A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/139964

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

DYNKIN VARIETIES

Jean Nicolas Spaltenstein

Thesis submitted for the degree of Doctor of Philosophy at the University of Warwick

Table of contents.
Acknowledgements (iii)
Summary (iv)
Introduction (v)
Chapter 0
Notations 1
Chapter IComplements on unipotent classesin reductive groups.

1. General results 6
2. Groups of type D_{4} 16
3. Unipotent bilinear forms 22
4. Groups of type E_{6} 38
Chapter II
Dynkin varieties
5. Equidimensionality of components 43
6. Dimension of G_{a} and relative positions 52
7. Some special classes and some special components 62
8. Parabolic subgroups fixed by u 77
9. Dynkin varieties for classical groups 84

(ii)

6. P-regular classes 121
7. Equivalence relations in the Weyl groups 132
8. Examples 139
9. Tables 141
References 160

(i11)

Acknowledgements.

Firstly I wish to thank my supervisor, Professor George Lusztig, for his constent help and encouragement during my stay at Warwick. I am also very grateful to Profeasor Roger Carter for many interesting diecussions.

While carrying out this work I was financially supported by the Swiss 'Fonds national' and then by the Royal Society.

(iii)

Acknowledgements.

Firstly I wish to thank my supervisor, Professor George Lusztig, for his constant help and encouragement during my stay at Warwick. I am also very grateful to Professor Roger Carter for many interesting discussions.

While carrying out this work I was financially supported by the Swiss
'Fonds national' and then by the
Royal Society.

(iii)

Acknowledgements.

Pirstly I wish to thank my aupervisor, Professor George Lusztig, for his constant help and encouragement during my stay at Warwick. I am also very grateful to Professor Roger Carter for many interesting discussions.

While carrying out this work I was financially aupported by the Swiss
'Fonds national' and then by the Royal Society.

(iv)

Summary.

Let G be a linear algebraic group. The Dynkin variety \mathcal{S}_{x} of an element x of G is the fixed point set of x on the variety β of all Borel subgroups of G. We show that all irreducible components of this varlety have the same dimension, and that ${ }^{S_{3}}{ }_{x}$ is connected if x is unipotent.

Suppose now that G is reductive (but not necessarily connected) and that x is unipotent. We generalize an inequality linking $\operatorname{dim} \beta_{x}$ and dim $Z_{G}(x)$ and some results on the action of $A_{0}(x)$ on the set $S(x)$ of all irreducible components of $\Omega^{\Omega_{x}}$, where $A_{0}(x)$ is the group of components of $Z_{G} O(x)$. We consider also regular and sub-regular elements In non-connected reductive groups. For classical groups we get a combinatorial description for $S(x)$ and the action of $A_{0}(x)$ on $S(x)$ and a formula for dim \mathcal{B}_{x}. We generalize to non-connected reductive groups a theorem of Richardson which associates to each conjugacy class of parabolic subgroups of G a unipotent class of G and for classical groups we get a combinatorial description of this map.

There 1s also some material on unipotent classes in arbitrary reductive groups.

Let G be a linear algebraic group. The Dynkin variety ${ }^{G 3} x$ of an element x of G is the fixed point set of x on the variety \mathcal{S}_{β} of all Borel subgroups of G. We show that all irreducible components of this variety have the same dimension, and that B_{x} is connected if x is unipotent.

Suppose now that G is reductive (but not necessarily connected) and that x is unipotent. We generalize an inequality linking $\operatorname{dim} \beta_{x}$ and dim $Z_{G}(x)$ and some results on the action of $A_{0}(x)$ on the set $S(x)$ of all irreducible components of β_{x}, where $A_{0}(x)$ is the group of components of $z_{G} \mathrm{O}(\mathrm{x})$. We consider also regular and sub-regular elements in non-connected reductive groups. For classical groups we get a combinatorial deacription for $S(x)$ and the action of $A_{0}(x)$ on $S(x)$ and a formula for dim \mathcal{B}_{x}. We generalize to non-connected reductive groups a theorem of Richardson which associates to each conjugacy class of parabolic subgroups of G a unipotent class of G and for classical groups we get a combinatorial description of this map.

There is also some material on unipotent classes in arbitrary reductive groups.

The main problem considered in this work is the study of Dynkin varieties. Let G be an algebraic group and let x be an element of G. Then the Dynkin variety β_{x} of x is the fixed point set of x on the variety \mathscr{S} of all Borel subgroups of G. The problem can be reduced to the following one : G is reductive (or semisimple, or G° is simple) and x is unipotent. In general we do not assume that G is connected.

Chapter 0 introduces some notations and collects results which shall be used frequently. The definition we use for the Weyl group W of G is similar to the one given in [7].

We need some informations about unipotent classes in reductive groups. As the literature deals mostly with connected groups (e.g. [16], [20], [2], [6], etc.), chapter I is devoted to this problem. In characteristio 2 (resp. 3) some new unipotent classes arise from the symmetries of order 2 (resp. 3) in the Dynkin diagrams of type A_{n}, D_{n}, B_{6} (resp. D_{4}). For example in characteristic 2 we get unipotent classes in $\mathrm{O}_{2 \mathrm{n}} \backslash \mathrm{SO}_{2 \mathrm{n}}$. This case has been studied in [23].

In I. 1 we show how the study of unipotent classes in reductive groups can be reduced to the case where G° is simple. We state the following result : a reductive group has only finitely many unipotent classes. This result was already known for connected reductive groups ([6], and [12] with some mild restrictions on the characteristic). The proof depends on a case by case study which is carried out in I.2, I. 3 and I. 4 and on the proof for connected groups (it is therefore a
(vi)
result due to George Lusztig aince the proof in I. 4 and the proof for the connected case are his). We fix also notations for the parametrization of unipotent classes in the classical groups.

In I. 2 we study the case of the eymmetry of order 3 in the Dynkin diagram of type D_{4} in characteriatic 3.

In I. 3 we define unipotent bilinear forms in characteriatic 2. The study of classes of such forms provides a parametrization of the unipotent classes arising from the symmetry of order 2 in the diagrams of type A_{n}. The results are very similar to the results obtained for the symplectic groups in characteristic 2 in [23].

The resulta in I. 4 are due to George Iusztig. The aim of this section is to show that there are only finitely many unipotent classes arising from the symmetry of order 2 in the Dynkin diagram of type E_{6} in characteristic 2 .

In chapter II we study Dynkin varieties and we consider a few applications. Nany results in this chapter are generalizations of results known for connected groups.

In II. 1 we consider some projective lines contained in \mathcal{B}_{u} (u unipotent). These lines where introduced first by Tits for connected groups. We use these lines to prove that \mathbb{M}_{4} is connected and that all irreducible components of \mathbb{R}_{u} have the same dimension. The last result is true even if u is not unipotent. We give also a proof (using Dynkin varieties) of the fact that the centralizer of a semisimple element in a reductive group is reductive.

In II. 2 we use an idea introduced in [20] (and developped
in [21]) to generalize a relation between dim \mathcal{B}_{u} and dim $Z_{G}(u)$ and some results on a natural application $S(u) \times S(u) \longrightarrow W^{u}$, where $S(u)$ is the set of irreducible components of \mathbb{S}_{u} (u unipotent, G reductive). 2.10 was also obtained for connected groups by Steinberg [21]. M. Cross (unpublished) and by Springer [17] (with some restrictions on the characteristic) and 2.11 and 2.12 are obtained in [21] (with equality) essentially for GL_{n}. We consider then unipotent quasisemisimple elements and we get several characterizations for quasisemisimple elements in reductive groups.

In II. 3 we generalize a theorem of Richardson [13] and we define P-regular (unipotent) classes (P a parabolic subgroup of G^{0}, G reductive). The proof given here is close to the proof of Richardson's theorem given in [21]. We consider then regular and subregular elements and we show that these elements can be defined by the properties $\operatorname{dim} \mathscr{B}_{x}=0$ and $\operatorname{dim} \mathscr{S}_{x}=1$ respectively. We look also at sub-subregular unipotent elements.

In II. 4 we study a natural morphism $p: \mathscr{R}_{u} \longrightarrow \mathscr{C}_{u}^{0}$, where \mathscr{P}_{u}^{0} is the fixed point set of u on some G^{0}-conjugacy clase of parabolic subgroups of G. We attach also to each irreducible component X_{σ} of T_{u} a set I_{σ} of fundemental reflections. We show how to use the morphism p to get informations about \mathcal{P}_{u}^{0} if we know enough about β_{u} and the sets $\left(I_{\sigma}\right)_{\sigma \in S}(u)$. We show also how p can be used to study \mathcal{F}_{u} if the conjugacy class of parabolic subgroups is choosen in a suitable way.

In II. 5 we consider Dynkin varieties for classical groups (we include here the groups $G(V)$ defined in I.3). We get a
combinatorial description of $S(u)$ and of the action of $Z_{G}(u) / Z_{G}(u)^{0}$ on $S(u)$. If $G=S p_{2 n}$ or O_{n} and the characteristic is not 2, Hesselink has also obtained such a combinatorial description (unpublished). The Dynkin varieties for these groups have also been studied by B. Srinivasan in connection with the representation theory of the finite classical groups. The best results are obtained for GL_{n}. If u is unipotent, then $S(u)$ can be parametrized by standard tableaux [14], [21], and \mathbb{B}_{u} can be decomposed into a union of affine spaces [10], [14]. We compute also the sets $I_{\sigma}(\sigma \in S(u))$ in all cases. For $G L_{n}$ we can then reverse the proof connecting the varisties P_{u} (for various conjugacy classes of parabolic subgroups) and the representation theory of $S_{n} \cong W$ given by Steinberg in [21]. We compute also dim \mathbb{S}_{u} in all cases and we check that we have actually an equality in the formula of II.2.5.

In II. 6 we consider the same groups as in II.5. Let P be a parabolic subgroup of G^{0}. Using the resulte of II. 5 we determine which unipotent class is P-regular. We look then at some questions related to the parametrization of unipotent classes given by Bala and Carter [1].

In II. 7 we consider some equivalence relations in the Weyl groups. These relations have properties similar to those of an equivalence relation arising in the theory of primitive ideals in enveloping algebras. Using results of [11], we can then prove that in the case of $G L_{n}$ the application $S(u) \times S(u)$ $\longrightarrow W \cong S_{n}$ is the inverse of a combinatorial map introduced by Robinson and Schensted.

In II. 8 we give a few examples which are actually
counterexamples.
In II. 9 we give tables for the Dynkin varieties of unipotent elements for some of the groups considered in II.5. These tables give in particular the dimension and the number of irreducible components of \mathbb{S}_{u}. It is also possible to deduce from the table how the group $Z_{G}^{*}(u) / Z_{G}(u)^{0}$ acts on $S(u)$ (this group is described in I.1.12 or I.3.23). Examination of the tables suggests that the results of Springer [17] should be true for all reductive groups and for all characteristics.

CHAPTER 0.

NOTATIONS.

0.1. Unless otherwise stated, k will always be an algebraically closed field. p denotes its characteristic (0 or a prime).
0.2. All algebraic groups considered here are affine algebraic groups defined over k.
0.3. G will always be an algebraic group and $\mathscr{\beta}=\mathscr{G}(G)$ is its variety of Borel subgroups. G acts on $G 3$ by conjugation and the Dynkin variety \mathcal{F}_{x} of $x \in G$ is the fixed point set of x on $\mathscr{B}^{\left(\oiint_{x}\right.}$ is never empty [19, thm 7.2]. $Z(x)=Z_{G}(x)$ acts on B_{x} and therefore $A(x)=Z(x) / Z(x)^{0}$ acts on the set $S(x)$ of all irreducible components of Φ_{x}. Unless otherwise stated we shall also write these components as $\left(X_{\sigma}\right)_{\sigma \in S}(x)$. Let $Z_{0}(x)=$ $Z(x) \cap G^{0}, A_{0}(x)=Z_{0}(x) / Z(x)^{0}$.

If G^{\prime} is a closed subgroup of G normalized by x, then we can define $G_{B}\left(G^{\prime}\right)_{x}$ in a similar way.
0.4. Let W be the set of G°-orbits in $Q_{X} \beta$ (for the action of G given by $\left.g .\left(B_{1}, B_{2}\right)=\left(E_{B_{1}}, G_{B_{2}}\right)\right)$. W is finite and is a group in a natural way. te shall often write w for an element of W considered as a finite group and $O(w)$ for the same element considered as a subvariety of $\beta \times \$$. The length of w is $f(w)=$ dim $O(w)$ - dim G3. The elements of length 1 are called fundamental reflections and we denote by T the set of all fundamental reflections. The composition law in W is given by :
a) $w^{2}=1$ if $w \in \Pi$.
b) If $w, w^{\prime} \in W$ are such that dim ($O(w) \circ O\left(w^{\prime}\right)$) - dim $G_{B}=$ $P(w)+P\left(w^{\prime}\right)$, then $O(w) \cdot O\left(w^{\prime}\right)$ is the G^{0}-orbit $O\left(w w^{\prime}\right)$ in $9 \times \mathcal{S}_{3}$ (where $O(w) \circ O\left(w^{\prime}\right)=\left\{\left(B_{0}, B_{2}\right) \mid \exists B_{1} \in \mathscr{B}\right.$ such that $\left(B_{0}, B_{1}\right) \in O(w)$ and $\left.\left.\left(B_{1}, B_{2}\right) \in O\left(w^{\prime}\right)\right\}\right)$.

With this oomposition law, W will be called the weyl group of $G\left(o r G^{0}\right)$.
T generates W and for any $w \in W, P(w)$ is the smallest $j \in \mathbb{N}$ such that w can be expressed as $w=s_{1} s_{2} \ldots s_{j}$ for some s_{1}, \ldots, $s_{j} \in T$.
0.5. The action of G on $\mathcal{B} \times \mathcal{B}$ induces an action of $G\left(o r G / G^{\circ}\right)$ on W which we shall denote (g, w) $\longmapsto g . w$. For any $x \in G, w \mapsto x . w$ is an automorphism of W and it permutes the fundamental reflections. Denote by \bar{W} the G-orbit of $w \in W$ and let $\bar{W}=$ $|\bar{w}| w \in W \mid$.
0.6. Suppose now that we are considering a fixed element $x \in G$ (or a fixed component XG^{0} of G). Let $o(s)$ be the x-orbit of $s \in T(i . \theta$. the orbit under the action of the cyclic group generated by x). Let s be the element of maximal length in the subgroup of W generated by $o(s) . W^{X}$, the fixed point eet
 as a system of generators. Its length function is $P_{x}(w)=$ $\min |j \in \mathbb{N}| w=E_{1} \xi_{2} \ldots \sigma_{j}$ for some $s_{1}, \ldots, s_{j} \in T \mid$. Such a decomposition $w=E_{1} \mathrm{E}_{2} \ldots \pi_{j}$ has a minimal number of terms if and only if $\ell(w)=P\left(\Xi_{1}\right)+\ldots+l\left(\tilde{\Xi}_{j}\right)$.
0.7. If $\left(B_{0}, B_{2}\right) \in O\left(w w^{\prime}\right)$ and $\ell(w)+\ell\left(w^{\prime}\right)=\ell\left(w w^{\prime}\right)$, there is
a unique $B_{1} \in \mathcal{G}$ such that $\left(B_{0}, B_{1}\right) \in O(w)$ and $\left(B_{1}, B_{2}\right) \in O\left(w^{\prime}\right)$, and this defines a morphism $O\left(w w^{\prime}\right) \longrightarrow G_{3}$. If $w=s_{1} s_{2} \ldots s_{j}$ $\left(j=P(w), s_{1}, \ldots, s_{j} \in T\right)$ and $\left(B_{0}, B_{j}\right) \in O(w)$, then we can find $B_{1}, B_{2}, \ldots, B_{j-1} \in \mathscr{B}$ such that $\left(B_{i-1}, B_{1}\right) \in O\left(s_{i}\right)(1 \leqslant i<j)$ and these Borel subgroups are unique. Similarly, if $w \in W^{x}$ and $w=$ $\tilde{B}_{1} \ldots \widetilde{s}_{j}\left(j=\ell_{x}(w), s_{1}, \ldots, s_{j} \in T\right)$ and $\left(B_{0}, B_{j}\right) \in O(w)$, then we can find $B_{1}, \ldots, B_{j-1} \in \mathcal{B}$ such $\left(B_{1-1}, B_{i}\right) \in O\left(\mathcal{B}_{1}\right)(1 \leqslant 1 \leqslant j)$ and these are unique.
0.8. If X, Y are irreducible subvarieties of \mathcal{G}, define $\varphi(X, Y)$ to be the unique element w of V such that $(X \times Y) \cap O(w)$ is dense in $X \times Y$. In particular, we get for each $x \in G$ an application $\varphi: S(x) \times S(x) \longrightarrow W,(\sigma, \tau) \longmapsto \varphi(\sigma, \tau)=\varphi\left(X_{\sigma}, X_{\tau}\right)$. Define also $\bar{\varphi}(\sigma, \tau) \in \bar{W}$ to be the orbit of $\varphi(\sigma, \tau)$ in W.
0.9. Unless otherwise stated, B is a fixed Borel subgroup of G and T is a fixed maximal torus of B. U is the maximal unipotent subgroup of B and $N=N_{G}(B)$.
0.10. Suppose now that G is reductive. if can be identified with $N_{G} O(T) / T$. If $n \in N_{G O}(T)$, $n T$ corresponds to the G^{0}-orbit of (B, n_{B}) in $G \times \mathscr{B}$. In this way W is a normal subgroup of $N_{G}(T) / T$ and the action of G on W defined in 0.5 corresponds to the action by conjugation of $N_{Y}(T) / T$ on W.

Let $\Delta\left(G^{\circ}\right)$ be the Dynkin diagram of G°. Its nodes are in bijective correspondence with Π. G / G^{0} acts on $\Delta\left(G^{0}\right)$ and it will be convenient to use the following definition. The Dynkin diagram $\Delta(G)$ of G consists of $\triangle\left(G^{0}\right)$, of the finite group G / G^{0} and of the natural homomorphism $G / G^{0} \rightarrow \Gamma\left(G^{0}\right)$, where $\Gamma\left(G^{0}\right)$
is the group of uutomorphisms of $\Delta\left(G^{\circ}\right)$.
Let ϕ be the root system of G^{0} (with respect to T). For each $\alpha \in \phi$, let X_{α} be the corresponding unipotent 1-dimensional subgroup of G. We choose fixed isomorphisms $x_{\alpha}: \mathbb{G}_{a} \longrightarrow X_{\alpha}$, where \mathbb{G}_{a} is the additive group of k viewed as an algebraic group. ϕ^{+}will be the set of positive roots (with respect to $B)$. $s_{\alpha} \in W$ is the reflection corresponding to $\alpha \in \phi$. The fundamental roots correspond bifectively to the fundamental reflections and Twill also denote the set of fundamental roots of G°. If $\alpha=\sum_{1 \leqslant i \leqslant r} n_{i} \alpha_{i}\left(\alpha_{1}, \ldots, \alpha_{r} \in T\right)$, let $\operatorname{ht}(\alpha)=\sum_{1 \leqslant i \leqslant r} n_{i}$.
0.11. Let P, Q, \ldots be parabolic subgroups of G. Ve denote by the corresponding letter \mathbb{P}, Q, \ldots the conjugacy class of P, Q, \ldots respectively and by $\mathcal{C}^{0}, Q^{0}, \ldots$ the G^{0}-conjugacy class of P, Q, \ldots respectively. There is in every G°-conjugacy class of parabolic subgroups of G a unique subgroup containing B. Let W_{P} be the Weyl group of the parabolic subgroup P of G. The inclusion $\mathcal{B}(P) \times \mathscr{B}(P) \subset \mathscr{B} \times \mathcal{B}$ induces a natural homomorphism $W_{P} \rightarrow W$. This homomorphism is injective and we shall regard W_{P} as a subgroup of $W, P \longmapsto W_{P} \cap T T$ induces a bijection between the set of G^{0}-conjugacy classes of parabolic subgroups of G^{0} and the collection of all aubsets of TT. If P is a parabolic subgroup of G^{0} and $I=W_{P} \cap T$, let $\mathcal{P}_{I}=\Phi, \mathscr{P}_{I}^{0}=\mathcal{P}^{0}$. If $x \in G, x^{x_{P} \in \mathcal{P}^{0}}$ if and only if I is x-stable.

Suppose now that G is reductive. If $P \supset B$ is a parabolic subgroup of G, the corresponding subset of T can also be defined as $I=\left\{\left.\alpha \in T\right|_{-\alpha} \subset P\right\}$. Let $L \supset T$ be a Levi subgroup of P. Then $N_{J}(T) / T=N_{P}(T) / T \subset N_{G} O(T) / T$ and this inclusion is compatible with the inolusion $W_{P} \subset W$.
0.12. R_{G} is the radical of G and U_{G} is the unipotent radical of G. If $x \in G, C(x)$ is the conjugacy class of x and $C^{\circ}(x)$ is the G°-conjugacy class of x. If $x=$ su is the Jordan decomposition of x, s will always be the semisimple part of x and u the unipotent part of x.
0.13. $|X|$ is the cardinal of the set X and if h is a group acting on $X, X / A$ is the set of A-orbits in X.
0.14. We shall frequently use the following easy result. Let $\mathbf{P}: X \longrightarrow Y$ be a surjective morphism of algebraic varieties. Suppose that f is open or closed and that all fibres of f are irreducible and have the same dimension. Then the inverse image of any irreducible subvariety of Y is irreducible.

CHAPTER I.

COMPLEMENTS ON UNIPOTENT CLASSES IN REDUCTIVE GROUPS.

1. General results.

1.1. Let x be any element of G. We define rank $x_{x}(G)$ to be the following integer.
a) If G^{0} is a torus, $\operatorname{rank}_{X}(G)=\operatorname{dim} Z_{G}(x)$.
b) If G^{0} is soluble, $\operatorname{rank}_{x}(G)=\operatorname{rank}_{x U_{G}}\left(G / U_{G}\right)$.
c) In general, let $N_{1}=N_{G}\left(B_{1}\right)$, where B_{1} is any element of B_{x}. Then $\operatorname{rank}_{x}(G)=\operatorname{rank}_{x}\left(N_{1}\right)$.

It is easy to check in each case that $\operatorname{rank}_{x}(G)=\operatorname{rank}_{y}(G)$ if $y \in x G^{0}$, that in (c) $\operatorname{rank}_{x}\left(N_{1}\right)$ is independent of the choice of $B_{1} \in \mathbb{B}_{x}$ and that (b) generalizes (a) and (c) generalizes (b).

Remark 1.2. a) If $x \in G^{0}$ it is clear that $\operatorname{rank}_{x}(G)=\operatorname{rank}_{1}(G)$ is the rank of G, i.e. the dimension of a maximal torus of G. b) $\operatorname{rank}_{x}(G)=\operatorname{rank}_{x U_{G}}\left(G / U_{G}\right)$. This is clear from the definition. c) If x is semisimple, rank $_{x}(G)$ is the rank of $Z(x)$. To show that, assume firat that $G^{0}=B$ is soluble. For every torus S in G, the natural homomorphism $S \longrightarrow G / U_{G}$ is injective. It follows that if S is a maximal torus in $Z(x)$, then rank $X_{X}(G) \geqslant$ dim $S=\operatorname{rank}_{1}(Z(x))$. On the other hand, G contains a maximal torus T normalized by $x[19, p .51]$ and if $t \in T$ is such that $x t x^{-1} J_{G}=t U_{G}$, we must have $x t x^{-1}=t$. Hence dim $Z_{T}(x) \geqslant$ $\operatorname{rank}_{x}(G)$. This shows that if G^{0} is soluble, then rank $(G)=$ rank $(Z(x)$) and that for any maximal torus T of G normalized by $x, Z_{T}(x)^{0}$ is a maximal torus of $Z(x)$.

This shows that in the general case $\operatorname{rank}_{x}(G)=\operatorname{rank}_{x}\left(N_{1}\right)=$ rank $_{1}\left(Z_{B_{1}}(x)\right)$ for every B_{1} as in 1.1 (c). Choose B_{1} in a closed $Z(x)$-orbit in G_{x}. Then $Z_{B_{1}}(x)^{0}=B_{1} \cap Z(x)^{0}$ is a Borel subgroup of $Z(x)$ and therefore rank $_{1}(Z(x))=\operatorname{rank}_{1}\left(Z_{B_{1}}(x)\right)$. This proves that if x is semisimple and G is any algebraic group, then $\operatorname{rank}_{x}(G)=\operatorname{rank}_{1}(Z(x))$.

Proposition 1.3. Let Z be a normal subgroup of G^{0} consisting of semisimple elements. If u and $u z$ are both unipotent $(g \in G$, $z \in Z$) then they are Z-conjugate. In particular the canonical morphism $G \longrightarrow G / Z$ induces a bijection between the set of unipotent classes of G and the set of unipotent classes of G / Z.

Proof. Since $2 \subset G^{0}$ is normal and consists of semisimple elements, it is contained in every maximal torus of G. In particular 2 is commutative and it is contained in some $B_{1} \epsilon$ $\mathbb{F}_{u^{\prime}}$. It is sufficient to prove the proposition for $N_{G}\left(B_{j}\right)$. So we may as well assume that G^{0} is soluble.

Let q be the order of $u G^{\circ}$ in $G / G^{\circ}, q$ is a power of p. Suppose that u and $u z$ are unipotent. Then u^{q} and $(u z)^{q}$ are unipotent elements of G^{0} and hence are contained in U_{G}. But $(u z)^{q}=\left(u z u^{-1}\right)\left(u^{2} z u^{-2}\right) \ldots\left(u^{q} z u^{-q}\right) u^{q}$ and $\left(u z u^{-1}\right) \ldots\left(u^{q} z u^{-q}\right) \in Z$. Therefore $\left(u z u^{-1}\right) \ldots\left(u^{q} z u^{-q}\right)=1$.

Define $f: Z \longrightarrow Z, Z \longmapsto u z u^{-1}$. Then f^{q} is the identity since $u^{q} \in U_{G}$. Define also $\varphi: Z \longrightarrow Z, z \longmapsto z f(z) f^{2}(z) \ldots f^{q-1}(z)$ and $\gamma: z \longrightarrow Z, z \longmapsto z f(z)^{-1}$. Since f^{q} is the identity, $\varphi \circ f=f \circ \varphi=$ φ and therefore $\varphi^{2}(z)=\varphi(z)^{q}$ for all $z \in Z$. But $z \longmapsto z^{q}$ is a bijective endomorphism of 2 and therefore $\operatorname{Im} \varphi \cap \operatorname{Ker} \varphi=1$. This shows that Z is the direct product of $\operatorname{Im} \varphi$ and $\operatorname{Ker} \varphi$. Also
$\varphi(\psi(z))=\psi(\varphi(z))=1$ for all $z \in Z$. Hence $\operatorname{Im} \varphi \subset \operatorname{Ker}^{\psi} \psi$ and $\operatorname{Ker} \varphi$, Im'Y. Moreover, if $z \in \operatorname{Ker}^{\prime} \psi$, then $z=z^{\prime q}$ for some $z^{\prime} \in$ Ker ψ and then $\varphi\left(z^{\prime}\right)=z^{\prime q}=z$. Hence $\operatorname{Ker} \Psi \subset \operatorname{Im} \varphi$. Since z is the direct product of $\operatorname{Ker} \varphi$ and $\operatorname{Im} \varphi$, these inclusions show that $\operatorname{Ker} \varphi=\operatorname{Im} \psi$ and $\operatorname{Im} \varphi=\operatorname{Ker} \psi$.

We can now prove the proposition. If u is unipotent, $u z$ is unipotent if and only if $z \in \operatorname{Ker} \varphi$. But then $z=t f(t)^{-1}$ for some $t \in Z$ and $f(t) u f(t)^{-1}=u t f(t)^{-1}=u z$.

Corollary 1.4. Let $u G^{\circ}$ be a unipotent component of G. Let V be the variety of all unipotent elements contained in uG ${ }^{\circ}$. Then V is a closed irreducible subvariety of G and $\operatorname{codim}_{G} V=$ $\operatorname{rank}_{u}(G)$.

Proof. V is clearly closed. For the other statements, we consider three cases.
a) If G^{0} is a torus, this follows immediately from 1.3 with $Z=$ G^{0}.
b) An element of G is unipotent if and only if its image in G / U_{G} is so. If G° is soluble, the result follows then from (a), 1.2 (b) and 0.14.
c) In the general case, we may clearly assume that $B \in \mathcal{S}_{u}$. Let V^{\prime} be the variety of all unipotent elements in uB. Then V is the image of $G^{0} \times V^{\prime}$ under the morphism $(g, x) \longmapsto g x g^{-1}$. This shows that V is irreducible and in order to prove that codim $V=\operatorname{rank}_{G}(G)$ it is sufficient to prove that for some $\nabla \in V,\left|\mathscr{G}_{V}\right|<\infty$. This will be done in II.1.8.
1.5. Suppose now that G is reductive. The group $H=A u t\left(O^{\circ} / R_{G}\right)$
can be considered as an algebraic group with identity component isomorphic to the adjoint group of G°. There is a natural isomorphism $H / H^{0} \cong \Gamma\left(G^{0}\right)$. We also have a homomorphism $G / G^{0} \longrightarrow$ $\Gamma\left(G^{\circ}\right)$ and we can form the fibre product $G^{*}=\left\{\left(\mathrm{gG}^{0}, \mathrm{~h}\right) \in G / G^{\circ} \times H \mid\right.$ g and h have the same image in $\left.\Gamma\left(G^{\circ}\right)\right\}$. This libre product depends only on $\Delta(G)$ (as defined in 0.10) and there is a natural epimorphism $G \longrightarrow G *$.

Proposition 1.6. Let G be a reductive group. Then the unipotent classes of G depend only on $\Delta(G)$ (for a given k). More precisely the natural epimorphism $G \longrightarrow G *$ induces a bijection between the set of unipotent classes of G and the set of unipotent classes of G*.

Proof. Let Z be the centre of G°. $G \longrightarrow G *$ factors as $G \longrightarrow G / Z$ $\longrightarrow G^{*} \cdot G / Z \longrightarrow G^{*}$ is bijective and therefore induces a bijection from the set of unipotent classes of G / Z to the set of unipotent classes of G^{*} and the same is true for $G \longrightarrow G / 2$ by 1.3.
1.7. Suppose now that G^{0} is an adjoint semisimple group. To classify the unipotent classes in G we must solve two problems.
a) Determine the unipotent classes of G / G°.
b) Choose a component $u G^{\circ}$ in each unipotent class of G / G° and determine the unipotent classes of H contained in $u G^{\circ}$, where $G^{0} \subset H \subset G$ and $H / G^{0}=Z_{G / G} O\left(u G^{0}\right)$.

We shall not consider (a) here.
1.8. Suppose that G° is semisimple and adjoint. Let $u G^{\circ}$ be a unipotent component of G / G°. We assume that $u G^{\circ}$ is central in
G / G°.
Let G_{1}, \ldots, G_{g} be the minimal connected normal subgroups of G. We have homomorphisms $G / G^{\circ} \longrightarrow \Gamma\left(G_{i}\right)$ and as in 1.5 we can use these homomorphisms to get fibre products $G_{i}{ }_{i}$ with $G_{i}{ }^{0} \cong G_{i}$ and $G_{1} / G_{1}^{*}{ }^{\circ} \cong G / G^{\circ}$. Let u_{i} be an element in the component of G_{1} corresponding to $u G^{\circ}$. G is naturally isomorphic to $\left\{\left(g_{1}, \ldots, g_{B}\right) \in \prod_{1 \text { dfs }} G_{i} \mid g_{1}, \ldots, g_{B}\right.$ correapond to the same component of G / G^{0}). Let X_{i} be the set of unipotent $G_{1}{ }^{0}$-classes in $u_{i} G_{1}{ }^{0}$. G / G^{0} acts on X_{i}. The set X of all unipotent G^{0}-classes in $u^{\circ}{ }^{\circ}$ can be identified with $T_{1<1 / 5} x_{i}$ and the unipotent classes correspond to the G / G°-orbits in X or in $\prod_{4 \leqslant i \leqslant 5} X_{i}$. So we need only to determine the sets X_{i} and the action of G / G° on these sets.
1.2. Assume that G^{0} is semisimple and adjoint, that $u G^{\circ}$ is a central unipotent element of G / G° and that 1 and G° are the only normal connected subgroups of G. Let H be the subgroup of G generated by G^{0} and u. Let H_{1}, \ldots, H_{r} be the minimal connected normal subgroups of H . Using the homomorphisms $\mathrm{H} / \mathrm{H}^{\circ} \rightarrow \Gamma\left(\mathrm{H}_{1}^{0}\right)$, we get fibre products H_{1} and H can be considered as a aubgroup of $\prod_{\text {, cisr }} H_{i}^{*}$. Notice that $H_{i} \cong \ldots \cong H_{r}$ and $H_{1} \cong \ldots$ $\cong H_{F}^{*}$ and to each $g \in G$ corresponds a family of isomorphisms $\mathrm{H}_{\mathrm{i}} \longrightarrow \mathrm{H}_{\sigma}^{*}(1)$, where σ is some permutation of $\{1, \ldots, \mathrm{r}\}$. Let X_{i} be the set of all $H_{1}{ }^{\circ}$-classes of unipotent elements in the component of H_{1} corresponding to UG°. For each component gG^{0} of G we get a family of bifections $X_{1} \longrightarrow X_{\sigma(i)}$ and this defines an action on $X=\prod_{1 \text { cirr }} X_{1}$. X can be identified with the set of all unipotent G°-classes in $u G^{\circ}$ and the unipotent classes in uG ${ }^{\circ}$ correspond to the G / G°-orbits in X. The bifections
$X_{i} \longrightarrow X_{\sigma(i)}$ attached to a component g^{0} of G can be determined from $\triangle(G)$ if we can solve the problem in the case where $r=1$.

So assume that 1 and G° are the only connected u-stable normal subgroups of G°. Let G_{1}, \ldots, G_{m} be the minimal normal subgroups of G^{0}. We may assume that ${ }_{G_{i}}=G_{i+1}$ for $1 \leqslant 1 \leqslant m-1$ and ${ }^{U_{G}} G_{m}=G_{1}$. It is easily checked that the unipotent G° classes in $u G^{0}$ correspond bijectively to the unipotent $G_{1}-$ classes in the component $u^{m_{G}}$ of the subgroup of G generated by G_{1} and u^{m}, and to the action of G / G° on the set of unipotent G°-classes in $U^{\circ}{ }^{\circ}$ corresponds an action on the set of unipotent G_{1}-classes in $u^{m} G_{1}$ which can be determined from $\Delta(G)$ if we can solve the same problem when $m=1$. But in this case we can clearly replace G by its image in $\operatorname{Aut}\left(G^{\circ}\right)$. It is therefore sufficient to determine the set X of unipotent G°-classes in UG ${ }^{\circ}$ and the action of G / G° on X in the following case. G° is an adjoint simple group, G is a subgroup of Aut (G°) and $G / G^{\circ}=$ $Z_{\text {Aut }}\left(G^{\circ}\right) / G^{\circ}\left(u G^{\circ}\right)$. This problem is not yet completely solved.

Proposition 1.10. A reductive group has only finitely many unipotent classes.

Proof. A connected reductive group has only finitely many unipotent classes [6]. If $\mathrm{p}=2,0_{2 n}$ has finitely many unipotent classes [23]. This shows that the symmetry of order 2 in the diagrams of type D_{n} gives only finitely many unipotent classes. We shall show in 3.18 (resp. 4.7, 2.4) that the same is true for the symmetry of order 2 of A_{n} (resp. the symmetry of order 2 of E_{6}, the symmetries of order 3 of D_{4} if $p=3$). The result follows then from $1.6,1.8$ and 1.9.
1.11. Let X be the set of unipotent G^{0}-classes contained in G^{0}, where G^{0} is a simple adjoint group and $G=A u t\left(G^{\circ}\right)$. If p is 0 or is large, X can be described by weighted Dynkin diagrams [2] or equivalently by G^{0}-conjugacy classes of pairs (L, P) where L is a Levi subgroup of some parabolic subgroup of G^{0} and P is a distinguished parabolic subgroup of L [1]. If X is described by welghted Dynkin diagrams, the action of G / G^{0} on X is given by the obvious action of $\Gamma\left(G^{\circ}\right)$ on the set of weighted Dynkin diagrams corresponding to $\Delta\left(G^{\circ}\right)$. This action is trivial except in the following cases.
a) D_{4}. Then $\Gamma\left(G^{0}\right)$ is isomorphic to S_{3}, and there are two orbits consisting of three unipotent classes. $\Gamma\left(G^{\circ}\right)$ acts trivially on the other G°-classes.
b) $D_{2 n}, n \geqslant 3$. There are $p(n)$ orbits consisting of two classes, where $p(n)$ is the number of partitions of $n . \Gamma\left(G^{0}\right)$ acts trivially on the other G^{0}-classes.
1.12. We shall use the following notations for the unipotent classes in $G L_{n}, ~ S p_{2 n} \subset G I_{2 n}, O_{n} \subset G L_{n}$ (in the last case we suppose that n is even if $p=2$).

The class of a unipotent element $u \in G L_{n}$ will be described by the partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ (infinite sequence) where $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots$ are 0 or the dimensions of the Jorden blocke of u. Let $C_{\lambda}=C(u) \cdot C_{\lambda}$ and the partition λ will also be represented by the Young diagram d_{λ} (sometimes denoted d_{n}) with lines of length $\lambda_{1}, \lambda_{2}, \ldots$. In such a situation l_{i} will be the length of the $i^{\text {th }}$ column of d_{λ} and c_{i} will be the number of lines of length i (i.e. the number of Jordan blocks of u of dimension 1). Each of the sequences l_{1}, l_{2}, \ldots and c_{1},
c_{2}, \ldots determines the class of u completely.
If $p \neq 2$, each unipotent class of $\mathrm{Sp}_{2 n}\left(\right.$ resp. $\left.O_{n}\right)$ is the intersection of $\mathrm{Sp}_{2 n}$ (resp. O_{n}) with a unipotent class of $\mathrm{GL}_{2 n}$ (resp. $G L_{n}$). The unipotent classes of $\mathrm{Sp}_{2 n}$ (resp. O_{n}) correspond in this way to the partitions of $2 n$ (resp. n) for which c_{1} is even if i is odd (resp. if i is even). A unipotent class of O_{n} for which all λ_{i} and all c_{i} are even consists of two classes in SO_{n}. In all other cases the unipotent classes of O_{n} and $3 O_{n}$ coincide.

It will be convenient to attach to a unipotent class in $\operatorname{Sp}_{2 n}$ (resp. O_{n}) with partition λ an application $\varepsilon: \mathbb{N} \longrightarrow \mid w$, $0,1\}$ defined as follows. $\varepsilon_{i}=1$ if i is even (resp. odd) and $c_{i} \neq 0$, and $\varepsilon_{i}=\omega$ otherwise. This is to simplify the notations in paragraph II.5. We denote by C_{λ} or $C_{\lambda, \varepsilon}$ the unipotent class corresponding to λ.

To describe the unipotent classes in $\mathrm{Sp}_{2 n}$ and $\mathrm{O}_{2 n} \subset \mathrm{Sp}_{2 n}$ if $p=2$, we shall use a set with 3 elements $\{\omega, 0,1\}$. It will be convenient to give it an ordering $\omega<0<1$. The unipotent classes of $\mathrm{Sp}_{2 n}$ are in bijective correspondence with the pairs (λ, ε) satisfying the following conditions.
a) λ is a partition of $2 n$ with c_{i} even if i is odd.
b) $\varepsilon: \mathbb{N} \longrightarrow\{\omega, 0,1\}$ is an application satisfying :
$\left.b_{1}\right) \varepsilon_{i}=\omega$ if is odd or if $c_{i}=0$ and $i \geqslant 1$.
$\left.b_{2}\right) \varepsilon_{i}=1$ if i is even and c_{i} is odd.
$\left.b_{3}\right) \varepsilon_{i} \neq \omega$ if i is even and $c_{i} \geqslant 1$.
$\left.b_{4}\right) \varepsilon_{0}=1$.
The correspondence is as follows. A unipotent element $u \in$ $\mathbf{S p}_{2 n}$ determines a class in $\mathrm{GL}_{2 n}$, hence a partition, and this
partition has the required property. Moreover, if $i \geqslant 2$ is even and $c_{i} \geqslant 1$, we put $\varepsilon_{i}=0$ if and only if $f\left((u-1)^{i-1}(x), x\right)=0$ for all x such that $(u-1)^{i}(x)=0$ (here f is the bilinear form used to define $\mathrm{Sp}_{2 n}$). With condition (b) this defines ε completely.

Bach unipotent class of $\mathbf{S p}_{2 n}$ intersects $0_{2 n}$ in a single class of $O_{2 n}(p=2)$. The unipotent classes in $O_{2 n}$ can therefore be represented by pairs (λ, ε) as above. In this case however we replace $\left(b_{4}\right)$ by (b_{4}^{\prime}) :
$\left.b_{4}^{\prime}\right) \varepsilon_{0}=0$.
The unipotent classes of $\mathrm{O}_{2 n}$ contained in $\mathrm{SO}_{2 n}$ are those with l_{1} even. A unipotent class such that all i and c_{i} are even and $i \neq 1$ for all i consists of two classes of $\mathrm{SO}_{2 n}$. All other unipotent classes of $\mathrm{SO}_{2 n}$ are classes in $\mathrm{O}_{2 n}$.

We shall denote by $C_{\lambda, \varepsilon}$ the unipotent class of $S_{2 n}$ or $0_{2 n}$ corresponding to the pair (λ, ε).

The results in this paragraph are contained in [23].
1.13. Let a_{1}, a_{2}, \ldots be a sequence of distinct elements. Let G be one of the groups $G L_{n}, S P_{2 n}$ or O_{n} (if $p=2$ and $G=O_{n}$, we assume that n is even). If u is a unipotent element of G and if the class of u is represented by λ or (λ, ε), the group $A(u)$ can be described in the following way:
a) $G=G L_{n}$. Then $A(u)=1$.
b) $G=S p_{2 n}$ (resp. O_{n}) and $p \neq 2$. Then $A(u)$ is the abelian group generated by $\left|a_{1}\right| \lambda_{1}$ is even (resp. odd)\} with the following relations. $a_{i} a_{j}=1$ if $\lambda_{i}=\lambda_{j}$ and $a_{i}=1$ if $\lambda_{i}=0$. In the case of O_{n}, the subgroup $A_{0}(u)$ of $A(u)$ consists of the elements which are the product of an even number of generators.
c) $G=S p_{2 n}$ (resp. $O_{2 n}$) and $p=2$. Then $A(u)$ is the abelian group generated by $\left\{a_{i} \mid \varepsilon_{\lambda_{i}} \neq 0\right\}$ with the following relations. $a_{i} a_{j}=1$ if $\lambda_{i}=\lambda_{j}$, or $\lambda_{i}=\lambda_{j}+1$, or if $\lambda_{i}=\lambda_{j}+2$ and λ_{i} is even, and $a_{i}=1$ if $\lambda_{i}=0$. In the case of $0_{2 n}, A_{0}(u)$ is the subgroup of $A(u)$ consisting of elements which are the product of an even number of generators.

This description of $A(u)$ can be deduced from [2] and [23]. Another method is to adapt the proof of 3.21 .

2. Groups of type D_{4}.

Here G is a reductive group such that G^{0} is of type D_{4}. We shall use results and notations of chapter II to simplify some proofs and some statements.
2.1. The classification of unipotent classes of G^{0} given by Bala and Carter [1] works for all characteristics and G / G° acts as indicated in 1.11 .
2.2. If $p=2$, the classification of unipotent classes of G corresponding to elements of order 2 in $\Gamma\left(G^{0}\right)$ is essentially contained in the case of $\mathrm{O}_{8}(1.12)$.
2.3. Up to the end of $2.5 p=3,\left|G / G^{\circ}\right|=3$ and the homomorphism $G / G^{\circ} \longrightarrow \Gamma\left(G^{\circ}\right)$ is injective. We assume also that G^{0} is adjoint. We denote the fundamental roots as in the
 picture. We can choose $T, B, \sigma \in G$ and the isomorphisms $x_{\lambda}(\lambda \in \phi)$ in such a way that $\sigma_{T}=T, \sigma_{B}=B, \sigma_{0} \alpha=\beta, \sigma_{0} \beta=\gamma, \sigma_{0} \gamma=\alpha$ and $\sigma\left(x_{\lambda}(1)\right) \sigma^{-1}=x_{\sigma_{. \lambda}}(1)$ for all $\lambda \in \phi$. We write the positive roots in the following order : $\alpha, \beta, \gamma, \delta, \alpha+\delta, \beta+\delta$, $\gamma+\delta, \alpha+\beta+\delta, \beta+\gamma+\delta, \gamma+\alpha+\delta, \alpha+\beta+\gamma+\delta, \alpha+\beta+\gamma+2 \delta$. We have now a fixed isomorphism $0=\prod_{\lambda \in \phi^{+}} X_{\lambda} \cong \AA^{12}$. We shall consider the following situation. We conjugate an element $\sigma u \in \sigma U$ by some suitable element $x \in G^{0}$ to get an element $\sigma u^{\prime} \in \sigma U$. In this situation we denote by $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, e_{1}$ the coordinates of u and by $a_{1}, a_{2}^{1}, \ldots, e_{1}$ the coordinates of u^{\prime}.

Let $T_{0}=\{t \in T \mid \alpha(t) \beta(t) \gamma(t)=\delta(t)=1\}$. T_{0} is a torus and $\sigma T_{0} U$ is the variety of all unipotent elements contained in σB.

Erery element in $\sigma T_{0} U$ is T-conjugate to an element in σU and for this reason we shall concentrate on elements contained in σ U. Let $S=\{t \in T \mid \alpha(t)=\beta(t)=\gamma(t)\}$. S is connected and acts on σU by conjugation.

Let $u_{0}=x_{\alpha}(1) x_{\delta}(1)$. It is eass to check from the commutation formulae that $f: S U \longrightarrow \sigma U$, su $\longmapsto s u \sigma u_{0}(s u)^{-1}$ has a surjective differential at 1. It follows easily that the SU-class of σu_{0} is dense in σU and that the class c_{0} of σu_{0} in G is dense in the variety of all unipotent elements in σG° (it is the regular unipotent class of σG°). Therefore $\operatorname{dim} Z\left(\sigma u_{0}\right)=2$.

Let $U^{\prime}=\left\{u \in U \mid a_{1}+a_{2}+a_{3}=a_{4}=1\right\}$. If u is any slement of U such that $a_{1}+a_{2}+a_{3} \neq 0$ and $a_{4} \neq 0$, then σu is S-conjugate to an element of σU^{\prime} and is therefore conjugate to σu_{0} since rU' is the U-class of σu_{0} (the U-class of σu_{0} is closed since U is unipotent, is contained in σU^{\prime} and has dimension $\geqslant d i m ~ U-2$ since dim $\left.Z\left(\sigma u_{0}\right)=2\right)$.

From the proof of II.1.8 $G_{\sigma_{u_{0}}}=\{B\}$.
Consider now an element u for which $a_{4}=0$. It is easy to check that there is a line of type δ through B contained in $\Phi_{\sigma u}$ and therefore dim $B_{\sigma_{u}} \geqslant 1$ and $\sigma u \notin C_{0}$.

Similarly if $a_{1}+a_{2}+a_{3}=0$, then conjugating ou by $x_{\beta}\left(a_{2}+a_{3}\right) x_{\gamma}\left(a_{3}\right)$ we get σu^{\prime} with $a_{1}^{\prime}=a_{2}^{\prime}=a_{j}^{\prime}=0$ and $x_{-\alpha}(t) x_{-\beta}(t) x_{-\gamma}(t)_{B} \in G_{\gamma u}{ }^{\prime}$ for all $t \in k$. Ihis shows that there is a line of type α through B contained in $B_{\sigma u}$. Hence dim $\mathcal{B}_{\sigma u}$ $\geqslant 1$ and ou C_{0}.

Let $U_{3}=\prod_{R H(1)>2} X_{\lambda}, U_{1}=X_{N_{1}} X_{p} X_{y} U_{3}, U_{2}=X_{\delta} U_{3}$. we have proved that every element in $\sigma U \backslash C_{0}$ is B-conjugate to an element in
$\sigma U_{1} u \sigma U_{2}$.
Suppose that $u \in U_{1} \backslash U_{3}$. Ne can assume that $b_{1}+b_{2}+b_{3} \neq 0$ (if this is not the case we replace σu by its conjugate by $x_{\alpha}(r) x_{\beta}(r) x_{\gamma}(r)$ for some suitable $r \in k$). Take $\sigma u^{\prime}=$ $x_{-\delta}(t) \sigma u x_{-\delta}(-t)$. Then $a_{i}+a_{2}^{j}+a_{j}^{j}$ is a function of the form $a t+b$ with $a \neq 0$. Therefore $a_{1}+a_{2}+a_{j}=0$ for exactly one $t \in k$. This shows that every element in σU_{1} is conjugate to an element in σU_{3}, that every line of type δ in B_{V} (v any unipotent element in σG^{0}) meets a line of type α in S_{V} and that the elements $u \in U_{1}$ such that the line of type δ through B in $\mathbb{S}_{\sigma u}$ meets exactly one line of type α in $\mathbb{S}_{\sigma u}$ are dense in U_{1}.

The same method works if $u<U_{2} \backslash U_{3}$. We can assume that $d_{4} \neq 0$ (if not we replace σu by $x_{\delta}(r) \sigma u x_{\delta}(-r)$ for some suitable $r \in k)$. Conjugating then σu by $x_{-\alpha}(t) x_{-\beta}(t) x_{-\gamma}(t)$ we get σu^{\prime} with $a_{4}^{\prime}=a t^{3}+b t^{2}+c t+d$ for some $a, b, c, d \in k$ and $a \neq 0$. This shows that every element in σU_{2} is conjugate to some element in σU_{3}, that every line of type α in \mathcal{B}_{v} (v any unipotent element in σG°) meets a line of type δ contained in Φ_{v} and that the elements $u \in U_{2}$ such that the line of type α through B contained in $\mathcal{B}_{\sigma u}$ meets exactly three lines of type δ in $\mathbb{B}_{\sigma u}$ are dense in U_{2}. This shows that every element in $\sigma U \backslash C_{0}$ is conjugate to an element in σU_{3}.

