
Reachability in Fixed Dimension
Vector Addition Systems with States
Wojciech Czerwiński
University of Warsaw, Poland
wczerwin@mimuw.edu.pl

Sławomir Lasota
University of Warsaw, Poland
sl@mimuw.edu.pl

Ranko Lazić
University of Warwick, UK
R.S.Lazic@warwick.ac.uk

Jérôme Leroux
CNRS & University of Bordeaux, France
jerome.leroux@labri.fr

Filip Mazowiecki
Max Planck Institute for Software Systems, Germany
filipm@mpi-sws.org

Abstract
The reachability problem is a central decision problem in verification of vector addition systems
with states (VASS). In spite of recent progress, the complexity of the reachability problem remains
unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability.

We obtain three main results for VASS of fixed dimension. For the first two, we assume that
the integers in the input are given in unary, and that the control graph of the given VASS is flat
(i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are
exponential, and we show that the reachability problem is NP-hard in dimension 7. These results
resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and
Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat
VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer
fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The
smallest dimension for which this was previously known is 14.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Verification by model checking; Theory of computation → Logic and verification

Keywords and phrases reachability problem, vector addition systems, Petri nets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.12

Funding Wojciech Czerwiński: Supported by the ERC grant LIPA, agreement no. 683080.
Sławomir Lasota: Supported by the NCN grant 2017/27/B/ST6/02093.
Ranko Lazić : Supported by EPSRC grant EP/P020992/1.
Jérôme Leroux: Supported by ANR grant ANR-17-CE40-0028.

Acknowledgements We thank Matthias Englert for inspiring conversations.

1 Introduction

Context

Vector addition systems with states (shortly, VASS) [20, cf. Section 5.1], [24], vector addition
systems without states (shortly, VAS) [27], and Petri nets [37], are equally expressive with

© Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux and Filip Mazowiecki;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6169-868X
mailto:wczerwin@mimuw.edu.pl
https://orcid.org/0000-0001-8674-4470
mailto:sl@mimuw.edu.pl
https://orcid.org/0000-0003-3663-5182
mailto:R.S.Lazic@warwick.ac.uk
mailto:jerome.leroux@labri.fr
mailto:filipm@mpi-sws.org
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Reachability in Fixed Dimension VASS

well-known straightforward mutual translations. They form a long established model of
concurrency with extensive applications in modelling and analysis of hardware [7, 28], software
[19, 6, 25] and database [4, 5] systems, as well as chemical [1], biological [36, 2] and business
[43, 32] processes (where the references are illustrative).

Two central decision problems in the context of formal verification based on that model
are the following. Stated in terms of the first formalism, the input of both problems is a
VASS V, and two configurations p(v) and q(w).
Coverability asks whether V has a run starting at p(v) and finishing at some configuration

q(w′) such that w′ ≥ w. Thus the final configuration of the run needs to have control
that is in the given target state q and resources that are component-wise no smaller than
the given target vector w. In applications, q(w) is typically seen as a minimal unsafe
configuration, and the coverability problem is fundamental for verifying safety properties.

Reachability asks whether V has a run starting at p(v) and finishing at q(w). Thus the run
needs to reach the given target configuration exactly. It has turned out that verification of
liveness properties amounts to solving the reachability problem [22]. Moreover, a plethora
of problems from formal languages [10], logic [26, 13, 12, 8], concurrent systems [18, 16],
process calculi [35], linear algebra [23] and other areas (the references are again illustrative,
cf. Schmitz’s recent survey [40]) are inter-reducible with the reachability problem.

The coverability problem was found ExpSpace-complete already in the 1970s [33, 38], and the
reachability problem was proved decidable in the early 1980s [34]. However, the complexity
of the latter has become one of the most studied open questions in the theory of verification.
The best upper and lower bounds are both very recent, and are given by an Ackermannian
function [29] and a tower of exponentials [11], respectively.

Fixed Dimension VASS

The gaps in the state of the art on the complexity of the reachability problem are particularly
vivid when the dimension is fixed. For concreteness, we focus on VASS, bearing in mind
that corresponding statements in terms of VAS or Petri nets can be obtained by means of
standard translations (we refer to [40, Section 2.1] for details, noting that in some cases the
dimension is affected by a small additive constant). The only broadly settled cases are for
dimensions 1 and 2, as shown in the following table, where ‘unary’ and ‘binary’ specify how
the integers in the input to the reachability problem are encoded.

unary VASS binary VASS
dimension 1 NL-complete [42] NP-complete [21]
dimension 2 NL-complete [14] PSpace-complete [3]

For dimensions d ≥ 3, the best known bounds are from [29] and [11], namely membership of
the fast-growing primitive recursive class Fd+4 and hardness for (d− 13)-ExpSpace when
d ≥ 14, respectively, which hold with both unary and binary encodings. In particular, for
3 ≤ d < 14, no better lower bounds have been known than NL for unary VASS and PSpace
for binary VASS, whereas the Fd+4 upper bound is far above elementary already for d = 3.

Flat Control

The structural restriction of flatness, which is essentially that the control graph contains no
nested cycles, has long played a prominent role in a number of settings in verification, cf.
e.g. [9]. In fact, all the tight upper bounds for dimensions 1 and 2 recalled above can be seen
as due to the effective flattability of 2-dimensional VASS [30]. Regarding the complexity of

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:3

reachability for flat VASS, there has been a marked contrast in the state of the art depending
on the encoding.
Binary: Thanks to reducibility to existential Presburger arithmetic [17, 3], we have NP

membership, even when the dimension is not fixed. And already for dimension 1, we have
NP hardness.

Unary: With the exception of dimensions 1 and 2 for which we have the NL memberships,
no better upper bound than NP has been known in dimension 3 or higher. And for any
fixed dimension, no better lower bound than NL has been obtained.

Interestingly, from the results of Rosier and Yen [39], we have that the coverability problem
for fixed dimension flat VASS is in NP with the binary encoding and in NL with the unary
encoding, which not provably better than the reachability problem as just discussed.

Main Results

The NL memberships of reachability for unary VASS in dimension 2 and of coverability for
unary VASS in any fixed dimension were obtained by proving that polynomially bounded
witnessing runs always exist. It is therefore pertinent to ask:

Do polynomially bounded witnessing runs exist for reachability for unary flat VASS in
fixed dimensions greater than 2?

Our first main result, presented in Section 3, provides a negative answer immediately in
dimension 3. We believe this is very significant for the continuing quest to understand the
reachability problem, for which as we have seen there is currently a huge complexity gap
already in dimension 3. Namely, 3-dimensional VASS have so far been distinguished from
2-dimensional VASS only by means of the infamous example of Hopcroft and Pansiot [24,
proof of Lemma 2.8], which shows that, in contrast to the latter, the former do not have
semi-linear reachability sets and are hence not flattable. However, we now have a new
distinguishing feature which is present even under the restriction of flatness.

Even if polynomially bounded witnessing runs do not exist, it is conceivable that the
decision problem nevertheless has low complexity, so we next ask:

Is reachability for unary flat VASS in NL in fixed dimensions greater than 2?

We show that this is unlikely in Section 4, where our second main result establishes NP
hardness in dimension 7. This provides the first concrete indication that the reachability
problem is harder than the coverability problem for fixed dimension flat VASS.

