

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/140145

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/140145
mailto:wrap@warwick.ac.uk

Developing a Loss Prediction-based Asynchronous Stochastic
Gradient Descent Algorithm for Distributed Training of Deep

Neural Networks
Junyu Li

j.li.9@warwick.ac.uk
University of Warwick

Coventry, United Kingdom

Ligang He∗
ligang.he@warwick.ac.uk
University of Warwick

Coventry, United Kingdom

Shenyuan Ren
shenyuan.ren@physics.ox.ac.uk

University of Oxford
Oxford, United Kingdom

Rui Mao
mao@szu.edu.cn

Shenzhen University
Shenzhen, China

ABSTRACT
Training Deep Neural Network is a computation-intensive and
time-consuming task. Asynchronous Stochastic Gradient Descent
(ASGD) is an effective solution to accelerate the training process
since it enables the network to be trained in a distributed fashion,
but with a main issue of the delayed gradient update. A recent
notable work called DC-ASGD improves the performance of ASGD
by compensating the delay using a cheap approximation of the
Hessian matrix. DC-ASGD works well with a short delay; however,
the performance drops considerably with an increasing delay be-
tween the workers and the server. In real-life large-scale distributed
training, such gradient delay experienced by the worker is usually
high and volatile. In this paper, we propose a novel algorithm called
LC-ASGD to compensate for the delay, basing on Loss Prediction.
It effectively extends the tolerable delay duration for the compensa-
tion mechanism. Specifically, LC-ASGD utilizes additional models
that reside in the parameter server and predict the loss to com-
pensate for the delay, basing on historical losses collected from
each worker. The algorithm is evaluated on the popular networks
and benchmark datasets. The experimental results show that our
LC-ASGD significantly improves over existing methods, especially
when the networks are trained with a large number of workers.

CCS CONCEPTS
•Computingmethodologies→Parallel algorithms;Computer
vision; Artificial intelligence.

KEYWORDS
Neural Networks, Distributed Training, Machine Learning

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404432

ACM Reference Format:
Junyu Li, Ligang He, Shenyuan Ren, and Rui Mao. 2020. Developing a
Loss Prediction-based Asynchronous Stochastic Gradient Descent Algo-
rithm for Distributed Training of Deep Neural Networks. In 49th Inter-
national Conference on Parallel Processing - ICPP (ICPP ’20), August 17–
20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3404397.3404432

1 INTRODUCTION
Deep learning attracts attentions increasingly because of its im-
pressive effectiveness in the areas of image recognition and speech
processing [12, 20, 24]. As the size of the training dataset and the
complexity in the architecture of the training network raises, train-
ing Deep Neural Network (DNN) with Stochastic Gradient Descent
(SGD) on a single machine is getting harder. The demands for
working on large-scale datasets and models motivate the research
of distributed training strategy [1, 3, 13]. Synchronous Stochastic
Gradient Descent (SSGD) and Asynchronous Stochastic Gradient
Descent (ASGD) [7] are two popular solutions for this purpose.

In SGD, the neural network runs on a single machine and the
gradients, which are used to update the model, are computed every
time after a batch of data is processed by the network. Different
from SGD, a set of workers is used in SSGD. Each worker holds the
same model and computes the gradients synchronously. The gradi-
ents are then averaged on a parameter server for weight updating.
However, there is a synchronous barrier in SSGD training method.
The gradient averaging operation has to wait for all workers to
finish their computations. The training process will slow down if
any worker is delayed.

The ASGD breaks the synchronous barrier to accelerate the
distributed training process. In the ASGD, each worker individu-
ally computes the gradient on the model retrieved from a param-
eter server and updates the model in the parameter server asyn-
chronously [18]. Nevertheless, the main drawback of the ASGD
is the delayed updating [19]. It dues to the fact that the gradients
computed by each worker are commonly based on different states
of the network. In other words, the workers cannot always run with
the latest state of the network since the weights are continually
updated, and each worker uses its retrieved version of the network
to compute the gradients independently.

https://doi.org/10.1145/3404397.3404432
https://doi.org/10.1145/3404397.3404432

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Junyu Li, Ligang He, Shenyuan Ren, and Rui Mao

Parameter Server:

Worker m

!"

#"

!"$% !"$&

#"$%

!"$&$%

((), +))((-, +-)

Worker n

Figure 1: ASGD weight updating procedure

Due to such drawback of the ASGD, [27] proposed a delay com-
pensation algorithm named DC-ASGD. It utilizes a cheap approxi-
mation of the Hessian matrix to compensate for the delay in the
gradient computation performed by local workers. The approxima-
tion can produce a better result than both the ASGD and the SSGD.
However, the effective approximation is limited as the DC-ASGD is
utilizing the second-order partial derivatives, resulting in the DC-
ASGD only working well for a short period of delay. The training
performance in the situation of high delays cannot be guaranteed.

In this paper, we propose a novel method, called Asynchronous
Stochastic Gradient Descent with Loss Compensation (LC-ASGD),
to release the restriction in the DC-ASGD. Our method LC-ASGD
works similarly as ASGD in the sense that there is no barrier for
workers, so that enables each worker to update the network once it
finishes the local training. The LC-ASGD, which differs from ASGD,
applies additional Recurrent Neural Networks (RNN) to predict the
loss in the existence of delay (i.e., compensate the loss due to the de-
lay). It allows workers to use more accurate loss values to compute
the gradients. Comparing with DC-ASGD, the loss compensations
are not limited to the effective duration of the second-order approx-
imation. Rather, the accuracy of loss compensation is determined
by the performance of the predictor.

