A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/140224

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

THE GEOMETRY OF THE MAP $9: Q$ BU(1) $~+~ B U ~$
by Rafael Sivera

A thesis submitted for the degree of Ph.D. at the University of Warwick.

CONTENTS

Introduction 1
Chapter 1: A description of the categories used. 5
51.1 The stable category 6
1.2 Infinite loop spaces 12
Chapter 2: The map $n: Q B U(1)+B U$ 15
s 2.1 BU as infinite loop space 15
5 2.2 The space $Q B U(1)$ 24
Chapter 3: Definition of the characteristic classes \hat{c}_{k}. 32
3 3.1 The map $\tau: B U \rightarrow Q \mathrm{BU}(1)$ 32
s 3.2 Stable splitting of the space $c \times$. 36
s 3.3 Definition of \hat{c}_{k}. 41
Chapter 4: Characterization of \hat{c}_{k}. 43
14.1 Behaviour of the map \hat{h}_{k} in homology. 43
s 4.2 Evaluation of $\left\langle\dot{c}_{k}\right.$, a \rangle. 47
Chapter 5: Some results on immersions. 52
5.1 Immersions and $\left[M, F\left(\mathbb{R}^{\infty}, T(\xi)\right)\right]$. 52
55.2 k-tuple points and the action of h_{k}^{*}. 55
s 5.3 Pointed k-tuples points and good position. 60
Chapter 6: Extensions in good position. 66
6.1 Some preliminaries. 66
5 6.2 Construction of extensions in good position. 72
Chapter 7: Geometric interpretation of the classes \hat{c}_{k}. 80
3.1 Review of complex cobordism. 80
5.2 Geometric interpretation of $\boldsymbol{C}_{k}(\xi)$. 86

Chapter 8: Description of the bundle associated to an immersion.
8.1 More about infinite loop spaces. 90
8.2 Description of the bundle. 94

Appendix: On maps f: BU \rightarrow BU. 99

References. 104

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my supervisor, Dr. B.J. Sanderson, for introducing me to this subject and for his constant help and encouragement.

Also, I would like to thank to the Ministerio de Universidades e Investigaciones of Spain for its financial support during my stay at Warwick and, to Vicky Aguilar for her careful typing of this manuscript.

SUMMARY

We study several geometric constructions associated to the map n : Q BU(1) \rightarrow BU. Using techniques of infinite loop spaces, we define a set of universal characteristic classes \hat{c}_{k}, proving that they agree with the Chern classes. We get geometric interpretations of them in terms of the k-tuple points of immersions. Also, we show some cases where this description is useful.

INTRODUCTION

In this dissertation we study the geometry of the map $n: Q B U(1)+B U$, following the ideas developped by B.J. Sanderson in [26] to study Mahowald's map $\Omega^{2} s^{3} \rightarrow B U$. We describe the contents chapter by chapter.

Chapter 1 gives a slight introduction to the main categories used in the work. In the first paragraph, we look into Adams description of the category of spectra (see [1]), including the definition of the homology and cohomology theories associated to a spectrum.

In the second paragraph we give May's description of the category of infinite loop spaces (see [21]).

Chapter 2 contains the general theory of infinite loop spaces to construct the map n. In the first paragraph we state May's recognition principle for infinite loop spaces ([20]), proving that BU is an infinite loop, as in [21]. Then, η is defined as the unique infinite loop map extending the inclusion $B U(1)$ c BU. The last paragraph gives the approximation of $Q B U(1)$ by $C(B U(1))$ for a convenient coefficient system C as in [9].

The main goal of chapter 3 is to define universal characteristic classes $\hat{c}_{k} \in H^{2 k}(B U, Z)$. The first paragraph follows Snaith ([27]) and Becker ([3]) to construct a map $\tau: B U \rightarrow Q B U(1)$ that is the right homological inverse of n. We begin the second paragraph by stating the stable splitting of QX got by F.Cohen-P. May and L. Taylor in [9]. We are then able to identify their space $D_{r}\left(F\left(\mathbb{R}^{\boldsymbol{m}}\right), B U(1)\right)$ as $T_{r}(r)$, the Thom. space of the vector bundle $\gamma^{(k)}=E \Sigma_{k}{ }^{x} \Sigma_{k} \gamma^{k}$. We prove also that $B Y^{(k)}=E \Sigma_{k}{ }_{\Sigma_{k}} B U(1)^{k}$ is homotopic to the ${ }^{k}$ classifying space
of $\Sigma_{k} \delta U(1)$-principal bundles, $B \Sigma_{k} \delta U(1)$, Then, the map induced by the inclusion of groups

$$
P_{k}=B I_{k}: B \Sigma_{k} \int U(1) \rightarrow B U(k)
$$

classifies $r^{(k)}$ and \hat{c}_{k} can be defined as the composition

$$
\Sigma^{\infty} B U \xrightarrow{\tau} \Sigma^{\infty} Q B U^{(1)} \xrightarrow{h_{k}} \Sigma^{\infty} T Y^{(k)} \xrightarrow{T_{P_{k}}} \Sigma^{\infty} M U(k) \longleftrightarrow \Sigma^{2 k_{M U}} \xrightarrow{t} \Sigma^{2 k} H Z
$$

where t is the universal Thom class, so

$$
\hat{c}_{k}=\tau^{*} h_{k}^{*}\left(t r^{(k)}\right)
$$

tr ${ }^{(k)}$ being the Thom class of the vector bundle $r^{(k)}$.
Chapter 4 is devoted to identifying \hat{c}_{k} in terms of the universal Chern classes c_{k}. We do this by evaluating the Kronecker product $\left\langle\hat{c}_{k}, a>\right.$ for any $a \in H_{2 k}(B U ; Z)$. Since $H_{*}(B U ; \mathbb{Z})$ is a polynomial ring ring on the classes $\left\{a_{i}\right\}_{i \in N}$, we only need to know

$$
\left\langle\hat{c}_{k}, a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle=\left\langle t r^{(k)}, h_{k_{\star}} \tau_{\star}\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)\right\rangle
$$

If we reduce the coefficients mod p for a prime p, we can use the calculations done in [8] and [24] to get that τ_{*} is the inclusion and $h_{k_{*}}$ annihilates all monomials but $a_{1}{ }^{k}$. Using [16], we prove that $\left\langle t r^{k}, a_{1}^{k}\right\rangle=1$ so $\hat{c}_{k}=c_{k}$ as elements of $H^{*}\left(B U ; \mathbf{Z}_{p}\right)$. As this is true for any p, an easy argument shows that $\hat{c}_{k}=c_{k}$ in $H^{*}(B U ; \mathbb{Z})$.

The three following chapters have the general aim of getting a geometric description of $\hat{c}_{k}(\xi)$, for ξ a complex vector bundle over a weakly complex comped manifold M.

It is known that such ξ is classified by a homotopy class of maps

$$
f_{\xi}: M+B U
$$

Using τ, we define the composite map

$$
f_{\xi}^{\prime}=\operatorname{Tof}_{\xi}: M \rightarrow Q B U(1)
$$

and we study such maps in chapter 5. The first paragraph recalls the work of Koschorke and Sanderson [17], classifying the homotopy class of f' by a bordism class of triples $[(N, g, \tilde{g})]$, where g is an embedding of N into $M \times R^{\infty}$ projecting to an immersion $f: N \rightarrow M$ and \tilde{g} classifies the normal bundle of f, \mathcal{V}, as a complex line bundle. In the second paragraph, we study the manifold of k-tuple points, N_{k}, proving that the map $f_{k}: M_{k} \rightarrow M$ induced by f is an immersion with normal bundle $v_{k}=v / \Sigma_{k}$. The last paragraph begins with some properties of the manifold of based k-tuple points, $N^{\prime}{ }_{k}$, proving that the map $f_{k}: N_{k} \rightarrow M$ induced by the projection is an immersion with normal bundle $v_{k}^{\prime}=$ $v_{k}^{\prime}=v^{k-1} \times\{0\} / \varepsilon_{k}$. Then, we define an extension of f to v in good position, $\bar{f}_{\text {, }}$ to be one that has, for any k, maps $\bar{f}_{k}, \bar{f}_{k}^{\prime}, \overline{\bar{f}}_{k}$ extending $f_{k}, f^{\prime},{ }^{\prime}$, making commutative the diagram

We prove that the map $\left.h_{k} \circ f_{\xi}\right|_{M-I m f} \quad$ is homotopic to the Thom-Pontrjagin construction of a bundle $M_{k} \rightarrow N_{k}$.