Lastly, we turn to binary VASS in fixed dimensions d, where without the flat assumption,
the enormous complexity gap between PSpace hardness and Fd+4 membership remains for
3 ≤ d ≤ 13. Given that exponentially bounded witnessing runs exist for d = 2 [14] (which
yields PSpace membership) but not for d = 14 [11], we ask:

Do exponentially bounded witnessing runs exist for reachability for binary VASS in
fixed dimensions from 3 to 13?

A negative answer is provided in Section 5 by our third main result, which exhibits a family
of 4-dimensional VASSes whose shortest witnessing runs are doubly exponentially long.

Technical Contributions

In all three of the main results, we make use of a key technical pattern first seen in [11], namely
checking divisibility of a counter x by a large integer as follows: ensure that a counter y is
initially equal to x, then multiply x weakly (which a priori may nondeterministically produce

CONCUR 2020

12:4 Reachability in Fixed Dimension VASS

an erroneous smaller result) by many integer fractions greater 1 whose product is c/d, and
finally verify that x = y · (c/d) by subtracting c from x and d from y repeatedly until they
are both 0. The divisibility by the large integer is ensured because the check succeeds if and
only if the weak multiplications are all exact. However, much additional development has
been involved:
1. For the exponentially long shortest runs in Section 3, we employ the factorial fractions

also seen in [11], but in reverse order, with the construction stripped to its essentials to
minimise the dimension, and with a detailed divisibility analysis of large integers.

2. The NP hardness in Section 4 builds on the development in the previous section, adding
careful machinery that facilitates exact computations on exponentially large integers.

3. To obtain the doubly exponentially long shortest runs in Section 5, we have developed
an intricate new family of sequences of fractions, where in contrast to the much simpler
factorial equations, the number of distinct fractions in a sequence is logarithmic in relation
to both the numerators and the denominators as well as to the length of the sequence.

2 Preliminaries

Vector Addition Systems with States

A vector addition system with states in dimension d (d-VASS, or simply VASS if the dimension
is irrelevant) is a pair V = (Q,T) consisting of a finite set Q of states and a finite set of
transitions T ⊆ Q× Zd ×Q. The size of a VASS is |Q|+ |T | · s, where s is the maximum on
the representation size of a vector in T . A configuration of a d-VASS is a pair (p,v) ∈ Q×Nd,
denoted p(v), consisting of a state p and a nonnegative integer vector v. A run of a d-VASS
is a sequence of configurations

p0(v0), . . . , pk(vk), (1)

such that for every 1 ≤ i ≤ k there is a transition αi = (pi−1,wi, pi) ∈ T satisfying
vi−1 + wi = vi. The sequence of transitions α1, . . . , αk we call the path of the run (1).

We are interested in the complexity of the reachability problem: given a d-VASS and two
configurations p(v), q(w) does there exist a run from p(v) to q(w). W.l.o.g. we can restrict
v = w = 0 to be the zero vectors, as the general case polynomially reduces to such restricted
case. Indeed, it suffices to add a new initial state whose only out-going transition adds v,
and likewise a new final state whose only in-going transition subtracts w. In the sequel we
usually assume that VASS is additionally equipped with a pair of configurations, a source
p(v) and a target q(w), thus V = (Q,T, p(v), q(w)). Thus we do not distinguish between a
VASS and a VASS reachability instance. Runs from p(v) to q(w) we call halting runs of V.

We study the reachability problem under two further restrictions. The first restriction
assumes that the dimension d is fixed. In this case it may matter, for the complexity of the
reachability problem, whether the numbers appearing in the vectors in T are encoded in
unary or binary. We will thus distinguish these two cases, and speak of unary, respectively
binary VASS. Note that in the unary case one can assume w.l.o.g. all vectors in T to be
either the zero vector, or the unit vector ei = (0, . . . , 0, 1, 0, . . . , 0) with single 1 on some i-th
coordinate, or inverse −ei thereof. The second restriction is flatness and concerns cycles
in runs (see e.g. [30, 3]). The path α1, . . . , αk of a run (1) is called simple if there is no
repetition of states along the path; it is called simple cycle if there is no repetition of states
along the path except for the first and the last states which are equal: p0 = pk. A VASS is
flat if every state admits at most one simple cycle on it (i.e., the VASS has no nested cycles).

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:5

Counter Programs

We are going to represent VASSes by counter programs. A counter program is a numbered
sequence of commands of the following types:

x += n (increment counter x by n)
x −= n (decrement counter x by n)
goto L or L′ (jump to either line L or line L′)

except that the first and the last command of the program, respectively, are of the form

initialise to 0 (initialise all counters to zero);
halt if x1, . . . , xl = 0 (terminate provided all listed counters are zero).

(We note that in the unary case, increments x += m and decrements x −= m can be
written as m consecutive unitary increments x += 1 and decrements x −= 1, respectively,
introducing only linear blow-up. In the binary case this would lead to an exponential
blow-up.) Indeed, a counter program P represents a VASS (in fact, a VASS reachability
instance) of dimension equal to the number of counters used in P, with a separate state for
every line in P. The increment and decrement commands in P are simulated by transition
vectors of the VASS. The source and target configurations of the VASS correspond to the
first and last line of P . The size of the VASS is linear with respect to the size of the program.
This convenient representation was adopted e.g. in [15, 11].

Accordingly with runs of a VASS, we speak of runs of a counter program (in particular,
values of counters along a run are nonnegative) with the proviso that the initial value of
all counters is 0. A run is halting if it has successfully executed its (necessarily last) halt
command; otherwise, the run is partial. The reachability problem for a VASS translates into
the question whether there exists a halting run in a counter program.

Note that a counter program does not need to test for zero all counters in the final halt
command; for the sake of presentation it is convenient to allow for halting runs with non-zero
final value of certain (irrelevant) counters. On the other hand, formally, our intention is
that a counter program represents a VASS reachability instance with the zero target vector.
This incompatibility can be circumvented by assuming that counter programs are implicitly
completed with additional loops allowing to decrease every untested counter just before
executing the halt command.

In case of fragments of counter programs which neither start with initialise nor end
with halt, we consider explicit initial and final values of counters. Note however that due to
nondeterministic goto command, final values are not uniquely determined by initial ones.

When writing counter program we use a syntactic sugar: we write goto L instead of
goto L or L, and whenever a program repeats the block of commands in line 2 some
nondeterministically chosen number of times (possibly zero, possibly infinite), as shown on
the left, we use a shorthand as shown on the right:

1: goto 4 or 2
2: <iterated commands>
3: goto 1
4: <remaining commands>

1: loop
2: <iterated commands>
3: <remaining commands>

In the sequel we will only occasionally use goto commands explicitly. Observe that a counter
program without explicit goto commands, but using unnested loop commands (which
implicitly use goto commands), always represents a flat VASS.

CONCUR 2020

12:6 Reachability in Fixed Dimension VASS

Algorithm I Weak multiplica-
tion by c

d
, for c > d.