Moreover, the default batch normalization [9] designed for single
machine training does not work very effectively in distributed train-
ing. To further improve the performance of distributed training,
we extend the default Batch Normalization (BN) scheme to Asyn-
chronous Batch Normalization (Async-BN). We have conducted
comprehensive experiments, in which the results show that: (1) the
LC-ASGD always produces better results than SSGD, ASGD and
DC-ASGD, especially when there are a large number of workers in
the system; (2) the model accuracy achieved by LC-ASGD is very
close to the accuracy obtained by the sequential SGD when the
number of workers is large, and is even better than SGD when the
number of workers is small.

2 MOTIVATIONS
SSGD is a straightforward distributed implementation of SGD. The
workloads are simply split among the workers at every iteration.
The parameter server collects and averages the gradients calculated
by the workers to update the weights of the neural network.

ωt+1 = ωt − γ ·
1
M

·

M∑
j=1

(
1
b

b∑
i=1

∇ωt ℓ(fωt (xi, j),yi, j)) (1)

Formula 1 represents how SSGD works, where ωt is the network
weight at time t , γ is a learning rate,M is the number of workers,
and b is the batch size of the data. ℓ is a loss function for evaluating
the difference between the network output fωt (xi, j) and the label
yi, j corresponding to the input xi, j . The workers compute gradients
on their own, while the server updates the weight of the training
network by taking as input the gradients computed by each worker.

The drawback of SSGD is that the server has to synchronize with
all workers to update the network weights. If any worker straggles
for any reason, for example, a varied computing power or an ab-
normal communication latency, then the weight updating process
on the server will be suspended until the worker finishing its jobs.

ASGD, which is asynchronous version of distributed SGD, breaks
the synchronous barrier in SSGD to accelerate the training process
further. In ASGD, each worker computes its gradients and sends
the results to the server individually. Once the server receives the
local results from a worker, it update the model asynchronously.

The weight updating strategy of ASGD is illustrated in Figure
1. A worker (assume it is worker m in Figure 1) obtains a version
of the network (i.e., the network weights wt as in Figure 1) and
performs its local computations. The local computations involve a
forward propagation computation and a set of calculations for the
gradients. After workerm finishes the local computations, it sends
the gradients back to the parameter server, which uses the gradients
calculated by workerm to update the weights of the global network.
However, while workerm performs its local computation, other
workers may have obtained a different version of the network to
complete their local computations, based on which the server has
updated the network to a new version that is different from the
version that Worker m obtained to calculate the gradients. The
gradients calculated by workerm based on the weightwt will be
used to update the weight wt+τ rather than wt . This is the delay
in updating the weights in ASGD.

Formula 2 represents how the network is updated as described
above in ASGD, in which дm is the local gradient calculated by
worker m based on the network weights at time t , ωt+τ is the
network weights at time ωt+τ .

ωt+τ+1 = ωt+τ − γ · д
1
b

b∑
i=1

∇ωt ℓ(fωt (xi),yi) (2)

The delay in updating the weights may cause the result that the
training by ASGD cannot achieve the same effect as the training
by SGD. Namely, ASGD does not perform as well as SGD in terms
of the accuracy of the trained model.

Due to the limitation of ASGD, the work [27] proposed a delay
compensation algorithm named DC-ASGD, aiming to use a cheap
approximation to compensate for the delay in the gradients com-
putation performed by local workers. Applying such compensation
can produce a better result than both the ASGD and the SSGD.
However, as DC-ASGD utilizes the second-order partial derivatives,
the accurate duration of the approximation is limited. It means that
DC-ASGD would only work well for a short period of delay.

Loss Prediction-based Asynchronous Stochastic Gradient Descent ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

100 120 140 160
5

6

7

·10−2

Epoch

Te
st
Er
ro
r

SGD

DC-ASGD-4

DC-ASGD-8

DC-ASGD-16

Figure 2: Performance of DC-ASGD training ResNet-18 on
CIFAR-10 w.r.t. number of workers

ωt+τ+1 = ωt+τ − γ · (дm + λtдm ⊗ дm ⊗ (wt −wbak (m))) (3)

Formula 3 demonstrates how theDC-ASGDmethodworks, where
λt is a variance control parameter,wbak is a backup model that the
worker is using, ⊗ indicates the element-wise product, and дm is
the gradients computed by the worker that is as same as the ASGD.

We re-built the DC-ASGD and investigate the learning curve of
theDC-ASGDon a popular DNNResNet-18with 4, 8 and 16workers.
The performance of the DC-ASGD on the CIFAR-10 benchmark
dataset is shown in Figure 2. It can be observed that although the
performance of DC-ASGD approximates that of SGD; however, the
error rate obviously raises along with the amount of worker raising.
According to the above analyses, we find that DC-ASGD works
fine with conditions of low delay; however, the performance drops
significantly when the delay is high.

3 RELATEDWORKS
The SGD algorithm has been demonstrated to be very useful in
training a variety of DNNs. Some related works have been proposed
to speed up the efficiency of the SGD training through the parallel
and distributed training [15, 16]. Hogwild! [18] is a lock-free ap-
proach for parallelised SGD, which enables the computing units to
access a shared memory where the network parameters are stored.
Hogwild can achieve a near-optimal convergence rate for certain
problems. The work in [7] built the DistBelief framework, which
adopts ASGD to train deep networks in a distributed manner. The
convergence performance of ASGD has been extensively examined
in many works [4, 26, 27]. In addition, several works [11, 17] de-
veloped frameworks to adopt the distributed training algorithm to
accelerate the training efficiency further.

A recent work [23] proposed an Error Compensated Quantized
Stochastic Gradient Descent (ECQ-SGD) algorithm to improve the
training efficiency in a distributed training scenario. It quantises
local gradients to reduce the communication overhead and utilizes
the accumulated quantisation error to speed up the convergence.
Comparing with other related works [2, 22], the ECQ-SGD applies
an error compensation technique to achieve a state-of-art com-
pression performance. However, the work focuses on reducing
communication bandwidth to speed up training progress, which
has a different focus from our work.