Chapter 6 is the tedious proof of the existence and uniqueness, up to
isotopy, of extensions in good position, First, we prove the existence of a very particular kind of chart and, then, we glue them inductively by using a' isotopy result simflar to the one in Mather's notes [19]

In chapter 7 we complete the geometric description of $\hat{c}_{k}(\xi)$. The first paragraph contains an exposition of complex bordism and cobordism theory as sketched by Quillen in [25] getting, in particular, the interpretation of the duality theorems of Lefschetz and Poincaré and the elements representing the Thom class and the fundamental class of a weakly complex manifold M. Using it, in the last paragraph we get that

$$
i_{\star}\left(P D\left(\hat{c}_{k}(\xi)\right)\right)=i_{\star}\left(f_{k *}\left(\left[N_{k}\right]\right)\right)
$$

where i is the inclusion map $i: M \rightarrow\left(M, \operatorname{Im} \bar{f}_{k+1}\right)$ and $\left[N_{k}\right]$ is the fundamental class of $\left[N_{k}\right]$. As i_{k} is a monomorphism we get the appropiate description of $\hat{c}_{k}(\xi)$.

In the last chapter we try to recover some information about ξ from the triple (N, g, \bar{g}), In the first paragraph we have a closer look at the map n, and we use it to give, in the second paragraph, a general description of ξ together with some interesting particular cases.

The work ends with an appendix on BU where we prove a result used in proving that the map τ is the right homotopical inverse of n.

CHAPTER 1: A description of the categorles used.

We work most of the time in the category, Top, of compactly generated weakly Haus Jorff topological spaces and continuous maps between them. The associated based category Top . $_{\text {k }}$ has as objects spaces of Top together with a non degenerate base point, and as morphisms, maps of Top that preserve the base point. Then, when we say a space, we mean an object of Top and a based space is an object of Top ${ }_{*}$.

These categories have been studied recently (see [18], [28], [31]) and all the usual constructions (like taking suspensions or loops) are well defined in them. Also, they are good categories for doing homotopy theory and the associated homotopy categories are H Top and H Top $_{\star}$.

There are two interesting functors between them : the forgetful functor

$$
F: \text { Top }_{\star}+\text { Top (or } F: H \text { Top }_{\star} \rightarrow H \text { Top) }
$$

that forgets the base point, and the functor

$$
()^{+}: T o p \rightarrow \operatorname{Top}_{\star}\left(\operatorname{Or}()^{+}: H \text { Top } \rightarrow H \operatorname{Top}_{\star}\right)
$$

that adds a disjoint base point to each space (i.e. $X^{+}=X H\{ \pm\}$).

Sometimes, we shall use the categories, CW , of CW complexes and cellular maps and, HCW , of spaces having the homotopy type of a CW complex and homotopy classes of maps between them. This category was studied in [22] and it is closed under the usual constructions. The associated pointed categories are CW_{\star} and HCW .
81.1 The stable category

In this paragraph we describe in short Boardman's stable category as done in [1]. [2].
1.1 DEFINITION.- A CW-spectrum E is given by
i) A sequence of based complexes $\left\{E_{n}\right\}$,
ii) A sequence of cellular inclusions $\left\{\varepsilon_{n}\right\}$ where $\varepsilon_{n}: S E_{n} \rightarrow E_{n+1}$, and $S E_{n}$ is the suspension of E_{n}.

Notice that the existence of ε_{n} is equivalent to the existence of adjoints

$$
\hat{\varepsilon}_{n}: E_{n}+s E_{n+1}
$$

and the spectrum E is called an Ω-spectrum if the maps $\hat{\varepsilon}_{n}$ are weak equivalences for every n. The index set may run over the integers or over $N=\{0,1,2,3, \ldots$,$\} .$
1.2 NOTE.- Given a sequence of based complexes $\left\{E_{n}\right\}_{n \in N}$ and maps $\left\{\varepsilon_{n}\right\}_{n \in N}$, where $\varepsilon_{n}: S E_{n}+E_{n+1}$ we can replace them inductively by homotopy equivalent complexes $\left\{E_{n}^{\prime}\right\}, n \in N$ and cellular inclusions $\left\{\varepsilon_{n}^{\prime}\right\}_{n \in N}$ giving a spectrum.
1.3 EXAMPLES.- a) Let G be a group. He say that a based complex X is the $n^{\text {th }}$ Eilenberg-liaclane space of G if the homotopy groups of X are

$$
\pi_{i}(x, *)= \begin{cases}G & \text { if } \quad i=n \\ 0 & \text { otherwise. }\end{cases}
$$

This complex is unique up to homotopy (see [30]) and we call it $K(G, n)$.

Then, the Eilenberg - HacLane spectrum of G, called IHG, is defined as follows:
i) The spaces are the Eilenberg-Maclane spaces

$$
D H G_{n}=K(G, n)
$$

ii) The weak homotopy equivalences

$$
\hat{\varepsilon}_{n}: K(G, n)+\Omega(K(G, n+1))
$$

are given by the uniqueness of the $\mathrm{n}^{\text {th }}$ Eilenberg-Maclane space up to homotopy since.

$$
J_{i}(\Omega(K(G, n+1)))=\pi_{i+1}(K(G, n+1))= \begin{cases}G & \text { if } i=n \\ 0 & \text { otherwise }\end{cases}
$$

b) Let $B U(n)$ be the classifying space of n dimensional complex vector bundles and r^{n} the universal n-dimensional complex vector bundle over it. For a definition see Chapter 2.

He define the spectrum MU as follows:
i) The spaces are

$$
\begin{aligned}
& \mathrm{RU}_{2 n}=\operatorname{MU}(n) \text { the Thom space of } r^{n} \text { for } n \in \mathbb{N} \\
& \mathrm{MU}_{2 n+1}=S \operatorname{MU}(n)
\end{aligned}
$$

ii) The maps are:

$$
\begin{array}{ll}
\varepsilon_{2 n}: S M U(n)+S M U(n) & \text { the identity } \\
\varepsilon_{2 n+1}: S^{2} M U(n) \rightarrow M U(n+1) & \text { the map of Thom spaces }
\end{array}
$$

associated to the bundle map induced by the inclusion

where ε_{i} is the trivial l-dimensional complex vector bundle.
1.4 DEFINITION.- A strict map between two spectra,

$$
f: E \rightarrow E^{\prime} \text {, }
$$

is given by a sequence of maps $\left\{f_{n}\right\}$, where

$$
f_{n}: E_{n}+E_{n}^{\prime},
$$

and the diagram,

commutes for each n.
1.5 EXAIPLE.- It is known that,for any based space $X, \tilde{H}^{k}(X ; \mathbb{Z})$ is isomorphic to the group $[X, K(\mathbf{Z}, k)]$, so the Thom class of the complex vector bundle $\gamma^{n}, t\left(\gamma^{n}\right)$, can be interpreted as a homotopy class of maps.

$$
t\left(r^{n}\right): M U(n) \rightarrow K(\mathbb{Z}, 2 n) .
$$

Chosing inductively the maps t_{n} so that
$t_{2 n}: M U(n) \rightarrow K(2,2 n) \quad$ is in the above class, and
$t_{2 n+1}: S M U(n)+K(2,2 n+1)$ is given by the suspension of $t_{2 n}$.
we get a strict map of spectra,

$$
t: M U \rightarrow H Z .
$$

1.6 DEFINLTION.- He say that a spectrum E^{\prime} is a subspectrum of E if for any n, E_{n}^{\prime} is a subcomplex of E_{n} and ε_{n}^{\prime} is the restriction of ε_{n}. We say that E^{\prime} is cofinal in E if for any cell e_{α} in E_{n} there is some N such that the $N^{t h}$ suspension of e_{α} lies in E_{n+N}^{\prime}.