1: loop
2: x −= 1 y += 1
3: loop
4: x += c y −= d

We end this section with examples of counter pro-
grams that weakly compute a number b in some
counter x, i.e., all runs end with x ≤ b, and there is
a run that ends with x = b. On the way we also in-
troduce macros to be used later to facilitate writing
complex programs. As a preparation, consider the
program in Algorithm I which weakly multiplies
the initial value of x by c

d .
Let x0, y0 and x1, y1 be initial and final values, respectively, of counters x, y. We claim that
the sum of final values is at most c

d times larger than the sum of initial values. Moreover, it
is exactly c

d times larger if, and only if, both loops are iterated maximally: the first loop
exits only when the counter x, decreased in its every iteration, reaches the minimal possible
value 0; and likewise the second loop exits only when the counter y reaches 0. Enforcing
maximal iteration of loops will be our fundamental technical objective in the sequel.

B Claim 1. Let x′, y′ be the values of counters x, y at the exit from the first loop. Then
x1 + y1 ≤ (x0 + y0) · cd . Moreover, x1 = (x0 + y0) · cd if, and only if, x′ = y1 = 0.

Proof. As x′ + y′ = x0 + y0 and c > d we get:

x1 + y1 ≤ x′ +
c

d
· y′ ≤ c

d
· (x0 + y0). (2)

We now concentrate on the second part of the claim. If x′ = y1 = 0 then d | (x0 + y0) and
thus x1 = (x0 + y0) · cd . For the opposite direction, if y1 6= 0 then x1 < x1 + y1 ≤ (x0 + y0) · cd .
If x′ 6= 0 then by (2) we get

x1 ≤ x′ +
c

d
· y′ < c

d
· (x′ + y′) = c

d
· (x0 + y0). J

Algorithm II Program fragment Wb.

1: initialise to 0
2: for i := m downto 0 do
3: loop
4: x −= 1 y += 1
5: loop
6: x += 2 y −= 1
7: if bi = 1 then x += 1

p1 q1 p0 q0

(−1, 1) (2,−1) (−1, 1) (2,−1)

(0, 0) (1, 0) (0, 0)

Figure 1 A 2-VASS represented by the programW2. The
first coordinate corresponds to the value of counter x and
the second one to the value of counter y.

Algorithm III Unfolding of
macros in W2.

1: initialise to 0
2: loop
3: x −= 1 y += 1
4: loop
5: x += 2 y −= 1
6: x += 1
7: loop
8: x −= 1 y += 1
9: loop

10: x += 2 y −= 1

The counter program Wb shown in Algorithm II weakly computes a number b, assuming
that bm . . . b0 = Bin(b) is the binary representation of b (the oldest bit bm = 1). The halt
command is omitted as no zero-testing is relevant in this example. We use for and if then
preprocessing macros with the following semantics. The macro

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:7

for i := m downto 0 do <program fragment>

is understood as (m+ 1)-fold repetition of copies of <program fragment>:
<program fragment> (i = m)
<program fragment> (i = m− 1)
. . .

<program fragment> (i = 0)

for i = m,m − 1, . . . , 0. It is important that i is not a counter but a meta-variable that
is treated as a constant in every program fragment. By convention we use different fonts
for counters and meta-variables: i is a counter while i is a meta-variable. Furthermore in
every copy, say for i = k, at every appearance of the macro if ϕ(i) then <optional program
fragment>, the formula ϕ(i) is evaluated and, if it evaluates positively then macro is replaced
by <optional program fragment>, otherwise it is removed. Specifically, consider for example
m = 1 and b = 2, i.e., b1 = 1 and b0 = 0. Unfolding of the macros appearing in W2 yields
the counter program shown in Algorithm III. Figure 1 shows the corresponding 2-VASS. We
remark that the programs in Algorithm I and Algorithm II represent flat VASS.

Clearly, we do not want for and if then to be full-fledged commands operating on
program counters, as this would make counter programs as powerful as Minsky machines,
hence undecidable. They are just pre-processing macros that operate on meta-variables i
only, and constitute syntactic sugar helpful in writing repetitive program fragments.

I Proposition 2. The program Wb weakly computes b.

Proof. By Claim 1, the program Wb weakly multiplies x by 2 in lines (3)–(6). Combining
this with addition of a bit in (7) gives weak computation of b. J

3 Exponential Shortest Runs

I Theorem 3. There is a family of unary flat 3-VASS (Vn)n∈N of size O(n2) such that every
halting run of Vn is of length exponential in n.

Algorithm IV Counter program Pn.

1: initialise to 0
2: x += 1 y += 1
3: loop
4: x += 1 y += 1
5: for i := n down to 1 do
6: loop
7: x −= 1 z += 1
8: loop
9: x += i+ 1 z −= i

10: loop
11: x −= n+ 1 y −= 1
12: halt if y = 0.

In this section we prove the theorem. The
VASS Vn are represented by the counter pro-
grams Pn shown in Algorithm IV. The idea
of multiplying by consecutive fractions 2

1 ,
3
2 . . .

n+1
n comes from [11] (cf. Algorithms I,II

therein), however, we need to apply the mul-
tiplications in the reverse order. The size of
Pn is quadratic in n, as the for macro unfolds
n times, and the constants appearing in the
increment/decrement commands, like i+ 1 in
x += i + 1, are written in unary. Consider
any run that reaches (but not yet executes)
line 12. For every i = n, . . . , 1 let xi and zi be
the values of counters x and z, respectively, at
the exit from the loop in lines 8–9.

Similarly, let x′i be the value of counter x at the exit from the loop in lines 6–7. For uniformity
we write xn+1 and zn+1 for the values of x and z, respectively, just before entering the for
macro, and call these values initial. Notice that xn+1 is equal to the value of counter y at
that point and zn+1 = 0. By Claim 1 we derive:

CONCUR 2020

12:8 Reachability in Fixed Dimension VASS

B Claim 4. For all i = 1, . . . , n, we have xi + zi ≤ (xi+1 + zi+1) · i+1
i .

We focus on runs that maximally iterate both inner loops, by which we mean:
the value of x is 0 at the exit of the loop in lines 6–7;
the value of z is 0 at the exit of the loop in lines 8–9;

B Claim 5. We have x1 ≤ xn+1 · (n+ 1). The equality holds if, and only if, zi = x′i = 0 for
all i = 1, . . . , n.

Proof. By Claim 4 we get x1 + z1 ≤ (xn+1 + zn+1) ·
∏n
i=1

i+1
i = (xn+1 + zn+1) · (n + 1).

Since zn+1 = 0 this implies the inequality.
Now we step to the second part of the claim. If zi = x′i = 0 for all i = 1, . . . , n then by

Claim 1 we get xi = xi+1 · i+1
i for every i, which implies x1 = xn+1 · (n+ 1).

Conversely, suppose for some i we have zi 6= 0 or x′i 6= 0. Then by Claim 1 we get
xi+zi < (xi+1+zi+1)· i+1

i . Combined with Claim 4 this yields x1+z1 < (xn+1+zn+1)·(n+1),
which concludes the proof as zn+1 = 0. J

For a finite subset X ⊆ N of natural numbers, we write Lcm(X) for the least common
multiple of all numbers in X. We will use the number N(n) defined as

N(n) := Lcm({2, . . . , n+ 1})
n+ 1 .

The following two claims conclude the proof of Theorem 3.

B Claim 6. The function N grows exponentially with respect to n. The binary representation
Bin(N(n)) is computable in time polynomial with respect to n.