Let $U_{4}=\prod_{R(a)-\sin s} x_{\lambda^{\prime}}$ Suppose that $u \in U_{3}$ is such that $b_{1}+b_{2}+b_{3} \neq$ 0. Conjugating by $x_{\beta+\delta}\left(b_{2}+b_{3}\right) x_{\gamma+\delta}\left(b_{3}\right)$ and by a suitable element of s we can arrange to have $b_{1}=1$ and $b_{2}=b_{3}=0$. 30 assume this in the case. If σu^{\prime} is obtained by conjugating σu by
$x_{\alpha}(t) x_{\beta}(t) x_{\gamma}(t)$, we get $d_{i}=a t^{3}+b t^{2}+c t+d$ for some $a, b, c, d \in k$ and $a \neq 0$. Therefore σu is conjugate to an element in $\sigma x_{\alpha+\delta}(1) U_{4}$.

Consider an element $u \in x_{\alpha+\delta}(1) U_{4}$. Suppose that $c_{1}+c_{2}+c_{3} \neq 0$. Conjugating σu by $x_{\beta+\gamma+\delta}\left(c_{2}+c_{3}\right) x_{\gamma+\alpha+\delta}\left(c_{3}\right)$ and by a suitable element of S, we can arrange $c_{1}=1, c_{2}=c_{3}=0$. Therefore σu is conjugate to some element in $\sigma x_{\alpha+\delta}(1) x_{\alpha+\beta+\delta}(1) x_{\alpha+\beta+\gamma+2 \delta^{*}}$. But every element in $\sigma x_{\alpha+\delta}(1) x_{\alpha+\beta+\delta}(1) x_{\alpha+\beta+\gamma+2 \delta}$ is conjugate to $\sigma u_{1}=\sigma x_{\alpha+\delta}(1) x_{\alpha+\beta+\delta}(1)$ by an element of the form $x_{\alpha+\beta+\delta}(t) x_{\beta+\gamma+\delta}(t) x_{\gamma+\alpha+\delta}(t)$. Tais shows that the class c_{1} of σu_{1} is dense in the variety of all unipotent elements of σG^{0} not contained in C_{0}.

If $u \in X_{\alpha+\delta}(1) U_{4}$ is such that $c_{1}+c_{2}+c_{3}=0$, then the same argument shows that σu is conjugate to σu_{2} where $u_{2}=x_{\alpha+\delta}(1)$. Let C_{2} be the class of σu_{2}.

If $u \in U_{3}$ is such that $\sigma u \notin C_{1}$, then $\sigma u \in C_{2}$ or $b_{1}+b_{2}+b_{3}=0$. If $b_{1}+b_{2}+b_{3}=0$ and $c_{1}+c_{2}+c_{3} \neq 0$, then we can arrange to have $b_{1}=b_{2}=b_{3}=c$ and $c_{1}=1, c_{2}=c_{3}=0$. Conjugating then by $x_{\alpha}(t) x_{\beta}(t) x_{\gamma}(t)$ we can get $d_{1}=0$ (for some $t \in k$). Conjugating by $x_{\alpha+\delta}(t) x_{\beta+\delta}(t) x_{\gamma+\delta}(t)$ we get also $e_{1}=0$ (for some $t \in k$). Therefore σu is conjugate to $x_{\alpha+\beta+\delta}$ (1). It is easy to check that for some $n \in \mathbb{N}_{G} \circ(T)$ representing \tilde{B}_{α} in W we have n $\sigma x_{\alpha+\beta+\delta}(1) n^{-1}=\sigma x_{\alpha+\delta}(1)$. Hence $\sigma u \in C_{2}$.

If $u \in U_{3}$ is such that $b_{1}+b_{2}+b_{3}=c_{1}+c_{2}+c_{3}=0$ then we can arrange $b_{1}=b_{2}=b_{3}=c_{1}=c_{2}=c_{3}=0$. Hence ou is conjugate to an element in $\sigma X_{\alpha+\beta+\gamma+\delta^{\prime}} X_{\alpha+\beta+\gamma+2 \delta}$. Let $u_{3}=x_{\alpha+\beta+\gamma+2 \delta^{\prime}}$ (1) and let C_{3} be the class of $\sigma x_{\alpha+\beta+\gamma+2 \delta}(1)$. If $u \in \prod_{R(\lambda)>4} X_{\lambda}$ and $e_{1} \neq 0$, then conjugation by $x_{~_{j}}(t)$ (some $t e k$) and some element of S
shows that ou is conjugate to σu_{3}. If $d_{1} \neq 0$, then we can arrange $e_{1} \neq 0$ by conjugating by $x_{\delta}(t)$ for some $t \in k$. It follows that any unipotent element in σG^{0} not contained in $C_{0} \cup C_{1} \cup C_{2} \cup C_{3}$ is conjugate to σ. Let C_{4} be the class of σ.

Proposition 2.4. In the situation of 2.3 there are exactly 5 unipotent classes in σG°.

Proof. We know already that there are at most 5 classes. We have to show that $C_{0}, C_{1}, C_{2}, C_{3}$ and C_{4} are distinct.
C_{0} has to be the regular class, C_{1} the subregular class, C_{4} the quasisemisimple class. Thereiore $d i m \theta_{\sigma u_{0}}=0$, $\operatorname{dim} \oiint_{\sigma u_{1}}=1$ and $\operatorname{dim} \oiint_{\sigma}=6\left(W^{u}\right.$ is of type $\left.G_{2}\right)$.

In 2.3 we have seen that $x=\sigma x_{\alpha+\beta+\delta^{\prime}}(1) \in C_{2}$. It is easily checked that the conjugate of B by $x_{-\alpha}(s) x_{-\beta}(s) x_{-\gamma^{\prime}}(s) x_{-} \gamma^{(t)}$ is contained in Ω_{x} for all $B, t \in k$. Therefore din $\beta_{x} \geqslant 2$. It is easily checked from the computations of 2.3 that $\operatorname{codim}_{\bar{C}_{0} \cap \sigma B}\left(C_{2} \cap \sigma B\right) \leqslant 2$. By II. 2.7 this implies dim $\beta_{x}=2$.

Look now at $\Re_{\sigma u_{3}}$. The conjugate of B by $x_{-\alpha}(r) x_{-\beta}(r) x_{-\gamma}(r) x_{-\gamma}(s) x_{-\alpha}(t) x_{-\beta}(t) x_{-\gamma}(t)$ belongs to $\mathcal{S}_{\sigma u_{3}}$ for all $r, s, t \in k$. This shows that $\operatorname{dim} G_{\sigma_{u_{3}}} \geqslant 3$. But the computations of 2.3 show that $\operatorname{codim} \bar{C}_{0} \cap \sigma B\left(C_{3} \cap \sigma B\right) \leqslant 3$. Therefore dim $\mathcal{D}_{\sigma_{u_{3}}}=3$ and this shows that $C_{0}, C_{1}, C_{2}, C_{3}$ and C_{4} are distinct.
2.5. The following results are consequences of 2.4 and of the computations made in 2.3.
a) Every line of type α (resp. 6) contained in $G_{x}\left(x \in \sigma G^{0}\right.$ unipotent) meets a line of type δ (resp. α) contained in \mathcal{B}_{x}. b) If $x \in C_{1}$, then \mathbb{S}_{x} consists of 3 lines of type δ meeting a line of type α (see II.3.12).
c) ISth the notations of II.2.4, we have :

$$
\begin{aligned}
& Q\left(C_{0}\right)=\{1\} \text {. } \\
& Q\left(C_{1}\right)=\left\{\tilde{\varepsilon}_{\alpha}, \tilde{s}_{\delta}, \tilde{s}_{\alpha} \tilde{s}_{\delta}, \widetilde{s}_{\delta} \tilde{s}_{\alpha}, \tilde{s}_{\delta} \tilde{s}_{\alpha} \tilde{s}_{\delta}\right\} \text {, } \\
& Q\left(C_{2}\right)=\left\{\tilde{s}_{\alpha} \tilde{s}_{s} \tilde{s}_{\alpha}, \tilde{s}_{\alpha} \tilde{s}_{s} \tilde{s}_{\alpha} \tilde{s}_{\delta}, \tilde{s}_{\delta} \tilde{\mathrm{s}}_{\alpha} \tilde{s}_{\delta} \tilde{s}_{\alpha}, \tilde{\mathrm{s}}_{\delta} \tilde{\mathrm{s}}_{\alpha} \tilde{\mathrm{s}}_{\delta} \tilde{\mathrm{s}}_{\alpha} \tilde{\mathrm{s}}_{\delta}\right\} . \\
& Q\left(C_{3}\right)=\left\{\tilde{a}_{\alpha} \tilde{B}_{S} \mathbb{S}_{\alpha} \xi_{\alpha} \tilde{S}_{\alpha}\right\} \\
& Q\left(C_{4}\right)=\left\{\tilde{s}_{\alpha} \tilde{s}_{\delta} \tilde{s}_{\alpha} \tilde{s}_{8} \tilde{S}_{\alpha} \tilde{s}_{6}\right\} \text {. }
\end{aligned}
$$

3. Unipotent bilinear forms.

3.1. Let k be any field (not necessarily algebraically closed) and let V be a finite dimensional vector space over k. Let $G_{0}=$ $G_{0}(V)=G L(V)$ and let $G_{1}=G_{1}(V)$ be the set of all bilinear forms $f: V \times V \longrightarrow k$ which are non-singular (i.e. $f(x, y)=0$ for all $y \in V \Rightarrow x=0$). Let $G(V)=G_{0} \cup G_{1} \cdot G(V)$ can be made into a group in the following way. If $a, b \in G_{0}$ and $f, g \in G_{1}, a b \in G_{0}$ is the usual product in $G L(V)$, af $\in G_{1}$ is the bilinear form $(x, y) \longmapsto f\left(a^{-1} x, y\right), f a \in G_{1}$ is the bilinear form $(x, y) \longmapsto$ $f(x$, ay $)$ and $f_{g} \in G_{0}$ is the automorphism of V auch that $f g(x)=y$ if and only if $f(y, v)=g(v, x)$ for all $\nabla \in V$.

For any $f \in G_{1}, f^{-1}$ is the bilinear form $(x, y) \longmapsto f(y, x)$. $f^{2}=1$ if and only if f is symmetric.

If M is a subset of V, we can define $f M=|V \in V| f(V, m)=0$ for all $m \in M\}$. This is clearly a subspace of V. This, together With the usual action of $G L(V)$ on subspaces of V, defines an action of $G(V)$ on the set of all subspaces of V. In particular we get an action of $G(V)$ on the set G of all complete plags of V. A flag $F \in \mathcal{F}^{\prime}$ is isotropic for f if $f F=F\left(f \in G_{1}\right)$.
3.2. If k is algebraically closed, $G=G(V)$ is an algebraic group in a natural way. A bilinear form f has a Jordan decomposition $I=s u$. If $p \neq 2, s \in G_{1}$ and $u \in G_{0}$. If $p=2$, $B \in G_{0}$ and $u \in G_{1}$. The same result holds if k is perfect (in particular for finite fields).

G acts by conjugation on the variety B of all its Borel subgroups. Identifying B with \mathcal{F} (each flag corresponding to its stabilizer), we get an action of G on \mathcal{F}. This action is
easily seen to be the same as the action defined in 3.1. This shows that G_{1} acts non-trivially on the Dynkin diagram of $G L(V)$ (if dim $V>3$). For every $f \in G_{1}, \mathcal{B}_{f}$ can be identified with the variety of all flags isotropic for f.
3.3. From now on we assume that $p=2$. We assume also that k is algebraically closed or finite. If k is finite, we denote by \bar{k} an algebraically closed field containing k.

In this situation there are unipotent bilinear forms. We want now to determine the conjugacy clasees of such forms and to get informations about their centralizers.
$f \in G_{1}$ is unipotent if and only if $u=f^{2} \in G_{0}$ is so. As the unipotent G-classes and G_{0}-classes in G_{1} coincide, it is sufficient to determine :
a) The unipotent classes of $G I(V)$ which arise in this way.
b) If u is an element of such a class, what is the action of $z_{0}(u)$ on the variety of all $f \in G$, such that $f^{2}=u$.

Lemma 3.4. If N is a subspace of V fixed by $\mathrm{u}=f^{2}$, then so is $\mathrm{PM}=\mathrm{r}^{-1} \mathrm{M}$.

Proof. $u f M=f u M=f M$. Also $f M=f^{-1}\left(f^{2}\right) M=f^{-1} M$.
Lemma 3.5. If $e_{0}=0, e_{1}, \ldots, e_{n}$ and $e_{0}^{\prime}=0, e_{1}^{1}, \ldots, e_{m}^{\prime}$ are elements of V such that $u\left(e_{i}\right)=e_{i}+e_{i-1}(1 \leqslant i \leqslant n)$ and $u\left(e_{i}\right)=e_{i}^{1}+e_{i-1}^{\prime}$ $(1 \leqslant i \leqslant m)$, then $f\left(e_{i}, e_{j}\right)=0$ if $i+j \leqslant \max (m, n)$ (where $u=f^{2}$).
Proof. Let $p_{i j}=f\left(\theta_{i}, \theta_{j}^{\prime}\right)$ and $q_{i j}=f\left(\theta_{i}, \theta_{j}\right)$. Since $u=f^{2}$ and $u\left(\theta_{i}\right)=e_{i}+\theta_{i-1}, f\left(e_{i}+\theta_{i-1}, \nabla\right)=f\left(\nabla, e_{i}\right)$ for all $\nabla \in V$. In particular $p_{i j}+p_{i-1, j}=q_{j i}$. Similarly $q_{i j}+q_{i-1, j}=p_{j i}$. Hence $p_{i j}=q_{j 16}+q_{j-1, i}=\left(p_{i j}+p_{i-1, j}\right)+\left(p_{i, j-1}+p_{i-1, j-1}\right)$
and therefore $p_{i-1, j}+p_{i, j-1}+p_{i-1, j-1}=0(1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m)$. Since $p_{i j}=0$ if $i=0$ or $j=0$, this implies by induction $p_{i j}=0$ if $i+j \leqslant \max (m, n)$.

Lemma 3.6. Let $V_{1}^{\prime} \oplus V_{2}^{\prime} \oplus \ldots \oplus V_{n}^{\prime}=V$ be a decomposition of V as a direct sum of u-stable subspaces. Suppose that for each i, all Jordan blocks of the restriction of u to V_{i} have dimension 1. Then the restriction of f to $V_{i}^{\prime} \times V_{i}^{\prime}$ is non-singular for all $i\left(u=f^{2}\right.$ unipotent).

Proof. In each V_{i}^{\prime} choose a basis auch that the restriction of u to V_{i} has a matrix of the form

$$
\left|\begin{array}{cccccc}
I & I & 0 & \ldots & & \\
0 & I & I & 0 & \ldots & \\
\vdots & 0 & I & I & 0 & \ldots \\
: & \vdots & 0 & & & \ldots \\
& & \ldots & I & I & 0 \\
& & & \ldots & 0 & I \\
I & & I & I
\end{array}\right|
$$

where I is the $c_{i} \times c_{i}$ identity matrix if $d i m V_{i}=i c_{i}$. Let M_{i} be the matrix of the restriction of f to $V_{i}^{\prime} \times V_{i}^{\prime}$ and let M be the matrix of f. It is easy to deduce from 3.5 that $\operatorname{det}(M)=$ $\prod_{1 \operatorname{sisn}} \operatorname{det}\left(K_{i}\right)\left(\right.$ with $\operatorname{det}\left(M_{i}\right)=1$ if dim $V_{i}=0$). This proves the lemma.

Corollary 3.7. We can find u-stable subspaces $V_{1}, V_{2}, \ldots, \nabla_{n}$ such that :
a) $f(x, y)=0$ if $x \in V_{i}, y \in V_{j}$ and $i \neq j$.
b) $V=V_{1} \oplus \ldots \oplus V_{n}$ and for all $i(1 \leqslant i \leqslant n)$ all Jordan blocks of the restriction of u to V_{i} have dimension 1 .

Moreover if $V_{j}, \ldots, V_{n}^{\prime}$ are as in 3.6 and i_{o} is a given integer, we can arrange to have $V_{i_{0}}=V_{i_{0}}$.

Proof. This is a consequence of the following remark. If V_{i}, \ldots, V_{n}^{\prime} are as in 3.6, then for every i $\mathrm{V}=\mathrm{V}_{\mathrm{i}} \oplus P V_{i}^{\prime}$ (by 3.6) and $P V_{i}=f^{-1} V_{i}$ is u-stable (by 3.4).
3.8. Assume now that all Jordan blocks of $u=f^{2}$ (f a unipotent bilinear form) have dimension n. Choose a basis for V as in 3.6. The matrix P of f with respect to this basis has a block decomposition $P=\left(P_{i j}\right)(1 \leqslant 1, j \leqslant n)$ where each $P_{i j}$ is a $c_{n} \times c_{n}$ matrix ($c_{n} \neq 0$ being the number of Jordan blocke of u). Then $f^{2}=u$ is equivalent to :
a) $P_{i-1, j}+P_{i, j-1}+P_{i-1, j-1}=0(1 \leqslant 1, j \leqslant n)$.
b) $P_{i 1}=0$ if $21 \leqslant n$ and $P_{i i}={ }^{t_{P_{i 1}}}$ if $21=n+1$.
c) $P_{i-1, i}=\delta P_{i 1}(1 \leqslant i \leqslant n)$, where for any square matrix A $\delta A=A+t_{A}$.
d) $\operatorname{det}\left(P_{1 n}\right) \neq 0$.

These conditions imply in particular that $P_{i j}=0$ if $1+j \leqslant n$ and $P_{1 n}=P_{2, n-1}=\cdots=P_{n 1}$.

If $n=2 m, P_{1 n}=P_{m, m+1}=6 P_{m+1, m+1}$ is a non-singuiar antisymmetric matrix and therefore c_{n} has to be even. It is easy to check that the matrix P is completely determined by the matrices $P_{i 1}$ for $m+1 \leqslant 1 \leqslant n$, and that any choice of $\left(P_{i 1}\right)_{m+1 \leqslant i \leqslant n}$ with $\delta P_{m+1}, m+1$ non-singular occurs for some f.

If $n=2 m-1, P_{1 n}=P_{m m}$ is a non-singular symmetric matrix. It is easy to oheck that P is completely determined by the matrices P_{11} for $m \leqslant 1 \leqslant n$ and that any choice for $\left(P_{11}\right)_{\text {msisn }}$ with $P_{m m}$ symmetric and non-singular occurs for some f.
3.9. Let now f be any unipotent element in G_{1}. It follows from 3.8 that the class of $u=f^{2}$ has the following property. If c_{i}
is the number of Jordan blocks of u of dimension i, then c_{i} is even if i is even. So we get a partition λ of $n=d i m V$ which represents a unipotent class in $O_{n}(\mathbb{C})$. Let $u_{\lambda} \in O_{n}(\mathbb{C})$ be an element in this class and let $z_{\lambda}=\operatorname{dim} z_{O_{n}(c)}\left(u_{\lambda}\right)$.

Suppose now that 1 is odd and $c_{i}>0$. Define ε_{i} to be 0 if $(u+1)^{1}(x)=0 \Longrightarrow f\left(x,(u+1)^{i-1}(x)\right)=0$, and to be 1 otherwise. Choose a decomposition of V as in 3.7 and a basis for V_{i} as in 3.8. From 3.8 we get a non-singular symmetric $c_{i} \times c_{i}$ matrix $P_{1 i}$. It is easy to check that $P_{1 i}$ is antisymmetric if $\varepsilon_{i}=0$ and is not antisymmetric if $\varepsilon_{i}=1$.

For all other $1 \in \mathbb{N}$, put $\varepsilon_{i}=\omega$, where $\{\omega, 0,1\}$ is as in 1.12.
In this way we attach to each class of unipotent bilinear forms a pair (λ, ε) such that :
a) λ is a partition of $\mathrm{dim} V$ with c_{i} even if i is even.
b) $\varepsilon: \mathbb{N} \longrightarrow\{\omega, 0,1\}$ is an application satisfying :
$\left.\mathrm{b}_{1}\right) \varepsilon_{i}=\omega$ if 1 is even or if $c_{i}=0$.
$\left.b_{2}\right) \varepsilon_{i}=1$ if i is odd and c_{i} is odd.
$\left.b_{3}\right) \varepsilon_{i} \neq \omega$ if i is odd and $c_{i} \neq 0$.
Let $C_{\lambda, \varepsilon}$ be the subset of G_{1} consisting of all unipotent bilinear forms corresponding to (λ, ε).
3.10. Let $W_{1} \oplus W_{2} \oplus \ldots \oplus W_{m}$ be a decomposition of V as a direct sum. Suppose that we are given non-singular bilinear forms $f_{i}: W_{i} \times V_{i} \longrightarrow k(1 \leqslant 1 \leqslant m)$. Then there is a unique bilinear form $f: V \times V \rightarrow k$ which coincides with f_{1} on $H_{1} \times W_{1}(a l l i)$ and such that $f(x, y)=0$ if $x \in H_{1}, y \in H_{j}$ and $i \neq j$. F is nonsingular and we write $f=f_{1} \oplus f_{2} \oplus \ldots \oplus f_{m}$. If $f \in C_{\lambda, \varepsilon}$ and $f_{1} \in C_{\lambda^{i}, \varepsilon^{i}} \subset G\left(W_{1}\right)$, the parts of λ are the parts of $\lambda^{!}, \lambda^{2}, \ldots, \lambda^{\text {m }}$
and $\varepsilon_{j}=\max _{i=1 \in m} \varepsilon_{j}^{i}($ all $j \geqslant 0)$. We write also $(\lambda, \varepsilon)=\left(\lambda^{1}, \varepsilon^{1}\right) \oplus \ldots$ $\oplus\left(\lambda^{m}, \varepsilon^{m}\right)$.
3.11. Assume that we are in the situation of 3.8 and that $f \in$ $C_{\lambda, \varepsilon}$. We fix the following notations.
a) If $n=2 m-1$ and $\varepsilon_{n}=1$, then M is the identity $c_{n} \times c_{n}$ matrix. b) If $n=2 m-1$ and $\varepsilon_{n}=0$, then $M=\left(m_{1 j}\right)$ is the $c_{c} \times c_{n}$ matrix such that $m_{i j}=1$ if $1+j=c_{n}+1$ and $m_{i j}=0$ otherwise.

In cases (a) and (b), we shall say that f is split if for some choice of the basis $P_{m m}=M$ and $P_{i i}=0$ for $m+1 \leqslant i \leqslant n$. c) If $n=2 m$ (and then $\varepsilon_{n}=\omega$), let $K=\left(k_{i j}\right)$ be the $c_{n} \times c_{n}$ matrix defined by $k_{i j}=1$ if $i+j=c_{n}+1$ and $i \leqslant c_{n} / 2$, and $k_{1 j}=0$ otherwise, and let $M=\delta K$.

In case (c) we say that f is split if for some choice of the basis $P_{m+1, m+1}=K$ and $P_{i i}=0$ for $m+2 \leqslant i \leqslant n$.

In each of the cases (a), (b), (c), the split bilinear forms contained in $C_{\lambda, \varepsilon}$ form a single conjugacy class in G.

In each case we denote by Q the matrix obtained for this particular choice of the matrices $P_{1 i}$.
2.12. Let $f \in G_{1}$ be any unipotent bilinear form. He shall say that f is split if for some decomposition $V=V_{1} \oplus \ldots \oplus V_{n}$ as in 3.7 the reatriction f_{i} of f to $V_{i} \times V_{i}$ is split (in the sense of 3.11) for each 1 such that $v_{1} \neq 0$.

$$
\text { Let } C_{\lambda, \varepsilon, 1}=\left\{f \in C_{\lambda, \varepsilon} \mid f \text { is split } \mid . C_{\lambda, \varepsilon, 1}\right. \text { is a single }
$$ conjugary class in G. If $V=W_{1} \oplus \ldots \oplus W_{m}$ and $f_{i} \in G\left(N_{i}\right)$ is aplit for each i, then $f=f_{1} \oplus \ldots \oplus f_{m}$ is also split.

2,13. Suppose that k is finite. Let $\bar{V}=V \otimes_{k} \bar{F}$. Choose a basis for ∇. This is a E-basis for ∇. Write σ_{0}, G_{1}, J for $G_{0}(\bar{\nabla})$,
$G_{1}(\bar{V}), G(\bar{V})$ respectively. Define $\bar{F}: \bar{G} \longrightarrow \bar{G}$ by $F\left(a_{i j}\right)=\left(a_{i j}^{q}\right) \in$ \bar{G}_{0} if $\left(a_{i j}\right) \in \bar{G}_{0}, F\left(f_{i j}\right)=\left(f_{i j}^{q}\right) \in \bar{G}_{1}$ if $\left(f_{i j}\right) \in \bar{G}_{1}$, where $q=$ $|k|$ (the elements of \bar{G}_{o} and \bar{G}_{1} being represented by their matrices). F is a morphism and $\bar{G}^{F}=|g \in \bar{G}| F(g)=g \mid$ can be identified with $G=G(V)$.

We write $C_{\lambda, \varepsilon}\left(\right.$ resp. $\bar{C}_{\lambda, \varepsilon}$) for the unipotent bilinear forms $f \in G$ (resp. $f \in \bar{G}$) corresponding to (λ, ε). Similarly we write $c_{\lambda, \varepsilon, 1}\left(\right.$ resp. $\left.\bar{C}_{\lambda, \varepsilon, i}\right)$ for the elements of $c_{\lambda, \varepsilon}\left(\right.$ resp. $\left.\bar{c}_{\lambda, \varepsilon}\right)$ which are split as elements of G (resp. \bar{G}).

Fix $g \in C_{1, \varepsilon, 1}$. Let $\bar{Z}(g)=Z_{\bar{G}}(g), \bar{Z}_{0}(g)=\bar{Z}(g) \cap \bar{G}_{0}, \overline{\mathbb{A}}_{0}(g)=$ $\bar{z}_{0}(g) / \bar{z}(g)^{0}$. From [2, p. E-7] we get for each $a \in \bar{A}_{0}(g)$ a $G-$ conjugacy class $C_{\lambda, \varepsilon, a}$ contained in $\bar{C}_{\lambda, \varepsilon, 1} \cap \bar{G}^{F}$. It is the class of $x g x^{-1}$, where $x \in \bar{G}_{0}$ is such that $x^{-1} F(x)$ is an element of $\bar{z}_{o}(g)$ representing a. The definition of $C_{\lambda, ~}, a$ is independent of the choice of $g \in C_{\lambda, \varepsilon, 1} \cdot\left(\bar{C}_{\lambda, \varepsilon, 1}\right) \cap \bar{G}^{F}=\bigcup_{a \in \bar{K}_{0}(\gamma)} C_{n} \varepsilon, a \cdot$ If F acts trivially on $\bar{A}_{0}(g)$ and $\bar{A}_{0}(g)$ is commutative, then $C_{\lambda, \varepsilon, a}$ and $c_{\lambda, \varepsilon_{0} b}$ are distinct if $a \neq b\left(a, b \in \bar{A}_{0}(g)\right)$.

Suppose that $V=W_{1} \oplus \ldots \oplus W_{m}$ and $f=f_{1} \oplus \ldots \oplus f_{m}$ as in 3.10. Suppose also that $f \in \bar{C}_{\lambda, \varepsilon, 1} \cap \bar{G}^{F}$ and $f_{i} \in C_{\lambda}, \varepsilon^{i}, a_{i}$ for all 1 (a_{i} in the group of components of $z_{G_{j}}\left(\bar{W}_{i}\right)\left(g_{i}\right)$, where $g_{i} \in$ $C_{\lambda^{1}, \varepsilon^{1}, 1}$). Then $f \in C_{\lambda, \varepsilon, a}$ where a is the image of (a_{1}, \ldots, a_{m}) under the composite homomorphism $\prod_{1 \in i \leq m} z_{G_{0}\left(\bar{W}_{1}\right)}\left(g_{i}\right) \longrightarrow \bar{z}_{0}(g) \longrightarrow$ $\bar{A}_{o}(g)\left(w i t h g=g_{1} \oplus \ldots \otimes g_{m}\right)$. This is clear from the definitions.
3.14. Suppose that $f \in C_{\lambda, \varepsilon}$ is such that all Jordan blocks of $u=f^{2}$ have dimension $n=2 m$. We use the notations of 3.8 and 3.11. Choose a basis $\left(e_{e}^{r}\right)\left(1 \leqslant s \leqslant n, 1 \leqslant r \leq c_{n}\right)$ such that $e_{n-i}^{r}=$ $(u+1)^{i}\left(e_{n}^{r}\right)\left(a l l i, r\right.$ such that $\left(1 \leqslant 1 \leqslant n-1,1 \leqslant r \leqslant c_{n}\right)$. The
matrix P of f has a block decomposition $\left(P_{i j}\right)$. We show now that we can choose another basis $\left(f_{g}^{r}\right)$ (with $f_{n-1}^{r}=(u+1)^{i}\left(f_{n}^{r}\right)$, $1 \leqslant 1 \leqslant n-1,1 \leqslant r \leqslant c_{n}$) for which the matrix p^{\prime} of f (with block decomposition $\left(P_{i j}\right)$) is closer to Q (Q as in 3.11).

We write $P_{1}=P_{1 i}, P_{1}^{\prime}=P_{11}^{\prime}$.
Take first $f_{n}^{s}=\sum_{r} x_{r 8} e_{n}^{r}+\sum_{r} y_{r B} e_{n-1}^{r}$, where $X=\left(x_{r \theta}\right)$ and $Y=\left(y_{n g}\right)$ are $c_{n} \times c_{n}$ matrices. Then $P_{m+1}=\delta\left({ }^{t} Y\left(\delta P_{m+1}\right) X\right)+{ }^{t_{X}} X P_{m+1} X$.

We want to have $P_{m+1}^{\prime}=K$. We must therefore have ${ }^{t_{X P}} P_{m+1} X=$ $K+A$ for some antisymmetric matrix A. If k is algebraically closed, this equation has a solution X_{0} say, and the solutions are the matrices of the form $X_{0} X^{\prime}$, where $X^{\prime} \in$ $0_{C_{n}}(k)$. If k is a finite field, then we can choose a matrix K^{\prime} such that $6 K^{\prime}=M$ and $t^{\prime} X^{\prime} X \neq K+A$ for all matrices X, A with A antisymmetric. It is then possible to solve exactly one of the equations ${ }^{t_{X P}}{ }_{m+1} X=K+A,{ }^{t}{ }_{X P_{m+1}} X=K^{\prime}+A$ for some antiaymmetric matrix A. This follows from the classification of quadratic forms in characteristic $2[5, p .197-199]$.

Pix now a matrix X_{0} such that ${ }^{t_{X_{0}} P_{m+1}} X_{0}=K+A_{0}$ (or $K^{\prime}+A_{0}$ if k is finite) with A_{0} antisymmetric. Let B_{0} be a fixed matrix such that $B_{0}=A_{0}$. Then taking $Y=\left(6 P_{m+1}\right)\left({ }^{t} X^{-1}\right) B_{0}$. we get $P_{m+1}^{\prime}=K$ (or $P_{m+1}^{\prime}=K^{\prime}$ if k is finite).

Suppose now that we already have $\delta P_{m+1}=M$ and $r_{m+j}=0$ for $2 \leqslant j \leqslant 1-1$. Take $f_{n}^{s}=e_{n}^{s}+\sum_{r} x_{r s} e_{n-2 i+2}^{r}+\sum_{r} y_{r s} e_{n-2 i+1}^{r}$. We get then $P_{m+j}^{\prime}=P_{m+j}$ for $1 \leqslant j \leqslant 1-1$ and $P_{m+1}^{\prime}=\delta(1 M Y)+$ $t_{P_{m+1, m-1+2}}+{ }^{t_{X P}}{ }_{m-1+2, m+1}+P_{m+1}$.

But $P_{m+1, m-1+2}=P_{m-1+2, m+1}=P_{m+1}$ or ${ }^{t^{m} P_{m+1}}$ (this follows Irom 3.8). Hence $P_{m+1}^{\prime}=\delta(M Y)+8\left({ }^{t} P_{m+1, m-1+2^{X}}\right)+M X+P_{m+1}$.

In order to have $P_{m+1}^{\prime}=0$ we must take $X=M\left(P_{m+1}+A\right)$, where A is any antisymmetric matrix, and then Y can be chosen in such a way as to have $P_{m+1}^{\prime}=0$.

If k is algebraically closed these computations show that f is split. Hence $C_{\lambda, \varepsilon}$ is a single class in G. We find also that $A_{0}(f)$ has two elements. It is easy to check that $u \in Z(g)^{0}$.

If k is finite, $C_{\lambda, \varepsilon}$ consists of two classes. If $|k|=2$, and $c_{n}=2$, then a form f with $P_{m+1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is split if $a d=0$ and is not if ad $=1$.
3.15. Let $W_{1}=\operatorname{Ker}(u+1)$, where $u=f^{2}$ and f is a unipotent bilinear form. $Z_{o}(f)$ acts on $\mathbb{P}\left(W_{1}\right)$. Suppose we are in the situation of 3.14 with k algebraically closed. Let $C_{0}=$ $\left\{k w \in \mathbb{P}\left(H_{1}\right) \mid f(v, v)=0\right.$ if $\left.(u+1)^{m+1}(v)=w\right\}$. Let $C_{1}=\mathbb{P}\left(H_{1}\right) \backslash C_{0}$. Then C_{0} and C_{1} are the $Z_{0}(f)$-orbits in $\mathbb{P}\left(W_{1}\right)$ and dim $C_{0}=$ $\operatorname{dim} P\left(W_{1}\right)-1$. This is easy to see if $c_{n}=2$. In this case $\left|c_{0}\right|=2$. If $c_{n} \geqslant 4$, this can be proved by using decompositions $f=f_{1} \oplus \ldots \mathscr{f}_{c_{n} / 2}$, where each f_{i} has two Jordan blocks. C_{0} is irreducible if $c_{n} \geqslant 4$.
3.16. Suppose that $f \in C_{\lambda, \varepsilon}$ is such that all Jordan blocks of $f^{2}=u$ have dimension $n=2 m-1$. We use the notations of 3.8 and 3.11. $\left(e_{s}^{r}\right),\left(f_{s}^{r}\right), P=\left(P_{i j}\right), P^{\prime}=\left(P_{i j}^{\prime}\right), P_{i}, P_{i}^{\prime}$ are defined as in 3.14.

Take first $f_{n}^{s}=\sum_{r} X_{r s} \theta_{n}^{r}$. Then $P_{m}^{\prime}={ }^{t} X P_{m} X$ and we can arrange to have $P_{m}^{\prime}=M$. It is also easy to cheok that if $\varepsilon_{n}=1$ and $P_{m}^{\prime}=M$, then $\operatorname{Tr}\left({ }^{t} P_{m+1}^{\prime} P_{m+1}^{\prime}\right)$ is independent of the choice of X. Notice that if k is algebraically closed, then the solutions X for $P_{m}^{\prime}=M$ form an irreducible variety.

If $n=1$ this shows that f is split and therefore $C_{\lambda, \varepsilon}$ is a single conjugacy class. If k is algebraically closed, then $Z_{0}(f)$ is connected.

We suppose now that $n \geqslant 3$. If k is finite, choose an element $\alpha \in k$ such that $\alpha \neq x^{2}+x$ for all $x \in k$ and let K^{\prime} be the $c_{n} \times c_{n}$ matrix such that $k_{11}^{\prime}=\alpha$ and $k_{i j}=0$ if $(i, j) \neq(1,1)$.

We suppose now that $P_{m}=M$ and that for some integer $i \geqslant 1$ we have :
a) if i $\geqslant 1$, then $P_{m+1}=0$ or $P_{m+1}=K^{\prime}$ if k is finite and $\varepsilon_{n}=1$.
b) $P_{m+j}=0$ if $2 \leq j \leq i-1$.

Take $f_{n}^{s}=e_{n}^{s}+\sum_{r} x_{r s} e_{n-2 i+1}^{r}+\sum_{r} y_{r g} e_{n-2 i}^{r}$.
Then $P_{m+j}^{\prime}=P_{m+j}$ if $\mathrm{J} \leqslant i-1$ and $P_{m+1}^{\prime}=\delta(M Y)+{ }^{t_{X P}} P_{m-i+1} X+$ $P_{m+i, m-1+1} X+{ }^{t} X P_{m-1+1, m+1}+P_{m+1}$. From 3.8 we get $P_{m+1, m-1+1}=$ ${ }^{p_{p_{m+i, m-i+1}}=} P_{m-i+1, m+1}+M$. Hence $P_{m+1}^{\prime}=\delta(M Y)+\delta\left(P_{m-i+1, m+1} X\right)+{ }^{t} X P_{m-1+1} X+M X+P_{m+1}$.

Suppose first that $\varepsilon_{n}=0$. Then $\delta(M Y)+\delta\left(P_{m-i+1, m+i} X\right)+$ ${ }^{t} X_{m-i+1} X$ is antisymmetric. We can choose X in such a way as to make $M X+P_{m+i}$ antisymmetric and then we can find Y to have $P_{m+1}^{\prime}=0$. This shows that f is split. $C_{\lambda, \varepsilon}$ is therefore a single class in G. If k is algebraically closed, $Z_{o}(f)$ is easily seen to be connected.

If $\varepsilon_{n}=1$ and $i \geqslant 2$, the same method works to arrange $P_{m+1}^{\prime}=$ 0. We have therefore only to look at the case $i=1$. In this case $M=I$ and $P_{m-i+1}=P_{m}=I$. Therefore $P_{m+1}^{\prime}=\delta(I I T)+$ $\delta\left(P_{m, m+1} X\right)+t_{X X}+X+P_{m+1}$. We have to see if it is possible to make ${ }^{t} X X+X+P_{m+1}$ antisymmetric. As ${ }^{t} X X$ is symmetric, we must have $X=P_{m+1}+S$, where S is a symetric matrix, and we
want $S^{2}+S+{ }^{t} P_{m+1} P_{m+1}$ to be antisymmetric. As ${ }^{t} P_{m+1} P_{m+1}$ is symmetric, we need only to look at the diagonal.

If k is algebraically closed, it is easy to find a solution with S a diagonal matrix. This shows that in this case f is split and therefore $C_{\lambda, \varepsilon}$ is a single class in G. Moreover $Z_{0}(f)$ has two components. This will follow from the discussion of the case where k is finite. If $c_{n}=1$ it is easily checked that $u \in Z_{0}(f) \backslash Z(f)^{0}$.

Suppose now that k is finite. Since S is symmetric, $\operatorname{Tr}\left(S^{2}\right)=$ $\operatorname{Tr}(S)^{2}$. It follows then easily that there is a solution if and only if $\operatorname{Tr}\left({ }^{t} P_{m+1} P_{m+1}\right)=x^{2}+x$ for some $x \in k$. If there is no solution, then the same argument shows that for some X, ${ }^{t_{X X}}+X+P_{m+i}=K^{\prime}+A$, where A is antisymmetric. Then by choosing Y in a suitable way we can arrange to have $P_{m+1}^{\prime}=0$ or $P_{m+1}^{\prime}=K^{\prime}$. It follows that $C_{\lambda, \varepsilon}$ contains two classes of G.

Notice that if $|k|=2$ and $c_{n}=1$, then f is split if $P_{m+1}=0$ and is not if $P_{m+1}=1(n 23)$.
3.17. Suppose that we are in the situation of 3.16 with k algebraically closed. Let $W_{1}=\operatorname{Ker}(u+1)$. If $\varepsilon_{n}=0$, then $Z_{0}(f)$ acts transitively on $\mathbb{P}\left(W_{1}\right)$.

$$
\text { If } \varepsilon_{n}=1 \text {, let } H=\left\{w \in W_{1} \mid f(v, w)=0 \text { if }(u+1)^{n-1}(v)=w \mid\right.
$$ H is a hyperplane in $W_{1} . L=(u+1)^{n-1}(f H)$ is a 1 -dimensional subspace of W_{1}. Let $C_{0}=\{L\}, C_{1}=\mathbb{P}(H) \backslash C_{0}, C_{2}=\mathbb{P}\left(W_{1}\right) \backslash$ $\left(c_{0} \cup C_{1}\right) . c_{2} \neq \varnothing$ if $c_{n} \geqslant 2$ and $c_{1} \neq \emptyset$ if $c_{n} \geqslant 3$. Each c_{1} is empty or is a single $z_{0}(f)$-orbit. This is clear if $c_{n} \leqslant 2$. The general case follows by using suitable decompositions $f=$ $f_{1} \oplus f_{2}$ for which f_{1}^{2} has only one or two Jordan blocks.

Proposition 3.18. If k is algebraically closed, then every unipotent bilinear form is split. The unipotent classes of bilinear forms are exactly the varieties $C_{\lambda, \varepsilon}$, where (λ, ε) is any pair satisfying (a) and (b) of 3.9.

Proof. Let f be a unipotent bilinear form. Take a decomposition $V=V_{1} \oplus \ldots \oplus V_{n}$ as in 3.7. By 3.14 and 3.16 the restriction of f to any V_{i} is split. Hence f is split and every $C_{\lambda, \varepsilon}$ is a single class in G.

Corollary 3.19. If k is finite, the classes of unipotent bilinear forms are the subsets $C_{\lambda, \varepsilon, a}$, where (λ, Σ) is any pair satisfying (a) and (b) of 3.9 and $a \in \bar{A}_{o}(g), g$ being a fixed element of $C_{\lambda, \varepsilon, 1}$ (with the notations of 3.13).

Proof. This follows from 3.13 and 3.18.

Remark 3.20. If k is finite, the number of classes of unipotent bilinear forms is equal to the number of partitions of dim V. This will be proved in 4.5 .

Proposition 3.21. If k is algebraically closed and $f \in C_{\lambda, \varepsilon}$ is a unipotent bilinear form, then $A_{0}(f)$ is naturally isomorphic to the abelian group generated by $\left|a_{i}\right| \varepsilon_{\lambda_{1}} \neq 0 \mid\left(a_{1}, a_{2}, \ldots\right.$ as in 1.13) with the following relations. $a_{i} a_{j}=1$ if $\lambda_{i}=\lambda_{j}$, or if $\lambda_{i}=\lambda_{j}+1$, or if $\lambda_{i}=\lambda_{j}+2$ and λ_{i} is odd, and $a_{i}=1$ if $\lambda_{1}=0$.

Proof. It is easy to check that we can find subspaces W_{1}, W_{2}, \ldots $\ldots . . l_{m}$ (for some m) with the following properties.
a) The restriction f_{1} of f to W_{1} is non-singular for all 1 and
$f=f_{i} \oplus \ldots \oplus f_{m}$.
b) if $f_{i} \in C \lambda_{\lambda^{i}}, \varepsilon^{i} \subset G\left(W_{i}\right)$, then one of the following holds. $\left.b_{1}\right) \lambda_{1}^{i}=n_{i}$ is odd, $\lambda_{2}^{i}=0\left(\right.$ then $\left.\varepsilon_{n_{i}}^{i}=1\right)$. $\left.b_{2}\right) \lambda_{1}^{i}=\lambda_{2}^{i}=n_{i}$ are odd, $\lambda_{3}^{i}=0$ and $\varepsilon_{n_{i}}^{i}=0$. b_{3}) $\lambda_{1}^{i}=\lambda_{2}^{i}=n_{i} \neq 0$ are even, $\lambda_{3}^{i}=0\left(\right.$ then $\left.\varepsilon_{n_{i}}^{i}=\omega\right)$. Moreover in each case $\varepsilon_{n_{i}}^{1}=\varepsilon_{n_{i}}$.
c) $n_{1}>n_{2} \geqslant \ldots \geqslant n_{m}$.
$X=\left\{\left(W_{1}, \ldots, W_{m}\right) \mid(a),(b)\right.$ and (c) are satisfied $\}$ is an algebraic variety and $Z_{o}(f)$ acts transitively on X (by 3.18). X is irreducible and therefore the stabilizer S of $x \in X$ meets all components of $Z_{0}(f)$. The natural homomorphism $S / S^{0} \longrightarrow A_{0}(f)$ is surjective. $S / 5^{\circ}$ can be computed from 3.14 and 3.16 and we clearly can take $\left\{a_{i} \mid \varepsilon_{\lambda_{i}} \neq 0\right\}$ as a set of generators. Some of the relations listed in the proposition are already true in $\mathrm{g} / \mathrm{s}^{0} \quad\left(a_{i}=1\right.$ if $\lambda_{i}=0, a_{i} a_{j}=1$ if $\lambda_{i}=\lambda_{j}+1$ and $\lambda_{i}=0$, $a_{i}^{2}=1$, some of the relations $a_{1} a_{j}=1$ if $\lambda_{i}=\lambda_{j}$ when $i=$ $j+1$). We need to check that the kernel of $s / s^{0} \longrightarrow Z_{0}(f)$ is given by the relations in the proposition. The relations $a_{i} a_{j}=$ 1 if $\lambda_{i}=\lambda_{j}$ follow from 3.14 and 3.16 . By 3.13 and 3.19 we need only to classify the unipotent bilinear forms over one finite field. The proposition is then a consequence of the following lemma.

Lemma 3.22. Suppose that $|k|=2$ and that $f \in C_{\lambda, \varepsilon}$. Suppose also that there is a decomposition $V=N_{1} \oplus W_{2}$ such that (a), (b) and (c) of the proof of 3.21 hold (with $m=2$). Then we have :
a) If $n_{1}=2$ or $3, n_{2}=1$ and $\varepsilon_{1}=1$, then f is split.
b) If $\lambda_{1}=\lambda_{2}+2 \geqslant 5$ and $\lambda_{3}=0$, or if $\lambda_{1}=\lambda_{2}=\lambda_{3}+1 \geqslant 4$ and
$\lambda_{4}=0$, or if $\lambda_{1}=\lambda_{2}+1=\lambda_{3}+1$, or if $n_{1}=n_{2}$, then f is split if and only if f_{1} and f_{2} are both split or non-split.
c) In all other cases, f is split if and only if f_{1} and f_{2} are split.

Proof. Suppose that $\lambda_{1}=\lambda_{2}+2 \geqslant 5$ and $\lambda_{3}=0$. Then λ_{1} is odd. Say $\lambda_{1}=2 m+1=n$. Choose a basis $e_{1}^{1}, \ldots, e_{n}^{1}$ of W_{1} and a basis $e_{1}^{2}, \ldots, e_{n-2}^{2}$ of W_{2} as in 3.8. If $V=W_{i} \oplus W_{2}^{1}$ satisfies (a), (b) and (c) of the proof of 3.21 , we can take a basis $f_{1}^{1}, \ldots, f_{n}^{1}$ of wi and a basis $f_{i}^{2}, \ldots, f_{n-2}^{2}$ of wí with $f_{n}^{1}=e_{n}^{1}+x_{1} e_{n-2}^{2}+$ $x_{2} e_{n-3}^{2}+\ldots$ and $f_{n-2}^{2}=e_{n-2}^{2}+y_{1} e_{n-2}^{1}+y_{2} e_{n-3}^{1}+\ldots$. By 3.16, we have to look at $p=f\left(e_{m+2}^{1}, e_{m+2}^{1}\right), q=f\left(e_{m+1}^{2}, \theta_{m+1}^{2}\right), p^{\prime}=$ $f\left(f_{m+2}^{1}, f_{m+2}^{1}\right)=p+x_{1}^{2}, q^{\prime}=f\left(f_{m+1}^{2}, f_{m+1}^{2}\right)=q+y_{1}^{2}$. It is sufficient to prove that $x_{1}=y_{1}$. This is true since $x_{1}+y_{1}=$ $f\left(f_{3}^{1}, f_{n-2}^{2}\right)=0$.

If $\lambda_{1}=\lambda_{2}=\lambda_{3}+1 \geqslant 4$ and $\lambda_{4}=0$, then $\lambda_{1}=2 m=n$ is even. Choose a basis $e_{1}^{1}, e_{1}^{2}, \ldots, e_{n}^{1}, e_{n}^{2}$ of u_{1} and a basis $e_{1}^{3}, \ldots, e_{n-1}^{3}$ of W_{2}. If $\nabla=W_{1} \oplus N_{2}^{\prime}$ satisfies (a), (b) and (c) of the proof of 3.21, then we can take a basis $f_{1}^{1}, f_{1}^{2}, \ldots, f_{n}^{1}, f_{n}^{2}$ of $n f$ and a basis $f_{1}^{3}, \ldots, f_{n-1}^{3}\left(\right.$ as in 3.8) with $f_{n}^{1}=\theta_{n}^{1}+x_{1} e_{n-1}^{3}+$ $x_{2} e_{n-2}^{3}+\ldots, f_{n}^{2}=e_{n}^{2}+y_{1} e_{n-1}^{3}+y_{2} e_{n-2}^{3}+\ldots, f_{n-1}^{3}=e_{n-1}^{3}+$ $z_{1} e_{n-1}^{4}+t_{1} e_{n-1}^{2}+z_{2} e_{n-2}^{1}+t_{2} e_{n-2}^{2}+\ldots$. By 3.14 and 3.16, we have to look at :
$r=p_{1} p_{2}$, where $p_{1}=f\left(e_{m+1}^{1}, e_{m+1}^{1}\right), p_{2}=f\left(e_{m+1}^{2}, e_{m+1}^{2}\right)$.
$q=f\left(e_{m+1}^{3}, e_{m+1}^{3}\right)$.
$r^{\prime}=p_{1}^{\prime} p_{2}^{\prime}$, where $p_{i}^{\prime}=f\left(f_{m+1}^{1}, f_{m+1}^{1}\right)=p_{1}+x_{1}^{2}$ and $p_{2}^{\prime}=$ $f\left(f_{m+1}^{2}, f_{m+1}^{2}\right)=p_{2}+y_{1}^{2}$.
$q^{\prime}=f\left(f_{m+1}^{3}, f_{m+1}^{3}\right)=q+p_{1} z_{1}^{2}+p_{2} t_{1}^{2}+z_{1} t_{1}$. Since $z_{1}^{2}=z_{1}$ and $t_{1}^{2}=t_{1}$, it is sufficient to prove that $x_{1}=t_{1}$ and $y_{1}=z_{1}$
to get $q+r+q^{\prime}+r^{\prime}=0$ (this proves the lemma in this case). This is true since $x_{1}+t_{1}=f\left(f_{2}^{1}, f_{n-1}^{3}\right)=0$ and $y_{1}+z_{1}=f\left(f_{2}^{2}, f_{n-1}^{3}\right)=0$.

