field in which inductive probabilities are useful, for inductive proba

bilities arise whenever the given information is not sufficient to 

permit deductive inferences. Although ever since Shannon, information 

theory had grown into a broad, highly developed body of knowledge, only 

in 1957 did E.T.Jaynes show that Shannon's entropy function had a deeper 

meaning and in fact, as a disciple of statistical mechanics, he demons

trated that both zntA-oplU were in fact the same thing and therefore 

not mere analogies. [Jaynes, 1957 & 1958; Tribus, 1961a ]

2.2) The notion of Entropy

Let 5= ( ç., Çg....  tn) be the set of possible outcomesc's in some

physical experiment. Suppose also that at first we do not know anything 

more about the experiment and the occurrence of any of the possible out

comes. Then, suppose we are told that the outcome is more likely

to occur. Provided the given information is reliable, our previous state 

of knowledge must change and it would be useful to have a quantitative 

measure for the information newly acquired. Putting the problem in a 

quantitative form, suppose that our original state of knowledge and our 

state of knowledge after receiving the information are represented by 

probability assignments P̂* and P respectively; in other words, we 

have two probability schemes:

(S,F,P°) and (S,F,P)



16

where: S is the sample space (assumed finite)

F is the field of events

P° = (p°> P2.... P°) i P°= Probi?^

P =(p1. P2.... Pn) ; P ^  Prob( c . | Inform.)

The above set up for the problem allows us to introduce the concepts 

of information and entropy. Firstly if we are interested in a quanti

tative measure for the information provided by the new data relative to 

our prior knowledge, we have to take into account the two probability 

distributions P° and P, representing respectively our state of un

certainty before and after gaining the information. We finish up with 

a quantity I(P,P°) known as Incarnation -in P aeJLatioe. to P° or 

simply InCarnation . Secondly, the problem could be formulated in a 

slightly different way, where we could only be interested in an absolute 

quantitative measure of the information. The quantity proposed by 

Shannon, known as Shannon'i EnViopy, is a measure of the missing 

information or the amount of uncertainty in a single probability 

assignment. Put in this way, we can clearly see the basic conceptual 

difference between Information and Entropy. In the first we measure quanti

tatively information in a probability assignment relative to a prior 

assignment, while in the second we have the same sort of measure in an 

absolute way. We shall point out later that Shannon's entropy, although 

simpler and easier to work with, suffers from the defect that it can not 

be consistently generalised from discrete to continuous probability 

spaces. On the other hand I(P,P°), being a relative measure of in

formation does not suffer from this defect. Attempts have been made to
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formulate a clear, simple and consistent measure of information or 

even to develop a general theory in terms of information rather than 

entropy. Among the various works in this particular area we cite:

Vincze, (1972); Hobson,(1971); Kolmogorov,(1956); Kul 1 back,(1959) ¡Jaynes,

(1968), Vincze,(1959 & 1965) and Perez,(1957).

2.3 Definition of Entropy-Discrete Case

Let Sn denote the set of all finite discrete probability dis

tributions (P=(p1,p2.... pn); p.j> 0; i = l,2.... n; Ep^l } .

In other words, P may be regarded as an experiment having n possible

outcomes x^ ,x2.... xn with probabilities p(x^)= Pj , p(x2)=

= p2,... ,p(xn)= pn . Then, the entropy o(> the. cUitAtbutlon P , or 

a measure of how uncertain we are about the outcome of the experiment 

is given by:

H(P)= Hipj.pg....pn)= ifnpi> = - I p. £npi ------ ------- (2.1)

for PeSn and all n=l,2,... and also, with the usual convention that 

whenever p^O we set pi fnp^O .

Theorem: (Fundamental Theorem of Information Theory ).

Up to a constant of proportional ity, the function H(P) given 

in equation (2.1) is the only function satisfying the three require

ments for being a measure of uncertainty of an assignment of probability 

P :

i) Continuity on p.

ii) Monotonic increasing function of "n" if all the pi are



equal (p.=l/n). That is, with equally likely events, 

there is more choice, or uncertainty when there are more 

possible events.

i i i ) Consistency:

H(p1,p2,...,pn)=H(p1+p2,p3,. ,Pn)+(Pi+P2)-H( ^
P2

V p2

or, if a choice is broken down into two successive choices, 

the original H should be the weighted sum of the individual 

values of H.

Proof: The original proof of the theorem is found in Shannon and 

Weaver, (1949-Appendix 2), and some elaborated proofs can be found 

in Mathai & Rathie, (1975); Feinstein, (1958) and Akaike, (1971).

2.4 Basic Properties of Discrete Entropy

Apart from the properties (i) to (iii) above, Shannon's entropy 

has many other properties and characterisations, some of which we show 

below. For a thorough treatment of these properties, see for instance: 

Shannon & Weaver, (1949); Mathai & Rathie, (1975) and Kul 1 back, (1959) .

Using the index n in H(P) to denote the entropy of

P=(p1,p2,...,pn) i.e., Hn(P)=H(p1,p2.... pn) ; we enumerate the

following further properties of Hn(p):

1) Non-Negativity:

Hn(P)>0 (Hn(P)=0 if and only if p̂  = l for some i = 1,2.... n



2) Expansibi1ity:

Hn+i(p,°) = Hn(P)

i.e., the entropy remains the same if we add possibilities 

with zero probability.

3) Inequality and Maximum Value:

Hn(P1,p2 ,...,pn)< Hn(l/n,l/n.... 1/n) with equality if and

only if p^l/n for all 1 = 1,2....n .

Also, by substitution in (2.1), the maximum Hn exists and 

is equal to in n , when all the p̂  are equal to 1/n.

For instance, when n=2 let: Pj=p and p2=l-p 

Thus H2(p1,p2)=-p £np-( 1-p) in (1-p) and max H2(p^,p2) = 

in 2= H2(1/2;1/2) as shown below in the graph of H2(Pj,p2) 

against p: 4 *

Figure 2.1 : H2(p,1-p) xp

4) Symmetry:

Hn̂  pl’p2... Pn)=Hn(Pa1*po2- ” *Part)
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where (a , ocg,..., an) is any arbitrary permutation of the

indices (1,2.... n). From the above, we can state that the

entropy is the same whatever the order in which the possible 

outcomes are labelled.

5) Joint Events: 

Let:

pl=(PÎ»P2....Pj) eSn

P2=(P?-P2....p£) ^

where Sn and Sm are classes of all finite discrete probability 
1 pdistributions P1 and PL respectively.

.PiP=(P1,P2) = (pn ,. lm* ' ' " P n l.... ,pnm^ e^nm p .. is 
FiJ

the probability of joint occurrence of i with probability
1 2 p. and j with probability p̂  .

S as above, nm

Then:

Hnm<p) iHn(pl)+ Hm(F>2)

Alternatively, the entropy or uncertainty of a joint experiment 

is less than or equal to the sum of the entropies of the in

dividual experiments. It is equal if and only if the indivi

dual experiments are independent. 6

6) Coherence:

This property is in fact a direct consequence of property 3),
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but it is worth mentioning in its own right. As a measure 

of uncertainty in a probability assignment, for any change 

toward equalisation of the p^(loss of information or increase 

of the uncertainty), the entropy increases.

Formally, if we have:

P=(Pr P2.... Pn) and P*=(P|,P^,...,P* )

and 2 |p.-l/n|i 2 |p*-l/n |, then: 
i 1 1 1

Hn(P) <Hn(P*)

7) Conditional Entropy 

Let:

P ,P ,P, P^jbeas defined in property (5).

(xj.Xg,...,x^) and (x^.Xg.... x£) the possible outcomes

1 2of experiments P and P respectively. 2
2

p(j|i) the conditional probability of the outcome Xj 

given that the outcome of experiment with distribution P^ is

xj; i=1,2.... ri and j=l,2,..., m.
1 2 1 Then, the conditional entropy of P" given P is:

In p (j | i)} 2 p. . in p(j|i)
i ,J J

From the above and the results of property (5), we obtain:

Hnm(P )=Hn(pl)+Hm(p2 l p l )  and H,n(p2)2 HJ p2|p l)



Verbally, the sum of the amount of uncertainty in the probability 

assignment P* for the first experiment and the amount of un

certainty for the conditional experiment is the entropy of the 

joint experiment. Also, the above inequality states that if there 

is any dependence between two experiments, there is always a gain 

of information (or a decrease of the degree of uncertainty) of one 

of the experiments, given the knowledge about the outcome of the 

other.

8) Invariability:

Let:

X be a discrete random variable which can assume values 

Xj,x2,...,xn with probabilities Pj=P(x=x.), i=l,2,...,n

H represents the entropy of the experiment under consideration

(instead of using the H(P) notation of (2.1)).

Y= t(x) a one-to-one transformation of the random variable X 

and Hy its associated entropy.

Then, this property states that:

Hy = Hx = H(P)

That is, the formula (2.1) for the entropy of an experiment is 

invariant with respect to any bijective transformation of the 

variable; it is not dependent on the domain of the variable, but 

depends only on the probability distribution.

The properties just presented in no sense exhaust the properties
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- and characterisations of Shannon's entropy function. The prime 

objective of describing these few properties was to clarify the 

ideas behind the entropy function as an absolute measure of the 

amount of uncertainty in a single assignment of a probability 

distribution for an experiment. For a detailed mathematical and 

probabilistic study of all the properties and characterisation 

theorems of Shannon entropy, we refer mainly to Mathai & Rathie, 

(1975 ) .

2.5 The Extension to the Continuous Case:

If in the definition of section 2.3 we let the number of possible 

outcomes n for a given experiment increase indefinitely so that P 

tends to a continuous probability density function p(x) of a continuous 

random variable XeX, it would be natural to try to define the entropy 

as a limiting case of the entropy for discrete distributions (2.1). 

However, if we do so, we obtain:

H [p(x) ]=- p(x)
X

In p(x). dx - lim EAx..p(x.). In Ax.
Axi“K) i 1 1 1

Accordingly, the expression for H [p(x)] diverges as Ax̂ -*- 0 

whatever the value of the first term. Instead of defining H[p(x)] 

as a limiting case, Shannon suggests that we should simply define the 

entropy for a continuous random variable xeX with probability density 

function p(x) purely by analogy as follows:
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H [p(x) ]=- E {£np(x) }=-
P(x) /

p(x ). £np(x).dx------ (2.2)

and for a random vector x =(xj,x2,...,xn)T e/1 and associated p(x):

H fp(x) ]=- E Unp(x)} =- 
‘ ' P(x)

» • • • > p(x).£np(x).dx1.... dxn— (2.3)

The entropy as defined in (2.2) or (2.3) has nearly all the important 

properties described in the last section and as such, is a measure of the 

amount of uncertainty in the probability assignment p(x) for a continuous 

random variable X. However, as remarked by Shannon, the continuous entropy 

function (2.2) or (2.3), is not general in the sense that for some particular 

cases, properties (1) and (8) are not attained. Let us first consider 

the lack of invariance under a monotonic change of variable.

Let:

X be a continuous random variable, XeX, with pdf px(X) .

Y=g(x) be a monotonic transformation of X.

Thus, Y is also a continuous random variable, Y eY, with pdf

is the jacobian of the transformation, substitution in the above equa

tions gives:

Py(Y).

Then, by (2.2):

H(X)=- px(x).£npx(x). dx and Hy

X

Py (Y).£npy(Y).dy
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or, after expanding the logarithm:

HY Px(x)-[ Px(x)+£n|J|]. dx

and finally:

Hy = Hy - E { £n|J|}
Px(x)

(2.4)

Equation (2.4) clearly shows the dependence of the entropy of Y on the 

Jacobian on the transformation, confirming the lack of invariance under 

the change of variable X v g(x). This restriction led Shannon to give 

an extra interpretation to entropy. For both, the discrete and the 

continuous case (2.1) and (2.2) measure the randomness or the amount 

of uncertainty involved in the assignment P or p(x) to a discrete or 

a continuous random variable X respectively. However, the measurement in 

(2.1) is completely absolute in the sense that no matter what random 

variable is describing the experiment, the entropy is always the same.

On the other hand, the entropy in (2.2) or (2.3), measures the uncer

tainly relative to the coordinate system (sample space) adopted, i.e., 

relative to the random variable used. It is however important to remark 

that, in most of the applications, we in fact are interested in the increase 

or decrease of the amount of uncertainty of systems whose randomness is 

changing continuously in time. In this case the Jacobian term of (2.4) 

would appear in both entropies, cancelling out eventually. This means
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that the lack of invariance of the measure (2.2) is not a restriction 

to its use.

With respect to the possible situations in which the entropy 

is negative, the problem can be easily circumvented by adopting a scale of 

measurement for the entropy for each kind of distribution under considera

tion.

Let us consider, for example, the normal distribution:

If X=N( p, a2), then: H = ¿n / 2nea^A
It is quite clear from the above that H can assume any value

A

in R and also that zero entropy does not mean perfect information or 

a degenerate distribution. In fact, Hx =0 for o2= Og = (2ire)~̂  

means that there is still some uncertainty (though small), about the 

outcome of the experiment. We could for instance, adopt this state of 

uncertainty as the standard one and then compare subsequent values of 

Hx with this standard. Any positive Hx would indicate that we 

have a broader distribution than Og and a negative Hx would 

indicate a still narrower distribution than ag , that eventually

tends to -°° as a2 approaches zero.

2.6) Other Approaches to the Continuous Extension

Although we shall use the simplified Shannon's entropy (2.2) 

or (2.3) in our model formulation later on, it is worth mentioning 

some other attempts towards a general definition of entropy. A lot 

of different approaches to the problem have been put forward after 

Shannon and in all of them, a slightly different interpretation of



■

27

a meaiuAe unc.eAtcu.nty is made in order that a unique function 

is obtained for both the discrete and continuous cases. We briefly 

describe a few of these approaches and point out their similarities.

We start with the work by Hobson Q Hobson, 1971; Reza, 1961 and 

Pinsker, 1964 ]. He sets up the problem by first defining a relative 

measure of information for discrete distribution and then, extending it 

to the continuous case.

Let:

S = { cn > be a finite sample space.

P^,P be a pair of probability distribution assignments in S before 

and after gaining some evidence about the outcome of the ex

periment respectively, where:

P°= (pj.p^.... P° > ; p!j = Prob (c ; i=l,2,...,n

P = (pj.pg.... pn } ; p^= Prob {ç . | Inform.}; i = l,2,. ,n

Then, instead of defining a measure of the information missing in a 

single probability assignment as Shannon did, Hobson defines a quanti

tative measure for the information provided by the new data which he 

called Iniom atton In P nelattoe to P° or simply Iniomatton as:

I(P,P°)= E Un(p./p?)} = Z Pi..En(p,/p°)---- (2.5)
P 1 1  i=l 1 1 1

Hobson shows that the above quantity, while measuring the gain of 

information instead of the missing information, satisfies all the
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main properties of Shannon's entropy and that it is easily extended 

to the continuous case, preserving the properties.

The extension from discrete to continuous variables is first 

made by extending the measure in (2.5) from a finite discrete to an 

infinite discrete sample space. For this case I(P,P°) becomes:

oo
I(P,P°) = 2 Pi £n(p./p<? ) ...... ..............(2.6)

i=l 1 1 1

Assuming S to be a segment of the real line (a< x< b) and 

P°&P a pair of continuous probability assignments with densities 

f°(x) and f(x); the information in P relative to P° , or the 

information in f(x) relative to f°(x) is easily obtained using

(2.6) and, taking limits of discrete partitions in [a,b] , we 

obtain:

I(P,P°)= I[ f(x), f°(x)] = E (£n [f(x)/f°(x)J } =
b

= | f(x). £ n ^  . d x ---- (2.7)

3 f°(x)

The relative measure of information for a continuous distribution in

(2.7) , as opposed to the absolute measure of missing information in 

(2.2), is non negative and invariant under a one-to-one transforma

tion X-*-Y = g(x).

Hobson then proceeds by introducing a concept similar to 

Shannon's entropy, defining a measure of missing information or un

certainty in the probability assignment P, by considering the prior
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assignment P° and the assignment Pm , corresponding to the maximum 

knowledge about the outcomes c's.

Since I(Pm ,P°) is the maximum information possible relative 

to P° and I(P,P°) is the actual information relative to P°, the 

missing information necessary to attain the maximum knowledge state 

Pm (missing information or unc.eAtcu.nty in  P ), is:

U(P;Pm ,P°)= I(Pm ,P°)- I(P,P°) ----  (2.8)

Again, the above quantity has all the properties required for 

a measure of uncertainty in P; it is applicable to either the discrete 

or the continuous case but has the disadvantage of requiring the know

ledge of two extra probability assignments namely the prior P° and 

the maximum state of knowledge Pm .

Another interesting approach towards a general definition of 

entropy is that of Vincze (1959), (1965) and (1972). He starts by 

giving a rather different interpretation to Shannon's entropy in 

discrete finite space. Vincze interprets entropy as a measure related 

ndtto the probability distribution, but to a decomposition of the 

space of the elementary events.

if Dn =(A1,A2>...,An) is a decomposition of S={ ?2....

and PM = Ip-=P(A.); i= 1,2.... N ; Z p. = l }, then the entropy
n i i i=1 i

associated with the particular descomposition is given by:

N
Hn = -E Unp.}= - Z p..£np.

PN i = l
(2.9)
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where e [0,£n N ] The above measure of uncertainty is in fact 

Shannon's entropy (2.1) . However, instead of considering for

measuring the uncertainty associated with the decomposition ,

Vincze suggests an equivalent measure called information denoted by 

1̂  that has the property of measuring uncertainty by means of informa

tion, defined by:

IN= E i£n N .pi}= £nN-HN - (2.10)

PN

where I^e [0,£n N ] .

As remarked by Vincze, one of the main advantages of using (2.10) 

instead of (2.9) is that under mild conditions concerning the continuous 

distribution, although tends to infinity, the remaining information 

1̂1 will have a finite limit. In fact, when we pass from the discrete 

to the continuous case, the above information . (also known as compleM -

mentary entropy), tends to a limit called I-divergence in the literature 

but interpreted in this context as the information of a continuous random 

variable XcX and given by:

I(X )= E Un ^  } = { f(x). In ^  . dx - - - - (2.11)
f(x) <J>(x) X <t>(x)

where f(x) is the probability density function of X and <|>(x) is 

the cUMAibutcon 0 & oua intzAUt, defined by a reasonable partition

of X.
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Some interesting applications of the use of the I-divergence 

in finding confidence intervals for unknown parameters of various 

density functions, by a suitable choice of the distribution of interest 

are shown in Vincze,(1965).

Finally, we briefly mention Jaynes' set up for the same problem 

[ Jaynes, 1958 *, 1968 ] .

In his work, Jaynes is only interested in finding an absolute 

measure of uncertainty for a continuous distribution. In fact, he 

departs from (2.1) for the entropy of a discrete distribution. He 

then points out the restrictions of (2.2) for measuring the same 

thing for the continuous case by emphasizing once more that (2.2) is 

not a result of any derivation. He proceeds with his argument by 

taking the entropy of a discrete distribution to the limit obtaining:

H[p(x)]=- E {In
p(x) m(x)

p(x).£n
m(x)

. dx - ( 2 . 12)

where m(x) is an invariant measure, proportional to the limiting 

density of discrete points. In this case, both p(x) and m(x) 

transform in the same way under a change of variable and so, h [p(x )] 

of (2.12) is an invariant measure. In fact, an extra interpretation 

given to m(x) by Jaynes is that: apaAt ¿Aom a nosumLiitng constant, 

m(x) a pAtoA duAtAibu-tion deAcAtblng compieXe. ignorance about X.

We conclude this section by remarking that whether we use 

Hobson's information (2.7), Vincze's I-divergence (2.11) or Jaynes'



H [p(x)] (2.12) 

density function 

prior assignment 

three approaches 

are preserved.

for measuring the randomness in the probability 

assigned to a continuous random variable a subjective 

f°(s), *(x) or m(x) is required. However, all 

are general, in the sense that all desirable properties



CHAPTER 3: JAYNES' PRINCIPLE OF MAXIMUM ENTROPY

3.1) Introduction

Let us consider the simple form of Bayes' theorem for a discrete 

random variable , written as:

p(x1|DK)ctp(0|x1K)- p(x.j |K)

One of the main controversies in using the above theorem has been the 

question of how to assign prior probabilities p(x.|K), based only on 

the information K prior to any observation. We could for instance, 

break the situation up into mutually exclusive and exhaustive possibilities 

and use the p/UnctpZe. ofa tm u ^ ic ie n t  xeaiou in such a way that no one 

of them is preferred to any other, i.e., assigning a urUioxm p/Uox . 

However, situations occur in which we are given some other relevant 

evidence that increases our state of knowledge in such a way that the 

uniform prior assignment turns out to be inappropiate. In this case, 

with this extra prior information, we have some reason to prefer some 

possibilities to others. Our aim is to assign a probability which is, 

in some sense, as uniform as it can be subject to the available informa

tion. It should ipxzad out all over the sample space, not assigning 

zero probability to any situation, unless the available information really 

leads to this conclusion.

So, the aim of avoiding unwarranted conclusions leads us to search 

for a reasonable function that measures thz uni&o/unity of a probability 

distribution which could be maximised subject to the constraints which 

represent the available information. In fact, this function which we seek
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measures the unceAJtcUnty or ¿gnoànnce about a situation whose maxi

misation, subject to the constraints, would give us the minimally prejudiced 

assignment of a probability distribution.

In this chapter we will show that the only function that gives the

minimally prejudiced distribution required in the above set up of our

problem is the Shannon entropy developed in chapter 2. Before we proceed

with the mathematical formulation of this problem, we show first through

some simple examples that other functions, such as the variance or E {p.}
pi(or E {p(x)} for the continuous case) which also measure the 

p(x)

spread, uniformity or uncertainty of a probability distribution do not 

give the minimally prejudiced distribution we want.

Let us first consider a die throwing experiment in which we are given 

the information:

i) The die has six sides with'’f- = i"spots on the ith side.

ii) The average number of spots obtained in a previous long 

series of throws was 4.5 (instead of 3.5 for a fair die).

Based on these two pieces of information, we want to assign a 

minimally prejudiced probability distribution to this experiment;

P (fi = i > = Pi, i= 1,2.... 6

and let us suppose first that we cltoose the variance of the required 

distribution as the objective function, that is:

Max £ (f.-4.5) . p,
i = l 1

(3.1)
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subject to:
6
Z f.p. = 4.5 .............................- (3.2)
1-1 11

6

I Pi = 1 ; p̂  > 0, i = l....6 -----------(3.3)

The solution to this maximisation procedure is:

P {fj) = 0.3 ; P {fg}= 0.7 ; P ff2} = P iiy = P(f4> = Ptf5>= 0

On the other hand, if we use Shannon entropy (2.1) in place of (3.1) 

above as the objective function we would obtain by its maximisation 

subject to the constraints (3.2) and (3.3):

P (fj) = 0.055 P{f2) = 0.079 P{f3) = 0.114 P{f4)= 0.165

P {fg} = 0.240 P{fg} = 0.347

Max. Variance di s tr ibut ion Max. Entropy dis tr ibut ion
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It is easy to show that the solution to the above problem (using for 

example the Lagrange multipliers) as a function of X is:

Pj = (8-3X)/ 6 p2 = 1/3 P3(3X-4)/6

Plotting these probabilities against X we get:

!1ax -E {p^j before adjustment Max -E {p^j after adjustment for

for negative probabilities. negative probabilities.

In figure 3.1 above the curves for Pj and p3 clearly show 

that for 1 < % < 4/3 and 8/3 < s 3 respectively, the probabilities 

are negative. To replace this impossibility we introduce the extra 

constraint that p̂  > 0 ; i= 1,2,3 and we obtain the final result 

as plotted in figure 3.2 .

As a matter of comparison, let us solve the sane problem by using 

Shannon entropy H(p^) instead of F(pi) in (3.4). Using again the 

same argument, the following distribution is obtained:
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p.j= exp{(2-i)a} /(1+2 cosh a) ; X = (e2a + 2ect+3)/(e2a+ea+l) 

or, after simplifying:

p2= /  [4-3(X - 2)2 ]/ 9 - 1/3 ; Pj=(3 -X -P2) /2 and

P3 = (X -1 -P2) /2

Maximum entropy distribution.

2
Although the Max -j p̂  shows a big improvement over the maximum 

variance distribution (see the die experiment of the previous example), 

for certain values of X it assigns zero probabilities and that is 

again jumping to conclusions not present on the given information.

On the other hand, the maximum entropy distribution (figure 3.3) 

represents in fact the least prejudiced probability distribution for 

Xi that meets the objectives of our problem. Another point in favour 

of the entropy is that the extra constraint p̂  > 0, which must be 

introduced in the first case, is automatically included in the entropy

formulation.
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The two simple examples discussed, illustrates how the entropy 

function is in fact a consistent measure of uncertainty,and that it leads 

to least assignment of probability distribution for a random variable.

In the next section we show the mathematical set up of the problem 

by postulating the principle and the general solution.

3.2) Jaynes Principle of Maximum Entropy:

We now formalise the procedure to find the least prejudiced 

probability assignment introduced in the last section. Originated in 

1957 by E.T. Jaynes, the rationale behind the proposed principle of 

maximum entropy is that the probability distribution desired has maximum 

uncertainty (minimum information content) while representing some 

explicitly stated known information.

The principle is general, in the sense that it always gives a 

minimally prejudiced probability distribution, although, as stated by 

Jaynes, (1958) and (1968), the information given concerning the random 

variable in question, should be a testable, piece of information , 

defined as follows:

A piece- o f information concerning a random variable X i s  called  

testab le  i f  for any proposed probability assignment p(x) ¿or X, 

there i s  a procedure which w ill detennuie unanbiguously whether p (x) 

does or doer not agree with the given information.

■

Before we state the principle, we would like to point out that
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among all the possible testable information, Jaynes considers in his 

formalism only those concerned with averages of functions of the random 

variable being studied, since this class of information is the most 

common one we find in practical problems. But the principle as a 

whole, is applicable to any kind of testable information.

We now formulate the principle and its mathematical set up mainly 

for the continuous case. The discrete development is similar and has 

been extensively explored in the literature. For comprehensive develop

ments and illustrative examples see: Jaynes, (1958,1963 and 1968); 

Hobson, (1971); Tribus, (1961a & 1969) and Goldman,(1953).

The principle:

The minunalZij pfiejadiced pfwbabtlUty ciistfUbution Is that ivlUch 

imx.imises the entaopy Subject to constficUnts supptied by the. given 

te stab le  ¿n^ofwiation.

Put this way, Jaynes' principle encompasses the well known 

pfvincA.ple 0|S tn iu iilc te n t fieason as a special case. However, there 

is no way of proving Jaynes formalism. As pointed out by Tribus,(1961 a) 

it should rather be interpreted as an axiom for a system of inductive 

logic. To see this point more clearly, let us consider the schematic 

representation for the principle as shown below:

input 
information 
concerning 

r.v. X .

Jaynes formalism 
* (llax. Entropy proce

dure)

output
(Max. entropy distribu
tion for X )
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Accordingly, if the output conclusions agree with posterior observations 

of the experiment, we conclude that the input information is coherent 

and sufficient for our purpose. On the other hand, an output not agree

ing with the observations, forces us to admit that the input information 

is not correct and finally, a vague output corresponds to insufficient 

input information.

Bearing in mind this rationality behind the principle, let us now 

proceed with the calculations in order to obtain the maximum entropy 

distribution.

Ue are faced with the so-called isoperimetric problem of the 

calculus of variations that could be formulated generally as:

Find p as a function of Xc X such that the function I (p) 

defined as:

where ^(X.p) and Ki are preassigned functions of X,p and 

constants respectively. From the calculus of variations, the p(x) 

which maximises I(p) is obtained by solving the equation:

I(p) = F(X,p)• dx 
X

(3.7)

is maximised, subject to the conditions:

4>j (X,p) - dx= K. ; i = l,2.... n - - (3.8)
X

-  = 0 (3.9)
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Where X , i= 1,2,..., n are adjustable constants (Lagrange multi

pliers), calculated by direct substitution of p(x) into constraint 

equations (3.8).

He can now easily adapt our problem to the above set up as follows: 

X eX is a continuous variable

p(x) is the probability density of X , to be obtained by maxi

mising the entropy (2.2), i.e., by setting F(X,p)=-p(x)-In p(x) 

in (3.7).

<t>i (X,p)= g.j(x)- p ( x ) ; i = l , 2 , . . . ,  n ; where g ^ x )  are known

functions of X, whose expectations with respect to p(x) are 

known and equal to - constraint equations.

p(x)- dx = 1 is the normalising constraint.

X

Taking these quantities into the general solution (3.9) (with an 

additional adjustable constant Aq due to the normalising constraint) 

we obtain after simplifications the maximum entropy density p(x):

n
p(x)= z • exp {- s A.g.(x)} ; z= exp { -An } ........ (3.10)

i = l  1 1 u

(The discrete case is similarly set by substituting summations for 

integral s).

3.3) Properties of the Maximum Entropy Density:

We now s t a t e  and prove some of  the s t a t i s t i c a l  properties  of

p(x) (equation 3.10).  Though many properties  and mathematical relat ions
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Where , i= 1,2,..., n are adjustable constants (Lagrange multi

pliers), calculated by direct substitution of p(x) into constraint 

equations (3.8).