Proof. For the exponential upper bound we recall that N(n) ≤ n! For the exponential lower
bound we use the prime number theorem (proved independently by Jacques Hadamard and
Charles Jean de la Vallée Poussin in 1896): the number of primes π(n) between 2 and n is
at least π(n) ≥ c · nε − 1 for some constants c > 0 and 0 < ε < 1. Since Lcm({2 . . . n+ 1})
must be divisible by all prime numbers between 2 and n+ 1 and each prime number is at
least 2 we get Lcm({2, . . . , n+ 1}) ≥ 2π(n+1).

N(n) is computed by exhaustive enumeration of all non-divisors of n+ 1, computing their
prime decompositions, and combining them into prime decomposition of N(n). J

B Claim 7. For every initial value xn+1 of counter x there is at most one halting run. Such
a run exists if, and only if, xn+1 is a positive multiple of N(n).

Proof. Recall that the last loop in Pn in line 11 decreases simultaneously y by 1 and x by
n+ 1. Therefore, the run halts only if x ≥ y · (n+ 1). By Claim 5 we have x ≤ y · (n+ 1).
Thus every halting run satisfies the equality x = y · (n + 1). By Claim 5 we know that is
possible only if zi = x′i = 0 for all i = 1, . . . , n, which uniquely determines the run for a given
xn+1. It remains to prove that a halting run exists if, and only if, xn+1 is a positive multiple
of N(n). Notice that by Claim 4 and Claim 5 in a halting run

xi = xi+1 ·
i+ 1
i

= . . . = xn+1 ·
n∏
j=i

j + 1
j

= xn+1 ·
n+ 1
i

.

Therefore xn+1 · (n + 1) must be always divisible by all numbers in {1 . . . n}. Since n + 1
divides xn+1 · (n+ 1) as well, we deduce that Lcm({2, . . . , n+ 1}) divides xn+1 · (n+ 1) which
is equivalent to N(n) divides xn+1. Conversely, if xn+1 is a multiple of N(n) then there is a
run where all loops are iterated maximally, satisfying xi = xi+1 · i+1

i and thus halting. J

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:9

4 NP-hardness

This section is devoted to proving NP-lower bound for flat VASS in fixed dimension.

I Theorem 8. The reachability problem for unary flat 7-VASS is NP-hard.

As mentioned in the introduction NP-membership is already known (even in binary VASS of
unrestricted dimension). Thus as a corollary we get the following result.

I Corollary 9. The reachability problem for flat d-VASS is NP-complete for fixed d ≥ 7.

To prove Theorem 8 we reduce from the Subset Sum problem: given a set of positive
integers S = {s1, . . . , sk} ⊆ N− {0} and an integer s0 > 0, determine if some subset R ⊆ S
satisfies

∑
s∈R s = s0. Note that all the numbers s0, s1, . . . , sk are encoded in binary.

Fix an instance s0, s1, . . . , sk of the Subset Sum problem and let n be the smallest
natural number such that N(n) ≥ s0, s1, . . . , sk. By Claim 6 the number n as well as the
binary representation Bin(N(n)) = bm . . . b0 is computable in time polynomial with respect
to the sizes of binary representations of s0, s1, . . . , sk. Recall that bm = 1. We are going
to define a unary counter program P of polynomial size using 7 counters, as a function of
s0, s1, . . . , sk and n, which halts if, and only if, the instance s0, s1, . . . , sk is positive.

The main obstacle is that the numbers in the Subset Sum problem are represented in
binary, while the numbers in a counter program are to be represented in unary. Thus we
have to exactly compute with exponential numbers, using a fixed number of 7 counters.

Construction of P

We face the challenge by combining the weak computation given by Proposition 2 (that
allows us to compute at most a required value b) with the insight of the proof of Theorem 3
(that enforces that the computed value is simultaneously at least b).

Algorithm V Counter program I.

1: initialise to 0
2: x += 1 y += 1 e += 1 f += k + 1
3: for i := m− 1 to 0 do
4: loop
5: x −= 1 x′ += 1
6: y −= 1 e −= 1 f −= k + 1
7: loop
8: x += 2 x′ −= 1
9: y += 2 e += 2 f += 2(k + 1)
10: if bi = 1 then
11: x += 1 y += 1 e += 1 f += k + 1
12: for i := n down to 1 do
13: loop
14: x −= 1 z += 1
15: loop
16: x += i+ 1 z −= i

17: loop
18: x −= n+ 1 y −= 1
19: halt if y = 0 // removed in I ′

Program I in Algorithm V imple-
ments this idea. The first half of
the program, namely lines 1–11,
weakly computes in counter e the
value N(n), and in counter f the
value N(n) · (k+ 1), very much like
the counter program Wb. Note a
slight difference compared to Al-
gorithm II: the oldest bit bm = 1
is treated in a different way than
other bits bi for 0 ≤ i < m, by ini-
tializing counters e and f to 1 and
k+1, respectively, which excludes a
trivial halting run that would never
iterate any loop and end with the
value of y equal 0. Then the second
part of I checks, very much like the
counter program Pn, if the values
are computed exactly. (Notice that
lines (12)–(19) are exactly the same
as lines 5–12 of Algorithm IV.) Us-
ing Claim 7 we get:

CONCUR 2020

12:10 Reachability in Fixed Dimension VASS

B Claim 10. Counter program I has exactly one halting run that computes N(n) and
N(n) · (k + 1) in counters e and f, respectively, and 0 in the remaining counters x, x′, y and z.

The program P (shown in Algorithm VI) consists of the program I ′ obtained from I by
removing the last halt command. The remaining part of P exploits the values of counters e
and f computed by I ′ to turn weak computations of exponential numbers into exact ones. It
never modifies the counter y again, hence y is listed in the final halt command of P , and uses
a distinguished counter u, initially set to 0, a program fragment R+

s0,true, and a number of
program fragments R−s,p for s ∈ {s1, s2 . . . sk} and p ∈ {true, false}. We call these program
fragments components. In every halting run of P, the component R−s,true decrements u by
s while the other component R−s,false has no effect on counter u. Likewise, the component
R+
s0,true increments u by s0. Finally, u is zero-tested by the final halt command.

Algorithm VI Program P.

I ′
R+
s0,true

goto f1 or t1

f1: R−s1,false goto f2 or t2

t1: R−s1,true goto f2 or t2

f2: R−s2,false goto f3 or t3

t2: R−s2,true goto f3 or t3

. . .
fk: R−sk,false goto h

tk: R−sk,true
h: halt if y, u, f = 0

For 1 ≤ i ≤ k, we use fi, respectively ti, to denote
the the first line of the program fragment R∗si,false,
respectively R∗si,true. Every component R∗si,p, for
0 ≤ i < k and ∗ ∈ {+,−}, is followed by goto fi+1

or ti+1. Thus for every i = {1 . . . k} either R−si,false
or R−si,true is executed, as shown by the following
control flow diagram of P:

I ′ R+
s0,true

R−s1,false

R−s1,true

R−s2,false

R−s2,true

. . .

R−sk,false

R−sk,true

Observe that every halting run of P determines a subset R ⊆ {1, . . . , k} such that for i ∈ R
the component R−si,true is executed, while for i 6∈ R the component R−si,false is executed.