A rising approach [10, 21, 25] designed for federated learning
[14], which enable devices collaboratively learn a shared prediction
model while keeping all the training data locally, was proposed to
determine an optimal trade-off between local update and global
parameter aggregation to minimize the loss function with a given
resource budget. Although the experiments show that the proposed
trade-off controlling algorithm performs a good result near to the
optimum with various machine learning models and different data
distributions, nevertheless, such algorithms are suitable for the
dataset that is stored individually and privately. In our case, we
consider all of the workers that not only share the model but also
use the same data.

The DC-ASGD [27] is the notable work closely related to the
method proposed in this paper. The DC-ASGD utilizes the Hessian
matrix to compensate for the delay approximately. As introduced
in Section 1 and Section 2, the DC-ASGD estimates the distance in
model version between the workers and the server, and then uti-
lizes a cheap approximation of the second-order partial derivatives
to compensate the delayed gradients. However, according to the
analysis of the re-building experiments, such compensation works
well when the delay is low. As the number of workers increases,
the performance degrades significantly.

4 DISTRIBUTED TRAININGWITH LOSS
COMPENSATION

We propose LC-ASGD to address a crucial problem in ASGD that
is the delayed updating of weights. In LC-ASGD, the trend of loss
values during training is modeled as a time series that is called the
loss time series. An LSTM Recurrent Neural Network (RNN) is built
as a loss predictor to forecast the future values in loss time series
based on both current loss computed by the workers and historical
values, which is the basis of our loss compensation. Moreover, to
define the future step for the loss predictor, another LSTM network
is built as a future step predictor that takes multivariate input
data including computing cost of the worker, communication cost
between the server and the worker, and the interval of the worker
interacting with the server.

Our LC-ASGD aims to compensate for the loss caused by the
delay. To achieve this, the order in which the workers finish their
local computations is also modeled as a time series that is called
the worker time series. It determines the order in which the weights
of the network are updated in the parameter server and also the
version of the network each worker obtains to start its local compu-
tation. If k numbers of other workers update the network weights
in the parameter server before the workerm completes its local
computation with the networkwt , we call that the latest network is
km steps away fromwt . The larger value of km , the higher delay is
experienced by workerm. We make use of the worker time series to
predict how many steps the network version has evolved between
the time when a work obtains a network version and the time when
the work completes its local computation and sends back updates
(i.e. gradients). We build another LSTM Recurrent Neural Networks
(RNN) as a step predictor.

The loss caused by the delay is compensated as follows. When
the parameter server receives a loss value computed by a worker
m, it invokes the step predictor to predict the number of steps

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Junyu Li, Ligang He, Shenyuan Ren, and Rui Mao

50 100 150

0

5 · 10−2

0.1

0.15

Epoch

Tr
ai
ni
ng

Er
ro
r

SGD

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

50 100 150

0

0.1

0.2

Epoch

Tr
ai
ni
ng

Er
ro
r

(b) M = 8

50 100 150

0

0.1

0.2

Epoch

Tr
ai
ni
ng

Er
ro
r

(c) M = 16

50 100 150

5 · 10−2

0.1

0.15

0.2

Epoch

Te
st
Er
ro
r

(d) M = 4

50 100 150

0.1

0.2

Epoch

Te
st
Er
ro
r

(e) M = 8

50 100 150

0.1

0.2

0.3

0.4

Epoch

Te
st
Er
ro
r

(f) M = 16

Figure 3: Error rates of the global model ResNet-18 with Async-BN as the training progresses on CIFAR-10

Algorithm 1 The computations performed by a worker, m

Initialize:
statem = {loss : 0,mean : { },var : { }, tcomm : 0, tcomp : 0},
z ∈ {1, 2, ...,Z }, t0, t1
1: Pullwt from the parameter server at timestamp t0
2: Receive the weightswt at timestamp t1
3: Record the pulling time cost statem [tcomm] = t1 − t0
4: Compute loss ℓm = ℓ(fwt (xi), yi)
5: Record the local loss statem [loss] = ℓm
6: Store mean µz in each BN layer bnz into statem [mean]
7: Store variance σz in each BN layer bnz into statem [var]
8: Push all recordings statem to the parameter server
9: Receive loss compensation ℓdelay from the parameter server

at timestamp t2
10: Compute gradient дm = ∇wt (ℓm + λ · ℓdelay), finishing at

timestamp t3
11: Record computational time cost statem [tcomp] = t3 - t2
12: Push the gradients дm to the parameter server

that will be experienced by the worker. Assuming the predicted
number of steps is km , the server then invokes the loss predictor
to predict the loss value at the km-th step ahead, which is the loss
value after compensating the delay corresponding to the km steps.
The compensated loss value is then sent to the worker for its local
computation.

As presented above, there are four main components in our LC-
ASGD: the workers, the parameter server, the loss predictor and
the step predictor. Next, we present these four components and the
relevant algorithms in more detail.

4.1 Worker
Algorithm 1 outlines the computations performed by each worker
in the distributed training. At the beginning of each iteration, the
worker requests the latest network weightswt from the parameter
server (Line 1). The time consumption of pulling the network pa-
rameters is calculated by the difference between two timestamps
t0 and t1. It is stored as tcomm in a data collection statem (Line
3). Based on the retrieved network from the parameter server, the
worker takes a batch of training data and performs the forward
propagation to compute a loss value ℓm (Line 4), following Formula
4. Along with the forward propagation, the mean µ and variance σ
of each BN layer are also updated according to the input data.

ℓm = ℓ(fwt (xi), yi) (4)

ℓm , µz and σz are saved in statem (Line 5, 6 & 7), which will
be sent to the parameter server (Line 8). The loss ℓm is used to
calculate a compensation value, while µ and σ are accumulated to
a global mean and a global variance of each BN layer. The reason
of doing accumulations for BN layers across all workers is that
we found such optimizations can deliver better and more stable
performance for the distributed training in many cases.