We can now easily adapt our problem to the above set up as follows: 

XeX is a continuous variable

p(x) is the probability density of X , to be obtained by maxi

mising the entropy (2.2), i.e., by setting F(X,p)=-p(x)-In p(x) 

in (3.7).

<f>i(X,p)= gi (x) • p(x); i = 1,2.... n ; where g^(x) are known

functions of X, whose expectations with respect to p(x) are 

known and equal to Ki - constraint equations.

p(x)- dx = 1 is the normalising constraint.

X

Taking these quantities into the general solution (3.9) (with an 

additional adjustable constant A„ due to the normalising constraint) 

we obtain after simplifications the maximum entropy density p(x):

n
p(x)= z • exp {- l A .g. (x)} ; z =e x p { - A 0 } ........ (3.10)

i=l 1 1 0

(The discrete case is similarly set by substituting summations for 

integrals).

3.3) Properties of the Maximum Entropy Density:

We now s t a t e  and prove some of  the s t a t i s t i c a l  properties of

p(x)  (equation 3.10).  Though many properties  and mathematical re la tions
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can be derived from the maximum entropy approach, we only show those 

that specifically concern our work.

We conclude the section by stating and proving theorem and a 

corollary, important for our model formulation. A parallel develop

ment for the discrete case can be found in chapter 5 of Tribus,(1969).

i) Partition Function Properties:

"The mean, variance and covariance of the random variables 

g.j(x) ; i= 1,2,..., n are related to the Lagrange multipliers 

Aj, Ag>• • •« *n and the PaAtttion Function (zeroth Lagrange multi 

plier Aq ; also known as Potential Function) by:

Taking p(x) of (3.10) into the normalising constraint, we get:

E {9,- (x)}
P(x)

(3.11)

Var {g - (x)} = ----~
p(x) 3A-

(3.12)

P(x)
Cov igi(x)• (3.13)

i ,j= 1,2.... n

Proof:

X

or:
e • dx (3.14)
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Differentiating (3.14) with respect to A , we obtain:

or:

e"0
3Aq

8 A. 1

^ 0  = _ 1
3Ai

j

X

£ *k M x)-

—” 0 Q k e . e

g.j(x). dx

- £ Ak gk(x).

g.j(x). dx

using again (3.10):

‘0 (
—  = - j g^x). p(x). dx

3A„
3 A. - E { g (x) } = -K. 

P(x) 1 1

To prove (3.12) we follow the same argument by differentiating (3.14) 

twice with respect to A.. We obtain, after simplication:

- £ H  gjx).

(— ^ ) 2 + v 3Ai '
" O k  e e

3Ai X
. g^(x). dx

Using (3.10) & (3.11) we obtain:

32Ar
E2 {g.(x)> + - ^ 5-= E {g2 (x)} and (3.12) follows
p(x) 1 3A2 p(x) 1

Finally, differentiating (3.14) with respect to Ai and A . 

and taking into account (3.11) and the fact that:

cov { g,(x) g.(x)} = E { g,(x) g,(x) } - E (g.(x)}. E (g,(x) } 
n M  1 J nivl 1 J p(x) nfxl Jp(x) ' J p(x)

expression (3.13) follows immediately.

p(x)
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ii) Maxi mum Entropy Properties:

"The maximum entropy value is related to the Lagrange multipliers 

A. and the expectations ; i = l,2,..., n by:

Hm = Hm( Ar  X2 .... Aj = Hm(K1fKp ..... K„)n' nr 1* 2 ’ •(3.15)

3H
3^7 = A. ; i = l,2....n’

where Hm is the maximum entropy value.

- (3.16)

Proof:

Taking p(x) (equation 3.10) into H(p) (equation 2.2) we obtain: 

Hm = H [p(x)] = - { [ -aq - E gi(x). X. ]. p(x). dx

by expanding the terms within brackets:

Hm = Ag + z A.. E . { g,.(x) }= An + z A.. K.
1 P(x) 1 0 : r  i

Since the potential function as given in (3.14) can be expressed as a

function of the A-'s alone and consequently the K/s in (3.11),

H can be expressed as a function of the A-'s only ; i = l,2,..., n. m i

Conversely, regarding the K^s as the independent variables, 

the a .j1 s could be solved for K^s and an expression for Hm as a 

function of the Ki's alone is obtained.

To prove (3.15) let us consider the differential element dHm 

from the above:
n n

dll = dAn + Z K ■. dA, + Z A. . dk. m 0 i=1 i i i=1 i i
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Using the fact that aq= xQ (x^ a2>..., a ), dxQ can be written

as:

dxQ =
3A-. 3A« 3A~ n 3A~
3X7  d X1 + 3X7  dX2+" ,+ 3A ^ n = . s1 ^ r -  d*i I d  n i=l i

n
and from (3.11) : dXQ = - £ K1-. dx.

Therefore:
n n n n 

dH = - Z K..dA.+ z K..dA.+ Z A..dK.= Z A.. dK. 
m i=i 1 1 1=1 1 1 i=i 1 1 1=1 1 1

and (3.16) follows.

i i i) Theorem:

"The maximum entropy distribution (3.10) is a member of the regular 

case exponential family of distributions"

Proof:

If the random variable X has a probability density function 

which is a member of a regular case exponential family of distributions

indexed by 

written as

parameters § = ( »•••» en )» then its pdf can be

n
p(x ,0) = A(0 ). exp { l Q.( 0 ). R.(x) }

i = l 1 1

where, for 1 = 1.2.... n:

^(x) are functions of X alone and not of 0

a ( o ;I, Q.( e ) are functions of o alone and not of X-
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Let p(x| o ) be the parametrised probability density function 

corresponding to p(x) of (3.10). Taking p(x| e ) into (2.2) 

it is clear that after integrating out X, we are left with a function 

of e alone ; i.e.

Mni ='i p(xl 0 )-'en p(x I §)• dx = Hm ( 0 )X

or, using (3.15), llm = Hm ( 0, K , a )

where: a =(a 1> A2... An) and K »(Kj.Kg,..., Kn >

using (3.16) we now obtain:

3H ( e, K, x)
’-■= Xi /. Ai = A ^  0 , K)= X1( e ) ---- (3.17)

l
i= 1,2,..., n .

That is to say, the Lagrange multipliers a  ̂, i= 1,2.... n

are functions of e alone (since K are specified constants independent 

of x) and not of X.

Also, from (3.14) and taking into account (3.17) we can write 

for tiie partition function Aq :

aq = Aq ( 0 ) ................................ (3.18)

Then, using the fact that g^(x) ; 1 = 1,2.... n are by assumption

functions of X alone and not of e and the results (3.17) and (3.18) 

the maximum entropy density has the form of p(x, 0 ) above and the 

theorem follows.

»'If.1
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iV) Corollary

The specified functions g^x) ; 1 = 1,2,..., n are such that

for a given random sample x :( x.,x2 .... x[() from this distribution

[ t g^Xj), r g2(Xj)....  r gn(xj) ] ; j = 1,2,..., N , comprise a set

of joint sufficient statistics which is minimal if none of them is 

redundant.

3.4) App1ications:

In this section we give a brief scrvey of the most recent 

and important applications of entropy and Jaynes Principle of Maximum 

Entropy to various subjects. Particularly in the statistical context, 

although not yet completely organised as a statistical method, the cited 

principle has proved to be of great help in many situations, mainly in 

Bayesian Statistics, where it provides a constructive criterion for 

setting up prior probabilities distributions on the basis of partial 

knowledge where conventional methods do not apply.

If it had been our aim to describe a complete survey of these 

applications we would have to start by giving an extensive list of its 

various uses in the fields of Communication Theory and later in Statistical 

Mechanics, lie however interpret these subjects as the Entropy PaAznti 

and as such we are only concerned with the use of entropy in other fields.

i) Mathematical Ecology:

In the subject of Ecology Shannon's entropy has provided an 

entirely different way of measuring diversity in populations, assumed 

to contain an indefinitely large number of individuals that could be 

classified into a finite number of species.
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Assuming also that each individual belongs to one and only one class 

and that is the probability of an individual being in the species

group C.j, i = l,2,..., n ; then Hlp^^,..., pn ) provides a measure 

of the diversity of the population [ Pielov, 1966,1967 and 1969;

Brown & Disk, 1975 ] .

ii) Reliability Studies:

In reliability studies of equipment which is maintained over a 

long period of time through replacement of components, the lifetime 

behavior associated with these models ranges from complete determinacy 

to complete uncertainty. The associated probability of survival, hazard 

and number of replacements can be obtained by maximising the entropy 

associated with the randomness [Tribus, 1962 ; Flehinger & Lewis, 19591.

iii) Thermodynamics:

Using entropy it is possible to show that the general maximum 

entropy formalism is intrinsically related to the experimentally measured 

quatities of a system in thermodynamic equilibrium. For instance, if 

Hc is the experimentally measured entropy of a system and Hs the 

corresponding Shannon's entropy then Hs < Hg , with equality if and 

only if the probability distribution in Hs is that one which gives 

maximum H . [Jaynes, 1963 a ; Tribus, 1961a, 1961b ] .

iv) Statistical Inference:

The problem of decision making in the face of uncertainty can, 

by its very nature , be formulated and solved by using the notion of 

entropy as a criterion for setting up prior proba! ility assignments.
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Once the loss function has been specified, our uncertainty as 

to the best decision arises solely from our uncertainty as to the 

state of nature and so, the entropy. We refer mainly to : Jaynes, 

(1963b); Dutta.( 1966); Edwards.(1972); Vasicek, (1974) and Barnard, (1951).

v) Stock Market Prices:

A very general probability distribution of future stock price 

in a market can be obtained by use of Jaynes formalism. The maximum 

entropy distribution of future stock price for an investor having 

specified prior information is general and agrees with past observations 

of the market prices. [ Mandelbrot & Taylor, 1967 ; Cozzolino & Zahner, 

1973 j .

vi) Econometri cs :

In the field of Economics, Shannon's entropy has also been used 

a great deal. In Econometrics for instance, certain estimation me

thods such as least square, weighted regression, maximum likelihood 

are used and can be shown to be optimal in the Information Theoretical 

sense. We refer specially to: Tintner,(1960); Tintner & Sastry, (1969) 

and Theil,(1967).

vii) Model Identification-Time Series:

The application of entropy in the time series context is due to 

Akaike,(1971, 1972, 1974, 1977 a, 1977b, 1977c and 1978) and Tong,(1975a 

and 1975b). Akaike succeeded in deriving a 1-dimensional statistic for 

selecting an optimal model from a class of competing models by using



the generalized entropy of a distribution with respect to another 

(or the Kul 1 back-Leibler mean information for discrimination between 

two distributions ; Kullback, 1969). Akaike's criterion, (also known 

as A.I.C. - Akaikes information criterion), is particularly important 

in estimating the order of auto regressive and/or moving average models.

3.5) Examples of Maximum Entropy Distributions

We conclude this chapter with some illustrative examples of maximum 

entropy distributions, obtained by the use of Jayne's formalism techniques

developed in the previous sections.

g^x); i = l.... n E ig^x;} . X

g ^  X

g j =0 ; j=2,... ,n
E (gj) = x IR+ Exponential (A)

g:= x

g2= In X

gj= 0; j=3.... n

E {g^} = a 

E {g2} = 6
IR+ Gamma (a,6)

gj= In X

g2= ln (1-x)

gj-0* j-3,... ,n

E {g^} = a 

e ig2} = Y
CO.ll Beta (a ,y )

gx= x 

g2= x2

9j~0» j-3,...,n

E {g1)= u 

E (g2}=y2 + o2

IR Normal (y,o2 )

IR+ Single Truncated 
Normal (y,o2 )

[a,b] i a,b 
fin i te

. Double Truncated 
Normal (y,a2 )
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CHAPTER 4 : BAYES I All ENTROPY FORECASTING (DEF)- 

GENERAL MODEL FORMULATION

4.1) Historical Development of Time Series

Throughout this section we shall consider Khintchine's and 

Kolmogorov's interpretation of time series [Khintchine, 1932 ;

Kolmogorov, 1933 ]. According to them, if we accept the broad view 

of a times series Yt as a set of observations ordered sequentially 

in time, then, it is also possible to interpret it as:

i) A stochastic process whose variables Ŷ , Y2,..., Yp are 

observed at equispaced time intervals tj,t2.... tn .

ii) An n-dimensional probability distribution Y. . It is with 

that interpretation of time series in mind that we start our 

brief historical development of time series.

The first attempt towards an explanation of the functional form 

of a time series, dates from the very beginning of the last century.

This was due to Joseph Fourier who claimed the approximation of any 

time series by a combination of sine and cosine curvers.

It was only at the beginning of this century that Fourier's 

idea was used again by Schuster, (1906). He succeeded in estimating 

periodicities in time series by introducing periodogram analysis.

However, the limitations of use of the periodogram analysis [Beveridge,

1922 T, together with the great advances in probability theory and 

statistics experienced at the beginning of the twentieth century, 

provoked substantial developments in time series analysis. Starting in 1927

t
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with Yule and complemented in 1938 by Wold [ Yule, 1927 ; Wold, 1938; 

Walker, 1931 and Slutzky, 1937 ], the concepts of autoregressive and/ 

or moving average (AR, HA, ARMA) schemes were introduced, which proved 

to be the most general linear representation for a stationary time series. 

Wold did not give much attention to the parametric estimation of this 

new scheme. The first methods for estimating the parameters of an AR,

HA, ARMA model are due to Kolmogorov,(1941) and Man & Wold,(1943).

In order to follow our chronological description, it is worthwile

considering now the important work by Wiener in estimation theory.

Around 1940 Wiener working in the field of communication theory, developed

new techniques for filtering a signal at the receiver whose transmission

has been distorted by a white noise process [Wiener, 1940 ]. In other

words, if Y* is a signal transmitted at time t and is the random

disturbance in the transmission of Y^ , Wiener assumed that the signal
★

received is additively related to Y^ and , i.e. :

Yt = Y* + for all t = 1,2,...

where the are assumed to be independent identically distributed

Gauss i an random variables , with E { vt } = 0 and F { v | } = o 2.

Wiener developed an estimation procedure for the white noise in the 

frequency domain for a continuous process so that an optimal filter was 

obtained (The analytical solution to the Wiener-Mopf integral equation). 

The discrete version of Wiener's work was independently developed by 

Kolmogorov by assuming that a stationary time series has a representation 

as above, thus the reconstruction of the real process Y^ could be

obtained.
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From that point, both Wold's autoregressive and/or moving average 

scheme in the time series context and Wiener's filter theory in the 

engineering context were developed a great deal, but it was only with 

the advent of computational facilities that a real boom occurred.

The first major step forward was the work by Kalman and Bucy in 1950 

[ Kalman, 1960 and Kalman & Bucy, 1961 ] which proposed a solution 

to the Wiener-Hopf integral equation by transforming it into its equi

valent differential equation, but working in the time domain. The 

recurrence relations and updating equations obtained - the Ka&mn FLltM., as 

it is nowadays known could easily be solved by use of digital computers.

Ever since Kalman, the new filter theory was developed and applied to 

different areas of engineering, particulary, in Control Theory [De Russo 

et al, 1967 ; Sage & Melsa, 1971 and Meditch, 1969 ].

Wold's scheme however, had its real great boom ten years later 

with the important work by Box and Jenkins [Box & Jenkins, 1970 ].

Box and Jenkins' contribution, undoubtedly has started a new era in 

time series and forecasting. Using the facilities of digital computers 

mentioned above, they proposed a new strategy for the construction of 

a set of linear stochastic equations, describing the behavior of a time 

series, whether stationary or not. Briefly, they assume that the given 

series can be reduced to stationarity by differencing a finite number

of times, i.e. by determining the stationary series ŵ. by:

wt = (1 " B)d Yt

where:

d is a positive integer.



55

B is a backward shift operator on the index of Y^ , such that:

■ V ' t - i  • » ’v V z

It is then assumed that the stationary series can be represented 

by an ARMA model of the form:

p q
( 1 - z <t> .¡B1) w. = ( 1 - £ 0 ■ BJ) a 

i=l 1 Z j=l J r

where:

$. are the autoregressive parameters (1 = 1,2,..., p)

9. are the moving average parameters (j=l,2,..., q) 

a is a white noise sequence, with constants variance a2

or, in terms of Y^:

(1- T. ♦iB1)(l-B)d Y. = (1 - s o-Bj) a ;
1=1 1 1 j=l J

known as an ARIMA (p,d,q) model.

Finally, the well known Box and Jenkins procedure to fit a model

of the above form to a given set of data, consists of a three-steps

iterative cycle procedure: identification (p,d,q values), estimation

( 0. and a2 ), diagnostic checking (validity of the identified
i J a

model) and then the forecasting stage. A lot of applications and 

further developments of the method have been extensively published, 

lie only refer to some of them. [ Hakridakis, 1974; Gilchrist, 1976; 

Souza, 1974; D'Araujo, 1974; Brubacher, 1976 and Cleveland, 1972 3.



56

Almost at the same time as Box and Jenkins, a new and important 

approacl) for forecasting was put forward by Harrison and Stevens 

L Harrison & Stevens 1971, 1976a and 1976b ]. They were in fact pioneers 

of the use of the Kalman filter results in a time series forecasting 

context. The so-called Bayesian Forecasting Syitem or Adaptive. 

Forecasting based on a joint use of Kalman results and Bayesian Statistics, 

offered a great improvement over the existing methods. Instead of consider

ing a simple fit to past data in order to predict the future in a purely 

automatic way, they are mainly concerned in their method with the actual 

present information and its effects on the future. Since our model formula

tion is an extension of the above cited method, we dedicate the next section 

to a brief summary of Harrison and Steven's method, as well as the justi

fication of our proposed extension.

We conclude this section by mentioning the recent State  Space 

Forecasting proposed by Mehra,(1976, 1977a, 1977b, 1977c). He used only 

the Kalman Filter results for forecasting single and/or multiple time 

series, in other words using only the past data in order to get the model 

identification and the parametric estimation in a very automatic way. 

Although the method is very general and easy to use, it has the great 

disadvantage that the past history of the process is an essential require

ment due to its non-Bayesian nature.

4.2) Bayesian Forecasting

In this section we give a brief description of the Kalman Filter- 

Bayesian approach for forecasting as proposed by Harrison and Stevens, 

pointing out the main advantages accruing to this new approach.
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The model formulation is based on a complete parametric description of 

the process, which is incorporated into a dynamic linear set of equations 

describing:

i) process observation

ii) parameter evolution

In its general form, the Dynamic Linear Model (DLM) is:

Observation equation : Yt = Ft et + vt - - - - - - - -  (4.1)

Parameter evolution equation: et= G 9t_j + wt - - -  - -  - (4.2)

where :

Yt is an (m*l) vector of observations

°t is an (nxl) vector of unknown parameters

Ft is an (mxn) matrix of independent variable (known at time t)

G is an (n xn) system matrix

Vt is an (mxl) vector representing the observation noise;

vt * N(0,Vt)

wt is an (nxl) vector representing the parameter noise;
wt * N(0,Wt)

t is the time index (t=l,2,... )

The parameters are easily updated from tin« to time by use of the 

Kalman Filter updating equations, in other words, if:

( i 1) ^ ^ mt - l ’ ^ t-1  ̂ ’ ^ t- l= ^ 1  ,y2 .........Yt - 1^



then, once we observe Yt=yt > the parameter distribution at time t is: 

(et|Dt) -v N(mt,Ct) ;

where mt and Ct are obtained by use of the Kalman Filter recurrence 

equations as follows:

m̂ . = G . m̂.  ̂+ Ae 

Ct = R - A Y  At

where:
A

e = yt - y

y = r t G mt_1

R = G Ct _ j  Gt + Wt 

A = R FJ (Y)'1

Y = Ft R pTt + Vt

See Harrison & Stevens, (1976) for details.

The DLM formulation (4.1) and (4.2) offers something quite 

different from the conventional linear forecasting models. In fact, nearly 

all linear forecasting models can be framed in the DLM form. It is 

basically characterised by:

i) Easy interpretation and easy model construction, 

ii) Its parametric formulation as opposed to the functional form 

of nearly all the models.

iii) Its probabilistic information on the parameters at any time-

iv) A sequential model formulation that permits a description of 

the systematic changes in the parameters of a system,

v) A mixed model formulation to cope with sudden model changes or 

even uncertainty as to the underlying model at any given time.
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To conclude, it is worth pointing out that by its very nature, the 

DLM (4.1) and (4.2) has the important properties that, the stationarity 

of the underlying process is not required and that its distributional 

predictive nature, allows us to have a different criterion of optimality 

other than the mean square errors.

4.3 Bayesian Forecasting Limitations and Proposed Extension

Although the Bayesian Forecasting method described in the last 

section has provided a simple and elegant model formulation, it has not 

fully extended the traditional forecasting system. It has still limita

tions, such as:

i) The models are still linear in the sense that, the observation 

noise and parameter disturbance are additively related to the 

observation and parameter equations respectively.

ii) From the linear least squares property of the Kalman filter, 

it is efficient only for a normal process.

In fact i) and ii) are closely related since the normality assumptions 

do not merely affect the distributions involved. They are also key concepts 

for the sufficiency and linearity of the Kalman Filter.

The restrictions i) and ii) are our main motivations towards an 

extension of the Bayesian Forecasting method. It is our prime objective 

in this extension, to set up a forecasting model whose efficiency is 

achieved for distributions other than the normal.
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In this work we shall concentrate on the generalization of the 

steady state model for a well defined family of distributions, by the 

use of an entropy argument. Before we describe our model in section 4.5, 

in the next two subsections we use the normal additive model to illustrate 

the definition of two functions, importants for our general model formula

tion.

4.4) flormal Model, Entropy Results

In preparation for our general model formulation to be presented later 

in this chapter, we define in this section the Posterior-Prior Transition 

of a steady state model and an uncertainty function derived from a transforma

tion on the Shannon's entropy. We use the normal steady state model for a 

better understanding of these concepts. From now an whenever model appears 

in the text, it should be understood that it refers to a steady t>tate model..

4.4.1) Posterior-Prior Transition

The steady state DLM formulation is derived from equations (4.1) and 

(4.2) by making:

G = 1 ; Yf, 6t»wt»vt e R • We obtain:

t + vt ; vt «v N(0,V) - - - - (4.3)

t-l+wt ; wt ^ rj(0,W) - - (4.4)

Thinking now in terms of a non-additive formulation for the above model, 

the observation equation (4.3) does not offer any difficulty, since it could 

be equivalently written in the distributional form:

( Yt | et ) -v N(et ,V) (4.5)



It is in fact in the system equation (4.4) that our problem lies.

At first, it seems impossible to get hold of the prior at any time given 

the last posterior, in the absence of (4.4). For the normal additive 

model above we know that the transition from the parameter posterior at 

time t ; ( e11 ) to the parameter prior at time t+1; (0t+ilDt)» 1S 

nicely obtained by straight use of (4.4). However, without the linear 

relationship between the parameter and the error component (4.4), such 

transition can not be easily obtained.

Denoting (9̂ |D̂ .) -*■ (0^+^|D^) the PoitzAtoA-PAtoA TAamTtion, our 

problem can be summarized as finding this transition without using an 

additive formulation like (4.4). Although we have illustrated this problem 

with the Normal DLM formulation, it is quite clear that this PoiteAioA- 

PaLoa TA.amlti.on problem is general, i.e., provided we have a parametric 

model formulation, whatever conditional distribution is assumed for the

problem will be present.observation (Y^e^), the (0^ | ) [0t+ilDt)

4.4.2) Uncertainty Function

The problem just described can be tackled by the use of an entropy 

argument. However, the straight forward use of Shannon's entropy as a 

measure of uncertainty would not be recommended (this was pointed out in 

chapter 2 with reference to a continuous distribution). Referring to section 

2.4, we can see that if X ^ N(u,o2), then H^ oi In o and consequently 

Hx eiR. In fact, as we shall see later, for all the continuous distributions 

included in this work, we have H^e !R.

In order to avoid a negative measure of uncertainty we define a 

transformation on IL such that the new measure is entirely defined on IR+.
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Moreover, such measure should be a monotonic increasing function of the 

amount of uncertainty of the distribution of X (in the normal case, the 

variance), assuming a zero value in the total absence of uncertainty (where 

the distribution is concentrated at a point) and assuming a maximum value 

for the maximum uncertainty distribution. We shall denote this positive 

measure of uncertainty as Sx throughout.

Definition:

The z-tAcuu>iom ¿unction Sx is the positive measure of uncertainty 

defined by:

Sx= exp Hx J ; Hx Shannon's entropy of X

As an example, if X ^ N(u.o2), then:

Hx= i n ( / 2 v e .  o ) =*• Sx= /2-rre.a

SY= 0 distribution concentrated at a point
+  ̂ •Sv eIR and: SY -*■» maximum uncertainty distribution monotomcX X

Sx : increasing function of o .

Not only is Sx entirely defined on R+ as we have just seem, but 

this function possesses a one-to-one relationship with the psicdictabiLuty 

peA ob&oiuation of a probability distribution, as we show below:

Let Xefl; n= (1,2,..., N) be a discrete r.v. with probability 

distribution p^= p(X=i) ; i=l,2,...,M .

If x2....  xn is a set of independent observations of X, it is

then clear that the p*.cdieXabiLity of this sample is measured by its 

corresponding likelihood, i.e., we define:



n
Pred. = n p- ; 

i = l 1

where Pred. stands for the predictability

Of Xj,X£ « . . .  ,Xn .

From the above, the pfLzdictcibiZAXij peA obidAvcitLon or the average 

predictability can be defined as the geometric mean of the sample predict

ability:
n/'n

Pred./Obs. = / n p.
i = l 1

Or, assuming that for the N possible sample values the observation
M

x. = i ; i=l,2,..., N occurs n. times, where i n.=n (sample size),
1 1 i=l 1

we have:

Pred./Obs.
N f.
n p.1 ; f.= n./n 
i=l 1 1  1

From the above, it is clear that if Hx is the Shannon's entropy 

of X, then:

lim Pred./0bs.= exp
n ->■ “>

Alternatively, the Sv function is a measure of the uncertainty per 
* N

observation in a probability distribution. Recall that since Hv=- l p.ln p,
X i=l 1 1

then:

Sx= exp[ Hx J=
I!
n
i=l

From what we have seem it is quite clear that Sx possesses all the 

desirable interpretive properties of a measure of uncertainty in the formula

tion of a forecasting procedure.
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4-5) Bayesian Entropy Forecasting System.

lie now describe in detail our Baijesian EntAopij Forecasting Model 

( BEF ) proposed in the previous sections. We shall first give an 

outline of the model foundations and general assumptions, and then 

proceed with its analytical description.

4.5.1) Model Foundations

As already mentioned, the model we are proposing is an extension 

towards a generalization of the Harrison and Stevens Bayesian Forecasting 

system. We would like to start by remarking that we are also putting 

forward a S t a t i s t ic a l  Fon.zc.ai>ting System , as opposed to a S t a t i s t ic a l  

Forecasting Method. The simple reason for calling our approach a 

system, instead of a method, is that we are not simply producing the 

bett (¡-it on a given set of past data and then use this fitted curve to 

je t an account of the future behaviour of the process. We are in fact 

proposing a forecasting system that not only takes into account the past 

history as the unique source of information, but also includes in the 

model building, qualitative or subjective information that is provided 

by the people involved with the system being modelled. As remarked by 

Harrison and Stevens (1976a), these people often have information quite 

beyond the mere past data history, that once incorporated into a model, 

would produce a more realistic forecasting system, responding quickly to 

major changes in the process and remaining stable during quiet pexiods.

The basic characteristics or foundations of the BEF system are:

i) Parametric Structural Representation, allowing a simple model 

construction, as well as facilitating the communication between 

the forecaster and the method itself.
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Probabilistic Parameter Description. This means that we have 

a random variable for the unknown parameter of the system 

whose distribution is inferred from the data and other information 

available at each time-point.

Sequential Model Description. By that we mean the flexibility 

of our model in offering at any time an updated parameter 

distribution, by incorporating into the least prejudiced prior, 

the information contained in the observed data.

Model Uncertainty. Instead of being concerned only with the 

uncertainty on the parameters of the model itself, our model 

formulation also offers us alternatives in order to select an 

appropiate model (or models) at each time, i.e., the uncertainty 

as to the model itself is also considered. Following Harrison 

and Stevens (1976a) classification, we could either be faced 

wi th:

- Multi-Process Models Class I: where, out of a discrete 

set of model alternatives, a unique unknown model from 

this set obtains at all time.

- Multi-Process Models Class II: where, at any given time, 

the model representing the underlying process is a random 

choice from a set of discrete alternative models.

Non-Linear General Formulation. This is in fact the first 

generalization introduced by our BEF over the DLM Bayesian 

forecasting. As we shall see later, we substitute the observa

tion and parameter additive equations of the DLM formulation
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by a distributional specification, and a non-linear version 

of the normal model is obtained. Apart from that, such a broad 

model definition offers no difficulty for a non-normal generaliza

tion.

vi) Valid for a Broad Class of Distributions. This is due

to the use of entropy function as a measure of uncertainty in 

a probability distribution. Since entropy is a general measure 

of uncertainty for any distribution, any model definition based 

on it, can achieve maximum efficiency for distributions other 

than the normal.

4.5.2) General Assumptions.

With the considerations of the previous sections, we are now ready 

to describe our BEF system. Although the model we are putting is general, 

we are mainly concerned in this thesis with the steady state BEF model.