The Components

The component R∗a,p is shown in Algorithm VII. By Binm(a) = am . . . a0 we mean the
(m + 1)-bit binary representation of the number a < 2m+1, padded with leading 0 bits if
needed. The aim of every R∗a,true is to increment (when ∗ = +) or decrement (when ∗ = −)
a from the counter u, using the counters e and f to enforce exactness. After the auxiliary
counter v is initialised to 1, in every iteration of the for loop (in lines 2-9) counter v is weakly
multiplied by 2, so after i iterations its value is at most 2i.

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:11

Algorithm VII Component R∗a,p.

1: v += 1
2: for j := 0 to m− 1 do
3: loop
4: v −= 1 v′ += 1
5: if bj = 1 then
6: e −= 1 e′ += 1 f −= 1
7: if p ∧ (aj = 1) then u ∗= 1
8: loop
9: v += 2 v′ −= 1
10: loop
11: v −= 1
12: e −= 1 e′ += 1 f −= 1
13: if p ∧ (am = 1) then u ∗= 1
14: loop
15: e += 1 e′ −= 1

In lines 6 and 12 counter f is decremen-
ted, in both cases together with counter
e, hence the total decrement of f is at
most the initial value of counter e. Now
recall that in a halting run of P the val-
ues of e and f output by I ′ are N(n) and
N(n) · (k+ 1), respectively. As every halt-
ing run of P passes through exactly k + 1
components and f is zero-tested by the
final halt command of P, every of the
components forcedly decrements f by ex-
actly N(n). Also forcedly, after i itera-
tions of the for loop in lines 2-9 the value
of counter v is exactly 2i. This in con-
sequence implies that the counter u is in-
cremented (respectively, decremented) in
lines 7 and 13 by exactly a times, hence
by a in total. Lines 14-15 are to revert
the roles of counters e and e′.

Note that the oldest bit am, irrespectively of its value 0 or 1, is treated differently (in lines
10-13) from the other bits am−1 . . . a0 of Binm(a) (treated in the body of the for loop in
lines 2–9). This is because the auxiliary counter v needs to be multiplied by 2 exactly m
times, which happens in the course of m iterations of the for loop, while the number of bits
in Bin(a) is m+ 1, thus larger by 1. Consequently, in lines 10-13 the value of v is not flashed
to v′ nor restored back from v′, and hence v is forcedly 0 at the end of R∗a,true and can be
reused by the following commands. Note that the if macro is used in line 13 as, due to the
choice of m, the oldest bit bm of Bin(N(n)) is 1.

The above analysis applies equally well to every component R∗a,false, as its computation
is exactly the same as that of R∗a,true, except that the value of u is not changed.

Dimension 7

To estimate the dimension of the VASS represented by P, notice that I ′ uses counters
x, x′, y, z, e, f and components R∗si,p use additionally v, v′, e′, u. However, by Claim 10 the final
values of x, x′, z computed by I ′ are 0 in every halting run of P, hence the three counters
can be reused in components, which reduces the number of counters to 7.

5 Doubly Exponential Shortest Runs

I Theorem 11. There is a family of binary 4-VASS (Vn)n∈N of size O(n3) such that every
halting run of Vn is of length doubly exponential in n.

In this section we prove the theorem. Define the description size of an irreducible fraction
p
q as max{p, q}. We start with a key technical lemma stating existence of arbitrarily long
increasing sequences of rationals greater than 1, of description size exponential with respect
to k, with the property that the result of multiplying consecutive exponential powers of these
rationals has only exponential (and not doubly exponential) description size.

CONCUR 2020

12:12 Reachability in Fixed Dimension VASS

I Lemma 12. For each k ≥ 1 there are k rational numbers

1 < f1 < . . . < fk = 1 + 1
4k , (3)

of description size bounded by 4k2+k, such that the description size of f defined by

f = (fk)2k

· . . . · (f2)22
· (f1)21

(4)

is bounded by 42(k2+k).

Proof. For 1 ≤ i ≤ k put ri := 4k+2k−i

4k , and observe the following (straightforward)
equalities:(1

ri

)21

·
(1
ri

)22

· . . . ·
(1
ri

)2i−1

· r2i

i = r2
i .

Multiplying all these equalities yields the equality:

f21

1 · f22

2 · . . . · f2k

k = f, where fi = ri
ri+1 · . . . · rk

f = (r1 · . . . · rk)2
.

(5)

As numerators and denominators of all ri are bounded by 4k+1, numerators and denominators
of all fi are bounded by 4k2+k, and numerator and denominator of f are bounded by 42(k2+k),
as required.

It remains to argue that the (in)equalities (3) hold. We notice the following relation
between ri and ri−1, for 1 < i ≤ k:

r2
i =

(
1 + 2k−i

4k
)2

> 1 + 2k+1−i

4k = ri−1, (6)

which implies

fi
fi−1

= ri · (ri · . . . · rk)
ri−1 · (ri+1 · . . . · rk) = r2

i

ri−1
> 1

and hence f1 < f2 < . . . < fk. For i = k we have fk = rk = 1 + 1
4k . It thus remains to show

f1 > 1, which is equivalent to

r1 > r2 · . . . · rk. (7)

By (6) we deduce r2i

k > rk−i, by induction on i, which implies the following inequality:

r2k−1−1
k = r1+2+4+...+2k−2

k > r2 · . . . · rk.

For (7) it suffices to show, relying on the above inequality, that r1 > r2k−1−1
k . PutN := 2k−1−1

for convenience. We thus need to prove:

r1 >
(

1 + 1
4k
)N

. (8)

By inspecting the expansion of the right-hand side

(
1 + 1

4k
)N

=
N∑
i=0

(
N

i

)
· 1

4ik

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:13

we observe that the right-hand side is bounded by the sum of first N elements of a geometric
progression, which, in turn, is bounded by the sum of the whole infinite one:(

1 + 1
4k
)N
≤ 1 + N

4k + N2

42k + . . .+ NN

4Nk <
1

1− N
4k

.

Thus for showing (8) it is sufficient to prove the inequality r1 >
1

1− N

4k

, which is equivalent to

(
1− 2k−1 − 1

4k
)(

1 + 2k−1

4k
)
> 1.

The latter inequality is easily verified to hold true as

1
4k >

2k−i − 1
4k · 2k−i

4k .

The inequality (8) is proved, and hence so is Lemma 12. J

A distinguished counter x in the 4-VASS Vk will play a special role: in every halting
run, x will be exactly multiplied by consecutive powers as in (4). As the denominator of the
irreducible form of fk is at least 2, the counter x, just before the very first multiplication
by (fk)2k , must be divisible by the denominator of fk to the power 2k, which is doubly
exponential in k. In consequence, every halting run has to be doubly exponentially long.

Algorithm VIII Program frag-
ment HP(c, d); counters x, y and
z correspond to dimension 1, 2 and
3, respectively, of the VASS.

1: loop
2: loop
3: x −= 1 y += 1
4: loop
5: x += c y −= d

6: z −= 1

As before, the main difficulty is to turn weak multi-
plications into exact ones. To this aim we will rely
on Lemma 12 and on a well-known weakly exponen-
tiating 3-VASS gadget of Hopcroft and Pansiot [24]:

p q(−1, 1, 0) (c,−d, 0)

(0, 0, 0)

(0, 0,−1)

The gadget is represented by the program fragment
HP(c, d) shown in Algorithm VIII.