дm = ∇wt (ℓm + λ · ℓdelay) (5)

Once the worker receives the compensated loss value from the
server (Line 9), it leverages Formula 5 to combine the compensa-
tion with the current loss (Line 10). Then do the back-propagation
through the network to calculate the gradients дm . The λ here is a
hyper-parameter to fine-tuning the compensated loss. Similar to
tcomm , the time used for the gradient computation is recorded as

Loss Prediction-based Asynchronous Stochastic Gradient Descent ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Algorithm 2 LC-ASGD: parameter server
Input: learning rate γ
Initialize: t = 0, Ebnz = 0, Varbnz = 1,w0 is initialized randomly,
iter = [],m ∈ {1, 2, ...,M}, z ∈ {1, 2, ...,Z }
repeat
1: if receive statem then
2: Appendm to iter
3: Predict step km =

stepPredictor (m, statem [tcomm , statem [tcomp], iter)
4: Predict loss ℓdelay for the next km steps by

lossPred(statem [loss],k)
5: Send ℓdelay to workerm
6: Update Ez = (1 − d) ∗ Ez + d ∗ statem [meanz]
7: Update Varz = (1 − d) ∗Varz + d ∗ statem [varz]
8: else if receive дm then
9: wt+1 = wt − γ · дm
10: t = t + 1
11: else if receive pull request from workerm then
12: Sendwt to workerm
13: end if
until f orever

tcomp (Line 11). Finally, the workerm pushes the gradients дm to
the parameter server (Line 12) to update the network.

4.2 Parameter Server
The functions performed on the parameter server are outlined in
Algorithm 2. The parameter server generally receives the requests
from the workers and sends the corresponding response back to the
workers. A list iter , which is maintained in the parameter server,
records the sequence of all workers that send the computing results
to the server. The iter is applied to derive the number of steps expe-
rienced by a particular worker. The server receives the computing
results statem from workerm that contains a loss value and the
updates (i.e. mean and variance) for the BN layers. Every time when
the server gets the statem , the worker indexm will be appended
into the list iter (Line 2).

The step predictor is invoked to predict the number of steps
(assume it is km) for which the network version will have evolved
when the worker m finishes its computation and send the com-
puting results back to the server (Line 3). Then, the loss value
(i.e., statem [loss]) and the predicted number of steps km are fed
into the loss predictor lossPred to predict the loss delay (denoted
by ℓdelay) at the following km steps (Line 4). The server sends
ℓdelay to workerm (Line 5) so that the worker uses the predicted
loss delay to compensate for its loss value and then performs the
back-propagation.

Ez = (1 − d) ∗ Ez + d ∗ statem [meanz] (6)

Varz = (1 − d) ∗Varz + d ∗ statem [varz] (7)
Formula 6 and Formula 7 shows how the server accumulates the

mean and variance sent by workerm to update the global mean E
and the global varianceVar for each batch normalization layer bnz ,
where the z is the index of the batch normalization layer. The E

Algorithm 3 LC-ASGD: loss predictor

Input: loss ℓm (the loss received from workerm), step km
Initialize: ℓt (the latest loss of the network)
1: Train lossPred with (data = ℓt , label = ℓm)

2: predictions = lossPred(data = ℓm , f uture = k)
3: ℓdelay = sum(predictions)
4: ℓt = ℓm

Return: ℓdelay

Algorithm 4 LC-ASGD: step predictor
Input: worker rankm, tcomm , tcomp , iteration recording iter
Initialize: stepm = 0, tmcomm , tmcomp ,m ∈ {1, 2, ...,M}

1: Extract the last iteration stept of workerm from iter
2: Train stepPred with

(data = {stepm , t
m
comm , t

m
comp }, label = stept)

3: km = stepPred(data = {stept , tcomm , tcomp }, f uture = 1)
4: tmcomm , tmcomp , stepm = tcomm , tcomp , stept

Return: km

and theVar are updated by calculating the new mean and variance
across all workers after receiving the local mean and variance from
the worker (Line 6 & 7).

wt+1 = wt − γ · дm (8)
When the server receives the gradients дm from workerm, the

server updates the network weights by Formula 8 (Line 9). Finally,
the server sends the latest network parameters wt to the worker
who requests for the latest network (Lines 12).

4.3 Loss Compensation Predictor
The prediction model lossPred used by the loss compensation pre-
dictor is an RNN network, which resides in the parameter server.
The first two layers of the RNN network are the LSTM layers while
the final layer is a linear layer. The operations performed by the
predictor is outlined in Algorithm 3.

Assume that the workerm takes a batch of input data and uses
the model wt to calculate a loss value ℓt through the forward-
propagation. In the next iteration, the loss value of the training
modelwt+1 will be ℓt+1. Then, it will be ℓt+2. Following this pattern,
the loss values from each iteration can be regarded as a time serial
data. We utilize an RNN to model the relations among such data
so that the loss value can be predicted. To train the RNN on the
server without disturbing workers’ progress, we implement an
online-training process the loss predictor. The loss predictor takes
ℓt as input and uses ℓt+1 as the target every time to train the loss
prediction model online. This is indeed how the loss prediction
model is trained.