We start by stating the two basic assumptions on which our model is based:

i) Information Loss:

The information (in Shannon's sense; the amount of uncertainty), 

decays with time. The greater the current information the 

greater the decay.

i i) Parametric Family of Distribution:

The form of the probability distribution (beliefs) about a 

future state of the process, belongs to a parameterised family 

of distributions whose e-transform uncertainty function S. 

exists and is such that; S. = exp(ll.) ; II. where II. is the 

Shannon's entropy for the family.
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4.5.3) System Evolution.

Before we present the formulation of our model, in this section we 

explore in detail the general assumptions (i) and (ii) of section 4.5.2.

We shall see that by assuming an In^omation de.ca.ij as in (i), the system 

evolution can be completely specified in terms of the parameter uncertainty 

function S. ; provided the conditions established in (ii) are satisfied.

Let e V and et e n be the two r.v.'s representing respectively 

the process observation and the process parameter of a steady state model, 

where t is the time index; t=l,2.....

Assume also that the conditional pdf of (Yje^) is known for all 

t=l,2,..., and that the parameter posterior at time t ; ( 0̂ 1 D̂ ) has

been obtained, where Dt= (y1>y2.... yt). If (0t+1lDt) represents the

prior at time t+1 our task is to specify completely the pdf of (0t+ilDt) 

on the basis of the available information,for all t=l,2,... . In other 

words, we want to establish a functional form for the parameter evolution 

i.e., the po6tesu.oK-pnA.osi tsianittion (0^|D^) -*■ (0^+^|D^) mentioned before.

On the assumption that the process parameter belongs to the family of 

distributions (ii) of section 4.5.2, let:

Pt t : represents the posterior parameter pdf of (e^D^.) and 

St t its associated uncertainty (both known at time t).

pt+l t: rePresents tbe prior parameter pdf of (0t+ilDt) and

St+1 t ’tS assoc^ated uncertainty (both unknown at time t).
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From the fundamental assumptions of section 4.5.2, it is quite obvious 

that the next prior level of uncertainty; is always greater than

our present level of uncertainty; t (for St t finite) , and that this 

increase in the system uncertainty (St+  ̂ t-St t), naturally depends on the 

current value for S. ..L j t

In terms of the pdf's involved, this implies that pt+  ̂ t depends 

directly on St t and pt t> i.e., pt+1 t= y(pt t; St t). We show next 

that by elaborating the idea of information decay of section 4.5.2, we can 

establish a functional form for v(.;.) .

Without loss of generality, let us assume for the moment (for the sake 

of illustration) that the system parameter et is a discrete r.v.;

9 e [02.02....9n i for all t=l,2,...

Furthermore, let us also assume that the posterior at time t, i.e., 

p. . may be represented by:L 9 L

pt,t = ipt,i ; Pt,i = P ^ M V 0-,-) ; i = i’2----’n }

If we denote the unknown prior at time t; p ^   ̂ a similar way,

i.e.:

pt+l,t= {pt+l,i ; pt+l,i Proble^^e^); 1 = 1,2.... n ) ;

The information decay assumption could be equivalently stated as: 

The greatest p . ; 1 = 1,2,....n ¿6 (¡nom IU  average, the ia^teM.L »1

t t  dectlneA .
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Clearly the message in the above statement is that: if the information 

(or predictability) of the posterior distribution of the parameter at time 

t is high, then we expect a decrease in information (equivalently, an in

crease in the uncertainty) of the parameter distribution as we move ahead 

into the future, until the maximum level of uncertainty (uniform distribu

tion; p .= p ; i = 1,2.... n) is reached as illustrated in Figure 4.1 .
• » '

t,i

P

ei

pt+l,i

0i
time t -> time t+1

Figure 4.1 : Illustration of pt - ■+ p^+1  ̂ ; for e # =e i ; i = l,2,...,n .

From what we have seen, it is quite clear that given the last posterior 

level of uncertainty St t , there exists a mapping St t e !R+ -*• [0,l] , 

such that pt+  ̂ t could be directly obtained from it by raising p^ t to 

a power, whose value is the realisation of the function corresponding to 

the above mapping.

It is also clear from the assumption that such a function is an in

creasing function of 5^  ̂e IR .

The argument as detailed above for the discrete case is clearly re

producible for the continuous case and, consequently, the ( IDt) +

+ (et+j|Rt) transition for the steady state model could be formally written

as:
h(St,t>

Jt+l,t « ^t,t - (4.6)
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Definition

The posterior-prior transition  ¿unction h(Ŝ . .̂) is defined as:

(see illustration in figure 4.2) h(St t): 1U+--» [o,ll , and has the properties

i)

ii)

Hi)

Monotonie increasing function of the actual

lim h(S.,t,tJ = 1

t,t

h(stjt=°) = o

uncertainty.

If we happened to know h(St t) or even an approximation to it then, 

the only problem left would be the case when we have no uncertainty at time 

t (St t=0). In this particular case, the prior pt+1 t can not be obtained 

from (4.6). However, from the same information decay property of the system, 

it is intuitive that the assumptions of section 4.5.2, when interpreted in 

terms of the information (or uncertainty) contents of a distribution (e.g.,S.), 

could be restated as:

The greater the. iy^onnation [on, the le ss the uncertainty) ofi the 

distribution , the ¿aster i t  declines (or, i t s  uncertainty increases).

The above, interpreted in terms of

If St,t

S. ,

t,t

is as follows: 

is highly predictable) then,is close to zero (i.e., p
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the increase in the system uncertainty; (St+1 t) is higher than the

corresponding increase for bigger St t . It is also true that for the two 

extremes (S. =0 or S. .-► °°), we should have a maximum value, c* say,l j L L j l
for (St+  ̂ f) for any t=l,2,... and t) -*■ 0, respectively.

Although we do not know the exact evolutionary form of the system 

uncertainty function -*■  ̂ , from the information decay assumption

of the model, we can formalise some of its properties:

i) st+l,t is a monotonic increasing function of ^

ii) 1 im St+l,t ,
C 1

S CO
t,t t,t

iii) 1 im
. * 0

St+  ̂t= c* ; where c* is a positive constant

lie are now left with the problem of finding a functional specification

As we have already mentioned, the exact form of this function is unknown; 

all we can say is that St+1 t(St t) possesses the properties (i) to (iii) 

above. Moreover, this function is obviously related to the posterior-prior 

transition function h(Ŝ . .̂), since both give an account of the system parameter 

evolution in time. In view of this evidence we assume that the unc.eJitiu.nty 

>iatio function of a steady state model ^  ^  1S related to h(Ŝ . ,̂)

by a function of the form:

st+i,t/st, t" 1 1
where l( is a real constant.

(4.7)
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From the definition of h(St t), it is clear that properties (i) and 

(ii) of St+  ̂ t) are trivially satisfied, and by a suitable choice of 

K we can make lim S... .= c* ; c* a positive constant.

In our model we shall adopt K=% in equation (4.7). As we will show 

later, such a value for K matches exactly the posterior-prior transition 

of the normal additive model. In figure 4.3 we illustrate this uncertainty 

evolution function for a particular c* .

t,t

Figure 4.3: Illustrative plot of St+j t) x St t for a particular

4.5.4) Exponential Approximation.

From what we have shown in the previous section, the knowledge of the 

function h(St t) at all time-points t=l,2,... would enable us to obtain 

the transition (ejDj.) -»• (et+ilnt) exactly. On the other hand, given the 

knowledge of properties (i) to (iii) of h(S^ t), it seems quite obvious 

that we could set an exponential function to approximate the original function 

satisfying all the required properties.

Let g(S. .) denote such a function:L j L



Theorem 1:

P
The function g(St t)= [l-exp(-c St t) ] ; where c is a positive

real constant, satisfies all the properties required to represent the 

posterior-prior transition function for the steady state model.

and consequentely:

Theorem 2 :

The uncertainty evolution function (4.8), with g(Sj. j.) as defined in 

the theorem 1, has the same properties as the corresponding theoretical un

certainty evolution function as defined in section 4.5.3 .

Proof:

First of all, g(St e [0,1 j for c, t e IR+

Also:

(i) g(St j.) is a monotonic increasing function of the actual

uncertainty S
»

( i i ) g(S )= 1im 
t,t

( i i i )  g ( s t j t =° )  = 0

How, using (4.7) with K=h and the fact that g(St fc) is an 

approximation to h(St t), we can write:

S
[l-exp(-c.Stjt)j

(4.8)
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Proof

(i) From (4.8), the first derivative of St+1 t with respect to

S, , is given by:L j L

3St+l,t

3St,t 3St,t

t,t
_CSt t

1-e t,t(l-cSt,t)
-cS

1-e t.t

-cS
Since e < 1 for all c, St t e !U+ we have:

for c. St>t > 1
1-c St,t

cSt,t
< o => 3St^i.t,, > o 

3st,t

for 0 < c St.t •

1- c St,t
cSt,t

3^t+l t< i => > 0
3it,t

Consequenteiy, St+1 t is an increasing function of St>t

S.
(i i) 1 i m

St.t

= Tim
St,t St,t [l-exp(-c St>t) ]

= 1

(iii) lim S. . .= lim
c n c
St,t-°

= Constant > 0

St,t+0
-cS

1-e t,t
(ct'O)
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4.5.5) Model Formulation.

Let:

Y^ be the random variable defined on a sample space Y (process 

observation).

6t be the random variable defined on a parameter space n (process 

parameter) .

t be the time index ; t=l,2,...

A) Information

Assume that at time t-1 the following information is available:

i) p(Yj. j : the conditional pdf of the r.v. (Y  ̂| 01_ i)

supposed to be known for all t=l,2,...

ii) Pt_2 : the posterior pdf of the r.v. ( 6 ^IDfc_i),

Dt-l=(yl,y2 .... yt - P ’ and itS associated entropy

St-1,t-l‘

iii) Posterior-Prior Transition Function ;
2

9(si,i>=L1 ' exp('c si,i>
c is a positive constant

i=0,l,2,... , where:

S. . is the positive measure of uncertainty of the posterior 

( ei | Di) ; S. . e IR+ .

■  i mm
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B) Parameter Updating Procedure.

B.l) Prior Distribution: (

The prior pdf for (etIDt_j)» i-e., Pt t-1 is 

the distribution obtained through the transition function g(St_^ t_j)

by the system equation:

pt,t-l
g(St-l,t-l) 

“ pt-l,t-l if St-l,t-l > 0

and pt,t-l such that S = c 1 5t,t-l c if St-l,t-l = 0

B.2) Posterior Distribution:: ( 6. |D.)

The posterior parameter pdf, i.e., p^  ̂ is easily computed 

by the simple operation of Bayes rule:

Pt.t * Pt,t-1 • P( Yt I °t)

where: Pt is known from B.l

p(Yt | e^) is known by assumption A-ii for all t=l,2,...

and then simple relationships for updating the parameters after observing 

yt are obtained. It is important to mention that the procedure as stated 

is very general, in the sense that no restriction is imposed for any 

distribution involved. The procedure is made rather elegant if

pt t j is a member of the conjugate family to the distribution 

for (Yt | et). Note however, that the entropy approach here means that 

even if the distributions are not conjugate, the updating procedure is 

extremely easy; the perhaps unwieldy posterior does not affect the future 

computations involved in the method.



77

C) Prediction:

With the posterior as obtained in B.2 above, the next step 

consists of the prediction of future values of the observation 

Yt+j I j = l,2,... standing at time t, that is, given Dt . The steps 

are as follow:

C. 1) Parameter Prediction Distribution (et+j.| Dt)

The parameter predictive pdf for ( et+j | ) is the distribution 

obtained by a sequential use of the transition function, as shown below:

9(St+j-l,t)
pt+j,t ^  pt+j-l,t j = l,2 ,...

where: st+j-l t is the uncertainty of (0t+j-11Dt̂

In words, we assume that the same function g(') , that controls 

the posterior-to-prior transition through the system equation (B.l), 

gives the parameter predictive distribution for time t+j, j=l,2,..., 

standing at time t. For that, we interpret the last prior (6 j-11Dt̂  

as the posterior at time t+j -1, in order to get the next prior 

(time t+j). In order to make the above specification general, we 

should consider the possible but unlikely case in which S. = o, i.e., 

the distribution of (o^|D^) is concentrated in a point. In this case the 

the next predictive for (6t+lIDt) is such that its uncertainty is 

constant, that is:

pt+l,t t+l,t = o'1 if St,t
is such that S 0
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C.2) Observation Prediction Distribution (Yt+jl Dt)

We obtain the desired forecast pdf for (Yt+jlDt)> i.e., 

p(Yt+jlDt)> directly by integrating out e t+. in the joint pdf of

< V j  V j  l»t> ;

P( V |Dt) - "  vt*j V j  I V  ■ " V j

where:

p(V j  9t+jl°t) = p(Yt+j l0t+j V  ‘ Pt+j,t

and

p(Yt+j |et+j Dt) = PCYt+jI 0t+j) is known by assumption A-ii 

P t+j t is known from C. 1
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4.6) BEF - Properties.

4.6.1) Hormal Additive Model

The first property of the BEF model is that it includes as a particular 

case the steady state normal model of Harrison « Stevens (1976a). In fact, 

by defining the normal additive model in terms of the uncertainty function 

S. , we obtain the exact functions h(St t) and S^+j t/S+ t defined in 

section 4.5.3 . In a sense, this important property backs up all the assump

tions we made in order to define the general steady state model, such as, 

the choice l(=-‘s in equation 4.7 .

Referring to section 4.4.1, the ( 0tl°t) - (0t+l|Dt ) transition for 

the normal additive model is given by:

If : (011Dt) * il(mt,Ct) , - - - (4.9)

then: (ot+j|Dt) ^ '¡(m^.C^ + U) - - - - - (4.10)

and also, the particular but important case:

(611 Dt) ^ => ^t+l^t^ ^ - - - (4.11)

The corresponding uncertainty values Ŝ. and  ̂  ̂ are respectively 

(see section 4.4.2):

s,,t- /2ne ct

W  '4ne(lV  “> ■ /s l t *  Ui  - - - • (4.12)

where W. = / 2nelJ’
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From (4.12) we can clearly see that:

(i) St+l,t is a monotonic increasing function of t

(11) 1 im St+l,t .. ,

St,t+“ t.t

(Hi) St+l,t = W. = constant > 0

i.e., the function (4.12) satisfies all the properties of the uncertainty 

evolution function of section 4.5.3 .

Let us now study the (6^|Dt) -»• (9t+jlDt) transition for the normal 

additive model in terms of the corresponding pdf's . Denoting:

pt,t : Pdf (0t|Dt}

pt+l,t: pdf (0t+lIDt) *

we obtain from equations (4.9) & (4.10):

c t+w
pt+l,t pt,t ; Ct > 0

and, from 4.12:

h(S

pt+l,t a pt,t
t,t'

where h(St t) 2 2 
st + wk

(4.13)
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From (4.13) we can clearly see that h(S ) : S e R+ [o,ll ,L » L t j t
satisfies all the required properties of the posterior prior transition 

function of the steady state model introduced in 4.5.3 .

Finally, from (4.12)

S2t + l , t

we can write:

St,t+ w

t,t

2
k

and consequently, from (4.13) we obtain:

S4
t + l , t

t,t - (4.14)

If we take the limit as St t goes to zero we obtain:

lim S. , . = lim t,t

st , t - °  t U t  St,t + ° / h i S ^ J
—  = U. = constant > 0 k

for W > 0

As we can see, the normal additive model defined in terms of S. , 

exhibits all the assumed properties of our BEF steady state formulation. 

Moreover, the exact functions we obtained here perfectly match the theore

tical assumptions of section 4.5.3 .

4.6.2) flon-Additive Normal Model

Let us now consider the BEF model as formulated in 4.5.5 applied 

to normal observations as shown below:

Observation Equation:

(Yt|ot) -v N(et, V) t-1,2,...
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System Equation:

where:

9(St t}
Pt+l,t « pt,t *

Pt.t : Pdf 0f (0tlDt)

pt+l,t : pdf of < V i l Dt>

g(St t) ; St t as defined before.

From the above set up we obtain for the posterior prior transition:

that: (et |Dt ) n, N(mt ,Ct )

then: ( 6t+ l  1 Dt^ % N(mt+1* Ct + P

where: mt+l  = mt

c*+1 = Ct / g (S t , t>  i f  Ct  > 0 ( or St i t  > 0)

l/(2ne c2) i f  Ct = 0 (i . e .  ,S t+1 j t = 1/c)

From the above and the corresponding additive normal model, where the 

exact transition function h(St is used in place of the approximation 

g(St t), we can clearly see that the constant " c" of
O

g(S. .) =[l-exp(-c S. .) ] is the only parameter of the model that needstjt tjL
a specification before hand. In a sense, it functions as the noise variance 

W of the DLM formulation, since either "c" or "W" gives an account of 

the system's uncertainty variation.

To conclude, we show a simple numerical simulation, comparing the 

DLM with the entropy approach just described. Let the DLM with 

W=10 and V=400 (V/W=40) then, the limiting posterior variance 

(Harrison & Stevens, 1976a] and the corresponding S. value are:

y
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Co = % /l+4 V - 1 -v, 58.4 ; S
* c W

>£= /2.n.e.U^ <v 31.6

Choosing "c" of g(St t) such that g(31.6)= h(31.6), we obtain

c-v 0.082 .

In table C.l (appendix C) we show the values of g(St t) against
5

h(Ŝ . )̂ for Sj.  ̂e [22.6 ; 39.2] or Ĉ. e [30;90]. It is clear that

within this most likely range of variation for C^, g(St t) is responding

satisfactorily to the true variation h(St t). Values of Ct outside

this range, though unlikely to occur, will be eventually brought into 

this interval, as a consequence of the limiting property of the steady 

state model.

In table C.2(appendix C), we can see the comparison of the prior 

uncertainty for many values of the posterior uncertainty t using 

(4.14) with h(St t) and g(St t) respectively.

Finally, in table C.3(appendix C) the results of the maximum support 

estimator for the constant "c" are shown, using the data generated by 

the DLM model with W=10 and V=400.

The increasing sample size is to emphasize the convergence to the 

limiting value of c.

4.6.3) Parameter Prediction

The " l " steps ahead parameter prediction is sequentially obtained 

by:



where:

pf . is the parameter posterior pdf at time t and S.
t,t

its corresponding uncertainty.

Pt+j t tfle Parameter Prlor Pdf at time

t+j and St+j t its corresponding uncertainty, j=l,2

In terms of the uncertainty functions, the above parameter prediction 

scheme is as illustrated below in figure 4.4 :

t+i ,t

Figure 4,4: £-steps ahead parameter prediction scheme; i=0,l,..., t - 1.

4.6.4) System Evolution

In the general model we just described, it was assumed that the parameter 

evolution (or system equation), was given by the posterior-prior pdf 

relationship:

pt+l,t * pt,t

In fact, this is the key concept in our model formulation and enabled us 

to formulate models for a broader class of distributions.

One of the motivations for the use of such a relatioship as the system equation, 

comes from the normal model results. As we showed in section 4.6.1 

the normal model formulated in terms of a positive measure of



uncertainty, leads automatically to this kind of parameter evolution 

(see equation 4.13 in special). The extension for distributions other 

than the normal seems quite reasonable if we consider the system evolu

tion specified only in terms of its entropy. In other words we assume 

that, whatever distribution is attributed for e^, the process informa

tion prior depends only on the last posterior state of uncertainty and 

not on the distribution itself.

Provided the system parameter belongs to the family as specified 

in ii) of section 4.5.2, we then define a steady state model, as the 

system that admits a unique posterior-prior exponent transition function 

h(St>t):|R+ ^CO.l] , with the properties:

i) Monotonie increasing function of t

ii) lim h(S. .)=1

V  00

iii) h(S. .=0) = 0t j t

Accepting the existence of this unique !i(St t) as a general function 

for the steady model, the results of section 4.6.2 for the normal model 

using the approximating function g(St f) are obviously generalised to 

non-normal distributions. The approximation seems reasonable if we 

recall the limiting properties of a steady state model. We know very 

well that, given the nature of the steady model, the system uncertainty 

will alv/ays lies in a finite interval and within this interval a 

linear approximation could even be assumed.

As a matter of illustration suppose that for a generic steady model,

I =(Si *. ; 5. . ) is the most likely interval for S.
S ^2iZ2

to lie in,as shown
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figure 4.5 . It is then obvious that by setting an approximation

g(St f) to h(S. ), we really want g(S. .) as close as possible to h(S. )t,L L,L tst
within 1^ . In fact, wedo not need to bother about the occurrence of

S*. outside I<-. Whether using the true function h(S. ) or the approxima-

tion g(St j.) they will be eventually brought into the interval, unless

some permanent change has happened in the system pattern, in which case,

there would be another most likely interval for S.
tit

h(S. ) and a generic most likely 
*- >t

interval I<j.

4.6.5) Steady State Model-Definition

If we consider in our model formulation the parameter 6̂. as 

representing the level of the process, we then have, according to Harrison 

and Stevens notation, a steady model. Assuming this particular model 

within our BEF framework, the following result can be obtained:

Theorem 3

If the parameter distribution is differentiable and unimodal, then
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a steady state model is the one in which the mode remains constant in 

the posterior-to-prior transition.

Proof:

Let

pt(e) denote the posterior pdf at time t, i.e., Pt t 

Pt+l(0) denote the Prior pdf at time t+1 given Dt>

mt the mode of Pt(e) 

m*+  ̂ the mode of p^+ ̂ (0)

Since mt is the mode of (et |Dt) and by assumption P+t(e) is 

differentiable, we can write:

= 0
e = m.'t

From the system equation (4.14) we can write for p*+^(e):

p£+1(e)oC [ Pt(e) ]9

and, by differentiating with respect to e:

8
36 Pt ^

For e= m^, we get:

= 0
39
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that is one of the most important differences between our BEF steady 

state model and other formulations for the same steady model. While in 

other models the mean is kept constant in the posterior-to-prior transi

tion, in our method the mode remains constant.

A similar conclusion was obtained by Smith,(1978) by redefin

ing the steady state model in a decision space. In doing so, he obtains 

an expression like (4.6) but with a constant in place of g(St t) for

all t=l,2.....  This seems to be a very strong assumption, in the

sense that, he is forced to assume the 6te.a.dy Atate. of the steady model 

from the very beginning.

4.6.6) Goodness of Fit-Relative Entropy Criterion.

In our model formulation, we adopt as our forecasting pdf

the distribution for (Yt+jIDt) i j=1.2......  obtained by integrating out

the parameter in the joint observation-parameter distribution. By the 

use of an entropy argument, we show in this section the goodness of fit 

of this predictive distribution.

Let: A = {p(Yt+1| 6t+l̂  ; 9t+le0 } be a c1aSS °f density

functions for parameters models defined on a sample 

space ¥ and parametric space q , and

Dt = i>'i»>,2,',‘’yt} as defined before-

The goodness of fit problem could then be stated as:
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"Fit a model for P(Yt+j l0t+i^ on the hasi s oY ancl the fact

that the true et+  ̂e e is unknown for all t=0,l,... "

It is clear that the possible fitting models to p(Yt+J 0 t+^)> 

are basically classified into the categories:

i) Estimative Density Function Class g^ (EPF)

where et+^(Dt) is some efficient point estimate for et+j 

based on D^ .

ii) Predictive Density Function Class 6 2 (PDF)

As we said at the beginning of this section, we use an entropy 

argument as the discrimination criterion between the two classes. In our 

present case we use the Relative. Entsuipy or the V¿ieA.aninouU.ng Measure 

between two pdf's , defined as:

If p(x) is the true pdf of a continuous rv X e X (discrete 

case is similar), and f(x) an approximation to p(x), then, the entropy 

of p(x) with respect to f(x) is:

er  {pi^Yt+ i lDt^ p Yt+ i l0t + r  6t+ i^Dt^ ; ei = A }

62 * p2^Yt+lI Dt^ ~ p^Yt + l  ,et+l I  Dt^ * d0t+ l  ’ B2 " A *; e2 2 a }

0

i.e., the predictive distribution as used in our model formula

tion (see section 4.5.5-C.2).

X
■P M -  . p(x). dx 
f(x)
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It is clear that (refer back to chapter 2) Ht p,f] is an 

invariant, non-positive quantity (H=0 if p=f) and is a measure 

of overall closeness between p(x) and f(x). -H [p,f ] is the 

Kullback and Leibler direct measure of divergence. Consequently, the 

greater the relative entropy, the higher is the degree of approximation 

between p(x) and f(x). In this case, the maximisation of H[p,f] , 

or its expectation provides a criterion of goodness of fit of the pdf 

f(x) as an approximation to p(x).

For details of the properties an the use of this discriminating 

measure see, for instance : Akaike, (1977-b, 1977-c); Aitchison 

(1975) and Aitchison & Dunsmore (1975).

"The predictive distribution (PDF) is optimal in the sense of 

the relative entropy criterion".

Let q(Yt+i IDt) and r(Yt+1 |Dt) be two contenders for the role 

of estimating p(Yt+1|et+i)-

Theorem:

Proof:

Then, the measure of discrepancy between q(Yt+1 I Dt) & P ( V t + 1l et+1 

and r(Yt+1|Dt) & p(Yt+1|et+1) is, respectively:t+11 t+1

• p(Yt+ll0t+l^ dYt+l
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By the definition of H, we can say that:

"q is closer to p than r if:

H [PI q.r J = H2[ p,r j- Hj [p,q] = -

is non positive".

The above measure depends on 0t+j (and D̂ ., which is supposed to 

be known). On the other hand, given the knowledge of the prior pdf for 

( et+i|Dt), the natural measure of relative closeness, would then be its 

expected value with respect to pt+  ̂t> that is:

(0t+llDt ^

E ( H [ p ; q , r ] } =  H [p;q ,r ] • pt+1>t -det+1
0

or, taking into account the expression for H p; q,r :

By changing the order of the integrals:

dot+1
U W V  -1

t+1
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By the definition of H, we can say that: 

"q is closer to p than r if:

H [p; q,r] = H2[ p.rj- Hx [p,q] = - { ¿n
Y

is non positive".

The above measure depends on 0t+j (and D^, which is supposed to 

be known). On the other hand, given the knowledge of the prior pdf for 

( 6t+i|Dt), the natural measure of relative closeness, would then be its 

expected value with respect to pt+  ̂ t> that is:

E { H[ p; q,r ]} = H [Piq.r- ]  - pf+1>t • det+1
0

or, taking into account the expression for H p; q,r :

By changing the order of the integrals:

p(Yt + l l 0t + l ^  pt + l , tt+11 t+1

dot+1 t+1
Lr(Yt+ilDt)



of theBut from (ii), the inner integral is the P2^t+llDt̂  

class $2 • Consequently, the above can be written as:

E { H [p ;q ,rj } = -

By making q(Yt+ ̂ |Dt) = P2(Yt+11Dt)’ the exPressl0n (4.15) becomes 

the relative entropy H l^.r] , which is by definition non-positive for 

all r(Yt+ilD )̂ different from p2 |Dt) (unless r=p2 , when 

H[P2>n = 0 ), and in particular for r(Y^+ ̂ |Dt)= Pi(Yt+l^t^ the 

class gj •

Consequently, the predictive distribution of our model formulation 

is unrivalled in its closeness to the true distribution p(Yt+^10t+j)-

4.6.7) Aggregate Likelihood for Estimation of "c"

According to our model formulation, the prior distribution for the 

parameter at any time depends only upon an unknown parameter "c", i.e., 

the constant that appears in the function g(S.). In this section, we 

show how this constant can be estimated sequentially through the available 

data. We use mainly the idea of aggregate likelihood of a Bayesian model, 

suggested by Akaike (1977b) and adapted to our BEF models.

Let us start by assuming that our prior distribution belongs to a 

parameterized family G, where:

G ={q(ei + 1|c)= p(9i + 1|c,D.) e1 + j£ 0 ; c unknown positive

constant ; 1-1.2..... t)
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Then, using the fact that p(.Ŷ | et) is known for every t=l,2,... 

by assumption, we could get r(Y.j|c) = p(Y^|c,Di_j) by straight integra

tion, as shown below:

we define L(c)=£nr(Dt|c) the Aggregate Likelihood of the Bayesian model, 

specified by the data distribution p(Yje^) and prior q( 0i |c). Me 

can then obtain an estimate for c by maximising L(c), i.e.:

As shown by Akaike, this estimate obtained by direct maximisation 

of the aggregate likelihood, will at least asymptotically, approximate 

the optimum choice within the parametric family G. 4

4. 7) Sufficient Statistic Specification

Me finish this chapter with an interesting alternative model formula

tion using mainly the material covered in chapter 3. If we concentrate 

only on the concept of sufficiency, we can reformulate our model by using 

the intrinsic relationship between the Maximum Entropy Distribution and 

sufficiency, described in the theorem and corollary at section 3.3 .

p(Yi le ^ -  q(e,-1c) dei ; i= 1,2 > • • • i t

0

If we now let:

t
r( Dtl c) = _n r(Yi|c)

i = l

c = max L(c) 
cdR+
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This straight link and the properties of the maximum entropy distribution, 

suggests to us that a general Bayesian formulation, applicable to distri

butions not only normal, is possible.

The general model formulation would be similar to what we have 

described in section 4.5.3, the only difference lying in the posterior- 

to-prior parameter specification.