The proof for the other cases is similar.

Corollary 3.23. In the situation of 3.21, $A(f)$ is naturally isomorphic to the abelian group generated by $\left\{a_{0}|\cup| a_{1} \mid \varepsilon_{\lambda_{1}} \neq 0\right\}$ with the relations given in 3.21 and with $a_{0}^{2}=\prod_{i \in I} a_{i}$, where $I=\left\{i \mid \varepsilon_{\lambda_{i}} \neq 0\right.$ and $\left.\lambda_{i} \geqslant 1\right\}$.

Proof. $A(f)$ is obtained by adjoining $f Z(f)^{0}$ to $A_{0}(f)$. By definition $\mathrm{fZ}(\mathrm{f})^{\circ}$ is central in $A_{0}(f)$. We need only to prove that $u Z(f)^{0}\left(u=f^{2}\right)$ corresponds to $\prod_{i \in I} a_{i}$. From the proof of 3.21, it is sufficient to check this in the following cases :
a) u has only one Jordan block.
b) u has two Jordan blocks, both of even dimension.

In these cases the formula results from the computations of 3.14 and 3.16 .

Proposition 3.24. If k is algebraically closed and $f \in C_{\lambda, \varepsilon}$ is a unipotent bilinear form, then dim $Z(f)=z_{\lambda}+\sum_{\varepsilon_{i}=0} c_{i}\left(z_{\lambda}, c_{i}\right.$ as in 3.9)

Proof. Let Y be the variety of all decompositions $V=V_{1} \oplus \ldots$ © V_{ℓ} as in 3.7. $Z_{o}(f)$ acts transitively on Y (by 3.18). Let Y_{λ} be the variety of all decompositions $c^{n}=V_{i} \oplus \ldots \odot V_{i}$, where V;,... V: are orthogonal u_{λ}-stable subspeces and all Jordan blocks of the restriction of u_{λ} to V_{i}^{\prime} have dimension i (with the notations of 3.9). dim $Y_{\lambda}=d i m Y$ and $Z_{O_{n}(c)}\left(u_{\lambda}\right)$ acts transitively on $Y_{\lambda^{*}}$. Taking stabilizers of $y \in Y$ and $y_{\lambda} \in Y_{\lambda^{\prime}}$ we
reduce the computation of dim $2(f)-z_{\lambda}$ to the case where all Jordan blocks of u have the the same dimension.

Assume now that all Jordan blocks of u have dimension i. In this case $z_{\lambda}=\left(i c_{i}^{2}-c_{1}\right) / 2$ if i is odd and $z_{\lambda}=i c_{1}^{2} / 2$ if i is even. Also $\operatorname{dim} Z(f)=\operatorname{dim} Z(u)-\operatorname{dim}\left\{g \in C_{\lambda, f} \mid g^{2}=u\right\} \operatorname{can}$ be computed from 3.8. We get :
$\operatorname{dim} Z(f)= \begin{cases}\left(i c_{i}^{2}-c_{i}\right) / 2 & \text { if } i \text { is odd and } \varepsilon_{i}=1 \\ \left(1 c_{i}^{2}+c_{i}\right) / 2 & \text { if } i \text { is odd and } \varepsilon_{i}=0 \\ i c_{i}^{2} / 2 & \text { if } i \text { is even. }\end{cases}$
Hence $\operatorname{dim} Z(f)= \begin{cases}z_{\lambda} & \text { if } \varepsilon_{1} \neq 0 \\ z_{\lambda}+c_{1} & \text { if } \varepsilon_{i}=0 .\end{cases}$
This proves the proposition.

4. Groups of type E_{6}.

In this paragraph $p=2$. We prove that there are only finitely many unipotent classes arising from the symmetry of order 2 in the Dynkin diagram of type E_{6}. Without loss of generality we may assume that k is an algebraic closure of $\mathbb{F}_{\mathrm{q}}\left(\mathrm{q}=2^{e}\right)$. These results are due to George Iusztig.
4.1. Let G be a connected reductive group defined over \mathbb{F}_{q}. Let $F: G \longrightarrow G$ be the corresponding Frobenius endomorphism. G has a dual group G^{*} defined up to isomorphism. G^{*} is defined over \mathbb{F}_{q} and its Frobenius endomorphism is also denoted by F. If G has a connected centre there is a natural partition of the sat $\left(G^{F}\right)^{\wedge}$ of all irreducible representations of G^{F} (isomorphism classes of irreducible complex representations of G^{F}) indexed by semisimple classes in $G *^{F}$ [4]. Let X_{a} be the subset of $\left(G^{F}\right)^{\wedge}$ corresponding to the class of $a \in G^{*^{F}}$ (s aemisimple). In this aituation $Z_{G *}(s)$ is always connected and it is known that if $Z_{G *}(8)$ is a Levi subgroup of some parabolic subgroup of $G *$, then X_{B} can be parametrized in a natural way by the set of irreducible unipotent representations of $z_{G *}(s) *{ }^{F}$.

Let $r(G)=\left|\left(G^{F}\right)^{\wedge}\right|$ and let $r_{u}(G)=\mid\left\{\theta \in\left(G^{F}\right)^{\wedge} \mid \theta\right.$ is unipotent]|. Then $r(G)=\sum_{S}\left|X_{B}\right|$, where the summation is taken over representatives of the semisimple classes of $G *^{F}$, and if $Z_{G *}(s)$ is a Levi subgroup of some parabolic subgroup of G^{*} then $\left|X_{s}\right|=r_{u}\left(Z_{G *}(s) *\right)$.
4.2. Let \tilde{G} be a reductive group defined over \mathbb{F}_{q} such that $G=$ \tilde{G}^{0} has a connected centre and \tilde{G} / G has two elements. \tilde{G} / G acts
on the canonical torus of G (defined as in [4]) and therefore on its dual which is the canonical torus of G*. This gives an involution σ on the set of semisimple classes of G^{*}. We write $s \equiv \sigma$ if the class of s is fixed by σ. \tilde{G} / G acts also on $\left(G^{F}\right)^{\wedge}$ and this gives an involution on $\left(G^{F}\right)^{\wedge}$ (also denoted by σ). If $s \in G * F$, the subset X_{B} of $\left(G^{F}\right)^{\wedge}$ is $\sigma-s t a b l e$ if and only if $a \equiv$ σ. In fact $\sigma X_{B}=X_{\sigma s}$. This follows from the definition of X_{B}. If $\theta \in\left(G^{F}\right)^{\wedge}$ is such that $\theta=\sigma \theta$, then θ is the restriction of 2 irreducible representations of \tilde{G}^{F}. If $\theta \neq \sigma \theta$, then there is one irreducible representation of \tilde{G}^{F} such that θ and $\sigma \theta$ are tre components of its restriction to G^{F}. We get in this way all irreducible representations of \tilde{G}^{F}. 'herefore $r(\tilde{G})=\left|\left(\tilde{G}^{F}\right)^{\wedge}\right|=$ $\left.2\left|\left\{\theta \in\left(G^{F}\right)^{\wedge} \mid \theta=\sigma \theta\right\}\right|+\frac{1}{2} \right\rvert\,\left\{\theta \in\left(G^{F}\right)^{\wedge}|\theta \neq \sigma \theta| \mid\right.$.

If $s \in G^{F}$ is semisimple and $s \equiv \sigma s$, let $\tilde{X}_{s}=\mathcal{H}^{\mathcal{Y}} \in\left(\tilde{G}^{F}\right)^{\wedge}$ ithe components of the restriction of ψ to G^{F} are in $\left.X_{a}\right\}$. Then $r(\tilde{G})=\sum_{s, \sigma s}\left|\tilde{X}_{B}\right|+\frac{1}{2} \sum_{s+\sigma=s}\left|X_{B}\right|$, where the summations are taken over representatives of the semiaimple classes of $G{ }^{F}$ such that $s \equiv \sigma$ and $\mathrm{s} \not \equiv \sigma$ respectively. Clearly $\left|\tilde{x}_{B}\right|=2\left|x_{B}^{\sigma}\right|+$ $\frac{1}{2}\left|X_{B} \backslash X_{s}^{\sigma}\right|$.

We shall say that $\psi \in\left(\tilde{G}^{F}\right)^{\sim}$ is unipotent if some component (or all components) of its restriction to G^{F} is unipotent. Let $r_{u}(\tilde{G})=\left|\left|\psi \in\left(G^{F}\right)^{\wedge}\right|^{\wedge} \psi\right.$ is unipotent $| \mid$. We also have $r_{u}(\tilde{G})=$ $2 \left\lvert\,\left\{\theta \in\left(G^{F}\right)^{\wedge} \mid \theta\right.$ is unipotent and $\left.\theta=\sigma \theta\right\}\left|+\frac{1}{2}\right|\left\{\theta \in\left(G^{F}\right)^{\wedge} \mid \theta\right.$ is \right. unipotent and $\theta \neq \sigma \theta| |$.
4.3. If G is any algebraic group defined over \mathbb{F}_{q}, let $c_{u}(G)$ be the number of unipotent classes of G^{F} and let $c(G)$ be the total number of conjugacy classes of G^{F}. If \tilde{G} and G are as in 4.2,
then $c(G)=\sum_{s} c_{u}\left(Z_{G}(B)\right)$ and $c_{u}(\hat{G})=\sum_{s=\sigma_{S}} c_{u}\left(Z_{\tilde{G}}(a)\right)+$ $\frac{1}{2} \sum_{s \neq \sigma s} c_{u}\left(Z_{G}(s)\right)$. 'The summations are taken over representatives of the semisimple classes of G^{F}, with the restrictions as indicated (notice that $p=2$).

Proposition 4.4. Let \tilde{G} and G be as in 4.2. Suppose that all components of $\Delta(G)$ are of type A_{n} or D_{n} (for various values of n) and that G and $G *$ have connected centres. Then $C_{u}(\tilde{G})=$ $r_{u}(\tilde{q})$.

Proof. Consider the group $H=\prod_{G L_{n_{i}}} \times \prod_{S O_{2 m j}}\left(n_{1}, n_{2}, \ldots\right.$ and m_{1}, m_{2}, \ldots such that $\left.\Delta(H)=\Delta(G)\right)$ with a rational structure corresponding to that of G and choose an automorphism σ of H (over \mathbb{F}_{q}) of order 2 which acts on $\Delta(H)$ as \tilde{G} / G on $\Delta(G)$. Let fif be the semidirect product of H and $\{1, \sigma\}$. Then it follows Prom [4] that $r_{u}(\tilde{H})=r_{u}(\tilde{G})$. Also $c_{u}(\tilde{H})=c_{u}(\tilde{G})$. It is therefore sufficient to prove the proposition fo \tilde{H}.
H is isomorphic to H^{*} and the partition of $\left(\mathrm{H}^{\mathrm{F}}\right)^{\wedge}$ can therefore be indexed by semisimple classes in H^{F}. Since $r(\tilde{\mathrm{~K}})=$ $c(\tilde{H})$, we have :
$\sum_{s \in \sigma s} c_{u}\left(z_{\tilde{H}}(s)\right)+\frac{1}{2} \sum_{s ; \sigma s} c_{u}\left(u_{H}(s)\right)=\sum_{s=\sigma_{s}}\left|\tilde{X}_{B}\right|+\frac{1}{2} \sum_{s \neq \sigma s}\left|X_{s}\right|$.
All the groups $Z_{H}(8)$ are Levi subgroups of parabolic subgroups of H. We have therefore $\left|X_{s}\right|=r_{u}\left(Z_{H}(s)\right)$ and it follows also from computations in [8] that $\left|\tilde{X}_{\tilde{s}}\right|=r_{u}\left(Z_{\tilde{H}}(s)\right)$. From [8] $c_{u}\left(Z_{H}(s)\right)=r_{u}\left(Z_{H}(s)\right)$ and all the terms with $a \neq \sigma_{s}$ cancel. The groups $Z_{H}(s)$ are all of the type considered in the proposition and therefore we may assume by induction on dim G that $c_{u}\left(Z_{\tilde{H}}(s)\right)=r_{u}\left(\mathcal{Z}_{\tilde{H}}(s)\right)$ if $a \equiv \sigma s$ and $E \notin Z(H)$. So all the terms with $s \notin Z(\tilde{H})$ cancel and we get $\left|Z(\tilde{H})^{F}\right| c_{u}(\tilde{H})=$
$\left|2(\tilde{H})^{F}\right| r_{u}(\tilde{H})$. Hence $c_{u}(\tilde{H})=r_{u}(\tilde{H})$.
Corollary 4.5. Let V be a vector apace of dimension n over \mathbb{F}_{q}. Then there are $p(n)$ equivalence classes of unipotent bilinear forms on V, where $p(n)$ is the number of partitions of n.

Proof. Let $G(V)$ be defined as in 3.1. $G(V)$ has $p(n)$ unipotent classes contained in $G L(V)$. From 4.4 it is therefore sufficient to prove that there are $2 \mathrm{p}(\mathrm{n})$ unipotent representations in $G(V)^{\wedge}$. Since $G L(V)^{\wedge}$ contains $p(n)$ unipotent representations, it is sufficient to show that $G(V) / G L(V)$ fixes these unipotent representations. This comes from the fact that the \mathbb{Z}-module generated by their characters is also generated by characters of the form $\operatorname{Ind}_{P}^{G I L}(V)(1)$ (P a parabolic subgroup of $G L(V)$) and $G(V) / G L(V)$ acts trivially on the characters of this form.
4.6. Let H be a aimply connected semisimple group of type E_{7} defined over \mathbb{F}_{q}. H has a parabolic subgroup defined over \mathbb{F}_{q} with a Levi gubgroup G of type E_{6} defined over \mathbb{F}_{q}. G is unique up to conjugation by an element of H^{P}.
H^{*} can be taken to be the adjoint group of H and we have therefore a bijective homomorphism $\mathrm{f}: \mathrm{H} \longrightarrow \mathrm{H}^{*}$ (since $\mathrm{p}=2$ H has a trifial centre). The image of G in H^{*} is defined over F_{q}, has type E_{6} and is a Levi subgroup of some parabolic subgroup of H^{*} defined over \mathbb{F}_{q}. From $[8,7.2] \mathrm{G}^{*}$ is isomorphic to some subgroup of H^{*} with these properties. Since such subgroups form a single $H^{*^{F}}$-conjugacy class, this shows that we can take $G^{*}=f(G)$. In particular the partition of $\left(G^{F}\right)^{\wedge}$ can be indexed by semisimple classes in G^{F}.
$\left|N_{H}(G) / G\right|=2$ and $N_{H}(G) / G$ acts non-trivially on the Dyakin
diagram of G. We can use 4.2 with $G=N_{G}(H) . \sigma$ can be taken to be the conjugation by some suitable $x \in N_{H}(T)$ representing the longest element in the Weyl group of H ($T \subset G$ a maximal $\mathrm{F}-\mathrm{stable}$ torus contained in some F-stable Borel subgroup of G). Since $2 c(\tilde{G})=2 r(\tilde{G})$, we have $:$
$2 \sum_{A \in \sigma(s)} c_{u}\left(z_{\tilde{G}}(s)\right)+\sum_{s \neq \sigma(A)} c_{u}\left(z_{G}(s)\right)=2 \sum_{s=\sigma(s)}\left|\tilde{X}_{s}\right|+\sum_{s \neq \sigma(s)}\left|X_{s}\right|$. Also, since $c(G)=r(G)$, we have :
$\sum_{s=\sigma(A)} c_{u}\left(Z_{G}(S)\right)+\sum_{\Delta \neq \sigma(s)} c_{u}\left(z_{G}(s)\right)=\sum_{s=\sigma(\Delta)}\left|X_{s}\right|+\sum_{\Delta \neq \sigma(s)}\left|X_{s}\right|$.
Substracting and rearranging terms, we get :
$2 \sum_{s=\sigma(s)}\left(c_{u}\left(Z_{\tilde{G}}(s)\right)-\left|\tilde{X}_{s}\right|\right)-\sum_{\Delta \equiv \sigma(\infty)}\left(c_{u}\left(Z_{G}(s)\right)-\left|X_{s}\right|\right)=0$. Examination of the different possibilities for s shows [3] :
a) If $s=1, Z_{\tilde{G}}(s)=\tilde{G}$.
b) There is a semisimple element $B_{0} \in G^{F}$ such that s_{0} and $\sigma\left(s_{0}\right)$ are conjugate in G and $Z_{G}\left(s_{0}\right)$ has type $A_{2} \times A_{2} \times A_{2}$.
c) Suppose that $s \in G^{F}$ is semisimple and is conjugate in G to $\sigma(s)$ but not to 1 or s_{0}. Then $Z_{G}(s)$ is a Levi subgroup of some parabolic subgroup of G and is of the type considered in 4.4. Therefore $c_{u}\left(Z_{G}(s)\right)=\left|\tilde{X}_{g}\right|$ and $c_{u}\left(Z_{G}(u)\right)=\left|X_{g}\right|$ (as in 4.4).

Since in general $\left|\tilde{X}_{g}\right| \leqslant 2\left|X_{a}\right|$ and $c_{u}\left(Z_{G}(s)\right) \leqslant 2 c_{u}\left(Z_{G}(s)\right)$, the terms remaining after the cancellations due to (c) give :
$2 c_{u}(\tilde{G}) \leqslant 3\left|x_{1}\right|+3\left|x_{s_{0}}\right|+c_{u}(G)$.
It follows from computations in [6] that the right hand side has a bound independent of q. Since for some q every unipotent class of G contains rational points, this shows :

Proposition 4.7. The group \tilde{G} of 4.6 has only finitely many unipotent classes.

CHAPTRR II.

DYNKIN VARIETIES.

1. Equidimensionality of components.

We consider here a fixed unipotent element $u \in G$. We use in particular the notations of 0.6 with this element.
1.1. Por many questions concerning G_{u}, we can assume that G is reductive and generated by G^{0} and u. In this case, let G_{i}, $\ldots G_{r}$ be the minimal connected normal subgroups of G. Then $\mathcal{B}_{u} \cong \prod_{K \in i<r} \mathscr{B}\left(G_{i}\right)_{u}$. So we can also assume in mang cases that G has no non-trivial connected normal subgroup. Suppose this is the case and let $G_{1}, \ldots, \theta_{s}$ be the minimal connected normal subgroups of G°. It is easily checked that $G_{u} \cong G\left(G_{1}\right)\left(u^{8}\right)$. This shows that we can often assume that $\Delta\left(G^{0}\right)$ is connected.

Another reduction (when G is reductive) is obtained by replacing G by $\operatorname{Aut}\left(G^{\circ}\right)$ via the morphism ad $:\left.g \mapsto a d(g)\right|_{G}{ }^{0}$. We have clearly $\mathcal{G}_{u} \cong \mathscr{A}\left(A u t\left(G^{0}\right)\right)_{\text {ad }(u)}$.

Lemma 1.2. Suppose that $B_{0}, B_{j} \in A_{u}$ and $\left(B_{0}, B_{j}\right) \in O(w)$. Then a) $w \in \mathbb{V}^{u}$.
b) If $p_{u}(w)=j$ and $w=\tilde{s}_{1} \tilde{s}_{2} \ldots \tilde{s}_{j}\left(s_{1}, \ldots, s_{j} \in \Pi\right)$, then the Borel subgroups B_{1}, \ldots, B_{j-1} of 0.7 all belong to \mathbb{B}_{u}. Proof. a) !nis is obvious since B_{o} and B_{j} are fixed by $u_{\text {. }}$ b) Chis follows from the unicity property in 0.7 .

Lemma 1.3. Suppose that $s \in \Pi$ and $P \in P_{o(s)}$.
a) If $\mathscr{G}_{u} \cap \mathscr{G}_{(P)}$ is not empty, then it is a single point or a projective line.
b) Suppose moreover that $B \subset P$ and $B \in \mathcal{F}_{u}$. Let ∇ be the variety of all unipotent elements in $u B$. Define $V_{s}=\{v \in V \mid$ $\left.\operatorname{dim}\left(G_{v} \cap G^{(P)}\right)=1\right\}$. Then V_{s} is a hypersurface in V.

Proof. Without loss of generality, we may assume that $B \in \mathcal{B}_{u}$ and $B \subset P$.

Let H be the subgroup of G generated by P and u. Then for any $v \in V, \mathcal{B}_{v} \cap G(P) \cong B(H) \nabla$. Using the methods of 1.1 , it is easy to see that it is sufficient to prove the lemma in the following two cases.
a) G is connected semisimple of type A_{1}.
b) $p=2, G=\operatorname{Aut}\left(3 L_{3}\right)$ and $u \notin G^{\circ}$.

This is done in 1.4 and 1.5.
1.4. If G is connected semisimple of type A_{1}, then $V=U$ is isomorphic to G_{a}. If $u \in U \backslash\{1\}$, then $G_{u}=\{B\}$. If $u=1$, $G_{u}=B_{1} \cong \mathbb{P}^{1}$.
1.5. Assume that $p=2$ and let V be a k-vector space of dimension 3. Then $A u t(S L(V)) \cong G(V) / Z$, where $G(V)$ is defined as in I. 3.1 and $Z=Z(G L(V))$.

It is sufficient to prove (a) of 1.3 for unipotent bilinear forms on V. Let f be such a form. If f^{2} has only one Jordan block, then $G_{f} 2$ is a single point (this can be checked directly) and therefore $S_{f} \subset \Theta_{\rho} 2$ is also a single point. If f^{2} has more than one Jordan block, then $f^{2}=1$, i.e. f is symmetric. It is easily checked that the isotropio flags for
f form a variety isomorphic to \mathbb{P}^{1}. This proves (a) of 1.3 . Choose now a basis ($\theta_{1}, \theta_{2}, \theta_{3}$) of ∇. Let B be the subgroup of upper triangular matrices. A bilinear form $f \in G(V)$ is in $N_{G(V)}(B)$ if and only if its matrix has the form

$$
\left(\begin{array}{ccc}
0 & 0 & \mathbf{f}_{13} \\
0 & \mathbf{P}_{22} & \mathbf{f}_{23} \\
\mathbf{f}_{31} & \mathbf{f}_{32} & \mathbf{P}_{33}
\end{array}\right)
$$

where $f_{i j}=f\left(e_{i}, e_{j}\right)$. It is easily checked that f is unipotent if and only if $f_{13}=f_{31}$ and that $f^{2}=1$ if and only if is unipotent and $f_{23}=f_{32^{\circ}}$ (b) of 1.3 for Aut (SL(V)) follows then from the fact that $f \longmapsto\left(f_{23}+f_{32}\right) / f_{22}$ is a regular function on $\left(N_{G}(V)(B) \backslash G L(V)\right) / Z$.

Definition 1.6. Let s be a Pundamental reflection and $P \in \Phi_{0}(s){ }^{\text {. }}$ A one-dimensional subvariety of $G(P)$ will be called a line of type s if it is of the form $\mathscr{B}_{\mathcal{B}}(P) \cap \mathscr{B}_{x}$ for some unipotent element $x \in U G^{\circ}$. If G is reductive and $s=s_{\alpha}$, we shall also call it a line of type α.

Corollary 1.7. Any two points in A_{u} can be connected in A_{u} by a sequence of arcs of lines of the kind described above (for various fundamental reflections). In particular Φ_{u} is connected.

Proof. This follows immediately from 1.2 and 1.3.

Corollary 1.8. $u G^{\circ}$ contains a unipotent element V such that Φ_{v} consists of a single element.

Proof. We may assume that G is reductive. $u G^{0}$ contains a
unipotent element x which nomalizes B and T. Choose one fundamental root $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ in each x-orbit in TT. Then $u^{\prime}=$ $x \prod_{1 \leqslant i \leqslant m} x_{\alpha_{i}}$ (1) is unipotent and it is easy to check that there are no lines of type α (any $\alpha \in T$) through B oontained in $\mathscr{S}_{\alpha^{\prime}}$. Therefore $\Phi_{u^{\prime}}=\{B \mid$ is reduced to a single element.
1.9. Let x be any element of G. We consider here a natural correspondence between the irreducible components C_{1}, \ldots, C_{n} of $C^{0}(x) \cap N$ and the components $\left(X_{\sigma}\right)_{\sigma \in S}(x)$ of \mathcal{B}_{x}.

Consider the morphisme $\pi_{1}: G^{0} \longrightarrow \infty, g \mapsto B_{B}, \pi_{2}: G^{0} \rightarrow C^{0}$, $g \longmapsto g^{-1}$ xg. Let $Y=\pi_{1}^{-1}\left(\mathcal{B}_{x}\right)=\pi_{2}^{-1}\left(C^{0}(x) \cap N\right), Y_{\sigma}=\pi_{1}^{-1}\left(X_{\sigma}\right)$, $Y_{i}=\pi_{2}^{-1}\left(C_{1}\right)(\sigma \in S(x), 1 \leqslant i \leqslant n) . Y_{\sigma}$ and Y_{i} are closed in Y. $Z_{0}(x) Y B=Y, Z(x)^{0} Y_{\sigma} B=Y_{\sigma}$ and $Z_{o}(x) Y_{i} B=Y_{i}$. For any $\sigma \in S(x)$, Y_{σ} is irreducible since X_{σ} and B are so (0.14). As $Y_{\sigma} \not \subset \bigcup_{\tau=\sigma} T^{\prime}$, $\left(Y_{\sigma}\right)_{\sigma \in S}(x)$ is the family of irreducible components of Y.

For any $\sigma \in S(x), Z_{o}(x) Y_{\sigma}=\bigcup_{a \in A_{0}(x)} Y_{a \sigma}$ is olosed in Y and is a union of fibres of π_{2}. Since π_{2} is open, it follows that $\pi_{2}\left(Y_{\sigma}\right)=\pi_{2}\left(\bigcup_{-\infty+\infty} Y_{a \sigma}\right)$ is closed in $C^{0}(x) \cap N$. In particular, for each C_{i} there is a $\tau \in S(x)$ such that $\pi_{2}\left(Y_{\tau}\right)=C_{1}$.

Suppose that $\pi_{2}\left(Y_{\sigma}\right) \subset C_{1}$. Then Y_{σ} is an irreducible component of Y_{i}. But for some $\tau \in S(x), C_{i}=\pi_{2}\left(Y_{\tau}\right)$ and therefore $Y_{i}=\bigcup_{* i, a i} Y_{a \tau}$. So the irreducible components of Y_{i} are $\left(Y_{a \tau}\right)_{a \in A_{0}(x)}$. In partioular $\sigma=a \tau$ for some $a \in A_{0}(x)$ and $\pi_{2}\left(Y_{\sigma}\right)=C_{i}$.

This gives a natural surjection $\pi: S(x) \longrightarrow\left|C_{1}, \ldots, C_{n}\right|$ and for each $i, S_{i}=\pi^{-1}\left(C_{i}\right)$ is a single $A_{0}(x)$-orbit in $S(x)$.

More generally, the same argument gives a bijection between the set of $Z_{0}(x)$-orbits in 9_{x} and the set of B-orbits in
$C^{0}(x) \cap N$, and to each B-stable irreducible subvariety of $c^{0}(x) \cap N$ of codimension r we can associate a subvariety of \mathcal{B}_{x} which is $Z_{0}(x)$-stable and whose components are permuted transitively by $A_{0}(x)$, and each component has codimension r in B_{x}. A similar argument gives a bijective correapondence between the set of G / G°-orbits in the set of irreducible components of $C(x) \cap N$ and the set of $A(x)$-orbits in $S(x)$ (we use here the natural isomorphism $\left.G / G^{0} \cong N / B\right)$.
1.10. We use the notations of 1.9. If $\sigma \in S_{i}$, then dim $Y_{\sigma}=$ $\operatorname{dim} Y_{i}$ and therefore :
$\operatorname{dim} X_{\sigma}+\operatorname{dim} B=\operatorname{dim} C_{i}+\operatorname{dim} Z(x)$.
Lemma 1.11. Let X be a closed irreducible subvariety of \boldsymbol{B}_{u}. Suppose that for some $s \in T$ there is a line of type a contained in \mathcal{B}_{u} through all $x \in X$. Buppose that these lines are not all contained in X. Then the union Y of these lines is a clused irreduaible subvariety of \mathbb{B}_{u} and dim $Y=d i m X+1$.

Proof. Let $\bar{O}(\xi)$ be the closure of $O(\Im)$ in $\xi_{x} \beta$. Let $Z=$ ($X \times \mathbb{B}_{\mathrm{u}}$) $\cap \bar{O}(\pi) . Z$ is a projective variety, and since X is Irreducible and all the fibres of $\mathrm{pr}_{2}: Z \longrightarrow \mathrm{X}$ are projective lines, Z is irreducible (0.14) and $\operatorname{dim} Z=\operatorname{dim} X+1 . Y$ is the projection of Z on Φ_{u} and is therefore closed and irreducible. dim $2 \geqslant \operatorname{dim} Y \geqslant \operatorname{dim} X+1$ since $X \subset Y$ and $X \neq Y$. Hence dim $Y=\operatorname{dim} X+1$.

Proposition 1.12. All irreducible components of $\mathscr{B}_{\mathbf{u}}$ have the same dimension.

Proof. By 1.7, it is sufficient to prove that if X_{σ} is a component of maximal dimension and $L \subset \mathcal{B}_{u}$ is a line of type s (s eTl) meeting X_{σ}, then L is contained in a component of maximal dimension.

With the notations of $1.3, V_{s}$ is a hypersurface in V. We use the correspondence of 1.9 with $x=u$. Choose $B^{\prime} \in L \cap X_{\sigma^{*}}$ If $\sigma \in S_{i}$, let $X \ni B^{\prime}$ be an irreducible component of the subvariety of \mathcal{B}_{u} corresponding to $C_{i} \cap V_{s}$. If X_{σ} is a union of lines of type s, there is nothing to prove. Assume this is not the case. Then X has codimension 1 in \mathcal{R}_{u} since $C_{i} \cap V_{s}$ has codimension 1 in $c^{0}(x) \cap N$. If X is a union of lines of type s, then $L \subset X \subset X_{a \sigma}$ for some $a \in A_{0}(x)$ and $\operatorname{dim} X_{a \sigma}=\operatorname{dim} X_{\sigma^{\circ}}$ We may therefore assume that X is not a union of lines of type s. He can now apply 1.11 and we get a closed irreducible subvariety $Y \subset \mathcal{S}_{u}$ such that I $\subset Y$ and $\operatorname{dim} Y=\operatorname{dim} X+1=\operatorname{dim} G_{u}$. This proves the proposition.
1.13. In [19] Steinberg considers elements $x \in G$ such that x normalizes some $B^{\prime} \in \mathscr{A}$ and some maximal torus T^{\prime} of B^{\prime}. Such an element is called quasisemisimple. We shall use the following result of Steinberg [19, p. 51] : every Borel subgroup normalized by a semisimple element x contains a maximal torus normalized by x. Thus semisimple elements are quasisemisimple. He shows also that if G^{0} is a simply conneoted semisimple algebraic group and $x \in G$ is quasisemisimple, then $Z_{o}(x)$ is a connected reductive group $[19, p .52]$ (this is stronger than 1.16). We consider here quasisemisimple elements in the framework of Dynkin varieties.

Lemma 1.14. Suppose that G is reductive and that $x \in G$ normalizes B and T. Then $Z_{T}(x)$ contains a one-dimensional torus T_{0} independent of x with the following property. For all $c \in k^{*}$, there exists $t \in T_{0}$ such that $\alpha(t)=c$ for all $\alpha \in T$.

Proof. Take for T_{0} the identity component of $\left\{t \in T \cap\left[G^{0}, G^{0}\right] \mid\right.$ $\alpha(t)=\beta(t)$ for all $\alpha, \beta \in T T\}$. This is clearly a one-dimensional torus. T_{0} is x-stable. x normalizes T and B and therefore leaves Φ^{+}invariant. Since $\operatorname{Aut}\left(T_{0}\right)=\{+1,-1\}$, this shows that $T_{0} \subset Z_{T}(X)$.

Corollary 1.15. a) $Z_{T}(x)^{0}$ is a regular torus in G, i.e. Tis the only maximal torus of G containing it.
b) $Z_{T}(x)^{0}$ is a maximal torus of $Z(x)$ and every maximal torus of $Z(x)$ contained in B is of the form $Z_{T},(x)^{0}$ for a unique maximal torus T^{\prime} of B and x normalizes T^{\prime}.
c) $C^{0}(x) \cap N_{N}(T)$ is a aingle $N_{G O}(T)$-conjugacy class.
d) The B-conjugacy class of x is closed.
e) $C^{0}(x)$ and $C(x)$ are closed.

Proof. $Z_{T}(x) \supset T_{0}$ clearly contains regular elements [20, p. 96]. This proves (a). (b) is an immediate consequence of (a). c) If $y=g x g^{-1} \in N_{N}(T)\left(g \in G^{0}\right)$, then $Z_{T}(y)$ and $Z_{\left(g_{T}\right)}(y)$ are maximal tori in $Z(y)$. Hence for some $z \in Z(y)^{0}, Z_{T}(y)=$
 $y=(z g) x(z g)^{-1}$.
d) If $t \in T$ and $v \in U$, ($t v) x(t v)^{-1}=x\left(x^{-1} t x t^{-1}\right)\left(t\left(x^{-1} v x v^{-1}\right) t^{-1}\right)$. $t\left(x^{-1} V x V^{-1}\right) t^{-1} \in U$ and $T^{\prime}=\left\{x^{-1} t \pi t^{-1} \mid t \in T\right\}$ is a subtorus of T. Hence the B-class of x is contained in $x T U$ and contains $x T^{\prime}$.

Lempa 1.14. Suppose that G is reductive and that $x \in G$ normalizes B and T. Then $Z_{T}(x)$ contains a one-dimensional torus T_{0} independent of x with the following property. For all cek*, there exists $t \in T_{0}$ such that $\alpha(t)=c$ for all $\alpha \in T T_{\text {. }}$.

Proof. Take for T_{0} the identity component of $\left\{t \in T \cap\left[G^{0}, G^{0}\right] \mid\right.$ $\alpha(t)=\beta(t)$ for all $\alpha, \beta \in T T\}$. This is clearly a one-dimensional torus. T_{0} is x-stable. x normalizes T and B and therefore leaves Φ^{+}invariant. Since $\operatorname{Aut}\left(T_{0}\right)=\{+1,-1\}$, this shows that $T_{0} \subset Z_{T}(x)$.

Corollary 1.15. a) $Z_{T}(x)^{0}$ is a regular torus in G, i.e. T is the only maximal torus of G containing it.
b) $Z_{T}(x)^{0}$ is a maximal torus of $Z(x)$ and every maximal torus of $Z(x)$ contained in B is of the form $Z_{T},(x)^{0}$ for a unique maximal torus T^{\prime} of B and x normalizes T^{\prime}.
c) $C^{\circ}(x) \cap N_{N}(T)$ ie a single $N_{G} O(T)$-conjugacy class.
d) The B-conjugacy class of x is closed.
e) $C^{0}(x)$ and $C(x)$ ara closed.

Proof. $Z_{T}(x) \supset T_{o}$ clearly contains regular elements [20, p. 96]. This proves (a). (b) is an immediate consequence of (a).
c) If $y=g x g^{-1} \in N_{N}(T)\left(g \in G^{0}\right)$, then $Z_{T}(y)$ and $Z_{\left(g_{T}\right)}(y)$ are maximal tori in $Z(y)$. Hence for some $z \in Z(y)^{0}, Z_{T}(y)=$ $Z_{(z G T)}(y)$. By (b), $T={ }^{2 g} T$. This proves (c) since $z G \in G^{0}$ and $J=(z g) x(z g)^{-1}$.
d) If $t \in T$ and $v \in U$, ($t v) x(t \nabla)^{-1}=x\left(x^{-1} t x t^{-1}\right)\left(t\left(x^{-1} v x \nabla^{-1}\right) t^{-1}\right)$. $t\left(x^{-1} v x v^{-1}\right) t^{-1} \in U$ and $T^{\prime \prime}=\left\{x^{-1} t x t^{-1} \mid t \in T\right\}$ is a subtorus of T. Hence the B-class of x is contained in $x T^{\prime} U$ and contains $x T^{\prime}$.

If $j=x t \prod_{\alpha \in \phi} x_{a}\left(c_{\alpha}\right) \in x T T^{\prime}$, then $x t$ is in the closure of the $T_{0}-$ class of y. The B-class of x is therefore closed since it is contained in the closure of any B-class contained in $x T \mathrm{U}$. e) This follows from (d) since G° / B is complete.

Proposition 1.16. Let G be a reductive algebraic group. Suppose that $x \in G$ is such that every $B^{\prime} \in \mathcal{B}_{x}$ contains a maximal torus normalized by x (semisimple elements have this property). Then $H=Z(x)$ is reductive. Moreover there is a natural morphism $P: \mathcal{B}_{x} \longrightarrow \mathcal{S}_{(H)}$ given by $\mathrm{B}^{\prime} \longmapsto \mathrm{B}^{\prime} \cap \mathrm{H}^{\circ}$. I is H-equivariant and its restriction to any component of $⿻_{x}$ is an isomorphism.

Proof. We may aseume that x normalizes B and T. Since any $y \in$ $C^{\circ}(x) \cap N$ normalizes a maximal torus of B, every element of $C^{0}(x) \cap N$ is B-conjugate to some element in $N_{N}(T)$. By 1.15 (c) and (d), $C^{0}(x) \cap N$ is therefore a finite union of closed $B-$ conjugacy classes of elements in $N_{N}(T)$. So B acts transitively on each irreducible component of $\mathrm{C}^{\circ}(\mathrm{x}) \cap \mathrm{N}$. By 1.9, H^{O} acts trangitively on each irreducible component of \mathcal{A}_{x}. Since \mathscr{B}_{x} is complete, the stabilizer $H^{0} \cap B$ of $B \in B_{x}$ is parabolic in H and therefore $H^{\circ} \cap B$ is a Borel aubgroup of H. This gives an equivariant bijective morphism f^{\prime} from $\mathcal{G}_{\mathcal{B}}(\mathrm{H})$ to the component of A_{x} containing B.

Let $U^{-}=\prod_{\alpha \in \phi^{-}} X_{-\alpha}, B^{-}=T U^{-} \cdot B^{-} \in B_{x}$ and UTU $\cap H=$ $Z_{U}(x) Z_{T}(x) Z_{U}(x)=Z_{U}(x)(B \cap H)$ is a neighbourhood of 1 in H. Hence dim $S(H)=\operatorname{dim} Z_{U}(x)$. Also f^{\prime} is an isomorphism aince $\operatorname{dim} \operatorname{df}\left(T(H)_{1}\right) \geqslant \operatorname{dim} d f^{\prime}\left(T\left(Z_{U}(x)\right)_{1}\right)=\operatorname{dim} Z_{U}(x)=\operatorname{dim} \mathscr{G}^{(H)}$. Replacing now B by B^{-}, wo get dim $G(H)=\operatorname{dim} Z_{D}(x)$. Therefore $\operatorname{dim} H=\operatorname{dim} Z_{U}(x)+\operatorname{dim} Z_{T}(x)+\operatorname{dim} Z_{U}(x)=2 d i m G(H)+$
dim $Z_{T}(x)$. This shows that H is reductive. The remaining statements in the proposition follow from the fact that B can be any element of \mathscr{B}_{x}.

Proposition 1.17. Let G be any algebraic group and let x be any element of G. Then all irreducible components of \mathcal{S}_{x} have the same dimension and all irreducible components of $C(x) \cap N$ have the same dimension.

Proof. Because of 1.10, we need only to prove that all irreducible components of Φ_{x} have the same dimension. We may also assume that G is reductive. Let $x=s u$ be the Jordan decomposition of x. By $1.16, \mathfrak{B}_{x}$ is isomorphic to a union of varieties isomorphic to $\mathcal{G}(Z(s))_{u}$. The proposition follows then from 1.12.

2. Dimension of \mathscr{G}_{3} and relative positions.

In this paragraph G is always a reductive group and $u \in G$ is a fixed unipotent element. We write C^{0}, C, Z, A_{0}, A and S for $C^{0}(u), C(u), Z(u), A_{0}(u), A(u)$ and $S(u)$ respectively.
2.1. In 0.7 , we have defined $\varphi: S \times S \longrightarrow W$ as follows. $\varphi(\sigma, \tau)=$ W if and only if $\left(X_{\sigma} \times X_{\tau}\right) \cap O(W)$ is dense in $X_{\sigma} \times X_{\tau}$. The following properties are clear :
a) $\varphi(\sigma, \tau) \in W^{\mathbf{u}}$.
b) $\varphi(\tau, \sigma)=\varphi(\sigma, \tau)^{-1}$.
c) $\varphi(a \sigma, a \tau)=\varphi(\sigma, \tau)$ for $a l l a \in A_{0}$.
2.2. Let $E=\left\{\left(B_{1}, B_{2}, x\right) \mid B_{1}, B_{2} \in B_{x}\right.$ and $\left.x \in C^{0}\right\}$. G^{0} acts on E by G. $\left(B_{1}, B_{2}, x\right)=\left({ }^{E_{B_{1}}}, g_{B_{2}}, g x g^{-1}\right)$. For any $\sigma, \tau \in S$, let $E_{\sigma, \tau}=$ $G^{0} \cdot\left(X_{\sigma} \times X_{\tau} \times\{u\}\right) . E_{\sigma, \tau}$ is closed in E and irreducible and by 1.12 $\operatorname{dim} E=\operatorname{dim} E_{\sigma, \tau}=2 \operatorname{dim} \mathscr{F}_{u}+\operatorname{dim} C^{0} \cdot E_{\sigma, \tau}=E_{\sigma}, \tau^{\prime}$ if and only if $\left(\sigma^{\prime}, \tau^{\prime}\right)=(a, \sigma, \alpha)$ for some $a \in \mathbb{A}_{0}$. Since $E=\bigcup_{\sigma, \tau \in S} E \sigma_{, \tau}$, the varieties $E_{\sigma_{\rho} \tau}$ are the irreducible components of E.
2.3. For any $w \in W$, let $E_{w}=E \cap\left(O(w) \times C^{0}\right) \cdot E_{w}=\varnothing$ if $w \notin W^{u}$. If $\operatorname{dim} E_{w}=\operatorname{dim} E, \bar{E}_{w}$ contains some component $E_{\sigma, \tau}$ of E and then $\varphi(\sigma, \tau)=w$. Conversely, if $\varphi(\sigma, \tau)=w$, then \bar{E}_{w} contains $E_{\sigma, \tau}$ and dim $E_{W}=\operatorname{dim} E$. Therefore $\varphi(S \times S)=\left\{w \in W^{u} \mid \operatorname{dim} E_{w}=\operatorname{dim} E\right\}$.
2.4. For any $w \in W$, let $N_{w}=N \cap{ }^{W} N$. $N_{w} \cap u G^{0}=\varnothing$ if $w \notin W^{u}$. For $w \in W^{U}$, let V_{w} be the variety of all unipotent elements in $N_{w} \cap u G^{\circ}$. From I.1.4, V_{w} is irreducible and dim $V_{w}=\operatorname{dim} B-$ rank $_{u}(G)-\ell(w)=\operatorname{dim} V_{1}-\ell(w)$.

Since there are only finitely many unipotent classes in G,
there is a unique G^{0}-class C_{w}^{0} such that $C_{W}^{0} \cap V_{W}$ is dense in V_{w}. We have therefore a natural map $w \longmapsto C_{w}^{0}$ from W^{u} to the set of unipotent G^{0}-classes in $u G^{\circ}$.

Por any subvariety X of $u G^{0}$, define $Q(X)=\left\{W \in W^{u} \mid X \cap V_{W}\right.$ is dense in $\left.\nabla_{w}\right\}$. We shall consider in particular the sets $Q\left(C^{\circ}\right)$ and $Q\left(C_{i}\right)(1 \leqslant 1 \leqslant n)$, where C_{1}, \ldots, C_{n} are the irreducible components of $C^{0} \cap N$. Clearly $Q\left(C^{0}\right)=\left\{w \in W^{u} \mid C^{0}=C_{w}^{0}\right\}$.

Proposition 2.5. dim $z \geqslant 2$ dim $Q_{u}+\operatorname{rank}_{u}(G)$ and there is equality if and only if $Q\left(C^{\circ}\right) \neq \varnothing$.

Proof. For any $w \in W^{u}$, $\operatorname{dim} E_{w}=\operatorname{dim} O(w)+\operatorname{dim}\left(\nabla_{w} \cap c^{0}\right) \leqslant$ dim $G-r_{i n k}(G)$, and there is equality if and only if $w \in$ $Q\left(C^{\circ}\right)$. Therefore $\operatorname{dim} E \leqslant \operatorname{dim} G-r a n k_{u}(G)$, and there is equality if and only if $Q\left(C^{\circ}\right) \neq \varnothing$. But from 2.2, dim $E=$ $\operatorname{dim} C^{0}+2$ dim Φ_{u}. This proves the proposition since $\operatorname{dim} G=$ $\operatorname{dim} Z+\operatorname{dim} C^{0}$.
2.6. If G is connected, Bala and Carter have proved that $Q\left(C^{0}\right) \neq \emptyset$ if $p=0$ or if $p \geqslant 4 m+3$, where $m=\max _{\alpha \in \phi^{+}} h t(\alpha)$ [1] If G^{0} is of type A_{n}, B_{n}, C_{n} or D_{n}, dim Z and dim \mathcal{B}_{n} can be computed and we find that $d i m Z=2 \mathrm{dim} \beta_{u}+\operatorname{rank}_{u}(G)(5.7$ and 5.21) and therefore $Q\left(C^{\circ}\right) \neq \varnothing$ (actually the computations in paragraph 5 don't deal with the case where G° is of type D_{4} and the image of u in $\Gamma\left(G^{\circ}\right)$ has order 3 but this case has been considered in I.2.5). In paragraph 6 we shall show how to find elements in $Q\left(C^{0}\right)$ when G° is of type B_{n} or C_{n} (this is the method sketched by Steinberg in [21] to prove that $Q\left(C^{0}\right) \neq \varnothing$ for connected groups of these types). If G^{0} is
of type G_{2}, direct computations show that $Q\left(C^{0}\right) \neq \emptyset$.
Collecting these results, we find that the application $W^{u} \longrightarrow\left\{\right.$ unipotent G^{0}-classes in $\left.u G^{0}\right\}, w \longmapsto C_{w}^{0}$ is surjective at least if one of the following conditions holds :
a) $p=0$ or $p \geqslant 120$.
b) $\triangle\left(G^{0}\right)$ has no components of type E_{6}, E_{7}, E_{8} or $F_{4^{\prime}}$.
c) $\Delta\left(G^{0}\right)$ has no components of type E_{7} or E_{8} and $p \geqslant 47$.
d) $\triangle\left(G^{0}\right)$ has no components of type E_{8} and $p \geqslant 71$.

Corollary 2.7. Let x be any element of G. Then :
a) $\operatorname{dim} Z(x) \geqslant 2 \operatorname{dim} \mathbb{B}_{x}+\operatorname{rank}_{x}(G)$.
b) $\operatorname{dim} B_{x}+\operatorname{dim}(C(x) \cap N) \leqslant \operatorname{dim} B-\operatorname{rank}_{x}(G)$.
c) $\operatorname{dim} C(x) \geqslant 2 \operatorname{dim}(C(x) \cap N)-\left(\operatorname{rank}_{1}(G)-\operatorname{rank}_{x}(G)\right)$.

If one of (a), (b) or (c) is an equality, then they are all equalities. If one of the conditions of 2.6 holds, then they are all equalities.

Proof. By 1.10, $\operatorname{dim} g_{x}+\operatorname{dim} B=\operatorname{dim}(C(x) \cap N)+\operatorname{dim} Z(x)$. (b) is obtained from (a) by replacing dim $Z(x)$ by dim $\Omega_{x}+$ dim B - dim $(C(x) \cap N)$. To get (c) from (a), replace dim B_{x} by $\operatorname{dim}(C(x) \cap N)+\operatorname{dim} Z(x)-\operatorname{dim} B$ and use $\operatorname{dim} G=\operatorname{dim} Z(x)+$ $\operatorname{dim} C(x)=2 \operatorname{dim} B-\operatorname{rank}_{1}(G)$.

So we need only to consider (a). Let $x=s u$ be the Jordan decomposition of x. By 1.16 and 2.5, dim $Z_{z(s)}(u) \geqslant$ $2 \operatorname{dim} \mathscr{S}(Z(s))_{u}+\operatorname{rank}_{u}(Z(s)) \cdot Z_{Z(s)}(u)=Z(x)$ and by 1.16 $\operatorname{dim} \beta_{3}(Z(s))_{u}=\operatorname{dim} \mathcal{B}_{x}$. Hence $\operatorname{dim} Z(x) \geqslant 2 \operatorname{dim} \mathcal{B}_{x}+\operatorname{rank}_{u}(Z(s))$. We have to show that $\operatorname{rank}_{u}(Z(g))=\operatorname{rank}_{x}(G)$. We may assume that $B \in \mathcal{B}_{x}=\mathcal{B}_{s} \cap \mathcal{B}_{H_{1}}$. By $1.16, B \cap Z(s)^{0}$ is a Borel subgroup of $Z(s)$. Therefore rank $(Z(s))=\operatorname{rank}_{u}(N \cap Z(s))=$
dim $\left(Z_{Z_{B}}(s) / Z_{U}(s)\left(u Z_{U}(s)\right)\right)$. In the proof of I. 1.2 (c) we have shown that $Z_{B}(s) / Z_{U}(s) \cong Z_{B / U}(s U)$. It follows that
$Z_{Z_{B}(s) / Z_{U}(s)}\left(u Z_{U}(s)\right) \cong Z_{Z_{B / U}(s U)}(u U)=Z_{B / U}(s u U)=Z_{B / U}(x U)$. Hence $\operatorname{rank}_{u}(Z(s))=\operatorname{dim}\left(Z_{B / U}(X U)\right)=\operatorname{rank}_{X}(G)$. This proves (a). If one of the conditions of 2.6 holds for G, it holds also for $Z(s)$ and we have equality in (a). This proves the corollary.
2.8. Suppose that $Q\left(C^{0}\right) \neq \varnothing$. From the proof of 2.5, dim $E_{w}=$ dim E if and only if $w \in Q\left(C^{0}\right)$. By 2.3 we have then $\varphi(S \times S)=$ $Q\left(C^{0}\right)$. Moreover, as V_{w} is irreducible, $E_{w}=G^{0} \cdot\left(\{B\} \times\left\{^{W} B\right\} x\right.$ $\left(C^{0} \cap \nabla_{w}\right)$) is irreducible if $w \in Q\left(C^{0}\right)$. By $2.3 \varphi(\sigma, \tau)=w$ is then equivalent to $E_{\sigma, \tau}=\bar{E}_{w}$. Collecting previous results, we get :

Proposition 2.9. Assume that $Q\left(C^{\circ}\right) \neq \varnothing$. Then $\varphi: S \times S \longrightarrow W^{\text {u }}$ has the following properties.
a) $P(\tau, \sigma)=\varphi(\sigma, \tau)^{-1}$.
b) $\varphi\left(\sigma^{\prime}, \tau^{\prime}\right)=\varphi(\sigma, \tau)$ if and only if $\left(\sigma^{\prime}, \tau^{\prime}\right)=(a \sigma, a \tau)$ for some $a \in A_{0}$.
c) $\varphi(3 \times S)=Q\left(C^{0}\right)$.