ℓdelay = sum(lossPred(data = ℓm , f uture = km)) (9)
Specifically, the loss prediction model lossPred uses ℓt as input

(since ℓt is the last loss value at time t coming from the training
model) to predict the loss value at the next time t + 1, i.e., ℓt+1.
When the real loss value ℓm at time t + 1 coming to the server,

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Junyu Li, Ligang He, Shenyuan Ren, and Rui Mao

0 200 400

0

0.2

0.4

0.6

0.8

Seconds

Tr
ai
ni
ng

Er
ro
r

SGD

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

0 100 200

0

0.2

0.4

0.6

Seconds

Tr
ai
ni
ng

Er
ro
r

(b) M = 8

0 50 100

0

0.2

0.4

0.6

Seconds

Tr
ai
ni
ng

Er
ro
r

(c) M = 16

0 200 400

0.2

0.4

Seconds

Te
st
Er
ro
r

(d) M = 4

0 100 200

0.2

0.4

Seconds

Te
st
Er
ro
r

(e) M = 8

0 50 100

0.2

0.4

0.6

Seconds

Te
st
Er
ro
r

(f) M = 16

Figure 4: Error rates of the global model ResNet-18 with Async-BN w.r.t. wall-clock time on CIFAR-10

the ℓm act as a label to calculate difference to the prediction ℓt+1
(Line 1). Such difference will be used to back-propagating through
the network to do updates. The updating procedure is same to the
regular training process of neural networks. Follow this training
cycle, the model lossPred is trained every time when the loss ℓt+2,
ℓt+3, ..., , ℓt+n arriving to the server.

The forward-propagating goes on km iterations to generate the
predictions of the loss for the km steps in the future (Line 2), where
the value of km is predicted by the step predictor to be presented
in the next subsection. Following Formula 9, all predicted loss val-
ues for the km future steps are summed up. The total loss is then
sent back to the workerm. The reason why we sum up the loss
predictions made for these km steps is because when a worker com-
puting the gradient at the km -th step, we need to calculate the sum
of the partial derivative of individual loss values at these km steps,
which equals to the partial derivative of the sum of these loss values.

4.4 Step Predictor
The step predictor stepPred also runs on the server. The role of
the step predictor is outlined in Algorithm 4. The number of steps
km means the number of other workers who send updates to the
server while the workerm running on its local computations. Ac-
cording to our analysis, the value of km depends on a number of
system statuses including the computing capacity of each worker,
the network quality between each worker and the server, etc. These
system statuses typically vary in practice. Therefore, we construct
a multivariate step predictor to capture the complex conditions in
the distributed training systems, which can potentially generate
more accurate predictions for the km .

The step predictor consists of two LSTM layers in the front of
the network and a linear layer at the end. The size of the hidden

layers in the model is limited, so that reduces the training time
of the network. Similar to the loss predictor lossPred , the step
predictor also conducts the online training. We not only utilize the
previous step recordings km but also take communication cost and
computation cost into account. Thus, there are three dimensions
in the input data: communication cost tcomm between workerm
and the server, computing cost tcomp of worker m doing local
calculations, and the value of step km for workerm derived from
iter (Line 1).

Following the online training method motioned in Section 4.3,
the current step km first acts as a label for training the step predictor
stepPred . Then the step predictor stepPred forecasts the next value
of step km for the workerm by inputting the current value of km ,
tcomm and tcomp .

k = stepPred(data = {stept , tcomm , tcomp }, f uture = 1) (10)

Formula 10 presents the way to make a prediction on the next
step value for the workerm. It is slightly different from predicting
the loss delay since predicting the next step only need to forward-
propagating the step predictor for once.

5 EXPERIMENTS
In this section, we present the evaluation results for the proposed
LC-ASGD algorithm. The experiments were carried out on a cluster
where every node is equipped with an NVIDIA Tesla V100 GPU.
Each node acts as a worker. The parameter server is equipped
with two additional GPUs to accelerate the training process of loss
predictor and step predictor. We tested our algorithm on ResNet [8]
with the benchmark datasets CIFAR-10 and ImageNet. In addition to
LC-ASGD, we also implemented several popular existing distributed

Loss Prediction-based Asynchronous Stochastic Gradient Descent ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

60 80 100 120

0.2

0.25

0.3

0.35

Epoch

Tr
ai
ni
ng

Er
ro
r

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

60 80 100 120

0.2

0.25

0.3

0.35

Epoch

Tr
ai
ni
ng

Er
ro
r

(b) M = 8

60 80 100 120

0.2

0.25

0.3

0.35

0.4

Epoch

Tr
ai
ni
ng

Er
ro
r

(c) M = 16

60 80 100 120

0.25

0.3

Epoch

Te
st
Er
ro
r

(d) M = 4

60 80 100 120

0.25

0.3

0.35

Epoch

Te
st
Er
ro
r

(e) M = 8

60 80 100 120

0.25

0.3

0.35

Epoch

Te
st
Er
ro
r

(f) M = 16

Figure 5: Error rates of the global model ResNet-50 with Async-BN as the training progresses on ImageNet

training algorithms including SSGD, ASGD and DC-ASGD, which
have been used in many previous works as baselines [5–7]. For
the sake of fairness, all experiments based on the same randomly
initialized model, and worked with the same scheduling for learning
rate.

5.1 Experiment Results on CIFAR-10
The CIFAR-10 dataset consists of 60000 color images in 10 classes,
with 6000 images per class. We used 50000 images for training and
10000 images for the test. For all the algorithms under investigation,
we ran the training for 160 epochs with a mini-batch size of 128
and the cross-entropy loss function. An initial learning rate of 0.3
was used and then was divided by ten after 80 and 120 epochs,
following the same practice presented in [8]. Moreover, the hidden
sizes we used for loss predictor and step predictor were 64 and 128,
respectively. The network architecture is constructed following the
literature [8]. We implemented SGD, SSGD, ASGD, DC-ASGD and
LC-ASGDwith the same settings as above for a fair comparison. The
sequential SGD algorithm was regarded as a performance baseline
to evaluate the distributed methods.