Referring to the steady state linear model as our usual starting 

point towards a non-normal extension, instead of exploring the posterior 

prior exponent transition function and relating it to the posterior entropy, 

we should now examine the sufficient statistics specification for the para

meter prior distribution. In other words, from equation (4.10) we see 

that:

E < ®t+1 I V  = mt and E {6t+l IDt} = Ct+ W+ mt

The above average equations, when put into the Jaynes' formalism; 

functioning as constraints, would result in a normal maximum entropy 

distribution for the prior. It is then clear that for the Kalman filter 

models, the distribution assumed for ( | ); t=0,l,... is the least

prejudiced one, constrained on the given sufficient statistics. Put 

this way, there would be no need for the additive formulation of equations 

(4.3) and (4.4). Finally, we can achieve the desired non-normal extension, 

if we consider that the process parameter distribution is such that, the 

results of the theorem and corollary of section 3.3 are applicable. In 

this case we should have to change the general assumption (ii) of 

section 4.5.2, by constraining the process parameter to a parameterised



95

class of the exponential family. In doing so, we are able to use all 

the results of chapter 3 concerning Maximum Entropy and Sufficiency 

and the general model formulation would not differ from what we have 

described in section 4.5.5, apart from the prior parameter pdf 

obtained as follow:

Instead of A-(iii) of section 4.5.5, we should have the expected 

system evolution as a known information:

t-1 to t assumed known and gi ; i = l,2,...,n are the known functions, 

specifying the minimally sufficient statistics for the distribution of

^°tIDt-1^ '

The prior pdf for (et |Dt_1), i.e., pfc t-1 is then given 

by the Jaynes' principle as the least prejudiced distribution, obtained 

by maximizing the entropy Ht , subject to the constraints

described above. For a detailed description of this general formulation, 

we refer to Souza & Harrison (1977), chapter 2.

As a final remark we would like to point out that, in using this 

formulation for distributions other than the normal, we are likely to 

come across difficulties in the implementation of the system parameter 

evolution functions 4>̂ 1 ̂ (t-l,t). This is due to the difficult interpreta

tion of some of the sufficient statistics of the parameter distribution 

related to the model itself. As shown in our previous work, we could

(l) (t-l.t) 1; 1-1.2.... n

where system parameters from
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avoid this problem by specifying the evolution of functions related to 

the sufficient statistics which are easier to interpret. For instance, for 

the Poisson-Gamma model, instead of working with ¿n(et|D̂ ._̂ ) itself, 

we could formulate this evolution in terms of the coefficient of variation 

of (et |Dt ^), which is for a gamma distribution well defined in the 

interval [0,11 .

Another disadvantage of this formulation is related to the steady 

state model. In adopting the sufficient statistics formulation, we are 

forced to accept that the mean of the parameter distribution is held 

constant for the steady state model, whatever the distribution is. This 

seems for us quite strong, specially when dealing with skewed distribu

tions. In such cases, the mode of the distribution seems more appropiate 

to be kept constant in the posterior-to-prior transition.



CHAPTER 5 :

STEADY STATE POISSOH-GAMMA MODEL

5.1) Introduction:

In this chapter we apply our BEF formulation to the case where 

the process level e 0 is assumed to be a gamma distributed r.v.

for t=l,2......  For the process observation r.v. Y^ e Y we assume

the usual conjugate form, i.e., a Poisson distribution. As we have mentio

ned before, the use of this conjugate form is not compulsory for the 

method; we use it merely for the sake of simplicity and tractability of 

the posterior.

This model was first proposed in a recent paper by Leonard and Harrison, 

(1977). They use a Bayesian technique which enables them to extend the 

Harrison & Stevens method for Poisson observations. The first stage 

equation of the steady state DLM formulation (observation equation) is 

substituted by an assumption that the observations Yj, Y2>... are 

independent and Poisson distributed given their respective means 

0J. , and the second stage (system equation) remains the same

i.e., e.j= 9 ^ +  w.j ; i = 1,2.... n , for which the first two moments

of the error term are required to be specified. A further extension of 

their method was proposed by Souza & Harrison,(1977) by the use of the 

least prejudiced assignment of pdf for the parameter evolution as opposed 

to the additive parameter equation assumed by Leonard & Harrison.

Finally, Smith,(1978) treats the same Poisson-Gamma process. As 

we have commented in section 4.6.5, Smith's formulation, although obtained 

through a decision theoretic argument has a similar updating system to ours.



However, as we shall see later, there is a fundamental difference 

between the BEF and Smith's model, related to the limiting properties 

of the steady state model.

This chapter deals with the theoretical description of the model and 

its applications to simulated and real data. The various tables containing 

the numerical results are shown in appendix D.

5.2) Entropy of the Gamma Variate

Before proceeding with the description of the model, a preliminary 

study concerning the parameter distribution is required. In fact, we 

need to show first that Shannon's entropy and the e-transform uncertainty 

function for a gamma variate satisfies the basic assumption (ii) of 

section 4.5.2 .

Let X e IR+ be a continuous r.v. gamma distributed with parameters a 

and B , i.e.:

X ^ G( a,B ) , where:

X e IR+ is a continuous r.v.

a is the shape parameter (a > 0)

3 is the scale parameter ( 3 > 0)

Denoting the pdf of X by f= f(X|a,s)

f= f( X| a, 3 )= 3a . X “'1 • e"3X /T(a) ............ (5.1)

To obtain the expression for the entropy of X, we first write

(5.1) in the equivalent form:



From which we can write:

01 = a ; e2 = g ; l<1(X)= ¿n X ; K2(X) = X

AjiBj) = a -1 ; A2( 02) = -  6 ; Q(a,3)= Ba / r(a)J

and S(X) = 0.

Since A^( e^) and A2( e2) are differentiable, we can take the 

above functions into the results of appendix A, giving the following 

expression for the entropy of X :

IIy = in r(a) + a [1- f(a) ] + f (a) - in 3

where r(u) = tu"^ . e_t .dt is the gamma function of u > 0

and fCu) = r(u)J.. = r is the Digamma function of
du r(u)

u > 0. [ Abramowitz A Stegun, 1965 ].

How, to obtain the range of variation for in (5.2), we

first need to check the range of definition of a and 6. From the 

considerations made in chapter 4, we assume in our model that the 

mode of the distribution exists. This means that a> 1 since 

Mode (x)= (a-l)/B • Also, since Var(x) =a /32 and Coeff. Var. (X'' = l

it is clear that we have:
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(i) For the maximum uncertainty distribution for X when

(a -*■ 1) and (6 0) and, from (5.2), lim = + 00

a -*■ 1 
B->0

(ii) For the minimum uncertainty distribution for X when 

a,3 -*• + <*> and again, from (5.2):

lim llx = - °°, because [ see Abramowitz & Stegun, 1965 ]
a,6 +0°

lim {¿n r(a)+ afl-Tia)]} = 0 and lim 1'(a)= const. M )
a-*+°° a->-+00

From (i) & (ii): e ® and consequently the e-transform

uncertainty function for X, satisfies the basic assumption (ii) of 

section 4.6.2 and is given by:

= exp { Hy } = exp{ In r(a) +a [l-¥(a)J +f(a)-tn 6) — (5.3)

5.3) BEF Poisson-Garima System; Model Description

With S. as defined in (5.3), we are now ready to apply our 

BEF as described in the previous chapter to the Poisson-Gamma process.

notation:

At any given time t=l,2,—  let:

Yt be the process observation.

6t be the process parameter (unknown) ;
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(i) For the maximum uncertainty distribution for X when

(a 1) and (B -*■ 0) and, from (5.2), 1 im = + °°

a -*■ 1 
B->0

(ii) For the minimum uncertainty distribution for X when

a,(5 -*• + oo and again, from (5.2):

Hjj = - oo, because [ see Abramowitz & Stegun, 1965 J
a,6 + +c°

1 im {¿n r(a)+ a[l-4 '(a)J) = 0 and Tim v(a)= const. M )
qj->+oo Q£->-+00

From (i) S (ii): ^  e IR and consequently the e-transform 

uncertainty function for X, satisfies the basic assumption (ii) of 

section 4.6.2 and is given by:

= exp { Hx } = exp{ in f(a )  +a [l-T(a)J +S,(a)-£n 6) — (5.3)

5.3) BEF Poisson-Gamma System; Model Description

With S. as defined in (5.3), we are now ready to apply our 

BEF as described in the previous chapter to the Poisson-Gamma process.

dotation :

At any given time t=l,2,... let:

Yt be the process observation.

6 be the process parameter (unknown) ;
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(et _ll Dt-i) : Process parameter posterior at time t-1 

with pdf p t-1 t_1 (known)

(0t|Dt-l):

pdf p
L »

process parameter prior at time 

(unknown)

t wi th

st-l,t-l = s [(et_ 11 Dt-1 given by 5-3

9 ŝt-l,t-l) = £l -exp(-c st_i>t.i)^|2 ; c e IR+

Then:

THE MODEL

Observation equation: (Y^l 9t) 'v Poisson ( et)

System equation: pt,t-l ^[Pt-l.t-l] ^ St-1,t"1^

with the model specified as above, the following step shows how the 

process parameter is sequentially updated in time.

Information:

(i) The process observations are generated according to the

model described above and g(-) is such that c is supposed 

known at all times.

(ii) The posterior parameter process distribution at time t-1 

is assumed to be:

( et_iIDt-î  ^ Gamma (at-l * et-l^ 

where at_, > 1 and Bt_1 > 0 for all t=l,2.......

J



(0t-ll Dt-l) : Process parameter posterior at time t-1 

with pdf Pt-i t-1 (known)

(0tlDt-l^: Process parameter prior at time t with

Pdf Pt.t- j (unknown)

st-l,t-l = s [^t-i^t-i5] given by 5-3

9(st-l,t-l) = [l -exp(-c St-l,t-l}] 2 ; c £ R+

THE MODEL

Observation equation : (Ytl 9t)'vPoisson ( 9^

System equation
: pt,t-l *  [ pt-l.t-l ] ^ St-1,t‘

with the model specified as above, the following step shows how the 

process parameter is sequentially updated in time.

Information:

(i) The process observations are generated according to the

model described above and g(*) is such that c is supposed 

known at all times.

(ii) The posterior parameter process distribution at time t-1 

is assumed to be:

{ 9t-llDt-l) ^ Ga' ™  {at-l ; et-l} 

where > 1 and > 0 for all t=l,2,...
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UPDATING PROCEDURE - v >

Prior time t :

( et t°t-l^ ^ Gamma ( at ’ et ^

at = g(St-l,t-l) (“t-l + 1 ' - - - -(5.4)

6t = 9 Ŝt-l,t-l^ 8t-l - - - - -(5.5)

Updatinq:

Observing Yt= yt , (0t lDt) is updated as:

(0t lnt) ^ Gamma (a^, 6̂ 1

“t = at + yt - - - - - - - - - - - -(5.6)

et = et + i - - - - - - - - - - - -(5.7)

Finally, the prediction of future observations is obtained as 

summarized below:

PREDICTION 1 -STEPS AHEAD

Parameter: (©t j -1D^) ; j — 1 » 2.... 1

(V j |Dt) ^ Gamnia (V j  ; w

where, for j=2,3,.. . ,1

“t+j "9^St+j-l,t^ at+j-l _1 +̂ 1 - - - - - - - -(5.8)

8t+j 9^St+j-l,t^ 6t+j-l - - - (5.9)

t+j -11 Dt ̂ 1

and for j = l as in equations (5.4) & (5.5) with t -*• t+1

■II I * w .
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Observation (Yt+j IDt); j=l,2,..., t

p < W Dt> ’

Y

(5.10)

(5.11)

5.4) Limiting Form of the BEF Poissor.-Gamma Model

Referring to the Harrison & Stevens steady state normal model, it 

is not difficult to see that it reaches its limiting form with a constant 

positive value for the posterior variance C^. This is due to the fact 

that Ct does not depend on the observations (ypy2>...» yt), but just 

on the value of t. Following the argument, it is shown by Harrison & 

Stevens, (1976 a) that in this steady state of the model the limiting 

form for the posterior mean (or mode) tends to:

where A= C/V ; C: limiting posterior variance .Of course this 

limiting process with constant A is the established "Exponentially 

Weighted Moving Average" (EWI1A).

oo
m. = A Z (1-A) 

z i=0
yt_i as t - - - (5.12)
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If we now concentrate on our Poisson-Gamma BEF model, we. can 

clearlysee that the above argument does not follow. This is due to 

the fact that in the present case, the system uncertainty is not 

independent of the observations y^, as we can see from equations 

(5.3), (5.6) and (5.7) . In other words, while in the normal model 

Ct -+ C automatically implies .Ŝ  ^  S and consequently g(St>t) -*■ a, 

in the Poisson-Gamma case, neither, t nor g(St t)will have a fixed 

limiting value but instead, will vary according to the amount of 

information brought to the system by the most recent observation.

As we have mentioned before, this limiting property of our BEF is 

is the key difference between our formulation and Smith's model. The 

constant value for the exponent g(St^t) (posterior-to-prior transition- 

system equation) at all times assumed by Smith is never reached in our 

formulation, even in the limiting state, since in this case, we have a 

most likely limiting interval for g(S^ t) (St t or ,.) , as opposed to

a single limiting value.
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5.5) Applications and Discussions:

Ue now show some interesting features of our BEF described in 

the previous sections, when applied to simulated and real Poisson data.

The method was first applied to the data shown in table D.l of 

appendix D. They correspond to 500 constant mean Poisson observations 

generated by simulation (mean constant equal to 3). The objective of the 

use of the method to this set of observations is not only to test the 

consistency of the method but also to check its validity as an estimative 

procedure for the constant mean of the Poisson data.

In other words, we should like the method to correct the initial wrong 

assumption that we have a time dependent rate for the mean of the 

Poisson process.

We considered initially the first 250 observations and then the 

whole set. For the first half of the sample, we estimate the constant 

"c" of the model using the aggregate likelihood procedure described 

in section 4. 5.7 .The results are shown in table D.2 . As we should 

expect, the optimum c ( c 'v 39.6) is rather big, which gives for 

g(St t) a constant value very close to 1 for all St t. However, the 

real confirmation of a constant mean Poisson process can be drawn when 

we add the other half. We should expect now a higher value for c since 

by adding these new observations we are giving more information to the



model and consequently, the uncertainty value St t tends to'decrease 

with t. The calculated c= 49.4 shown in table D.3 confirms the 

consistency of the method. As a matter of illustration, we show in 

table D.4 the values for the entropies (H arid S) for the last 

five observations for both cases. From there we can clearly see the 

gaining of information due to the new observations added to the model, 

in terms of the uncertainty functions.

The initial values used in both cases (cx0=100, Bq=33) , constitute 

a reasonable representation of our state of knowledge about the system 

given the prior information available. In setting these values, we 

used the fact that the Poisson data have a constant mean around 3 and 

so, we assume the initial mode for the parameter equal to this value, 

i.e., (ag-1)/ 6g= 3. Consequently, the initial coefficient of varia

tion (1/ /~a^) is equal to 0.1 , giving an indication of the high 

degree of certainty we have about the parameter of the model.

It should be recalled that the coefficient of variation of a Gamma 

variate for which n > 1 lies in the interval [0,1J .

To conclude this illustration, from table D.5 we can see how 

steady the system is after 500 observations and also the degree of 

certainty about the parameter, expressed by the small variance for the 

parameter distribution.

As a second illustration, we show an application of our method 

for real data in which there exists a random fluctuation of the under

lying mean, that is, the data form a sample from a Poisson process of 

varying rate.
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The data correspond to the number of weekly deaths caused by acute 

respiratory infections in Greater London, covering the period from 

15th February 1972 to 1st October 1976, as shown in table D.6 and 

illustrated in figure 0.1 .

Following the sequence of section 5.3, we first estimated the 

constant c from the given data. The result shown in table 0.7 

gives c= 0.57 and the corresponding value for the aggregate likeli

hood equal to 27.6292 .

Also interesting to point out in this estimated value for c, is the 

indication that a Poisson process should be the true assumption and 

its relatively low value (c=0.57) indicates among other things the 

existence of a variation on the underlying parameter. As initial value 

for the parameters we chose aQ=6 and 3^=2. These values seem to 

be reasonably in accordance with the data of table D.5, since they 

correspond to an initial mode equal to 2.5 and an initial coefficient 

of variation of about 0.41 .

An important feature of the method is its independence of the choice 

of these starting values, especially if the sample size is not small. 

However, a preliminary analysis on the existing information is re

commended and helpful in setting fair starting values.

In two more tables we give results obtained by the model in two 

different sections of the series. Ue only show the posterior and 

1-step ahead distributions for the parameter. In the first, table 

D.8, we can see clearly how quickly the model settles down regardless 

of the initial value adopted and then, in table D.9, how the model



copes with quite large fluctuations in the system.

Finally, in figure D.2 we show the plot of the posterior 

mode for the 199 observations. From this illustration we can see 

the smooth change in the system parameter mode with the observation 

pattern.
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CHAPTER 6 : POISSON-GAMMA MULTI STATE MODEL

6.1) Introduction:

As stated in chapter 4, our BEF allows us to consider in the 

model formulation, uncertainty in the parameter values and in the 

model itself.

In this chapter, we show how the single Poisson-Gamma model of chapter 5 

can be extended to take the uncertainty in the generating model into 

consideration, at each time-point. This problem, as considered for the 

normal case by Harrison a Stevens (1976a), can be incorporated into 

classification II of the Multi Process Models.

The formulation of the Multi Process Poisson-Gamma Model which 

we shall present here, is in particular applied to epidemic data by 

considering two different possibilities (states) of the generating 

model at each time-point:

State I : No epidemic

State II: Epidemic

The main purpose of the extension is to allow for prompt recogni

tion by the model of state changes within the system. From the nature 

of epidemic data, a single state approach would take a considerable 

number of observations ( a long transition time) to react to changes 

in the system while the two-state approach reduces this transition 

time, yielding a more reliable forecasting system.

Although a general n-state model could be formulated, we confine 

ourselves in this chapter to the two-state case applied to data showing 

the epidemic wave pattern. Models with the same basic structure are
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often appropriate to other situations.

In the next two sections we give a theoretical description of 

the model and its updating procedures and in the final section its 

numerical application to a particular set of epidemic data is shown.

6.2) The Model

We now describe briefly the steps leading to the model structure 

and its updating equations for the parameters and probabilities in- 

volved.

Accordingly, we observe a Poisson process whose level e t 

follows a gamma distribution. We believe that at any time t, the 

generating model is a random choice between two models, i.e., two 

states, where:

: Hodel 1: (No epidemic) ; e t= 6 - - - - . (6.1)

e small positive constant

il[2  ̂ : Model 2: (Epidemic); 0̂  r.v. gamma distributed - - -(6.2)

Equation (6.1) states that when there is no epidemic, the 

observations come from a Poisson process with a constant, low-valued 

rate ( q =̂ oc), implying the assignment of a high probability to the 

occurrence of small-valued observations (depending on the selected 

value for 0c), and almost zero probability to the occurrence of high- 

valued observations. On the other hand, with M£ ' of (6.2), et 

is a gamma distributed random variable and the model itself corresponds 

to the single steady state Poisson-Gamma BEF, described in chapter 5.



Given the information up to time t-1 (D^ _^, the updating

system t-1 -*• t is as follows:

6.2.1) Information a Priori:

Given only before data comes to hand we know the

quantities described in subsection (a), and calculate the quantities 

of subsection (b) as shown below:

(a) Known quantities at time t-1:

(al) Probability that the model j was operating at time t-1:

- - - (6.3)p^ { = Prob { I D ^ j} ; j = 1,2

.(j)(a2) Parameter distribution conditional on M  ̂ (model j in 

operation at t-1):

(0t-l 1" i 1! Dt-i> - 6c.

(et-l 1M(2) D ,) % Gamma (af! ; ß{2))----
t-1 L" 1 t-1

----  (6.4)

(a3) Model transition probabilities, i.e., probability that 

model j is operating at time t given that model i 

was operating at time t-1 . 

lie use the notation:

n.j = Prob (m[J) | f £ j  Dt_1} ; i,j=l,2........ (6.5)

There are four such probabilities
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t-1 \

„») „(2)

m U)
nil ni2

„(2) n21 n22

(b) Calculated quantities at time t-1:

(bl) Probability based on that model i operated at

time t-1 and model j will operate at time t, i.e.,

Since:

,(j) |
't 1 Dt-1 > ‘

(j) (,
't 1 Dt_l} = Prob (I1t

Prob { Mt-1 * Dt-1} *

we have,using equations (6.3) and (6.5):

Prob {M^j Dt_1> = n .. . p[’j - - - (6.6)

i ,j=l»2

(b2) Conditional one step ahead predictive distribution, i.e. 

the distribution for (Y^ |M^j 1 1 ^  i»j = l»2 .

To calculate this distribution we first need the condi

tional distribution for the parameter

< » ,  IMt i !  " i j )  W -



Referring to our model definition (6.1) and (6.2),.we can

clearly see that to calculate this parameter distribution
(1) (2)we have to consider separately the cases and ,

due to the definitions of our models.

for j=2 and i=l,2 it is clear that:

where, for the particular transition 1 to 2 (no epidemic 

to epidemic), a subjective assumption for the distribution 

is required. From the conditional parameter distribution, 

we use the results from chapter 5 to obtain:

For j=l and i = 1,2 we have a different situation. In 

this case, whatever happened at time t-1, we are certain 

about the parameter at time t as we can see from (6.1).

6.2.2) Updating System:

Having observed Y^= yt> the parameter and the prob ab il i t ie s

involved in the model are updated as follows:

and 6 * ^ ’̂  by the use of equations (5.10) and (5.11).

Therefore: (et Dt-1^ ' 6c

and consequently:

(Yt l H[-l Dt-P % Poisson (ec) ( 6 .8 )



113

Referring to our model definition (6.1) and (6.2),-we can 

clearly see that to calculate this parameter distribution 

we have to consider separately the cases and

due to the definitions of our models.

For j=2 and 1=1,2

(0t lM(i)t-1 "i2) °t-l>

where, for the parti

to epidemic), a subjective assumption for the distribution 

is required. From the conditional parameter distribution, 

we use the results from chapter 5 to obtain:

<Yt l f1i - i  Mi 2) D t . i W l e g . S i n . l p ^ 2* ,  p ^ V - - (6.7)

where and pi,1^2  ̂ are calculated from a

*(i,2)and by the use of equations (5.10) and (5.11).

For j=l and i = l,2 we have a different situation. In 

this case, whatever happened at time t-1, we are certain 

about the parameter at time t as we can see from (6.1).

Therefore: (et |M^| , Dt l) - 9C

and consequently:

i n  ..in
< V  nt-i t Dt-1^ ^  Poisson (0C) ( 6 . 8 )

6.2.2) Updating System:

Having observed Y^= yt> the parameter and the p ro b ab i l i t ie s

involved in the model are updated as  follows:
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(i) Posterior parameter distribution: (9 Dt); ■ i,j=1,2

As we have mentioned in (b2) of section 6.2.1 for the prior 

parameter distribution; in order to get the posterior, two 

distinct cases should be considered, depending on the model 

obtained at time t.

For j=2 and i = 1,2 , by straight forward use of Bayes' Law 

we obtain:

(ii) Model probabilities:

Given D^, our task now is to obtain an updated expression for 

the probability that model i was operating at time t-1 and 

model j is in operation at time t, i.e., we want to update

where:

For j=l and i = 1,2 we then use (6.1), giving:

- ( 6 . 10)

Prob {M^l M ^ |  } which we call P ^ f o r  simplicity.

we know that:

( i )
Dt_j} .Prob (Mt_1



However, from (6.6) we know that:

prob { m[J) I Dt_1> = H.. . p(t ] \  ; i,j = l,2

and the first term on the right hand side is obtained directly 

from the corresponding distributions given by either equation 

(6.7) or (6.8). Denoting this value by (y ) Ue

then have:

(i, j) (i) (i »3 ), .
Pt n P • Pt-i (yt}t ij- t-i r 1 z

or, by normalizing:

(i *j) „ „ (i) (i,j). .
Pt = K . n1d . pt-1 . p^  (yt) -

where:

K

- ( 6 .11)

■ [ j ,  j ,  " u  • V

-1

6.3) Collapsing Procedure:

The results obtained so far, although mathematically correct, 

present a serious practical difficulty. We started with two models 

M'1  ̂ and at time t-1 and obtained four models at time t.

Repeating the procedure for the transition t -*• t+1 we arrive at 

eight models, as schematically shown below:
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M<!>

M<2>

,(D

, ( 1 )

M<2 >

,(2)

, ( 2 )

,(D

*12)

t-1 t+1

If we proceed in this way, after a few observations the computa

tion would become rather tedious and the computer time and storage 

would becone intolerable.

An approximation has to be introduced and we shall adopt the

following scheme:
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,U)

, ( D .

, ( 2 )

.(1)

M<2>

,(D

» n (2 )

t-1

,12)

Analytically, this collapsing procedure operates as follows:

(i) Collapsed Model

In this case, both models obtained at time t show the. peculiarity 

of 0j.= 6c . Then is the model representing 0^= 0C

and therefore, the prior probability at time t (collapsed 

probability) is:

p[1}= Prob { m[1} |Dt } =

(i,l)
where pt , i = l,2 is given by (6.11)

- ( 6 . 12)

.(2 )
(ii) Collapsed Model

If we look at equate 

two possible ways to obtain model 2 at time t : II

If we look at equation (6.9), we can clearly see that there are

( 1) at t-1
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to t/2) at t and FP2  ̂ at t-1 to at t. In both

cases, the parameter ê. has a known Gamma distribution and

(12) (22)a corresponding updated probability pj. ’ ' and p^’ ' 

assigned for each.

In other words, we have at time t a mixture of two Gamma 

distributions and our aim is to approximate this mixed distribu

tion by a single one that preserves the main characteristics of 

the mixed distribution. It is also clear that to enable the 

procedure to be carried out at future time points, this collapsed 

parameter distribution is required also to be Gamma distributed.

This problem, usually regarded as the dissection of a heterogeneous 

population into more homogeneous parts [ Johnson a Kotz ; 1969 

and 1970 ], was first faced in the time series context by Harrison 

and Stevens (1971), (1976a) for the normal case.

They approximated a mixture of a finite number of normal distribu

tions by a single normal, by considering the mean and variance 

for the single distribution to be the same as for the mixed distri

bution, that is, by equating the sufficient statistics of the 

mixture to the corresponding sufficient statistics of the desired 

single distribution.

Although we have the same problem in our gamma case, our approach 

to the collapsed single prior gamma distribution is elegantly 

obtained through the same line of general thinking.

Firstly, if we refer to the results in chppter 3 it is quite 

clear that the Harrison & Stevens procedure to collapse the normal
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mixture into a single normal can be interpreted in a different 

way. Indeed, by specifying the sufficient statistics of the 

desired single distribution they are in fact using Jayne's 

principle and consequently they are breaking up the discrete 

mixture in a single one that is the least prejudiced probability 

assignment satisfying the constraints given in terms of the 

sufficient statistics.

Following the same general train of thought, the collapsed single 

Gamma distribution is elegantly obtained by straight forward use 

of Jayne's formalism as presented in chapter 3.

In other words, if we consider the mean and the geometric mean 

of the mixture as the known constraints for Jayne's principle, 

then, satisfying this information we obtain as the least preju

diced distribution a single Gamma distribution that collapses the 

mixture.

Consider the distributions in (6.9) written in terms of the 

expected values of the sufficient statistics :

J 1 )  „ (2)  , ( i , 2 )  (i .2)
(0t |!1t_l Mt Dt)^ Gamma ( mt ; gmt )

where:

(i ,2)
m.

.(i) ..(2)
= E i 6t lMt-l Mt ‘ Dt } = at

U,2) , (i ,2) 
'  3t

gm[1,2) = E{ £n9t| N<2) Dt>- *la[1,Z))- 1

'!'(•) Digamma function; y(x) = ^-r(x); F(-) gamma function.
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Then, the collapsed distribution for the parameter at time-' t, 

i.e., the distribution for ( | ;Dt) is the maximum entropy

distribution subject to the constraints:

E {0t |I1<2) Dt ) = mj2)

,( 2 ) .t "tE Une^ m r '  D, ) = gm (2 )
t

whe re:

2
E
i = l

2
E
i = l

(i,2)
gmt

(i.2)
pt /

-(6.13)

-(6.14)

p|2) = Prob { ll[2) | D }= E p|1,2) - - - - -(6.15)
z z z i=l t

12)In this way, the distribution obtained for ( 0^ |ll̂  . D̂ ) 

is, according to Jayne's principle and the constraints (6.13) and 

(6.14), a single gamma distribution that collapses the mixed 

parameter distribution. (See section 3.5).

6.4) Case Study.

He now show the results of the two-state model described in the 

previous section when applied to the data given in Table E.l and illus

trated in figure E.l; 222 weekly notifications of measles cases in Truro 

Rural District, Corwall, covering the period from the 40th week of 

1966 to the 52nd week of 1970 [ Cliff et al, 1975 ] (See also table

F.5 of appendix F) .

Ljf
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The same dataset was also used as a specimen for the single state 

Poisson-gamma model of chapter 5 and the results obtained from the single

state model (Stl) and the multi-state model (MM) are compared. We 

briefly explain how the initial parameters and probabilities can be better 

selected by use of the data.

We then show the relevant results of the MM approach applied to 

the measles data and finally, the comparison between the SH and the MM.