Corollary 2.10. Let $u_{1}, u_{2}, \ldots, u_{m}$ be a complete set of representatives for the unipotent G^{0}-classes contained in $u G^{\circ}$ which are of the form C_{w}^{o} for some $w \in i^{u}$. Then $\sum_{1 \leqslant i \leqslant m}\left|\left(3\left(u_{i}\right) \times 3\left(u_{1}\right)\right) / A_{0}\left(u_{1}\right)\right|=\left|W^{u}\right|$.

Proof. W^{u} is the disjoint union of the sets $Q\left(C^{0}\left(u_{i}\right)\right)(1 \leqslant i \leqslant m)$. The corollary follows then from 2.9.

Proposition 2.11. Suppose that $Q\left(C^{\circ}\right) \neq \varnothing$. Then $|s| \geqslant$ $\left|\left|w \in Q\left(c^{0}\right)\right| w^{2}=1\right\} \mid$. There is equality if $a^{2}=1$ for all $a \in A_{0}$.

Proof. Let S_{1}, \ldots, S_{n} be the A_{0}-orbits in S. If $w \in Q\left(C^{0}\right), w=$ $\varphi(\sigma, \tau)$ for some $\sigma \in S_{i}, \tau \in S_{j}$. If $w^{2}=1, \varphi(\sigma, \tau)=\varphi(\sigma, \tau)^{-1}=$ $\varphi(\tau, \sigma)$. Hence $(\tau, \sigma)=(a \sigma, a \tau)$ for some $a \in \mathbb{A}_{0}$. So $i=j$ and $w \in$ $\varphi\left(S_{i} \times S_{i}\right)$.

Suppose that $a^{2}=1$ for all $a \in A_{0} . \operatorname{Then} \varphi(\sigma, a \sigma)=\varphi\left(a \sigma, a^{2} \sigma\right)=$ $\varphi(a \sigma, \sigma)=\varphi(\sigma, a \sigma)^{-1}$. Hence $\varphi(\sigma, \tau)^{2}=1$ if $\sigma, \tau \in S_{i}$.

Therefore $\left\{w \in Q\left(C^{0}\right)\left|w^{2}=1\right| \subset \bigcup_{1 \leqslant i \leqslant n} \varphi\left(S_{i} \times S_{i}\right)\right.$, and there is equality if $a^{2}=1$ for all $a \in A_{0}$

Also $\left|P\left(S_{1} \times S_{i}\right)\right|=\left|\left(S_{i} \times S_{i}\right) / A_{0}\right| \leqslant\left|S_{i}\right|$ since A_{0} acts transitively on S_{i}, and there is equality if A_{0} is abelian. This proves the proposition.

Proposition 2.12. Let u_{1}, \ldots, u_{m} be a complete sot of representatives for the unipotent G°-classes contained in $u G^{\circ}$. Then $\sum_{1 \leqslant i \leqslant m}\left|S\left(u_{i}\right)\right| \geqslant\left|\left\{w \in W^{u} \mid w^{2}=1\right\}\right|$. There is equality if the following condition is realized. $\Delta\left(G^{0}\right)$ has no components of type $E_{6}, E_{7}, E_{8}, F_{4}$ or G_{2} and there is no power of u acting by an automorphism of order 3 on a component of type D_{4}.
Proof. $\left(Q\left(C^{\circ}\left(u_{i}\right)\right)\right)_{1 \leqslant i \leqslant m}$ is a partition of W^{u}. The inequality follows then from 2.11. For the equality, notice that if the given condition is verified, then $Q\left(C^{0}\left(u_{1}\right)\right) \neq \varnothing$ for all i and that $A_{0}\left(u_{i}\right)$ is a product of cyclic groups of order 2 for all 1. We can therefore use the equality in 2.11.

Remark 2.13. It is known that $\left|\left\{W \in W^{u} \mid w^{2}=1\right\}\right|$ is the sum of the degrees of the irreducible complex characters of W^{u}. If G is connected and the characteristic is good (in the sense of [20, p. 106]), 2.11 and 2.12 are consequences of the results
of Springer on the representations of W in the cohomology of $G_{u}[17]$. It follows from Springer's results that in this situation there is equality in 2.11 if A_{0} is commutative (however no example is known in which A_{0} is abelian but fails to be a product of cyclic groups of order 2).
2.14. There are aimilar results for the application $\bar{\varphi}: S \times S \longrightarrow$ $\bar{W}(0.5$ and 0.8$)$. Assume that $u G^{0}$ is central in G / G°. Then $\bar{\varphi}(\sigma, \tau) \in\left\{\bar{w} \mid w \in W^{u}\right\}$ and $i \neq \bar{\varphi}(\sigma, \tau)=\bar{w}$, then $\bar{\varphi}(\tau, \sigma)=\overline{w^{-T}}$. Assume moreover that $Q(C) \neq \varnothing$. Then $\bar{\varphi}(S \times S)=\bar{Q}(C)=\{\bar{w} \mid w \in Q(C)\}$ and $\bar{\phi}(\sigma, \tau)=\bar{\varphi}\left(\sigma^{\prime}, \tau^{\prime}\right)$ if and only $\left(\sigma^{\prime}, \tau^{\prime}\right)=(a \sigma, a \tau)$ for some $a \in A$. If $\bar{W}=\overline{W^{-T}} \in \bar{Q}(C)$, then $\bar{W}=\bar{\phi}(\sigma, a \sigma)$ for some $\sigma \in S$ and $a \in \mathbb{A}$. If A acts on S via a quotient isomorphic to a product of groups of order 2 , then $\bar{\varphi}(\sigma, a \sigma)=\bar{W} \Rightarrow \bar{W}=\overline{W^{-1}}$. It follows that $\left.|\mathrm{S}|\right\rangle$ $\left|\left\{\bar{W} \in \bar{Q}(C) \mid \bar{W}=\overline{W^{-9}}\right\}\right|$ and there is equality if A acts on S via a quotient isomorphic to a product of groups of order 2. The proofs are essentially the same as the proofs for the corresponding statements for φ.

Proposition 2.15. Suppose that $Q\left(C^{\circ}\right) \neq \varnothing$. Let C_{i} be a component of $C^{\circ} \cap N$ and let S_{i} be the corresponding A_{0}-orbit in S. Then $Q\left(C_{i}\right)=\varphi\left(S_{i} \times S\right)=\left\{w \in w^{u} \mid \bar{C}_{i}=\overline{B_{V}}\right\}$.

Proof. Suppose that $w=\varphi(\sigma, \tau)$ with $\sigma \in S_{i}$ and $\tau \in S$. Then $X^{\prime}=$ $\left\{B_{1} \subset X_{\sigma} \mid \exists B_{2} \in \mathcal{B}_{u}\right.$ such that $\left.\left(B_{1}, B_{2}\right) \in 0(w)\right\} \supset \operatorname{pr}_{1}\left(X_{\sigma} \times X_{\tau} \cap O(w)\right)$ contains a dense open subset of X_{σ}. This shows that $C_{i}=$ $\left\{v \in C_{i} \mid \exists B^{\prime} \in \mathbb{B}_{v}\right.$ such that $\left.\left(B, B^{\prime}\right) \in O(w)\right\}$ contains a dense open subset of C_{i}. If $v \in C_{i}$ and $B^{\prime} \in \mathcal{B}_{v}$ are such that (B, B^{\prime}) $\in O(w)$, then for some $b \in B,{ }^{b} B^{\prime}={ }^{w} B$ and therefore $b^{-1} v b \in V_{w}$.

Hence $\overline{C_{i}} c{ }^{\overline{B_{V_{w}}}}$. But $C^{0} \cap V_{w}$ is dense in V_{w} and therefore $\overline{B_{V_{w}}} c$ $\overline{C^{0} \cap N}$. Therefore $\bar{C}_{i}=\bar{B}_{V_{w}}$ since ${ }^{B_{V}} V_{w}$ is irreducible and C_{i} is an irreducible component of $C^{\circ} \cap N$.

Hence $\varphi\left(S_{i} \times S\right) \subset\left\{w \in W^{u} \mid \bar{C}_{i}=\overline{B_{V_{w}}}\right\}$. Every $w \in W^{u}$ is of the form $\varphi(\sigma, \tau)$ for some $v \in V$ and $\sigma, \tau \in S(v)$ (with $v \in C_{w}^{0}$) and $\overline{B_{V}}$ is an irreducible component of $C_{w}^{0} \cap N$. It is then easy to check the remaining inclusions of the proposition.

Corollary 2.16. If $Q\left(C^{\circ}\right)$ is non-empty, then so is each $Q\left(C_{i}\right)$ and $Q\left(C^{\circ}\right)$ is the disjoint union of $Q\left(C_{1}\right), \ldots, Q\left(C_{n}\right)$. Each $Q\left(C_{i}\right)$ contains an involution.

Proof. This follows from 2.15. For the involution in $Q\left(C_{i}\right)$, take $Q(\sigma, \sigma)$, where $\sigma \in S_{i}$.

Proposition 2.17. dim $\mathbb{B}_{u} \leqslant \min \left\{\ell_{u}(w) \mid w \in Q(S \times S)\right\}$.
Proof. We prove first that for every $B^{\prime} \in \mathcal{B}_{u}$ and $w \in W^{u}$, $\operatorname{dim}\left(\left\{B^{\prime}\right\} \times \mathcal{B}_{u} \cap O(w)\right) \leqslant l_{u}(w)$ (if u acts trivially on w this is clear since $\operatorname{dim} O(w)=?\left(\frac{+d i m q 3}{w}\right)$. We prove this by induction on $\ell_{u}(w)$. The result is obvious if $P_{u}(w)=0$. Assume that it is true for w and that $s \in T T$ is such that $l_{u}(w \widetilde{s})=l_{u}(w)+1$. There is a natural morphism $\left(\{B\} \times \mathcal{B}_{u}\right) \cap O(w \widetilde{s}) \longrightarrow$ $\left(\{B\} \times \mathscr{B}_{u}\right) \cap O(w)$ induced by the morphism $O(w \tilde{s}) \longrightarrow O(w)$ of 0.7 and its fibres have dimension $\leqslant 1$ by 1.3. Therefore $\operatorname{dim}\left(\left\{B^{\prime}\right\} \times \mathcal{B}_{u} \cap O(w \widetilde{s})\right) \leqslant \operatorname{dim}\left(\{B\} \times \mathcal{B}_{u} \cap O(w)\right)+1 \leqslant$ $e_{u}(w)+1=P_{u}(w \widetilde{s})$.

Consider now an element $w \in \varphi(S \times S)$ such that $P_{u}(w)=$ $\min \left\{\ell_{u}\left(w^{\prime}\right) \mid w^{\prime} \in \varphi(S \times S)\right\}$. There exists $B^{\prime} \in \mathscr{B}_{u}$ and $\sigma \in S$ such that $w=\varphi\left(\left\{B^{\prime}\right\}, X_{\sigma}\right)$. Then $\operatorname{dim} \mathcal{B}_{u}=\operatorname{dim} X_{\sigma}=$ $\operatorname{dim}\left(\{B\} \times \mathbb{S}_{u} \cap O(w)\right) \leqslant \ell_{u}(w)=\min \left\{\ell_{u}\left(w^{\prime}\right) \mid w^{\prime} \in \varphi(S \times S)\right\}$.

Proposition 2.18. Let w_{o} be the element of maximal length in W and let $\ell=\ell_{u}\left(w_{0}\right)$. Then the following conditions are equivalent.
a) $w_{0} \in \Phi(S \times S)$.
b) $\varphi(S \times S)=\left\{w_{0}\right\}$.
c) $w_{0} \in Q\left(C^{0}\right)$.
d) $\operatorname{dim} \mathcal{B}_{u}=l$.
e) Some $B^{\prime} \in \mathcal{B}_{u}$ contains a maximal torus normalized by u.
f) Every $B^{\prime} \in \mathcal{B}_{u}$ contains a maximal torus normalized by u.

Proof. (b) $\Longrightarrow(a)$ and $(f) \Longrightarrow(e)$ are obvious. $(c) \Longrightarrow(E)$ is a consequence of 2.9. $(d) \Longrightarrow(b)$ is a consequence of 2.17 . $(a) \Longrightarrow(e)$ is clear since $\left(B_{1}, B_{2}\right) \in O\left(w_{0}\right)$ if and only if $B_{1} \cap B_{2}$ is a maximal torus.

We suppose now that (e) holds and we prove that (b), (c), (d) and (f) hold also. We may assume that u normalizes B and T. If $\varepsilon \in G^{\circ}$ is such that $u g$ normalizes B and T, then $g \in T$. If moreover $u g$ is unipotent, then u and $u g$ are T-conjugate (by I.1.3 applied to the group generated by T and u). This shows that the unipotent elements of $u G G^{0}$ satisfying (e) form a single G^{0}-class. As $(c) \Longrightarrow(e)$, this class must be $C_{w_{0}}$. In particular $(e) \Longrightarrow(c)$. This shows also that $\mathcal{B}_{V_{W_{O}}}$ is the $B-$
orbit of u. By 1.15 this orbit is closed. By $2.15{ }^{B_{V_{w_{0}}}}$ is therefore an irreducible component of $C^{0} \cap N . Z_{o}(u)$ acts transitively on the union of the corresponding components of $\beta_{\tilde{u}}$. Since \mathcal{S}_{u} is connected, this implies that \mathcal{B}_{u} is irreducible. In particular $|\varphi(S \times S)|=1$ and therefore $\varphi(S \times S)$ $=\left\{w_{0}\right\}$. So $(e) \Longrightarrow(b)$. Since $z_{0}(u)$ acts transitively on \mathscr{F}_{u}, we have also $(e) \Longrightarrow(f)$. It is easy to check that for every $s \in T$, ${ }^{\Omega_{3}} u$ contains a line of type s through B (as in the proof of 1.3 it is sufficient to check that when G is connected of type A_{1} and when $G=\operatorname{Aut}\left(\mathrm{SL}_{3}\right), u \in G^{0}$ and $p=2$). Since $Z_{o}(u)$ acts transitively on $\mathcal{B}_{u}, \mathcal{B}_{u}$ contains a line of type s through every $B^{\prime} \in \mathcal{F}^{3} u$ (any $s \in T$). The demonstration of 2.17 gives then $\operatorname{dim}\left(\{B\} \times \mathcal{S}_{u} \cap O(w)\right)=P_{u}(w)$ for every $w \in$ w^{u}. Taking $w=w_{o}$, we get dim $\mathcal{B}_{u}=l$. So $(e) \Longrightarrow$ (d). This proves the proposition.

Corollary 2.19. Every unipotent component of G contains a unique unipotent quasisemisimple G^{0}-conjugacy class which is characterized by any one of the equivalent conditions of 2.18. If u is an element in such a class, then $H=Z_{G}(u)$ is reductive, \mathcal{B}_{u} is irreducible, H° acts transitively on \mathcal{B}_{u} and $B^{\prime} \longrightarrow B^{\prime} \cap H^{\circ}$ defines an H-equivariant isomorphism $\mathbb{B}_{u} \longrightarrow \mathcal{B}^{(H)}$.

Proof. This follows from 1.16 and 2.18.

Lemma 2.20. Every unipotent G^{0}-class contains the
corresponding quasisemisimple unipotent G°-class in its closure.

Proof. This follows from the proof of 1.15 (d).

Proposition 2.21. Let g be any element of G and let $g=s u$ be its Jordan decomposition. Then the following conditions are equivalent.
a) g normalizes a Borel subgroup of G and a maximal torus of this subgroup (i.e. g is quasisemisimple).
b) Every Borel subgroup normalized by g contains a maximal torus normalized by g.
c) u is quasisemisimple in $Z(s)$.
d) $C(g)$ is closed in G.

Proof. (b) \Longrightarrow (a) is clear. (a) \Longrightarrow (d) has been proved in 1.15. $(d) \Longrightarrow(c)$ follows from 2.20.and 1.16. So we need only to prove that $(c) \Longrightarrow(b)$. Suppose that u is quasisemisimple in $Z(s)$. If $B^{\prime} \in \mathcal{B}_{g}=\mathcal{B}_{s} \cap \mathcal{B}_{u}$, then $B^{\prime} \cap Z(s)^{\circ}$ is a Borel subgroup of $Z(s)$ normalized by u. By 2.18 $B^{\prime} \cap Z(s)^{\circ}$ contains a maximal torus of $Z(s)$ normalized by u. By 1.15 this torus is contained in a unique maximal torus T ' of G and by unicity T ' is normalized by s and u, hence by g. This proves the proposition.
3. Some special classes and some special components.

In this paragraph G is supposed to be reductive, $x \in G$ is a unipotent quasisemisimple element normalizing B and T and $T_{0}=\{t \in T \mid x t$ is unipotent $\}$.
3.1. Let $P \supset B$ be an x-stable parabolic subgroup of $G^{0} . \varphi^{0}$ is characterized by $I=\left\{\alpha \in \Pi \mid X_{-\alpha} \subset P\right\}$ and I is x-stable. $L=$ $\left\langle T, X_{ \pm \alpha} \mid \alpha \in I\right\rangle$ is a Levi subgroup of P and its Weyl group W_{P} may be identified with the subgroup of W generated by $\left\{s_{\alpha} \mid\right.$ $\alpha \in I\}$. Let w_{P} be the element of maximal length in $W_{P} \cdot w_{P} \in W^{x}$ and from 2.4 we get a unipotent G^{0}-class $C_{P}^{0}=C_{w_{P}}^{0}$ contained in $X G^{0}$. An element $u \in C_{P}^{0}$ will be called P-regular (or P^{0} _ regular) and C_{P}^{0} is the P-regular (or \mathscr{P}^{0}-regular) G^{0}-class. We get in the same way a unipotent class C_{P} meeting $x^{\circ}{ }^{0}, u \in$ C_{P} will be called $\varphi_{\text {-regular }}$ and C_{P} is the $Q_{\text {-regular }}$ class (meeting xG°).

Notice that $w_{P} \in Q\left(C_{P}^{0}\right)$ and therefore $Q\left(C_{P}^{0}\right) \neq \varnothing$. Notice also that $V_{P}=V_{w_{P}}$ (defined as in 2.4) consists of all elements of the form xtu with $t \in T_{0}$ and $u \in U_{P}$.
3.2. Let $X=\left\{v \in x P \mid v U_{P}\right.$ is unipotent quasisemisimple in
 $\ell=\ell_{x}\left(w_{P}\right) \cdot X$ is closed in G by 1.15 and $X \cap x B \cap x^{\left(w_{P}\right)_{B}=} V_{P}$. Therefore $X \cap x B={ }^{B} V_{P}$ and ${ }^{B} V_{P}$ is closed in G. This shows that $C_{P}^{0} n^{B} V_{P}$ is an irreducible component of $C_{P}^{0} \cap N$.
x is unipotent quasisemisimple in $\langle L, x\rangle$ and by 2.18
$\operatorname{dim} Q_{B}(L)_{x}=\ell$ and $L \cap B$ acts transitively on the intersection of N with the L-class of x. By 2.7 this intersection has dimension $\operatorname{dim}(B \cap L)-\operatorname{rank}_{x}(L)-\ell=\operatorname{dim}(B \cap L)-\operatorname{dim} T+$ $\operatorname{dim} T_{0}-\ell$. It follows easily that $\operatorname{dim} B_{V_{P}} \geqslant \operatorname{dim} U+\operatorname{dim} T_{0}+$ ℓ. We have therefore $\operatorname{dim} G_{u}+\operatorname{dim}\left(C_{P}^{0} \cap N\right) \geqslant \ell+(\operatorname{dim} U+$ $\left.\left.\operatorname{dim} T_{0}\right)-\ell\right)=\operatorname{dim} B-\operatorname{rank}_{u}(G)$ if $u \in C_{P}^{0}$. By 2.7 we must have equality and therefore $\operatorname{dim} G_{u}=P$ and $d i m{ }^{B_{V}}{ }_{P}=d i m U+$ $\operatorname{dim} T_{0}-P$.

If $u \in C_{P}^{0} \cap X, B_{u} \cap G(P)$ is isomorphic to $G_{B}(L)_{x}$ and has dimension $l=\operatorname{dim} Q_{u}$. It is therefore an irreducible component of \mathscr{B}_{u} and it corresponds to the component $C_{P}^{o} \cap{ }^{\circ} V_{P}$ of $C_{P}^{0} \cap N$. It follows then from 1.9 that there are only finitely many $P^{\prime} \in \mathcal{P}^{0}$ such that $\operatorname{dim}\left(\mathcal{S B}_{u} \cap \mathscr{B}\left(P^{\prime}\right)\right)=\ell$ and that all such parabolic subgroups are conjugate under $Z_{o}(u)$. Also $\mathscr{B}_{u} \cap \mathscr{B}(P) \subset\left\{p_{B} \mid p \in P\right\}$ and therefore $C_{P}^{o} \cap^{B_{V_{P}}} \subset\left\{p^{-1} u p \mid\right.$ $p \in P\}$. It follows that $X \cap C_{P}^{o}$ is a single P-orbit. Since G / P is complete, $G^{\circ} X$ is closed in $X_{G}{ }^{\circ}$. We have proved $:$

Proposition 3.3. Let $X=\left\{v \in x P \mid v U_{P}\right.$ is unipotent quasisemisimple in $\left.N_{G}(P) / U_{P}\right\}$. Then $G^{\circ} X$ is closed in $X G^{0}, C_{P}^{0} \cap X$ is a single P-orbit and is dense in X. If $u \in C_{P}^{\circ} \cap X$, then $\mathbb{B}_{u} \cap$ $G(P)$ is isomorphic to $G(L)_{x}$ and is a component of Q_{u}. $\operatorname{dim} \mathcal{B}_{u}=\ell=\ell_{x}\left(w_{P}\right)$. There are only finitely many $P^{\prime} \in 母^{0}$ such that $\operatorname{dim}\left(\mathcal{S}_{u} \cap G\left(P^{\prime}\right)\right)=P$, and all such parabolic subgroups are conjugate to P under $z_{o}(u)$.

Example 3.4. If $P=G^{\circ}$, the P-regular elements are the
unipotent quasisemisimple ones.

Definition 3.5. An element $g \in G$ is reqular if $\operatorname{dim} Z_{G}(g)=$ $\operatorname{rank}_{g}(G)$.

Remark 3.6. If g is any element of $G, 2.7$ shows that $\operatorname{dim} Z(g) \geqslant \operatorname{rank}_{g}(G)$.

Proposition 3.7. An element $g \in G$ is regular if and only if $\left|\beta_{g}\right|<\infty$.

Proof. If g is regular, then 2.7 shows that $\operatorname{dim} \mathbb{B}_{g}=0$, i.e. Q_{g} is a finite set. Suppose conversely that dim $\Phi_{g}=0$. Let $g=s u$ be the Jordan decomposition of g. Then $\operatorname{dim} \mathcal{B}^{(Z(s))_{u}}=$ $0, Z_{G}(g)=Z_{Z(B)}(u)$ and $\operatorname{rank}_{g}(G)=\operatorname{rank}_{u}(Z(s))$ (the last statement has been proved in the proof of 2.7). It is therefore sufficient to prove the following : if $u \in X_{G}{ }^{0}$ is unipotent and $\operatorname{dim} G_{u}=0$, then $\operatorname{dim} Z(u)=\operatorname{rank}_{u}(G)$.

The unipotent elements in $x G^{0}$ form a closed irreducible subvariety of codimension $\operatorname{rank}_{u}(G)$ and the number of unipotent $G^{0}-\mathrm{classes}$ is finite. It follows that there is exaotly one unipotent G^{0}-class in $x G^{0}$ which is dense in this subvariety and if u_{0} is an element in this class then dim $Z\left(u_{0}\right)=\operatorname{rank}_{u_{0}}(G)$. Therefore u_{0} is regular (in particular this shows that every unipotent component of G contains exactly one unipotent regular G^{0}-class). It is aufficient to prove that u and u_{0} are conjugate. We may assume that u and u_{0} normalize B and that G° is adjoint (by I.1.6). We
consider two cases.
a) If x acts transitively on T, there are two unipotent classes in $x G^{0}$, the regular one (with $\left|\mathscr{F}_{\mathrm{v}}\right|=1$ if v is regular) and the quasisemisimple one (with $\mathbb{G}_{v} \cong \mathbb{P}^{1}$ if v is quasisemisimple). This follows from I.1.6, 1.4 and 1.5. In this case u and u_{0} are certainly conjugate. Notice that u and u_{0} are even B-conjugate since $Z(u)$ acts transitively on $\mathscr{A}_{u}=$ $\{B]$. It is also easy to check that $\operatorname{rank}_{x}(G)=1$ and $\operatorname{dim} Z_{U}(u)=1$.
b) In the general case we can assume that $u_{0} u_{0} \in x U$. For each $\alpha \in \phi$, let $U_{\alpha}=\left\langle x^{i} X_{\alpha} x^{-1} \mid i \in \mathbb{Z}\right\rangle$. Let $R=\left\{\lambda \in \phi^{+} \mid X_{\lambda} \notin U_{\alpha}\right.$ for all $\alpha \in \Pi\}$ and let $U^{\prime}=\prod_{\lambda \in R} X_{\lambda} \cdot$ Let $\alpha_{1}, \ldots, \alpha_{n}$ be a system of representatives for the x-orbits in TT. Notice that $n=$ $\operatorname{rank}_{\mathrm{x}}(G)$. u can be written uniquely as $u=x u_{1} \ldots u_{n} v$ with $u_{i} \in U_{\alpha_{i}}(1 \leqslant i \leqslant n)$ and $v \in U^{\prime}$. Since there is no line of type α_{i} through B contained in $\mathbb{B}_{u^{\prime}}, x_{i}$ is regular in $\left\langle x, U_{-\alpha_{i}}, U_{\alpha_{i}}\right\rangle$ (in particular by case (a)). $x x_{\alpha_{1}}$ (1) is also regular in this group and by case (a) $x u_{i}$ is conjugate to $x x_{\alpha_{i}}$ (I) under $B \cap\left\langle U_{-\alpha_{i}}, U_{\alpha_{i}}\right\rangle$. It is then clear that u is B-conjugate to an element of the form $x x_{\alpha_{1}}(1) \ldots x_{\alpha_{n}}(1) v^{\prime}$ with $v^{\prime} \in U^{\prime}$. We may as well assume that $u=x x_{\alpha_{1}}(1) \ldots x_{\alpha_{n}}(1) v^{\prime}$. Similarly we may assume that $u_{0}=x x_{\alpha_{1}}(1) \ldots x_{\alpha_{n}}(1) v_{0}^{\prime}$ with $v_{0}^{\prime} \in U^{\prime}$. Let $z_{i}=$ $Z_{U_{\alpha_{1}}}\left(x_{\alpha_{i}}(1)\right)$. As noted in case (a) dim $Z_{i}=1$. Hence $U^{\prime \prime}=$ $Z_{1} \ldots Z_{n} U^{\prime}$ is a subgroup of U of dimension dim $U^{\prime}+n$. It is easily checked that the U'M-orbit of u_{0} is contained in $x x_{\alpha_{1}}(1) \ldots x_{\alpha_{n}}(1) U^{\prime}$. Since u_{0} is regular and rank $_{x}(G)=n$ this
orbit has dimension $\geqslant d i m$ U and it is closed since $U^{\prime \prime}$ is unipotent. It is therefore exactly $x x_{\alpha_{1}}(1) \ldots x_{\alpha_{n}}(I) U^{\prime} \neq u$. This proves that u and u_{0} are conjugate.

Corollary 3.8. A unipotent element $u \in G$ is regular if and only if $\left|\mathscr{A}_{u}\right|=1$. Every unipotent element is contained in the closure of a unipotent regular class. Every unipotent component of G contains exactly one unipotent regular G^{0}-class.

Proof. This follows from 1.7, 3.7 and the proof of 3.7 .

Corollary 3.9. Let $g=s u$ be the Jordan decomposition of an element $g \in G . g$ is regular if and only if u is regular in $Z(s)$. Every conjugacy class in G is contained in the closure of a regular class of G.

Proof. This follows from 3.8 and the proof of 3.7.

Definition 3.10. An element $g \in G$ is subregular if $\mathrm{dim} Z(g)=$ $\operatorname{rank}_{g}(G)+2$.

Remark 3.11. 3.7 and 2.7 show that if g is not regular, then $\operatorname{dim} Z(g) \geqslant \operatorname{rank}_{g}(G)+2$.

Lemma 3.12. Suppose that T consists of exactly two x-orbits $O(\alpha)$ and $O(\beta)$. Suppose also the $u \in X G^{0}$ is unipotent and that $L \subset \beta_{u}$ is a line of type α. Then the following hold :
a) If \tilde{s}_{α} and $\tilde{\sigma}_{\beta}$ do not commute, then L meets a line of type β
contained in Φ_{u}.
b) If \tilde{s}_{α} ans \tilde{S}_{β} commute, then one of the following holds: b_{1}) there is a line of type β contained in $C_{B_{u}}$ through every point of L.
b_{2}) L does not meet any line of type β contained in B_{u}.
c) Moreover, in the following cases the unipotent classes contained in $x G^{0}$ and the corresponding Dynkin varieties are as follows (the action of x on $\Delta\left(G^{\circ}\right)$ is indicated by arrows if it is not trivial).

$\Delta\left(G^{0}\right)$	unipotent classes	dim B_{u}	$\|S(u)\|$	picture of \mathcal{S}
$\begin{array}{ll} \left.c_{1}\right) \\ \stackrel{\circ}{\alpha} & \circ \\ \dot{\alpha} & \beta \end{array}$		0 1 1 2	1 1 1 1	
$\begin{aligned} & \left.c_{2}\right) \\ & \stackrel{0}{\alpha} \quad \beta \end{aligned}$	$\left.\begin{array}{l} C_{0} \\ C_{1} \\ C_{2} \end{array}\right\} \begin{aligned} & \text { regular } \\ & \text { subregular } \\ & \text { quasisemi- } \\ & \text { simple } \end{aligned}$	0 1 3	1 2 1	
$\left.c_{3}\right)$ $\alpha \quad \beta \quad(p \neq 2)$	$\left.\begin{array}{ll}C_{0} \\ C_{1} \\ C_{2} \\ C_{3}\end{array}\right\} \begin{aligned} & \text { regular } \\ & \text { subregular } \\ & \text { simple }\end{aligned}$		1 3 1 1	

- 68 -

A picture like

means that ${ }_{S_{u}}$ consists of one line of type α and of one line of type β through each point of this line of type α. In the second column the node representing C_{i} is joined to the node representing $C_{j}(i>j)$
if $\overline{\mathrm{C}}_{i} \subset \overline{\mathrm{C}}_{j}$ and $\overline{\mathrm{C}}_{i} \subset \overline{\mathrm{C}}_{k} \subset \overline{\mathrm{C}}_{j} \Rightarrow k=1$ or $k=j$.
Proof. The proof is similar to the demonstration of 1.2 .5 and of the similar statements in $[20, p, 140-145]$ and is omitted.
3.13. Let $\mathscr{P}_{0(\alpha)}^{0}$ be the G^{0}-class of parabolic subgroups of G^{0} corresponding to the x-orbit $o(\alpha) \subset \Pi(\alpha \in \Pi)$. Let $X(\alpha)=$ $\left\{u \in X G^{0} \mid\right.$ for some $P \in \mathscr{P}_{o(\alpha)}^{0}, u_{P}=P$ and $u U_{P}$ is quasisemisimple unipotent in $\left.N_{G}(P) / U_{P}\right\}$. $X(\alpha)$ is the variety of all unipotent $u \in X G^{0}$ such that \mathcal{B}_{u} contains a line of type α. By $3.3 X(\alpha)$ is irreducible and closed in $X G^{0}$ and there is a dense G^{0} class C_{α}^{0} in $X(\alpha)$. By $1.3 X(\alpha) \cap N$ has codimension 1 in the variety of all unipotent elements of $x B$. If $u \in C_{\alpha}^{0}, 3.3$ shows that $\operatorname{dim} A_{u}=1$ and $\operatorname{dim} Z(u)=\operatorname{rank}_{u}(G)+2$ (by 2.7). Hence u is subregular.

If $v \in X G^{\circ}$ is unipotent but not regular, 1.7 shows that β_{v} is a union of lines of various types. Hence the variety of all non-regular unipotent elements in $x G^{0}$ is $\bigcup_{\alpha \in \Pi} X(\alpha)$ and the variety of all subregular unipotent elements of $x G^{0}$ is dense in this variety.
3.12 shows that if \tilde{S}_{α} and $\hat{\tilde{s}}_{\beta}$ do not commute, then $X(\alpha)=$ $X(\beta)$ and in particular $C_{\alpha}^{0}=C_{\beta}^{0}$, and if $o(\alpha)$ does not meet the component of $\Delta\left(G^{0}\right)$ containing β, then $X(\alpha) \neq X(\beta)$. We get therefore :

Proposition 3.14. There is one subregular unipotent G°-class

In $X G^{0}$ for each x-orbit in the set of connected components of $\Delta\left(G^{\circ}\right)$. The subregular unipotent elements are dense among the non-regular unipotent elements.
3.15. If dim $9_{u}=1$ (u unipotent), 3.12 used repeatedly gives a description of \mathcal{B}_{u}. For example, if G° is of type E_{6} and u acts as indicated, we get the following pattern of lines :

In this case 1.3 gives an easy method to compute φ : $S(u) \times S(u) \longrightarrow W^{u}$. We fust need to take the shortest path from one line to the other. For example, if σ, τ are as shown in the picture, $\varphi(\sigma, \tau)=s_{3} \widetilde{s}_{2}{ }_{3} s_{6}\left(s_{i}=s_{\alpha_{i}}\right)$.

Proposition 3.16. An element $g \in G$ 1s subregular if and only if $\operatorname{dim} G_{G}=1$.

Proof. By 3.7 and 2.7 dim $Q_{g}=1$ if g is subregular. As in the proof of 3.7 we need only to prove the converse when g is unipotent. If G is connected, this is proved in [20]. If G° is of type A_{n} or D_{n} and g acts by an automorphism of order 2 on $\Delta\left(G^{\circ}\right)$, then $\mathrm{dim} \mathcal{B}_{g}$ can be computed (5.19) and it is clear that $d i m \omega_{g}=1$ defines a unique unipotent class. If G^{0} is of type D_{4} and g acts by an automorphism of order 3 on $\Delta\left(G^{\circ}\right)$, the proof of 1.2 .4 shows that g is subregular if
dim $G_{g}=1$. It follows then easily that it is sufficient to consider the following situation. $p=2, G^{\circ}$ is of type E_{6}, $\left|G / G^{0}\right|=2, u \in G \backslash G^{0}$ is unipotent and acts on $\Delta\left(G^{0}\right)$ by an automorphism of order $2, \mathrm{dim} \mathcal{B}_{u}=1$ and we have to prove that u is subregular. We use the same notations as in 3.15.

Let $H=\left\langle x, T, X_{ \pm \alpha_{i}} \mid I \leqslant i \leqslant 5\right\rangle . H^{0}$ is of type A_{5}. We may assume that $u \in x U$ and that $B \in \mathbb{B}_{u}$ is the intersection of a line of type α_{3} and a line of type α_{6} contained in \mathcal{B}_{u}. We may write $u=x u^{\prime} u^{\prime \prime}$ with $u^{\prime} \in U \cap H$ and $u^{\prime \prime} \in U_{P}$ where P is the parabolic subgroup generated by B and H. It is easily checked that dim $\mathcal{S H}^{(H)^{\prime}}{ }^{\prime}=1$ and therefore $x u^{\prime}$ is subregular in $H . B \cap H$ $\left.\in \mathscr{B}^{(H)}\right)_{x u}$, is on a line of type α_{3} contained in $\mathcal{B (H)}$ xu, but not on a line of type α_{2}.

Let now $u_{0} \in X U$ be a subregular element of G such that $B \in$ ${ }^{Q_{u_{0}}}$ is the intersection of a line of type α_{3} and a line of type α_{6} contained in $\mathcal{B}_{u_{0}}$. We have $u_{0}=x u_{0}^{\prime} u_{0}^{\prime \prime}$ with $u_{0}^{\prime} \in U \cap H$ and $u_{0}^{\prime \prime} \in U_{P^{\prime}}$ xuu_{0}^{\prime} is subregular in H and $B \cap H \in G(H)_{x u_{0}^{\prime}}$ is on a line of type α_{3} contained in $G(H)$ xúd but not on a line of type α_{2}. Direct computations show that $x u^{\prime}$ and $x u_{0}^{\prime}$ are ($B \cap H$)-conjugate. So we may assume that $u^{\prime}=u_{0}^{\prime}$. $u^{\prime \prime}$ and $u_{0}^{\prime \prime}$ can be expressed as $u^{\prime \prime}=\prod_{\lambda \in \phi^{\prime}} x_{\lambda}\left(c_{\lambda}\right)$ and $u_{0}^{\prime \prime}=$ $\prod_{\lambda \in \phi^{*}} x_{\lambda}\left(d_{\lambda}\right)$. It is clear that $c_{\alpha_{6}}=d_{\alpha_{6}}=0, c_{\alpha_{3}+\alpha_{6}} \neq 0$, $d_{\alpha_{3}+\alpha_{6}} \neq 0$. Conjugating by suitable elements of T we can arrange to have $c_{\alpha_{3}+\alpha_{6}}=d_{\alpha_{3}+\alpha_{6}}=1$ (with $u^{\prime}=u_{0}^{\prime}$).

Let $R=\left\{\lambda \in \phi^{+} \mid X_{\lambda} \subset U_{P}\right.$ and $\left.\lambda \neq \alpha_{6}, \lambda \neq \alpha_{3}+\alpha_{6}\right\}$ and let $U^{\prime}=$
$\prod_{\lambda \in R} X_{\lambda^{\cdot}} \operatorname{dim} U^{\prime}=19$.
Direct computations show that dim $Z_{H \cap U}\left(x u^{\prime}\right)=4$. Let $U^{\prime \prime}=Z_{H} \cap U^{\left(x u^{\prime}\right)} U_{P^{\prime}}$. This is a subgroup of U and $\operatorname{dim} U^{\prime \prime}=25$. It is easily checked that the U''-orbit of u_{0} is contained in $x u^{\prime} x_{\alpha_{3}+\tilde{u}_{6}}(1) U^{\prime}$ and has dimension $\geqslant 19$ since dim $z_{\tilde{G}}\left(u_{0}\right)=$ 6. Since $U^{\prime \prime}$ is unipotent, this orbit is closed and hence is exactly $x u^{\prime} x_{k_{3}+\alpha_{0}}(l) U^{\prime} \nexists x u^{\prime} u^{\prime \prime}=u$. Therefore u and u_{0} are conjugate and u is subregular.

Remark 3.17. The same method works for other groups. For example if G is connected adjoint of type E_{8} (with the fundamental roots labelled as in the picture) we take $H=$ $\alpha_{6} \alpha_{2} \int_{\alpha_{B}}^{\alpha_{3}} \alpha_{0} \alpha_{0} \alpha_{0} \alpha_{0} \alpha_{3}$ $\left\langle I, X_{ \pm \alpha_{1}} \mid I \leqslant 1 \leqslant 7\right\rangle$ and P is the parabolic subgroup generated by B and H. If u is a unipotent element such that $\operatorname{dim} \mathcal{B}_{u}=1$, we may assume that B is the intersection of the line of type α_{3} and the line of type α_{8} in $\Im_{u^{\circ}} u=u^{\prime} u^{\prime \prime}$ with $u^{\prime} \in U \cap H$ and $u^{\prime \prime}=T_{\lambda \in \phi^{*}} x_{\lambda}\left(c_{\lambda}\right) \in U_{P^{*}}$ we have $c_{\alpha_{8}}=0$ and $c_{\alpha_{3}+\alpha_{8}} \neq 0$. Conjugating by a suitable element of T we can arrange $c_{\alpha_{3}+\alpha_{8}}=1$. u^{\prime} can be seen to be unipotent as in $3: 16$. We choose a unipotent subregular element u_{0} in the same way. $u_{0}=u_{0}^{\prime} u_{0}^{\prime \prime}$ with $u_{0}^{\prime} \in U \cap H$ and $u_{0}^{\prime \prime}=\prod_{\lambda \in \phi^{+}} x_{\lambda}\left(d_{\lambda}\right) \in U_{P}$ and we can arrange to have $u_{0}^{\prime}=u^{\prime}, d_{\alpha_{8}}=0$ and $d_{\alpha_{3}+\alpha_{8}}=1$. Let now $R=$ $\left\{\lambda \in \phi^{+} \mid X_{\lambda} \subset U_{P}\right.$ and $\left.\lambda \neq \alpha_{8}, \lambda \neq \alpha_{3}+\alpha_{8}\right\}$ and let U' $=\operatorname{TT}_{\lambda \in R} X_{\lambda}$. $\operatorname{dim} U^{\prime}=90$. Direct computations show that $\operatorname{dim} Z_{H \cap U^{\prime}}\left(u^{\prime}\right)=$
8. $U^{\prime \prime}=Z_{U \cap H}\left(u^{\prime}\right) U_{P}$ is a unipotent group of dimension 100. Since $\operatorname{dim} Z_{G}\left(u_{0}\right)=10$, we find that the $U^{\prime \prime}$-orbit of u_{0} is $u^{\prime} x_{\alpha_{3}+\alpha_{8}}(1) U^{\prime} \ni u$. This proves that u is subregular.
3.18. If $g \in G$ is neither regular nor subregular, then $\operatorname{dim} \mathbb{B}_{g} \geqslant 2$ and $\operatorname{dim} Z(g) \geqslant \operatorname{rank}_{g}(G)+4$. As in $[9]$ we shail say that g is sub-subregular if dim $Z(g)=\operatorname{rank}_{g}(G)+4$. If $g=s u$ is the Jordan decomposition of g, g is sub-subregular if and only if u is sub-subregular in $Z(s)$. If g is unipotent and $Q\left(C^{\circ}(g)\right) \neq \varnothing, g$ is sub-subregular if and only if $\operatorname{dim} \mathscr{B}_{g}=2$.
3.19. Assume now that $\Delta\left(G^{0}\right)$ is connected and that G^{0} is not of type A_{1} or A_{2}. Let $u \in x G^{0}$ be a unipotent element. If $\operatorname{dim} 9 s_{u} \geqslant 2$, then the following condition holds for some $\alpha, \beta \in$ T (α, β in distinct x-orbits).
(*) There is a line of type β in β_{u} such that through each of its points there is a line of type α contained in \mathcal{B}_{u}. If (*) holds and $\left(\tilde{s}_{\alpha} \tilde{s}_{\beta}\right)^{2}=1$, then u is in the closure of

 subregular. If $\gamma \in T$ is such that $\tilde{\mathbf{s}}_{\alpha} \tilde{s}_{\gamma}$ has order $\geqslant 3$ and $\tilde{\mathbf{s}}_{\beta} \tilde{\mathbf{s}}_{\gamma}$ has order 2 , then (*) holds with (α, β) replaced by (β, γ) (by 3.12). In particular the $P_{0}^{0}(\alpha) \cup O(\beta)^{\text {-regular class and }}$ the $\mathcal{P}_{O(\beta) \cup O(\gamma)}^{0}$-regular class coincide.

If (*) holds and $\tilde{s}_{\alpha} \tilde{s}_{\beta}$ has order 3 , then 3.3 and 3.12 show that (*) holds with α and β permuted, that $\operatorname{dim} B_{u} \geqslant 3$ and
that u is in the closure of the $\mathcal{P}_{0(\alpha) \cup o(\beta)^{0} \text {-regular class. }}^{0}$. If $\gamma \in T$ is such that $\tilde{\mathbf{s}}_{\alpha} \tilde{\mathbf{s}}_{\gamma}$ has order $\geqslant 3$ and $\widetilde{s}_{\beta} \widetilde{s}_{\gamma}$ has order 2 , then 3.12 implies that u is also in the closure of the $\mathcal{P}_{o(\beta) \cup o(\gamma)^{-r e g u l a r ~ c l a s s . ~}}$

If (*) holds and $\widetilde{\mathrm{a}}_{\mathrm{ct}} \tilde{\theta}_{\beta}$ has order > 4 and $T T=o(\alpha) \cup o(\beta)$, then 3.12 shows that there is one unipotent sub-subregular G^{0}-class in $X G^{0}$ if we are in case $\left(c_{3}\right),\left(c_{5}\right)$ or $\left(c_{6}\right)$ of 3.12 and there are two unipotent sub-subregular classes in case (c_{4}). The sub-subregular classes contain in their closure all unipotent elements of $x G^{0}$ which are neither regular nor subregular.

If (*) holds and $\tilde{\mathrm{s}}_{\alpha} \tilde{\beta}_{\beta}$ has order 4 and $\delta \in T$ is such that $\tilde{s}_{\alpha} \tilde{s}_{\gamma}$ has order 2 and $\tilde{S}_{\beta} \tilde{s}_{\gamma}$ has order 3 , then 3.12 shows that (*) holds for u with (α, β) replaced by (α, γ). In particular u is contained in the closure of the $\mathcal{C}_{0}^{0} 0(\alpha) \cup o(\gamma)^{-r e g u l a r}$ class.

These remarks show that in most cases a unipotent element which is neither regular nor subregular is contained in the closure of a unipotent sub-subregular G^{0}-class which is $Q^{\circ}{ }^{0}$ regular for some G^{0}-class of parabolic subgroups of G^{0} and that in many cases the Q_{1}^{0}-regular class and the \mathscr{S}_{2}^{0}-regular class in $X G^{0}$ coincide if they are sub-subreguler ($\mathcal{P}_{1}^{0}, Q_{2}^{0}$ G^{0}-classes of parabolic subgroups of G°).

Proposition 3.20. If $\Delta\left(G^{0}\right)$ has no components of type A_{2} the sub-subregular unipotent elements of G are dense in the
variety of all unipotent elements which are neither regular nor subregular. Moreover if $\Delta\left(G^{\circ}\right)$ is connected, then the sub-subregular classes are as follows (the action of x is indicated by arrows if it is not trivial).
a) In the following cases there is only one sub-subregular G^{0}-class in $X G^{0}:$

A_{3}

$\mathrm{G}_{2} \rightleftharpoons$
b) In the following cases there are exactly two subsubregular G^{0}-classes in $X{ }^{0}$:
A_{n}

$n \geqslant 4, p=2$
B_{n}
$\mathrm{n} \geqslant 2, \mathrm{p}=2$
C_{n}
D_{n}

$n \geq 3$
If G^{0} is of type $D_{n}(n \geqslant 5)$ and x acts trivially on $\Delta\left(G^{0}\right)$
both sub-subregular classes are P-regular for some parabolic
subgroup of G^{0}. If $p=2$ and G^{0} is of type B_{2} or A_{4} with a non-trivial action action of x, then none of the subsubregular classes of $x G^{\circ}$ is P-regular for some P. In the other cases one of the sub-subregular classes is P-regular for some P and the other is not.
c) If G^{0} is of type D_{4} and x acts trivially on $\Delta\left(G^{0}\right)$, there are three sub-subregular G^{0}-classes in $X G G^{0}$ anf they are all P-regular for some parabolic subgroup P of G°.

If G^{0} is of type A_{1} or A_{2} there are no sub-subregular classes in G.

Proof. (a) follows immediately from the discussion in 3.19. (b) and (c) can be checked from 3.19, 5.19, 6.2.

We still have to prove that every unipotent element which is neither regular nor subregular is contained in the closure of a sub-subregular unipotent class. From the discussion in 3.19 it is sufficient to prove this in the following cases : $A_{n} \xrightarrow{\sim} n>5, p=2$ $C_{n} \backsim-\cdots n \geqslant 3$.

Assume that we are in one of these cases. Let C_{1}^{0} be the sub-subregular G^{0}-class which is P-regular for some P and let C_{2}^{0} be the other sub-subregular class. Then if $C^{0} \neq C_{2}^{0}$ is a unipotent G°-class which is neither regular nor subregular 5.40 shows that $c^{\circ} \subset \bar{C}_{1}^{0}$. This proves the proposition.