I Proposition 13. Consider program fragment HP(c, d) for an irreducible fraction c
d > 1,

and initial values x0, y0, z0 of counters x, y and z. In every run, the respective final values
x1, y1, z1 satisfy

x1 + y1 ≤ (x0 + y0) ·
(c
d

)z0−z1
.

Moreover, there is a run satisfying x1 = (x0 + y0) ·
(
c
d

)z0
if, and only if, x0 + y0 is divisible

by dz0 . In this case y1 = z1 = 0.

Proof. The two inner loops (lines 2–5) coincide with the counter program fragment shown
in Algorithm I. As the outer loop is executed z1 − z0 times, the first part follows by Claim 1.

For the second part, assume x0 + y0 is divisible by dz0 , and consider the unique run where
all the loops are iterated maximally, by which we mean:

the outer loop (lines 1–6) is executed exactly z0 times;
whenever execution of the first inner loop (lines 2–3) ends, the value of x is 0;
whenever execution of the second inner loop (lines 4–5) ends, the value of y is 0;

CONCUR 2020

12:14 Reachability in Fixed Dimension VASS

Thus every execution of the two inner loops necessarily multiplies the sum x + y by c
d , and

consequently, after i iterations of the outer loop the values of respective counters x′, y′, z′
satisfy

x′ = (x0 + y0) ·
(c
d

)z0−i
y′ = 0 z′ = z0 − i. (9)

Repeating the multiplication z0 times yields x1 =
(
c
d

)z0
and y1 = z1 = 0, as required.

Conversely, suppose x1 = (x0 + y0) ·
(
c
d

)z0
. As c and d are co-primes, the sum of initial

values x0 + y0 is thus forcedly divisible by dz0 . By the first part we know that the outer loop
has been iterated maximally, hence z1 = 0. Then y1 = 0 follows by the first part. J

Construction of Vk
Fix k ≥ 1. Let fi = ai

bi
, for i ≤ i ≤ k, be the fractions from Lemma 12, and let f = a

b be the
result of their multiplication as in (4). We thus have:(a1

b1

)2
·
(a2

b2

)22

· . . . ·
(ak
bk

)2k

= a

b
. (10)

Algorithm IX (on the left below) shows the counter program representing the 4-VASS Vk (on
the right below), using four counters t, x, y and z. The constants appearing in increment and
decrement commands are exponential in k, represented in binary in size Vk is O(k). The
length of Vk is O(k) and hence its size is O(k3).

Algorithm IX Program representing 4-
VASS Vk shown on the right. Counters t, x, y
and z correspond to consecutive dimensions.

1: initialise to 0
2: t += 1 x += 1
3: loop
4: t += 1 x += 1
5: for i := k down to 1 do
6: z += 2i
7: loop
8: loop
9: x −= 1 y += 1

10: loop
11: x += ai y −= bi

12: z −= 1
13: loop
14: t −= b x −= a

15: halt if t = 0

· ·

pk qk

pk−1 qk−1

· · ·

p1 q1

·

(1, 1, 0, 0)

(1, 1, 0, 0)

(0, 0, 0, 2k)

(0,−1, 1, 0) (0, ak,−bk, 0)

(0, 0, 0,−1)

(0, 0, 0, 2k−1)

(0,−1, 1, 0) (0, ak−1,−bk−1, 0)

(0, 0, 0,−1)

(0, 0, 0, 21)

(0,−1, 1, 0) (0, a1,−b1, 0)

(0, 0, 0,−1)

(−a,−b, 0, 0)

B Claim 14. For every k ≥ 0, the 4-VASS Vk has a halting run.

Proof. Put N :=
∏
i=1...k(bi)2i

. By performing the first loop (lines 3–4) exactly N − 1
times, the run reaches the following valuation of counters x, y, z:

xk = N yk = zk = 0. (11)

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:15

Notice that the outer loop (lines 7–12) coincides with the program fragment HP(ai, bi).
We use the second part of Proposition 13 for consecutive iterations of the for macro. The
proposition allows us to derive a run where the values xj , yj , zj of counters x, y, z, after
k − j iterations of the for macro (for j ∈ {0, . . . , k}), satisfy:

xj = N ·
(aj
bj

)2j

· . . . ·
(ak
bk

)2k

yj = zj = 0. (12)

Indeed, by induction with respect to k− j (using (11) as induction base for j = k), we argue
as follows: if (12) holds then xj is divisible by (bj−1)2j−1 , and hence by Proposition 13 there
is a continuation of the run that yields

xj−1 = xj ·
(aj−1

bj−1

)2j−1

yj−1 = zj−1 = 0.

In consequence, for j = 0 we obtain, using (10):

x0 = N · a
b

y0 = z0 = 0.

As the counter t is not modified inside the for loop (lines 5–12), its value is still equal to N
after for loop is finished. Thus, by executing N iterations of the last loop (in lines 13–14)
we reach the value 0 of all the four counters t, x, y, z and hence halt in line 15. Summing up,
every Vk admits a halting run. J

Proof of Theorem 11. We argue that every halting run of Vk has length at least doubly
exponential in k. Consider an arbitrary halting run, i.e., a run reaching the final value t = 0
in line (15). As before, let xj , yj and zj , for j = 0, . . . , k, stand for the values of counters x,
y and z, respectively, after k − j iterations of the for macro. Let xk = N ≥ 1 be the value of
the counters t and x after exiting from the first loop (lines 3–4); cf. (11). The counter t is
not modified inside the for loop (lines 5–12). Thus the last loop (in lines 13–14) has to be
performed exactly N

b times, which implies

x0 ≥ N · a
b
. (13)

Let nk, nk−1, . . . , n1 stand for the number of iterations of the outer loop (lines 7–12) in
consecutive iterations of the for macro. By the very structure of Vk we know that, for every
1 ≤ i ≤ k,

k∑
j=i

nj ≤
k∑
j=i

2j . (14)

We aim to show that the inequality (13) implies nj = 2j for every j ∈ {1, . . . , k}. As the
outer loop (lines 7–12) coincides with the program fragment HP(ai, bi), we may apply the
first part of Proposition 13 to derive, similarly as above:

xj ≤ N ·
(aj
bj

)nj

· . . . ·
(ak
bk

)nk

. (15)

Claim 15 will imply that, roughly speaking, the biggest value of xj is obtained, if in every
unfolding of the for macro we perform the maximal possible number of iterations of the
outer loop, and hence finish with the counter value z = 0.

CONCUR 2020

12:16 Reachability in Fixed Dimension VASS

B Claim 15. Assuming (14),
(
a1
b1

)n1
·
(
a2
b2

)n2
· . . . ·

(
ak

bk

)nk

≤ a
b . The equality holds if,

and only if, nj = 2j for all j ∈ {1, . . . , k}.

Proof. For vectors (n1, . . . , nk) satisfying (14), we define the function f(n1, . . . , nk) =(
a1
b1

)n1
· . . . ·

(
ak

bk

)nk

. Thus (10) says that f(21, . . . , 2k) = a
b . Observe that any other vector

(n1, . . . , nk) satisfying (14) is obtained from (21, . . . , 2k) by applying a number of times one
of the following two operations:
1. decrement some ni by 1
2. decrement some ni by 1 and increment ni−1 by 1.
As any of this operations strictly decreases the value of f , Claim 15 follows. J

By the first part of Claim 15, together with inequalities (14) and (15) we deduce x0 ≤ N · ab
which, combined with (13) yields the equality:

x0 = N · a
b
.