1.7 DEFINITION.- A map between spectra

$$
f: E+E^{\prime}
$$

is a class of couples (E, \mathcal{F}), where E is a cofinal subspectrum of E and,

$$
f: E \rightarrow E^{\prime} \text {. }
$$

is a strict map of spectra. Two couples $\left(\bar{E}_{1}, \bar{f}_{1}\right)$ and $\left(\bar{E}_{2}, \bar{f}_{2}\right)$ are equivalent if the restrictions of both maps to $\bar{E}_{1}{ }^{n} \overline{-}_{c}$ agree.

With these objects and morphisms, we define the category Sp . See [1$]$ or [$3 Q$] for further details.
1.8 DEFINITION.- Let E be a spectrum and X a based space. We define the spectrum $E \wedge X$ by
i) The spaces $(E \wedge X)_{n}=E_{n} \wedge X$
ii) The maps $s\left(E_{n} \wedge X\right)+\varepsilon_{n+1} \wedge \wedge x$
are given by ε_{n}.
We can define a homotopy between maps of spectra

$$
F: f_{0} \sim f_{1}
$$

as a map $F: E \wedge I^{+} \rightarrow E^{\prime}$ such that the composites $F \cdot i_{\epsilon}=f_{\epsilon}$ for $\epsilon=0,1$ where $i_{\epsilon}: E+E \wedge I^{+}$are the obvious inclusions.

He denote by $[E, E \cdot]$ the set of homotopy classes of maps from E to E^{\prime}, and define the category $H \$ p$, whose objects are those of Sp and whose morphism from E to E^{\prime} are the elements of $\left[E, E^{\prime}\right]$.
1.9 DEFINITION.- We define the $k^{\text {th }}$ tratlation functor.

$$
\varepsilon^{k}: S_{p}+S_{p}
$$

on objects by
i) $\Sigma^{k}(E)_{n}=E_{n+k}$
ii) $\left.\varepsilon^{i} \Sigma^{k}(E)\right)_{n}=-\varepsilon_{n+k}$.
and on morphisms by

$$
\left.\Sigma^{k}([(E, f)])=\left[\Sigma^{k}(E), \Sigma^{k}(f)\right)\right]
$$

where $\Sigma^{k}(\bar{f})_{n}=\bar{f}_{n+k}$.
The induced functor on $H S p$ is still called Σ^{k}
1.10 DEFINITION.- The suspension functor

$$
\Sigma^{\infty}: \mathrm{CH}_{*}+\mathrm{Sp}
$$

is defined as follows:
For any complex $X, \Sigma^{\omega}(x)$ is the spectrum given by
i) $\left(\varepsilon^{\infty}(x)\right)_{n}=s^{n} x$
ii) $\varepsilon_{n}: S\left(S^{n} x\right)+S^{n+1}(x)$ is the associativity homeomorphism.

For any map $f: X \rightarrow Y$, the strict map of spectra.

$$
\Sigma^{\infty} f: \Sigma^{\infty}(X)+\Sigma^{\infty}(Y)
$$

is given by $\left(\Sigma^{\infty} f\right)_{n}=S^{n} f$.
As in 1.9 , we also denote the induced funtor in homotopy by $\boldsymbol{\varepsilon}^{\mathbf{*}}$.
We say that f is a stable map between two based complexes X and Y, If it is a map of the associated suspension spectra

$$
f: \varepsilon^{\infty}(X)+\Sigma^{\infty}(Y)
$$

Notice that a stable map induces maps $f: E \wedge X+E \wedge Y$, for any spectrum E.
1.11 DEFINITION.- Let E by a spectrum. We define the associated $n^{\text {th }}$ reduced homology and cohomology groups of a based complex, x, to be

$$
\begin{aligned}
& \tilde{E}_{n}(X)=\left[\Sigma^{\infty} s^{0}, \Sigma^{-n}(E \wedge X)\right] \\
& E^{n}(X)=\left[\Sigma^{\infty} x, \Sigma^{n}(E)\right] \quad \text { for any } \quad n \in \mathbb{Z}
\end{aligned}
$$

Then, a stable map, f, from X to Y induces, by composition, the homomorphism,

$$
\begin{aligned}
& f_{n}: \tilde{E}_{n}(x)+\tilde{E}_{n}(Y) \\
& f^{n}: \dot{E}^{n}(x) \rightarrow \bar{E}^{n}(Y) \quad \text { for any } n \in \mathbb{N} .
\end{aligned}
$$

In this way $\left\{\tilde{E}_{n}\right\}$ and $\left\{\tilde{E}^{n}\right\}$ give homology and cohomology theories, from the category of CH complexes and stable maps.

Similarly, by composition, any map of spectra

$$
f: E \rightarrow E^{\prime}
$$

induces natural transformations between the associated reduced homology and cohomology theories.

We define the (unreduced) homology and cohomology of a complex X as: $E_{n}(x)=\tilde{E}_{n}\left(x^{+}\right)$, and $E^{n}(X)=E^{n}\left(x^{+}\right)$.
1.12 REMARK.- i) If E is an Ω-spectrum there is an isomorphism $\bar{E}_{n}(X) \quad\left[\begin{array}{l}\left.x, E_{n}\right] \quad \text { for any } n \quad \text { (see [30]). }\end{array}\right.$

Then, the reduced cohomology associated to the spectrum HG is isomorphic to the singular cohomology with coeffi--tients in G.
ii) The reduced homology and cohomology theories associated to the spectrum MU are the complex bordism and cobordism as we shall see in chapter 7 .
51.2 Infinite loop spaces.

In this paragraph, we study the category of infinite loop spaces.
1.13 DEFINITION.- An infinite loop space X is a sequence $\left\{X_{n}, \partial_{n}\right\}_{n \in N}$ where, for each n :
i) X_{n} is a based space, and
ii) ∂_{n} is a homeomorphism, $\quad \partial_{n}: \Omega X_{n+1}+X_{n}$.

Obviously, each infinite loop space has an associated s-spectrum.
1.14 DEFINITION.- A morphism of infinite loop spaces

$$
f: X+Y
$$

is a sequence of maps $\left\{f_{n}\right\} \quad n \in \mathbb{I N}$, where, $f_{n}: X_{n} \rightarrow Y_{n}$ and for each n, the diagram

commutes.
We have defined the category I_{∞} of infinite loop spaces and morphisms

1.15 DEFINITION. - The functor

$$
\left(I_{0}: I_{\infty}+\mathrm{TOP}_{\star}\right.
$$

is defined as follows:
i) On objects, $(x)_{0}=x_{0}$
ii) On morphisms, $(f)_{0}=f_{0}$

He say that a space is an infinite loop space if it is in the image of ()$_{0}$ and similarly with maps.
1.16 DEFINITION.- He define the functor

$$
\Omega^{\infty}: S p \rightarrow I_{\infty}
$$

as follows:
For any spectrum E we define $\Omega^{\infty}(E)_{n}=\lim \Omega^{m-n} E_{m}$ where the limit is taken with respect to the maps

$$
\Omega^{m-n} E_{m} \xrightarrow{\Omega^{m-n} E_{m} \Omega^{m-n} \Omega E_{m+1} \xrightarrow{\sim} \Omega^{(m+1)-n} E_{m+1}}
$$

the homeomorphisms $\Omega\left(\Omega^{\infty}(E)_{n+1}\right) \rightarrow \Omega^{\infty}(E)_{n}$ are given by the limit of the identities.

For any morphism $f=[(\bar{E}, \bar{f})]$ the associated map is defined cellularly as follows:

Let e_{α} be a cell of $E_{\overline{m i}}$ and let N be an index such that $S^{N} e_{\alpha}$ lies in $\bar{E}_{m+1 H^{\prime}}$. Then, there is defined the map

$$
\hat{\bar{f}}: e_{a} \rightarrow \Omega^{N} E_{m+N}^{\prime},
$$

giving the restriction of the map $\Omega^{\infty}(f)_{n}$ to $\Omega^{m-n} e_{\alpha}$. In the limit, these restrictions glue together, giving maps

$$
\Omega^{\infty}(f)_{n}: \Omega^{\infty}(E)_{n}+\Omega^{\infty}\left(E^{\prime}\right)_{n}
$$

that produce a morphism of infinite loop spaces.
By abuse of notation we denote also by Ω^{∞} the composite functor

$$
\mathrm{Sp} \rightarrow \mathrm{CH}_{*}
$$

and also the induced functor in the homotopy categories.