4. Parabolic subgroups fixed by u.

In this paragraph G is reductive and $x \in G$ is a unipotent quasisemisimple element normalizing B and T.
4.1. Let $P \supset B$ be a parabolic subgroup of G normalized by x and let I be the corresponding subset of T. For every $g \in x^{0}$ $\mathscr{C}_{g}^{0}=\left\{P^{\prime} \in \mathscr{P}^{0} \mid \mathcal{S}_{P^{\prime}}=P^{\prime}\right\}$ is non-empty and $p: \mathscr{G}_{g} \longrightarrow \mathcal{P}_{g^{\prime}}^{0}$ $B^{\prime} \longmapsto\left(\right.$ unique $P^{\prime} \in \mathscr{P}^{0}$ such that $B^{\prime} \subset P^{\prime}$) is a surjective morphism. $Z_{o}(g)$ acts naturally on ρ_{g}^{0} and p is $Z_{o}(g)-$ equivariant. $Z(g)$ acts also on $\mathscr{\rho}_{g}^{0}$ if I is $Z(g)$-stable and $G^{0} P / G^{0}$ is normal in G / G^{0}. In this case p is $Z(g)-$ equivariant. Notice that for each $P^{\prime} \in \mathscr{Q}_{g,}^{0} p^{-1}\left(P^{\prime}\right)=$ $\mathbb{G B}_{B}\left(P^{\prime}\right)_{g} \cong G\left(P^{\prime} / U_{P^{\prime}}\right)_{g U_{P}{ }^{\prime} .}$

By $2.7 \mathrm{dim} \mathscr{Q}_{g}^{0} \leqslant \operatorname{dim} \mathcal{B}_{g} \leqslant \frac{1}{\hat{2}}\left(\operatorname{dim} Z(g)-\operatorname{rank}_{g}(G)\right)$. We shall denote by $S \rho^{\circ}(g)$ the set of all irreducible components of G_{π}^{0} which have dimension $\frac{1}{2}\left(\operatorname{dim} Z(g)-\operatorname{rank}_{g}(G)\right)$. This set is empty if g is unipotent and $Q\left(C^{\circ}(g)\right)=\varnothing$. The action of $Z_{0}(g)$ on Q_{g}^{0} induces an action of $A_{0}(g)$ on $S_{\rho^{\circ}}(g)$.
4.2. There is a generalization of the application φ defined In 0.8 . We shall use it only when G is connected. So assume that G is connected and consider two parabolic subgroups $P \supset B, Q \supset B$. The set of G-orbits in $P \times Q$ corresponds bijectively to $W_{P} \backslash W / W_{Q}$, where W_{P} and W_{Q} are the Weyl groups of P and Q respectively. Let u be a unipotent element. We
get an application $\varphi_{\rho_{, Q}}: S_{\mathcal{P}}(u) \times S_{Q}(u) \longrightarrow W_{P} \backslash W / W_{Q}$. This application has the following properties.
a) $\varphi_{P}, Q(\sigma, \tau)=\varphi_{Q_{Q}}\left(\sigma^{\prime}, \tau^{\prime}\right)$ if and only if $\left(\sigma^{\prime}, \tau^{\prime}\right)=(a \sigma, a \tau)$ for some $a \in A(u) \quad\left(\sigma, \sigma^{\prime} \in S_{\Phi}(u), \tau, \tau^{\prime} \in S_{Q}(u)\right)$.
b) If u_{1}, \ldots, u_{n} is a complete set of representatives for the unipotent classes of G, then the sets $C_{P, Q}\left(S_{P}\left(u_{i}\right) \times S_{Q}\left(u_{i}\right)\right)$ form a partition of $W_{P} \backslash W / W_{Q}$. In particular we have : $\sum_{1 \leq i \leqslant n}\left|\left(S_{\mathcal{P}}\left(u_{i}\right) \times S_{Q}\left(u_{i}\right)\right) / A\left(u_{i}\right)\right|=\left|W_{P} \backslash W / W_{Q}\right|$.

These results are proved in [21]. The proofs are similar to the proofs of the corresponding statement for φ.
4.3. Let $u \in \pi G^{0}$ be a unipotent element. By 1.3 the union of all lines of type α contained in β_{u} is closed $(\alpha \in T$). For each component X_{σ} of \mathscr{S}_{u} exactly one of the following holds. a) X_{σ} is a union of lines of type α.
b) There is a dense open subset of X_{σ} which is not met by any line of type α contained in \mathscr{G}_{3}.

Let $I_{\sigma}=\left\{\alpha \in T \mid X_{\sigma}\right.$ is a union of lines of type $\left.\alpha\right\}$. I_{σ} is x-stable. $I_{\sigma} \neq \varnothing$ unless u is regular. It is easy to check that with the notations of 4.1 u is \mathscr{P}^{0}-regular if and only if the following conditions hold :
a) $Q\left(C^{0}(u)\right) \neq \varnothing$.
b) $\operatorname{dim} \phi_{u}=\ell_{u}\left(w_{P}\right)$, where w_{P} is the element of maximal length in W_{P}.
c) For some $\sigma \in S(u), I_{\sigma}=I$.

Proposition 4.4. Let P, I be as in 4.1 and let $u \in X G^{\circ}$ be a unipotent element. Let $S_{\mathbf{I}}(u)=\left\{\sigma \in S(u) \mid I_{\sigma} \cap I=\varnothing\right\}$. Then $S_{I}(u)=\left\{\sigma \in S(u) \mid \operatorname{dim} p\left(X_{\sigma}\right)=\operatorname{dim} \mathcal{B}_{u}\right\}$, where p is the natural morphism $Q_{u} \longrightarrow \mathcal{P}_{u^{0}}^{0}$. If $Q\left(C^{0}(u)\right) \neq \varnothing$, p induces an $A_{0}(u)-$ equivariant bijection $S_{I}(u) \longrightarrow S_{\rho}(u)$.

Proof. If $\alpha \in I_{\sigma} \cap I$, then each fibre of the restriction of p to $X_{\sigma} \longrightarrow \Phi_{u}^{0}$ contains a line of type α. Hence dim $p\left(X_{\sigma}\right)<$ $\operatorname{dim} \beta_{u}$.

Suppose now that $I_{\sigma} \cap I=\varnothing$. We can choose $B^{\prime} \in \dot{X}_{\sigma}$ in such a way that for every $\alpha \in I$ there is no line of type α contained in ${ }_{S_{u}}$ through B^{\prime}. $u_{P} P^{\prime}$ is therefore regular in $N_{G}\left(P^{\prime}\right) / U_{P^{\prime}}$, where $P^{\prime}=p\left(B^{\prime}\right)$, and $p^{-1}\left(P^{\prime}\right)=\left\{B^{\prime}\right\}$. This shows that $\operatorname{dim} p\left(X_{\sigma}\right)=\operatorname{dim} X_{\sigma}=\operatorname{dim} \beta_{u}$ and $p\left(X_{\sigma}\right) \notin\left(\bigcup_{\tau+\sigma} X_{\tau}\right)$. This proves the proposition.
4.5. If $Q\left(C^{\circ}(u)\right) \not \equiv \varnothing$ we shall identify $S_{\mathcal{P}^{\circ}}(u)$ and $S_{I}(u)$.
4.6. We assume now that $x G^{0}$ is central in G / G° and that P is a parabolic subgroup of G° with the following properties :
a) P^{0} is normalized by x.
b) $P=N_{G}(P)$.
c) $\mathcal{P}=\mathscr{P}^{0}$.
(b) and (c) imply that P meets all components of G. Let $u \in X G^{0}$ be a unipotent element. Then $\mathscr{P}_{u}^{0}=\mathscr{P}_{u}=\left\{P^{\prime} \in \Phi \mid\right.$
$\left.u \in P^{\prime}\right\} \cdot Z(u)$ acts on \mathscr{P}_{u} and $p: \mathcal{B}_{u} \rightarrow \mathcal{P}_{u}$ is $Z(u)-$ equivariant.

If $P^{\prime}=g_{P} \in P_{u}$, the class of $g^{-1} u g U_{P}$ in P / U_{P} (or the class of $g^{-1} u g R_{P}$ in P / R_{P}) depends only on P^{\prime} and not on the choice of g. This gives an application $f: \mathscr{P}_{u} \longrightarrow\{$ unipotent classes of P / U_{P} contained in $\left.x P^{0} / U_{P}\right\}$. Let $f\left(\mathscr{P}_{u}\right)=\left\{C_{i}, \ldots\right.$, $\left.C_{j}\right\}$. Let $Y_{i}=f^{-1}\left(C_{i}\right) \subset \mathcal{P}_{u}, X_{i}=p^{-1}\left(Y_{i}\right) \subset \mathcal{B}_{u}, Y_{i}^{*}=$ $f^{-1}\left(\left\{c_{h} \mid C_{h}^{\prime} \subset \bar{C}_{i}^{\top}\right\}\right) \subset \mathcal{P}_{u^{\prime}}, X_{i}^{*}=p^{-1}\left(Y_{i}^{*}\right)(1 \leqslant i \leqslant j)$.

Lemma 4.7. For every $C_{i} \in f\left(\mathscr{S}_{u}\right)$, X_{i}^{*} is closed in $\mathscr{S}_{u^{\prime}}, Y_{i}$ is closed in Q_{u}, X_{i} is locally closed in Θ_{u} and Y_{i} is locally closed in P_{u}.

Proof. For every $g \in G^{0}, \varphi_{g}: U^{-} \longrightarrow G, v \longrightarrow{ }^{8 v_{B}}$ gives an isomorphism between U^{-}and an open neighbourhood of E_{B} in \mathcal{B}. Let ψ be the morphism $\varphi_{g}\left(U^{-}\right) \longrightarrow G / U_{P}, g_{B} \longmapsto v^{-1} g^{-1} u_{g V U_{P}}$. Then $X_{i}^{H} \cap \varphi_{E}\left(U^{-}\right)=\psi^{-1}\left(\bar{C}_{i}^{\top}\right)$. This shows that $X_{i} \cap_{G} \varphi_{G}\left(U^{-}\right)$is closed in $\varphi_{G}\left(U^{-}\right)$. Therefore X_{i}^{*} is closed in \Re_{3}. The lemma follows easily from this property.
4.8. Consider a fixed component X_{σ} of \mathcal{B}_{u} (in the situation of 4.6). Since X_{1}, \ldots, x_{j} are locally closed in \mathcal{B}_{u} there is a unique i such that $X_{\sigma} \cap X_{i}$ is dense in X_{σ}. If $P^{\prime} \in$ $p\left(X_{\sigma} \cap X_{i}\right), \operatorname{dim} X_{\sigma} \leqslant \operatorname{dim} p\left(X_{\sigma} \cap X_{i}\right)+\operatorname{dim}\left(X_{\sigma} \cap G\left(P^{\prime}\right)\right) \leqslant$ $\operatorname{dim} Y_{i}+\operatorname{dim} \mathscr{B}^{(}\left(P^{\prime}\right)_{u} \leqslant \operatorname{dim} \mathcal{B}_{u^{\prime}}$. Since $\operatorname{dim} X_{\sigma}=\operatorname{dim} \mathcal{B}_{u^{\prime}}$, we have $\operatorname{dim} Y_{i}=\operatorname{dim} p\left(X_{\sigma} \cap X_{i}\right), \operatorname{dim} B\left(P^{\prime}\right)_{u}=\operatorname{dim}\left(X_{\sigma} \cap \mathcal{B}\left(P^{\prime}\right)\right)$ and $X_{\sigma} \cap \mathbb{B}\left(P^{\prime}\right)$ is a union of irreducible components of $G\left(P^{\prime}\right)_{u}$
and since $p\left(X_{\sigma} \cap X_{i}\right)=p\left(X_{\sigma}\right) \cap Y_{i}$ is closed in $Y_{i}, p\left(X_{\sigma} \cap X_{i}\right)$ is an irreducible component of Y_{i} (of maximal dimension).

If $P^{\prime} \in \mathcal{P}_{u}$ and $X_{\sigma^{\prime}}^{\prime}$ is an irreducible component of $\mathcal{B}\left(P^{\prime}\right)_{u}$ we can define $I_{\sigma^{\prime}}$ as in 4.3. In this case $I_{\sigma}=\left\{\alpha \in I \mid \mathcal{B}^{\prime}\left(P^{\prime}\right)_{u}\right.$ is a union of lines of type $\alpha\}$. If $\alpha \in I$, there is a line of type α through $B^{\prime} \in X_{\sigma}$ contained in X_{σ} if and only if there is a line of type α through B^{\prime} contained in $X_{\sigma} \cap Q\left(P^{\prime}\right)_{u}$ ($P^{\prime}=p\left(B^{\prime}\right)$). It follows easily that there is a dense open subset in $p\left(X_{\sigma} \cap X_{i}\right)$ such that for every P^{\prime} in this subset and every irreducible component $X_{\sigma^{\prime}}^{\prime}$ of $X_{\sigma} \cap \beta\left(P^{\prime}\right), I_{\sigma^{\prime}}=$ $I \cap I_{\sigma}$.

Let $Q \supset B$ be an x-stable parabolic subgroup of G°. Let J be the corresponding subset of TT. Suppose that $X_{\sigma}=\Omega(Q)_{u}$ and that $u U_{Q}$ is quasisemisimple in $N_{G}(Q) / U_{Q}$. If $P^{\prime} \in p\left(X_{\sigma} \cap X_{i}\right)$, then $X_{\sigma} \cap \Pi\left(P^{\prime}\right)=\Pi\left(P^{\prime} \cap Q\right) u$ and $u U_{r^{\prime} \cap Q}$ is quasisemisimple in $N_{G}\left(P^{\prime} \cap Q\right) / U_{P^{\prime} \cap Q}$ (this can be checked by considering lines in $\left(\beta\left(P^{\prime} \cap Q\right)\right)$. If $Q\left(C^{\circ}\left(u U_{P^{\prime}}\right)\right)$ (defined as in 2.4 and computed in $P^{\prime} / U_{P^{\prime}}$) is not empty, this shows that $u U_{P^{\prime}} \in P^{\prime} / U_{P^{\prime}}$ is ($P^{\prime} \cap Q$) $/ U_{P^{\prime}}$-regular (by 4.3).
4.9. Suppose that we are in the situation of 4.6 and that $Z(u)$ acts transitively on Y_{i} for some fixed $i(1 \leqslant i \leqslant j)$. Then $Z(u)^{0}$ acts transitively on each component of Y_{i}. Let $Y_{i}, Y_{i}{ }^{\prime}, \ldots$ be these components. For simplicity assume that $P \in Y_{i}^{\prime}$. Let G^{\prime} be one of the groups $P / U_{P}, P / R_{P}$ and let u ' be the image of u in G^{\prime}. Let S_{i} be the set of irreducible
components of X_{i} and let S_{i} be the set of irreducible components of $\mathcal{B}(P)_{u} \cong \mathcal{B}\left(G^{\prime}\right)_{u^{\prime}}$. We write also ($\left.X_{\sigma^{\prime}}\right)_{\sigma^{\prime} \in S_{1}}$ for the components of $B(P)_{u^{\prime}}$ Let $Z^{\prime}\left(u^{\prime}\right)=Z_{G^{\prime}}\left(u^{\prime}\right), A^{\prime}\left(u^{\prime}\right)=$ $Z^{\prime}\left(u^{\prime}\right) / Z^{\prime}\left(u^{\prime}\right)^{\circ}$. $A^{\prime}\left(u^{\prime}\right)$ acts on S_{i}^{\prime} and $A(u)$ acts on S_{i}. Let $H=Z(u) \cap P$ and $K=Z(u)^{0} \cap P$. The natural homomorphisms $H \longrightarrow Z(u), H \longrightarrow Z^{\prime}\left(u^{\prime}\right)$ and $K \longrightarrow Z^{\prime}\left(u^{\prime}\right)$ induce homomorphisms $H \longrightarrow A(u), H \longrightarrow A^{\prime}\left(u^{\prime}\right)$ and $K \longrightarrow A^{\prime}\left(u^{\prime}\right)$. Let A_{P} be the image of H in $A(u)$ and let A_{P}^{\prime} be the image of K in $A^{\prime}\left(u^{\prime}\right)$. The components of Y_{i} are in bijective correspondence with $A(u) / A_{P}$. If $\sigma^{\prime}, \tau^{\prime} \in S_{i}^{\prime}, Z(u)^{0} X_{\sigma^{\prime}}^{\prime}$ is an irreducible component of X_{i} and $Z(u)^{\circ} X_{\sigma}^{\prime}=Z(u)^{\circ} X_{\tau}^{\prime}$, if and only if σ^{\prime} and τ^{\prime} are In the same A_{p}^{\prime}-orbit in S_{i}^{\prime}. Let $\bar{\sigma}^{\prime}$ be the A_{p}^{\prime}-orbit of σ^{\prime} and $\operatorname{let} \bar{S}_{i}=\left\{\bar{\sigma}^{\prime} \mid \sigma^{\prime} \in S_{i}^{\prime}\right\}$. H acts on S_{i}^{\prime} and also on \bar{S}_{i}^{\prime} and this action coincides with the action of H on the set of irreducible components of $p^{-1}\left(Y_{i}^{\prime}\right)$. K acts trivially on \bar{S}_{i} and therefore $A_{P} \cong H / K$ acts on \bar{S}_{i}. Since all components of $\mathscr{B}(P)_{u}$ have the same dimension, we get easily:

Proposition 4.10. In the situation of $4.9 S_{i}=\left\{a X_{\sigma} \mid a \in A(u)\right.$, $\left.\sigma^{\prime} \in S_{i}^{\prime}\right\}$ (by definition $a \in A(u)$ is of the form $z Z(u)^{0}$ for some $z \in Z(u))$. Moreover $a X_{r}^{\prime}=b X_{\tau}^{\prime}$, if and only if $b_{a}^{-1} \in A_{p}$ and $b^{-1} a \bar{\sigma},=\overline{\bar{z}}$. All components of X_{i} have the same dimension. If D is a subgroup of $A(u)$ such that $A(u)=D \times A_{P}$, then $D \times \bar{S}_{i}^{\prime} \longrightarrow S_{i},\left(d, \bar{\sigma}^{\prime}\right) \longmapsto d X_{\sigma}^{\prime}$, is an equivariant bijection (for the action of $\left.A(u)=D \times A_{P}\right)$.
4.11. Suppose that in 4.6 dim $X_{i}=d i m G_{u}$ if $1 \leqslant 1 \leqslant h$ and
$\operatorname{dim} X_{i}<d i m B_{u}$ if $h<i \leqslant j$ and that $Z(u)$ acts transitively on Y_{i} for $l \leqslant i \leqslant h$. Since all components of \mathcal{B}_{u} have the same dimension, 4.10 shows that the closure of any component of X_{i} is a component of \mathcal{B}_{u} if $1 \leqslant i \leqslant h$ and that every component of A_{u} is of this form, and we have an $A(u)$-equivariant bifection $\bigcup_{1 \leqslant 1+R} S_{i} \rightarrow S(u)$. We shall use this bifection and 4.10 to give a descrition of $S(u)$ and of the action of $A(u)$ on $S(u)$ for the classical groups.
4.12. Suppose that we are in the situation of 4.9 and that X is a $Z(u)$-stable subvariety of X_{i}. Then the same method shows that the irreducible components of X have all the same dimension (resp. are disjoint) if the irreducible components of $X \cap p^{-1}(P)$ have all the same dimension (resp. are disjoint) and the action of $A(u)$ on the set of irreducible components of X can be deduced in the same way from the action of $A^{\prime}\left(u^{\prime}\right)$ on the set of irreducible components of $X \cap p^{-1}(P)$.

5. Dyakin varieties for classical groups.

Let V be a finite dimensional vector space over k. We shall consider the following situations.
I) $\quad G=G L(V), \operatorname{dim} V=n$.
II) $\quad G=G(V)(I .3 .1)$, dim $V=2 n+1$ and we consider unipotent elements in $G \backslash G^{\circ}(p=2)$.
III) $G=O_{2 n+1}(k)=Z_{G L(V)}(f)$, where $f \in G(V)$ is a symmetric bilinear form, dim $V=2 n+1 \quad(p \neq 2)$.
IV) $G=G(V)$, dim $V=2 n$ and we consider unipotent elements in $G \backslash G^{0}(p=2)$.
V) $\quad G=O_{2 n}(k)=Z_{G I(V)}(f)$, where $f \in G(V)$ is a symmetric bilinear form, dim $V=2 n(p \neq 2)$.
VI) $\quad G=S p_{2 n}(k)=Z_{G L(V)}(f)$, where $f \in G(V)$ is a symplectic form, $\operatorname{dim} V=2 n(p \neq 2)$.
VII) Same as in (VI), but with $p=2$.
VIII) $G=O_{2 n}(k)=\{g \in G L(V) \mid Q \circ g=Q\}$, where $Q: V \rightarrow k$ is a quadratio form such that $f: V \times V \longrightarrow k,(x, J) \longmapsto Q(x)+$ $Q(y)+Q(x+y)$ is non-degenerate. dim $V=2 n$ and $w e$ consider unipotent elementa contained in $G^{0}(p=2)$.
IX) Same as in (VIII) but we consider unipotent elements in $G \backslash G^{\circ}$.
5.1. We shall denote by F the following variety. In cases (I), (II) and (IV), σ is the variety of all complete flags of V. In cases (II), (V), (VI) and (VII), \mathcal{F} is the variety of all complete flags of V which are isotropic for f (I.3.1). In cases (VIII) and (IX), \mathcal{F} consists of all isotropic flags $F=\left(F_{0}, \ldots\right.$,
$P_{2 n}$) of ∇ such that Q vanishes on $F_{n} \cdot T$ is complete and there is a natural morphism $\mathcal{F} \longrightarrow \beta$ which associates to each flag its stabilizer in G : Its restriction to any component of \mathcal{F} is an isomorphism. \mathcal{F} is irreducible except in cases (V), (VIII) and (IX) where it has two components which are permuted by G / G^{0}. If we are in one of these cases and $P=\left(P_{0}, \ldots, F_{n-1}\right.$, $\left.F_{n}, F_{n+1}, \ldots, F_{2 n}\right) \in \mathcal{F}$, then the other element of \mathcal{F} corresponding to the same Bore subgroup is of the form $F^{\prime}=\left(F_{0}, \ldots, F_{n-1}\right.$, $F_{n}^{\prime}, F_{n+1}, \ldots, F_{2 n}$). We get a variety isomorphic to Q by identifying flags in such a pair.

We shall use the following notations for the fundamental roots.
(I)
(II)

(III), (VI) and (VII)

(IV)

(V) and (VIII)

$\alpha_{1} 9 \quad \begin{array}{lll}\alpha_{3} & \alpha_{4} & \alpha_{1}\end{array}$

In each case we have labelled only one root in each x-orbit (where $x G^{\circ}$ is the component we consider) except in case (IX).

The lines of type α ($\alpha \in T$) have a geometric description in $\sigma_{\text {. In case }}(I)$, the line of type α_{i} trough $F=\left(F_{0}, \ldots, F_{n}\right)$ consists of all flags of the form ($F_{0}, \ldots, F_{i-1}, F_{i}, F_{i+1}, \ldots, F_{n}$)
(notice that this removes the ambiguity in the labelling of the fundamental roots which existed in this case). There are similar descriptions for the other cases. In case (V) f.t is easy to see that the two components of \mathcal{F} correspond to α_{1} and α_{2} in a natural way. Let σ_{1} and \mathcal{F}_{2} be the components. Let $F=\left(\ldots, F_{n-2}, F_{n-1}, F_{n}, F_{n+1}, F_{n+2}, \ldots\right) \in F_{\text {, then the set of all } 10}$ flags of the form ($\left.\ldots, F_{n-2}, F_{n-1}^{\prime}, F_{n},\left(F_{n-1}^{\prime}\right)^{\perp}, F_{n+2}, \ldots\right)$ is a line of type α_{1} if $F \in F_{1}$ and a line of type α_{2} if $F \in F_{2}$ (if the components of \mathcal{F} are labelled in a suitable way). The same remark applies in case (VIII).
5.2. Until the end of 5.17, $\underline{G}_{=G L}=G L(V)$, 1.e. we are in case (I).

We consider a fixed unipotent element u. We use the notations of I.1.12. $C(u)=C_{\lambda}$, where λ is the partition associated to u. d_{λ} (or d_{n}) is the corresponding Young diagram. $S t\left(d_{\lambda}\right)=S t(\lambda)$ will denote the set of all standard tableaux corresponding to $d_{\lambda^{\prime}}$ An element of $S t(\lambda)$ is obtained by filling d_{λ} with the numbers $1,2, \ldots, n$ in auch a way that all lines and $a l l$ columns are increasing sequences. If $\sigma \in S t(\lambda)$ and $1 \leqslant 1 \leqslant n$, let σ_{i} be the number of the column in which i lies in the
 if and only if for some $f(1 \leqslant j \leqslant n), \sigma_{j}<\tau_{j}$ and for all 1 such that $\mathrm{j}<\mathrm{i} \leqslant \mathrm{n}, \sigma_{1}=\tau_{1}$.

If $F=\left(F_{0}, F_{1}, \ldots, F_{n}\right) \in F_{u}$, let $d_{i}(F)$ be the diagram corresponding to the class of the reatriction of u to $F_{1} \rightarrow F_{i}$. $d_{n}(F)=d_{n}$ and the sequence $d_{0}(F), d_{1}(F), \ldots, d_{n}(F)$ is such that
$d_{i-1}(F)$ and $d_{i}(P)$ differ by one square which is a corner of $d_{i}(F)(1 \leqslant 1 \leqslant n)$. Putting i in this corner of $d_{i}(F)$ for $1 \leqslant i \leqslant n$ we get a standard tableau, and this defines an application $\pi: F_{u} \longrightarrow S t(\lambda)$.

Lemma 5.3. Por $\operatorname{\epsilon ach} \sigma \in \operatorname{St}(\lambda), \pi^{-1}(\sigma)$ is locally closed in σ_{u} and $\bigcup_{\tau \geqslant \sigma} \pi^{-1}(\tau)$ is closed in τ_{u}.

Proof. This is a consequence of 4.6.
5.4. Notations. Up to the end of 5.17, we write $X_{\sigma}=\pi^{-1}(\sigma)$ for each $\sigma \in S t(\lambda)$. The similar notation introduced in 0.3 is not used here.
5.5. $Z_{G(V)}(u)$ has two components and one of them consists of bilinear forms. Let $f \in G(V)$ be a bilinear form commuting with u. If M is a subspace of V and $u M=M$, it is easy to check that the Young diagram of the restriction of u to M is the same as the Young diagram of the automorphism induced by u on $V / f M$. Define $\pi_{0}: F_{u} \longrightarrow S t(\lambda), F \longmapsto \pi(f F) . \pi_{0}$ is independent of the choice of f . Let $Y_{\sigma}=\pi_{0}^{-1}(\sigma)=f\left(X_{\sigma}\right)(\sigma \in S t(\lambda))$.

With the notations of I.1.12, dim $\operatorname{Ker}(u-1)=\rho_{1}$. Choose a complete flag ($W_{0}, W_{1}, \ldots, W_{\ell_{1}}$) of Ker $(u-1)$ much that $W_{\ell_{1}}=$ $\operatorname{Ker}(u-1) \cap \operatorname{Im}(u-1)^{1-1}$ for all $1 \geqslant 1$. It is easy to check that if $\sigma=\pi_{0}(F)\left(F \in \mathcal{F}_{u}\right)$, then $\sigma_{n}=1$ if and oniy if $F_{1} \subset \mathbb{P}\left(W_{P_{1}}\right)$, $P\left(W_{e_{i+1}}\right)$.

Proposition 5.6. Bach $X_{\sigma}(\sigma \in S t(\lambda))$ is irreducible and dim $X_{\sigma}=$ $\sum_{i=1} e_{\perp}\left(e_{i}-1\right) / 2$. In particular dim $\Phi_{u}=\sum_{i=1} e_{i}\left(e_{i}-1\right) / 2$ and the irreducible components of \mathcal{F}_{u} are the subvarieties $X_{\sigma}(\sigma \in S t(\lambda))$.

Proof. We may replace X_{σ} by Y_{σ} in the proof. We use induction on n. If $e_{i} \neq e_{i+1}, \mathbb{P}\left(W_{e_{i}}\right) \backslash \mathbb{P}\left(W_{e_{i+1}}\right)$ is irreducible and has dimension $P_{i}-1$. It is easy to check that $Z(u)$ acts transitively on $\mathbb{P}\left(W_{l_{i}}\right) \backslash \mathbb{P}\left(W_{l_{i+1}}\right)$. The result follows then immediately from 4.9 (P being the stabilizer of any line $I \in \mathbb{P}(V)$).

Corollary 5.7. $\operatorname{dim} Z(u)=2 \operatorname{dim} B_{u}+\operatorname{rank}(G)$.
Proof. dim \mathbb{B}_{u} and dim $Z(u)$ depend only on λ. By 2.6 and 2.7, we know that the formula is true if $p=0$. It is therefore true for all characteristics.
5.8. Let $B_{i}=\mathbb{P}\left(W_{i}\right) \backslash \mathbb{P}\left(W_{i-1}\right)$ and let $Y_{i}=p^{-1}\left(B_{i}\right)$, where p is the projection $\mathscr{G} \longrightarrow \mathbb{P}(V), F \longmapsto F_{1}$. Each Y_{1} is locally closed and $\bigcup_{j i} Y_{j}$ is closed in $\mathcal{F}_{\text {. }}$ If $L \in B_{i}$, then $p^{-1}(L) \cong \mathcal{F}(V / L)$, the flag variety of V / L, and $p^{-1}(L) \cap \mathcal{F}_{u} \cong \mathcal{F}(V / L)_{u^{\prime}}$, where u^{\prime} is the automorphism of V / L induced by u. If λ^{\prime} is the partition corresponding to u^{\prime}, we have a natural inclusion $\operatorname{St}\left(\lambda^{\prime}\right) \subset S t(\lambda)$ and we get therefore a natural application π_{0}^{\prime} : $\mathcal{F}(V / L)_{u^{\prime}} \longrightarrow \operatorname{St}(\lambda)$.

Lemma 5.9. There is an isomorphism $\theta: Y_{i} \longrightarrow B_{i} \times \mathcal{F}(V / L)$ which gives by restriction an isomorphism $\theta_{0}: Y_{i} \cap \mathcal{F}_{u} \longrightarrow B_{i} \times F(V / L)_{u}$, and such that the following diagrams commute.

Proof. We choose a basis $\left(e_{j, k}^{h}\right)\left(1 \leqslant j \leqslant h, 1 \leqslant k \leqslant c_{h}\right)\left(c_{h}\right.$ as in I. 1.12) such that $(u-1)\left(e_{j, k}^{h}\right)=e_{j-1, k}^{h}$ if $j \neq 1$, 0 if $j=1$.
and such that :
a) I is generated by a vector $e_{1, m_{0}}^{h_{0}}$ of the basis.
b) W_{i-i} is generated by the vectors $e_{1, m}^{h}$ such that $h>h_{0}$ or $h=h_{0}$ and $m>m_{0}$.

In the proof, we replace B_{i} by W_{i-1} via the isomorphism $W_{1-1} \longrightarrow B_{i}, w \longmapsto k\left(e_{1}^{h_{0}}, m_{0}+w\right)$.

If $w=\sum a_{m}^{h} e_{1, m}^{h} \in W_{1-1}$, define w_{j} by $w_{j}=\sum a_{m}^{h} e_{j, m}^{h}(1 \leqslant j \leqslant$ h_{0}). Let g_{w} be the automorphism of V leaving $e_{j, m}^{h}$ fixed if $(h, m) \neq\left(h_{0}, m_{0}\right)$ and such that $g_{W}\left(e_{j, m_{0}}^{h_{0}}\right)=e_{j, m_{0}}^{h_{0}}+w_{j} \cdot$

It is then easy to check that we can take θ to be the inverse of the isomorphism $g: W_{i-1} \times G(V / L) \longrightarrow Y_{i},(w, F) \longmapsto$ $g_{\mathrm{H}}(\mathrm{F})$.

Proposition 5.10. There exists a partition $\left(\Lambda_{i}\right)_{1 \leqslant i \leqslant m}$ (for some $m \in \mathbb{N}$) of \mathcal{F} with the following properties.
a) each A_{i} is isomorphic to an affine space.
b) each A_{i} is contained in some X_{σ}.
c) $\bigcup_{i \in j} A_{i}$ is closed in f for all $j(1 \leqslant j \leqslant m)$.

Proof. It is sufficient to prove this with (b) replaced by $\left.b^{\prime}\right)$ each A_{i} is contained in some Y_{σ}.

The proposition follows then from 5.9 by induction on n.

Lemma 5.11. Let $I \in \mathscr{F}_{u}$ be a line of type $\alpha_{1}(1 \leqslant 1 \leqslant n)$. If $\sigma \in \operatorname{St}(\lambda)$ is such that $X_{\sigma} \cap L$ is dense in L, then $\sigma_{i}>\sigma_{i+1}$ (if the tableau is written as in 8.3 , we shall say that 1 is above $i+1$ in the tableau σ) and \bar{X}_{σ} is a union of lines of type α_{i}.

Proof. This is equivalent to the following statement : if $I \subset F_{u}$ is a line of type α_{1} and $\sigma \in S t(\lambda)$ is such that $L \cap Y_{\sigma}$
is dense in L, then $n-1$ is above $n-i+1$ in the tableau σ and \bar{Y}_{σ} is a union of lines of type α_{i}. We prove this statement.

Choose $F=\left(F_{0}, \ldots, F_{n}\right) \in I \cap Y_{\sigma}$. By 4.8 in particular, we can replace V and u by V / F_{i} and the automorphism u of V / F_{i} induced by u. This reduces the problem to the case $i=1$.

In this case $L \subset \mathcal{F}_{u}$ means that the restriction of u to F_{2} is the identity. Let f be the largeat integer such that $F_{2} C$ W P_{j}. We certainly have $\sigma_{n} \geqslant j, \sigma_{n-1} \geqslant j$. If $\sigma_{n} \geqslant j+1$, then we must have $F_{1}=F_{2} \cap W_{e_{j+1}}$ and then $I \cap Y_{\sigma}$ is reduced to a point, a contradiotion. Hence $\sigma_{n}=j$ and therefore $n-1$ is above n in σ. Let now F^{\prime} be any flag contained in Y_{σ}. Since $\mathrm{n}-1$ is above n and $\sigma_{n}=j$, it is clear that $F_{2}^{\prime} \subset W_{P_{j}}$. This shows that the line of type α_{1} through F^{\prime} is contained in \mathcal{F}_{u}. This implies that \bar{Y}_{σ} is a union of lines of type α_{1}. This proves the lema.

Proposition 5.12. a) For any $\sigma \in S t(\lambda), I_{\sigma}=\left\{\alpha_{i} \mid \bar{X}_{\sigma}\right.$ is a union of lines of type $\left.\alpha_{i}\right\}$ is given by $I_{\sigma}=\left\{\alpha_{1} \mid 1 \leqslant i \leqslant n-1\right.$ and i is above $i+1$ in the tableau σ.
b) Let P be any parabolic subgroup of G. If $\mathscr{B}(P) \subset \mathcal{F}_{u}$, then for some $\sigma \in S t(\lambda), ~ B(P) \subset \bar{X}_{\sigma}$ and \bar{X}_{σ} is a union of subvarieties of the form $\Phi\left(\mathcal{E}_{P}\right)(g \in G)$.

Proof. This is an immediate consequence of 5.11. For (b), take σ to be the unique element of $S t(\lambda)$ such that $\mathcal{B}(P) \cap X_{\sigma}$ is dense in $\mathbb{B}(P)$.

Remark 5.13. (b) of 5.12 fails for the line of type β in the Dynkin variety of elements of the clase C_{2} in $3.12\left(c_{3}\right)$. It is therefore not possible to replace $G L(V)$ by an arbitrary semieimple group in this statement.

Corollary 5.14. Let \mathscr{P} be a conjugacy class of parabolic subgroups of G. Then all irreducible components of the variety $\left\{P \in \mathscr{P} \mid u \in U_{P}\right\}$ have dimension $\operatorname{dim} \mathcal{B}_{u}-\operatorname{dim} \mathscr{S}_{3}(P)$.

Proof. This follows from 5.12 and 1.12.
5.15. We know from 4.4 and 5.12 which components of \mathcal{B}_{u} have their dimencion preserved by $p: \mathcal{B}_{u} \longrightarrow \mathscr{P}_{u}$, where \mathscr{P} is a conjugacy class of parabolic subgroups.

Let λ be a partition of n. We denote by λ^{*} the dual partition. The parts of λ^{*} are l_{1}, l_{2}, \ldots, the length of the columns of d_{λ}. For each $\sigma \in S t(\lambda)$ we have a duel standard tableau σ^{*}. The lignes of σ^{*} are the columns of $\sigma_{\text {. Clearly }}$ $\left(\lambda^{*}\right) *=\lambda,\left(\sigma^{*}\right) *=\sigma$. From 5.12, $I_{\sigma^{*}}=T T \backslash I_{\sigma}$ for all $\sigma \in \operatorname{St}(\lambda)$.

For each partition λ of n, choose an element $u_{\lambda} \in C_{\lambda^{\prime}}$. The set of all partitions of n is partially ordered by $\lambda \leqslant \mu 1 f$ $\sum_{i \in j} \lambda_{i} \leqslant \sum_{i \leqslant j} \mu_{i}$ for all $j \geqslant 1$. It is known that $\lambda_{\leqslant} \mu \Leftrightarrow \bar{C}_{\lambda}<\overline{\mathrm{C}}_{\mu}$. It is easy to check that $\lambda \leqslant \mu \Longleftrightarrow \mu^{*} \leqslant \lambda^{*}$.

For each partition λ of n, we choose also a conjugacy olass of parabolic subgroups P_{λ} such that P / U_{p} is of type $A_{\rho_{1}} \times A_{e_{2}} \times \ldots$ if $P \in \Phi_{\lambda}$. We denote by W_{λ} the corresponding subgroup of W and by I_{λ} the corresponding subset of TT. The complex representation Ind $_{W_{\lambda}}^{W}$ (1) depends only on λ. We shall denote it by θ_{λ}. For any unipotent element x, we write $S_{\lambda}(x)$ for $S_{\rho_{\lambda}}(x)$, and we write $S_{\lambda}(\mu)$ for $s_{\lambda}\left(u_{\mu}\right)$.

From 6.2 (or by direct computations) the $\mathscr{P}_{\lambda}-$ regular class is $\mathrm{C}_{\lambda^{*}}$.

Iemma 5.16. a) $s_{\mu}(\lambda) \neq \varnothing \Longleftrightarrow \mu \leqslant \lambda$.
b) $\left|s_{\lambda}(\lambda)\right|=1$.

Proof. a) We have the following equivalences.
$S_{\mu}(\lambda) \neq \emptyset \Longleftrightarrow I_{\mu} \cap I_{\sigma}=\emptyset$ for some $\left.\sigma \in S t(\lambda)\right) \Longleftrightarrow$
$I_{\mu} \subset I_{\sigma *}$ for some $\left.\sigma \in \operatorname{St}(\lambda)\right) \Longleftrightarrow I_{\mu} \subset I_{\tau}$ for some $\tau \in \operatorname{St}\left(\lambda^{*}\right)$ $\Longleftrightarrow \overline{\boldsymbol{C}}_{\lambda^{*}} \subset \overline{\mathbf{C}}_{\mu *}$ (in particular because of $5.12(\mathrm{~b})$) \Longleftrightarrow $\lambda^{*} \leqslant \mu^{*} \Longleftrightarrow \mu \leqslant \lambda$.
b) We taice $\lambda=\mu$ in these equivalences. If $\tau \in S t\left(\lambda^{*}\right)$ is such that $I_{\mu}=I_{\lambda} \subset I_{\tau}$, then for dimension reasons $I_{\lambda}=I_{\tau}$ and the component $\bar{X}_{\bar{\tau}}$ of $\Psi_{u_{\lambda^{*}}}$ is of the form $\beta(P)$ for some $P \in \mathscr{N}_{\lambda^{*}}$ Since $Z\left(u_{\lambda *}\right)$ is connected, there ${ }^{V / V}$ most one component with this property. Therefore $\sigma=\tau *$ is the unique element of $S_{\lambda}(\lambda)$.

Proposition 5.17. a) For any partition λ of n, there exists a unique (up to isomorphism) complex irreducible representation ρ_{λ} of $W \cong g_{n}$ such that $\theta_{\lambda}=\rho_{\lambda}+\sum_{\mu<\lambda} n_{\mu \lambda} \rho_{\mu}$ for some suitable integers $n_{\mu \lambda}$.
b) $\left|s_{\mu}(\lambda)\right|=n_{\mu \lambda}$ for any pair of partitions λ, μ.

Proof. For any pair of partitions μ, ν, we have

1) $\sum\left|s_{\mu}(\lambda)\right|\left|s_{\nu}(\lambda)\right|=\left|w_{\mu}\right| w / w_{\nu} \mid$ (4.2).

Choose a total ordering $\lambda^{1}<\lambda^{2}<\ldots$ on the aet of all partitions of n, compatible with the partial order defined in 5.15. Let $\theta_{i j}=\left|3_{\lambda^{i}}\left(\lambda^{j}\right)\right|$ and let s be the matrix $\left(a_{i j}\right)$.

Let $\rho_{1}, \rho_{2}, \ldots$ be the irreduaible complex representations of S_{n}. Their number is the number of partitions of n. From the definition of θ_{λ}, we get
2) $\sum_{j}\left\langle\theta_{\mu}, \rho_{j}\right\rangle\left\langle\theta_{\nu}, \rho_{j}\right\rangle=\left\langle\theta_{\mu}, \theta_{\nu}\right\rangle=\left|i_{\mu}\right| W / W_{\nu} \mid$ for all pairs of partitions μ, ν of n.

Let $n_{i j}=\left\langle\theta_{\lambda}, \rho_{j}\right\rangle$ and let N be the matrix $\left(n_{i j}\right)$.
(1) and (2) show that $N\left({ }^{t} N\right)=S\left({ }^{t} S\right)$. Hence $\left(s^{-1} N\right)\left({ }^{t}\left(S^{-1} N\right)\right)=$

1. By $5.16, \mathrm{~S}$ is a unipotent triangular matrix. S^{-1} is a matrix with coefficients in \mathbb{Z}. Therefore $\mathrm{s}^{-1} \mathrm{~N}$ corresponds to a permutation of the basis with possible sign changes. Changing the numbering of the irreducible representations, we can arrange to have $S^{-1} N$ triangular, and its eigenvalues are in $\{-1,+1\}$. But S is unipotent triangular and $N=S\left(S^{-1} N\right)$ has no negative coefficients. This shows that $S^{-1} N=1$, i.e. $S=N$. This clearly proves the proposition.
5.18. We assume now that we are in one of the cases (II) to (IX). We use the parametrization of unipotent classes given in I.I.12 and I. 3.18 and we consider a fixed unipotent element $u \in C_{\lambda, \varepsilon^{*}}$. We shall say that we are in the odd orthogonal case if we are in cases (II) or (III), in the even orthogonal case if we are in cases (IV) or (V) and in the symplectic case if we are in cases (VI), (VII), (VIII) or (IX). This refers to the kind of diagrams occuring in the parametrization of unipotent classes.

Let $N=\operatorname{dim} V . N=2 n+1$ in the odd orthogonal case and $N=2 n$ in the other cases. d_{λ} (or d_{N}) is the Young diagram corresponding to λ and as in I.1.12 c_{i} is the number of lines of length i in d_{λ} and ℓ_{i} is the length of the $i^{\text {th }}$ colum of d_{λ}. We essociate to λ integers $b_{\lambda} z_{\lambda}$ in the following way. If we are in the odd orthogonal case (resp. the even orthogonal case, the symplectic case), let u_{λ} be an element of $0_{2 n+1}(c)\left(r e s p . O_{2 n}(c), S p_{2 n}(c)\right)$ in the unipotent class corresponding to λ. Then :
a) In the odd orthogonal case, $\left.b_{\lambda}=\frac{1}{4}\left(1+\sum_{i \geqslant 1}\left(l_{2 i-1}\left(l_{2 i-1}-2\right)\right)+l_{2 i}^{2}\right)\right)$,
$z_{\lambda}=\operatorname{dim} z_{0_{2 n+1}}\left(u_{\lambda}\right)$.
b) In the even orthogonal case,
$b_{\lambda}=\frac{1}{4}\left(\sum_{i \geq 1}\left(l_{2 i-1}\left(l_{2 i-1}-2\right)+l_{2 i}^{2}\right)\right.$,
$z_{\lambda}=\operatorname{dim} z_{0_{2 n}}\left(u_{\lambda}\right)$.
c) In the symplectic case,
$b_{\lambda}=\frac{1}{4} \sum_{i \neq 1}\left(e_{2 i-1}^{2}+l_{2 i}\left(l_{2 i}-2\right)\right)$,
$z_{\lambda}=\operatorname{dim} Z_{\operatorname{Sp}_{2 n}}\left(u_{\lambda}\right)$.
Notice that a partition λ may occur in the even orthogonal case and in the symplectic case and that the integers b_{λ} and z_{λ} depend on the case we consider.

Proposition 5.19. dim $G_{B_{u}}=b_{\lambda}-\left[\frac{1}{2} \sum_{\varepsilon_{i}=0}\left(l_{i+1}-l_{i}\right)\right]$. In this formula $l_{0}=0$ and $[x]=\max \{y \in Z \mid y \leqslant x\}$.

Proof. We shall give the proof for cases (II) and (IV) in 5.30. In the other cases the proof is similar.

Remark 5.20. In cases (III), (V) and (VI), $\varepsilon_{i} \neq 0$ for all i and therefore $\operatorname{dim} \mathscr{F}_{u}=b_{\lambda}$. In cases (II), (IV) and (VII), $\varepsilon_{0} \neq 0$ and therefore $l_{i+1}-\ell_{i}=-c_{i}<0$ is even if $\varepsilon_{i}=0$. In case (VIII) $\varepsilon_{0}=0$ and $l_{1}-l_{0}=l_{1}$ is even. In case (IX) $\varepsilon_{0}=0$ and $l_{1}-l_{0}=l_{1}$ is odd.

Corollary 5.21. $\mathrm{dim} Z(u)=2 \mathrm{dim} \mathbb{R}_{u}+\operatorname{rank}_{u}(G)$.

Proof. We know already that this is true if $p=0(2.5$ and
2.6). Hence $z_{\lambda}=2 b_{\lambda}+n$. It can be checked that $\operatorname{dim} Z(u)=$ $z_{\lambda}-\sum_{\varepsilon_{i}=0}\left(l_{i+1}-l_{i}\right)$ (for cases (II) and (IV) this is done in I.3.24). This shows that $\operatorname{dim} Z(u)=2 d i m \beta_{u}+n-1$ in case (IX) and $\operatorname{dim} Z(u)=2$ dim $\mathcal{R}_{u}+n$ in the other cases. This proves the lemma since $\operatorname{rank}_{u}(G)=n-1$ in case $(I X)$ and $\operatorname{rank}_{u}(G)=n$ in the other cases.
5.22. Assume that $n \geqslant 2$ if we are in case (V), (VIII) or (IX) and $n \geqslant 1$ in the other cases. Let L be a subspace of dimension I in V and let $H \supset L$ be a hyperplane in V. If we are in case (III), (V), (VI) or (VII) we assume that $H=L \perp$. If we are in case (VIII) or (IX) we assume that Q vanishes on L and $H=$ L^{-1}. Let P be the stabilizer of (L, H) in G (in cases (II) and (IV) we say that a bilinear form f g atabilizes (L, H) if $(f L, f H)=(H, L))$. P is a parabolic subgroup of G and the conditions of 4.6 are satisfied. We want to use 4.9 with this parabolic subgroup. If $P^{\prime} \in \mathcal{P}_{u^{\prime}}$, the class of $u U_{P^{\prime}}$ in $P^{\prime} / U_{P^{\prime}}$ is parametrized by a pair $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$ and we can write $f\left(P^{\prime}\right)=$ $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$ (f as in 4.6 ; this should not create any confusion with the bilinear forms denoted by the same letter). Consider now a fixed unipotent class C ' in P / U_{P} parametrized by a pair $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$. Let $Y=f^{-1}\left(C^{\prime}\right)$ and $X=p^{-1}(Y)$ (as in 4.6). If $u^{\prime} \epsilon$ C^{\prime} the group $A^{\prime}\left(u^{\prime}\right)$ (as in 4.9) can be described as in I. 1.13 and 1.3 .23 with a subset of $\left\{a_{0}, a_{1}, \ldots\right\}$ as a system of generators. The relations for $A(u)$ and $A^{\prime}\left(u^{\prime}\right)$ need not to be the same.

Proposition 5.23. In the situation of $5.22 \mathrm{Z}(u)$ acts transitively on Y. In the orthogonal case (resp. the symplectic case) $\operatorname{dim} X=\operatorname{dim} \beta_{u}$ if and only if ($\lambda^{\prime}, \varepsilon^{\prime}$) is obtained from (λ, ε) as follows. $d_{\lambda^{\prime}}$ must be deduced from d_{λ} by one of the following operations.
a) if $c_{i} \geqslant 2$, remove two squares from the $i^{\text {th }}$ column.
b) if $i \geqslant 2$ is odd (resp. even), $\varepsilon_{i}=1$ and $l_{i-1}=l_{i}$, remove one square from the $i^{\text {th }}$ column and one square from the $(i-1)^{\text {th }}$ column. In cases (VIII) and (IX) we must have $i \geqslant 4$. ε^{\prime} is any application $\mathbb{N} \longrightarrow\{\omega, 0,1\}$ such that :
i) ($\lambda^{\prime}, \varepsilon^{\prime}$) represents a unipotent class in P / U_{P}.
ii) $\varepsilon_{j}^{\prime}=\varepsilon_{j}$ if the number of lines of length j is unchanged. iii) $\varepsilon_{j}^{\prime} \neq 1$ if $\varepsilon_{j}=0$ and $\varepsilon_{j}^{\prime} \neq 0$ if $\varepsilon_{j}=1$.

The groups A_{P} and A_{p} of 4.9 are the following. A_{P} is the subgroup of $A(u)$ generated by the elements in the system of generators of $A(u)$ which are also in the system of generators of $A^{\prime}\left(u^{\prime}\right)$ (as described in I.1.13 or I.3.23). A_{p}^{\prime} is the smallest subgroup of $A^{\prime}\left(u^{\prime}\right)$ such that the application from the system of generators of A_{P} to $A^{\prime}\left(u^{\prime}\right)$ gives rise to a homomorphism $A_{P} \longrightarrow A^{\prime}\left(u^{\prime}\right) / A_{P}^{\prime}$. This homomorphism is the one considered in 4.9.

Proof. We give the proof for cases (II) and (IV) in several steps (from 5.25 to 5.33). The proof for the other cases is similar.

Remark 5.24. Suppose that in $5.23 \mathrm{dim} Y=\operatorname{dim} \mathbb{B}_{\mathcal{U}}$. Then Y is connected (and $A_{p}=A(u)$) or Y has two components (and $\left|A(u) / A_{P}\right|=2$). Y has two components in the following cases : a) In case (III), (V) or (VI), Y has two components if $\varepsilon_{i}=$ 1, $c_{1}=2$ and $d_{\lambda^{\prime}}$ is obtained from d_{λ} by removing two squares from the $i^{\text {th }}$ column.
b) In case (II), (IV), (VII), (VIII) or (IX), Y has two components if $\varepsilon_{i}=\omega, c_{i}=2, \varepsilon_{i+1} \neq 1, \varepsilon_{i-1}^{\prime}=0$ and d_{λ} is obtained from d_{λ} by removing two squares from the column i.