6.4.1; Preliminary Data Analysis:

The input values necessary to set the MM, as described in section 

6.2.1 a re:

-Í1’
= Prob { M ^  i D0 } ; j=l ,2

0C
for model

nij
matrix

location for the distribution of <9t 1 M ^ O  ) 1 t-1 ‘t

Here the data have been used to help give plausible initial

values for these quantities. In order that we may use the data, we 

merely have to construct definitions for "epidemic" and "non-epidemic" 

periods and the transitions from one period to another. It is quite 

obvious that an epidemic period is well characterized (as is a non

epidemic period). A period of no notifications, possible including one 

or two non consecutive notified cases, would roughly consi tute a non

epidemic period, while a period where non-zero notifications predominate, 

constitute an epidemic wave. With respect to the transitions we can consider:



(i) If we are in an epidemic period, two consecutive zero.,

observations following a non-zero observation can approxi

mately be considered an epidemic to non-epidemic transition.

(ii) If we are in a non-epidemic period, two consecutive non-zero 

observations, one of them greater than or equal to 2, follow

ing at least two zero observations can approximately be 

considered a non-epidemic to epidemic transition.

In accordance with (i) and (ii), the measles data of table E.l show 

4 epidemic to non-epidemic transitions and 3 non-epidemic to epidemic transi

tions out of the 222 observations. These balanced occurrences suggest that 

a reasonable estimate for the transition probability matrix is:

we can again use the data to have an idea of its value. Bearing in mind 

considerations (i) and (ii), we could say that out of 222 observa

tions, model 1 (non-epidemic period) is appropriate at weeks: 41/1967 to 

42/1967, 46/1967 to 21/1968; 34/1968 to 15/1970 and 44/1970 to 

52/1970, making a total of 127 times. Uithin these intervals, the observed 

sum of all data is 15, and so, based only on this information, a reason-

suggest a tendency to favour model 2 and so, we use Pg = 0.4 and

0.04

0.97

In selecting 0c for the constant mean Poisson model 11^

able value for ec would be 6 v 0.12 . c



Finally, as we have mentioned before, the prior specification of

the parameter at time t for the model transition M ^  at time t-1 
(21to Mv ' at time t, needs a subjective assumption for the location of
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the parameter distribution. That is due to the fact that for such a 

transition, we are facing the situation where the prior parameter un

certainty is already established by the BEF formulation, i.e.:

Then, the specification of a location for (0^|Dt_^) and the 

above known uncertainty would suffice for the distribution of

6.4.2) Results:

He now present the relevant results obtained by the MM approach 

to the measles data. Uith the inital probabilities, 0C and transition 

matrix as given in section 6.4.1, we first estimated the constant c

section 4.6.7 . The results in table E.2 give c=1.66 and the 

corresponding support equal to 107.36138 .

We next show some interesting features obtained by the MM, especially 

the updating of the various probabilities involved in some sections of the 

data.

5( et |Dt_1) = 1/c

(0. | M^' M*2) D. .). For the particular sample of table (E.l),
1 t-1 t t_1

it seems reasonable to assume:

't̂ l (1t ^  D f  l) ^ ^amma (m°de 3/ 3.5; S(’) = 1/c)

(2 )for the model 11' , following the same procedure as discussed in
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From table E.3 we can see how quickly the MM recognizes the transi

tion M ^  to M ^  when an unexpected two notifications are observed and 

and how this change is confirmed when three is observed at the next 

time-point. It is interesting to note the increase in the posterior 

probability of the transition to M ^  ( pj.1,2 )̂ from 0.02 at

time 55 to 0.57 at time 56, as we should expect. Alson from table E.3 

we can clearly see that at time 59, although no notifications have been 

observed, the MM does not have enough information for a change of state. 

However, the change in the posterior probability of the transition M ^  

to M ^  ( p ^ ’* ) , from 0.001 to 0.340 is quite substantial and it 

is only when another zero is observed at the next time-point that the 

transition to is confirmed.

Another interesting M ^  to M ^  transition is shown in table

E.4 . When four is observed at time 186 after a long non epidemic period,
(21

the MM goes directly to Mv ' with a very high probability. It is

only at time-point 192 that the epidemic out-break is confirmed, because

between t=187 and t=191 the few ca.es registered are not consistent

enough to guarantee the transition. However, it is important to note

that, after the unexpected four at t=186 the MM changes from M ^  to 
(2)Mv ' and there stays, even though the following observations do not 

strongly support this transition.

To conclude, we show in table E.5 the end of the epidemic period 

started in t=186. After observing the first zero at time 213, the MM 

is not sure enough of the end of the epidemic wave, though the probabi

lities are substantially revised. The transition M ^  -*• M ^  is
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' V1
established, however, when another zero is observed at the next time-point.

6.4.3) Si 1 and MM comparison:

In order to show the improvements achieved with the MU formulation 

compared with the Sil formulation, the basic techniques developed in 

chapter 5 were applied to the same data of table E.l .

As usual, we first estimated the constant c and the results are 

shown in table E.6 . From this estimation procedure, we can see the

substantial improvement in the aggregate likelihood 222
I in p(Y |D. . 
t=l Z W

From tables E.2 and E.6 we have, respectively:

222
max l  In p(Y.|D. ,, MM) = 107.36138 , and

t=l 1

222
max 2 In p(Y.| D. ., Sfl)= 57.72938 

t=l z

This value for the aggregate likelihood under MM, almost twice 

that under the SM, is mainly caused by the speedy response of the 

MM when changes in the system pattern occur, as opposed to the slow 

reaction of the single model, i.e., the SM always takes more obser

vations than the MM to cope with the various changes in the system 

behaviour over the time scale.These points are shown in tables E.7 and 

E.8 in terms of the characteristics of the posterior parameter distribu

tion and illustrated in figures E.2 and E.3 where the posterior 

mode for the 222 data points under MM & SM respectively are plotted.
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CHAPTER 7: STEADY STATE BINOMIAL-BETA flODEL

7.1) Introduction:

As a further illustration of the method, we show in this chapter 

how our BEF model formulation can be applied to the Binomial-Beta process, 

lie shall assume that the process level 0 e [0,l] is a Beta 

distributed rv. for all t=l,2,..., while for the process observation 

we assume the conjugate form, that is, Yte Z is Binomial distributed; 

t=l ,2.....

The same formulation applies to the case where the process observa

tion is assumed to be Negative Binomially distributed. However, we shall 

describe it only assuming the Binomial distribution simply because the 

Negative Binomial case is a straightforward extension of the Binomial 

case.

The problem has received scant attention in the literature and 

in fact Smith, ( 19 78), mentioned above, is the only work dealing with 

the Binomial-Beta process. However, Smith's approach requires the 

steady state assumption of the model to be made at each time point.

The organization of the chapter follows the pattern of the 

previous ones: we give a brief suirmary of the main characteristics 

of the Beta distribution before we proceed with the theoretical model 

description. The last section focusses on the application of the model 

to real and simulated data. The numerical results of these are shown 

in appendix F. The real data are the same measles data as in chapter 5 

and 6, now illustrating the spatial spread of the epidemic over the 

whole of Cornwal 1.



7.2) Beta Variate Characteristics

In order to obtain Shannon's entropy of the Beta distribution, 

required in our BEF model, we shall first describe briefly the main 

characteristics of the Beta variate. This summary is largely a congre

gation of the relevant facts which were found in: Johnson, (1970b); 

Raiffa & Schlaifer, (1961); Hastings & Peacock, (1974) and Tribus, 

(1969).

Let X be a continuous r.v. defined on the interval [0,lj .

Then, we say that X is Beta distributed with parameters a and Y;

i.e., X v Be( a , y ), if its pdf can be written as:

f= f( X | a,Y) = [ B U y)]'1 . Xa_1 . (l-X)Y-l . _ _ _ (7>1)

Where:

X e [0,1]

a, y are the shape parameters; y > 0 

B(oi,y )= Lr(cx). T(y )] / T (a+Y) is the Beta 

function with parameters a & y » defined by:

B(a,Y)= j1 u01'1 ,(l-u)Y_1 . du
J o

It is not difficult to show that the mean, variance and the mode 

of X % Be(a,y) are respectively:

E (X|a,Y) =a / (a+Y) - - - - - - -  (7.2)

Var (X|a,Y) = a-Y / [(a+Y)  ̂(a+ y +l)] - (7.3)

Itode {X|a»Yi = (a-1) / ( a + y “2) if a,Y > 1 - - - (7.4)
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' \t * \
We show next the possible forms that f(X | a,y) can have .as a 

function of the values for the parameters a and y. They can be 

summarized as follows:

(i) a > 1 and y > 1 (Figure 7.1)

In this case, f(x |a,y) has a single mode given by (7.4) 

and:

(i.l) Mode (X | a,y> > 0.5 if a > y => f(x| a,y) is 

skewed to the right.

(i.2) Mode {x|a,y} < 0.5 if a < y => f(x| a,y) is 

skewed to the left.

(i.3) Mode (X|a ,y} = 0.5 if a =y => f(x | a,y) is 

symmetri cal.

Figure 7.1 : Illustration of Beta pdf - Cases (i).

(ii)

f(x|a,y)

a = y = 1 (Figure 7.2)

In this case f(X |a,y) is rectangular

Figure 7.2: Illustration of Beta pdf - Case (ii)
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(iii) a < 1 and y < 1 (Figure 7.3)

In this case f(x| a,y ) has an antimode, i.e., 

f(X| a.y ) is U-shaped. 

f(X|a,y)

\
\

(iii)
Figure 7.3 : Illustration of Beta pdf - Case (iii).

iv) (a-l)‘(y -1 ) < 0 (Figure 7.4)

In this case f( X |a,y ) has no mode, i.e., f(X|a, y) is: 

(iv.l) J-shaped to the right if a > y 

(iv.2) J-shaped to the left if a < y

f(*|a.y) . , :

Figure 7.4 : Illustration of Beta pdf - Cases (iv)

Thinking now in terms of our BEF model, we shall consider in 

this work that Binomial-Beta process whose parameter distribution 

admits as maximum uncertainty distribution the rectangular form (ii). 

This means that we shall only consider the cases (i) and (ii), i.e., 

we assume a, y > 1 •

\
\

\

X
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7.3) Entropy of the Beta Variate. . ...

With the assumptions of the previous section and the results of 

appendix A, we now proceed with the calculation of the Shannon's entropy 

, where x ^ Be( a,y )

From (7.1) f= f(x| a,y ) can also be written as:

f = exp £ (a -1)• ¿n X + (y -1)-ln (1-x) -In B(a ,y

Using the above expression and appendix A, we can define:

0̂  = a ; 02 = y

Kj(X) =£n X ; K2(X) = fn(l-X)

Â ( 0̂ )= A^(a )= a-1 ; Ag( 02)= A2( y )= y-1

Q( a,y )= - In B( a,y ) ; StX) = 0

and consequently:

3A.(a)

3a
= 1

3A2(y )

9Y
= 1 ;. 3Q(a,y) _ 3Q(g»y)

3a 9Y
- (a+y-1)

Taking these results into expression (A.3) of appendix A, we obtain 

for :

= -(a + y-l)(a + Y-2) +ln B( a,y) (7.5)

For the Beta distribution we shall consider in the present work, 

we only need to study the variation of with a and y, for

a, y > 1 .
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It is not difficult to show that: . . .

(i) For a = y = 1 (Maximum uncertainty distribution)

Hx = 0 .

(ii) For a,y > 1 we always have Hy < 0 and for the 

minimum uncertainty distribution (a,y -*■ °°), we have:

1 im = - °°
a ,y  ■+<*>

From (i) and (ii) it is clear that for a,Y > 1 , H is
A

non positive and not defined on IR as in the previous cases. This is 

due to the fact that, in this case X is defined in a finite interval 

giving Hx = 0 for the maximum uncertainty assignment. As a conse

quence, the Sx function defined as usual, i.e., S 

l-Le IR+ onto [o,l] for the kind of Beta distributions we are consider

ing. This is however not a restriction for our BEF model. In fact, 

the same g(St t) curve for the posterior-to-prior transition can be 

assumed, the only difference lying in the fact that g(S. )has reachedL
its asymptotic value at S. =1 and consequently for S. e I , where

L j Z  , t ^

I t [0,1] , the process is in its steady state.

From (7.5) we can write for Sx :

Sx = B(a,y). exp[—  (a + Y-l)(a +Y -2)] - -(7.6)

7.4) BEF Binomial-Beta system; Model Description.

The BEF for the Binomial-Beta process can now be formulated 

following the same sequence as in the previous applications.

' V» \

= exp (Ĥ ,) maps
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Notation : ' '* "

At any given time t=l,2,... let:

Yt be the process observation

9t be the process parameter (unknown)

( 0fllDt-l^: Process parameter posterior at time t-1, with 

with pdf Pt_i t-i (known)

(et | process parameter prior at time t,

with pdf pt j (unknown)

St-1 t-l= ^9t-l I ^t-1^ 3 as defined in (7.6)

9 Ŝt-l,t-l^ = ^  _exP(_c St-l,t-l^ J2 1 c E R

THE MODEL

Observation equation : (Yt |0£,n) n. Binomial <"» V

n known

System equation :
pt,t-l a [ pt-l,t-l

9^St-l,t-l^

The process parameter is sequentially updated in time as follows: 

Informati on :

(i) The process observations are generated according to the

model described above and g(-) is such that c is supposed 

known at all times.



(ii) The posterior parameter process distribution at. time. 

t-1 is assumed to be:

( 0 t _ i  l Dt- p  % Beta( at - r  Yt- i^  ; where at - r  Yt- i - 1

for al 1 t=l,2,...

UPDATING PROCEDURE

Prior time t:

(0tIDt-1  ̂^ Be( at * Yt ^

at 9 ŝt-l,t-l)'(at-l + 1 - -(7.7)

Yt = 9 ŝt-l,t-l,'(Yt-1 -1) + 1 - -(7.8)

Updatinq:

Observing Y^= yt and with n known, (0t l Dt )

is updated as:

(et|Dt) % Be( oct> Yt)

at= at + yt ' - -(7.9)

Yt= Yt “ yt + n - -(7.10)

The prediction of future observations is then obtained as:

PREDICTION £-STEPS AHEAD

Parameter : ( et+j I Dt) 1 j=1.2.... 1
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- '» w

{3t+j |Dt) - Be(V j * )

where , for j=2,3,.. 1
*

“t+j = ^ St+j-l,t}'K + j - i _1) + 1 ■ - - (7.11)

*
V j = g(St+j-l.tJ-(Yt+j-i - i ) + 1 - - - (7.12)

*
W •! ,t= S£<et+j-l M

and for j=l as in equations (7.7) & (7.8) with t -*• t+1

Observation: (Yt+j|Dt) ; j=1*2.... 1

(W Dt} * Be-Bi ( a*+j ,Y*+j , n)

where:

p(Yt+j|Dt)=|
t+jy

B(at+i + W ^t+j ‘W
B(at+j iYt+j ^

7.5 Limiting form of the Binomial-Beta BEF

The limiting form for the Binomial-Beta BEF model follows the same 

argument of the corresponding limiting form of the Poisson-Gamma BEF model 

described in section 5.4 . Here again the system uncertainty is not independent 

of the observations, implying automatically that either St t or g( t) 

will not have a fixed limiting value but instead, depend directly on the 

amount of information brought into the system by the most recent observation.

This point once again emphasizes the difference between our formulation 

and Smith's model as we have already mentioned in chapter 6 .
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7.6) Applications:

We conclude this chapter by showing the performance of the Ginomial- 

Beta BEF when applied to simulated and real data. In order to show the 

consistency of the method we first apply our model to the set of data 

shown in table F.l . They correspond to 490 Binomial observations generated 

by computer with constant parameter 9=0.375 and n=8. In applying our 

BEF to this set of observations, we should like the model itself to correct 

our initial wrong assumption that we have a Binomial-Beta system, i.e., the 

assumption that e is a time dependent Beta distributed random variable.

In terms of our BEF formulation, among other things, the constant c of 

the function g(St t) estimated from the data, should be very high to 

compensate for the low value of the uncertainty as time progresses.

Let us consider initially the first half of the data. Using the 

procedure described in chapter 4, we show in table F.2 the results of 

the constant c estimation from the 245 data points, which form the first

half of the sample. From F.2 we can clearly see that the estimate of c
a 8

is c = 0.12x 10 , a very high value indeed, giving a clear indication

that we can be quite sure that a static assumption for would be 

preferable. However, the support for this model:

245
2 In P( Y. I D. . ; c ) n, 46.415 
t=l z

is slightly less than the corresponding support for the static model
245

( 9(s t > t ) for a11 t= l,2 , —  ), i .e . ,  i^ln p( Yt | Dt _ i ; 9 (0=1) a 

s 46.421 .
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Although the static assumption for e. is nearly confirmed’, the relatively 

small size of the sample (245) do not yield sufficient information to 

confirm the time independence of ê. .

If we now add the other half of the sample and proceed with the 

estimation of c from all 490 observations, we obtain c = 0.46 x 108 

as shown in table F.3 . This increase in the value for c, practically 

confirms the static assumption made previously, as we should expect. It is 

also interesting that the support for the static model:

490
2 In pfY | D . ;g(• ) = 1) * 99.10 
t=l z w

/N O

is now approximately equal to the support of the BEF with c=0.46 x 10 

(see table F.3). This clearly shows that the data in table F.l come 

from a Binomial distribution with n=8 and e=0.375 and that in this case, 

our BEF formulation provides a sequential Bayesian estimation procedure 

for the unknown constant parameter e. By \tay of illustration, in table 

F.4 we show the results of the prior-to-posterior analysis for ê. , 

for the last eight time points.

As we can see, the posterior mode provides a very good estimate for 

and the corresponding low steady value for the variance (0.0006) gives 

an account of the time-invariance of ot .

lie now show an interesting application of the Binomial-Beta BEF 

model formulation to the analysis of the notification statistics for 

measles outbreaks in Cornwall-England. For a better understanding of 

the data, we reproduce appendix I of Cliff et al, (1975) where the 

number of notifications distributed according to the areas in the region,
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are as shown in table F.5 . For the purpose of analysis, >ve,tconsider 

two different sets of observations; one relating to the number of'rural 

districts (RD) affected by the epidemic week by week and the other related 

to the corresponding number of municipal boroughs (MB) and urban districts 

(UD) affected by the disease. In counting these data, we consider a unit 

affected if at least one case is notified for that particular unit. As a 

result, we obtain the two set of observations shown in tables F.6 & F.7 and 

illustrated in figures F.l ?< F.2. Table F.6 (Figure F.l), shows the weekly 

number of rural districts units (RD) affected by the measles epidemic out of 

the 10 RD units of the area (see table F.5), and table F.7 (Figure F.2) shows 

the weekly number of municipal boroughs & urban districts units (i 13 & UD) 

affected by the measles epidemic out of the 17 MB & UD units of the area 

(see table F.5).

Assuming that the number of units affected by the disease follows a 

Binomial (e^.n) process, whose rate of units affected 0^ has a time varying 

Beta distribution, the two set of data of tables F.6 and F.7 are respectively:

(i) (Yt |0t)'u Bi (et, 10) ; 0t Beta distributed and Y is the

random variable representing the number of RD affected by 

the measles epidemic.

(ii) (YtIet:) % Beta distributed and is the

random variable representing the number of MB & UD affected 

by the measles epidemic.

Let us now consider the results of the application of our Binomial- 

Beta BEF to the data of tables F.6 and F.7. We show separately the 

relevant results for each case and then the relationship between them.
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For the RD data of table F.6 , we start by estimating, the-constant 

c following the sequence of chapter 4. The results shown in table F.8 

give c= 2.5 and the corresponding maximum aggregate likelihood equal 

to 48.233 . This low value for c is a clear indication of the time 

variation of the rate of the RD affected by the epidemic. Indeed, if 

we consider the static assumption for this rate [g(-) = Q  and calculate 

the aggregate likelihood, we obtain:

222
£ In P(YJD. g(-) = l) s 32.1761, 

t=l z w

confirming that a constant rate ê. would be a very poor assumption.

If we now look at the data as given in table F.5, it is clear that 

for the period covered we have a severe outbreak of the disease, starting 

from approximately the 44th week of 1966 and finishing at around the 

31st week of 1967, although, apart from Truro RD, only a few districts 

are contaminated by the disease after the 24th week of 1967. The RD 

are again affected, but not as badly as before, nearly a year later, 

between the 22nd and 36th weeks of 1968 and only in 1970, between the 16th 

and the 36th weeks they are again involved in an outbreak.

To show the response of our model to the above 3 outbreaks, we 

produce in the tables F.9, F.10 and F.ll the parameters and the mode 

of the distribution for the rate of the RD units affected by the epidemic. 

Confirming the evidence from the past data, we can see from table F.9 how 

the model responds satisfactorily to the critical period, especially between 

the 5th week of 1967 and the 17th week of 1967 when they are most affected. 

Another interesting facet is the speedy updating of the model parameter

m m m
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as the epidemic spreads over the area. As a final illustration, we show 

in table F.12 part of the one-step ahead predictive distribution and the 

corresponding observed value for the last 13 weeks.

A similar analysis was made for the MB & UD data of table F.7 .

The estimation of the constant c is shown in table F.13 and as we can 

see, c=2.9 and:

222 ^
Z In p(Y. ID. c)= 39.4367 . 

t=l z 1-1

We again compared the steady assumption for the rate et with the corres

ponding static model (g(*)=1) that gave:

222
Z^ In p(Yt |Dt l ; g(-)=l) - 25.744 .

Tables F.14, F.15 and F.16 illustrates the three major outbreaks for the 

MB & UD units, in terms of the parameter distribution and in table F.17 

the one-step ahead predictive distribution is Shown for t=210,... ,222 .

Finally, from the results obtained for the two areas separately, it 

is quite clear that in all major measles epidemics, the outbreak profiles 

for the RD and the MB & UD units are almost identical, although in 

all outbreaks, the rural areas are the first to be ravaged by the epidemic. 

It is also interesting to note that the peak of the epidemic is reached 

earlier in the rural districts than in the town, and that the high proportion 

of infected rural districts is retained until the (later) peaking of the 

urban epidemic profile, after which the two profiles decay simultaneously 

sharply to the non-epidemic (background) rate.



To clarify these points we show in figures F.3 and F.4 the posteri 

node of the rate of units affected for the RD and the MB & UD areas 

respectively. From these two curves, we can also see that the rate of 

RD units affected by the measles epidemic is always higher than the 

contemporany rate for the MB & UD units and the rural epidemic profile 

is more ragged than the urban profile.
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CHAPTER 8 : STEADY STATE TRUNCATED NORMAL MODEL ' ''

8.1) Introduction:

As a final illustration of our method, we describe in this chapter 

how the truncated normal process can be framed within our BEF model formula

tion. We shall consider throughout this chapter the process level 0 .̂clR+ 

a truncated normal variate, truncated at et=0 , while the observation 

Yt e(R+ is also assumed to have a truncated normal distribution, truncated 

at Yt=0. With the above assumptions, we shall show that the posterior dis

tribution for the parameter is not exactly truncated normal but it is made 

truncated normal by the use of a Taylor series, expanded as far as the 

quadratic term. The conjugacy thus obtained for the process is easily modelled 

according to our BEF formulation : this offers a simple updating system for 

the process parameter. The non-existence of a standard form for the posterior 

distribution may be the main reason for the absence of the truncated normal 

model in Bayesian analysis. The existing literature is only concerned with 

classical approaches to estimative procedures for the parameters of single 

and/or double truncated normal distribution. Ue refer particularly to Cohen, 

(1949, 1950, 1951, 1955 and 1959) ; Hald, (1949) ; Shah & Jaiswal, (1966) ;

Hal peri n, (1952); Francis, (1946); Raj, (1953); lieiler, (1959); Tallis, (1961) 

and Regier & Hamdas, (1971). We hope that the above approximation to conju

gacy will open the way to a Bayesian formulation for the truncated normal 

problem.

In this chapter however, we shall consider the steady state BEF model 

applied to a truncated normal system (process parameter and system observa

tion assumed truncated normal distributed) and, without loss of generality, 

the truncation point is assumed to be zero for both, i.e., we assume 

0t, Y.e (R+. The prime objective of such a formulation is to provide a model



applied to situations where a steady state normal model would be-a 

strong assumption. Clearly, many situations arise where the nature of 

the physical system being modelled constrains the observations to take 

values necessarily greater than some fixed value Y. ^ (in the present 

case, we have Yin<r=0) and, unless this fixed value is very unlikely 

to occur and the observations show a high degree of concentration (or 

a very low variance), a purely normal model cannot be the correct assump

tion. Instead, we can make use of this extra piece of information 

(Y^ > 0) and set a truncated normal model that is certainly more in 

accordance with the real situation. It is also important to remember 

that in considering the truncated normal model we are automatically 

extending the normal model that we have described in chapter 4, since, 

as we shall see later in this chapter, the truncated normal BEF naturally 

tends to the normal BEF if the system pattern shows such a tendency.

As we have mentioned above, the present formulation has Y^n^=0 for 

both the process level and system observation. However, it is worth 

mentioning that any other truncation point can be considered, and even 

a double truncated normal distribution could be put in terms of our 

BEF formulation, if that were the case.

The organization of the chapter is slightly different from the 

previous ones. In section 8.2 we define and derive some important 

properties of the truncated normal distribution using mainly the material 

covered in chapter 3. The Shannon's entropy and the corresponding S. 

function are shown in section 8.3 . In section 8.4 we discuss the problem 

related with the posterior in the truncated normal model and in section 8.5 

the BEF formulation is shown. Finally, the numerical results of some appli< 

tions of the model are presented in section 8.6 and appendix G.
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8.2) Truncated Normal Distribution

In this section we briefly review the concepts of a truncated 

normal random variable, its characterizations and properties. We shall 

concentrate on the maximum entropy characterization of the distribution 

by the use of the material presented in chapter 3.

8.2.1) Definition and Characterizations.

Let X be a continuous r.v. from which the following information 

is available:

( i ) X e (R+

(ii) E{X>= m

(iii) E{X2} = v2 + m2 (or Var {X} = v2)

Using Jayne's formulation (chapter 3) to assign the least 

prejudiced distribution for X, taking into account information (i),

(ii) & (iii), the maximum entropy distribution obtained for X is 

given by:

f(X)= exp(- XQ - XjX - X2 X2) .... ...................... (8.1)

(8.1) is a truncated normal pdf, truncated at X=0, with mean "m"
?

and variance v and Lagrange multipliers X.; i=0,1,2 .

The same truncated normal distribution for X can also be characterized 

by the moments of the untruncated distribution. If we consider:

2 2 X ^ fl( p, a ); truncated at X=0 , where p & a are the mean
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' '-t \ \

and variance of the normal untruncated distribution for X, ther\, the 

pdf for X can be written as:

f( X )= 1 1 exp (x-■p)2 '
/2Ito2' [1-4(-p/a) ] 2a2

where: o(t) =
■ t

<j>(u).du ; ij)(u) =
— CO

i

/zñ ‘
• exp

i 
i

C
M

 
C

M
 

3

From (8.1) & (8.2), we obtain:

p= -Xj/ 2A2 ; o 2= 1/ 2a2 - -------------------------(8.3)

In order to have the complete specification for the distribution 

of X, two kinds of problems should be considered:

(a) He know the A-j's ; i=0,l,2 (or
2

y &o ) and want m &

(b) He know m &
2
v and we want the A/s ; i=0,1,2 (or

Problem (a) does not offer much difficulty, for once A,?< A.

known a priori, the moments of the untruncated distribution can be obtained
2

from (8.3) and then, m & v can be easily obtained by:

m = p + ----■ ■
ll(- p/a)

a M(- p/a) 112(- p/a) 

where M(-) is the Mill's ratio, defined by:

-(8.4)

-(8.5)

M(t) =
♦ (t)
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9 ' *.♦ >
and m & v‘ are easily obtained by taking the expectation of J( and 

X2 respectively, with respect to f(x) as defined in (8.2).

The solution for (b) is not so easy. One possible way would be 

the solution of the system of equations (8.4) and (8.5) for y 5 a2. 

But such a system has no straight forward solution as we can see, due 

to the presence of the Mill's ratio function. However, if we use the 

properties of the maximum entropy distribution as developed in section 

3.3 an easier solution can be obtained, as we show now.

From (3.11) and the information (ii) & (iii), we have:

Also, by solving the integral for the partition function (3.14) 

with g1(X)= x and g2(X)= X ̂ , we obtain:

where erfc(-) is the complementary error function, defined by:

To proceed with the solution of the above equations, we use 

the procedure suggested by Tribus, (1969).

Defining:

2

t ,2
erfc(t)= 1 - erf(t) and erf(t)= -*=—

/if 0
e u‘ du

; z= z(t)= 2t - —
yn l-erf(t)]

(8.8)
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• 't \»
It is easy to show that:

• z(t) and

and from (8.8) we have:

3t _ 1 3t _ _t__
3A1 2/x^ 3A2 _ “ 2 X2

Taking the above into (8.6) we obtain:

Ajin = l-2.A2.m2 . (Q2+ 1) - - (8.9)

where Q = v/m (m > 0), is the coefficient of variation of X.