1.17 PROPOSITION [2] Σ^{∞} and Ω^{∞} are adjoint functors,

\square

If we define $Q=\Omega^{\infty} \Sigma^{\infty}$, then it is easy to prove the following result,
1.18 PROPOSITION.-
i) $Q(X)$ is the infinite loop space generated by X; i.e., X is included in $\cap(X)$ and any map to an infinite loop space $f: X \rightarrow Y$ has a unique extension to a map of infinite loop spaces

$$
\bar{f}: Q X+Y
$$

ii) For any based $C \mathbb{I}$ complexes X, Y, there is a $1: 1$ correspondence

$$
\left[\Sigma^{\infty} X, \Sigma^{\infty} Y\right] \rightrightarrows[X, Q(Y)]
$$

given by adjuntion.

Notice that by i) there is a unique map of infinite loop spaces
$c: Q Q X \rightarrow Q X$
extending the identity; if is called the "collapsing map".

CHAPTER 2 : The map $n: Q B U(1) \rightarrow B U$

The object of this chapter is the definition and study of the map

$$
n: Q B U(1) \rightarrow B U
$$

, the unique map of infinite loop spaces that extends the inclusion. To do this, we need two standard results of infinite loop space theory, the "recognition principle", to know when a space is homotopic to an infinite loop space, and the "approximation theorem", giving the structure of $Q X$ for a connected space X. These results are given in the next two paragraphs.
3.1 BU as infinite loop space.

To state and use the "recognition principle", we need some familiarity with the concept of operad and examples of it.

2.1 DEFINITION. - An operad $\bar{\varphi}$ is

1) A sequence of spaces $\{\mathscr{E}(n)\} n \geq 0$ with $\zeta(0)=\{ \}$
ii) A composition law for any n, j, \ldots, j_{n}

$$
\Leftrightarrow: \zeta(n) \times \zeta\left(j_{1}\right) \times \ldots \times \mathscr{L}\left(j_{n}\right) \div \zeta(j)
$$

where $j=\sum_{i=1}^{n} j_{i} ;$ and an element $1 \in \zeta(1)$ satisfying:
A) For each n and $c \in K(n)$

$$
(1 ; c)=c
$$

B) For each n and $c \in\{(n)$

$$
\phi(c ; \underbrace{1, \ldots, 1})=c
$$

n copies
iii) for each n; a right Σ_{n}-action on $\zeta^{*}(n)$

$$
a: \zeta(n) \times \varepsilon_{n} \rightarrow \zeta(n)
$$

where Σ_{n} is the symmetric group of n letters. We denote
this action by $\alpha(c, \sigma)=c \sigma$, and it satisfies:
A) For each $c \in \mathcal{Y}_{\mathcal{i}}(n), c_{i} \in \mathscr{Q}^{\prime}\left(j_{i}\right), i=1, \ldots, n$ and $\sigma \in \varepsilon_{n}$ $\phi\left(c \sigma ; c_{1}, \ldots, c_{n}\right)=\phi\left(c ; c_{\sigma^{-1}(1)}, \ldots, c_{\sigma^{-1}(n)}\right) \sigma\left(j_{1}, \ldots, j_{n}\right)$ where $\sigma\left(j_{1}, \ldots, . j_{n}\right)$ acts on $(1, \ldots, j)$ by permuting the blocks $B_{1}=\left(1, \ldots, j_{1}\right) \quad B_{2}=\left(j_{1}+1, \ldots, j_{1}+j_{2}\right) \ldots \quad B_{n}=\left(\sum_{i=1}^{n-1} j_{i}+1, \ldots, j\right)$ as σ does with $(1, \ldots, n)$.
B) For each $c \in \zeta(n), c_{i} \in \zeta_{\zeta}\left(j_{l}\right)$ and $\sigma_{i} \in \Sigma_{j_{i}} \quad i=1, \ldots, n$ $\phi\left(c ; c_{1} \sigma_{1}, \ldots, c_{n} \sigma_{n}\right)=\phi\left(c ; c_{1}, \ldots, c_{n}\right)\left(\sigma_{1} \ldots . \sigma_{n}\right)$ where $\left(\sigma_{1}, \ldots \theta_{n}\right)$ acts on $(1, \ldots, j)$ leaving the blocks B_{i} fixed and permuting the letters in each B_{i} as σ_{i} does.
2.2 EXAMPLES.- 1) Let X be a space. We define the endomorphisms operad of X, ε_{X}, as follows:
i) $\xi_{X}(n)=\left\{f: X^{n} \rightarrow X: f\right.$ is a continuous map $\}$
ii) $\phi: \xi_{X}(n) \times \xi_{X}\left(j_{1}\right) \times \ldots \times \xi_{X}\left(j_{n}\right)+\xi_{X}(j)$ is given by composition: i.e $\phi\left(f ; g_{1}, \ldots, g_{n}\right)=f\left(g_{1} \times, \ldots, x g_{n}\right)$
iii) The Σ_{n}-action on $E_{x}(n)$ is given by composition; i.e. for any $\sigma \in \varepsilon_{n}$ we define $\sigma: X^{n} \rightarrow x^{n}$ by the formula $\sigma\left(x_{1}, \ldots, x_{n}\right)=$ $=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. Then the action is given by $f \sigma=f \circ \sigma$
2) Let \mathbb{R}^{∞} be the limit of $\left\{\mathbb{R}^{n}\right\}_{n_{\epsilon}} \mathbb{N}$ with respect to the maps

$$
\mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n} \times\{0\} \rightarrow \mathbb{R}^{n+1} .
$$

We define the isometries operad, \mathcal{L}_{∞}, as follows:

1) $\mathcal{Z}_{\infty}(n)=\left\{\psi:\left(\mathbb{R}^{\infty}\right)^{n} \rightarrow \mathbb{R}^{\infty}: \psi\right.$ is an injective linear isometry $\}$
ii) and iii). A_{5} in 1), the composition law and the Σ_{n}-action are given by composition.
2) Let $\mathbb{I}^{r}=[0,1]^{r}$ be the standard cube in \mathbb{R}^{r}. We call an \underline{r}-little cube a map c : int $I^{r}+$ int I^{r}, of the type $x_{1} x_{1} \ldots, \ldots X_{r}$, where $x_{i}:(0,1) \rightarrow(0,1)$ is a strictly increasing affine map.
We define the r-little cubes operas, \boldsymbol{C}_{r} as follows:
i) $\zeta_{r}(n)=\left\{\left(c_{1}, \ldots, c_{n}\right): c_{i}\right.$ are r-cubes with disjoint $c l$ o.sures $\}$
ii) : $\zeta_{r}(n) \times \zeta_{r}(j) \times, \ldots, \times \zeta_{r}\left(j_{n}\right)+\zeta_{r}(j)$ is given by compossion;

$$
\begin{aligned}
& \phi\left(\left(c_{1}, \ldots, c_{n}\right) ;\left(d_{1}^{l}, \ldots, d_{j_{1}}^{1}\right), \ldots,\left(d_{1}^{n}, \ldots, d_{j_{n}}^{n}\right)\right)= \\
& =\left(c_{1} \circ d_{1}^{l}, \ldots, c_{1} \circ d_{j_{1}}^{l}, \ldots, c_{n} \circ d_{1}^{n}, \ldots, c_{n} \circ d_{j_{n}^{n}}^{n}\right)
\end{aligned}
$$

iii) $\left(c_{1}, \ldots, c_{n}\right) \sigma=\left(\left(c_{\sigma(1)}, \ldots, c_{\sigma(n)}\right)\right.$

In all three cases is easy to show that they are operads and the identity map is the 1 .