In both cases $D=\left\{1, a_{\ell_{i}}\right\}=\left\{1, a_{l_{i}-1}\right\} \subset A(u)$ is such that $A(u)=D \times A_{p}$.

We also have $A_{P}^{\prime}=1$ or $\left|A_{P}^{\prime}\right|=2 . A_{P}^{\prime} \neq 1$ in the following cases.
a^{\prime}) In case (III), (V) or (VI), $A_{P}^{\prime}=\left\{1, a_{l_{i}}^{a} e_{i}-1\right\} \subset A^{\prime}$ (u^{\prime}) if $\varepsilon_{i}=1, c_{i} \geqslant 2$ and d_{λ} is obtained from d_{λ} by removing one square from the $i^{\text {th }}$ column and one square from the (i-1) ${ }^{\text {th }}$ column.
b^{\prime}) In case (II), (IV), (VII), (VIII) or (IX), $A_{p}^{\prime}=$ $\left\{1, \mathrm{a} \ell_{i}{ }^{a} e_{i}-1\right\} \subset A^{\prime}\left(u^{\prime}\right)$ if one of the following conditions holds.
$\left.b_{1}\right) \varepsilon_{i}=1, c_{1}=2$ and $\left(c_{i+1} \neq 0\right.$ or $\left.\varepsilon_{i+2}=1\right)$ and $d_{\lambda^{\prime}}$ is obtained from d_{λ} by removing two squares from the column i. $\left.b_{2}^{\prime}\right) \varepsilon_{i}=1, c_{i}=1$ and $\left(c_{i+1} \neq 0\right.$ or $\left.\varepsilon_{i+2}=1\right)$ and d_{λ} is obtained from d_{λ} by removing one square from the column i and one square from the colum (i-l).

These results are consequences of 5.23.
5.25. Until the end of 5.33 we suppose that we are in case (II) or (IV) and that $f \in C_{\lambda, \varepsilon}$ is a unipotent bilinear form in $G=G(V)$. Let $u=f^{2}$ and let $W_{i}=\operatorname{Ker}(u-1) \cap \operatorname{Im}(u-1)^{i-l}$.

A subspace M of V will be called an P-submodule if it is u-stable and the restriction f_{M} of P to $M \times M$ is non-singular. The conjugacy class of f_{M} in $G(M)$ is determined by a diagram and by a sequence $\left(\varepsilon_{i}(M)\right)_{i \geqslant 0}$. Here we characterize the diagram by the sequence $\left(c_{i}(M)\right)_{i>1}$, where $c_{i}(M)$ is the number of Jordan blocks of dimension i of $f_{M}^{2} \in G L(M)$.

A line $I \in \mathbb{P}(V)$ is isotropic (for f) if the restriction of f to $L \times I$ is 0 and L is stabilized by u. There is an isotropic flag ($F_{0}, F_{1}, \ldots, F_{N}$) ($N=$ dim V) fixed by f such that $F_{1}=L$ if and only if L is isotropic (for f).

If M is a u-stable subspace of V, we shall write $M^{\perp}=$ $f(M=\{v \in V \mid f(v, m)=0$ for all $m \in M\}=\{v \in V \mid f(m, v)=0$ for all $m \in M\}$ (I.3.4). M^{-1} is u-stable. If M is an f-submodule, $\mathbf{V}=\mathbf{M} \oplus \mathbf{M}^{\perp}$.

Suppose that M is an f-submodule and that $L \in \mathbb{P}(M)$ is isotropic. f induces a unipotent bilinear form on ($\left.L^{\perp} \cap M\right) / L$. Its conjugacy class will be represented by $\left(C_{i}(M), \varepsilon_{i}^{\prime}(M)\right)_{i \geqslant 1}$. We have $c_{i}(V)=c_{i}, \varepsilon_{i}(V)=\varepsilon_{i}$ and we write $c_{i}^{\prime}=c_{i}^{\prime}(V), \varepsilon_{i}^{\prime}=$ $\varepsilon_{i}(V)$. clearly $c_{i}=c_{i}(M)+c_{i}\left(M^{\perp}\right), \varepsilon_{i}=\max \left(\varepsilon_{i}(M), \varepsilon_{i}\left(M^{\perp}\right)\right)$, $c_{i}^{\prime}=c_{i}^{\prime}(M)+c_{i}\left(M^{\perp}\right), \varepsilon_{i}^{\prime}=\max \left(\varepsilon_{i}^{\prime}(M), \varepsilon_{i}\left(M^{\perp}\right)\right)$.

We shall say that two I-submodules M_{1} and M_{2} are
equivalent if $c_{i}\left(M_{1}\right)=c_{i}\left(M_{2}\right)$ and $\varepsilon_{i}\left(M_{1}\right)=\varepsilon_{i}\left(M_{2}\right)$ for all $i \geqslant 1$ and we write $M_{1} \sim M_{2}$. There exists $z \in Z_{0}(f)$ such that $z M_{1}=M_{2}$ if and only if $M_{1} \sim M_{2}$ and $M_{1}^{\perp} \sim M_{2}^{\perp}$ (in particular because of I.3.18).
5.26. Choose P as in 5.22. \mathscr{P}_{f} is naturally isomorphic to the variety of all isotropic lines in V and we shall identify these varieties. Let Y be a subvariety of P_{f} as in 5.22. It is clear from 5.5 that there is a unique i such that $Y \subset$ $\mathbb{P}\left(\mathbb{W}_{i}\right) \backslash \mathbb{P}\left(W_{i+1}\right)$. If $L \in Y$ is an isotropic line, $\left(c_{j}^{\prime}\right)_{j \geqslant 1}$ and $\left(\varepsilon_{j}^{\prime}\right)_{j \geqslant 1}$ depend only on Y and not on the choice of L (by definition of Y).

Let $X(L)$ * be the set of all f-submodules of V containing I such that the following conditions hold.
a) M has no proper f-submodule containing L.
b) If $\varepsilon_{i}(M) \neq \omega$ for some i, then $\varepsilon_{i}(M)=\varepsilon_{i}$.

The elements of $X(L)^{*}$ can be obtained as follows. Fix an element $v \in L, v \neq 0$. Let $v_{v}=\left\{w \in V \mid(u-1)^{i-1}(w)=v\right\} . f(v, w)$ is constant on V_{V} (by I.3.5). There are two cases.

1) if $f(v, w) \neq 0$ on V_{V}, the u-stable submodule generated by any $w \in V_{v}$ is in $X(L) *$ and every element of $X(L) *$ is of this form.
2) if $f(v, w)=0$ on V_{V}, choose first an element $w \in V_{v}$. By I. 3.6 we can choose $v^{\prime} \in W_{i} \backslash W_{i+1}$ such that $f\left(w, v^{\prime}\right) \neq 0$. If $\varepsilon_{i}=1$, we can choose $v^{\prime} \in W_{i} \backslash W_{i+1}$ such that $f\left(v^{\prime}, w^{\prime}\right) \neq 0$ on $V_{v^{\prime}}$. Choose now an element $w^{\prime} \in V_{V^{\prime}}$. The u-stable submodule
generated by w and w^{\prime} is in $X(L) *$ and every element of $X(L) *$ is of this form.

It is then easy to check that $X(L) *$ is not empty and that it is an irreducible subset of some Grassmannian variety. Moreover in case (l) we have for all $M \in X(L) *$:
$c_{j}(M)=\left\{\begin{array}{ll}1 & \text { if } j=1 \\ 0 & \text { if } j \neq i\end{array} \quad \varepsilon_{j}(M)= \begin{cases}1 & \text { if } j=1 \\ \omega & \text { if } j \neq i\end{cases}\right.$
$c_{j}^{\prime}(M)=\left\{\begin{array}{ll}1 & \text { if } j=1-2 \\ 0 & \text { if } j \neq i-2\end{array} \quad \varepsilon_{j}^{\prime}(M)= \begin{cases}1 & \text { if } j=1-2 \\ \omega & \text { if } j \neq i-2\end{cases}\right.$
and in case (2) we have for all $M \in X(L) *$:
$c_{j}(M)= \begin{cases}2 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}$
$\varepsilon_{j}(M)= \begin{cases}\varepsilon_{i} & \text { if } j=i \\ \omega & \text { if } j \neq i\end{cases}$ $c_{j}^{\prime}(M)=\left\{\begin{array}{ll}2 & \text { if } j=i-1 \\ 0 & \text { if } j \neq i-1\end{array} \quad \varepsilon_{j}^{\prime}(M)= \begin{cases}? & \text { if } j=i-1 \\ \omega & \text { if } j \neq i-1\end{cases}\right.$

This shows in particular that the equivalence class of M depends only on Y. This is also the case for \mathbb{M}. Since $^{c}{ }_{j}=$ $c_{j}(M)+c_{j}\left(M^{\perp}\right)$ and $\varepsilon_{j}=\max \left(\varepsilon_{j}(M), \varepsilon_{j}\left(M^{\perp}\right)\right)$, we find that $c_{j}\left(M^{\perp}\right)$ is independent of the choice of $M \in X(L) *$ and of the choice of $L \in Y$ for all $j \geqslant 1$. The same holds for $\varepsilon_{j}(M)$ if $J \neq 1$. But $\varepsilon_{i}^{\prime}=\max \left(\varepsilon_{i}^{\prime}(M), \varepsilon_{i}\left(M^{\perp}\right)\right)=\max \left(\omega, \varepsilon_{i}\left(M^{\perp}\right)\right)=\varepsilon_{i}\left(M^{\perp}\right)$ depends only on Y. This shows that the equivalence class of M^{\perp} depends only on Y.

Let $\tilde{Y}^{*}=\left\{(L, M) \mid L \in Y\right.$ and $\left.M \in X(L)^{*}\right\}$. We have shown that $Z_{0}(f)$ acts transitively on the second projection $\mathrm{pr}_{2}\left(\tilde{Y}^{*}\right)$.
5.27. We assume now that u has one Jordan block of dimension
generated by w and w^{\prime} is in $X(L) *$ and every element of $X(L) *$ is of this form.

It is then easy to check that $X(L) *$ is not empty and that it is an irreducible subset of some Grassmannian variety. Moreover in case (1) we have for all $M \in X(L) *$: $c_{j}(M)=\left\{\begin{array}{ll}1 & \text { if } j=1 \\ 0 & \text { if } j \neq i\end{array} \quad \varepsilon_{j}(M)= \begin{cases}1 & \text { if } j=i \\ \omega & \text { if } j \neq i\end{cases}\right.$ $c_{j}^{\prime}(M)=\left\{\begin{array}{ll}1 & \text { if } j=1-2 \\ 0 & \text { if } j \neq i-2\end{array} \quad \varepsilon_{j}^{\prime}(M)= \begin{cases}1 & \text { if } j=1-2 \\ \omega & \text { if } j \neq 1-2\end{cases}\right.$ and in case (2) we have for all $M \in X(L) *$:
$c_{j}(M)= \begin{cases}2 & \text { if } j=1 \\ 0 & \text { if } j \neq i\end{cases}$

$$
\varepsilon_{j}(M)= \begin{cases}\varepsilon_{i} & \text { if } j=1 \\ \omega & \text { if } j \neq i\end{cases}
$$

$$
c_{j}^{\prime}(M)=\left\{\begin{array}{ll}
2 & \text { if } j=i-1 \\
0 & \text { if } j \neq i-1
\end{array} \quad \varepsilon_{j}^{\prime}(M)= \begin{cases}? & \text { if } j=i-1 \\
\omega & \text { if } j \neq i-1\end{cases}\right.
$$

This shows in particular that the equivalence class of M depends only on Y. This is also the case for $M \perp$. Since $c_{j}=$ $c_{j}(M)+c_{j}\left(M^{\perp}\right)$ and $\varepsilon_{j}=\max \left(\varepsilon_{j}(M), \varepsilon_{j}\left(M^{\perp}\right)\right)$, we find that $c_{j}\left(M^{\perp}\right)$ is independent of the choice of $M \in X(L) *$ and of the choice of $L \in Y$ for all $j \geqslant 1$. The same holds for $\varepsilon_{j}(M)$ if $j \neq 1$. But $\varepsilon_{i}^{\prime}=\max \left(\varepsilon_{i}^{\prime}(M), \varepsilon_{i}\left(M^{\perp}\right)\right)=\max \left(\omega, \varepsilon_{i}\left(M^{\perp}\right)\right)=\varepsilon_{i}\left(M^{\perp}\right)$ depends only on Y. This shows that the equivalence class of M^{\perp} depends only on Y.

Let $\hat{Y} *=\{(L, M) \mid L \in Y$ and $M \in X(L) *\}$. We have shown that $Z_{0}(f)$ acts transitively on the second projection $\mathrm{pr}_{2}\left(\tilde{Y}^{*}\right)$.
5.27. We assume now that u has one Jordan block of dimension
$2 n+1$ and we are in case (II) or two blocks of dimension n and we are in case (IV). The possibilities for Y are as follows.
a) if $c_{2 n+1}=l, \mathscr{P}_{f}$ consists of a single point $L \in \mathbb{P}\left(W_{1}\right)$ and $V \in X(L){ }^{*}$.
b) if $c_{n}=2$ and $\varepsilon_{n}=0$, then $Q_{f}=\mathbb{P}\left(W_{1}\right)$ consists of a single $Z_{o}(f)$-orbit. If $L \in \mathcal{P}_{f}$, then $V \in X(L) *$.
c) if $c_{n}=2$ and $\varepsilon_{n}=1$, then $\Phi_{f} \subset \mathbb{P}\left(w_{1}\right)$ consiats of two $Z_{0}(f)$-orbits if $n \geqslant 2$ and is a single orbit if $n=1 . Y_{1}=$ $\left\{I \in \mathbb{P}\left(w_{1}\right) \mid f(v, w)=0\right.$ if $v \in L$ and $\left.(u-1)^{n-1}(w)=v\right\}$ consists of a single point. If $n \geqslant 2$ the other orbit in \mathcal{S}_{f} is $Y_{2}=$ $P\left(W_{1}\right) \backslash Y_{1} . V \in X(L) *$ if $L \in Y_{1}$ and $V \notin X(L) *$ if $L \in Y_{2}$.
d) If $c_{n}=2$ and $\varepsilon_{n}=\omega$, then $\varphi_{f}=\mathbb{P}\left(W_{1}\right)$ consists of two $Z_{0}(f)$-orbits. $Y_{1}=\left\{I \in \mathbb{P}\left(W_{1}\right) \mid \varepsilon_{i-1}^{\prime}=0\right\}$ consists of two points and $Y_{2}=\square ?\left(W_{1}\right) \backslash Y_{1}=\left\{L \in \mathbb{P}\left(W_{1}\right) \mid \varepsilon_{i-1}^{\prime}=1\right\}$. $V \in X(L) *$ for all $I \in \mathbb{P}\left(W_{1}\right)$.

These results can be deduced easily from I. 3.15 and I. 3.17.
5.28. We can now prove that $Z_{o}(f)$ acta transitively on the variety Y of 5.26. With the notations of 5.26 , we have already proved that $Z_{0}(f)$ acts transitively on $\mathrm{pr}_{2}\left(\tilde{Y}^{*}\right)$. Consider the action of Z_{M} on Y_{M}^{*}, where $Z_{M}=\left\{z \in Z_{0}(f) \mid z M=M\right\}$ and $Y_{M}^{*}=\{L \in Y \mid M \in X(L) *\}$. From 5.27 it is clear that Z_{M} acts transitively on Y_{M}^{*} if we are in cases (a), (b) or (c) and there are at most two orbits if we are in case (d) of 5.27
for $f_{M} \in G(M)\left(c l e a r l y Z_{M} \cong Z_{G L(M)}\left(f_{M}\right) \times Z_{G L(M \perp)}\left(f_{M} \mathcal{L}\right)\right.$). Hence $Z_{0}(f)$ acts transitively on Y if we are not in case (d).

Suppose now that we are in case (d). Then $c_{i-1}(M)=2$. Therefore $c_{i-1}^{i \geqslant 2}$ and $\varepsilon_{i-1}^{i}=0$ or 1. If $\varepsilon_{i-1}=\omega$ or 0 , we must have $\varepsilon_{i-1}^{\prime}(M)=\varepsilon_{i-1}^{\prime}$ and 5.27 shows that Y_{M}^{*} is a single Z_{M}-orbit. This shows that unless $\varepsilon_{i-1}=1, Z_{0}(f) \cdot a c t s$ transitively on Y.

Suppose that we are in case (d) with $\varepsilon_{i-1}=1$. Then Y_{M}^{*} consists of two Z_{M}-orbits and \tilde{Y}^{*} consists of two $Z_{0}(f)-$ orbits. Let $\tilde{Y}_{1}, \tilde{Y}_{2}$ be the orbits in \tilde{Y}^{*} corresponding to Y_{1}, Y_{2} of 5.27 (d) respectively. Choose $(L, M) \in Y_{1}$ and pick $v \in L$, $\boldsymbol{v} \neq 0$. M is the u-stable submodule of V generated by some w, w^{\prime} such that $w \in V_{v}$ and $w^{\prime} \in V_{V^{\prime}}$, where $v^{\prime} \in W_{i}$ is such that $f\left(w, v^{\prime}\right) \neq 0(5.26)$. Since $\varepsilon_{i-1}=1$, there exists $x \in M^{\perp}$ such that $(u-1)^{i-1}(x)=0$ and $f\left(x,(u-1)^{i-2}(x)\right)=1$. For every $\lambda \in k$ let $w_{\lambda}=w+\lambda x$. We still have $w_{\lambda} \in V_{v}$ and $f\left(w_{\lambda}, v^{\prime}\right) \neq 0$. The u-stable submodule M_{λ} generated by w_{λ} and w^{\prime} is an element of $X(L) *$. Since $f\left(w_{\lambda},(u-1)^{i-2}\left(w_{\lambda}\right)\right)=f\left(w,(u-1)^{i-2}(w)\right)+\lambda^{2}=\lambda^{2}$, $\left(L, M_{\lambda}\right) \in \widetilde{Y}_{2}$ for all $\lambda \neq 0$. This shows that \tilde{Y}_{2}^{*} is dense in \widetilde{Y}^{*} and that $\mathrm{pr}_{1}\left(\widetilde{Y}_{1}{ }_{1}\right)$ and $\mathrm{pr}_{1}\left(\widetilde{Y}_{2}^{*}\right)$ both contain L. This implies that $Y=p r_{1}\left(\tilde{Y}_{1}\right)=\mathrm{pr}_{1}\left(\tilde{Y}_{2}\right)$ is a single $Z_{0}(f)$-orbit.

We have therefore shown that in all cases $Z_{0}(f)$ acts transitively on Y. We have shown also that $X(I)$ * contains a dense Z_{M}-orbit and that \tilde{Y}^{*} contains a dense $Z_{0}(f)$-orbit. Let $X(L) \subset X(L) *$ and $\tilde{Y} \subset \tilde{Y} *$ be these dense orbits. Clearly $\tilde{Y}=$
$\{(L, M) \mid L \in Y$ and $M \in X(L)\}$. Let also $Y_{M}=\{L \in Y \mid M \in X(L)\}$. Y_{M} is dense in Y_{M} and Z_{M} acts transitively on Y_{M}.
5.29. $\operatorname{dim} \tilde{Y}=\operatorname{dim} \mathrm{pr}_{2}(\widetilde{Y})+\operatorname{dim} Y_{M} \cdot \operatorname{dim} Y_{M}$ can be computed from 5.27 (this is always 0 or 1). Since $Z_{0}(f)$ acts transitively on $\mathrm{pr}_{2}(\tilde{Y})$, dim $\mathrm{pr}_{2}(Y)=\operatorname{dim} Z(f)-$ dim $Z_{M}=$ $\operatorname{dim} Z(f)-\operatorname{dim} Z_{G L(M)}\left(f_{M}\right)-\operatorname{dim} Z_{G L\left(M^{\perp}\right)}\left(f_{M^{\perp}}\right)$.

Suppose that $\varepsilon_{i}=1$ and $\varepsilon_{i}^{\prime}=0$. Let \bar{Y} be the subvariety of \mathcal{P}_{f} corresponding to $\left(\bar{\lambda}^{\prime}, \bar{\varepsilon}^{\prime}\right)$, where $\bar{\lambda}^{\prime}=\lambda^{\prime}$ and $\bar{\varepsilon}^{\prime}$: $\mathbb{N} \longrightarrow\{\omega, 0, I\}$ is defined by $\bar{\varepsilon}_{j}^{\prime}=\varepsilon_{j}^{\prime}$ if $j \neq i$ and $\bar{\varepsilon}_{i}=1$. It is easily checked that $\bar{Y} \neq \emptyset$. Let \bar{X} (resp. \bar{X}) be the subvariety of P_{f} corresponding to Y (resp. \bar{Y}). By induction on n, we may assume that 5.19 is true for $f_{M \perp} \in G\left(M^{\perp}\right)$. By I. 3.24 we get then easily $\operatorname{dim} X=\operatorname{dim} \bar{X}-\left[\left(c_{i}-1\right) / 2\right]<\operatorname{dim} \mathcal{B}_{f}$.
5.30. Let E be the variety of all $k[u]$-submodules M of V such that M is a direct factor of V as $k[u]-m o d u l e s$ and :

1) if we are in case (1) of 5.26 , the restriction of u to M has only one Jordan block and dim $M=1$.
2) if we are in case (2) of 5.26 , the restriction of u to M has exactly two Jordan blocks, both of dimension i.
E is irreducible. $E_{0}=\{M \in E \mid M$ is an f-submodule $\}$ is open dense in E. $\mathrm{pr}_{2}(\tilde{Y})$ is a subvariety of E_{0} and (by considering all possible cases) 5.29 shows that $\mathrm{pr}_{2}(\tilde{Y})$ is dense in E_{0} if dim $X=$ dim $\beta_{f}\left(X\right.$ being the subvariety of β_{f} corresponding to Y). In particular, if $\operatorname{dim} X=\operatorname{dim} B_{9}$, then $\mathrm{pr}_{2}(\tilde{Y})$ is
irreducible and dim $\operatorname{pr}_{2}(\widetilde{Y})=\operatorname{dim} E=\sum_{j=1}\left(\ell_{j}-1\right)$ in case (1), $2 \sum_{j=i}\left(\ell_{j}-2\right)$ in case (2). dim $\widetilde{Y}=\operatorname{dim} \mathrm{pr}_{2}(\widetilde{Y})+\operatorname{dim} Y_{M}$ can be computed in this case from 5.27. Since dim $Y=\operatorname{dim} \tilde{Y}-$ $\operatorname{dim} X(L)$, we need only to compute $\operatorname{dim} X(L)=\operatorname{dim} X(L) *$ to determine dim Y when $\mathrm{pr}_{2}(\tilde{Y})$ is dense in $\mathrm{E}_{\mathrm{o}}((\mathrm{L}, \mathrm{M}) \in \tilde{Y})$. From the descrition of $X(L) *$ given in 5.26, we get dim $X(L) *=$ $\sum_{j=i}\left(e_{j}-1\right)$ in case (1), ($\left.e_{i}-2\right)+2 \sum_{j<i}\left(e_{j}-2\right)$ in case (2). Therefore dim $Y=\ell_{i}-1$ in case (1), ($\left.\ell_{i}-2\right)+\operatorname{dim} Y_{M}$ in case (2) (if $\mathrm{pr}_{2}(\tilde{\mathrm{Y}})$ is dense in E_{o}).

By induction on n we can assume that 5.19 is true for P / U_{P}. We can then compute $\operatorname{dim} X=\operatorname{dim} Y+\operatorname{dim} 9 B\left(P / U_{P}\right)_{u^{\prime}}$, where $u^{\prime} \in P / U_{p}$ is in the unipotent class corresponding to ($\lambda^{\prime}, \varepsilon^{\prime}$), at least if $\mathrm{pr}_{2}(\widetilde{Y})$ is dense in E_{0}. This is certainly the case if $\operatorname{dim} X=\operatorname{dim} \mathcal{A}_{f}$. In fact we get a method to compute d Im X in all cases since 5.29 reduces the problem to the case considered here.

The different possibilities for ($\lambda^{\prime}, \varepsilon^{\prime}$) can be obtained from 5.27 and the formulae $c_{j}^{\prime}=c_{j}^{\prime}(M)+c_{j}\left(M^{\perp}\right), \varepsilon_{j}^{\prime}=$ $\max \left(\varepsilon_{j}^{\prime}(M), \varepsilon_{j}\left(M^{\perp}\right)\right)$. By considering all possible cases, it is then easy to check (by induction on n) that $d i m \rho_{f}$ is given by the formula of 5.19 and that $\operatorname{dim} X=\operatorname{dim} \mathscr{P}_{f}$ if and only if ($\lambda^{\prime}, \varepsilon^{\prime}$) is obtained from (λ, ε) by one of the operations described in 5.23.
5.31. We turn now to the proof of the statements concerning A_{P} and A_{P}^{\prime} in 5.23. In 1.3 .21 we use a system of generators
for $A_{0}(f)$ corresponding to some lines of d_{λ}. Suppose that ($\lambda^{\prime}, \varepsilon^{\prime}$) is such that $\operatorname{dim} X=\operatorname{dim} \mathcal{S}_{f}$. $F i x(L, M) \in \tilde{Y}$. We may assume that the parabolic subgroup P is the stabilizer of $\left(L, L^{\perp}\right)$ in $G(V)$. We have already shown that $d_{\lambda^{\prime}}$ is obtained from d_{λ} by removing two squares from one line of d_{λ} or by removing two squares from one colum of d_{λ}, i.e. from two consecutive lines of d_{λ} (of the same length). The Young diagram of $f_{\mathbf{H}^{\perp}} \in G\left(M^{\perp}\right)$ consists of the remaining lines of d_{λ}. The corresponding group $A_{0}\left(f_{M}\right)$ can be described with $\left\{a_{j} \mid\right.$ $\varepsilon_{\lambda_{j}} \neq 0$ and $\left.\lambda_{j}=\lambda_{j}\right\}$, i.e. the elements of the system of generators for $A_{0}(f)$ which correspond to lines which are not touched by the operation giving $d_{\lambda^{\prime}}$ from d_{λ}. The relations for $A_{0}\left(f_{M^{\perp}}\right)$ are all true in $A_{0}(f)$ but the obvious homomorphism $A_{0}\left(f_{M^{\perp}}\right) \longrightarrow A_{0}(f)$ is not always injective. Similarly $A_{0}\left(f_{M}\right)$ can be described with $\left\{a_{j} \mid \varepsilon_{\lambda_{j}} \neq 0\right.$ and $\lambda_{j} \neq$ $\left.\lambda_{j}^{\prime}\right\}$ as a system of generators. From the proof of 1.3 .21 the homomorphism $A_{0}\left(f_{M}\right) \times A_{0}\left(f_{M+}\right) \longrightarrow A_{0}(f)$ induced by $Z_{M} \subset Z_{0}(f)$ is the obvious homomorphism given by the generators. It is surjective.

We have a similar situation with $A_{0}^{\prime}\left(f^{\prime}\right)$ with a surjective homomorphism $A_{0}^{\prime}\left(f_{M}^{\prime}\right) \times A_{0}\left(f_{M \perp}\right) \longrightarrow A_{0}^{\prime}\left(f^{\prime}\right)$ (where f_{M}^{\prime} is the bilinear form induced by f on ($M \cap I^{\perp}$)/L).
5.32. In the situation of $5.31 \mathrm{pr}_{2}(\tilde{\mathrm{Y}})$ is irreducible (5.30) and $Z_{o}(f)$ acts transitively on \tilde{Y} and $\mathrm{pr}_{2}(\tilde{Y})$. It follows that the irreducible components of \tilde{Y} are in bijective

- 106 -
correspondence with the $\left(Z(f)^{0} \cap Z_{M}\right)$-orbits in $Y_{M} Z_{o}\left(f_{M^{-L}}\right)$ acts trivially on Y_{M}. It follows that the image of $A_{0}\left(f_{M^{\perp}}\right)$ in $A(f)$ is contained in A_{P}. It is easily checked from 5.27 that Y_{M} is connected unless the given system of generators for $A_{0}\left(f_{M}\right)$ is not contained in the given system of generators for $A_{0}^{\prime}\left(f_{M}^{\prime}\right)$. Also $f Z(f)^{0} \in A(f)$ is clearly contained in A_{P}. It follows easily that $A_{P}=A(f)$ (and Y is connected) unless i is even, $c_{i}=2, \varepsilon_{i+1} \neq 1$ and $\varepsilon_{i-1}^{\prime}=0$. In this case the image of $A_{0}\left(f_{M}\right)$ in $A(f)$ has index 2 in $A_{0}(f)$. From $5.27 Y_{M}$ consists of two points and it is easy to see that $Z(f)^{0} \cap Z_{M}$ acts trivially on Y_{M} (in particular from the relations of I.3.21 for $A_{0}(f)$). \tilde{Y} has therefore two components and the same is true for Y since all fibres of $\mathrm{pr}_{1}: \tilde{Y} \longrightarrow Y$ are connected $\left(X(L)\right.$ is connected). A_{P} is generated by $f Z(f)^{0}$ and the image of $A_{0}\left(f_{M^{+}}\right)$in $A(f)$ and $\left|A(f) / A_{P}\right|=2$.

This shows that the description of A_{P} given in 5.23 is correct if we are in case (II) or (IV).
5.33. Let $Z_{L}=\left\{z \in Z_{0}(f) \mid z L=L\right\}$. The homomorphism $A_{P} \longrightarrow$ $A^{\prime}\left(f^{\prime}\right) / A_{P}^{\prime}$ is induced by the natural homomorphism $Z_{L} / Z_{L}^{0} \longrightarrow$ $A^{\prime}\left(f^{\prime}\right)\left(\right.$ with $\left.f Z(f)^{0} \longmapsto f^{\prime} Z\left(f^{\prime}\right)^{0}\right)$. Since $Z(I)$ is irreducible, $Z_{L, M}=Z_{L} \cap Z_{M}$ meets all components of Z_{L}. It is therefore sufficient to study the natural homomorphism $Z_{L, M} / Z_{L, M}^{O} \longrightarrow$ $A^{\prime}\left(f^{\prime}\right)$. Let $H=\left\{z \in Z_{G L(M)}\left(f_{M}\right) \mid z L=L\right\}$. $Z_{L, M}=H \times Z_{G L\left(M^{\perp}\right)}\left(f_{M}\right)$ and $Z_{L, M} / Z_{L, M}^{0}=\left(H / H^{0}\right) \times A_{0}\left(f_{M^{\perp}}\right)$. The homomorphism $A_{0}\left(f_{M^{\perp}}\right) \longrightarrow$ $A^{\prime}\left(f^{\prime}\right)$ is the one considered in 5.31. In order to prove 5.23
(in cases (II) and (IV)) we need only to prove (a) and (b) : a) the natural homomorphism $H / H^{0} \longrightarrow A_{0}\left(f_{M}\right)$ is injective and its image is the subgroup of $A_{0}\left(f_{M}\right)$ generated by $\left\{a_{j} \mid \varepsilon_{\lambda_{j}} \neq 0\right.$, $\varepsilon_{\lambda_{j}}^{\prime} \neq 0$ and $\left.\lambda_{j} \neq \lambda_{j}^{\prime}\right\}$.
b) the homomorphism $H / H^{0} \longrightarrow A^{\prime}\left(f_{M}^{\prime}\right)$ is the obvious one given by the systems of generators.

This reduces the problem to the case where $V \in X(L)$.
(a) can be deduced from the proofs of I.3.14 and I.3.16. (b) can be checked easily if we use the following facts. In 5.27 (a), $u \in Z_{o}(f) \backslash Z(f)^{0}$ if $n \geqslant 1$ and in 5.27 (d) an element $z \in Z_{0}(f)$ is in $Z(f)^{0}$ if and only if it acts trivially on Y_{1} (with the notations of 5.27). In the different cases of 5.27 it is then easy to identify the homomorphism $H / H^{0} \longrightarrow A^{\prime}\left(f^{\prime}\right)$ and to see that it is given by (b).

This gives a complete description of the homomorphism $Z_{L, M} / Z_{L, M}^{O} \longrightarrow A^{\prime}\left(f^{\prime}\right)$ and it clearly follows from this description that A_{P}^{\prime} and the homomorphism $A_{P} \longrightarrow A^{\prime}\left(f^{\prime}\right) / A_{P}^{\prime}$ are as descibed in 5.23. The proof of 5.23 in cases (II) and (IV) is now complete.
5.34. Using $4.10,4.11$ and 5.23 it is possible to get by induction on n a description of $S(u)$ and of the action of $A(u)$ on $S(u) .(u \in G$ unipotent). We give now a combinatorial description of $S(u)$ and the action of $A(u)$ on $S(u)$ which is closer to the parametrization by standard tableaux obtained for G_{n}.

Consider a flag $F \in T$ fixed by u (or corresponding to a Borel subgroup fixed by u if we are in case (IX)). Let $G_{i}(F)$ be the following group $(0 \leqslant i \leqslant n)$:
a) In case (II) or (IV), $G_{i}(F)=G\left(F_{N-n+i} / F_{n-i}\right)$ (defined as in I.3.1).
b) In case (III), (V), (VIII) or (IX), $G_{i}(F)=O\left(F_{N-n+i} / F_{n-1}\right)$ (with respect to the bilinear form (resp. quadratic form) induced by f (resp. Q) in cases (III) and (V) (resp. (VIII) and (IX))).
c) In case (VI) or (VII), $G_{i}(F)=S p\left(F_{N-n+i} / F_{n-i}\right)$ (with respect to the bilinear form induced by f).
u has an image u_{i} in $G_{i}(F)$. We get then a unipotent class C_{i} in $G_{i}(F)$, hence a pair $\left(\lambda^{i}, \varepsilon^{i}\right)$ (depending on F). In this way we attach to each $B^{\prime} \in \mathcal{S}_{u}$ (and to each $F \in \mathcal{F}_{u}$ if we are not in case (IX)) a sequence ($\lambda^{0}, \varepsilon^{0}$), ($\left.\lambda^{1}, \varepsilon^{1}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$. Clearly $\left(\lambda^{n}, \varepsilon^{n}\right)=(\lambda, \varepsilon)$. Let D be the set of all sequences obtained in this way. We have defined an application π : $\beta_{u} \longrightarrow D$. For each $d \in D$, let $X_{d}=\pi^{-1}(d)$. X_{d} is $Z(u)$-stable and it follows easily from 4.7 that it is locally closed in $\oiint_{u^{\prime}}$. 4.12 shows by induction on n that all components of X_{d} have the same dimension and are disjoint. Let $D^{*}=\{d \in D \mid$ $\left.\operatorname{dim} X_{d}=\operatorname{dim} \mathbb{B}_{u}\right\}$. If $d \in D^{*}$, the closure of any irreducible component of X_{d} is an irreducible component of \mathcal{S}_{u} and every irreducible component of \mathcal{B}_{u} is of this form (for a unique $d \in D^{*}$ and a unique irreducible component of X_{d}). This gives
a partition $S(u)=\bigcup_{d \in D^{*}} S_{d}$. Each S_{d} is stable for the action of $A(u)$ since X_{d} is stable for $Z(u)$.

The sequence $\left(\lambda^{0}, \varepsilon^{0}\right),\left(\lambda^{l}, \varepsilon^{l}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$ is in D^{*} if and only if $\left(\lambda^{i-1}, \varepsilon^{i-1}\right.$) is deduced from $\left(\lambda^{i}, \varepsilon^{i}\right)$ by one of the operations described in 5.23 for all i ($1 \leq i \leq n$ in cases (II) to (VIII), $2 \leqslant 1 \leqslant n$ in case (IX)). Hence D^{*} can be described in a combinatorial way. We want to get also a combinatorial description of S_{d} and the action of $A(u)$ on $S_{d}\left(d \in D^{*}\right)$.

Consider now a fixed $d \in D^{*}$, i.e. a sequence ($\lambda^{0}, \varepsilon^{0}$), $\left(\lambda^{l}, \varepsilon^{l}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$. If N is even (resp. odd) let d_{0}, d_{2}, \ldots, d_{N} (resp. $d_{1}, d_{3}, \ldots, d_{N}$) be the Young diagrams corresponding to $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{n}$. If d_{j} is one of these diagrams $(j \geqslant 2), d_{j-2}$ is obtained from d_{j} by removing a 'box' consisting of two adjacent squares. Call this box the box i if $j=2 i$ or $2 i+1$. If N is even, d_{N} consists then of n boxes labelled $1,2, \ldots, n$. If N is odd, d_{N} consists of one square for d_{1} and n boxes labelled $1,2, \ldots, n$.

Suppose that the image of $F \in \mathcal{F}$ in Q is in X_{d}. In I.1.13 and $I .3 .23$ we use a subset of $\left\{a_{0}, a_{1}, \ldots\right\}$ to describe $A\left(u_{i}\right)$ (u_{i} the image of u in $G_{i}(F)$). We shall say that the box i is special if the subset of $\left\{a_{0}, a_{1}, \ldots\right\}$ associated to $\left(\lambda^{i}, \varepsilon^{i}\right)$ in this way is strictly larger than the subset associated to $\left(\lambda^{i-1}, \varepsilon^{i-1}\right)$. In other words :
a) if $p \neq 2$, the box is ispecial if it consists of two squares in the column h (some h), $\varepsilon_{h}^{i}=1$ and $\varepsilon_{h-1}^{i-1}=\omega$.
a partition $S(u)=\bigcup_{d a D^{+}} S_{\mathrm{d}}$. Each S_{d} is stable for the action of $A(u)$ since X_{d} is stable for $Z(u)$.

The sequence $\left(\lambda^{0}, \varepsilon^{0}\right),\left(\lambda^{l}, \varepsilon^{l}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$ is in D^{*} if and only if $\left(\lambda^{i-1}, \varepsilon^{i-1}\right)$ is deduced from $\left(\lambda^{i}, \varepsilon^{i}\right)$ by one of the operations described in 5.23 for all i ($1 \leqslant i \leqslant n$ in cases (II) to (VIII), $2 \leqslant i \leqslant n$ in case (IX)). Hence D^{*} can be described in a combinatorial way. We want to get also a combinatorial description of S_{d} and the action of $A(u)$ on $S_{d}\left(d \in D^{*}\right)$.

Consider now a fixed $d \in D^{*}$, i.e. a sequence ($\lambda^{0}, \varepsilon^{0}$), $\left(\lambda^{l}, \varepsilon^{l}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$. If N is even (resp. odd) let d_{0}, d_{2}, \ldots, d_{N} (resp. $d_{1}, d_{3}, \ldots, d_{N}$) be the Young diagrams corresponding to $\lambda^{0}, \lambda^{l}, \ldots, \lambda^{n}$. If d_{j} is one of these diagrams ($j \geqslant 2$), d_{j-2} is obtained from d_{j} by removing a 'box' consisting of two adjacent squares. Call this box the box i if $j=2 i$ or $2 i+1$. If N is even, d_{N} consists then of n boxes labelled $1,2, \ldots, n$. If N is odd, d_{N} consists of one square for d_{1} and n boxes labelled $1,2, \ldots, n$.

Suppose that the image of $F \in \mathcal{F}$ in \mathcal{B} is in X_{d}. In I.1.13 and $I .3 .23$ we use a subset of $\left\{a_{0}, a_{1}, \ldots\right\}$ to describe $A\left(u_{i}\right)$ (u_{i} the image of u in $G_{i}(F)$). We shall say that the box i is special if the subset of $\left\{a_{0}, a_{1}, \ldots\right\}$ associated to $\left(\lambda^{i}, \varepsilon^{i}\right)$ in this way is atrictly larger than the subset associated to $\left(\lambda^{i-1}, \varepsilon^{i-1}\right)$. In other words :
a) if $p \neq 2$, the box i is special if it consists of two squares in the column h (some h), $\varepsilon_{h}^{i}=1$ and $\varepsilon_{h-1}^{i-1}=\omega$.
b) if $p=2$, the box i is special if it consists of two squares in the column h (some h), $\varepsilon_{h}^{i}=\omega$ and $\varepsilon_{h-1}^{i-1}=0$.

We take the special boxes as a basis for a vector space $\widetilde{\mathbb{S}}_{d}$ over $\mathbf{2} / 22$. We consider \tilde{S}_{d} as an abelian group. An element of \tilde{S}_{d} will be represented by the diagram d_{N} with signs + or - in the special boxes.

If $p \neq 2$ (resp. $p=2$) let \tilde{A} be the abelian group generated by $\left\{a_{i} \mid \varepsilon_{\lambda_{i}}=1\right\}$ (resp. $\left\{a_{i} \mid \varepsilon_{\lambda_{i}} \neq 0\right\}$) with the relations $a_{i}^{2}=1$ for all generators and $a_{i}=1$ if $\lambda_{i}=0$. The description of $A(u)$ given in I. 1.13 and I. 1.23 gives a homomorphism $\tilde{A} \longrightarrow A(u)$. This homomorphism is surjective if we are not in case (II) or (IV). If we are in case (II) or (IV) its image is $A_{0}(u)$. This will be sufficient since in this case $A(u)$ is generated by $A_{0}(u)$ and a_{0}, and a_{0} acts trivially on $S(u)$.

Let φ_{d} be the homomorphism $\widetilde{A} \rightarrow \widetilde{S}_{d}$ such that $\varphi_{d}\left(a_{i}\right)$ is the diagram d_{N} with signs - in the special boxes meeting the line i and with signs + in the other special boxes (for all a_{1} in the system of generators of \tilde{A}). This gives an action of \tilde{A} on $\widetilde{S}_{d}: \tilde{A} \times \tilde{S}_{d} \longrightarrow \widetilde{S}_{d},(a, s) \longrightarrow \varphi_{d}(a) s$.

Let d^{\prime} be the sequence $\left(\lambda^{0}, \varepsilon^{0}\right),\left(\lambda^{1}, \varepsilon^{1}\right), \ldots\left(\lambda^{n-1}, \varepsilon^{n-1}\right)$. We get in a similar way a group \widetilde{S}_{d}. . An element of \widetilde{S}_{d}, consists of the diagram d_{N-2} with signs + or - in the special boxes. By adding to the elements of \tilde{S}_{d}, a box with a sign + if the box n is special or an empty box if the box n is not
special, we make \widetilde{S}_{d}, into a subgroup of \widetilde{S}_{d}.
We define now a subgroup R_{d} of \tilde{S}_{d}. If $n \geqslant 2$ we may assume by induction on n that a subgroup R_{d}, of $\widetilde{S}_{d}, \subset \widetilde{S}_{d}$ has already been defined. If $n=1$ we define $R_{d},=\widetilde{S}_{d}$ in cases (V) and (VIII) and R_{d}, $=1$ in the other cases. Then $R_{d}=R_{d}, \varphi_{d}\left(K_{d}\right)$, where K_{d} is the kernel of the homomorphism $\tilde{A} \longrightarrow A(u)$.

If we are not in case (II) or (IV), the action of \mathbb{X} on $\widetilde{S}_{\bar{d}}$ induces an action of $A(u)$ on \tilde{S}_{d} / R_{d}. If we are in case (II) or (IV) we get an action of $A_{0}(u)$ on $\widetilde{S}_{d} / R_{d}$ but this action can be extended to an action of $A(u)$ by saying that a_{0} acts trivially provided that $a_{0}^{2} \in A_{0}(u)$ acts trivially.

Proposition 5.35. In the situation of 5.34 there exists a family $\left(f_{d}\right)_{d \in D^{*}}$ of $A(u)$-equivariant bijections f_{d} : $\widetilde{S}_{d} / R_{d} \longrightarrow S_{d}$. This family can be choosen in such a way that the resulting $A(u)$-equivariant bijection $f: \bigcup_{d \in D^{*}} \widetilde{S}_{d} / R_{d} \longrightarrow S(u)$ is well-defined up to composition with a bijection $f_{\hat{a}}$: $S(u) \longrightarrow S(u), \sigma \longmapsto a \sigma(a \in A(u))$.

Proof. Using 4.12, 5.23 and the definitions of \widetilde{S}_{d} and R_{d}, it is possible to check by induction on n that there exists an equivariant bijection $f_{d}: \widetilde{S}_{d} / R_{d} \rightarrow S_{d}$. If we are in case (II) or (IV) it is sufficient to consider the action of $A_{0}(u)$ in the proof.

What we want to do is to choose this bijection in the best possible way. This will be especially important in cases (V)
and (VIII). For this reason we give the construction of f_{d} for these cases. In the other cases the method is similar.

So assume that we are in case (V) or (VIII). For each $\mathrm{j} \geqslant 1$ let V_{j} be a vector space over k of dimension n_{j}, where n

$$
n_{j}= \begin{cases}j & \text { if } \varepsilon_{j}=1 \\ j+1 & \text { if } \varepsilon_{j}=\omega \\ j+2 & \text { if } j=0\end{cases}
$$

If we are in case (V) (resp. (VIII)), we choose a bilinear form f_{j} (resp. a quadratic form Q_{j} with associated bilinear form f_{j}) such that f_{j} is symmetric and non-degenerate. We get an orthogonal group $O\left(V_{j}\right)$. Choose a unipotent element $u_{j} \in$ $O\left(V_{j}\right)$ such that u_{j} has a single Jordan block. u_{j} is regular. Choose now a basis $e_{l}^{j}, \ldots, e_{n_{j}}^{j}$ for V_{j} such that $\left(u_{j}-1\right)\left(e_{r}^{j}\right)=$ $e_{r-1}^{j}\left(1 \leqslant r \leqslant n_{j}\right.$, with $\left.e_{0}^{j}=0\right)$, and such that :
a) in case $(V), f_{j}\left(e_{r}, e_{r}\right)=1$ if $2 r=n_{j}+1$ and $f_{j}\left(e_{r}, e_{s}\right)=0$ if $\left(n_{j}+1\right) / 2 \leqslant r \leqslant n_{j},\left(n_{j}+1\right) / 2<s \leqslant n_{j}$.
b) in case (VIII), $f_{j}\left(e_{1}, e_{n_{j}}\right)=1, f_{j}\left(e_{r}, e_{s}\right)=0$ if $n_{j} / 2<r, s \leqslant n_{j}$ and $Q_{j}\left(e_{n_{j}}\right)=0$.

Let also \bar{a}_{j} be the following element of $Z_{O\left(V_{j}\right)}\left(u_{j}\right)$. In case (V), $\bar{a}_{j}=-1$. In case (VIII), $\bar{a}_{j}=u_{j}$.

For every $h \geqslant 1$, let $J_{h}=\left\{j \in \mathbb{N} \mid \lambda_{j}=h\right\}$ if $\varepsilon_{h}=1$ and $J_{h}=$ $\left\{j \in \mathbb{N} \mid \lambda_{j}=h\right.$ and $j-\ell_{h+1}$ is even $\}$ if $\varepsilon_{h} \neq 1$. Let $J=\bigcup_{h 21} J_{h}$. We define for each $j \in J$ a vector space M_{j} with a bilinear form (in case (V)) or a quadratic form (in case (VIII)) and a unipotent element $v_{j} \in O\left(M_{j}\right)$.
a) if $\varepsilon_{h}=1, M_{j}=V_{j}$ with f_{j} or Q_{j} and $v_{j}=u_{j}$.
b) if $\varepsilon_{h}=\omega, M_{j}=L \frac{1}{L}$, where L is the subspace of $V_{j} \oplus V_{j+1}$ generated by $e_{l}^{j}+e_{l}^{j+l}$. We use on $V_{j} \oplus V_{j+l}$ the bilinear form or quadratic form which extends the given forms and for which V_{j} and V_{j+1} are orthogonal. We get also an element $u_{j} \oplus u_{j+1} \in$ $O\left(V_{j} \oplus V_{j+1}\right)$. The bilinear form or quadratic form on M_{j} is induced by this bilinear or quadratic form on $V_{j} \oplus V_{j+1}$ and ∇_{j} is induced by $u_{j} \oplus u_{j+1}$.
c) if $\varepsilon_{h}=0, M_{j}=N^{1} / N_{\text {, }}$, where N is the subspace of $V_{j} \oplus V_{j+1}$ generated by $e_{1}^{j}+e_{l}^{j+1}$ and $e_{2}^{j}+e_{2}^{j+l}$. The bilinear form or quadratic form on M_{j} and $v_{j} \in O\left(M_{j}\right)$ are defined as in (b).

Let now $\bar{V}=\underset{j \in J}{\oplus} M_{j}$. It is easily seen that \bar{V} inherits a bilinear form (resp. a quadratic form) if.we are in case (V) (resp. in case (VIII)) which defines an orthogonal group $O(\overline{\mathrm{~V}})$ and $\left(v_{j}\right){ }_{j \in J}$ gives a unipotent element $\bar{u} \in O(\bar{v})$. The conjugacy class of \bar{u} is parametrized by (λ, ε). There exists therefore an isomorphism $\theta: V \longrightarrow \bar{V}$ such that $\theta o u=\bar{u} \circ \theta$ and such that the bilinear forms or quadratic forms on V and \bar{V} correspond via θ. Moreover θ is unique up to composition with an automorphism $g \in Z(u)$ of V. In order to prove the proposition, it is sufficient to show that if such a θ is given, then we have a procedure to define the bijections $f_{d}\left(d \in D^{*}\right)$. We use θ to identify V and \bar{V}.
If we are in case (V) (resp. in case (VIII)) and $\varepsilon_{\lambda_{j}}=1$ (resp. $\varepsilon_{\hat{A}_{j}} \neq 0$), the automorphism of $\bigoplus_{j \in J} V_{m}$ defined by $V \longmapsto V$
if $v \in V_{m}(m \neq j)$ and $v \longmapsto \bar{a}_{j}(v)$ if $v \in V_{j}$ induces an automorphism of V which is actually an element of $Z(u)$. We denote also by \bar{a}_{j} this element of $Z(u)$. Notice that the image of \bar{a}_{j} in $A(u)$ is a_{j}.