The latter equality, together with the second part of Claim 15, implies nj = 2j for all
j = 1 . . . k. As a consequence, the initial value N of x is, due to the second part of
Proposition 13, divisible by M = (bk)2k . As 1 < ak

bk
< 2, we have bk ≥ 2, and hence M is

doubly exponential with respect to k. It follows that the length of the run is also doubly
exponential, as the first inner loop, in the first iteration of the for macro (i = k), is necessarily
executed N − 1 ≥M − 1 times. This concludes the proof of Theorem 11. J

6 Conclusion

Our three main results have provided non-trivial counter-examples that advance the state
of the art in the challenging area of the complexity of the reachability problem for VASS
(equivalently, VAS and Petri nets). We have focussed on fixed dimension, and in particular,
answered a central question that had remained open since [3] and [14], namely whether
reachability for flat VASS given in unary is decidable in nondeterministic logarithmic space
for any fixed dimension, by establishing NP hardness in dimension 7. Two specific matters
that remain unresolved by this work are: whether NP hardness of reachability for unary flat
VASS is obtainable in any dimension less than 7 (and more than 2), and whether binary
VASS in dimension 3 can have doubly exponential shortest reachability witnesses.

We also remark that, although it has never been made precise, there seems to be an
intriguing deep connection between the still open gap from NL hardness to NP membership
of reachability for unary flat 3-VASS and the still open gap from PSpace hardness to
ExpSpace membership of coverability for 1-GVAS (1-VASS with pushdown) [31, 41]. Finally,
we expect that the novel family of sequences of fractions developed in Section 5 will have
applications beyond the result obtained here.

References
1 David Angeli, Patrick De Leenheer, and Eduardo D. Sontag. Persistence results for chemical

reaction networks with time-dependent kinetics and no global conservation laws. SIAM Journal
of Applied Mathematics, 71(1):128–146, 2011. doi:10.1137/090779401.

2 Paolo Baldan, Nicoletta Cocco, Andrea Marin, and Marta Simeoni. Petri nets for mod-
elling metabolic pathways: a survey. Natural Computing, 9(4):955–989, 2010. doi:
10.1007/s11047-010-9180-6.

https://doi.org/10.1137/090779401
https://doi.org/10.1007/s11047-010-9180-6
https://doi.org/10.1007/s11047-010-9180-6

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:17

3 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-
ability in two-dimensional vector addition systems with states is PSPACE-complete. In LICS,
pages 32–43. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.14.

4 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011. doi:
10.1145/1970398.1970403.

5 Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic
on data trees and XML reasoning. J. ACM, 56(3):13:1–13:48, 2009. doi:10.1145/1516512.
1516515.

6 Ahmed Bouajjani and Michael Emmi. Analysis of recursively parallel programs. ACM Trans.
Program. Lang. Syst., 35(3):10:1–10:49, 2013. doi:10.1145/2518188.

7 Frank P. Burns, Albert Koelmans, and Alexandre Yakovlev. WCET analysis of superscalar
processors using simulation with coloured Petri nets. Real-Time Systems, 18(2/3):275–288,
2000. doi:10.1023/A:1008101416758.

8 Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic. In
FSTTCS, volume 29 of LIPIcs, pages 267–278. Schloss Dagstuhl, 2014. doi:10.4230/LIPIcs.
FSTTCS.2014.267.

9 Hubert Comon and Véronique Cortier. Flatness is not a weakness. In CSL, volume 1862 of
LNCS, pages 262–276. Springer, 2000. doi:10.1007/3-540-44622-2_17.

10 Stefano Crespi-Reghizzi and Dino Mandrioli. Petri nets and Szilard languages. Information
and Control, 33(2):177–192, 1977. doi:10.1016/S0019-9958(77)90558-7.

11 Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for Petri nets is not elementary. In STOC, pages 24–33. ACM, 2019.
doi:10.1145/3313276.3316369.

12 Normann Decker, Peter Habermehl, Martin Leucker, and Daniel Thoma. Ordered navigation
on multi-attributed data words. In CONCUR, volume 8704 of LNCS, pages 497–511. Springer,
2014. doi:10.1007/978-3-662-44584-6_34.

13 Stéphane Demri, Diego Figueira, and M. Praveen. Reasoning about data repetitions with
counter systems. Logical Methods in Computer Science, 12(3), 2016. doi:10.2168/LMCS-12(3:
1)2016.

14 Matthias Englert, Ranko Lazić, and Patrick Totzke. Reachability in two-dimensional unary
vector addition systems with states is NL-complete. In LICS, pages 477–484. ACM, 2016.
doi:10.1145/2933575.2933577.

15 Javier Esparza. Decidability and complexity of Petri net problems — an introduction.
In Lectures on Petri Nets I, volume 1491 of LNCS, pages 374–428. Springer, 1998. doi:
10.1007/3-540-65306-6_20.

16 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Inf., 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

17 Laurent Fribourg and Hans Olsén. Proving safety properties of infinite state systems by
compilation into Presburger arithmetic. In CONCUR, volume 1243 of LNCS, pages 213–227.
Springer, 1997. doi:10.1007/3-540-63141-0_15.

18 Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. ACM
Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012. doi:10.1145/2160910.2160915.

19 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992. doi:10.1145/146637.146681.

20 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.
Theor. Comput. Sci., 7:311–324, 1978. doi:10.1016/0304-3975(78)90020-8.

21 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In CONCUR, volume 5710 of LNCS, pages
369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

CONCUR 2020

https://doi.org/10.1109/LICS.2015.14
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/2518188
https://doi.org/10.1023/A:1008101416758
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.267
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.267
https://doi.org/10.1007/3-540-44622-2_17
https://doi.org/10.1016/S0019-9958(77)90558-7
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1007/978-3-662-44584-6_34
https://doi.org/10.2168/LMCS-12(3:1)2016
https://doi.org/10.2168/LMCS-12(3:1)2016
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/3-540-63141-0_15
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/146637.146681
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1007/978-3-642-04081-8_25

12:18 Reachability in Fixed Dimension VASS

22 Michel Hack. The recursive equivalence of the reachability problem and the liveness problem
for Petri nets and vector addition systems. In SWAT, pages 156–164. IEEE Computer Society,
1974. doi:10.1109/SWAT.1974.28.

23 Piotr Hofman and Sławomir Lasota. Linear equations with ordered data. In CONCUR, volume
118 of LIPIcs, pages 24:1–24:17. Schloss Dagstuhl, 2018. doi:10.4230/LIPIcs.CONCUR.2018.
24.

24 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/0304-3975(79)
90041-0.

25 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multithreaded
program verification. ACM Trans. Program. Lang. Syst., 36(4):14:1–14:29, 2014. doi:10.
1145/2629608.

26 Max I. Kanovich. Petri nets, Horn programs, linear logic and vector games. Ann. Pure Appl.
Logic, 75(1–2):107–135, 1995. doi:10.1016/0168-0072(94)00060-G.