2.3 DEFINITION. - A morphism between two operads

$$
f: \varphi \rightarrow \zeta^{\prime}
$$

is a sequence of maps, $\left\{f_{n}\right\}_{n \in \mathbb{N}^{\prime}}$ with $f_{n}: \zeta_{\rho}(n)+\zeta^{\prime}(n)$ and satisfying i) For each n, j_{j}, \ldots, j_{n}, the diagrams

$$
\zeta(n) \times \zeta\left(j_{i}\right) \times \ldots, \ldots\left(j_{n}\right) \xrightarrow{\varphi} \mathscr{C}(j)
$$

commute.
ii) $f_{1}\left(l_{y_{6}}\right)=l_{6}$
iii) For each n, the diagrams

commute.
2.4 EXAMPLE.- If we identify the r-little cube c_{i}, with the $(r+1)$-little cube $c_{i} \times 1$, we get a morphism of operas.

$$
\varphi_{r}+\varphi_{r+1}
$$

given by the inclusions $\zeta_{r}(n) \subset \zeta_{r+1}(n)$. We can define a new operad φ_{∞} by $\zeta_{\infty}(n)=\bigcup_{r=1}^{\infty} \varphi_{r}(n)$ and we get inclusions ζ_{r} e φ_{∞}, for any r.
2.5 DEFINITION.- Let ζ be an operas and X a space. We said that x is a ℓ-space if there is a morphism of operads

$$
\theta: \xi+\varepsilon_{x},
$$

that we call a $\mathcal{\zeta}$-action on X.
Notice that θ is given by a sequence of maps

$$
\theta_{n}: \zeta(n) \times x^{n} \rightarrow x
$$

commuting with the composition law and the Σ_{n}-action.
2.6 DEFINITION.- An operad φ, is an E_{∞}-opera if, for any $n, \zeta(n)$ is contractible and the Σ_{n}-action on $\zeta^{\prime}(n)$ is free.

$$
\text { A space } X \text { is an } E_{-} \text {-space if it has a } \mathscr{F} \text {-action for some } E_{\infty} \text {-opera }
$$ 6.

2.7 EXAHPLES 1) \mathcal{L}_{∞} is an E_{∞}-operas since the Σ_{n}-action is obviously free and $\mathcal{I}_{\infty}(n)$ is contractible for any n (see [21I).
2) ζ_{∞} is an E_{∞}-operad since the ε_{n}-action is free and $\zeta_{\infty}(n)$ has the homotopy type of the space,

$$
F\left(\mathbb{R}^{\infty}, n\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{\infty}\right)^{n}: x_{i} \neq x_{j} \text { for } i \notin j\right\}(\text { see }[17] \text {. }
$$

and

$$
F\left(\mathbb{R}^{\infty}, n\right) \text { is contractible }([11]) \text {. }
$$

2.8 PROPOSITION.- Let X be an infinite loop space. Then, it has a natural ζ_{∞}-action (in particular, any infinite loop. space is an E_{∞}-space). Proof.- Let Y_{r} be such that $X=\Omega{ }_{\Omega} Y_{r}$. We define the maps

$$
\theta_{n}: \varphi_{r}(n) \times\left(\Omega^{r_{Y_{r}}}\right)^{n}+\Omega{ }_{\Omega} Y_{r},
$$

where $\theta_{n}\left(\left(c_{1}, \ldots, c_{n}\right) ; f_{1}, \ldots, f_{n}\right):\left(I^{r}, \partial I^{r}\right)+\left(Y_{r}, *\right) \quad$ is the map sending any x, lying in $\operatorname{Im} c_{i}$ to $f_{i}\left(c_{i}^{-1}(x)\right)$ and any point outside ${\underset{i=1}{n} \operatorname{Im} c_{i}, ~}_{n}$ to the base point.

These maps produce a ζ_{r}-action on X. So, X is a φ_{r}-space for any r, and, as such actions are compatible, X is a $\boldsymbol{\zeta}_{\infty}$-space.

The recognition principle is a partial converse of this result.
2.9 THEOREM. - $\left[20\right.$] Let X be a connected E_{∞}-space. Then X has the weak homotopy type of an infinite loop space.

Now, we define the space $B U$, in a way appropriate to prove that it is an infinite loop spaces.
2.10 DEFINITION.- The Stiefel manifold of k-frames in c^{n} is defined as the space

$$
v_{k, n}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in\left(c^{n}\right)^{k}:\left\{x_{i}\right\}_{i=1}^{k} \text { is orthonormal }\right\}
$$

with the topology induced by $\left(c^{n}\right)^{k}$.

The Grassmann manifold of k-planes in $\mathbf{c}^{\boldsymbol{n}}$ is the space

$$
G_{k, n}=\left\{V<c^{n}: V \text { is a } k \text {-dimenstonal complex subspace of } c^{n}\right\} \text {. }
$$

with the quotient topology of the map

$$
y: v_{k, n}+G_{k, n}
$$

that sends each k-frame into the subspace that it generates.
Over $G_{k, n}$, we define the k-dimensional complex vector bundle $r_{k, n}$ by $\quad E_{r_{k, n}}=\left\{(x, V): x \in V \in G_{k, n}\right\}$

Using the isomorphism $c^{n}=c^{k} \times c^{n-k}$, we can consider $G_{k, n}$ as the set of k-planes in $c^{\mathbf{k}} \times \mathbf{c}^{\mathbf{n - k}}$.

Identifying a k-plane in $c^{k} \times c^{n-k}$ with the one in $c^{k} \times c^{n+1-k}$ given by inclusion

$$
c^{n-k} \underset{\rightarrow}{\sim} c^{n-k} \times\{0\} \rightarrow c^{n+1-k},
$$

we have an inclusion $G_{k, n} \in G_{k, n+1}$, and we define $B U(k)=\bigcup_{n=k}^{\infty} G_{k, n}$. In the same way we have $r^{k}={\underset{n=k}{\infty}}_{r_{k, n}}$

2.11 THEOREM [23]. $\operatorname{BU}(k)$ classifies classes of isomorphic k-dimensional

 complex bundles over any paracompact space, and \boldsymbol{r}^{k} is its universal bundle.Identifying a k-plane $v \in c^{\mathbf{k}} \times \mathbf{c}^{n-k}$ with the ((r))plane $c \bullet V$ e $c^{k+1} \times C^{n-k}$ we get an inclusion $G_{k, n} \subset G_{k+1, n+1}$ and in the limit we have $B U(k) \subset B U(k+1)$, so we can define $B U=\underset{k=1}{i} B U(k)$.
2.12 THEOREM [23] BU classifies 3Table chates of complex bundles over any paracompact space.

Let $U(n)$ be the group of unitary automorphisms of c^{n} and $U(k, l)$ the group of unitary automorphisms of $c^{k} \times c^{l}$. Then we have the following results.
2.13 PROPOSITION.- The map

$$
a: \frac{U(k, n-k)}{U(k) \times U(n-k)} \rightarrow G_{k, n}
$$

given by $\alpha([g])=g\left(c^{k} \times\{0\}\right)$ is a homeomorphism

Proof.- As both spaces are compact Hausdorff, it is enough to see that a is a continuous bijection.
α is continuous since it is the map induced by the continuous map

$$
\bar{u}: U(k, n-k) \rightarrow V_{k, n}
$$

given by $\bar{\alpha}(g)=\left(g\left(e_{1}\right), \ldots, g\left(e_{k}\right)\right)$ where $\left(e_{j}, \ldots, e_{n}\right)$ is the standard basis of $\mathbf{c}^{\mathbf{k}} \times \mathbf{c}^{n-k}$.

The bijectivity of α is imediate.
2.14 THEOREM.- In the limit, the maps

$$
\begin{aligned}
& a: \frac{U(k, \infty)}{U(k) \times U(\infty)} \rightarrow B U(k) \quad \text { and } \\
& a: \frac{U(\infty, \infty)}{U(\infty) \times U(\infty)}+B U
\end{aligned}
$$

are homeomorphisms.
Proof.- It is an immediate consequence of 2.13 and the fact that the maps a cormute both with the inclusions $G_{k, n}=G_{k, n+1}$ and $G_{k, n} \subset G_{k+1, n+1}$.
2.15 REMARK,- By 2.14, a point xeBU, can be interpreted either as
 , where V is a k-dimensional subspace of some $\mathbf{c}^{k} \times \mathbf{c}^{n-k}$, or as a class of unitary automorphisms of $\mathbf{c}^{\infty} \times \mathbf{C}^{\infty}$.