Consider now a fixed $d \in D^{\#}$. Let $\left(\lambda^{0}, \varepsilon^{0}\right),\left(\lambda^{1}, \varepsilon^{1}\right), \ldots$, ($\lambda^{n}, \varepsilon^{n}$) be this sequence and let d^{\prime} be the sequence $\left(\lambda^{0}, \varepsilon^{0}\right)$, $\left(\lambda^{l}, \varepsilon^{l}\right), \ldots,\left(\lambda^{n-1}, \varepsilon^{n-1}\right)$. We write also $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$ for $\left(\lambda^{n-1}\right.$, ε^{n-1}). We define now by induction on n a family $\left(F_{s}\right)_{s \in \mathbb{S}_{d}}$ of elements of F_{u}. There will be several cases. In case (1) the box n consists of two squares of the line j, in the colum h and $h-1$. In the other cases the box n consists of two squares of the column h, in the lines j and $j+1$. Suppose first that $s \in \widetilde{S}_{d}, \subset \widetilde{S}_{d}$. Then in each case F_{s} will be a flag $F=\left(F_{0}, F_{1}\right.$, ..., $\mathrm{F}_{2 n}$) defined as follows. We fix F_{1} in each case. Then θ induces an isomorphism $\theta^{\prime}: F_{1} \frac{1}{1} P_{1}=V^{\prime} \cong \bar{V}^{\prime}=\underset{m \in J^{\prime}}{\boldsymbol{\oplus}} M_{m}^{\prime}$. Since $s \in \widetilde{S}_{d}$, we get by induction a flag of F_{1} / F_{1}. This defines the flag $F_{s} \in \mathcal{F}_{u}$. To get θ^{\prime} we start with vector spaces V_{m}^{\prime}. We take $V_{m}^{\prime}=V_{m}$ except in the following cases. In cases (I) to (3) V_{j}^{\prime} is the subspace of $V_{j} / k e_{1}^{j}$ generated by $e_{2}^{j}+k e e_{1}^{j}, \ldots$, $e_{h-1}^{j}+k e_{1}^{j}$ and we take these vectors as a basis. In cases (2) and (3) V_{j+1} is the subspace of $V_{j+1} / k e_{l}^{j+l}$ generated by $e_{2}^{j+1}+k e_{1}^{j+1}, \ldots, e_{h-1}^{j+1}+k e_{1}^{j+1}$ and we take these vectors as a basis. The remaining data to get θ^{\prime} are obtained in a similar way. If $a \in \widetilde{S}_{d}$, and if the box n is as specified above for the different cases, we choose F_{1} as follows.

1) $F_{1}=k e_{1}^{j}$.
2) $\varepsilon_{h}=0$. Then $F_{1}=\left(k e_{1}^{j} \oplus k e_{1}^{j+1} \oplus k\left(e_{2}^{j}+e_{2}^{j+1}\right)\right) / N$.
3) $\varepsilon_{h}=\omega$ and $\varepsilon_{h-1}^{\prime}=1$. Then $F_{1}=\left(k e_{j}^{j} \oplus k e_{1}^{j+1}\right) / L$.
4) $\varepsilon_{h}=1$. Then $F_{1}=L$.
5) $\varepsilon_{h}=\omega$ and $\varepsilon_{h-1}^{\prime}=0$. Then $F_{1}=N / L$.

We have used the aame notations as in the definition of the vector spaces $M_{m}, m \in J . L=k\left(e_{1}^{j}+i e_{1}^{j+1}\right)\left(i \in k, 1^{2}=-1\right)$ and $N=k\left(e_{1}^{j}+e_{1}^{j+l}\right) \oplus k\left(e_{2}^{j}+e_{2}^{j+l}\right)$.

In cases (1), (2) and (3), and in case (4) if $p=2, \widetilde{S}_{d}=$ $\widetilde{S}_{\mathrm{d}}$ and therefore the family $\left(\mathrm{F}_{\mathrm{a}}\right)_{\mathbf{s} \in \widetilde{S}_{\mathrm{d}}}$ is completely defined. In case (5), and in case (4) if $p \neq 2$ (i.e. if the box n is special), $\widetilde{S}_{d}, \neq \widetilde{S}_{d}$. If $s \in \widehat{S}_{d} \backslash \widetilde{S}_{d}$, then we define $F_{s}=$ $\bar{a}_{j} F_{a_{j}}$. This makes sense since $a_{j} s \in \widetilde{S}_{d}$.

The family $\left(F_{s}\right)_{s \in \tilde{S}_{d}}$ has the following property. For every $a_{i} \in \tilde{A}$ and every $a \in \widetilde{S}_{d}, \bar{a}_{i} F_{s}=F_{a_{i}}$. This can be proved by induction on n. There are many cases to consider. For example if the box n corresponds to the case (5) above, there is a box consisting of two squares of the column $h-1$, in the lines j and $j+1$. This can be used to prove that $\bar{a}_{j} \bar{a}_{j+1} F_{s}=$

By construction the image of F_{g} in B_{u} is contained in X_{d}. Since all irreducible components of X_{d} are disjoint, and since the closure of any irreducible component of X_{d} is an irreducible component of \mathcal{B}_{u} (an element of S_{d} by definition of S_{d}), we get an application $\widetilde{f}_{d}: \widetilde{S}_{d} \longrightarrow S_{d}$. The property of
($\mathrm{F}_{\mathbf{s}}$) $\mathbf{s \in \widehat { S } _ { \mathrm { d } }}$ mentionned above shows that f_{d} is \tilde{A}-equivariant. 5.23 shows by induction on n that f_{d} induces an application $f_{d}: \tilde{S}_{d} / R_{d} \longrightarrow S_{d}$ and that f_{d} is bijective. Moreover f_{d} is $A(u)$-equivariant since f_{d} is \tilde{A}-equivariant.

Remarks 5.36. a) In the proof of 5.35 the image of the flag F_{s} in \mathcal{B}_{u} is contained in a unique irreducible component of X_{d}, but it may be contained in several components of $\mathcal{R}_{u^{\prime}}$
b) It follows from 5.35 that for every $d \in D^{*}$ there is a welldefined bijection $\widetilde{S}_{d} / R_{d} \varphi_{d}(\mathbb{A}) \longrightarrow S_{d} / A(u)$. This makes the set of all $A(u)$-orbits contained in S_{d} into a group. Suppose that $P \ni u$ is a parabolic subgroup of G such that $u U_{P}$ is quasisemisimple in P / U_{P} and $B(P)_{u}=X_{\sigma}$ is an irreducible component of β_{u}. Suppose also that $\sigma \in S_{d}$. It will be clear from later computations that the $A(u)$-orbit of σ is the identity element in $S_{d} / A(u)$. I don't know in general if the group structure of $S_{d} / A(u)$ has a geometric meaning.
5.37. In 4.3 we have attached to each $\sigma \in S(u)$ a subset I_{σ} of TT. I_{σ} is u-stable.

Suppose first that $n=1$. If we are in case (II) or (III), $I_{\sigma}=o\left(\alpha_{1}\right)$ if $d_{3}=E$, and $I_{\sigma}=\varnothing$ if $d_{3}=\square L D$. If we are in case (IV) $d_{2}=\square$, and $I_{\sigma}=\left\{\alpha_{1}\right\}$ if $\varepsilon_{1}=0, I_{\sigma}=\varnothing$ if $\varepsilon_{1}=1$. If we are in case (VI) or (VII), $I_{\sigma}=\left\{\alpha_{1}\right\}$ if $d_{2}=\square$ and $I_{\sigma}=\varnothing$ if $d_{2}=\square$.

Suppose now that $n=2$. If we are in case (V) (reap. in
case (VIII)), $I_{\sigma}=\left\{\alpha_{1}, \alpha_{2}\right\}$ if $d_{4}=\mathbb{Z}, I_{\sigma}=\left\{\alpha_{1}\right\}$ or $\left\{\alpha_{2}\right\}$ if $d_{4}=\boxminus$ (resp. $d_{4}=\square$ and $\varepsilon_{2}=0$) and $I_{\sigma}=\emptyset$ if $d_{4}=\square \square$ (resp. $d_{4}=H$ and $\varepsilon_{2}=I$). If we are in case $(I X), I_{\sigma}=$ $o\left(\alpha_{1}\right)=\left\{\alpha_{1}, \alpha_{2}\right\}$ if $d_{4}=\nabla$ and $I_{\sigma}=\varnothing$ if $d_{4}=\square 1$.

If $n \geqslant 2$ we shall say that (for a given $d \in D^{*}$) the box $n-1$ is above (resp. below) the box n if for some j the box $n-l$ (resp. n) is contained in the union of the lines $1,2, \ldots, j$ and the box n (resp. $n-1$) is contained in the union of the lines $\mathbf{j}+1, \mathbf{j}+2, \ldots$.

Proposition 5.38. Suppose that we are in the situation of 5.37. Suppose also that $n \geqslant 2$, and $n \geqslant 3$ if we are in case (V), (VIII) or (IX). Let $\left(\lambda^{0}, \varepsilon^{0}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$ be a sequence $d \in D^{*}$ and let $\sigma \in S_{d}$. Then $\alpha_{n} \in I_{\sigma}$ (resp. $\alpha_{n} \notin I_{\sigma}$) if the box $n-1$ is above (resp. below) the box n. If the box $n-1$ is neither above nor below the box n, then $\alpha_{n} \in I_{\sigma}$ if for some h and j the box n consists of two squares in the column h, in the lines f and $j+l$, the box $n-1$ consists of two squares in the colum h, in the lines j and $j+1$, and one of the following conditions holds.
a) $\varepsilon_{h}^{n}=\varepsilon_{h-2}^{n-2}$, the box $n-1$ is special and contains a sign + for some (or every) $s \in \widetilde{S}_{d}$ such that $f_{d}(s)=\sigma$.
b) $p=2$ and $\varepsilon_{h-1}^{n-1}=1$.

Proof. The proof is similar to the proof of 5.11 (in particular if the box $n-1$ is above or below the box n) but
with more cases and is omitted.
5.39. 4.8 and 5.38 give an inductive method to determine I_{σ} if $S(u)$ is described as in 5.35. We have however to be careful if we are in case (V) or (VIII) because G / G° permates α_{1} and α_{2} which are not in the same u-orbit.

Suppose that we are in case (V) or (VIII). Then $F=F_{1} U$ F_{2} has two components and we can define lines of type α_{1} in F_{1} and lines of type α_{2} in F_{2} (this is clear from 5.1). Consider a fixed $d \in D^{*}$ such that $d_{\lambda} 2=\square$ and $\varepsilon_{2}^{2} \neq 1$ (where d is the sequence $\left(\lambda^{0}, \varepsilon^{0}\right), \ldots,\left(\lambda^{n}, \varepsilon^{n}\right)$). Then for each $\sigma \in S_{d}, \alpha_{1} \in I_{\sigma}$ or $\alpha_{2} \in I_{\sigma}$, and $\left\{\alpha_{1}, \alpha_{2}\right\} \notin I_{\sigma}$. In order to determine which possibility occurs, we need only to solve the following problems.
a) For which $s \in \widetilde{S}_{d}$ is there a line of type α_{1} or α_{2} through F_{s} contained in \mathcal{F}_{u} ?
b) For each $s \in \widetilde{S}_{d}$, which is the component of \mathcal{F} containing F_{B} ?

The answer to (a) can be obtained by induction on n. If $n=2$, there is a line of type α_{1} or α_{2} through F_{s} contained in \mathcal{F}_{u} if and only if $s=+[$. If $n \geqslant 3$, we just have to look at the construction of the family $\left(F_{\bar{s}}\right)_{s \in S_{d}}$ in the proof of 5.35 and use induction on n.

For (b), notice first that if $F=\left(F_{0}, F_{1}, \ldots, F_{2 n}\right) \in \mathcal{F}$, then $\mathcal{F}^{\prime}=\left\{F^{\prime}=\left(F_{0}^{\prime}, \ldots, F_{2 n}^{\prime}\right) \in \mathcal{F}^{\prime} \mid F_{i}^{\prime}=F_{1}\right\}$ has two componenits (one in \mathcal{F}_{1} and one in \mathcal{F}_{2}) and therefore F and F^{\prime} are in the
same component of \mathcal{G} if and only if they are in the same component of F^{\prime}. We can therefore determine by induction on n which component of \mathcal{F}^{-}contains F_{s} if we can solve the same problem with $s=1$.

For every $d \in D^{*}$ let F_{d} be the element of $\left(F_{B}\right)_{s \in S_{d}}$ indexed by $l \in \widetilde{S}_{d}$. We show now that the flags $\left(F_{d}\right)_{d \in D^{*}}$ belong to the same component of \mathcal{F}. If $A(u) \neq 1$, this component depends on the choice of θ in the proof of 5.35. If $A(u)=1$ this component is completely determined by u.

Suppose that $d, e \in D^{*}$ and let $F_{d}=\left(F_{0}, F_{1}, \ldots, F_{2 n}\right)$ and $F_{e}=$ ($F_{0}^{\prime}, F_{1}^{\prime}, \ldots . P_{2 n}^{\prime}$). We have to show that F_{d} and F_{e} belong to the same component of \mathcal{F}. This is clear by induction on n if $F_{1}=$ F_{1}. If $F_{1} \neq F_{i}$, then $w e$ can find $\bar{d}, \bar{e} \in D^{*}$ such that (with $F_{\bar{d}}=$ $\left(\bar{F}_{0}, \bar{F}_{1}, \ldots, \bar{F}_{2 n}\right)$ and $\left.F_{\bar{e}}=\left(\bar{F}_{0}, \bar{F}_{1}, \ldots, \bar{F}_{2 n}\right)\right) \bar{F}_{1}=F_{1}, \bar{F}_{1}=F_{i}^{\prime}$, $\bar{F}_{2}=\bar{F}_{2}=F_{1} \oplus F_{i}^{\prime}$ and $\bar{F}_{i}=\bar{F}_{i}$ if $i=1$, $2 n-1$ (this can be proved by considering the different possibilities for the box n in d and e and by using the definition of F_{d}). F_{d} and $F_{\bar{d}}$ are in the same component of \mathcal{F} and F_{e} and $F_{\bar{e}}$ are in the same component of \mathcal{F}. We need only to prove that $F_{\bar{d}}$ and $F_{\bar{e}}$ are in the same component of \mathscr{C}. It is easy to check that in all possible cases $\left\{\left(\bar{F}_{0}, I, \bar{F}_{2}, \ldots, \bar{F}_{2 n-2}, I, \bar{F}_{2 n}\right) \in \mathcal{F}\right\}$ is contained in \mathcal{F}_{u} and contains $P_{\bar{d}}$ and $P_{\bar{e}}$. This implies that $F_{\bar{d}}$ and $P_{\bar{e}}$ (and hence F_{d} and F_{e}) are contained in the same component of F.

We have also shown that if $C(u) \neq C^{\circ}(u)$ (in case (V) or
(VIII)), then we can attach to u or $C^{0}(u)$ a component of \mathcal{F}, (or an element of $\left\{\alpha_{1}, \alpha_{2}\right\}$) in a canonical way. We take the component of \mathcal{F} containing the flags $F_{d}\left(d \in D^{*}\right)$.

Lemma 5.40. Suppose that we are in one of the cases (I) to (IX). If a unipotent element $u \in G$ is such that $\operatorname{dim} \mathcal{B}_{u} \geqslant 3$, then $\left|I_{\sigma}\right| \geqslant 2$ for some $\sigma \in S(u)$.

Proof. This can be checked easily in each case. In case (I)
we use 5.6 and 5.12. In the other cases we use 5.19 and 5.38.

6. P-regular classes.

6.1. In this paragraph we consider the same cases as in paragraph 5 and we use the notations of 5.1. We use also the notations of 3.1. The problem we consider here is the following. Let $P \rho B$ be a parabolic subgroup of G^{0} and let I be the corresponding subset of TT. Determine λ (in case (I)) or (λ, ε) (in cases (II) to (IX)) such that $C_{P}=C_{\lambda}$ (in case (I)) or $C_{P}=C_{\lambda, \varepsilon}$ (in cases (II) to (IX)).

The subset $I \subset T$ will be described as follows.
a) In case (I), I is characterized by integers n_{1}, \ldots, n_{s} such that $\sum_{\text {, } r \text {;s }} n_{r}=n$ and $I=\bigcup_{1 \leqslant r s s}\left\{\alpha_{i} \mid n_{1}+\ldots+n_{r-1}<i<n_{I}+\ldots+n_{r}\right\}$. b) In cases (II), (III), (IV), (VI) and (VII), I is described by integers m, n_{1}, \ldots, n_{s} such that $m+n_{1}+\ldots+n_{s}=n$ and $I=$ $\left(\bigcup_{1 \leqslant r \leqslant s}\left\{0\left(\alpha_{i}\right) \mid m+n_{1}+\ldots+n_{r-1}+2 \leqslant 1 \leqslant m+n_{1}+\ldots n_{r}\right\}\right) \cup\left\{0\left(\alpha_{i}\right) \mid 1 \leqslant 1 \leqslant m\right\}$. c) In cases (V) and (VIII), notice first that every Gconjugacy class of parabolic subgroups of G° contains a parabolic subgroup $P^{\prime} \supset B$ corresponding to a subset I^{\prime} of T such that $\operatorname{I'} \cap\left\{\alpha_{1}, \alpha_{2}\right\} \notin\left\{\alpha_{1}\right\}$. So we may assume that I $\cap\left\{\alpha_{1}, \alpha_{2}\right\} \not \neq\left\{\alpha_{1}\right\}$. Then I will be characterized by integers m, n_{1}, \ldots, n_{s} such that $m+n_{1}+\ldots+n_{s}=n$ and $I=$ $\left(\bigcup_{1 \& 6 s}\left\{\alpha_{i} \mid m+n_{2}+\ldots+n_{r-1}+2 \leqslant i \leqslant m+n_{1}+\ldots+n_{r}\right\}\right) \cup\left\{\alpha_{i} \mid 1 \leqslant i \leqslant m\right\}$. d) In case (IX), if $\circ\left(\alpha_{1}\right) \subset I$, I will be characterized by integers m, n_{1}, \ldots, n_{s} such that $m+n_{1}+\ldots+n_{s}=n-1$ and $I=$ $\left(\bigcup_{1 \leqslant r \leqslant s}\left\{\alpha_{i} \mid m+n_{1}+\ldots+n_{r-1}+3 \leqslant i \leqslant m+n_{1}+\ldots+n_{r}+1\right\}\right) \cup\left\{\alpha_{i} \mid 1 \leqslant i \leqslant m+1\right\}$. If $o\left(\alpha_{1}\right) \& I$, then I will be characterized by integers m, n_{1},
\ldots, n_{s} with $m=0, m^{m} n_{1}+\ldots+n_{s}=n-1$ and $I=$ $\bigcup_{1 \leqslant r \leqslant s}\left\{\alpha_{i} \mid m+n_{1}+\ldots+n_{r-1} \leqslant 1 \leqslant m+n_{1}+\ldots+n_{r}+1\right\}$.

In each case let $n_{1}^{\prime}, \ldots, n_{s}^{\prime}$ be the integers n_{1}, \ldots, n_{s} arranged in decreasing order (i.e. for some permutation σ of $\{1, \ldots, s\}, n_{j}^{\prime}=n_{\sigma_{i}}$ for all $1,1 \leqslant i \leqslant s$, and $\left.n_{i}^{\prime} \geqslant n_{2}^{\prime} \geqslant \ldots \geqslant n_{s}^{\prime}\right)$. Define also $E_{j}=\left\{i \mid n_{i}=j\right\}(j \geqslant 1)$.

Proposition 6.2. In the situation of 6.1 the \mathscr{P}-regular class is the unipotent class parametrized by λ (in case (I)) or (λ, ε) (in cases (II) to (IX)), where λ or (λ, ε) is defined as follows.
a) In case (I), $l_{i}=n_{i}^{\prime}$ for all $i, 1 \leqslant i \leqslant s$.
b) In cases (II) and (III), d_{λ} satisfies :
b_{1}) if $j \leqslant 2 m+1$, then $\ell_{2 i}=\ell_{2 i+1}=j$ if $i \in E_{j}$.
b_{2}) if $j>2 m+1$ is odd, then $\ell_{2 i-1}=\ell_{2 i}=j$ if $i \in E_{j}$.
b_{3}) if $j>2 m+1$ is even and $E_{j}=\{p, p+1, \ldots, q\}$, then
$\ell_{2 p-1}=j+1, \ell_{2 p}=l_{2 p+1}=\ldots=\ell_{2 q-1}=j, l_{2 q}=j-1$.
b_{4}) if $n_{p}^{\prime}>2 m+1$ and $n_{p+1}^{\prime} \leqslant 2 m+1$, then $\ell_{2 p+1}=2 m+1$.
c) In case (IV), d_{λ} and ε satisfy :
c_{1}) if $j \leqslant 2 m$ is odd and $E_{j}=\{p, p+1, \ldots, q\}$, then $\ell_{2 p}=$ $j+1, \ell_{2 q+1}=j-1$ and if $p \neq q, \ell_{2 p+1}=j+1, l_{2 p+2}=\ldots=$ $\ell_{2 q-1}=j, \ell_{2 q}=j-1$. Moreover $\varepsilon_{2 q+1}=0$ if $n_{q+1}^{\prime} \leqslant j-3$. c_{2}) if $j \leqslant 2 m$ is even and $i \in E_{j}$, then $l_{2 i}=\ell_{2 i+1}=j$. Moreover $\varepsilon_{2 i+1}=0$ if $n_{i+1} \leqslant j-2$.
c_{3}) if $j>2 m$ is odd and $E_{j}=\{p, p+1, \ldots, q\}$, then $l_{2 p-1}=$ $j+1, \ell_{2 p}=\ldots=\ell_{2 q-1}=j, \ell_{2 q}=j-1$.
c_{4}) if $j>2 m$ is even and $i \in E_{j}$, then $\ell_{2 i-1}=\ell_{2 i}=j$. c_{5}) if $n_{p}^{\prime}>2 m$ and $n_{p+1}^{\prime} \leqslant 2 m$, then $\ell_{2 p+1}=2 m$. Moreover $\varepsilon_{2 p+1}=0$ if $n_{p+1}^{\prime} 2 m-2$.
d) In case $(V), d_{\lambda}$ satisfies :
d_{1}) if $j \leqslant 2 m$ and $i \in E_{j}$, then $\ell_{2 i}=\ell_{2 i+1}=j$.
d_{2}) if $j>2 m$ is odd and $E_{j}=\{p, p+1, \ldots, q\}$, then $\ell_{2 p-1}=$ $j+1, \ell_{2 p}=\ldots=\ell_{2 q-1}=j, \ell_{2 q}=j-1$.
d_{3}) if $j>2 m$ is even and $i \in E_{j}$, then $\ell_{2 i-1}=\ell_{2 i}=\mathrm{J}$. d_{4}) if $n_{p}^{\prime}>2 m$ and $n_{p+1}^{\prime} \leqslant 2 m$, then $\ell_{2 p+1}=2 m$.
e) In cases (VI) and (VII), d_{λ} satisfies : e_{1}) if $j<2 m$ is odd and $E_{j}=\{p, p+1, \ldots, q\}$, then $\ell_{2 p}=$ $j+1, \ell_{2 p+1}=\ldots=\ell_{2 q}=j, \ell_{2 q+1}=j-1$. e_{2}) if $j<2 m$ is even and $i \in E_{j}$, then $l_{2 i}=l_{2 i+1}=j$. e_{3}) if $j \geqslant 2 m$ and $i \in E_{j}$, then $\ell_{2 i-1}=\ell_{2 i}=j$. e_{4}) if $n_{p}^{\prime} \geqslant 2 m$ and $n_{p+1}^{\prime}<2 m$, then $l_{2 p+1}=2 m$.
f) In case (VIII), α_{λ} and ε satisfy : f_{1}) if $j \leqslant 2 m$ is odd and $E_{j}=\{p, p+1, \ldots, q\}$, then $l_{2 p}=$ $j+1, \ell_{2 p+1}=\ldots=l_{2 q}=j, \ell_{2 q+1}=j-1$.
f_{2}) if $j \leqslant 2 m$ is even and $i \in E_{j}$, then $\ell_{2 i}=\ell_{2 i+1}=1$. f_{3}) if $j>2 m$ is odd and $E_{j}=\{p, p+1, \ldots, q\}$, then $l_{2 p-1}=$ $j+1, l_{2 q}=j-1$ and if $p \neq q, l_{2 p}=j+1, l_{2 p+1}=\ldots=$ $\ell_{2 q-2}=j, l_{2 q-1}=j-1$. Moreover $\varepsilon_{2 q}=0$ if $j \geqslant 2 m+3$ and $n_{q+1}^{\prime} \leqslant j-3$.
f_{4}) if $j>2 m$ is even and $i \in E_{j}$, then $l_{2 i-1}=l_{2 i}=j$. Moreover $\varepsilon_{2 i}=0$ if $n_{i+1} \leqslant j-2$.
f_{5}) if $n_{p}^{\prime}>2 m$ and $n_{p+1}^{\prime} \leqslant 2 m$, then $\ell_{2 p+1}=2 m$.
g) In case (IX), d_{λ} and ε satisfy :
g_{1}) if $j \leqslant 2 m+1$ is odd and $i \in E_{j}$, then $\rho_{2 i}=\varepsilon_{2 i+1}=j$.
g_{2}) if $j \leqslant 2 m+1$ is even and $E_{j}=\{p, p+1, \ldots, q\}$, then $l_{2 p}=$ $j+1, l_{2 p+1}=\ldots=l_{2 q}=j, l_{2 q+1}=j-1$.
g_{3}) if $j>2 m+1$ is odd and $i \in E_{j}$, then $\ell_{2 i-1}=l_{2 i}=j$.
Moreover $\varepsilon_{2 i}=0$ if $n_{i+1} \leqslant j-2$.
g_{4}) if $j>2 m+1$ is even and $E_{j}=\{p, p+1, \ldots, q\}$, then
$\ell_{2 p-1}=j+1, \ell_{2 q}=j-1$ and if $p \neq q, \ell_{2 p}=j+1, l_{2 p+1}=$
$\ldots=l_{2 q-2}=j, l_{2 q-1}=j-1$. Moreover $\varepsilon_{2 q}=0$ if $j \geqslant 2 m+4$ and $n_{q+1}^{\prime} \leqslant j-3$.
g_{5}) if $n_{p}^{\prime}>2 m+1$ and $n_{p+1}^{\prime} \leqslant 2 m+1$, then $\rho_{\overline{2} p+1}=2 m+1$.
$\left.g_{6}\right) l_{2 s+2}=1$.
In cases (II) to (IX) $\varepsilon_{i} \neq 0$ unless otherwise stated.

Proof. For the proof we modify the notations as follows. Q is a G-conjugacy class of parabolic subgroups of G° corresponding to the subset I of T and c_{λ} or $c_{\lambda, \varepsilon}$ is the $Q-$ regular class. P is defined as in 5.22.

If u is Q-regular, \mathcal{B}_{u} has an irreducible component X_{σ} of the form $\mathscr{G}(Q)_{u}$ for some $Q \in Q$ such that $u U_{Q}$ is quasisemisimple in $N_{G}(Q)$. Suppose that we are not in case (I). We can choose ($\lambda^{\prime}, \varepsilon^{\prime}$) in 5.23 in such a way that $X_{\sigma} \cap X$ is dense in X_{σ}. Consider the projection $p: X \longrightarrow Y$ used in 5.23. It is easy to check (from 5.19 or 5.30) that dim $Y=$ $\ell_{1}-1$ if operation (b) of 5.23 is used to get $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$ from (λ, ε), or if operation (a) is used with $\varepsilon_{i}=0$ or $\varepsilon_{i}=\omega$ and
$\varepsilon_{i-1}=1$, and $\operatorname{dim} Y=\ell_{i}-2$ if operation (a) is used with $\varepsilon_{i}=$ 1 or $\varepsilon_{i}=\omega$ and $\varepsilon_{i-1}^{\prime}=0$. It follows easily that if $\left(\lambda^{\prime}, \varepsilon^{\prime}\right)$ and dim Y are given, then (λ, ε) is uniquely determined.

By 4.8 the unipotent class of P / U_{P} parametrized by ($\lambda^{\prime}, \varepsilon^{\prime}$) is the Q^{\prime}-regular class, where Q ' is the conjugacy class of parabolic subgroups of P^{0} / U_{P} corresponding to the subset $I \backslash o\left(\alpha_{n}\right)$ of $T \Gamma o\left(\alpha_{n}\right)$. By induction on n we may therefore assume that ($\lambda^{\prime}, \varepsilon^{\prime}$) is given by the proposition.
B_{y} 3.3, dim $Q_{\bar{u}}=m^{2}+1 / 2 \sum_{16 r \in s} n_{r}\left(n_{r}-1\right.$) in cases (II), (III), (IV), (VI), (VII) and (IX) and dim $9_{3}=m(m-1)+I / 2$ $1 / 2 \sum_{\text {iris }} n_{r}\left(n_{r}-1\right)$ in cases (V) and (VIII) (and dim $\beta_{u}=$ $1 / 2 \sum_{1 / r+s} n_{r}\left(n_{r}-1\right)$ in case (I)). A similar formula gives the dimension of the fibres of $p: X \longrightarrow Y$. Substracting, we get $\operatorname{dim} Y$. For example, if $s \geqslant 1$, we get dim $Y=n_{s}$-l. Knowing ($\lambda^{\prime}, \varepsilon^{\prime}$) and dim Y, it is then easy to check in each case that (λ, ε) is given by the proposition.

The proof in case (I) is similar.
6.3. Suppose that we are in case (V) (resp. (VIII)). Let u be a unipotent element such that $C^{\circ}(u) \neq C(u)$. This is equivalent to $A(u)=1$. The elements with this property are those corresponding to pairs (λ, ε) such that $c_{i}=0$ if is odd and c_{i} is even if i is even (resp. $c_{i}=0$ if is odd, c_{i} is even if if is even and $\varepsilon_{i} \neq 1$ for all i). It follows from 6.2 that $C(u)$ is the $C-r e g u l a r$ class if and only if P corresponds to a subset I_{2} of Π (with $I_{2} \cap\left\{\alpha_{1}, \alpha_{2}\right\} \neq\left\{\alpha_{1}\right\}$)
characterized by the integers $m=0$ and $n_{i}^{\prime}=l_{2 i}(1 \leqslant i \leqslant s)$. Notice that $l_{1}, \ldots, l_{2 \theta}$ are even. In particular $\alpha_{2} \in I_{2}$ and $\alpha_{1} \notin I_{2}$ since $m=0$. Let $I_{1}=\left(I_{2} \backslash\left\{\alpha_{2}\right\}\right) \cup\left\{\alpha_{1}\right\}$. Let P_{1} (resp. P_{2}) be the parabolic subgroup of G^{0} containing B which corresponds to I_{1} (resp. I_{2}) (with the notations of 6.1 we have $P_{2}=P$). Then $\varphi=Q_{1} \cup Q_{2}$ and $C(u)=C_{P}=C_{P_{1}}^{0} \cup C_{P_{2}}^{0}$. We show now that $u \in C_{P_{1}}^{0}$ if and only if the root $\alpha_{i} \in\left\{\alpha_{1}, \alpha_{2}\right\}$ attached to $c^{0}(u)$ in 5.39 is α_{1}.

Let X_{σ} be a component of Q_{u} of the form $Q_{B}\left(P^{\prime}\right)$ for some $P^{\prime} \in \mathbb{P}$. Then $\sigma \in S_{d}$ for some $d \in D^{*}$ and $I_{\sigma}=I_{I}$ or I_{2}. For dimension reasons, the $A_{0}(u)$-orbit of σ in $S(u)$ is $\{\tau \in S(u) \mid$ $\left.I_{\tau}=I_{\sigma}\right\}=\left\{\tau \in S_{d} \mid I_{\tau} \supset I_{\sigma}\right\}$. Let τ be the image in S_{d} of $I \in \widetilde{S}_{d}$. From $5.38 I_{\tau} \supset I_{\sigma}$. Hence $\sigma=\tau$ since $A_{0}(u)=1$. Since σ is the image of $l \in \tilde{S}_{d}, 5.38$ and 5.39 show that $I_{\sigma}=I_{1}$ (i.e. p' $\in \mathcal{P}_{1}$) if and only if the fundamental root corresponding to $C^{\circ}(u)$ is α_{1}.

The argument used here works in a more general situation and proves a statement made in 5.36.
6.4. Every unipotent class in a connected reductive group of type A_{ρ} is \mathscr{P}-regular for some conjugacy class of parabolic subgroups. This is not true in other groups. Suppose that we are in one of the cases (II) to (IX). Then it is possible to deduce from 6.2 a method to determine whether a unipotent class $C_{\lambda, \varepsilon}$ is P-regular for some P, and if this is the case for which conjugacy classes of parabolic subgroups. A special
case has been considered in 6.3. In general the main problem is to determine the possible values of m. For example if we are in case (VI) or (VII) the smallest possible value of m can be obtained as follows. If l_{1} is odd, the problem has no solution. If $l_{1} \neq l_{2}$ and l_{1} is even, let $m_{0}=l_{1} / 2$. If l_{1} is even and $l_{1}=l_{2}$, remove the columns 1 and 2 from d_{λ} and start again unless the new diagram is empty, in which case we put $m_{0}=0$. In this way either we find that there is no solution or we find an integer m_{0}. Suppose we have obtained this integer m_{0}. Then it is easy to see if it gives a solution. If this is the case, the possible values for m are $m_{0}, m_{0}+1, \ldots, m_{0}+j$ if d_{λ} has columns of length $2 m_{0}+2,2 m_{0}+4$, $\ldots, 2 m_{0}+2 j$ but no column of length $2 m_{0}+2 j+2$.

It will be convenient now to allow some of the integers n_{1}, \ldots, n_{s} to be 0 .

Suppose that we are in case (II), (III), (IV), (VI), (VII) or (IX). Let $P>B$ be the parabolic subgroup of G° corresponding to the sequence m, n_{1}, \ldots, n_{s}. Suppose that $n_{1}=$ $2 m+2$ (resp. $n_{i}=2 m-1$). Replace m by $m+1$ (resp. $m-1$) and n_{i} by $n_{i}-1$ (resp. $n_{i}+1$) in the sequence m, n_{i}, \ldots, n_{s}. Let $Q \supset B$ be the parabolic subgroup of G^{0} corresponding to this new sequence. Then it is easy to check that $C_{Q}=C_{P}$. Moreover if $P^{\prime} \supset B$ is a parabolic subgroup of G^{0} such that $C_{P^{\prime}}=C_{P^{\prime}}$, then p^{\prime} can be obtained by repeated operations of the type above and by permutation of the integers n_{1}, \ldots, n_{s}.

If we are in case (V) or (VIII) and $n_{i}=2 m+1 \geqslant 5$ (resp. $n_{i}=2 m-2 \geqslant 4$) then we get the same unipotent class if we replace m by $m+1$ (resp. $m-1$) and n_{i} by $n_{i}-1$ (resp. $n_{i}+1$). If $m=0, n_{i}=1$ and $n_{j}=3$ (resp. $m=2, n_{i}=0$ and $n_{j}=2$) then we can replace m by $2, n_{i}$ by 0 and n_{j} by 2 (resp. m by ρ, n_{i} by l and n_{j} by 3) without changing the unipotent class. If $P, P^{\prime} \supset B$ are parabolic subgroups of G° such that $C_{P}=C_{P \prime}$ and if the corresponding subsets I, I^{\prime} of Π are such that I $\cap\left\{\alpha_{1}, \alpha_{2}\right\} \neq\left\{\alpha_{1}\right\}$ and $I^{\prime} \cap\left\{\alpha_{1}, \alpha_{2}\right\} \neq\left\{\alpha_{1}\right\}$, then I' can be obtained from I by repeated operations of the type above and by permutation of the integers n_{1}, \ldots, n_{s}.
6.5. Let G be a connected reductive algebraic group, let P be a parabolic subgroup of G and let M be a Levi subgroup of P. Then P is distinguiehed in G if dim $U_{P} / U_{P I}=d i m M^{\prime}$, where U_{P}, and M^{\prime} are the derived subgroups of U_{P} and N respectively.

Consider a pair (L, P) where L is a Levi subgroup of some parabolic subgroup of G and P is a parabolic subgroup of L. Associate to this pair (L, P) the unipotent class of G which contains the P-regular class of L. This induces an application from the set of conjugacy classes of such pairs to the set of unipotent classes of G.

Consider first the restriction of this application to the set of conjugacy classes of pairs (L, P) with P distinguished in L. Bala and Carter have proved that if $p=0$ or if p is large (i.e. $p \geqslant 4 m+3$, where $m=\max _{\alpha \in \phi} h t(\alpha)$), then this
restriction is a bijection. The condition on p can be weakened. For example if G is of type A_{n} it is true for all p. If G is of type B_{n}, C_{n} or D_{n} it is true if $p \neq 2$. If G is of type G_{2} it is true if $p \neq 3$. This restriction is injective but not surjective if G is of type $B_{n}(n \geqslant 2), C_{n}(n \geqslant 2)$ or D_{n} $(n \geqslant 6)$ and $p=2$. If G is of type G_{2} and $p=3$, then it is neither injective nor surjective (notice that in this case every parabolic subgroup P of G is distinguished, except G itself, and we get therefore twice the subregular elements).

We shall show that if we consider all pairs (L, P) (with L a Levi subgroup of some parabolic subgroup of G and P a parabolic subgroup of L) then we get all unipotent classes if G is of type B_{n} or C_{n}, or if G is of type D_{n} and $p \neq 2$. This application is not surjective if G is of type $D_{n}(n \geqslant 8)$ and $p=2$ or if G is of type G_{2} and $p=3$.

Suppose now that we are in one of the cases (II) to (IX). Let Q be a parabolic subgroup of G corresponding to a subset I of T stable under the action of the component of G we consider. Let B^{\prime} be a Borel subgroup of Q and let T ' be a maximal torus of B^{\prime}. Let x be a unipotent quasisemisimple element of G (in the component we consider) normalizing B^{\prime} and T^{\prime}. The Levi subgroup $L \supset T$ of Q is also normalized by x. Let P be a parabolic subgroup of L corresponding to an x stable subset J of I. Associate to the pair (L, P) the unipotent class of G (contained in $x G^{0}$) which contains the p-regular class of $\langle I, x\rangle$ contained in $x L$. We get in this way
an application from the set of all G-conjugacy classes of such pairs to the set of unipotent classes of G contained in the component we consider. This application is surjective if we are in case (II), (III), (V), (VI) or (VII). We sketch here the proof for case (VII).

Suppose that we are in case (VII). We need only to understand which class of G correspond to (L,P). If JCI are as above and if I is deacribed by integers m, n_{1}, \ldots, n_{s}, let $I_{0}=\left\{\alpha_{i} \mid 1 \leqslant i \leqslant m\right\}, I_{r}=\left\{\alpha_{1} \mid m+n_{1}+\ldots+n_{r-1}+2 \leqslant i \leqslant m+n_{1}+\ldots+n_{r}\right\}$ $(1 \leqslant r \leqslant s), J_{r}=J \cap I_{r}(0 \leqslant r \leqslant s)$.

If $m=n$ (and $s=0$), then $L=G$ and (L, P) gives the P regular class. In this case we can just use 6.2. If m $\neq n$, the group $\left\langle X_{ \pm a_{i}} \mid i \in I_{0}\right\rangle$ is a symplectic group $S p_{2 m}$ and the subset $J_{0} \subset I_{0}$ gives a unipotent class $C_{\lambda}{ }^{0}, \mathcal{C}^{0}$ in this group. ($\lambda^{0}, \varepsilon^{0}$) can be computed from 6.2.

If $m=0$ and $n_{1}=n($ and $s=1)$, then $J=J_{1}$ can be described by integers q_{1}, \ldots, q_{h} such that $q_{1}+\ldots+q_{h}=n$ and $J=\int_{10 j \leqslant k}\left\{\alpha_{i} \mid q_{1}+\ldots+q_{j-1}+2 \leqslant 1 \leqslant q_{1}+\ldots+q_{j}\right\}$. The class $c_{\lambda, \varepsilon}$ corresponding to (L, P) is the following. d_{λ} is the diagram such that $l_{i}=2 q_{i}^{\prime}(1 \leqslant 1 \leqslant h)$, where $q_{i}, \ldots, q_{h}^{\prime}$ are the integers q_{1}, \ldots, q_{h} arranged in decreasing order, and $\varepsilon_{1} \neq 1$ for all $i \geqslant 1$. If $m \geqslant 0$ and $1 \leqslant r \leqslant s,\left\langle x_{ \pm \alpha_{i}} \mid i \in I_{r}\right\rangle$ can be thought of as a subgroup of a symplectic group $S p_{2 n_{r}}$ and the subset J_{r} of I_{r} gives a unipotent class $C_{\lambda} r, \varepsilon^{r}$ in $S_{2 n_{r}}$. We get in this way pairs $\left(\lambda^{0}, \varepsilon^{0}\right), \ldots,\left(\lambda^{s}, \varepsilon^{s}\right)$. Then the
unipotent class $C_{\lambda, \varepsilon}$ associated to (L, P) is the class such that d_{λ} is obtained by taking all the lines of the diagrams $d_{\lambda 0}, \ldots, d_{\lambda} s$, and $\varepsilon_{i}=\max _{o r r s s} \varepsilon_{i}^{r}$ for all i.

Using 6.2 it is easy to see that a unipotent class $C_{\lambda, \varepsilon}$ is \mathscr{P}-regular for some \mathscr{P} if (λ, ε) satisfies :
a) All lines of d_{λ} have even length.
b) For each i> 0 there are at most two lines of length i in d_{λ}
c) $\varepsilon_{i} \neq 0$ for all $i \geqslant 1$.

It follows then easily that every unipotent class $C_{\lambda, \varepsilon}$ of G can be obtained for some choice of I and some subset J of I_{0}.

A similar proof works for cases (II), (III), (V) and (VI).
Suppose that we are in case (IV) (resp. (VIII), (IX)) and $n=6$ (resp. $n=8, n=4$). Then the unipotent class $C_{\lambda, \varepsilon}$ cannot be obtained from a pair (L, P) if $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)=$ $(5,3,3,1)($ resp. $(6,4,4,2),(3,3,2,0))$ and $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}\right)=$ $(1, \omega, 1, \omega, 1)$ (resp. $(\omega, 1, \omega, 1, \omega),(\omega, 1, \omega, 1, \omega))$.

If a unipotent class C° is obtained for some pair (I, P), then $W_{P} W_{L} W_{0} \in Q\left(C^{0}\right)$ (defined as in 2.4), where $w_{P} \in W_{P} \subset W_{L} \subset W$ (resp. $w_{L} \in W_{L} \subset W, w_{0} \in W$) is the element of maximal length in the Weyl group of P (resp. L, G). In particular, if we are in one of the cases (I), (II), (III), (V), (VI) or (VII), this gives a method to find elements in $Q\left(C^{\circ}\right)$ for every unipotent class of G.
7. Equivalence relations in the Weyl groups.

Unless otherwise stated G is a reductive group and x is a unipotent element of G normalizing B and T. We consider unipotent elements contained in XG^{0}.
7.1. For every $w \in W^{x}$ let V_{w} be as in 2.4. Let also $U_{w}=$
 This is a preorder in W^{T}. Write $w \approx w^{\prime}$ if $w \prec w^{\prime}$ and $w^{\prime} \prec w$. This defines and equivalence relation $R=\Omega_{G}$ in W^{x} and the preorder $w<w^{\prime}$ makes W^{x} / Q into an ordered set. By 2.15 $w \simeq W^{\prime}$ if and only if there exists a unipotent G°-class C and an irreducible component C_{i} of $C \cap N$ such that $w, w^{\prime} \in$ $Q\left(C_{i}\right)$. The equivalence classes for Q are the sets of the form $Q\left(C_{i}\right)$. They can also be described as the sets of the form $\varphi(\{\sigma\} \times S(u))$ for some unipotent $u \in X G^{0}$ such that $Q\left(C^{\circ}(u)\right) \neq \varnothing$ and some $\sigma \in S(u)$. Each equivalence class contains at least one involution which can be choosen in a canonical way $(\varphi(\sigma, \sigma)$ if u and σ are as above).

Proposition 7.2. For every $w \in w^{x}$ define $I_{w}=\left\{\alpha \in T T \mid \rho_{x}\left(w \mathbb{B}_{\alpha}\right)<\right.$ $\left.\ell_{x}(w)\right\}$. Let $u \in X^{\circ}{ }^{0}$ be a unipotent element and let $\sigma, \tau \in S(u)$. Then $I_{\varphi(\sigma, \tau)}=I_{\tau}$.

Proof. Consider a fundamental root α. Let $\sigma=\varphi(\sigma, \tau)$ and $W^{\prime}=w \widetilde{s}_{\alpha^{\prime}}$

Suppose that $\alpha \in I_{w}$. Then $w=w^{\prime} \widetilde{g}_{c}$ and $l_{x}(w)=l_{x}\left(w^{\prime}\right)+$
$\ell_{x}\left(\widetilde{S}_{0}\right)$. Therefore for each pair $\left(B_{0}, B_{2}\right) \in\left(X_{\sigma} \times X_{\tau}\right) \cap O(w)$ there is a unique $B_{1} \in \mathcal{B}$ such that $\left(B_{0}, B_{1}\right) \in O\left(w^{\prime}\right)$ and $\left(B_{1}, B_{2}\right) \in$ $O\left(\tilde{s}_{\alpha}\right)$. By uniqueness $B_{1} \in \mathcal{B}_{u}$ and therefore there is a line of type α through B_{2} contained in B_{u} (by 1.3). This shows that the elements of X_{τ} contained in a line of type α contained in \mathcal{B}_{u} are dense in X_{τ}. Therefore X_{τ} is a union of lines of type α and $\alpha \in I_{\tau}$.

Suppose conversely that $\alpha \in I_{T}$. Choose $\left(B_{0}, B_{1}\right) \in\left(X_{\sigma} \times X_{\tau}\right) \cap$ $O(w)$. Let L be the line of type α through B_{1} contained in \mathcal{B}_{u}. Then $\left\{B_{2} \in L \mid\left(B_{0}, B_{2}\right) \in O(w)\right\}$ is open since $\left(X_{\sigma} \times X_{\tau}\right) \cap O(w)$ is open in $X_{\sigma} \times X_{\tau}$ and contains B_{1}. If $\ell_{x}\left(w \tilde{s}_{\alpha}\right)=\ell_{x}(w)+1$, then $\left(B_{0}, B_{2}\right) \in O\left(w \tilde{s}_{\alpha}\right)$ for all $B_{2} \in L \backslash\left\{B_{1}\right\}$, a contradiction. Therefore $\ell_{x}\left(w \tilde{s}_{\alpha}\right)=\ell_{x}(w)-1$ and $\alpha \in I_{w}$. Corollary 7. 3. The application $w^{\pi} \longrightarrow C(T T), w \longmapsto I_{w-1}$ is constant on each equivalence class for R.

Proof. Every equivalence class for Q is of the form $\varphi(\{\sigma\} \times S(u))$ for some unipotent $u \in x G^{0}$ and some $\sigma \in S(u)$. On this class the application takes the value I_{σ}.
7.4. The relation \mathbb{R} can also be defined by $: w \simeq w$ if there exist a unipotent element $u \in X^{\circ}{ }^{0}$ such that $Q\left(C^{0}(u)\right) \neq \varnothing$ and irreducible components σ, τ, τ of T_{u} such that $w=\varphi(\sigma, \tau)$ and $w^{\prime}=\varphi\left(\sigma, \tau^{\prime}\right)$. This definition makes sense even if G is not reductive. In particular let P be a parabolic aubgroup of the reductive group G^{0} such that P and X_{P} are G^{0}-conjugate.

By considering the component $N_{G}(P) \cap X^{\circ}$ of $N_{G}(P)$, we get an equivalence relation Q_{P} on $W_{P}^{X} \subset W^{x}$. If $v, V^{\prime} \in W^{x}$, we write $v \alpha_{p} v^{\prime}$ if there exist $w_{0} \in W^{x}$ such that $\ell_{x}\left(w_{0}\right)=\min \left\{e_{x}\left(w_{0} w\right) \mid\right.$
such that $v=w_{0} w, v^{\prime}=w_{0} w^{\prime}$ and w and w^{\prime} are equivalent for \mathbb{R}_{P}. This extends \mathbb{R}_{P} to an equivalence relation on W^{x} which we shall also denote by R_{P}.

Lemma 7.5. Let P be a parabolic subgroup of G^{0} corresponding to an x-stable subset of TT. If $v, v^{\prime} \in W^{x}$ are such that $v \varepsilon_{P} v^{\prime}$, then $v \approx v^{\prime}$ 。

Proof. Let w_{0}, w, w be as in 7.4. Let w_{P} be the element of maximal length in W_{P} and let $W_{1}=W_{0} W_{P}$.

We may assume that $P \supset B$. Then x normalizes P and the Levi subgroup $L \supset T$ of P. $B_{L}=B \cap L$ is a Borel subgroup of L and $V_{L}=x L \cap V_{1}$ is the variety of all unipotent elements in $x B_{L}$. For every $w \in W_{P}^{x}$ let $V_{L, w}=V_{L} n{ }^{W} V_{L}=x L \cap V_{W} \cdot W_{P}$ can be identified with the Weyl group of I.

The conditions of 7.4 on w_{0}, w and w^{\prime} imply $V_{\bar{v}}=V_{w_{0}} w^{w}=$
 $\overline{\left.\left({ }^{\left(B_{L}\right)}\right)_{U_{L, w}}\right)}=\overline{\left({ }^{\left(B_{L}\right)}{ }_{\left.U_{L, w^{\prime}}\right)}\right.}$. It is easily checked that ${ }^{\left(w_{O}\right)_{B_{L}} \subset B}$ and ${ }^{\left(w_{0}\right)}{ }_{B_{L}}$ normalizes $U_{w_{1}}$. Therefore
 i.e. $v \approx v^{\prime}$.
7.6. For each integer $n(n \geqslant 1)$ we define a new equivalence relation \mathscr{R}_{n} on w^{x}. We write $w \approx_{n} w^{\prime}$ for this relation. \mathscr{R}_{n} is the finest equivalence relation on W^{x} such that for every parabolic subgroup P of G^{0} corresponding to a subset of $T T$ which is the union of at most n-orbits, $w x_{P} w^{\prime} \Longrightarrow w \approx_{n} w^{\prime}$. clearly $w \approx_{1} w^{\prime} \Longleftrightarrow w=w^{\prime}$ and $w \approx_{n} w^{\prime} \Longrightarrow w \approx_{n+1} w^{\prime} \Longrightarrow w \simeq w^{\prime}$ (by 7.5).