If we now introduce the variables a and 8 , defined as: 

a = A^m and 6 =/X^ m , we obtain:

from (8.6) : 6 = - z(t)/2 (8.10)

from (8.8) : a = - z(t),t - - (8.11)

from (8.9) : Q2 = (l-a)/2 82 -1 - _ (8.12)

Since the coefficient of variation of X is defined on the 

interval 10,1J , and in (8.12) we have Q as a function of t, 

we can construct a table relating Q(t) X  t, instead of analytically 

solving the equation for t given Q. In doing so, the solution to 

the problem is straightforward as summarized below:

2
Given m & v » calculate:
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Q = v / m

t from Q(t) x t

z(t) from (8.8)

8 and oi from (8.10) and (8.11)

Xj=a/m
? ?

. X2= B /nr

Xg from (8.7)

8.2.2) Properties

If we consider for a moment the corresponding untruncated normal 

distribution for X and since we are only taking into account the 

truncation at zero, we could characterise the truncated distribution 

in terms of the percentage of truncation on the untruncated normal.

Let us consider the three cases where the truncation is less than, 

equal to and greater than 50%, and study the behaviour of the functions 

defined in sub-section 8.2.1 .

p
First, from (8.3) it is clear that since o > 0, then:

X2 > 0 . Also, 8 > 0 because m > 0 for truncation at zero.

(i) Truncation = 50% ; y^ = 0 

In this case we have:

from (8.3) : >>
1—
» II O P II o

from (8.8) : t=0 ; z= -2//TT

from (8.10): 8=1//"TT

from (8.12): Q;/f - 1 => Qq " 0-76

m  l .
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(ii) Truncation < 50% ; uf| 

from (8.3) : X^ < 0

from (8.8) : t < 0

from (8.12) : Q < Qg

; a < 0

tends to the normal

> 0

and as Q 0 the distribution
2 2untruncated, with p=m & a = v

(i i i) Truncated > 50% , < 0

from (8.3) : X^ > 0 ; a > 0

from (8.8) : t > 0 

from (8.12): Q > Qq

and as Q -+ 1 the distribution tends to the exponential 

with parameter m= v .

In figures 8.1 and 8.2 we illustrate a and 8 as a function 

of t for reference. The corresponding table of values can be found 

in Tribus, (1969).

Figure 8.1 : a x t curve Figure 8.2 ; 6 * t curve
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To conclude this section, we show in figure (8.3) below the 

variation of the coefficient of variation Q with t, and in it the 

three regions (1), (2) and (3) ; meaning respectively :

Region 1 : Qn < Q < Qq

Region where exist a truncation always less than 50% 

and greater than or equal to 100e% (eg: e= 0.005 => QN = 0.39)

Region 2 : Q < QN

Region where the maximum truncation is very small (less 

than 100c %), implying that a normal untruncated distribution is 

the best fit.

Region 3 : Q =» Qq

Region where there exists a truncation of at least 50%. As the 

percentage of truncation increases (or Q approaches 1), the 

distribution goes over to exponential.

Figure 8.3 : 3(t) * t.



As a final remark, it is clear that our objective in this 

chapter is to set our BEF for situations where the distributions 

involved are those lying in Region 1 mostly, that is, for the cases 

where neither an exponential nor a normal untruncated model is adequate 

(Q in Regions 2 & 3).

8.3) Entropy of the Truncated Normal Variate:

In order to be able to use our BEF for the truncated normal 

system, we first have to find the expression of the Shannon's entropy 

for a truncated normal variate (and its corresponding e-transform 

uncertainty function), and check whether it matches the basic assump

tion (ii) of section 4.5.2 .

Let us assume that X eR+ is a continuous r.v. with a truncated 

normal distribution (truncation point at X=0), with parameters and 

pdf as described in section 8.2 . The Shannon's entropy of X can 

be easily obtained if we make use of the results given in appendix A.

For that, let us consider the pdf of X as given by equation 

B.l . Then, if we define:

e^= Xj and 02 = X2 *

we can write for the other functions:
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Q = - XQ ; S(X)=0

and the corresponding derivatives:

3A, 3A?
90^ = ' 1 5 39j = -1

8Q
30^ = " 3A^ = m (from 8‘6)

30^ = ‘ 3lJ = m2+ y2 (from 8.6)

Taking these values into expression (A.3) of appendix A, we 

obtain for Hx the following expression:

HX = *lm + *2^m2+ v2 +̂ X0

If we now substitute A^m for its equivalent expression as 

given by equation 8.9 with Q substituted by v/m , we obtain:

Hx = 1 - A2.(m2+ v2)+ Aq ........................(8.13)

An alternative expression for Hx above, in terms of the 

moments of the untruncated distribution (y & a2), can be obtained 

by straight substituion of m & v2 in (8.13) by their equivalent 

equations (8.4) and (8.5). We obtain:

HX
1
2 (8.14)

where M = M(- p/o ) is the Mill's ratio as defined in (8.5).

r



In order to be able to formulate our BEF model for this 

truncated normal model, we next have to show that Hv as defined
A

in (8.13) or (8.14) is well defined in IR. However, it is not 

straightforward to show this, either from (8.13) or (8.14). If for 

instance we concentrate on (8.14) for a moment, we can clearly see 

that since a e S+ , jje R and Me IR+ , we cannot still guarantee that 

Hx e R because of the presence of xQ. On the other hand, if we 

could show that the entropy decreases with the truncation point then, 

it is quite clear that the limiting value for the Hx would be the 

entropy of the normal untruncated distribution which is well defined 

in IR. That is true, for, if we had a truncation less than 100e%

( e very small), then m q , v^ -*• a and Hx + in / 2nea2 e IR

Theorem :

The Shannon's entropy of a truncated normal variate is a decreasi 

function of the truncation point (see figure 8.4)

Figure 8.4 : Theorem illustration;

truncation points t^, t2

entropies H^, H2 ; t^ > t2 => < H2
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Proof :

The proof can be made easier if, instead of considering the 

truncation point variable, we consider it fixed at zero and have the 

untruncated mean variable. In other words, assuming a constant 

and y variable, we have to show that Hx is an increasing function 

of p.

Let Hx be as given in (8.14).

The derivative of Hy with respect to y is:

From the definition of M= M(-u/o) it is not difficult to show

that:

And from (8.7), we have for 3XQ/3p :

e r f c i X ^ / T ^ )
1

From (8.3) : = - 2A2

X2 gi ves:

aXj
Y  , and substitution for X^ and
a

/7.o erfc(-y) a2 a [l-$(-y/a)]
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and after simplifications we obtain:

3y 2oM

Let us now consider the two possible cases: 

p > 0 and y < 0 and study the corresponding variation on

3HX /3y:

(i) u < 0

In this case, since a & M (-y/o) > 0 ; 3H(x)/3y is trivially 

positive.

(ii) y > 0

Define y= - y/o < 0

Then (8.15) can be written as:

since cr and M are by definition greater than or equal to 

zero, our only problem lies with the equation into brackets.

Defining: F(|y|)= |y|2 - + 1 , we have:
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F(|y|) > 0 and consequentely:

M > _ W _

i+(y)2

The above is true if and only if M > ^ for all y < 0 (i.e., y> 0).

However, since 1- $(z) > 1/2 and <J>(z) < — -—
v̂ if

for 2 < 0, we can use the definition of M as given in equation

8.5 to show that:

M > — m  - 1.25 > 1/2

and the theorem follows.

It is now clear that e 1R and consequently from equation

(8.14) the e-transform uncertainty function is given by:

V exp {■ + X 0) ---- (8.15)

8.4) Bayesian Analysis for the Truncated Normal Distribution

Before we proceed with the description of the BEF steady state model, 

we dedicate this section to a brief Bayesian Analysis of a generic truncated 

normal model. The objective of this study is mainly related to the posterior 

and the predictive distributions which we obtain via an approximation 

procedure (to be used in our BEF model later on).
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It is worth mentioning that this particular problem provides a 

Bayesian method for estimating the parameters of the truncated normal 

distribution. As we mentioned in section 8.1, the existing literature 

for this problem contains only classical estimation procedures of all 

sorts. Possibly, the difficulties in obtaining the posterior is the 

main reason for the lack of interest in a Bayesian approach to this 

problem.

8.4.1) Parameter Posterior Distribution

Consider a continuous random variable Y^e [R+ such that:

p
Yt n, N(e, v ); truncated at zero for each t=l,2,...

Suppose that at time t-1 the prior information about 6 is given 

by the distribution:

(6 |Dt_j) n. N(ut_^a^_j) ; truncated at zero.

Observing Y^= y. at time t, we can use Bayes' theorem to obtain 

for the posterior:

p(e |Dt)oc p(e|Dt_1). p( yt|e)

since:

and

we then have for the posterior:

[l-$(-e/v)]
(8.16)
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where :

The above pdf for (01D^), constrained for (0|D.)e!R , is

a truncated distribution but not quite truncated normal, due to the 

factor 1/ [l-$(-0/v)] . (It would be exactly truncated normal if we 

had 1/ [l-$(- £t/ Tt)] instead). However, for all 0e IR+ and 

v > 0, l/[ l-$(-6/ v)] is a monotonic decreasing function of 0 , 

entirely defined on the interval [l»2] , i.e.:

From the above, we can see that the effect of 1/ [l-0 (-0/v)] 

on the exponential term of (8.16)is not accentuated, suggesting that 

p(0|Dt) is nearly truncated normal with truncated parameters & t*

In fact, we could approximate p(0|Dt) by a truncated normal distribu

tion if we expanded ln { \ / [  l-$(-0/v)]} for 0 around ?t, up to 

the quadratic term. The expansion thus obtained, when substituted in 

(8.16), gives exponential terms in 0 and 6 and consequently, a 

truncated normal distribution for (0|Dt).

The above mentioned Taylor expansion for h \{\/ [l-4>(-9/v )J} 

gives:

1 = 2 and lim ----- ------
0-*» [l-$(-6/ v)]

1
[l-*(-0/v)J

0=0

¿n il/ [l-$(-0/v)]} n, Fr (0-Çt)+ (0- ?t)2

T
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where:

v. M(-?t/v)

1 +
v2.M2(-£t/v)

1 - -(8.17)

and M(•) is the Mill's ratio, as defined in (8.5).

Taking this expansion into (8.16), we obtain an approximate truncated 

normal distribution for the posterior p(6jDt).

By way of illustration, we show in table G.l of appendix G the 

results of a simulation for the above problem, with the objective of 

comparing the true and approximate distributions. We considered three 

possibles degrees of truncation on the prior (with a2=l for all of 

them), and in each case we calculate the posterior mean and variance 

(true and approximation) for yt=0,l,2,3 and v =2 . The close agreement 

of the true posterior mean and variance to the corresponding approximated 

mean and variance is quite remarkable, even for the unlikely cases of 

high truncation on the prior and low yj. s. For these cases, the posterior 

is highly truncated and as we have commented before, an exponential 

approximation would suit better. For example, for the 95" truncation 

on the prior (p = -1.6452) and yt=0 , the obtained posterior is 

approximately 98% truncated and yet the approximation is still very 

good. In fact, for this particular case, the coefficient of variation 

of the posterior is % 0.91 : according to the results of section 8.2, 

this corresponds closely to an exponential distribution, i.e.,

Q -u 0.91 »  Qg lies in Region 3 of figure 8.3 . These results

are indeed very encouraging and reduce tremendously the complexity 

involved in the Bayesian analysis for the truncated normal model.

1

f
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where:

v. M(-£t/v)
1 +

v2.M2(-£t/v)
1 - -(8.17)

and M(-) is the Mill's ratio, as defined in (8.5).

Taking this expansion into (8.15), we obtain an approximate truncated 

normal distribution for the posterior p(e|Dt).

By way of illustration, we show in table G.l of appendix G the

results of a simulation for the above problem, with the objective of

comparing the true and approximate distributions. We considered three

possibles degrees of truncation on the prior (with ct2=1 for all of

them), and in each case we calculate the posterior mean and variance
o

(true and approximation) for yt=0,l,2,3 and v =2 . The close agreement 

of the true posterior mean and variance to the corresponding approximated 

mean and variance is quite remarkable, even for the unlikely cases of 

high truncation on the prior and low y^ s. For these cases, the posterior 

is highly truncated and as we have commented before, an exponential 

approximation would suit better. For example, for the 95" truncation 

on the prior (p = -1.6452) and yt=0 , the obtained posterior is 

approximately 98% truncated and yet the approximation is still very 

good. In fact, for this particular case, the coefficient of variation 

of the posterior is % 0.91 : according to the results of section 8.2, 

this corresponds closely to an exponential distribution, i.e.,

Q % 0.91 »  Qg lies in Region 3 of figure 8.3 . These results

are indeed very encouraging and reduce tremendously the complexity 

involved in the Bayesian analysis for the truncated normal model.
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8.4.2) Predictive Distribution

Suppose now that, for the static model we have been considering 

we want to find a predictive distribution for Yt , given the information 

up to time t-1, i.e., we want the predictive distribution p(Yt| ^ ) .

In this case, following the procedure of chapter 4, this predictive 

distribution can be obtained by integrating out the parameter 9 in 

the joint distribution p( , 9 | Dt )̂:

Taking these two pdf's into the above integral, we obtain:

The solution for the above integral is not easily obtained due tc 

the presence of the term l/[l- 4>(-9/v)] . However, if we use its Taylor 

expansion as shown in the posterior calculation, we obtain, after rearran

ging the terms in 9, an integral of the form:

where: p(Yt ,9|Dt_1)= p(Yt |9, D ^ ) .  p(91Dt_1)

and: (Yje, Dt-1^= ^Yt ̂  ^ r,(9»v2)> truncated at (Yt|9) = 0

(01 Dt_i) n, N(ut_1,o^_1); truncated at (© I Dt_1 )= 0
2

,+ e



(8.18)

we then obtain for p(Yt|D^_^):

L 2(a;_1 + v‘)

where:

(8.19)

2

(8 . 20)

C(çt) = [1 -$(-£t/ v ) ] ................. . . .  (8.21)

xr  ?t F2 ‘ ?t /,'rt " F1 .............................. (8.22)

The above pdf for ( Y j D ^ )  is again a truncated one, but is 

not normal and again, the same argument used in the posterior approxima

tion can be used again here. In other words, if we consider:

a(Ct)= &i[AUt)] ; b(çt)=£n[B(çt)] and c(Ct)= £n[c(?t) ] . 

we can expand the functions a(?j.), biç^) and c( )  in a Taylor

series for ^  around the prior mode up to the quadratic term. We end 

up with a quadratic function in which is easily convertible to a 

quadratic exppnential function in Yt by use of 8.16. In this case, 

we again obtain an approximate truncated normal distribution for the 

predictive distribution. The above mentioned expansions for a(Ct),

çt. » Fj, F2 as defined in 8.16 & 8.17, and:

X2= 1/2t* - F2 /2 - (8.23)



b(?t) and c(;t) are derived in appendix S.

To conclude this section, we show in table G.2 another simulation 

in order to check the goodness of the described approximation for the 

predictive distribution. We again considered the sama five different 

degrees of truncation on the prior (with o'=l for all of them), and 

for each case we calculate the predictive for different values of v2 

(v = 1,2,3,4). From the results in table G.2, we can clearly see 

that the approximation is really satisfactory, even for the unlikely 

cases of high truncation on the prior and low v .

As a final remark, we would like to point out that in both tables 

G.l & G.2, the systematic error appearing in the mean and variance 

for either case is the consequence of the truncation after the quadratic 

term in all the Taylor expansions involved. What we call true mean and 

variance were calculated by use of numerical -ethods for integration, 

and for computational reasons greater accuracy proved unattainable 

especially in calculating the function value at each discrete point.

Also, in the predictive distribution calculation, the first integral in 

9 was solved numerically instead of using the Taylor expansion for 

1/ [l-$(-9/v) ].

8.5) BEF Truncated Normal System; Model Description

With the considerations made in the previous sections of this chapter 

we now use our BEF model formulation applied to a truncated normal process.

Notation :
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be the process observation 

9t be the process parameter (unknown) ;

(®t_i|Dt-i^ : Process parameter posterior at time t-1 with 

pdf Pt-i,t-i (known).

(®tIDt_i): process parameter prior at time t with pdf 

p 1  (unknown)

t-1,t-1' K - i lt-l|Dt-l^ given by 8.15

g(St-l,t-l)= t1' exp('c St-l,t-l) 3 2 C e R
+

Then:

THE MODEL

Observation equation: (Yt 1 Oj.) % N(9.,v2); truncated at zero

where: E{Yt|9t) =9t+V.M'1( -0t/v)

Var {Yt|0t> =v2 [l-etv_1.M-1(-0t/v) 

-M'2(-9t/v)]
Mode {Yt |et} =et

System equation:
Pt.t-l* fn "lg^t-l t-1 ̂Lpt-i,t-i J z i ,z  1

and the process parameter is sequentially updated in time as follows: 

Information:

(i) The process observations are generated according to the model

above and g(-) is such that c is supposed known at all times.
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(ii) The posterior parameter process distribution at time 

is assumed to be:
2

(et_iIDt-i) % yt-l’ CTt-l  ̂ » truncated at zero.

t-1

UPDATING PROCEDURE

Prior time t:

(8t|Dt_j) n. N(ut ,at ) ; truncated at zero 

yt = yt-l ........................................... - (8.24)

a*2 = oJ_j / g(st _ j j t . x) ........................... - (8.25)

Updatinq:

Observing Y^=yt, (ejD^) is updated as:

2
(6t|Dt) = N(pt> at) ; truncated at zero 

yt= -X1 X2 (8.26)

° î  = 1/2-X2 ............................................

where:

(8.27)

X1 = V  F2~ Çt^Tt ' F1 (8.28)

X2 = l/2.tJ - F2/2 ....................................... (8.29)

t £, Fx and F2 as defined in (8.16) & (8.17), with ut

*p 2
and at in place of yt-1 and respectively.
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To obtain the last step of our BEF formulation, i.e., the predic

tion of future observations, we use the results of appendix B for 

the observation prediction distribution, as schematically described 

below:

PREDICTIVE j steps ahead j=l,2,...,£

Parameter : feL, j | DLi ; .1=1.2.... 1

(et+j[Dt) ^ N(ut+j *at+j ' ; truncated at zero, 

where, for j=2,3.... 1

yt+j = C j - 1 ................................ (8.30)

ct+j-i= gtst+j-i .d ' - (8.31)

and for j=l as in equations (8.24) & (8.Z5) with t -*■ t+1 .

Observation : (Yt|j|Dt ) ; j = 1,2

. 2
(Y. -1D ; ^ N( uv ; cr y ) ; truncated at zero 

t t+j t+j

uY = - ' t2- xpi!- > - -
V j  t+J t+j

-(8.32)

= 1/(2.xp[2] ) .............................
rt+j J

-(8.33)

where XP^jj and XP^2j are respectively XPj and 

equations (B.32) and (B.33), with y -*■ ut+J- and a 2

XP2 of

* r,*2
t+j •
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8.6) Applications:

He finish this chapter by showing a few practical numerical 

results obtained by the application of the truncated normal BEF model 

just described.

As a first exar.ole, we consider the 336 truncated normal observa

tions shown in table G.3 . They correspond to generated data whose 

truncated normal parameters are fixed and equal to:

(Yt|9 .v2 ) n, N(5,v2) ; e R+ , where:

(i) Mean of the untruncaced distribution e = 2.4

o
(ii) Variance of the untruncated distribution v = 4

(iii) Truncation point at Y^=0 ; percentage of truncation 

approximately 12T- .

The objectives in analysing this set of data are twofold: firstly

to provide a numerical check cf the approximation for the posterior

and secondly, to check the mocel itself and its consistency. Let us
?

assume that for the data of table G.3 we know the parameter v =4 and 

we want an estimate for the parameter 9 by following a Bayesian arqument. 

From what we have seen in section 8.4 , if we assumed a truncated normal 

prior for g, the posterior obtained is truncated but not normal due 

to the factor 1/ [l-5(-9/v)] in the posterior pdf. We are proposing 

in this chapter a Taylor expansion for this factor in order to bring 

the truncated posterior back into a normal form.

We could also use the results of chapter 3 and obtain for the parameter 

posterior the least prejudiced distribution at each time point, by 

performing some numerical integration in the original posterior.
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Assuming for both cases: (e| Dq ) 'v N(2,6) ; ge IR and v =4, 

we show in tables G.4 and G.5 the results concerning the Bayesian 

sequential estimation for g, where:

(i) In table G.4 the parameter posterior distribution corresponds 

to the approximation described in section 8.4 .

(ii) In table G.5 the parameter posterior distribution is the 

least prejudiced distribution satisfying the constraints 

obtained through the true posterior by a numerical integration.

As we can see, in either case the Mode( g | ) converges to the 

true 8 (e=2.4) and the low variance (0.0171) is a clear indication 

of the certainty about this estimated value after 336 observations.

It also emphasizes the goodness of the approximation not only in accuracy 

but also in processing time: on the University of Warwick's Burroughs 

B6700, the process time spent for processing the Bayesian analysis of 

the 336 observations was approximately 11 seconds under (i), and 158 

seconds under (ii).

If we now assume that for the same data of table G.3 we have a 

steady state model instead of a static model ( g is a time dependent 

parameter g^), and used the truncated normal BEF model of section

8.5 , we should expect that if the formulation is consistent, it should 

give a negative response to the steady state assumption. As usual, 

we start by estimating the constant c of the function g(St t). The 

results, presented in table G.6 give c = 11.25 and the correspond

ing aggregate likelihood equal to 56.204 . It is interesting to notice



that if we had considered the static assumption from the very beginning

(atS. ) = 1 for all t=l,2,... ), the aggregate likelihood obtained is:L j L

This evidently shows that the initial assumption of a steady state 

model is wrong, i.e., a static model for 9t is the true model. As 

a matter of illustration, we show in table G.7 the results obtained 

by the BEF with c = 11.25 for the last seven time points.

As a final illustration, we consider the application of our 

truncated normal BEF model to the data shown in table G.8 and 

figure G.l . They correspond to the weekly sales figures for children 

shoas, model S225/7 , covering the period from 19/8/1966 to 28/11/1969 

(157 observations), obtained from SATRO (Shoe & Allied Trades Research 

Association). This particular dataset is in fact an exaggeration 

of what we have mentioned about the misuse of a normal model. As we 

can see, they show a pretty unstable pattern, with short steady periods 

of low sales followed by unexplainable high valued observations.

It is then clear that if a steady model is to be assigned to these 

data, a truncated normal one should clearly be the recommended one.

To show that we applied both; the steady state normal and truncated 

normal models to the data of table G.8 . First, to have an idea of the 

process observation variance we made use of the simple procedure described 

by Harrison & Stevens (1976a) for estimation of v and W (DLM formula

tion see chapter 4) from the given data. We obtain v ^ 5  and

336

l £n[p(Yt[D._1 
t=l L z z 1

; g (-)=  d ] n- 56.203 .
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v/hl ~ 0.2 : from the kind of data we have, these seem to be reasonable
2

estimates. As a matter of comparison, we adopt the same v =25 for 

the truncated normal model. The starting values for the process parameter 

adopted was: (9^|0q ) 'v N(8, 15) with (9^|D^) e R+ for the truncated 

normal model.

The results concerning the estimation for c of g(St t) are shown 

in table G.9. The very low value for c obtained ; c = 0.09 among 

other things, indicates a high degree of uncertainty present in the data.

In table G.10 we show the results of the predictive distribution obtained 

through the truncated normal model and in table G.ll the corresponding 

predictive distribution obtained by the normal model. If we compare the 

two tables we can clearly see that the predictive distribution in G.ll 

has not only a higher variance nearly all the time, but also shows an 

average of 2555 truncation. It is interesting to notice that the mode of 

P(Yf|Df in G.10 is very close to the corresponding expectation 

E(Yt|Dt j) in G.ll, indicating that if a single figure forecast were to 

be made we would have nearly the same value from either model. However, 

for decision purposes where, rather than a single figure we need the 

whole distribution, it is quite obvious that the truncated normal model 

offers better results.

Finally, these two simple examples not only illustrate the practical 

aspects of the implementation of the model itself, but also the importance 

of the steady state truncated normal BEF model as a complement to the 

corresponding steady state normal model.
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APPENDIX A :

Shannon's Entropy for the Exponential Class of Density Functions.

We describe in this appendix a useful formula for the calculation 

of Shannon's entropy for distributions belonging to a sub-class of 

the regular case of the exponential family of pdf's. Although this result 

is not general as we are going to see later, it is still quite useful in 

our present work since all the distributions we are dealing with belong 

to this constrained class. We shall borrow Hogg & Craig's/1970) notation 

throughout.

We define the exponential family of pdf 6 as:

6 = {f(x,6);6e 0 ;0 ni-vector;e e if ; a < x < b } , whose

pdf's f(x;9 ) or f(x; 0^,..., 0m) is given by:

continuous functions of 9.; j=l,2.... m

iii) K j(x); j=l,2.... m are continuous for a < x < b and no

one is a linear homogeneous function of the others.

m

+ S(x) } (A. 1)

If in addition we have:

i) a,b do not depend upon 9..; 1 = 1,2,..., m

ii) Aj (9j .... 9m) are non trivial, functionally independent and

iv) S(x) is a continuous function of x; a < x < b .
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then (A.l) is called a regular case of the exponential family.

We new consider the family A; Ac g , where A is defined 

as 6 except for the functions that are supposed to have the 

single form:

Aj(el...-,9m )= Aj(0j) for j=l,2.... m .................. (A.2)

Theorem:

Shannon's entropy for the pdf's that belongs to the family 

A of probability densities is given by:

m A .(9.).3Q/ 39.
H(f) = I - J—*-------- - Q(e,........ e )- E[s (x) ] .... (A. 3)

j=l 3A.(e,)/ 39. 1 m f
J J J

provided Q(9j,...,0m) is differentiable with respect to all 6 j ;

•..i m

Proof:

From (A.l), (A.2) and (2.2) of chapter 2, we can write for

H(f):

H(f)= - E U n  f(x; 0j....em)} =-E{ I iAj(0j).Kj(x)+ Q(01.... 9m)+s(x)}

or:
m

H(f)= - Z A.(0.). E [ K.(x) ]- Q(0.....eJ-E [s(x)J — (A.4)
j= l J J f  J 1 m f
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In order to calculate E [K.(x)] of (A.4), let us consider the
f J

identity below:

,b r » 1
I exp Aj(e j). Kj(x)+ Q( 91,...,em)+S(x)J . dx = 1
A J — 1

if we differentiate the above identity with respect to 9^ we obtain

3
39-
. b r m i
r  f exp E Aj (9 j ). Kj (x)+ Q(9 j,... $ m)+ S(x) J. dx = 0 

J, j -1

or, by proceeding with the differentiations we obtain after simplifica

tions:

K^x).
8*1(3 ,) . m

89, 89, ] ' “ P [ W

Kj(x)+ Q(91,...im)+ S(x)J . dx = 0

Since the exponential term on the left hand side of the above is 

from (A.l) equal to f(x; 9 ... ,9m), we can write:

sA^g.)

39 i

.(x).f(x;91,...,9m).dx= -
8Q(e,.... 9 ) f

‘ "  « * # 1 ......V -39i a

However:

b

K..(x). f(x;91,...,9m).dx = E Q K ^ x ) ]

a
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and

b

f(x; Oj,..., em). dx = 1 

a

lie finally obtain:

E [ K.(x) ] = - [ 3Q( 0X.... 0m)/ 39.] / [ 3Ai ( 9^/ 39i ] ;

i= 1»2,... ,m

Then, taking the above expectation into (A.4) we obtain (A.3) 

and the proof follows.

As a final remark, the term E [S(x)] that appears in (A.3)
f

could in principle be a barrier for its use. However, in many cases

S(x)= 0 or S(x) is a particular function such that

E [ S(x) ] is easily obtained, 
f
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APPENDIX B :

Approximation for the Predictive Distribution of the Truncated Normal -

In this Appendix, we show the main calculations involved in the 

approximating distribution for (YtlDt_p of section 8.4.2 As we 

know, we can approximate p(Yt|Dt_^) for a truncated normal distribution, 

by expanding a(?t), b(Ct) and c(Ct) " e(luatlons (8.19), (8.20) and 

(8.21) respectively in a Taylor series. These expansions are shown 

separately in (i), (ii) and (iii) below.

(i) Taylor expansion for a(4t)

F rnm (  8 1Q1 •

Then, the first and second derivatives of a(5f) are, respectively:

Model.

3a(çt)
(B.l)

- (B.2)

where, from (8.17) :

= [ (M-2)1 - M-1/v (f 1“1 ) 7 v ] /v2 -(B.3)

F" = —  = [ (M'2 )"+ 2(M~1 ) 7 v + P(M” 1)" /v  ] /v 2 - (B.4)
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Fj = - O f 1)' / v 

F’’ = - (M-1)" / v

and:

M~1(-) is the inverse of the Mill's ratio (see equation 8.5) ;

m_1= r/f^-r m i  = ‘K-u/v)
(- v v)i

[l-*(-H/v)]
- (B.7)

~ 1' —  M~ 1' — ' = - 4  M'1 - i  M-2O f 1)'* -gfj- M-1(- yv ) - (B.8)

O f 1)" = M_1(-Ct/v) = " -^ 2 [ M— 1+vi(rf1)1 ]- i (?f2)' — (B.9)
9C+ i- v

0f 2)'= g|^ rf2(-st/v) = 2.M~1 . (M-1)' - (B.10)

(M”2)"=— 5- M"2(-5t/v) 
35*

= 2 [ M-1(M-1)" + (M-1)'2 ] - -(B. 11)

Taking into account the expression for e; given in (8.15), the 

final Taylor expansion for a(Ct). in terms of Yt is given by:

ai5t)oC

r *♦a
Y2 +

r 2 2 , \ 2 1a2p a v (a^a^Ja

2 (a2 +v2)2 • Yt + (a2+ v2)1- (a2+ v2) ̂
• Y . ---- (B. 12)

5 5 ^ - * ---- ■
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Where and a2 are as shown in (B.l) and (B.2) and y & a 

are respectively & at - \ (mean anc' variance of the untruncated

prior).