Figure 3 shows the learning curve of training error rate and
test error rate of the network ResNet-18 on CIFAR-10 dataset as
the training progresses. Table 1 details the final test rates of all
the algorithms when they run with different numbers of workers.
Table 1 also shows the performance degradation over the baseline
algorithm. The following observations can be made from figure 3
and table 1: (1) SGD (the sequential method) delivered a test error of
5.15% in our setting (the test error of SGD reported in [8] was 8.75%).
(2) Our method LC-ASGD (with Async-BN) achieved the lowest
error. When training with 4 workers and 8 workers, LC-ASGD

achieved 4.87% and 4.96% of error rate, respectively. They were
even better than SGD, even though LC-ASGD was not designed to
beat sequential SGD. In addition, LC-ASGD delivered a test error of
5.52% with 16 workers. (3) Although all the distributed algorithms
lost the accuracy as the number of workers increased, LC-ASGD
demonstrated the lowest degradation. As can be seen from Table 1,
the performance degradation of DC-ASGD, SSGD and ASGD with
16 workers were 13.20%, 20.39% and 24.47% respectively, while that
of LC-ASGD (with Async-BN) was only 7.18% in the worst case.

Figure 4 presents the convergence rate of the algorithms, namely,
the change in training/test error rate over the time.

Combining Figure 4 and Table 1, it can be observed that the
convergence rate of these five algorithms were different from their
error rates. Although ASGD had the worst error rate among these
algorithms, it converges very fast, nearly reaching a linear speed-up
comparing with SGD in terms of throughput. SSGD was slightly
slower than ASGD due to the synchronization barrier. DC-ASGD
and LC-ASGD both struck a good balance in error rate and con-
vergence speed. Their convergence speeds were similar to that of
ASGD. We noticed that LC-ASGD took a longer time than SSGD
in the case of 16 workers. This is because that two additional RNN
models were running on the server to predict the loss and the steps.
The loss predictor and the step predictor took slightly more time
when the number of workers increased.

The above results are to be expected. Since ASGD suffers from
the delayed gradients updating and the situation becomes worse
as the number of workers increases. In SSGD, when the number of
workers is increased, it is equivalent to increasing the batch size
of the training data. However, increasing the batch size hurts the
training performance of DNN in general.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Junyu Li, Ligang He, Shenyuan Ren, and Rui Mao

0 1,000 2,000 3,000

0.2

0.4

0.6

Seconds

Tr
ai
ni
ng

Er
ro
r

SSGD

ASGD

DC-ASGD

LC-ASGD

(a) M = 4

0 500 1,000 1,500
0.2

0.4

0.6

Seconds

Tr
ai
ni
ng

Er
ro
r

(b) M = 8

0 200 400 600 800

0.2

0.3

0.4

0.5

0.6

Seconds

Tr
ai
ni
ng

Er
ro
r

(c) M = 16

0 1,000 2,000 3,000
0.2

0.4

0.6

Seconds

Te
st
Er
ro
r

(d) M = 4

0 500 1,000 1,500

0.3

0.4

0.5

0.6

Seconds

Te
st
Er
ro
r

(e) M = 8

0 200 400 600 800

0.3

0.4

0.5

0.6

Seconds

Te
st
Er
ro
r

(f) M = 16

Figure 6: Error rates of the global model ResNet-50 with Async-BN w.r.t. wall-clock time on ImageNet

0 20 40 60 80

3.15

3.16

3.17

3.18

Iteration

Lo
ss

Loss

Loss Predictor

Figure 7: Performance of the loss predictor for ResNet-50
w.r.t. number of iterations on ImageNet training with 16
workers

5.2 Experiment Results on ImageNet
To further evaluate the performance of LC-ASGD with large-scale
tasks, we tested these algorithms with the ImageNet dataset. The
latest version of ImageNet contains more than 14 millions of an-
notated images. The data is split into 27 high-level categories, in
which each contains up to 3822 subcategories. In the experiments,
we adopted the same settings presented in [8], used ResNet-50(V2)
with a mini-batch size of 128 and performed the training for 120
epochs being reduced by ten times at the 60th and 90th epoch. Be-
cause ImageNet is very large, training with the sequential method
SGD on a single machine takes too long. Thus, we only ran the
experiments with distributed algorithms.

Figure 5 and Table 1 show the Top-1 error of the SSGD, ASGD,
DC-ASGD and LC-ASGD algorithm training ResNet50 with 1-crop
ImageNet. The result of SSGDwith 4 workers was used as a baseline

performance which other algorithms’ performance was compared
against. The results of the experiments with ImageNet were similar
to those with CIFAR10. Our LC-ASGDwith Async-BN still produced
the best performance among all other distributed algorithms. Specif-
ically, when training with 4, 8 and 16 workers, it delivered 23.86%,
24.07% and 24.82% of test error rate respectively. The performance
of other algorithms dropped from 3.02% to 5.39%when training with
16 workers, whilst the proposed LC-ASGD degraded only by 1.35%.

Figure 6 shows the convergent rate of four distributed algorithms.
The results were similar to those of training ResNet18 with CIFAR10.
SSGD was slowed down due to the synchronization barrier, while
ASGD and DC-ASGD had a similar convergence rate. Although our
LC-ASGD spent some extra time in training the additional RNNs
(for the loss predictor and step predictor), it still demonstrated an
excellent trade-off between error rate and convergence speed.

Figure 7 compares the loss calculated by the workers and the
loss predicted by the LossPredictor in the experiments of training
the ResNet-50 with ImageNet by 16 workers. Overall, the predictor
worked effectively in terms of accuracy. The curve of the predic-
tion largely overlapped the curve of the actual loss values. On the
one hand, the actual loss value started at 3.176, and then dropped
gradually to 3.144. On the other hand, the prediction also started at
3.176, and decreased to a value that was only slightly more than
3.143 at the end of the period. The reason why the predictor had
such outstanding performance is because RNN is a robust model
for dealing with the time series problems. The previous state was
used as the feedback to preserve the memory of the network over
time. The model learned from previous values and trends, so as to
make accurate predictions based on the current state.