Proposition 7.7. Suppose that $G=G L_{n}$. Then $R=R_{2}$.

Proof. If $u \in G L_{n}$ and $\sigma, \tau \in S(u)$ are such that $\varphi(\sigma, \tau)=\varphi(\tau, \sigma)$, then $\sigma=\tau$ since $A(u)=1$ (by 2.9). This shows that every equivalence class for Q contains exactly one involution. Each equivalence class for Q_{2} contains an involution [11, cor. 7.10]. Since $w \simeq_{2} w^{\prime} \Longrightarrow w \simeq w^{\prime}$, this shows that $R=R_{2}$. Remarks 7.8. a) If G is connected of type C_{3} and $p \neq 2, Q=$ \mathbb{R}_{2}. If G is connected of type $B_{3}, R \neq \mathbb{R}_{2}$. If G is connected of type $D_{4}, R_{2}=R_{3} \neq R$. It would be interesting to know if there is an integer n such that $\mathbb{R}_{n}=\mathbb{R}$ for all reductive groups.
b) Consider the order relation in W^{x} generated by all relations of the form $w<$ wr $_{\alpha}$, where $w \in W^{x}, \alpha \in \prod$ and $l_{x}(w)=$ $\ell_{x}\left(w \tilde{o}_{\alpha}\right)-1$. We write $w<w^{\prime}$ for this relation. $w<w^{\prime} \Longrightarrow$ $w \prec w^{\prime}$. Consider the following equivalence relation S on w^{x}. (written $w \sim w^{\prime}$). S is the finest equivalence relation such that $w \sim w \tilde{s}_{\alpha}$ if $w<w \tilde{s}_{\alpha}$ and $I_{w} \backslash I_{w \tilde{g}_{\alpha}} \neq \varnothing\left(w \in W^{x}, \alpha \in T\right)$. If G
is connected and all roots of G have the same length, then $S=\mathscr{R}_{2}$. Let S^{\prime} be the finest equivalence relation on W^{x} such that S is finer than S^{\prime} and the order $w<w^{\prime}$ in W^{x} induces an ordering on W^{x} / S^{\prime}. If G is connected of type D_{4} $S \neq S^{\prime}$. If G is connected of type A_{n}, then $S=S^{\prime}$ since $R=R_{2}=S$, $w \prec w^{\prime}$ induces an ordering on w^{x} / R and $w<w^{\prime}$ $\Longrightarrow w \prec w^{\prime}$. If G is connected and all roots of G have the same length, then S^{\prime} is finer than Q.
7.9. Consider a diagram consisting of lines of length λ_{1}, λ_{2}, \ldots with $\sum_{i \geqslant 1} \lambda_{i}=n$. Here we do not assume that the sequence $\lambda_{1}, \lambda_{2}, \ldots$ is decreasing (the diagram is therefore not a Young diagram in general). A tableau is obtained by filling the diagram with the numbers $1,2, \ldots, n$. Consider a tableau t. If $\lambda_{i} \geqslant j, t_{i j} w i l l$ be the integer in the line i and in the colum j. Suppose that at least one line of t is not an increasing sequence. Let i be the largest integer such that the sequence $t_{i l}, t_{i 2}, \ldots, t_{i \lambda_{i}}$ is not increasing. Let j be the smallest integer such that $t_{i 1}, t_{i 2}, \ldots, t_{i j}$ is not increasing. Let h be the smallest integer such that $t_{i n}>t_{i j}$. We define a new tableau t ' with lines of length $\lambda_{1}, \ldots, \lambda_{i-1}, \lambda_{i}-1$. $\lambda_{i+1}+1, \lambda_{i+2}, \ldots$. t is obtained by replacing the line i in t by the sequence $t_{i l}, \ldots, t_{i, h-1}, t_{i j}, t_{i, h+1}, \ldots, t_{i, j-1}, t_{i,}$, $t_{i, j+1}, \ldots$ and the line $(i+1)$ in t by the sequence $t_{i+1,1}$, $\ldots, t_{i+1,} \lambda_{i+1}, t_{i h}$.

The operation $t \mapsto t$ ' can be repeated a finite number of
times until we get a tableau $f(t)$ in which all lines are increasing sequences.

Let $w: i \mapsto w_{i}$ be a permutation of $\{1, \ldots, n\}$. We take the sequence w_{1}, \ldots, w_{n} as the first line of a tableau with lines of length $n, 0,0, \ldots$ and we identify with this tableau. Then $f(w)$ is a standard tableau and $f(w)$ and $f\left(w^{-1}\right)$ are standard tableaux corresponding to the same Young diagram [11, 7.5].

Suppose now that $G=G L_{n}$. Identify W with S_{n}, the group of permatations of $\{1, \ldots, n\} \cdot\left(s_{\alpha_{i}}\right.$ being identified with the permutation $h \longmapsto h$ if $h \neq i, i+1, i \longmapsto i+1, i+1 \longmapsto i)$. If $u \epsilon$ C_{λ} is unipotent, we use the parametrization of $S(u)$ given in 5.6 to identify $S(u)$ and $S t(\lambda)$.

Proposition 7.10. Suppose that $G=G I_{n}$ and that $u \in C_{\lambda}$ is a unipotent element of G. Let $Q\left(C_{\lambda}\right)$ be as in 2.4. Then $w \longmapsto$ $\left(f(w), f\left(w^{-1}\right)\right)$ gives a bijection $Q\left(C_{\lambda}\right) \rightarrow S(u) \times S(u)$ and this bijection is the inverse of $\varphi: S(u) \times S(u) \longrightarrow Q\left(C_{\lambda}\right)$.

Proof. Let $\tau \in S t(\lambda)$ be the unique standard tableau such that $\tau_{2} \ldots . . \tau_{n}$ (defined as in 5.2) is an increasing sequence. \bar{X}_{τ} is the irreducible component of \mathbb{B}_{u} which is of the form $\mathcal{M}(P)$ for some parabolic subgroup P corresponding to the subset I of TT characterized by the integers $l_{1}, \ldots, l_{s}(s=$ λ_{1}) (with the notations of 6.1). Then $\varphi(\tau, \tau)=w_{P}$, where w_{P} is the element of maximal length in W_{P}. It is easily checked from the definition that $f\left(w_{p}\right)=\tau$.

If $F=\left(F_{0}, \ldots, F_{n}\right) \in F^{\prime} F^{\prime}=\left(F_{0}^{\prime}, \ldots, F_{n}^{\prime}\right) \in F^{\prime}$ and $\left(F, F^{\prime}\right) \epsilon$ $O(w)$, then w is the unique permutation of $\{1, \ldots, n\}$ such that $w(i)=j$ if and only if $F_{i} \cap F_{j-1}=F_{i-1}^{\prime} \cap F_{j-1}$ and $F_{i}^{\prime} \cap F_{j} \neq$ $F_{i-1}^{\prime} \cap F_{j}(1 \leqslant i \leqslant n)$.

Consider the component \bar{Y}_{τ} of $\beta_{u}\left(Y_{\tau}\right.$ defined as in 5.5). $\bar{Y}_{\tau}=\left\{r \in \mathcal{F} \mid F_{n-e_{1}-\ldots-\ell_{r}}=\operatorname{Im}(u-1)^{r}\right.$ for all $\left.r \geqslant 0\right\}$. If $\sigma \epsilon$ St (λ), then it is easily checked that $\varphi\left(\bar{Y}_{\tau}, \bar{Y}_{\sigma}\right)=\varphi\left(\bar{Y}_{\tau}, Y_{\sigma}\right)=w$ is the following permutation. If $(n-i+1)$ is in the column r and in the line s of σ, then $w(i)=n-l_{1}-\cdots-e_{r}+\theta(1 \leqslant i \leqslant n)$. Let w_{0} be the element of maximal length in w. Then $\varphi(\tau, \sigma)=$ $w_{o} \varphi\left(\bar{Y}_{\tau}, \bar{Y}_{\sigma}\right) w_{0}$. Therefore $\varphi(\tau, \sigma)$ is the following permatation w^{\prime}. If 1 is in the column r and in the line s of σ, then $w^{\prime}(1)=l_{1}+\ldots+l_{r}-s+1$. It follows then easily from the definition of f that $f(\varphi(\sigma, \tau))=f\left(\varphi(\tau, \sigma)^{-1}\right)=\sigma$.

Let w, w^{\prime} be any elements of w. Then $w \approx w^{\prime}$ if and only if $f(w)=f\left(w^{\prime}\right)[11,7.9]$. If $\sigma_{1}, \sigma_{2} \in S t(\lambda)$, we have therefore $f\left(\varphi\left(\sigma_{1}, \sigma_{2}\right)\right)=f\left(\varphi\left(\sigma_{1}, \tau\right)\right)=\sigma_{1} \in \operatorname{St}(\lambda)$ and $\rho\left(\varphi\left(\sigma_{1}, \sigma_{2}\right)^{-1}\right)=$ $f\left(\varphi\left(\sigma_{2}, \sigma_{1}\right)\right)=\sigma_{2} \in \operatorname{St}(\lambda)$. This shows that $w \longmapsto\left(f(w), f\left(w^{-1}\right)\right)$ defines an application $Q\left(C_{\lambda}\right) \longrightarrow \operatorname{St}(\lambda) \times S t(\lambda)$ and that this application is the inverse of $\varphi: S(u) \times S(u) \longrightarrow Q\left(C_{\lambda}\right)$ (with the suitable identifications).

8. Frampleg.

G is reductive and $u \in G$ is unipotent.
8.1. Suppose that u is \mathscr{P}-regular for some conjugacy class of parabolic subgroups of G. Then it is not alwways possible to find a conjugacy class Q of parabolic subgroups of G guch that :
a) u is Q-regular.
b) There is only one $Q \in Q$ such that $G(Q)_{u}$ is an irreducible component of G_{u}.

For example take $G=S p_{6}, p \neq 2$ and u such that $(u-1)^{2}=0$, dim $\operatorname{Ker}(u-1)=4$. Then u is \mathscr{P}-regular for a unique conjugacy class of parabolic subgroups (the class corresponding to $\left\{\alpha_{1}, \alpha_{2}\right\} \in \Pi$ with the notations of 5.1) and there are exactly two parabolic subgroups $P_{1}, P_{2} \in \mathscr{P}$ such that $\mathscr{G}_{3}\left(P_{1}\right)$ and $G_{B}\left(P_{2}\right)$ are irreducible components of \mathscr{B}_{u} 。
8.2. Let C^{\prime} be a unipotent class such that $C^{\prime} \subset \overline{C(u)}$. It is not always possible to find $v \in C$ 'such that $\mathcal{B}_{u} \subset \mathscr{B}^{\prime}$.

For example take u subregular in $G=G L_{4}$. Let v be a unipotent element auch that $(v-1)^{2}=0$, dim $\operatorname{Ker}(v-1)=2$. Then $C(\nabla) \subset \bar{C}(\bar{u})$. It follows easily from 5.12 that every line of type α_{1} in β_{v} meets every line of type α_{3} in β_{∇}. This clearly shows that $B_{\mathbf{u}} \notin \mathscr{S}_{\mathbf{v}^{*}}$.
8.3. The irreduoible components of \mathcal{B}_{u} may have singular points. Let $G=G L_{6}$ and suppose that $(u-1)^{2}=0$, dim $\operatorname{Ker}(u-1)=$ 4. Consider the component \bar{X}_{σ} corresponding to the standard tableau σ (we use the notation introduced in 5.4):

This component contains singular points [14], [22]. Let $W_{2}=\operatorname{Im}(u-1), W_{4}=\operatorname{Ker}(u-1)$. Then $W_{2} \subset W_{4}$ and $\bar{X}_{\sigma}=\left\{F=\left(F_{0}, \ldots, F_{6}\right) \in \mathcal{F} \mid\right.$ dim $\left(F_{2} \cap W_{2}\right) \geqslant 1$, $\left.\operatorname{dim}\left(F_{4} \cap W_{4}\right) \geqslant 3,(u-1)\left(F_{4}\right) \subset F_{2} \subset W_{4}, F_{4} \supset W_{2}\right\} . F \in \bar{X}_{\sigma}$ is a singular point of \bar{X}_{σ} if and only if $F_{2}=W_{2}$ and $F_{4}=W_{4}$. (Vargas has pointed out to me that the condition $F_{4} \supset W_{2}$ is missing in [14]).
8.4. All irreducible components of \mathbb{B}_{u} have the same dimension. This is not true in general for \mathscr{P}_{u}, where \mathscr{P} is a conjugacy class of parabolic subgroups of G. For example take $G=\mathrm{GL}_{4}$. If Q corresponds to $\left\{\alpha_{1}\right\} c T T$ and dim $\operatorname{Ker}(u-1)=3, \mathcal{P}_{u}$ has one irreducible component of dimension 2 and one irreducible component of dimension 3 (this follows from the fact that $0\left(s_{1} s_{2} s_{1}\right) \notin \overline{0\left(s_{2}{ }_{3} s_{2} s_{1}\right)}$, with $s_{i}=s_{\alpha_{1}}$, $\left.i=1,2,3\right)$.

9. Tables.

In the following tables we suppose that we are in one of the cases (II) to (IX) of paragraph 5 and $u \in C_{\lambda, \varepsilon^{*}}$ Unless otherwise stated $\varepsilon_{1} \neq 0$ for all $1 \geqslant 1$. $d(u)=d i m \mathbb{S}_{u}, g(u)=$ $|S(u)|, G_{a}(u)=\left|S(u) / A_{0}(u)\right|, G_{a}^{\prime}(u)=|S(u) / A(u)|$ and $q(u)=$ $\left|Q\left(C^{0}(u)\right)\right|$. Except in cases (V) and (VIII), we have always $s_{a}^{\prime}(u)=s_{a}(u)$. If we are in case (II) or (IV) let $B(u)=$ $\left\{a \in A_{0}(u) \mid a\right.$ acts trivially on $\left.S(u)\right\}$. In the other cases let $B(u)=\{a \in A(u) \mid a$ aots trivially on $S(u)\}$. If the column giving $B(u)$ is empty, $A(u)$ acts trivially on $S(u)$. If $\left|A_{0}(u) / B(u)\right|>2$ in cases (II) and (IV) or if $|A(u) / B(u)|>2$ in the other cases, more indications are given on the action of $A(u)$ on $S(u)$.

The total in the column giving $s(u)$ (resp. $q(u), s_{a}(u)$) is $\left|\left\{w \in W^{u} \mid w^{2}=1\right\}\right|$ (resp. $\left|W^{u}\right|$, the number of equivalence classes for Q). In cases (V) and (VIII) the ciasses of $0_{2 n}$ which split into two classes of $\mathrm{SO}_{2 n}$ are repeated to get the correct totals.

Case (II). $G=G(V), \operatorname{dim} V=2 n+1, p=2, u \in G \backslash G^{\circ}$.

$$
\begin{array}{llllll}
\lambda & \varepsilon & d(u) & B(u) & s_{a}(u) & B(u)
\end{array} \quad q(u)
$$

$\underline{n=2}$, dim $V=5$.

5		0	1	1	1
3	1^{2}	1	2	2	4
31^{2}	$\varepsilon_{1}=0$	2	1	1	1
$2^{2} 1$	2	1	1	1	
$\frac{1}{4}$	4	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{8}$	

λ
ε
$d(u) \quad s(u) \quad s_{a}(u)$
$B(u) \quad q(u)$
$n:=3$, dim $V=7$.

7			0	1	1	1
5	1^{2}		1	3	3	9
5	1^{2}	$\varepsilon_{1}=0$	2	2	2	4
3^{2}	1		2	3	3	9
3^{2}	1	$\varepsilon_{3}=0$	3	1	1	1
3	2^{2}		3	3	3	9
3	1^{4}		4	3	3	9
3	1^{4}	$\varepsilon_{1}=0$	6	1	1	1
2^{2}	1^{3}		5	2	2	4
$\frac{1^{7}}{\text { Total }}$		9	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{48}$	

$\underline{n}=4, \operatorname{dim} V=9$.

9			0	1	1		1
7	1^{2}		1	4	4		16
7	1^{2}	$\varepsilon_{1}=0$	2	3	3		9
5	3	1		2	6	6	
5	2^{2}		3	10	8	$\left\langle a_{1}\right\rangle$	68
5	1^{4}		4	6	6		36
5	1^{4}	$\varepsilon_{1}=0$	6	3	3		9
$4^{2} 1^{1}$		3	5	4	$\{1\}$	17	
3^{3}		4	6	6		36	
$3^{2} 1^{3}$		5	8	8		64	
$3^{2} 1^{3}$	$\varepsilon_{3}=0$	6	3	3		9	
3	$2^{2} 1^{2}$		6	6	6		36
3	$2^{2} 1^{2}$	$\varepsilon_{1}=0$	7	4	4		16
3	1^{6}		9	4	4		16

λ	ε	d(u)	E(u)	$s_{\text {a }}(\underline{u})$	$B(u)$	$q(u)$
$3 \quad 16$	$\varepsilon_{1}=0$	12	1	1		1
$2^{4} 1$		8	2	2		4
$2^{2} 1^{5}$		10	3	3		9
1^{9}		16	1	1		1
Total			76	73		384

$\underline{\underline{n}}=5, \operatorname{dim} V=11$.

11			0	1	1		1
			1	5	5		25
9	1^{2}	$\varepsilon_{1}=0$	2	4	4		16
7	31		2	10	10		100
7	2^{2}		3	20	15	$\left\langle a_{1}\right\rangle$	250
	14		4	10	10		100
7	1^{4}	$\varepsilon_{1}=0$	6	6	6		36
5^{2}	1		3	11	10	$\{1\}$	101
5^{2}	1	$\varepsilon_{5}=0$	4	5	5		25
5	3^{2}		4	20	20		400
5	3^{2}	$\varepsilon_{3}=0$	5	10	10		100
	31^{3}		5	20	20		400
	$2^{2} 1^{2}$		6	20	20		400
5	$2^{2} 1^{2}$	$\varepsilon_{1}=0$	7	20	15	$\left\langle a_{1}\right\rangle$	250
	1^{6}		9	10	10		100
	1^{6}	$\varepsilon_{1}=0$	12	4	4		16
4^{2}	3		5	10	10		100
4^{2}	1^{3}		6	19	15	$\{1\}$	241
3^{3}	1^{2}		7	20	20		400
3^{3}	1^{2}	$\varepsilon_{1}=0$	8	10	10		100
3^{2}	$2^{2} 1$		8	10	10		100

λ	ε	d(u)	s(u)	$s_{a}(u)$	$B(u)$	q(u)
$3^{2} 2^{2} 1$	$\varepsilon_{3}=0$	9	5	5		25
$3^{2} 15$		10	15	15	1	225
$3^{2} 1^{5}$	$\varepsilon_{3}=0$	11	6	6	-	36
$3 \quad 24$		10	10	10		100
$32^{2} 1^{4}$		11	10	10		100
$32^{2} 1^{4}$	$\varepsilon_{1}=0$	13	5	5		25
$3 \quad 18$		16	5	5		25
$3 \quad 18$	$\varepsilon_{1}=0$	20	1	1		1
$2^{4} 13$		13	5	5		25
$2^{2} 1^{7}$		17	4	4		16
1^{11}		25	1	1		1
Total			312	297		3840

Case (III). $Q=0_{2 n+1} \cdot p \neq 2$.
$\lambda \quad d(u) \quad s(u) \quad s_{a}(u) \quad B(u) \quad q(u)$
$\underline{n}=2, G=O_{5}$.
$\begin{array}{llllll}5 & 0 & 1 & 1 & & 1 \\ 31^{2} & 1 & 3 & 2 & \left\langle a_{1}\right\rangle & 5 \\ 2^{2} 1 & 2 & 1 & 1 & & 1 \\ 1^{5} & 4 & 1 & 1 & & 1 \\ \frac{1}{\text { Total }} & & \frac{1}{6} & \frac{1}{8}\end{array}$
$n=3, G=0_{7}$.
$\begin{array}{lllll}7 & 0 & 1 & 1\end{array}$
$\begin{array}{llllll}5 & 1^{2} & 1 & 5 & 3 & \left\langle a_{1}\right\rangle\end{array}$
$\begin{array}{llllll}3^{2} 1 & 2 & 4 & 3 & \left\langle a_{3}\right\rangle & 10\end{array}$
$\begin{array}{llllll}3 & 2^{2} & 3 & 3 & 3 & 9\end{array}$
$\begin{array}{lllllll}3 & 1^{4} & 4 & 4 & 3 & \left\langle a_{1}\right\rangle & 10\end{array}$

λ	d(u)	B(u)	$B_{8}(\underline{u})$	$\mathrm{B}(\mathrm{u})$	$q(u)$
$2^{2} 1^{3}$	5	2	${ }_{2}$		4
1^{7}	9	1	1		1
$\overline{\text { Total }}$		20	$\overline{16}$		48
$\underline{n}=4, G=0_{9}$.					
9	0	1	1		1
$7 \mathbf{1}^{2}$	1	7	4	$\left\langle\mathrm{a}_{1}\right\rangle$	25
$5 \quad 31$	2	9	6	(*)	41
$5 \quad 2^{2}$	3	8	8		64
$5 \quad 14$	4	9	6	$\left\langle\mathbf{a}_{1}\right\rangle$	45
$4^{2} 1$	3	4	4		16
$3{ }^{3}$	4	6	6		36
$3^{2} 1^{3}$	5	11	8	$\left\langle a_{3}\right\rangle$	73
$32^{2} 1^{2}$	6	10	6	$\left\langle a_{1}\right\rangle$	52
31^{6}	9	5	4	$\left\langle a_{1}\right\rangle$	17
$2^{4} 1$	8	2	2		4
$2^{2} 1^{5}$	10	3	3		9
19	16	1	1		1
Total		76	59		384

(*) $\left\langle a_{1} a_{2}, a_{3}\right\rangle$ is the stabilizer of two components, $\left\langle a_{1}, a_{2} a_{3}\right\rangle$
is the stabilizer of 4 components and $A(u)$ stabilizes 3
components.
$\underline{n}=5, \quad G=0_{11}$.

11		0	1	1		1
9	1^{2}	1	9	5	$\left\langle a_{1}\right\rangle$	41
7	3	1	2	16	10	$(*)$
7	2^{2}	3	15	15		225
7	1^{4}	4	16	10	$\left\langle a_{1}\right\rangle$	136

(*) $\left\langle a_{1} a_{2}, a_{3}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{1}, a_{2} a_{3}\right\rangle$ is the stabilizer of 10 elements and $A(u)$ stabilizes 4 elements.
(**) $\left\langle a_{1} a_{2}, a_{3}\right\rangle$ is the stabilizer of 8 elemente, $\left\langle a_{1}, a_{2} a_{3}\right\rangle$ is the stabilizer of 10 elements and $A(u)$ stabilizes 9 elements.

Case (IV). $G=G(V)$, dim $V=2 n, p=2, u \in G \backslash G^{\circ}$.
λ
ε

$$
d(u) \quad B(u) \quad s_{a}(u) \quad B(u) \quad q(u)
$$

$n=2$, dim $V=4$.

31	0	1	1		1
2^{2}	1	3	2	$\{1\}$	5

- 147 -

λ	ε	$d(u)$	$g(u)$	$s_{a}(u)$	$B(u)$	$q(u)$
1^{4}		2	1	1		1
1^{4}	$\varepsilon_{1}=0$	4	$\frac{1}{6}$	$\frac{1}{5}$		$\frac{1}{8}$

$\underline{n}=3, \operatorname{dim} V=6$.

51		0	1	1		1
3^{2}		1	4	3	$\{1\}$	10
3^{2}	$\varepsilon_{3}=0$	2	3	3		9
3	1^{3}		2	2	2	
$2^{2} 1^{2}$		3	3	3	4	
$2^{2} 1^{2}$	$\varepsilon_{1}=0$	4	5	3	$\{1\}$	13
1^{6}		6	1	1		1
1^{6}	$\varepsilon_{1}=0$	9	$\frac{1}{20}$	$\frac{1}{17}$		$\frac{1}{48}$

$n=4, \operatorname{dim} V=8$.

71		0	1	1		1
53		1	5	4	$\left\langle a_{1} a_{2}\right\rangle$	17
51^{3}		2	3	3		9
4^{2}		2	10	6	\{1\}	52
$3^{2} 1^{2}$		3	8	8		64
$3^{2} 1^{2}$	$\varepsilon_{3}=0$	4	6	6		36
$3^{2} 1^{2}$	$\varepsilon_{1}=0$	4	9	6	\{1\}	45
$3^{2} 1^{2}$	$\varepsilon_{1}=\varepsilon_{3}=0$	5	8	8		64
$32^{2} 1$		4	2	2		4
31^{5}		6	3	3		9
24		6	8	6	$\{1\}$	40
$2^{2} 1^{4}$		7	4	4		16
$2^{2} 1^{4}$	$\varepsilon_{1}=0$	9	7	4	$\{1\}$	25

2	ε	$d(u)$	$B(u)$	$s_{a}(u)$	$B(u)$	$q(u)$
1^{8}		12	1	1		1
$\frac{1^{8}}{\text { Total }}$	$\varepsilon_{1}=0$	16	$\frac{1}{7}$	$\frac{1}{63}$		$\frac{1}{384}$

$\underline{n}=5$, dim $V=10$.

	1		0	1	1		1
	3		1	6	5	$\left\langle a_{1} a_{2}\right\rangle$	26
	1^{3}		2	4	4		16
5^{2}			2	15	10	\{1\}	125
5^{2}		$\varepsilon_{5}=0$	3	10	10		100
	31^{2}		3	15	15		225
	31^{2}	$\varepsilon_{1}=0$	4	14	10	$\left\langle a_{1} a_{2}\right\rangle$	116
5	$2^{2} 1$		4	5	5		25
	1^{5}		6	6	6		36
	21^{2}		4	30	20	\{1\}	500
	${ }^{2} 1^{2}$	$\varepsilon_{1}=0$	5	35	20	\{1]	625
$3{ }^{3}$	31		5	10	10		100
	22^{2}		6	25	20	\{1\}	425
	22^{2}	$\varepsilon_{3}=0$	7	30	20	\{1\}	500
	$2{ }^{2} 4$		7	15	15		225
	${ }^{2} 14$	$\varepsilon_{3}=0$	8	10	10		100
	21^{4}	$\varepsilon_{1}=0$	9	16	10	$\{1\}$	136
	${ }^{2} 14$	$\varepsilon_{1}=\varepsilon_{3}=0$	10	15	15		225
3	$2^{2} 1^{3}$		8	5	5		25
3	1^{7}		12	4	4		16
	41^{2}		10	10	10		100
	41^{2}	$\varepsilon_{i}=0$	11	15	10	$\{1\}$	125
2^{2}	${ }^{2} 1^{6}$		13	5	5		25

λ	ε	$d(u)$	$B(u)$	$B_{a}(u)$	$b(u)$	$q(u)$
1^{8}		12	1	1	1	
$\frac{1}{\text { Potal }}$	$\varepsilon_{1}=0$	16	$\frac{1}{76}$	$\frac{1}{63}$		$\frac{1}{384}$

$\underline{n}=5, \operatorname{dim} V=10$.

91		0	1	1		1
73		1	6	5	$\left\langle a_{1} a_{2}\right\rangle$	26
71^{3}		2	4	4		16
5^{2}		2	15	10	\{1\}	125
5^{2}	$\varepsilon_{5}=0$	3	10	10		100
531^{2}		3	15	15		225
531^{2}	$\varepsilon_{1}=0$	4	14	10	$\left\langle a_{1} a_{2}\right\rangle$	116
$52^{2} 1$		4	5	5		25
$5 \quad 1^{5}$		6	6	6		36
$4^{2} 1^{2}$		4	30	20	\{1\}	500
$4^{2} 1^{2}$	$\varepsilon_{1}=0$	5	35	20	\{1\}	625
$3^{3} 1$		5	10	10		100
$3^{2} 2^{2}$		6	25	20	\{1\}	425
$3^{2} 2^{2}$	$\varepsilon_{3}=0$	7	30	20	\{1\}	500
$3^{2} 1^{4}$		7	15	15		225
$3^{2} 1^{4}$	$\varepsilon_{3}=0$	8	10	10		100
$3^{2} 1^{4}$	$\varepsilon_{1}=0$	9	16	10	\{1\}	136
$3^{2} 1^{4}$	$\varepsilon_{1}=\varepsilon_{3}=0$	10	15	15		225
$32^{2} 1^{3}$		8	5	5		25
$3 \quad 17$		12	4	4		16
$2^{4} 1^{2}$		10	10	10		100
$2^{4} 1^{2}$	$\varepsilon_{1}=0$	11	15	10	$\{1\}$	125
$2^{2} 1^{6}$		13	5	5		25

λ	ε	$d(u)$	$g(u)$	$s_{a}(u)$	$B(u)$	$q(u)$
1^{8}		12	1	1		1
1^{8}	$\varepsilon_{1}=0$	16	$\frac{1}{7}$	$\frac{1}{63}$	$\frac{1}{384}$	

$\underline{n}=5$, dim $V=10$.

	1		0	1	1		1
	3		1	6	5	$\left\langle a_{1} a_{2}\right\rangle$	26
	1^{3}		2	4	4		16
5^{2}			2	15	10	\{1\}	125
5^{2}		$\varepsilon_{5}=0$	3	10	10		100
	31^{2}		3	15	15		225
	31^{2}	$\varepsilon_{1}=0$	4	14	10	$\left\langle a_{1} a_{2}\right\rangle$	116
	$2^{2} 1$		4	5	5		25
	1^{5}		6	6	6		36
4^{2}	1^{2}		4	30	20	\{1\}	500
4^{2}	1^{2}	$\varepsilon_{1}=0$	5	35	20	\{1\}	625
$3{ }^{3}$			5	10	10		100
3^{2}	2^{2}		6	25	20	\{1\}	425
3^{2}	2^{2}	$\varepsilon_{3}=0$	7	30	20	\{1\}	500
3^{2}	14		7	15	15		225
3^{2}	1^{4}	$\varepsilon_{3}=0$	8	10	10		100
3^{2}	1^{4}	$\varepsilon_{1}=0$	9	16	10	\{1\}	136
3^{2}	14	$\varepsilon_{1}=\varepsilon_{3}=0$	10	15	15		225
	$2^{2} 1^{3}$		8	5	5		25
	17		12	4	4		16
24	1^{2}		10	10	10		100
$2{ }^{4}$	1^{2}	$\varepsilon_{1}=0$	11	15	10	$\{1\}$	125
2^{2}			13	5	5		25

λ	ε	$d(u)$	$s(u)$	$s_{a}(u)$	$B(u)$	$q(u)$
$2^{2} 1^{6}$	$\varepsilon_{1}=0$	16	9	5	$\{1\}$	41
1^{10}		20	1	1		1
$\frac{1^{10}}{\operatorname{Total}}$	$\varepsilon_{1}=0$	25	$\frac{1}{312}$	$\frac{1}{247}$	$\frac{1}{3840}$	

Case (V). $\quad G=O_{2 n}, p \neq 2$.
$\lambda \quad d(u) \quad s(u) \quad s_{a}^{\prime}(u) \quad s_{a}(u) \quad B(u) \quad q(u)$
$\underline{n}=2, G=0_{4}$.

31	0	1	1	1	1
2^{2}	1	1	1	1	1
2^{2}	1	1	1	1	1
$\frac{1}{4}$	2	$\frac{1}{4}$	1	$\frac{1}{4}$	$\frac{1}{4}$

$\underline{n}=3, G=0_{6}$.

5	1	0	1	1	1		1.
3^{2}		1	3	2	3	$\{1\}$	9
	1^{3}	2	2	2	2		4
2^{2}		3	3	2	3	\{1\}	9
1^{6}		6	1	1	1		1
Tot	tal		10		10		24
	4.		-				
7	1	0	1	1	1		1
5	3	1	4	3	4	$\left\langle a_{1} a_{2}\right\rangle$	16
5	1^{3}	2	3	3	3		9
4^{2}		2	3	3	3		9
4^{2}		2	3	3	3		9

- 150 -

λ	d(u)	g(u)	$B_{a}^{\prime}($ u $)$	$B_{a}(u)$	B(u)	q(u)
$3^{2} 1^{2}$	3	14	6	8	(*)	100
$32^{2} 1$	4	2	2	2		4
31^{5}	6	3	3	3		9
2^{4}	6	3	3	3		9
2^{4}	6	3	3	3		9
$2^{2} 1^{4}$	7	4	3	4	\{1\}	16
1^{8}	12	1	1	1		1
Total		44		38		$\overline{192}$

(*) $\{1\}$ is the stabilizer of 8 elemente, $\left\langle a_{1}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{3}\right\rangle$ is the stabilizer of 2 elements and $A(u)$ stabilizes 2 elements.
$\underline{n}=5, G=0_{10}$.

9	1	0	1	1	1		1
7	3	1	5	4	5	$\left\langle a_{1} a_{2}\right\rangle$	25
7	1^{3}	2	4	4	4		16
5^{2}		2	10	6	10	$\{1\}$	100
5	3	1^{2}	3	25	12	15	(*)
5	2^{2}	1	4	5	5	5	
5	1^{5}	6	6	6	6		25
4^{2}	1^{2}	4	20	12	20	$\{1\}$	400
3^{3}	1	5	10	10	10		100
3^{2}	2^{2}	6	20	12	20	$\{1\}$	400
3^{2}	1^{4}	7	25	12	15	$(* *)$	325
3	2^{2}	1^{3}	8	5	5	5	
3	1^{7}	12	4	4	4		16
2^{4}	1^{2}	10	10	6	10	$\{1\}$	100
2^{2}	1^{6}	13	5	4	5	$\{1\}$	25

(*) $\left\langle a_{1} a_{2}\right\rangle$ is the stabilizer of 12 elements, $\left\langle a_{1} a_{2}, a_{3}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{1}, a_{2}\right\rangle$ is the stabilizer of 6 elements and $A(u)$ stabilizes 5 elements. (**) $\{1\}$ is the stabilizer of 12 elements, $\left\langle a_{1}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{3}\right\rangle$ is the atabilizer of 6 elements and $A(u)$ stabilizes 5 elements.

Case (VI). $\quad G=S p_{2 n}, p \neq 2$.
$\lambda \quad d(u) \quad g(u) \quad g_{a}(u) \quad B(u) \quad q(u)$
$\underline{n}=2, G=S p_{4}$.

4	0	1	1	1	
2^{2}	1	3	2	$\{1\}$	5
21^{2}	2	1	1		1
$\frac{14}{4}$	4	$\frac{1}{6}$	$\frac{1}{5}$		$\frac{1}{8}$

$\underline{n}=3, G=S P_{6}$.

6	0	1	1	1	
4	2	1	4	3	$\left\langle a_{1} a_{2}\right\rangle$
41^{2}	2	2	2		10
3^{2}	2	3	3	4	
2^{3}	3	3	3	9	
$2^{2} 1^{2}$	4	5	3	$\left\langle a_{1} a_{2}\right\rangle$	13
21^{4}	6	1	1	9	
1^{6}	9	$\frac{1}{20}$	$\frac{1}{17}$		1
$\frac{\text { Total }}{}$		$\frac{17}{48}$			

λ	d(u)	a (u)	$B_{a}(u)$	B(u)	q(u)
$\underline{n}=4, G=\mathrm{Sp}_{8}$.					
8	0	1	1		1
62	1	5	4	$\left\langle a_{1} a_{2}\right\rangle$	17
61^{2}	2	3	3		9
4^{2}	2	10	6	$\{1\}$	52
42^{2}	3	10	8	$\left\langle a_{1}\right\rangle$	68
421^{2}	4	9	6	$\left\langle a_{1} a_{2}\right\rangle$	45
$4 \quad 14$	6	3	3		9
$3^{2} 2$	4	6	6		36
$3^{2} 1^{2}$	5	8	8		64
2^{4}	6	8	6	$\{1\}$	40
$2^{3} 1^{2}$	7	4	4		16
$2^{2} 1^{4}$	9	7	4	$\{1\}$	25
21^{6}	12	1	1		1
1^{8}	16	1	1		1
$\overline{\text { Total }}$		76	61		$\overline{384}$
$n=5, G=S p_{10}{ }^{\circ}$					
10	0	1	1		1
82	1	6	5	$\left\langle a_{1} a_{2}\right\rangle$	26
81^{2}	2	4	4		16
64	2	15	10	$\left\langle a_{1} a_{2}\right\rangle$	125
$6 \quad 2^{2}$	3	20	15	$\left\langle a_{1}\right\rangle$	250
621^{2}	4	14	10	$\left\langle a_{1} a_{2}\right\rangle$	116
61^{4}	6	6	6		36
5^{2}	3	10	10		100
$4^{2} 2$	4	30	20	$\left\langle a_{3}\right\rangle$	500

λ		$d(u)$	$s(u)$	$a_{a}(u)$	$B(u)$	$q(u)$
$4^{2} 1^{2}$	5	35	20	$\{1\}$	625	
4	3^{2}	5	10	10		100
4	2^{3}	6	25	20	$\left\langle a_{1} a_{2}\right\rangle$	425
$42^{2} 1^{2}$	7	20	15	$\left\langle a_{1}\right\rangle$	250	
$42^{2} 1^{4}$	9	16	10	$\left\langle a_{1} a_{2}\right\rangle$	136	
41^{6}	12	4	4		16	
$3^{2} 2^{2}$	7	30	20	$\{1\}$	500	
$3^{2} 2_{1}^{2}$	8	10	10		100	
$3^{2} 1^{4}$	10	15	15		225	
2^{5}	10	10	10		100	
$2^{4} 1^{2}$	11	15	10	$\{1\}$	125	
$2^{3} 1_{1}^{4}$	13	5	5		25	
$2^{2} 1^{6}$	16	9	5	$\{1\}$	41	
21^{8}	20	1	1		1	
1^{10}	25	1	1		1	

Case (VII). $G=S p_{2 n}, p=2$.
λ
ε
$d(u) \quad g(u) \quad s_{a}(u) \quad B(u) \quad q(u)$
$\underline{n}=2, G=S p_{4}$.
$\begin{array}{llllll}4 & 0 & 1 & 1 & 1 \\ 2^{2} & \varepsilon_{2}=0 & 2 & 1 & 1 & 4 \\ 2^{2} & 2 & 1 & 1 & 1 \\ 21^{2} & & 4 & 1 & 1 & 1 \\ 14 & & \frac{1}{6} & \frac{1}{6} & \frac{1}{8}\end{array}$

- 154 -
$\lambda \quad \varepsilon$
$d(u) \quad s(u) \quad s_{a}(u) \quad B(u) \quad q(u)$
$\mathrm{n}=3, G=\mathrm{Sp}_{6}$.

6		0	1	1		1
42		1	3	3		9
41^{2}		2	2	2		4
3^{2}		2	4	3	$\{1\}$	10
2^{3}		3	3	3		9
$2^{2} 1^{2}$		4	3	3		9
$2^{2} 1^{2}$	$\varepsilon_{2}=0$	5	2	2		4
21^{4}		6	1	1		1
1^{6}		9	1	1		1
Total			20	19		48

$\underline{n=4}, G=S p_{8}$.

8		0	1	1		1
62		1	4	4		16
61^{2}		2	3	3		9
4^{2}		2	7	6	\{1\}	37
4^{2}	$\varepsilon_{4}=0$	3	4	4		16
42^{2}		3	8	8		64
$4 ?^{2}$	$\varepsilon_{2}=0$	4	2	2		4
421^{2}		4	6	6		36
41^{4}		6	3	3		9
$3^{2} 2$		4	6	6		36
$3^{2} 1^{2}$		5	11	8	\{1\}	73
2^{4}		6	6	6		36
24	$\varepsilon_{2}=0$	8	2	2		4
$2^{3} 1^{2}$		7	4	4		16
$2^{2} 1^{4}$		9	4	4		16

- 156 -

λ	ε	d(u)	8 (u)	$B_{a}(u)$	B(u)	q(u)
$3^{2} 14$		10	21	15	\{1\}	261
2^{5}		10	10	10		100
$2^{4} 1^{2}$		11	10	10		100
$2^{4} 1^{2}$	$\varepsilon_{2}=0$	13	5	5		25
$2^{3} 14$		13	5	5		25
$2^{2} 1^{6}$		16	5	5		25
$2^{2} 1^{6}$	$\varepsilon_{2}=0$	17	4	4		16
$2 \quad 18$		20	1	1		1
1^{10}		25	1	1		1
Total			312	291		3840

Case (VIII). $G=0_{2 n}, p=2, u \in G^{\circ}$.
$\lambda \quad \varepsilon \quad d(u) \quad s(u) \quad s_{a}^{\prime}(u) \quad s_{a}(u) \quad B(u) \quad q(u)$
$\underline{n}=2, G=O_{4}$.

2^{2}		0	1	1	1	1
2^{2}	$\varepsilon_{2}=0$	1	1	1	1	1
2^{2}	$\varepsilon_{2}=0$	1	1	1	1	1
1^{4}		2	1	1	$\frac{1}{4}$	$\frac{1}{4}$

$\underline{n}=3, G=0_{6}$

42	0	1	1	1		1	
3^{2}		1	3	2	3	$\{1\}$	9
$2^{2} 1^{2}$		2	2	2	2		4
$2^{2} 1^{2}$	$\varepsilon_{2}=0$	3	3	2	3	$\{1\}$	9
$\frac{1}{6}$		6	$\frac{1}{10}$	1	$\frac{1}{10}$		$\frac{1}{24}$

λ
ε
$d(u) \quad B(u) \quad s_{a}^{\prime}(u)$
$s_{a}(u)$
$B(u) \quad q(u)$
$n=4, G=0_{8}$.

62		0	1	1	1		1
4^{2}		1	4	3	4	\{1\}	16
4^{2}	$\varepsilon_{4}=0$	2	3	3	3		9
4^{2}	$\varepsilon_{4}=0$	2	3	3	3		9
421^{2}		2	3	3	3		9
$3^{3} 1^{2}$		3	14	6	8	(*)	100
2^{4}		4	2	2	2		4
2^{4}	$\varepsilon_{2}=0$	6	3	3	3		9
2^{4}	$\varepsilon_{2}=0$	6	3	3	3		9
$2^{2} 1^{4}$		6	3	3	3		9
$2^{2} 1^{4}$	$\varepsilon_{2}=0$	7	4	3	4	\{1\}	16
1^{8}		12	1	1	1		1
Total			44		38		192

(*) $\{1\}$ is the atabilizer of 8 elements, $\left\langle a_{1}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{3}\right\rangle$ is the stabilizer of 2 elements and $A(u)$ stabilizes 2 elements.
$n=5, G=0_{10}$.

8	2	0	1	1	1		1
6	4	1	5	4	5	$\{1\}$	25
6	2	1^{2}	2	4	4	4	
5^{2}		2	10	6	10	$\{1\}$	100
4^{2}	1^{2}		3	25	12	15	$(*)$
4^{2}	1^{2}	$\varepsilon_{4}=0$	4	20	12	20	$\{1\}$
4	2^{3}		4	5	5	5	
4	21^{4}	6	6	6	6		25
4							

λ	ε	d(u)	© (u)	$s_{a}^{\prime}(u)$	$s_{a}(\mathrm{u})$	$B(u)$	q(u)
$3^{2} 2^{2}$		5	10	6	10	\{1\}	100
$3^{2} 2^{2}$	$\varepsilon_{2}=0$	6	20	12	20	\{1\}	400
$3^{2} 1^{4}$		7	25	12	15	(**)	325
$2^{4} 1^{2}$		8	5	5	5		25
$2^{4} 1^{2}$	$\varepsilon_{2}=0$	10	10	6	10	$\{1\}$	100
$2^{2} 1^{6}$		12	4	4	4		16
$2^{2} 1^{6}$	$\varepsilon_{2}=0$	13	5	4	5	\{1\}	25
1^{10}		20	1	1	1		1
Total			156		136		1920

(*) $\{1\}$ is the stabilizer of 12 elements, $\left\langle a_{1}\right\rangle$ is the stabilizer of 6 elements, $\left\langle a_{3}\right\rangle$ is the stabilizer of 2 elements and $A(u)$ stabilizes 5 elements.
(**) $\{1\}$ is the stabilizer of 12 elements, $\left\langle a_{1}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{3}\right\rangle$ is the stabilizer of 6 elements and $A(u)$ stabilizes 5 elements.

Case (IX). $G=O_{2 n}, p=2, u \quad G \quad G^{0}$.
λ
ε

$$
d(u) \quad s(u) \quad s_{a}(u) \quad B(u) \quad q(u)
$$

$\underline{n=2} . G=O_{4}$.
4
$\frac{2 \quad 1^{2}}{\operatorname{Tota} 2}$

$\begin{array}{r}1 \\ 1 \\ \hline 2\end{array}$
$\underline{n}=3, G=0_{6}$.
6

0	1	1
1	3	2
2	1	1
4	1	1

$\left\langle a_{1}\right\rangle$ | 1 |
| :--- |
| |
| |
| |
| |
| 1 |

λ	ε	$d(u)$	$s(u)$	$s_{a}^{\prime}(u)$	$s_{a}(u)$	$B(u)$	$q(u)$
$3^{2} 2^{2}$		5	10	6	10	$\{1\}$	100
$3^{2} 2^{2}$	$\varepsilon_{2}=0$	6	20	12	20	$\{1\}$	400
$3^{2} 1^{4}$		7	25	12	15	$(* *)$	325
$2^{4} 1^{2}$		8	5	5	5		25
$2^{4} 1^{2}$	$\varepsilon_{2}=0$	10	10	6	10	$\{1\}$	100
$2^{2} 1_{1}^{6}$		12	4	4	4		16
$2^{2} 1^{6}$	$\varepsilon_{2}=0$	13	5	4	5	$\{1\}$	25
1^{10}		20	1	1	1		1
Total							

(*) $\{1\}$ is the stabilizer of 12 elements, $\left\langle a_{1}\right\rangle$ is the stabilizer of 6 elements, $\left\langle a_{3}\right\rangle$ is the stabilizer of 2 elements and $A(u)$ stabilizes 5 elements.
(**) $\{1\}$ is the stabilizer of 12 elements, $\left\langle a_{1}\right\rangle$ is the stabilizer of 2 elements, $\left\langle a_{3}\right\rangle$ is the stabilizer of 6 elements and $A(u)$ stabilizes 5 elements.

Case (IX). $G=O_{2 n}, p=2, u \quad G \quad G^{0}$.
λ
ε
$d(u) \quad s(u) \quad B_{a}(u) \quad B(u) \quad q(u)$
n=2, $G=0_{4}$.
$\begin{array}{lllll}4 & 0 & 1 & 1 & 1 \\ 21^{2} & 1 & 1 & \frac{1}{2} & \frac{1}{2}\end{array}$
$\underline{n}=3, G=0_{6}$.

6	0	1	1		1	
4	1^{2}	1	3	2	$\left\langle a_{1}\right\rangle$	5
2^{3}	2	1	1		1	
2	1^{4}	4	1	1		1

λ
Total
$\begin{array}{cccc}d(u) & s(u) & B_{a}(u) & B(u) \\ 6 & 5 & & q(u) \\ & & 8\end{array}$
$\underline{n}=4, G=0_{8}$.

8		0	1	1		1
6	1^{2}	1	5	3	$\left\langle a_{1}\right\rangle$	13
4	2^{2}	2	3	3		9
4	2^{2}	$\varepsilon_{2}=0$	3	3	3	
4	1^{4}		4	4	3	$\left\langle a_{1}\right\rangle$
3^{2}	2	3	1	1		10
2^{3}	1^{2}	5	2	2	1	
2	1^{6}	9	$\frac{1}{20}$	$\frac{1}{17}$	4	
Total				$\frac{1}{48}$		

$\underline{n}=5, G=0_{10}$.

References.

1. P. Bala, R.W. Carter, Classes of unipotent elements in simple algebraic groups, Math. Proc. Camb. Phil. Soc. 79 (1976), 401-425 and 80 (1976) 1-18.
2. A. Borel et al., Seminar on algebraic groups and related finite groups, Lecture Notes in Math. 131, SpringerVerlag, 1970.
3. A. Borel, J. de Slebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Nath. Helv. 23 (1949), 200-221.
4. P. Deligne, G. Iusztig, Representations of reductive groups over finite fields, Ann. of Niath. 103 (1976), 103-161.
5. L.E. Dickson, Linear groups, B.G. Teubner (1901).
6. G. Lusztig, on the finiteness of the number of unipotent classes, Inv. Math. 34 (1976) 201-213.
7. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Inv. Math. 38 (1976), 101-159.
B. G. Lusztig, Irreducible representations of finite classical groups, to appear.
8. W.H. Hesselink, Singularities in the nilpotent scheme of a classical group, thesis, Utrecht.
9. R. Hotta, T.A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, to appear.
10. A. Joseph, A characteristic variety for the primitive spectrum of a semiaimple Lie algebra, to appear.
11. R.W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. 86 (1967), 1-15.
12. R.W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc 6 (1974), 21-24.
13. N. Spaltenstein, On the fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. Ak. ∇. Vet. (A) 79 (5) (1976), 452-456.
14. N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977), 203-204.
15. 'i'A. Springer, The unipotent variety of a semiaimple algebraic group, in Algebraic geometry (Papers presented at the Bombay Colloquium), 373-391, Oxford Univeraity Preas (1969).
16. T.A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Inv. Nath. 36 (1976), 173-207.
17. B. Srinivasan, Green polynomials of finite classical groupe, to appear.
18. R. Steinberg, Lndomorphisms of linear algebraic groups, A.M.S. Memoirs no. 80 (1968).
19. R. Steinberg, Conjugaoy clasees in algebraic groups, Lecture Notes in Math. 366, Springer-Verlag (1974).
20. R. Steinberg, On the desingularization of the unipotent variety, Inv. Math. 36 (1976), 209-224.
21. J. Vargas, Fixed points under the action of unipotent elements, Ph. D. Thesis, U.C.I.A. (1976).
22. G.E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. Nath. Soc. 3 (1963), 1-62.