2

ii) Taylor expansion for b(Ct)

From (8.20) we can write for b(Ct).

2

h
4X„

b(€t) = ln [B(?t)] = - \  In + -J- + £n[erfc( ) ]

Before we proceed with the derivatives of b(£.), let us define 

some auxiliar functions an their corresponding derivatives; as 

follows:

a = X / 2A^ -

2

f( a) = e’a / erfc( a )

a' = 3a
2 / T ,

?t=u

X1 X2 
4 A J ’

(B.13)

- (B.14)

- (B.15)

f'(a)= - (B.16)

_a---- f i a ] _ ..................................... (B.17)
1 /TTT2

2_ _a____ 1_ + a
X2 2X2 vT. X2

• f(a) (B.18)
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36,
Bi = ^ r

, 36g

3X,
XI =
1 3?+

V 1

„ 32X.
X, = ----^
1 *£

(a'-f1 (oO/vC) X2

^2
zAj

r
| - 2a +f(a)//TT 1 a.f (a) 2'o' " -- +L

and (8.23)

4
L 2 vff J

^  - 1/Tt - Fi
- -

F2 + yF2 ’ F'i
- -

•(B.19)

/ n x,
(B.20)

- - (B.21)

(B.22;

■ _ ^2_ 
X2 = 3?t = - F2 / 2 

?t=y

(B.23)

3X„
Xo =2 3£+

= -F2/2 - (B.24)

with f | , F y  F2 and F£ as given by equations (B.3) to (B.6).

Using the auxiliary functions (B.13) to (B.24) it is not difficult to 

show that the first two derivatives of b(£t) are respectively.
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a2b U t)
b2 = - ^ -

-(B.26)

The above equations (B.25) & (B.26) and (8.16) enable us to write 

for the Taylor expansion of b(Ct):

Y2 +
b2ya2v2 (b1-b2u)a2 "j

. 2(a2+ v2)2 Yt + (a2+ v2)2 (a2+ v2) J

(iii) Taylor expansion for c(g.)

From (8.21), c(£t) can be written as:

c(£t)=£n C(?t)=£n [l -#(-5t/v) ] _1

In this case, it is not difficult to show that:

Finally, the truncated normal approximation for the predictive distribution can be 

obtained, by taking expansions (B.12), (B.27) and (B.30) into equation

- M-1/Y - (B.28)

3c(5t)

V V

1-1 ,-2
- (B.29)

and then:

c(çt )cc
2(a2+v2)2



(8.18)

where:

and:

that gives, after simp!ications:

p(Y |D. ,) 'v N(y ,o* ) , truncated at zero, t z-i pt pt

-P = - ; V  = 1/2-AP2
t "t

(B.31)

1 (crz+ v2)

2 2 ..„2.,2 a„ua2v b,ua2v
— -----o - u ------ p— (a.-a?u)a2-------p -
x2(a2+vZ) (a2+vZ) 1 2 (a2+ vZ)

c2ua2 v2
-(b.-bpvOcr2 --------- p - (c.-c„p)o2 ---- (B.32)

1 2 (a2+ v2) 1 2 J

'P* =
2 2(a2+ v2)

1 + a’ , -2

( a 2 + v2)
(Tt a2 b2' c2̂ - - (B.33)
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APPENDIX C :

Numerical results concerning the Non-Additive Normal model simulation

of section 4.6 .



st,t

t+1 t

true approx.

0. 13.07 12.20
2. 13.22 13.22
4. 13.67 14.30
6. 14.38 15.44
8. 15.32 16.63
10. 16.46 17.87
12. 17.74 19.16
14. 19.15 20.51
16. 20.66 21.90
18. 22.24 23.33
20. 23.89 24.81
22. 25.59 26.34
24. 27.33 27.90
26. 29.10 29.50

; 28. 30.90 31.13

OCO 32.72 32.80

32. 34.57 34.50
34. 36.43 36.23
36. 38.30 37.98

38. 40.18 39.76

40. 42.08 41.56

42. 43.99 43.39

44. 45.90 45.23

46. 47.82 47.08

48. 49.75 48.96

50. 51.68 50.84

52. 53.62 52.74

54. 55.56 54.65

56. 57.50 56.57

58. 59.45 58.50

60. 61.41 60.44

62. 63.36 62.39

64. 65.32 64.34

66. 67.28 66.30

68. 69.24 68.26

70. 71.21 70.23

72. 73.18 72.20
74. 75.15 74.17
76. 77.12 76.15
78. 79.09 78.13

80. 81.06 ____ 80-11

TABLE C.2 : St+1 t values.
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Number of 

Observations
c

100 0.12

200 0.10

300 0.098

450 0.094

600 0.088

TABLE C.3 : "c" estimation by simulated data.
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APPENDIX D : POISSON-GAMMA BEF - NUMERICAL RESULTS

This appendix contains tables and plots illustrating ttie> numerical 

results of the Poisson-Gamma BEF of chapter 5, section 5.5 .

2 7 1 2 6 1 3 1 5 3 2 4 2 1 1 3
1 2 4 0 2 5 3 1 1 3 3 3 o 6 4 1
3 5 2 5 2 2 3 7 4 3 4 7 2 2 5 2
3 3 0 2 2 1 0 2 2 2 1 2 2 ,i 3 7
3 5 3 2 3 3 4 2 1 3 5 2 5 3 4 1
1 3 6 4 0 9 1 1 3 2 5 3 4 1 5 1
1 3 3 2 1 2 1 5 1 3 3 4 2 3 10 4
5 3 3 4 0 2 4 3 2 4 6 4 2 6 4 0
2 4 3 3 2 3 2 2 2 2 1 4 0 6 1 3
4 3 2 3 3 4 4 1 3 3 6 2 1 4 0 1
0 4 8 6 4 2 4 4 5 5 1 4 5 4 3 3
3 1 1 6 2 0 2 3 3 1 3 2 5 4 0 7
0 1 1 2 2 3 9 2 5 5 2 2 2 11 1 3
3 6 0 3 4 3 4 5 3 1 1 1 5 4 4 6
2 7 3 5 3 1 1 6 2 4 0 4 7 5 1 3
3 4 3 1 6 3 1 3 1 4 4 5 3 4 2 2
3 4 4 3 7 2 2 3 3 6 4 4 5 1 1 3
6 3 6 4 0 2 5 1 2 7 1 2 3 3 4 4

3 1 5 2 2 5 1 2 10 4 3 5 7 5 4 0
4 5 2 3 3 3 5 5 1 1 2 0 1 3 1 2

2 1 1 1 6 2 1 1 4 4 5 3 2 1 5 0

3 4 3 9 2 5 3 3 4 5 5 4 0 4 6 5

2 0 2 2 3 6 1 5 2 4 3 5 1 6 5 2

6 3 2 3 2 2 3 10 6 5 2 4 3 6 6 3

1 2 2 2 3 4 4 2 1 2 3 4 1 5 3 3

5 4 3 0 2 2 6 2 2 4 4 1 2 5 0 2

3 4 4 4 2 5 2 5 3 1 3 4 7 3 2 0

1 4 4 3 3 1 0 7 3 3 1 2 2 5 3 1

6 1 2 4 4 3 2 5 2 6 2 3 1 4 2 8

3 5 5 3 4 1 0 2 5 3 2 2 4 5 3 1

4 2 2 4

TA3LE D.l : 500 Constant mean Poisson Observations (mean=3)
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APPENDIX D : POISSOM-GAMMA BEF - NUMERICAL RESULTS

This appendix contains tables and plots illustrating the, numerical

results of the Poisson--Gamma BEF of chapter 5, section 5.5

2 7 1 2 6 1 3 1 5 3 2 4 2 1 1 3
1 2 4 0 2 5 3 1 1 3 3 3 oC. 6 4 1
3 5 2 5 2 2 3 7 4 3 4 7 2 2 5 2
3 3 0 2 2 1 0 2 2 2 1 2 2 A 3 7
3 5 3 2 3 3 4 2 1 3 5 2 5 3 4 1
1 3 6 4 0 9 1 1 3 2 5 3 4 1 5 1
1 3 3 2 1 2 1 5 1 3 3 4 2 3 10 4
5 3 3 4 0 2 4 3 2 4 6 4 2 6 4 0
2 4 3 3 2 3 2 2 2 2 1 4 0 6 1 3
4 3 2 3 3 4 4 1 3 3 6 2 1 4 0 1
0 4 8 6 4 2 4 4 5 5 1 4 5 4 3 3
3 1 1 6 2 0 2 3 3 1 3 2 5 4 0 7
0 1 1 2 2 3 9 2 5 5 2 2 2 11 1 3

3 6 0 3 4 3 4 5 3 1 1 1 5 4 4 6

2 7 3 5 3 1 1 6 2 4 0 4 7 5 1 3

3 4 3 1 6 3 1 3 1 4 4 5 3 4 2 2

3 4 4 3 7 2 2 3 3 6 4 4 5 1 1 3

6 3 6 4 0 2 5 1 2 7 1 z 3 3 4 4

3 1 5 2 2 5 1 2 10 4 3 5 7 5 4 0

4 5 2 3 3 3 5 5 1 1 2 0 1 3 1 2

2 1 1 1 6 2 1 1 4 4 5 3 2 1 5 0

3 4 3 9 2 5 3 3 4 5 5 4 0 4 6 5

2 0 2 2 3 6 1 5 2 4 3 5 1 6 5 2

6 3 2 3 2 2 3 10 6 5 2 4 3 6 6 3

1 2 2 2 3 4 4 2 1 2 3 4 1 5 3 3

5 4 3 0 2 2 6 2 2 4 4 1 2 5 0 2

3 4 4 4 2 5 2 5 3 1 3 4 7 3 2 0

1 4 4 3 3 1 0 7 3 3 1 2 2 5 3 1

6 1 2 4 4 3 2 5 2 6 2 3 1 4 2 8

3 5 5 3 4 1 0 2 5 3 2 2 4 5 3 1

4 2 2 4

TABLE D.l : 500 Constant mean Poisson Observations (mean=3)



c AGG. LI KL
■t w

0 . 1 0.20076300 X 1 0 2

5.0 0.39006000 X 1 0 2

10.0 0.39218800 X 102

20.0 0.39244610 X 102

30.0 0.39244736 X
C

MOp
H

35.0 0.39244737 X 102

39.0 0.39244738 X 1 0 2

39.2 0.39244738 X 1 0 2

39.4 0.39244739 X 1 0 2

39.6 0.39244741 X 1 0 2

39.8 0.39244740 X 102

40.0 0.39244740 X

C
MOp

H

45.0 0.39244739 X 102

TABLE D.2 : c x Aggregate likelihood from first 250 obs.of 
table 0.1 .

C AGG. LIKL.

30.0 0.81273659 x 102

35.0 0.81273748 x 102

40.0 0.81273757 x 102

45.0 0.81273759 x 102

49.0 0.81273759 x 102

49.2 0.81273759 x 102

49.4 0.81273760 x 102

49.6 0.81273759 x 102

50.0 0.81273759 x 102

55.0 0.81273758

XIop
HX

TABLE D.3 : c x Aggregate Likelihood from all the obs. 
table D. 1

of



Time Ht,t

' \ \

St,t

246 -.7995628E+00 4495255E+00

247 - .8015308E+00 4486417E+00

248 - .8047825E+00 4471852E+00

249 - .8067300E+00 4463151E+00

250 - .8099548E+00 4448782E+00

496 - .1133470E+01 3219143E+00

497 - . 1135125E+01 3213819E+00

498 -.1135809E+01 3211621E+00

499 -.1137136E+01 3207364E+00

500 1138459E+01 3203122E+00

TABLE D.4 : Entropy values for:

(i) t=246 to 250 - Model c=39.6

(ID t=496 to 500 - Model c=49.4

't,t = H(9tlDt> ; St,t = S
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10 5 10 11 8 5

CO 7 7 6 5 4 7 2 5 3

1 4 4 4 3 1 4 3 4 1 1 3 3 1 4 3

1 4 3 0 2 2 4 3 2 5 3 6 0 3 0 6

3 3 5 5 6 6 8 4 7 8 2 7 5 8 8 5

6 15 8 7 5 5 6 1 3 3 3 4 1 1 2 1

0 3 1 1 0 0 3 0 2 0 1 0 0 3 4 2

6 4 2 1 3 3 4 3 2 5 0 1 8 2 7 1

4 5 4 3 5 6 4 7 5 7 8 7 1 0 0 3

3 0 3 1 4 0 1 1 1 1 2 1 2 1 1 0

3 6 2 3 4 2 2 3 2 3 2 3 6 5 12

9 5 1 2 9 8 17 14 8 10 4 6 5 3 2 4

2 1 1 1 1 1 1 4 0 2 4 0 2 1 0 1

i 0 1 3 1 2 3 3

TABLE D.6 : 199 weekly deaths caused by acute respiratory infections

in Greater London, covering the period from 15/2/72 to 

01/10/76 .
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c AGG. LIKL

25.0 0.2327577 X 102
15.0 0.2327593 X 102
10.0 0.2328679 X 102
5.0 0.2361436 X 102

1.0 0.2631456 X 102

0.8 0.2711050 X 102

0.6 0.2761453 X 102

0.59 0.2762182 X 102

0.58 0.2762274 X 102

0.57 0.2762915 X 102

0.56 0.2762894 X 102

0.55 0.2762594 X 102

0.50 0.2756349 X 102

0.30 0.2583690 X 102

0.10 0.1601014 X 102

TABLE D.7 :c x Aggregate Likelihood 199 data of table D.6 .

Time

t

Obs.

Yt

<9t Dt> (0t+l V

node Var. at H Mode Var. at+l h + l

1 10 5.231 2.038 15.37 2.75 5.231 2.210 14.31 2.55

2 5 5.166 1.537 19.31 3.55 5.166 1.738 17.30 3.15

3 10 6.330 1.582 27.30 4.15 6.330 1.773 24.55 3.72

4 11 7.319 1.595 35.55 4.72 7.319 1.783 32.02 4.24

5 8 7.449 1.459 40.02 5.24 7.449 1.654 35.51 4.63

6 5 7.014 1.277 40.51 5.63 7.014 1.486 35.07 4.86

7 8 7.183 1.255 43.07 5.86 7.183 1.466 37.16 5.04

8 7 7.152 1.213 44.16 6.04 7.152 1.426 37.84 5.15

9 7 7.128 1.185 44.84 6.15 7.128 1.401 38.23 5.22

10 6 6.946 1.142 44.23 6.22 6.946 1.362 37.41 5.24

TABLE D.8 : Posterior and Prior parameter distributions;
t=l to 10; c=0.57; aQ=6 , 3Q=2; 199 weekly

data of table D.6 .
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(9t iDt> « W V '
\ ̂

Time Obs.
t Yt node Var. at Bt node Var. “ t+l B 't+1

165 9 5.445 1.069 29.69 5.27 5.445 1.300 24.76 4.36

166 8 5.921 1.139 32.76 5.36 5.921 1.362 27.71 4.51

167 17 7.932 1.473 44.71 5.51 7.932 1.666 39.73 4.88

168 14 8.963 1.552 53.73 5.88 8.963 1.739 48.18 5.26

169 8 8.810 1.432 56.18 6.26 8.810 1.627 49.69 5.23

170 10 8.992 1.401 59.69 6.53 8.992 1.598 52.58 6.74

171 4 8.251 1.245 56.58 6.74 8.251 1.456 48.75 5.79

172 6 7.919 1.189 54.75 6.79 7.919 1.402 46.70 5.77

173 5 7.488 1.129 51.70 6.77 7.488 1.347 43.61 5.69

174 3 6.817 1.041 46.61 6.69 6.817 1.269 38.61 5.52

175 2 6.078 0.956 40.61 6.52 6.078 1.192 32.95 5.26

176 4 | 5.746 0.944 36.95 6.26 5.746 1.182 29.89 5.03

_______

TABLE D.9 : Posterior and Prior parameter distribution:

t=165 to 176 ; c=0.57 ; 199 weekly data of table 0.6
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■■ ; i ' ■, ‘ • i > | 1■ ;• I • ; , \ V 1 j •.
■ : ; . ;' ' . i i • I; i : • ;•i '

i o  I O C  >50 t

FI G U R E  D.l : P l o t  o f  table O.b data:

199 w e e k l y  de a t h s  c a u s e d  b y  a cute r e s p i r a t o r y  i n f e ctions 

in G r e a t e r  Lo n d o n  - f r o m  15 t h  F e b r u a r y  1972 to 1st O c t o b e r  1976.

M ( e t | D t )

TIGURE 0.2 : P l o t  o f  il(et |9t ) * t ; t - 1 , 2 ...... 199.

D a t a  f r o n  table D.6, w h e r e :

f'( et I nt  >= !,ode *°t^at^'
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APPENDIX E : POISSON-GAMMA BEF MULTISTATE MODEL - NUMERICAL RESULTS 

This appendix contains the tables showing the relevant numerical 

results of the Poisson-Gamma BEF multistate model of chapter 6, section 6.4.

2 2 2 0 11 18 23 10

6 8 7 6 14 18 5 14

19 5 5 0 6 4 3 16

1 0 1 0 1 0 0 2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 1

1 2 0 0 1 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 2 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

10 4 7 1 8 11 11 18

1 0 11 2 0 0 0 1

7 29 13 3 7 16 5 15

20 23 8 10 11 10 6 20

8 10 22 21 4 4 2 1

3 2 0 0 1 0 0 2

0 0 0 0 0 0 0 0

0 1 0 4 5 0 5 0

0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 4 2 1 0 1 3 3

17 33 21 21 10 7 8 4

0 0 0 0 0 0

TABLE E-1 : 222 weekly notifications of measles cases in Truro Rural
Districts, Cornwall, from the 40th week of 1966 to the 52nd 

week of 1970.
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TABLE

c

0.24

0.43

0.80

1.10

1.30

1.50

1.60

1.63

1.66
1.68
1.71
1.73

1.80
2.10
3.10

4.00

E.2 : c x Aggregate

AGG. LIKL.

105.43989

105.53368

106.01669

106.54655

107.29818

107.33910

107.35877

107.36053
107.36138

107.36094

107.35840
107.35840 

107.33887 
107.15809

107.09938
107.09938

ikelihood 222 measless

notification cases of table E.l - MM approach.

Time Obs. -Î1-1’
pu . 2>

p i2-1' p i2-2’ pi1' "O C+
 «■'—
>* ro Mode (0t | Dt)

52 0 0.991 0.002 0.005 0.005 0.993 0.007 0.12

53 1 0.934 0.055 0.0 0.011 0.934 0.066 0.12

54 0 0.991 0.002 0.002 0.004 0.993 0.007 0.12

55 0 0.997 0.002 0.0 0.0 0.997 0.003 0.12

56 2 0.391 0.570 0.0 0.039 0.391 0.609 2.99

57 3 0.0 0.026 0.0 0.973 0.001 0.999 2.99

58 2 0.0 0.0 0.001 0.999 0.001 0.999 2.96

59 0 0.010 0.0 0.340 0.651 0.349 0.651 2.86

60 0 0.844 0.002 0.049 0.105 0.893 0.107 0.12

61 1 0.794 0.046 0.003 0.157 0.797 0.203 0.12

62 0 0.971 0.002 0'. 008 0.019 0.979 0.021 0.12

TABLE E.3 : 222 measles notification cases ; transitions illustration,

from t=52 to t=62 (i.j)
U = Prob{ «t-1 Mt I V

p ( k ) =
pt

= Probi M{k)|Dt} i,j,k=l ,2; Mode (0t lDt )
= Mode (6t |M[2,Dt)

c 'or 0
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Time Obs. pU 4 )
PÎW > p ? - 11

p(2,2)
pi11 p[2)

♦Mode (0tlDt)

185 0 0.997 0.002 0.0 0.0 0.998 0.002 0.12

185 4 0.001 0.943 0.0 0.056 0.001 0.999 3.01
187 2 0.0 0.0 0.001 0.999 0.001 0.999 2.99

188 1 0.001 0.0 0.022 0.978 0.022 0.978 2.93

139 0 0.1959 0.001 0.271 0.533 0.467 0.533 2.83

190 1 0.3464 0.020 0.012 0.621 0.359 0.641 2.76

191 3 0.001 0.023 0.0 0.976 0.001 0.999 2.78

192 3 j 0.0 0.0 0.0 0.999 0.0 1.0 2.79

TABLE E.4 : 222 measles notification cases; transitions illustration
from t=185 to t=192 p^1 , J \  p[k), Mode (et|Dt) as 

explained in table E.3 .

T i me Obs. pu.l, p ü ,2)
p ? - 11 P p > p ? ’ pi21 Mode ( 6t|D )

210 0 0.983 0.002 0.014 0.0 0.998 0.002 0.12

211 11 0.0 0.608 0.0 0.392 0.0 1.0 3.51

212 2 0.0 0.0 0.001 0.999 0.001 0.999 2.98

213 0 0.013 0.0 0.320 0.667 0.333 0.667 2.21

214 0 0.758 0.002 0.048 0.192 0.806 0.194 0.12

215
....

0 0.947 0.002 0.007 0.043 0.954 0.046 0.12
______ ____

TABLE E.5 : 222 measles notification cases; transitions illustration

from t=210 to t=215 p[n ,J} , p[k ,̂ Mode (0t|Dt) as 

explained in table E.3 .
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c AGG. LIKL.

0.50 45.35266

0.70 49.10042

0.80 54.40331

1.00 57.02862

1.12 57.63406

1.16 57.70977

1.18 57.72636

1.20 57.72938

1.22 57.71928

1.24 57.69655

1.30 57.55927

1.50 56.85070

2.00 55.19103

2.50 50.00568

3.50 32.96881

5.00 14.23188

TABLE E.6 : c * Aggregate Likelihood

222 measles notification 

cases of table E.l - SM 

approach.
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Time Obs. P i 11

MM SM
—

pi2' Mode(0t |Dt) Mode(6t |Dt) Var (0t l'Dt)

46 4 0.0 1.0 8.69 10.25 0.54

47 2 0.03 0.97 8.14 9.82 0.52

48 1 0.67 0.33 0.12 9.36 0.49

49 1 0.91 0.09 0.12 8.92 0.51

50 0 0.99 0.01 0.12 8.44 0.45

51 1 0.93 0.07 0.12 8.04 0.44

52 0 0.99 0.01 0.12 7.59 0.42

53 1 0.93 0.07 0.12 7.22 0.41

i  54 0 0.99 0.01 0.12 6.79 0.39

! 55 0 1.0 0.0 0.12 6.39 0.38

TABLE E.7 : MM and SM results, from t=46 to t=55 ; 

p ^ =  Prob { M ^ | D t> , i = l , ?  .

MM SM

Time Obs. pi21 Mode (0t|Dt ) Mode (et|nt) Vor ( e t i V

91 0 0.98 0.02 0.12 0.57 0.19

92 4 0.0 1.0 2.95 1.41 0.40

93 5 0.0 1.0 3.01 0.51 2.17

94 0 0.35 0.65 2.90 0.36 1.77

95 5 0.0 1.0 2.99 0.43 2.32

96 0 0.35 0.69 2.85 0.33 1.96

97 1 0.26 0.74 2.76 0.30 1.81

98 2 0.10 0.99 2.72 0.30 1.84

99 0 ' 0.35 0.65 2.55 0.25 1.57

100 0 j 0.86 0.14 0.12 0.22 1.33

TABLE E.8 : MM and

p <"=

SM results, 

Prob {M^15|nt}

from t=91 to 

; 1-1,2 •

t=100;
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50 100 150 ;io

FIGURE E.l : P l o t  o f  t a b l e  E . l  data:

W e e k l y  n o t i f i c a t i o n s  of m e a s l e s  c ases in T r u r o  Rural D i s t r i c t ,

Cornwall f r o m  t h e  40th w e e k  o f  1966 to the 52nd w e e k  o f  1970. 

(222 o b s e r v a t i o n s ) .

Miet|Dt)

I

s so

t>1.2.FI G U R E  E .2 : Plot o f  Il(9t lDt ) t u n d e r  M M  formulation,

Data f r o m  t able E. l ,  w h e r e :  fl(0^|D^)= Mo d e  (0^|D^)

Miet|Dt)

FIGURE E . 3: P l o t  o f  11(r>t| n fc) x t  u nder S M  f o r m u lation, t * l , 2 , . .., 222. 

Da t a  from t a b l e  E . l ,  w h e r e  : Hfe t |Dt )* Mo d e  (et | D t )
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* Yt

i

50

'!
i •... d . ,

TO 150 »0
t

FI G U R E  E.l : P l o t  o f  t able E . l  data:

Vleekly n o t i f i c a t i o n s  o f  m e a s l e s  c a s e s  in T r u r o  Rural D i s t r i c t ,

Co r n w a l l  from t h e  40 t h  w e e k  o f  1 9 6 6  to t h e  5 2 n d  w e e k  o f  1970. 

(222 o b s e r v a t i o n s ) .

M ( 8 t |Dt )

I \
I A

I /

a  ! 
f ! I

\
n in i

so >00

FIGURE E . 2  : P l o t  o f  M ( e t |Dt ) t u n d e r  I1M f o r m u l a t i o n , t=l ,2,

D a t a  f r o m  t able E.l, w h e r e :  H(0^.|D^)= M o d e  (0j.|Dt)

. , 222.

\

50 l-aO

FIGURE E .3: P l o t  o f  fl(Gt| r>t ) x t  u n d e r  S M  f o r m u l a t i o n ,  t*l,2,.

D a t a  f r o m  t able E.l, w h e r e  : t F>t )■ M o d e  ( o t |Dt )

222.



APPENDIX F : BINOMIAL-BETA BEF -NUMERICAL RESULTS \ t  \ >

This appendix contains tables and plots illustrating the numerical 

results of the Binomial-Beta BEF System of chapter 7, section 7.6 .

6 2 3 5 3 2 3 4 3 1 2 2 3 5 3 1

2 1 4 3 1 5 6 2 2 4 3 5 5 3 5 2

5 2 4 5 5 3 4 4 2 2 4 2 3 4 2 4

2 2 6 3 3 4 2 3 2 5 3 4 4 4 4 1

4 1 2 4 1 5 2 5 5 4 3 4 4 6 4 3

2 3 3 4 4 3 4 3 2 3 4 4 4 4 5 1

2 3 3 1 1 4 3 0 2 3 1 4 3 2 2 3

3 2 4 1 2 4 2 1 1 2 3 5 0 0 8 5

3 1 4 4 4 2 1 2 4 2 3 2 5 2 4 5

5 3 7 4 4 3 3 2 2 4 3 4 0 4 3 3

3 6 5 4 4 2 5 1 5 5 1 3 5 2 4 2

1 3 3 2 4 2 1 4 2 3 3 6 1 2 3 3

2 3 5 3 1 2 3 2 3 1 1 4 4 2 3 5

5 0 4 2 2 1 6 5 2 1 3 3 2 2 5 4

2 1 3 4 3 4 5 5 1 3 4 2 4 2 1 4

3 7 2 5 4 6 4 2 4 5 2 4 1 0 5 4

4 3 6 3 5 3 3 2 3 5 3 3 3 1 0 6

0 5 2 3 3 3 4 0 3 4 1 5 3 6 4 3

3 5 0 3 2 1 3 2 4 4 2 4 2 2 3 2

3 3 3 2 2 2 1 2 4 2 3 3 3 4 2 1

5 3 3 5 3 2 4 4 3 4 3 3 2 1 3 3

2 5 3 4 2 2 2 2 1 2 5 4 2 2 4 1

4 3 2 2 2 2 2 4 2 2 4 2 6 4 1 5

4 4 4 3 2 4 4 2 5 2 2 3 3 5 4 1

4 4 5 4 3 2 2 2 3 1 4 4 2 3 3 1

3 4 4 2 4 2 2 2 5 4 0 2 4 1 1 4

3 0 2 4 4 1 3 1 5 3 1 2 5 3 3 3

3 4 3 2 0 1 2 2 3 4 2 2 2 3 2 3

4 3 3 3 5 1 3 5 3 6 2 2 4 2 3 3

2 1 4 3 4 4 2 4 3 3 1 4 4 4 1 3

5 4 4 3 0 4 1 4 2

TABLE F . l  : 490 generated Binomial (0.375;8 ) data.



c Aggregate 
Li kelihood

XLOr-Ho

1 0 8 4 6 . 4 1 2 0 0 1 8

0 . 1 4  x 1 0 8 4 6 . 4 1 2 6 9 5 7

0 . 1 3  x 1 0 8 4 6 . 4 1 3 1 0 3 1

0 . 1 2 5 x 1 0 8 4 6 . 4 1 3 3 5 4 1

XCM«-Ho

1 0 8 4 6 . 4 1 4 9 7 6 8

0 . 1 1 5  x 1 0 8 4 6 . 4 1 3 4 1 8 6

0 . 1 1  x 1 0 8 4 6 . 4 1 2 8 6 1 7

0 . 1 0  x 1 0 8 4 6 . 4 1 3 6 8 4 4

0 . 7 5  x 1 0 7 4 6 . 4 1 3 0 2 6 4

0 . 6 0  x 1 0 7 4 6 . 4 1 1 7 4 5 9

0 . 2 5  x 1 0 7 4 6 . 4 1 0 9 4 6 0

0 . 1 0  x 1 0 7 4 6 . 4 0 5 5 1 3 7

XCO«“Ho

1 0 6 4 6 . 3 9 8 7 4 4 0

0 . 1 5  x 1 0 5 4 6 . 3 8 3 4 7 2 3

0 . 5 0  x 1 0 3 4 6 . 3 3 6 3 3 4 0

0 2 6 . 6 6 6 6 6 6 7

TABLE F.2 : c x Aggregate likelihood for
first half of data from table F.l

Aggregate Lik.
c

„„8 9 9 . 1 8 3 0 4 2 3
0 . 5 0 X 10

0 . 4 9 X 1 0 8 9 9 . 1 8 4 3 8 8 8

0 . 4 8 X 1 0 8 9 9 . 1 7 6 6 0 3 0

0 . 4 6 X

COopH 9 9 . 1 8 8 6 9 6 7

0 . 4 4 X 1 0 8 9 9 . 1 8 2 4 2 6 6

0 . 4 0 X 1 0 8 9 9 . 1 7 7 4 8 8 3

0 . 3 5 X 1 0 8 9 9 . 1 8 0 1 7 9 4

0 . 2 5 X 1 0 8 9 9 . 1 7 9 2 7 5 4

0 . 1 5 X ►—» o C
O

9 9 . 1 7 5 3 5 5 0

0 . 1 0 X 1 0 8 9 9 . 1 6 9 6 4 3 1

c x Aggregate likelihood for 

data of table F.l .
TABLE F.3 :



198

(0t Dt-1^ Obs. (ot V-
t a Y Mode Var. Yt a Y

Mode Var.