Also, by fixing a bijective linear isometry $\mathbf{C}^{\infty} \times \mathbf{c}^{\infty} \stackrel{\infty}{+} \mathbf{c}^{\infty}$ we have both interpretations with \mathbf{c}^{∞} instead of $\mathbf{C}^{\infty} \times \mathbf{C}^{\infty}$.
2.16 THEOREM [21],- BU has the homotopy type of an infinite loop space Proof.- He want to prove that $B U$ is an \mathcal{L}_{∞}-space, so we need to define maps $h_{n}: \mathcal{L}_{\infty}(n) \times(B U)^{n}+B U$.

Let be $g \in \mathcal{Z}_{60}(n)$ and $x_{i} \in B U$ for $i=1, \ldots, n$. Chose automorphism

$$
\mathbf{f}_{\mathbf{i}}: \mathbf{c}^{\infty} \times \mathbf{c}^{\infty} \rightarrow \mathbf{c}^{\infty} \times \mathbf{c}^{\infty}
$$

representing x_{i}. Then, $h_{n}\left(g ; x_{1}, \ldots, x_{n}\right)$ is the class of the automorphism

$$
\mathbf{f}: \mathbf{c}^{\infty} \times \mathbf{c}^{\infty} \rightarrow \mathbf{c}^{\infty} \times \mathbf{c}^{\infty}
$$

defined as follows:
$: g_{C}$ the complexification of $g . O_{n} \operatorname{Im}\left(g_{C} \times g_{C}\right), f$ is the unique map that makes the following diagram commute

, where sh is the appropiate reordering map.
On the complementary subspace of $\operatorname{Im}\left(g_{\mathbf{C}} \times g_{C}\right)$ we define f as the identity.

It is easy to prove that the class of f is independent of the choice of f_{i} and that the maps h_{n} so defined, commute with the composition law and the Σ_{n}-action.

Now, we define the map

$$
n: Q B U(1) \rightarrow 8 U
$$

as the unique map of infinite loop spaces extending the inclusion.

s2.2 The space Q BU(1)

We give a sketch of the proof of the approximation theorem for the space QX , when X is a connected space, and look with some detail into the case $X=B U(1)$. To do it we need to develop the concept of a coefficient system (see [9]).

2.17 DEFINITION.- The category Λ has as objects the finite sets:

$$
\underline{n}=\{0,1, \ldots, n\}
$$

based at 0 , and as morphism from \underline{n} to \underline{m}, all the injective based maps

$$
\phi: \underline{n}+\underline{m}
$$

It is easy to see that any such map decompose as the product of a permutation $\sigma \in \Sigma_{n}$ and an injective order-preserving based map from n to $\underline{m}, \bar{\phi}$. Also, any injective order-preserving based map, $\bar{\phi}$, decomposes as a finite product of "degeneracy" maps

$$
\sigma_{q, n}: \underline{n} \rightarrow \underline{n+1} \quad \text { for } q=0, \ldots, n
$$

where

$$
\sigma_{q, n}(i)=\left\{\begin{array}{cc}
i & \text { if } i \leq q \\
i+1 & \text { if } i>q
\end{array}\right.
$$

2.18 DEFINITION.- A coefficient system, ζ, is a contravariant functor.

$$
\zeta: \Lambda \rightarrow \operatorname{Top}_{\star}
$$

where $\zeta(\underline{0})=\{*\}$
From now on, we will denote $\xi:(n)$ simply by ζ_{n}, and ξ_{n} has an obvious Σ_{n}-action.

Notice that to know ζ on morphisms we only need to know it on the elements of Σ_{n} and the "degeneracy" maps.
2.19 EXAMPLES.- 1) Any operas, $\boldsymbol{\xi}$, has associated a natural structure of coefficient system taking $\zeta_{n}=\zeta(n)$. Then $\varphi(\sigma)$ is given by the ε_{n}-action on $\xi(n)$ for any $\sigma \in \Sigma_{n}$ and $\sigma_{q, n}=\varphi\left(\sigma_{q, n}\right)$ is the map given by

$$
\sigma_{q, n}(c)=\phi\left(c, s_{q}\right) \quad \text { for any } \quad c \in \hat{\beta}(n)
$$

where

$$
s_{q}=(1, \ldots, 1, \star, 1, \ldots, 1) \in \xi(1)^{q} \times \varphi(0) \times \mathscr{\xi}^{(1)^{n-q}} .
$$

2) The Stiefel coefficient system. V_{∞} is defined as follows:

On objects

$$
\begin{aligned}
v_{\infty, n}=v_{n, \infty} & =\left\{\left(v_{1}, \ldots, v_{n}\right) \epsilon\left(\mathbb{R}^{\infty}\right)^{n}:\left\{v_{i}\right\} \text { is orthonormal }\right\} \\
& =\left\{\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\infty}: \phi \text { is an injective linear isometry }\right\}
\end{aligned}
$$

For any infective based map $\phi \in \Lambda(n, \underline{m})$ we define the associated injective linear isometry

$$
\phi: R^{n}+R^{m}
$$

given by

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\left(0, \ldots, x_{1}, \ldots, x_{2}, \ldots, x_{n}, \ldots, 0\right)
$$

and the map $\phi=v_{\infty}(\phi)$ is given by composition.
3) Let X be a space. The coefficient system $F(X)$ of configurations in X is defined as follows:

On objects

$$
F(x)_{n}=F(x, n)=\left\{\left(x_{j}, \ldots, x_{n}\right) \in \quad x^{n}: x_{i} \neq x_{j} \text { for any } i \neq j\right\}
$$

For any infective based map fen($n, m)$ we define the map

$$
: F(X, m) \rightarrow F(X, n)
$$

by

$$
\phi\left(x_{1}, \ldots, x_{m}\right)=\left(x_{\phi}(1), \cdots, x_{\phi}(n)\right)
$$

2.20 DEFINITION. - A morphism between coefficient system $f: \zeta+\zeta^{\prime}$ is a natural transformation between the functors ζ and $\mathscr{\zeta}^{\prime}$. Notice that the associated maps $f_{n}: \zeta_{n}+\zeta_{n}$ are maps of Σ_{n}-spaces.
2.21 EXAMPLES 1) Any morphism between operads induces a morphism between the associated coefficient systems.
2) We define the morphism.

$$
\kappa: \zeta_{\infty}+F\left(\mathbb{R}^{\infty}\right)
$$

given by the maps

$$
k: \varphi_{\infty, n}+F\left(\mathbb{R}^{\infty}, n\right)
$$

that sends each little r-cube to its center and the configuration we get in int I^{∞} to R^{∞} by a chosen homeomorphism
3) We define the morphism

$$
B: V_{\infty} \rightarrow F\left(R^{\infty}\right)
$$

given by the maps

$$
\beta_{n}: V_{n, \infty} \rightarrow F\left(\mathbb{R}^{n}, n\right)
$$

that send the n-frame $\left\{x_{i}\right\}_{i=1}^{n}$ to the configuration in $\mathbb{R}^{*},\left\{x_{i}\right\}_{i=1}^{n}$,
4) We define the morphism

$$
a: \chi_{\infty} \rightarrow V_{\infty}
$$

given by the maps

$$
a_{n}: \mathcal{X}_{\infty, n} \rightarrow v_{n, \infty}
$$

where

$$
a_{n}(f)=\left(f\left(e_{1}\right), \ldots, f\left(e_{1 n}\right)\right)
$$

where $\left\{e_{j i}\right\}_{j=1}^{\infty}$ is the standard basis of the $i^{\text {th }}$ factor of $\left(\mathbb{R}^{\infty}\right)^{n}$.
Now we associate, in a natural way to each coefficient system, $\boldsymbol{\zeta}$, a construction on topological spaces denoted c.
2.22 DEFINITION,- Let $\boldsymbol{\zeta}$ be a coefficient system. He define the functor.