Moreover, we also evaluated the performance of the step predic-
tor, which is shown in Figure 8. The brown curve is the order in

Loss Prediction-based Asynchronous Stochastic Gradient Descent ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Table 1: Training performance of ResNet-18 on CIFAR-10 and ResNet-50 on ImageNet.

Workers Algorithm CIFAR-10 BN CIFAR-10 Async-BN ImageNet BN ImageNet Async-BN

Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%) Test Error (%) Perf. Deg. (%)
1 SGD 5.15 Baseline 5.15 Baseline - - - -

4

SSGD 5.67 10.10 5.57 8.16 24.61 Baseline 24.49 Baseline
ASGD 5.73 11.26 5.65 9.71 24.99 1.54 24.90 1.67

DC-ASGD 5.33 3.50 5.22 1.36 24.53 -0.33 24.46 -0.12
LC-ASGD 4.98 -3.3 4.87 -5.44 23.91 -2.84 23.86 -2.57

8

SSGD 6.19 20.19 6.01 16.70 25.24 2.56 25.11 2.53
ASGD 6.38 23.88 6.27 21.75 25.71 4.47 25.64 4.70

DC-ASGD 5.72 11.07 5.58 8.35 25.98 5.57 24.89 1.63
LC-ASGD 5.11 -0.78 4.96 -3.69 24.17 -1.79 24.07 -1.71

16

SSGD 6.41 24.47 6.20 20.39 25.80 4.84 25.62 4.61
ASGD 6.59 27.96 6.41 24.47 25.96 5.49 25.81 5.39

DC-ASGD 6.05 17.48 5.83 13.20 25.41 3.25 25.23 3.02
LC-ASGD 5.76 11.84 5.52 7.18 24.99 1.54 24.82 1.35

0 20 40 60 80
0

5

10

15

20

Iteration

W
or
ke
rR

an
k

Finishing Order

Step Predictor

Figure 8: Performance of the step predictor for ResNet-50
w.r.t. number of iterations on ImageNet training with 16
workers

which the workers finished their local computations and sent the
results back to the server (which was recorded in iter and was used
to derive the actual values of step km for the workerm). The blue
curve is the predictions made by StepPredictor in a period of train-
ing ResNet-50 with ImageNet by 16 workers. Although the order of
workers was generally regular, the variance still occurred during the
training. The variance was typically caused by the reasons discussed
previously, for example, the changes in computing workload and/or
the communication status in the workers. As we can see from the
figure, the forecast made by the StepPredictor were very accurate.

The prediction error of the two predictors in LC-ASGD is mainly
due to two reasons. The error rate is unstable when there are not
enough data to train the predictor, or when the network state is
changing significantly. This situation generally occurs at the begin-
ning of the training process or when the learning rate is tuned.

5.3 Evaluation on Asynchronous Batch
Normalization

In our LC-ASGD, we proposed an asynchronous batch normal-
ization strategy to improve the training accuracy in distributed
learning. Table 1 compares the training accuracy between the pro-
posed asynchronous batch normalization (denoted by Asysc-BN)
with the regular batch normalization (denoted by BN) in literature.
It can be observed that the test error rate of the models training

with Async-BN are generally better than that with the regular BN.
As the number of workers increased, The advantage of Async-BN
is more prominent over the regular BN. The reason why Async-BN
outperforms the regular BN is because the difference in how the
batch information is exchanged and updated between the workers
and the server. When training with the regular BN, the parameter
server replaces the mean and variance of all BN layers using the
parameter values received from the latest worker. Our Async-BN
strategy updated the mean and the variance by accumulating all the
updates from the workers and re-calculating the global mean and
variance. Consequently, the parameters that the worker retrieved
from the server contained the accumulated mean and variance. This
way, the mean and variance that the workers used to start their
training is more consistent.

5.4 Parameter Server Overhead Analysis
As aforementioned in Algorithm 3 and Algorithm 4, two RNN mod-
els ran on the parameter server in our LC-ASGD to provide the pre-
dictions for the loss compensation. The overhead mainly depends
on the complexity of the prediction model. Also there is a trade-off
between the complexity and the accuracy when designing the pre-
diction model. We conducted the experiments to evaluate the over-
head incurred by both loss predictor and the step predictor, where
delivered the prediction performance presented in Figures 7 and 8.

Table 2 (with CIFAR-10) and Table 3 (with ImageNet) show the
average time spent by the online loss predictor and step predictor
in a training iteration when training with CIFAR-10 and ImageNet,
respectively. It can be seen from the tables that the time cost is
steady for different datasets. Also, the time cost increases slightly
as the number of workers increases, which is to be expected since
when there are more workers, more input data to the prediction
models and hence more training time. Overall, the overhead in-
curred by the predictions is low compared with the training time
of an iteration. The overhead accounts for around 8% for CIFAR-10,
while it is slightly more than 1% for ImageNet. These results indi-
cate that our loss and step predictor can make accurate predictions
with relatively low overhead.

Moreover, according to the learning curve shown in Figure 4 and
Figure 6, our LC-ASGD achieved the excellent convergence rates
while delivering lower error rates. It beats SSGD as it removes the

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Junyu Li, Ligang He, Shenyuan Ren, and Rui Mao

Table 2: Average time of a training iteration on CIFAR-10.

Workers 4 8 16
Loss Pred. (ms) 1.28 1.29 1.30

Step Pred. (ms) 1.37 1.43 1.48

Total Training (ms) 32.23 32.84 34.64

Overhead (%) 8.22 8.28 8.03

Table 3: Average time of a training iteration on ImageNet.