483 145.44 248.80 0.3682 0.0006 4 149.44 252.80 0.3709 0.0006

484 146.89 248.47 0.3709 0.0006 4 150.89 252.47 0.3734 0.0006

485 147.01 245.97 0.3734 0.0006 3 150.01 250.97 0.3735 0.0006

486 148.46 248.36 0.3735 0.0006 0 148.46 256.36 0.3661 0.0006

487 142.31 245.71 0.3661 0.0006 4 146.31 249.71 0.3688 0.0006

488 146.19 249.51 0.3688 0.0006 1 147.29 256.51 0.3639 0.0006

489 142.95 249.10 0.3639 0.0906 4 146.95 253.10 0.3667 0.0006

490 145.94 251.35 0.3667 0.0006 2 147.94 257.35 0.3643 0.0006

TABLE F.4 : Binomial-Beta BEF model-data from table F.l 
Prior-Posterior parameter distribution ; 

t=483,484.... 490
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2 2 2 2 2 4 4 4 4 4 3 4 4 5 7 6

5 6 8 10 8 7 8 8 6 8 7 6 4 3 Eo 5

6 4 6 4 3 6 6 8 4 3 3 4 3 2 1 1

C\J 0 3 1 1 0 1 1 2 i 1 0 2 1
■» ■ > 
1. 2.

C\J 2 2 0 0 1 1 0 0 2 0 0 2 0 0 1

0 1 0 1 0 1 5 3 5 3 3 5 5 4 3 3

5 2 2 2 4 2 1 1 1 2 1 3 0 1 0 0

0 1 1 0 0 2 3 0 2 2 2 3 5 2 1 1

CVJ 2 2 2 3 1 0 0 3 2 2 2 1 2 4 1

CM 2 1 3 5 2 2 1 1 0 0 1 2 0 1 1

1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 3

1 3 2 2 2 1 3 0 0 5 5 6 6 7 5 7

5 7 5 6 5 5 6 5 6 4 6 3 4 3 1 1

2 1 3 4 3 1 2 1 1 1 1 2 1 1

TABLE F. 6 : Weekly number of rural districts (RD) affected by 
the measles epidemic obtained from table F.5 .

1 3 2 1 1 3 1 3 5 7 2 4 4 8 7 9

11 6 10 11 10 9 9 9 9 8 9 7 8 8 8 9

8 5 9 6 8 7 9 6 6 5 6 5 6 6 3 3

2 3 2 1 3 2 0 1 2 2 1 0 1 1 1 1

1 3 3 1 2 1 3 2 2 2 0 1 1 1 0 0

2 1 0 2 1 0 3 2 1 2 2 3 3 6 5 3

6 6 5 6 2 1 3 4 3 1 2 1 1 0 0 2

2 2 3 3 0 4 2 4 3 1 3 3 3 4 3 3

2 4 1 2 2 3 3 2 1 2 0 3 1 4 5 2

5 6 3 6 4 4 7 2 2 0 1 0 1 1 2 3

2 2 1 2 1 1 1 1 1 2 1 4 1 2 3 3

1 2 2 4 2 3 2 3 2 5 3 5 5 7 8 9

fi 8 8 8 9 7 7 9 9 9 1 9 3 4 2 3

6 2 3 2 2 2 2 3 2 0 0 1 0 0

TABLE F.7 : Weekly number of municipal borouqhs(MB) and urban 
districts LUO) affected by the measles epidemic. Obtained from
H M C C
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Aggregate 
Like!ihood

5000 39.0851164
1000 39.7353946
500 40.0828649
100 41.1384569
40 42.0325740
10 44.3593308

4.5 46.7527091

3.0 48.0156816

2.6 48.2213393

2.5 48.2332605

2.4 48.2209074

2.0 47.8044789

1.0 40.8676841

0.5 30.8524909

0.2 22.9103144

0.1 20.9662061

0 20.1818182

TADLE F.8 : c * Aggregate likelihood 

for RD data of table F.6 .

Time (6t Dt-i> Obs. {9t V
t a Y Mode Var. Yt

OL Y Mode Var.

18 17.18 17.23 0.4994 0.0071 6 21.18 21.23 0.5231 0.0055

19 17.95 16.46 0.5231 0.0070 8 25.95 18.46 0.5884 0.0053

20 20.07 14.34 0.5884 0.0069 10 30.07 14.33 0.6854 0.0048

21 23.22 11.20 0.6854 0.0062 8 31.22 13.20 0.7124 0.0046

22 24.10 10.32 0.7124 0.0059 7 31.10 13.32 0.7095 0.0046

23 24.01 10.42 0.7095 0.0060 8 32.01 12.42 0.7308 0.0044

24 24.40 9.73 0.7308 0.0057 8 32.70 11.73 0.7471 0.0043

25 25.23 9.20 0.7471 0.0055 6 31.23 13.20 0.7125 0.0046

26 24.11 10.33 0.7125 0.0059 8 32.11 12.33 0.7331 0.0044

27 24.78 9.66 0.7331 0.0057 7 31.78 12.66 0.7253 0.0045

28 24.53 9.91 0.7253 0.0058 6 30.53 13.91 0.6958 0.0047

29 23.57 10.87 0.6958 0.0061 4 27.57 16.87 0.6261 0.0052

30 21.30 13.13 0.6261 0.0067 3 24.30 20.13 0.5492 0.0055

TABLE F.9 : Bi nomi al-Beta BEF model-RD data from table F.G Prior-Posterior 
parameter distribution; t=18,19,...,30 ; n=10 .
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Time _ (0t|Dt-l* __ Obs.
(9t |Dt

'■t \

)

t a Y Mode Var. Yt a Y Mode Var.

88 6.26 28.23 0.1619 0.0042 3 9.26 35.23 0.1944 0.0036

89 7.31 27.16 0.1944 0.0047 5 12.31 32.16 0.2663 0.0044

90 9.65 24.82 0.2663 0.0057 3 12.65 31.82 0.2743 0.0045

91 9.90 24.55 0.2743 0.0058 3 12.90 31.55 0.2803 0.0045

92 10.10 24.35 0.2803 0.0058 5 15.10 29.35 0.3321 0.0049

93 11.77 22.67 0.3321 0.0063 5 16.77 27.67 0.3717 0.0052

94 13.05 21.38 0.3717 0.0066 4 17.05 27.38 0.3783 0.0052

95 13.27 21.16 0.3783 0.0067 3 16.27 28.16 0.3599 0.0051

96 12.67 21.76 0.3599 0.0066 3 15.67 28.76 0.3458 0.0050

97 12.21 22.21 0.3458 0.0065 5 17.21 27.21 0.3821 0.0052

98 13.39 21.03 0.3821 0.0067 2 15.39 29.03 0.3392 0.0050

99 12.00 22.43 0.3392 0.0064 2 14.00 30.43 0.3064 0.0048

100 10.94 23.49 0.3064 0.0061 2 12.94 31.49 0.2813 0.0045

TABLE F.10 : Binomial-Beta BEF model- RD data from table F.6,

Prior-Posterior parameter distribution ; t=88,89.... 100;

n=10 .



Time {0t Obs. (0tlDt)
\f ' >

t a Y Mode Var. Yt a Y Mode Var.

189 12.43 22.01 0.3525 0.0065 6 18.43 26.01 0.4108 0.0053

190 14.32 20.11 0.4108 0.0069 7 21.32 23.11 0.4789 0.0055

191 16.53 17.90 0.4789 0.0070 5 21.53 22.90 0.4839 0.0055

192 16.69 17.73 0.4389 0.0071 7 23.69 20.73 0.5348 0.0055

193 18.34 16.08 0.5348 0.0070 5 23.34 21.08 0.5266 0.0055

194 18.07 16.35 0.5266 0.0070 7 25.07 19.35 0.5675 0.0054

195 19.40 15.02 0.5675 0.0069 5 24.40 20.02 0.5516 0.0055

196 18.88 15.54 0.5516 0.0070 6 24.88 19.54 0.5630 0.0054

197 19.25 15.17 0.5630 0.0070 5 24.25 20.17 0.5481 0.0055

198 18.77 15.75 0.5481 0.0070 5 23.77 20.65 0.5368 0.0055

199 18.40 16.02 0.5368 0.0070 6 24.40 20.02 0.5517 0.0055

200 18.88 15.53 0.5517 0.0070 5 23.88 20.53 0.5395 0.0055

201 18.49 15.93 0.5395 0.0070 6 24.49 19.93 0.5538 0.0054

202 18.95 15.47 0.5538 0.0070 4 22.95 21.47 0.5175 0.0055

203 17.78 16.64 0.5175 0.0071 6 23.78 10.64 0.5370 0.0055

204 18.41 16.01 0.5370 0.0070 3 21.41 23.01 0.4811 0.0055

TABLE F.11 : Binomial- Beta BEF model - RD data from table F.6

Prior-Posterior parameter distribution; 

t= 189,190....  204; n=10 .



Time
p i ' t l V d

Ohs. 

Yt

1 0.160474
210 2 0.235926 1

3 0.231845

1 0.207007
211 2 0.257663 3

3 0.216614

1 0.186625
212 2 0.249798 4

3 0.224747

2 0.226195
213 3 0.233980 3

4 0.177592

2 0.222962
214 3 0.234323 1

4 0.180568

1 0.1O0334
215 2 0.251421 2

3 0.223427

1 0.202367
216 2 0.256102 1

3 0.218654

1 0.241158
217 2 0.264932 1

3 0.198386

0 0.147075
218 1 0.270650 1

2 0.264520

0 0.176658
210 1 0.291954 1

2 0.259305

0 0.202768
220 1 0.306835 2

2 0.252198

0 0.178433
221 1 0.293080 1

2 0.258890

0 0.204298
222 1 0.307609 1

2 0.251728
..

TABLE F.12 : Binomi al-Beta BEF predictive 
distribution - RD data from 
table F.6 t=210,211,...,222;

n=10 .



c Aggregate 
Li kelihood

500 33.7555911
250 34.0855722
100 34.7486119
50 35.3835204
25 36.1952246
10 37.5963212
5 38.8459551
4 39.1931702
3.1 39.4263327
3.0 39.4348140
2.9 39.4366449
2.8 39.4304054
2.7 39.4143840
2.0 38.7892465
1.0 32.7262626

0.5 23.4042801

0.0 12.33

TADLE F. 13 : ex Aggregate likelihood for 
MB 5 UD data of table F.7 .

Time
t

<ef |Dt Obs. 

Yt
<9t V

a Y Mode Var. a Y Mode Var.

18 21.68 26.36 0.4493 0.0050 6 27.68 37.36 0.4233 0.0037

19 20.49 27.55 0.4233 0.0050 10 30.49 34.55 0.4678 0.0038

20 22.53 25.50 0.4678 0.0051 11 33.53 31.50 0.5161 0.0038

21 24.76 23.28 0.5161 0.0051 10 34.76 30.28 0.5356 0.0038

22 25.65 22.38 0.5356 0.0051 9 34.65 30.78 0.5339 0.0038

23 25.58 22.46 0.5339 0.0051 9 34.58 30.46 0.5327 0.0038

24 25.52 22.51 0.5327 0.0051 9 35.52 30.51 0.5318 0.0038

25 25.48 22.55 0.5318 0.0051 9 34.48 30.55 0.5312 0.0038

26 25.45 22.58 0.5312 0.0051 8 33.45 31.58 0.5148 0.0038

27 24.70 23.33 0.5148 0.0051 9 33.70 31.33 0.5188 0.0038

28 24.88 23.15 0.5188 0.0051 7 31.88 33.15 0.4899 0.0038

29 23.55 24.48 0.4899 0.0051 8 31.55 33.48 0.4847 0.0038

30 23.31 24.72 0.4847 0.0051 8 31.31 33.72 0.4809 0.0038

TABLE F 14 : Binomial- Beta BEF model - MB A UD data from table

F.7 , Prior-Posterior parameter distribution ; 

t=18,19,...,30 ; n=17 .



Time

! 
io

! 
+->

C
D

1> Obs. ( M V -

t a Y Mode Var. Yt a Y Mode Var.

88 4.72 43.44 0.0805 0.0018 2 6.72 58.44 0.0905 0.0014

89 5.18 42.97 0.0905 0.0020 1 6.18 58.97 0.0820 0.0013

90 4.78 43.37 0.0820 0.0018 2 6.78 58.37 0.0916 0.0014

91 5.23 42.92 0.0916 0.0020 2 7.23 57.92 0.0986 0.0015

92 5.55 45.59 0.0986 0.0021 3 8.55 56.59 0.1196 0.0017

93 6.52 41.62 0.1196 0.0024 3 9.52 55.62 0.1349 0.0019

94 7.22 40.90 0.1349 0.0026 6 13.22 51.90 0.1936 0.0024

95 9.23 38.18 0.1936 0.0033 5 14.93 50.18 0.2207 0.0027

96 11.17 36.92 0.2207 0.0036 3 14.17 50.92 0.2088 0.0026

97 10.62 37.46 0.2088 0.0035 6 16.62 48.46 0.2476 0.0029

98 12.41 35.67 0.2476 0.0039 6 18.41 46.67 0.2760 0.0031

99 13.72 34.35 0.2760 0.0042 5 18.72 46.35 0.2809 0.0031

100 13.94 34.13 0.2809 0.0042 6 19.94 45.13 0.3003 0.0032

TABLE F.15 : Binomial-Beta BEF model - MB & UD data from table 

F.7 Prior-Posterior parameter distribution; 

t=88,89,...,100 ; n=17 .



Time (9t °t-i> Obs.
Y <0t l Dt T  ••

t a Y Mode Var. t a Y Mode Var.

189 10.75 37.34 0.2116 0.0035 5 15.75 49.34 0.2339 0.0028

190 11.78 36.30 0.2339 0.0038 7 18.78 46.30 0.2818 0.0031

191 13.98 34.09 0.2818 0.0042 8 21.98 43.09 0.3327 0.0034

192 16.32 31.73 0.3327 0.0046 9 25.32 39.73 0.3857 0.0036

193 18.76 29.29 0.3857 0.0049 6 24.76 40.29 0.3769 0.0036

194 18.35 29.69 0.3769 0.0048 8 26.35 38.69 0.4022 0.0036

| 195 19.52 28.53 0.4022 0.0049 8 27.52 37.53 0.4206 0.0037

j 196 20.36 27.67 0.4206 0.0050 8 28.36 36.67 0.4341 0.0037

197 20.98 27.05 0.4341 0.0050 9 29.98 35.05 0.4598 0.0038

198 22.17 25.87 0.4598 0.0051 7 29.17 35.87 0.4468 0.0037

199 21.57 26.47 0.4468 0.0050 7 28.57 36.47 0.4374 0.0037

200 21.14 26.90 0.4374 0.0050 9 30.14 34.90 0.4622 0.0038

201 22.28 25.76 0.4622 0.0051 9 31.28 33.76 0.4803 0.0038

202 23.11 24.92 0.4803 0.0051 9 32.11 32.92 0.4936 0.0038

203 23.72 24.31 0.4936 0.0051 7 30.72 34.31 0.4715 0.0038

204 22.71 25.33 0.4715 0.0051 9 31.71 33.33 0.4871 0.0038

TABLE F 16 : Binomial--Beta BEF model - MB & UD data from table F.7

Prior-Posterior parameter distribution; t=189,190.... 204;

n= 17.
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Time YtlDt-l p(»tiDt-i>
Obs. 
Y
X

4 0.158787
210 5 0.177052 2

6 0.163405

3 0.162361
211 4 0.186864 3

5 0.173438

3 0.181168
212 4 0.191310 2

5 0.163508

2 0.168978
213 3 0.202499 2

4 0.187200

2 0.196477
214 3 0.210771 2

4 0.175581

1 0.153637
215 2 0.214962 2

3 0.211557

1 0.174198
216 2 0.226783 3

3 0.208881

1 0.162727
217 2 0.220508 2

3 0.210710

1 0.181258
218 2 0.230250 0

3 0.207360

0 0.145928
219 1 0.254143 0

2 0.247494

0 0.229062
220 1 0.302583 1

2 0.232676

0 0.248501
221 1 0.309590 1

2 0.226735

0 0.335069 0
222 1 0.325761 ___ ___

TABLE F.17 : Binomial-Beta BEF predictive 

distribution - MB & UD data from table F.7
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F I G U R E  F . l  : P l o t  o f  table F . 6  data:

W e e k l y  n u m b e r  o f  rural d i s t r i c t s  (RD) in Cornwall a f f e c t e d  by m e a s l e s  e pidemic 

fr o m  the 40 t h  w e e k  o f  1966 to t h e  52nd w e e k  of  1979 (222 o b s e r v a t i o n s ) .

F I G U R E  F.2: P l o t  o f  t a b l e  F.7 data:

W e e k l y  n u m b e r  o f  munic i p a l  b o r o u g h s  a n d  urban d i s t r i c t s  (MB & U D )  in Cornwall a f f e c t e d  by 

m e a s l e s  e p i d e m i c  fr o m  the 4 0 t h  w e e k  of  1966 to the 52 n d  w e e k  o f  19 7 0  (222 o b s e r v a t i o n  ).



c.n

FIGURE F . 3 : P l o t  o f  M ( e t IDt ) X t f o r  RD da t a  o f  table F . 6 ,  where: 

M ( 0 t |Dt ) = M o d e  (0t |Dt ) ; 222.

FIGURE F . 4 : P l o t  o f  f1(et |Dt ) X t for M B  & U D  d a t a  o f  t a ble F.7, w h e r e  

n ( 0  |D ) = M o d e  (0 t |nt ), t = l ,2,..., 222.
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APPENDIX G :
- •• \ >

Numerical results concerning the simulations and application of

the truncated normal BEF model - Chapter 8.

Prior (6t |Dt_1) Obs. Posterior (etlDt)

Yt mt. Ct______ ★ *2
Charact. ut °t v2=2 true app. true app. Pt °t

1.65 1 0 1.13 1.14 0.48 0.49 0.89 0.78

I- V 1.65 1 1 1.25 1.27 0.57 0.58 1.09 0.77

1.65 1 2 1.70 1.71 0.64 0.65 1.66 0.74
555 trunc.

1.65 1 3 2.03 2.04 0.68 0.68 2.02 0.72

0.67 1 0 0.75 0.76 0.31 0.32 0.10 0.82

J V 0.67 1 1 0.92 0.93 0.39 0.40 0.51 0.80

0.67 1 2 1.14 1.15 0.49 0.50 0.91 0.78
25% trunc. 0.67 1 3 1.41 1.42 0.57 0.58 1.30 0.76

1 0 1 0 0.58 0.58 0.22 0.23 -0.48 0.85

J IV 0 1 1 0.70 0.71 0.28 0.25 -0.05 0.83

0 1 2 0.86 0.87 0.36 0.37 0.37 0.81
50% trunc. 0 1 3 1.07 1.07 0.45 0.47 0.77 0.79

-0.67 1 0 0.45 0.46 0.15 0.16 -1.07 0.87

J k -0.67 1 1 0.54 0.55 0.20 0.21 -0.63 0.85

-0.67 1 2 0.65 0.65 0.26 0.27 -0.20 0.83

75% trunc. -0.67 1 3 0.80 0.80 0.33 0.34 0.22 0.81

-1.28 1 0 0.38 0.38 0.11 0.11 -1.62 0.89

-1.28 1 1 0.44 0.45 0.14 0.15 -1.17 0.87

-1.28 1 2 0.52 0.53 0.19 0.19 -0.72 0.86

90% trunc. -1.28 1 3 0.63 0.63 0.24 0.25 -0.29 0.84

-1.65 1 0 0.34 0.35 0.09 0.10 -1.95 0.90

J M -1.65 1 1 0.39 0.40 0.12 0.13 -1.50 0.88

-1.65 1 2 0.46 0.47 0.15 0.16 -1.05 0.87

95% trunc. -1.65 1 3 0.55 0.55 0.20 0.21 -0.60 0.85

TABLE G.l : Posterior distribution - true and approximated 
distribution ; comparison N(^.;a£)

mt=E iet lDt> ; Ct= Var iet |Dt) ;

,o^2 parameters of the untruncated posterior 
(under approximation)
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Prior V i »

2
V

Predictive

yt
2

at
yt Cyt

• 
*

i 
3-

2

\true app. true app.
1.65 1 i 1.92 1.90 1.34 1.32 1.52 2.03

1.65 1 2 2.12 2.10 1.79 1.75 1.55 2.90

1.65 1 3 2.30 2.29 2.24 2.20 1.56 3.86

1.65 1 4 2.48 2.47 2.68 2.65 1.58 4.84

0.67 1 1 1.41 1.33 0.92 0.78 0.84 1.41

0.67 1 2 1.68 1.63 1.33 1.24 0.90 2.44

0.67 1 3 1.90 1.88 1.75 1.68 0.93 3.45

0.67 1 4 2.10 2.08 2.17 2.11 0.95 4.46

i 0 1 1 1.21 1.13 0.72 0.60 0.59 1.21

0
1 2 1.50 1.46 1.13 1.05 0.64 2.25

0 1 3 1.74 1.71 1.54 1.48 0.67 3.27

0 1 4 1.95 1.93 1.94 1.90 0.68 4.28

-0.67 1 1 1.09 1.02 0.60 0.52 0.42 1.12

-0.67 1 2 1.40 1.36 1.00 0.95 0.47 2.15

-0.67 1 3 1.64 1.62 1.40 1.36 0.50 3.17

-0.67 1 4 1.85 1.83 1.79 1.76 0.51 4.18

-1.65 1 1 0.98 0.92 0.51 0.45 0.26 1.06

-1.65 1 2 1.30 1.27 0.90 0.86 0.31 2.08

-1.65 1 3 1.55 1.53 1.29 1.26 0.34 3.10

-1.65 1 4 1.76 1.75 1.68 1.65 0.35 4.10

TABLE G.2 : Predictive distribution - true and approximated 

distributions comparison.

(etlDt-l) ^ N(iJt1at);et e R+

m = E (Yt |Dt_1J ; Cy = Var ; v2= Unt.Var(Yt|0t)
t t

p ; q parameters of the untruncated distr. for 
yt yt

(Yt |Dt_!) (approx).
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Time

t

(0t Obs.

Yt

< V Dt>
*

vt
*2

°t yt
2

v  •

330 2.3815 0.0174 2.20 2.3788 0.0174
331 2.3788 0.0174 1.28 2.3721 0.0173
332 2.3721 0.0173 4.35 2.3787 0.0173
333 2.3787 0.0173 5.22 2.3890 0.0172
334 2.3890 0.0172 1.79 2.3845 0.0172

335 2.3845 0.0172 4.07 2.3898 0.0171

336 2.3898 0.0171 5.27 2.4002 0.0171

TABLE G.4 : Prior - Posterior parameter distribution ; data 

from table G.3, using approximation for the 

posterior (0t l Dt_1) -u M(pt , a*2) ; (etI Dt-l)G R+ 

(0t|Dt) •», N(ut -,a2t ) ; (0t |Dt) e R+ ; t=330.... 336.

Time (et W Obs. (0t V

t
*

pt
*2

°t
yt

yt °t

330 2.3756 0.0174 2.20 2.3729 0.0174

331 2.3729 0.0174 1.28 2.3662 0.0173

332 2.3662 0.0173 4.35 2.3728 0.0173

333 2.3728 0.0173 5.22 2.3832 0.0172

334 2.3832 0.0172 1.79 2.3787 0.0172

335 2.3787 0.0172 4.07 2.3840 0.0171

336 2.3840 0.0171 5.27 2.3949 0.0171

TABLE G.5 : Prior-Posterior parameter distribution ; data 

from table G.3 ; using numerical integration 

the (0t l°t_i) ^ N(Pt ;0t2  ̂ ’ (0tlDt-l^ E R+ 

N(y£ ) > (0̂ 1 )e K » t-330. ,.,336

.£
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c Aggregate

Likelihood
20 56.20288
19 56.20290

17 56.20298
15 56.20322

14 56.20344
13 56.20375

12.5 56.20392

12 56.20407

11.50 56.20416

11.25 56.20417

11 56.20414

10.5 56.20390

10 56.20332

9 56.20037

8 56.19378

5 56.16381

3 56.23166

1.5 56.33833

0.5 55.43699

TABLE G.6 : c x Aggregate Likelihood data 

from table G.3 .

Time

t

(9J Dt-i> <*ti Dt-i> Obs.

yt

(et!V

yt at2 Uyt . CTyt .. yt

330 2.3672 0.0210 2.3649 4.0210 2.20 2.3640 0.0209

331 2.3640 0.0210 2.3616 4.0210 1.28 2.3560 0.0209

332 2.3560 0.0209 2.3536 4.0210 4.35 2.3640 0.0209

333 2.3640 0.0209 2.3617 4.0210 5.22 2.3766 0.0203

334 2.3766 0.0209 2.3742 4.0209 1.79 2.3712 0.0208

335 2.3712 0.0209 2.3688 4.0209 4.07 2.3777 0.0208

336 2.3777 0.0209 2.3754 4.0209 5.27 2.3904 0.0208

TABLE G.7 : BEF truncated normal model for data from table G.3; 

(et l Dt _ i ) ^  n(m* & l 2) ; (0t l Dt - i ^ e R+

« tl "t-l> ' 1 "'ll °t-l> e R*
(etlDt) ^ N(ut ;ap ; (0t|Dt)e R+ ; t=330,... ,336.
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Source: SATRO (Shoe & Allied Trades Research Association).

c Aggregate
Likelihood

3.0 7.931130

2.5 7.977485

2.0 8.088962

1.0 8.737608

0.8 8.968159

0.5 9.489371

0.2 10.64046

0.15 10.91206

0.10 11.03273

0.09 11.03542

0.08 11.02999

0.07 11.01083

0.05 10.93819

0.04 10.90288

0.02 10.85493

TABLE G.9 : c * Aggregate Likelihood 
data from table G.8 .
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Time

t
(V Dt-i> Obs.

Ytuvyt
a2
yt

147 8.0099 51.4381 7
148 6.8666 49.9115 6
149 5.8520 46.3794 6
150 5.3897 43.9871 2
151 4.1656 35.3477 5

152 4.3443 36.3925 4

153 4.1546 35.1516 11

154 7.0345 56.3738 2

155 4.5191 37.7219 5

156 4.4907 37.4694 2

157 3.8015 33.2560 2

TABLE G.10 : BEF truncated normal model; predictive 

distribution ; data from table G.8 

(*t l « W  * ;aJt );(Yt |Dt _1 ) c R +

t=147....  157 .

Time

t

Obs.

Yt
Uyt ayyt

147 8.3230 53.3819 7

148 7.6146 53.0296 6

149 7.1243 52.6660 6

150 5.5613 52.4814 2

151 5.3963 52.1162 5

152 4.9742 51.7734 4

153 6.8157 51.6556 11

154 5.3462 51.4578 2

155 5.2431 51.1226 5

156 4.2577 50.8639 2

157 3.5738 50.5799 2

TABLE G.11 : Normal linear modal ; predictive distribution;

data from table G.8 (Ytl Dt - P % ;oy  ̂ ’

(YtlDt-l)elR t= 147,...,157.
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F I G U R E  G.l : P l o t  o f  t a b l e  <¡.8 data:

w e e k l y  s a les f i g ures for s h o e s  cov e r i n g  the period 

f r o m  1 9 / 8 / 1 9 6 6  to 2 8 / 1 1 / 1 9 6 9  (157 obse r v a t i o n s ) .
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