$$
\text { c: } \mathrm{ToP}_{\star}+\mathrm{ToP}_{\star}
$$

as follows:
For any based space X

$$
c x=\frac{\prod_{r=0}^{\infty} \mathscr{W}_{\mathbf{\psi}} \times x^{r}}{n}
$$

- the quotient of the space $\prod_{r=0}^{\infty} \mathscr{\zeta}_{r} \times x^{r}$ by the equivalence relation generated by the relations

$$
\left(c \phi x_{1}, \ldots, x_{r}\right) \sim\left(c ; x_{\phi}(1), \ldots, x_{\phi}(r)\right) \text { for any } \phi \in \Lambda(r, \underline{s})
$$

where $x_{0}-(i)=$ if $i d \mathrm{~lm}$
For any morphism $g: X \rightarrow Y$, the map

$$
c g: c X \rightarrow c Y
$$

is given by

$$
c g\left(\left[\left(c ; x_{1}, \ldots, x_{r}\right)\right]\right)=\left[\left(c ; g\left(x_{1}\right), \ldots, g\left(x_{r}\right)\right)\right] .
$$

Notice that for any morphism of coefficient systems f: $\wp+\zeta$, we have a natural transformation $f: c+c^{\prime}$ given, for any space x, by the map

$$
f_{X}: c x \rightarrow c^{\prime} x
$$

defined by

$$
f_{x}\left(\left|\left(c: x_{1}, \ldots, x_{r}\right)\right|\right)=\left|\left(f_{r}(c) ; x_{1}, \ldots, x_{r}\right)\right|
$$

2.23 REMARK.- If we define

$$
F_{n} c x=\operatorname{Im}\left({\underset{r=0}{r}}_{\bigcup_{\Gamma}}^{\varphi_{r}} \times x^{r}+c x\right)
$$

We get a natural filtration of $c X$, that is preserved by $c g$ for any map $\mathrm{g}: X \rightarrow Y$ so we can consider the functor c taking values in the category of filtered topological spaces.

Also, for any map of coefficient systems $f ; \xi^{+} \xi^{\prime}, f_{x}$ preserves the filtration, so the natural transformation f can be considered too in the category of filtered topological spaces.
2.24 LemA [9].- i) The inclusion $F_{n-1} c x+F_{n} c x$ is a coffibration
ii) the diagram

is a push out, where $\sigma_{n} x={\underset{i=0}{n-1} x^{i} \times\{*\} \times x^{n-i-1}, ~}_{i=1}$
Now it is easy to prove inductively the following
 systems. Then,
i) if, for any $n_{0} \Sigma_{n}$ acts freely on ξ_{n} and ξ_{n}^{\prime} and f_{n} is a weak homotopy equivalence, then f_{x} is a weak homotopy equivalence for any X.
i1) if, for any n, f_{n} is an equivasiant homotopy equivalence, then f_{X} is a homotopy equivalence for any X.
2.26 DEFI.IITIOH. - Let X be a based space. The nap

$$
a_{n}: c_{n} x+a^{n} s^{n} x
$$

is given by:

$$
\alpha_{n}\left(\left[\left(c_{1}, \ldots, c_{r}\right):\left(x_{1}, \ldots, x_{r}\right)\right]\right):\left(I^{n}: g I^{n}\right) \rightarrow\left(s^{n} x, *\right)
$$

is the map that sends a point $t \in \operatorname{Im} c_{i}$ to $\left(c_{i}^{-1}(t), x\right)$ and any point $t f_{i=1}^{r} \operatorname{Im} c_{i}$ to the base noint.

As the q_{h} are compatiole, in the limit we get

$$
\alpha_{\infty}: c_{\infty} X \rightarrow Q X
$$

2.27 THEORE: ([20]). If X is connected, then o_{n} is a weak homotopy equivalence for anv n (even $n=\infty$).
2.28 CORDLLARY... If x is connected and ζ is any of $\zeta_{\infty}, f\left(\mathbb{R}^{\infty}\right), \vartheta_{\infty}$ or \mathcal{Z}_{∞}, c X has the reak homotopy type of al^{X}.

Proof.- The maps α, β, k of 2.21 satisfy 2.25 so any two of the $c X$ have the same reak homotopy type. Thus by 2.27 each one has the weak homotopy type of ?X.

In particular, we want to study the space $F\left(\mathbb{R}^{\infty}\right)$ (BU(1)) since it has the homotopy type of Q LU(I).
2.29.- DEFINITION.- Let G be a group. Then, $\Sigma_{n} S G$ is the group of ($n \times n$)-matrices with entries in G such that each row or column has a unique non-zero entry. The composition law is given by the product of matrices and the law in G.

If $\mathrm{G}=\mathrm{U}(1)$, we have an obvious inclusion

$$
\Sigma_{n} \quad J U(1)=U(n),
$$

and using it, we can interpret the elements of $\Sigma_{n} \int U(1)$ as unitary transformations of $\boldsymbol{c}^{\boldsymbol{n}}$ that act by permuting the elements of the standard basis and multiplying them by modulus one scalars.
2.30 PROPOSITION.- If we define $B\left(\Sigma_{n} f U(1)\right)=\frac{U(n, \infty)}{\left(\Sigma_{n} \int U(1)\right) \times U(\infty)}$, then
it is the classifying space of $\varepsilon_{n} \rho U(1)$-principal bundles.

Proof.- With this definition, it is easy to see that $B\left(\Sigma_{\mathrm{n}} / \cup(1)\right)$ is the quotient of $E U(n)$, the total space of the universal $U(n)$-principal bundie, by the $\Sigma_{n} f(1)$-action induced by the inclusion $\Sigma_{n} S U(1) \subset U(n)$.

Since $E U(n)$ is contractible and the $\Sigma_{n} \mathcal{f} U(1)$ action is free the quotient is the classifying space of $\varepsilon_{n} f(1)$-principal bundles ([30]). Me define

$$
\begin{aligned}
& P_{n}: B \Sigma_{n} \rho U(1)+B U(n) \quad \text { as the limit map of } \\
& P_{n, k}:-\frac{U(n, m)}{\Sigma_{n}} \frac{U(1) \times U(m)}{U(n, m)}
\end{aligned}
$$

Let

$$
q_{n}: F\left(\mathbb{R}^{\infty}, n\right) \times \varepsilon_{n} B U(1)^{n}+B\left(\varepsilon_{n} \int U(1)\right)
$$

be a map classifying the Σ_{n} fJ(l)-principal bundle

$$
F\left(\mathbb{R}^{\infty}, n\right) \times E U(1)^{n}+F\left(\mathbb{R}^{\infty}, n\right) x_{\bar{\Sigma}_{n}} B U(1)^{n} .
$$

then we have the following results.
2.31 PROFOSITIOH.- q_{n} is a homotopy equivalence.

Proof.- $E U(1)$ and $F\left(\mathbb{R}^{\infty}, n\right)$ are contractible, so $F\left(\mathbb{R}^{\infty}, n\right) \times E U(1)^{n}$ is a contractible space. As the obvious $\Sigma_{n} \int U(1)$ action is free, the quotient space $F\left(\mathbb{R}^{\infty}, n\right) x_{\Sigma_{n}} B U(1)^{n}$ is a classifying space for $\Sigma_{n} f U(1)$-principal bundies and $F\left(\mathbb{R}^{\infty}, n\right) \times \mathbb{E U}(n)$ is the universal bundle ([30]). Thus the map q_{n} that classifies it has to be an equivalence.

2.32 PROPOSITION.- The diagram

$$
\left.F\left(R^{\infty}, n\right)_{\Sigma_{\Sigma_{n}}} B U(i)^{n} \xrightarrow{T_{n}}\right|^{q_{n}} B\left(R^{\infty}, n-1\right) \times \Sigma_{\Sigma_{n-1}}(U(1))
$$

commutes up to homotopy, where the map Γ_{n} is given by a chosen ε_{n-1}-equivariant inclusion of $F(R * n-1)$ in $F\left(\mathbb{R}^{\infty}, n\right)$ and the right hand vertical map is induced by the inclusion of groups.