Workers 4 8 16
Loss Pred. (ms) 1.27 1.29 1.33

Step Pred. (ms) 1.36 1.45 1.50

Total Training (ms) 183.23 185.68 188.71

Overhead (%) 1.44 1.48 1.50

synchronization barrier, and nearly reached the convergence rate
of ASGD when it runs with 4 workers. These results also reflect
that the loss and step predictor do not incur heavy overhead during
the training.

6 CONCLUSION
In this paper, we discussed the issue of synchronization barrier
in SSGD, the delayed gradient updating in ASGD and the limita-
tion of DC-ASGD. These problems motivate us to propose a novel
distributed training algorithm called LC-ASGD. LC-ASGD compen-
sates for the loss delay seen in ASGD. It constructs the RNN models
to predict the delayed steps and further predict the value of the loss
function at a specific step into the future. An asynchronous batch
normalization strategy is also proposed in LC-ASGD. The proposed
LC-ASGD is evaluated on popular deep neural networks with the
widely used datasets. The experimental results demonstrate that
LC-ASGD is able to train the models to the outstanding accuracy
compared with the existing distributed training algorithms, espe-
cially when training with a large number of workers. For future
work, we plan to extend LC-ASGD to address the training problem
with distributed data, i.e., different workers train the models with
different subset of input data.

ACKNOWLEDGMENTS
This research is partially supported by Worldwide Byte Security
Information Technology Co. LTD, CCF-Huawei DBIR2019001A,
and Guangdong project 2018B030325002.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-efficient SGD via gradient quantization and encoding.
In Advances in Neural Information Processing Systems. 1709–1720.

[3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. 2018. Optimization methods for
large-scale machine learning. Siam Review 60, 2 (2018), 223–311.

[4] Sorathan Chaturapruek, John C Duchi, and Christopher Ré. 2015. Asynchronous
stochastic convex optimization: the noise is in the noise and SGD don’t care. In
Advances in Neural Information Processing Systems. 1531–1539.

[5] Kai Chen and Qiang Huo. 2016. Scalable training of deep learning machines by
incremental block training with intra-block parallel optimization and blockwise
model-update filtering. In 2016 ieee international conference on acoustics, speech
and signal processing (icassp). IEEE, 5880–5884.

[6] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidy-
nathan, Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey.
2016. Distributed deep learning using synchronous stochastic gradient descent.
arXiv preprint arXiv:1602.06709 (2016).

[7] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[9] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[10] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[11] Matthias Langer, Ashley Hall, Zhen He, andWenny Rahayu. 2018. MPCA SGD—A
Method for Distributed Training of Deep Learning Models on Spark. IEEE
Transactions on Parallel and Distributed Systems 29, 11 (2018), 2540–2556.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[13] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. 2014. Communication
efficient distributed machine learning with the parameter server. In Advances in
Neural Information Processing Systems. 19–27.

[14] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2016.
Communication-efficient learning of deep networks from decentralized data.
arXiv preprint arXiv:1602.05629 (2016).

[15] Qi Meng, Wei Chen, Jingcheng Yu, Taifeng Wang, Zhi-Ming Ma, and Tie-Yan Liu.
2016. Asynchronous Accelerated Stochastic Gradient Descent. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence (New
York, New York, USA) (IJCAI’16). AAAI Press, 1853–1859. http://dl.acm.org/
citation.cfm?id=3060832.3060880

[16] Yuewei Ming, Yawei Zhao, Chengkun Wu, Kuan Li, and Jianping Yin. 2018. Dis-
tributed and asynchronous Stochastic Gradient Descent with variance reduction.
Neurocomputing 281 (2018), 27 – 36. https://doi.org/10.1016/j.neucom.2017.11.044

[17] Philipp Moritz, Robert Nishihara, Ion Stoica, andMichael I Jordan. 2015. Sparknet:
Training deep networks in spark. arXiv preprint arXiv:1511.06051 (2015).

[18] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693–701.

[19] Anand Srinivasan, Ajay Jain, and Parnian Barekatain. 2018. An analysis of the
delayed gradients problem in asynchronous sgd. (2018).

[20] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. ACM, 303–314.

[21] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive federated learning in re-
source constrained edge computing systems. IEEE Journal on Selected Areas in
Communications 37, 6 (2019), 1205–1221.

[22] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. In Advances in neural information processing systems. 1509–1519.

[23] Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. 2018. Error
compensated quantized SGD and its applications to large-scale distributed opti-
mization. arXiv preprint arXiv:1806.08054 (2018).

[24] Wayne Xiong, Lingfeng Wu, Fil Alleva, Jasha Droppo, Xuedong Huang, and
Andreas Stolcke. 2018. The Microsoft 2017 conversational speech recognition
system. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 5934–5938.

[25] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine
learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[26] Shen-Yi Zhao andWu-Jun Li. 2016. Fast asynchronous parallel stochastic gradient
descent: A lock-free approach with convergence guarantee. In Thirtieth AAAI
Conference on Artificial Intelligence.

[27] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma,
and Tie-Yan Liu. 2017. Asynchronous stochastic gradient descent with delay
compensation. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 4120–4129.

http://dl.acm.org/citation.cfm?id=3060832.3060880
http://dl.acm.org/citation.cfm?id=3060832.3060880
https://doi.org/10.1016/j.neucom.2017.11.044

	Abstract
	1 Introduction
	2 Motivations
	3 Related Works
	4 Distributed Training with Loss Compensation
	4.1 Worker
	4.2 Parameter Server
	4.3 Loss Compensation Predictor
	4.4 Step Predictor

	5 Experiments
	5.1 Experiment Results on CIFAR-10
	5.2 Experiment Results on ImageNet
	5.3 Evaluation on Asynchronous Batch Normalization
	5.4 Parameter Server Overhead Analysis

	6 Conclusion
	Acknowledgments
	References