27 Richard M. Karp and Raymond E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

28 Hélène Leroux, David Andreu, and Karen Godary-Dejean. Handling exceptions in Petri
net-based digital architecture: From formalism to implementation on FPGAs. IEEE Trans.
Industrial Informatics, 11(4):897–906, 2015. doi:10.1109/TII.2015.2435696.

29 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In LICS, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.
8785796.

30 Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems
with states. In CONCUR, volume 3170 of LNCS, pages 402–416. Springer, 2004. doi:
10.1007/978-3-540-28644-8_26.

31 Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. On the coverability problem for pushdown
vector addition systems in one dimension. In ICALP, Part II, volume 9135 of LNCS, pages
324–336. Springer, 2015. doi:10.1007/978-3-662-47666-6_26.

32 Yuliang Li, Alin Deutsch, and Victor Vianu. VERIFAS: A practical verifier for artifact systems.
PVLDB, 11(3):283–296, 2017. URL: http://www.vldb.org/pvldb/vol11/p283-li.pdf.

33 Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62,
Yale University, 1976. URL: http://cpsc.yale.edu/sites/default/files/files/tr63.pdf.

34 Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM J. Comput.,
13(3):441–460, 1984. doi:10.1137/0213029.

35 Roland Meyer. A theory of structural stationarity in the pi-calculus. Acta Inf., 46(2):87–137,
2009. doi:10.1007/s00236-009-0091-x.

36 Mor Peleg, Daniel L. Rubin, and Russ B. Altman. Research paper: Using Petri net tools
to study properties and dynamics of biological systems. JAMIA, 12(2):181–199, 2005. doi:
10.1197/jamia.M1637.

37 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität Hamburg, 1962.
URL: http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/.

38 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

39 Louis E. Rosier and Hsu-Chun Yen. A multiparameter analysis of the boundedness problem
for vector addition systems. J. Comput. Syst. Sci., 32(1):105–135, 1986. doi:10.1016/
0022-0000(86)90006-1.

40 Sylvain Schmitz. The complexity of reachability in vector addition systems. SIGLOG News,
3(1):4–21, 2016. doi:10.1145/2893582.2893585.

41 Juliusz Straszyński. Complexity of the reachability problem for pushdown Petri nets. Master’s
thesis, University of Warsaw, Faculty of Mathematics, Informatics, and Mechanics, 2017. URL:
https://apd.uw.edu.pl/diplomas/155747.

https://doi.org/10.1109/SWAT.1974.28
https://doi.org/10.4230/LIPIcs.CONCUR.2018.24
https://doi.org/10.4230/LIPIcs.CONCUR.2018.24
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1145/2629608
https://doi.org/10.1145/2629608
https://doi.org/10.1016/0168-0072(94)00060-G
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1109/TII.2015.2435696
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.1007/978-3-662-47666-6_26
http://www.vldb.org/pvldb/vol11/p283-li.pdf
http://cpsc.yale.edu/sites/default/files/files/tr63.pdf
https://doi.org/10.1137/0213029
https://doi.org/10.1007/s00236-009-0091-x
https://doi.org/10.1197/jamia.M1637
https://doi.org/10.1197/jamia.M1637
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1145/2893582.2893585
https://apd.uw.edu.pl/diplomas/155747

W. Czerwiński, S. Lasota, R. Lazić, J. Leroux and F. Mazowiecki 12:19

42 Leslie G. Valiant and Mike Paterson. Deterministic one-counter automata. J. Comput. Syst.
Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

43 Wil M. P. van der Aalst. Business process management as the “killer app” for Petri nets.
Software and System Modeling, 14(2):685–691, 2015. doi:10.1007/s10270-014-0424-2.

A Missing proofs

Proof of Theorem 8. The size of P is polynomial in n, k and m and it can be computed in
time polynomial with respect to the size of the input: s0, S = {s1, . . . , sk}. P represents a flat
VASS since its explicit goto commands form a directed acyclic graph, and loop macros are
not nested. We prove that P has a halting run if, and only if, the instance {s0}, {s1, . . . , sk}
of the subset problem is positive.

(⇐=) Fix a subset R ⊆ S with
∑
s∈R s = s0. We define a halting run ρ that starts

(cf. Claim 10) by executing I ′ to compute N(n) and N(n) · (k + 1) in counters e and f,
respectively, and 0 in the remaining counters x, y and z. Then R+

s0,true is executed, and
finally for every 1 ≤ i ≤ k, if i ∈ R then ρ jumps to R−si,true, otherwise ρ jumps to R−si,false.
Inside every component R∗si,p the run ρ iterates all loops maximally, by which we mean:

the value of v is 0 at the exit of the loops in lines 3–7 and in lines 10–13;
the value of v′ is 0 at the exit of the loop in lines 8–9;
the value of e′ is 0 at the exit of the loop in lines 14–15.

It remains to observe that by iterating all loops maximally, in every component R∗si,p, for
0 ≤ i ≤ k, the counter f will be decremented by exactly N(n), and thus the value of f at the
end of ρ is zero. Moreover, R+

s0,true sets the counter u to s0, and for every si /∈ R the value
of counter u is preserved by R−si,false, and for every si ∈ R the counter u is decremented by
si in R−si,true. Thus the value of the counter u is 0 at the end of ρ, as well as the values of y
and f, as required by the final halt.

(=⇒) Consider a halting run ρ of P, and recall that after I ′ the counter y is not modified
any more, and zero-tested by the final halt command of P . By Claim 10 the values of e and
f after I ′ are N(n) and N(n) · (k + 1), respectively.

The sum of counters e and e′ is invariantly equal N(n) as decrement of one is always
accompanied by increment of the other. Thus in every component R∗a,p visited by ρ, the
counter f is decreased by at most the initial value of e, hence by at most N(n). Finally, by
construction of P the run ρ passes through exactly k + 1 components R∗a,p. Therefore, as f
is zero-tested by the final halt command, we deduce.

B Claim 16. The run ρ decreases f by exactly N(n) in every visited component R∗a,p.

In consequence, the initial values of component R∗si,p, for 0 ≤ i ≤ k, satisfy:

e = N(n) f = N(n) · (k + 1− i) v = v′ = e′ = 0.

Using Claim 16 we deduce.

B Claim 17. The run ρ iterates all loops maximally in every visited component R∗a,p, except
possibly the last loop in line (15) in the last two components R∗sk,p

.

Possible non-maximal iteration of the last loop in R∗sk,true and R∗sk,false has no impact on
the further analysis of the run ρ. As a direct corollary we deduce:

CONCUR 2020

https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/10.1007/s10270-014-0424-2

12:20 Reachability in Fixed Dimension VASS

B Claim 18. The run ρ executes the command u ∗= 1 exactly a times in every visited
component R∗a,true.

Therefore, the value of u is incremented by s0 in component R+
s0,true. Let R ⊆ {s1, . . . , sk}

be the set of all si such that ρ passes through R−si,true. Again by Claim 18, for every si ∈ R
the value of u is decreased by si in component R−si,true, and for every si /∈ R the value of u
is preserved in component R−si,false. Since u is zero-tested by the final halt command, the
instance of the Subset Sum problem is necessarily positive. J

	Introduction
	Preliminaries
	Exponential Shortest Runs
	NP-hardness
	Doubly Exponential Shortest Runs
	Conclusion
	Missing proofs