Proof.- It is easy to see that the $\Sigma_{n} f U(1)$-principal bundle classified by the map $q_{n} \cdot T_{n}$ has a reduction to the pull-back by q_{n-1} of the universal $\Sigma_{n-1} / U(1)$-principal bundle.

By induction, we choose maps

$$
\bar{a}_{n}: B\left(\Sigma_{n} f U(1)\right) \longrightarrow F\left(\mathbb{R}^{\bullet}, n\right) x_{\Sigma_{n}} B U(1)^{n}
$$

that are homotopy inverses of q_{n} and, also, they commute the above diagram .

Now, we define i_{n} as the composition
$B\left(\Sigma_{n} \rho U(1)\right) \xrightarrow{\vec{q}_{n}} F\left(\mathbb{R}^{\infty}, n\right) x_{n} B U(1)^{n} \longrightarrow F_{n}\left(F\left(\mathbb{R}^{\infty}\right)(B U(1))\right)$
2.33 PROPOSITION.- The diagram

commivtes up to homotopy.

Proof.- It follows immediatly from the definition of i_{n}.

He choose a map

$$
i_{*}: B\left(\tau_{\infty} \rho U(1)\right) \longrightarrow F\left(\mathbb{R}^{-}\right)(B U(1))
$$

such that

$$
i B\left(I_{n} f \cup(1)\right) \sim i_{n}
$$

CHAPTER 3. Definition of the Chäracteristic Classes \hat{c}_{k}.
As seen in chapter 1 , to define $\hat{c}_{k} \in H^{2 k}(\dot{B} U: \mathbb{Z})$, it is enough to give the corresponding maps:

$$
\hat{c}_{k}: \Sigma^{\infty} \quad E U \rightarrow \Sigma^{\dot{c} k} I \| \not Z
$$

They are the composite maps

$$
\Sigma^{\infty} \text { biن } \stackrel{T}{\rightarrow} \Sigma^{\infty} \gamma \text { BU }(1) \stackrel{\hat{h}_{k}}{\rightarrow} \Sigma^{\infty} T \gamma(k) \xrightarrow{t_{k}} \Sigma^{2 k} H Z,
$$

Where τ is defined in $\mathrm{s}^{3.1}$ following [27.], \hat{h}_{k} is the splitting map of $£ 3.2$ (see 19 J) and \hat{t}_{k} is the Thom class of the bundle $\gamma^{(k)}=F\left(I R^{\infty}, k\right) x_{\Sigma_{k}}(\gamma)^{k}$.

33.1 The map $\tau: B U \rightarrow Q B U(1)$

The construction is done by inductive use of the "transfer".

3.1 THEOREN (1.4$]$).-Let ξ be a fibre bundle over a finite complex B,

 with fibro a conpact \mathfrak{G}-manifold, where G is a compact Lie group. Then, there is a stable map, called the transfer map,$$
\tau(\xi): \quad B^{+} \rightarrow E^{+}
$$

such that the composite of the maps induced in singular cohomology, with coefficient in a ring R,

$$
H^{*}(B ; R) \stackrel{r^{*}}{\rightarrow} H^{*}(E ; R) \xrightarrow{\tau^{*}} H^{*}(B ; R)
$$

is the multiplication by $X(F)$, the Euler characteristic of F.
Moreover, the construction is natural with respect to morphisms of fibre bundles.

3.2 THEOREH.- Let

$$
P_{n}: B \Sigma_{n} \rho U(1)+L U(n)
$$

be tiee map defined in 2.30. Then, there is a stable map

$$
\tau_{n}: B U(n)^{+}+\delta \Sigma_{n} s U(1)^{+}
$$

that is tie right homological inverse of P_{n}.
Proof.- The bundles,

$$
p_{n, k}: \frac{U(n, k)}{\left(\Sigma_{n} J U(1) k U(k)\right.} \rightarrow \frac{U(n, k)}{U(n) \times U(k)}
$$

have fibre the $U(n)$ manifold $\frac{U(n)}{\Sigma_{n} f U(1)}$.
By 3.1 there are stable maps,

$$
\tau_{n, k}:\left(\frac{U(n, k)}{U(n) \times U(k)}\right)^{+} \rightarrow\left(\frac{U(n, k)}{\Sigma_{n} U(1) \times U(k)}\right)^{+}
$$

such that $P_{n, k} \cdot \tau_{n, k}$ induces in singular cohomology multiplication by $x\left(U(n) / \sum_{n} \int U(1)\right)=1$ (by [15]).

As the $\tau_{n, k}$ comnute with the inclusions, there is in the limit a stable map,

$$
\tau_{n}: B U(n)^{+}+B \varepsilon_{n} s U(1) t
$$

such that the map $p_{n}{ }^{\circ} r_{n}$ induces the identity in singular cohomology. Thus ξ_{n} is the right homological inverse of P_{n}.

To be able to take the limit of the τ_{n}, we use the following
3.3 THEOREI [27].- Let ξ be a fibre bundle with fib:e the compact G-manifold F, for G a compact Lie group, and E_{G} the associated G-principal bundle. Let F_{1} be a G-submanifold of F and N an equivariant tubular neighbourhood of F_{1} in F. If there is an equivariant vector field on F such that the induced vector field on $a N$ is homotopic to the outward normal field through a homotopy of non-zero vector fields, and the vectors have moduli 1 outside N, the diagram

comutes.

3.4 THEOREM.- Let

$$
P_{\infty}: B \Sigma_{\infty} S U(I) \rightarrow B U
$$

be the limit of $\mathbf{P}_{\mathbf{n}}$. Then, there is a stable map,

$$
\tau_{\infty}: B U^{+}+B \Sigma_{\infty} f U(1)^{+}
$$

that is the right homological inverse of P_{∞}.
Proof.- Snaith proved, in [27], that the inclusion

$$
\frac{U(n)}{\Sigma_{n} f U(1)}+\frac{U(n+1)}{\Sigma_{n+1} f U(1)}
$$

satisfies the hypothesis of 3.3 , so the diagram.

commutes.

The diagram of $U\left(n+\mathbb{V} \Sigma_{n+1} S U(1)\right.$ bundles

$$
\begin{aligned}
& \left.E U(n+1)\right|_{B U(n)}{ }^{x} J(n) \frac{U(n+1)}{\Sigma_{n+1} J U(1)} \rightarrow B U(n) \\
& E U(n+1) \times U(n+1) \frac{U(n+1)}{\Sigma_{n+1} J U(1)} \longrightarrow B U(n+1)
\end{aligned}
$$

commutes; so, by naturality of the transfer, the diagram

commutes.

Thus, the diagram

commutes, and we get in the limit a stable map

$$
\tau_{\infty}: B U^{+} \rightarrow B \Sigma_{\infty} s U(1)^{+}
$$

that is, obviously, the right homological inverse of

As proved in css, the same holds for

$$
\tau_{\infty}: B U \rightarrow B \Sigma_{\varnothing 0} f U(1)
$$

3.5 DEFIMITION.- We define the map $\tau: B U \rightarrow$. $Q(1)$ as the composite

$$
B U \stackrel{\hat{\tau}_{\infty}}{+} Q B \Sigma_{\infty} \rho U(1)^{Q\left(i_{\infty}\right)} Q Q B U(1) \stackrel{c}{+} Q B U(1),
$$

where $\hat{\tau}^{\text {. }}$

$$
\text { is the adjoint of the stable map } \tau_{\infty} \text {. }
$$

3.6 LEIMA [27] .- The maps

$$
\begin{aligned}
& B \Sigma_{n} f U(1) \stackrel{i_{n}}{+} Q B U(1) \stackrel{n}{\rightarrow} B U \\
& B \Sigma_{n} f U(1) \stackrel{P_{n}}{+} B U(n) \subset B U
\end{aligned}
$$

induce the same homomorphism in homology.
3.7 THEOREM [27].- τ is the right homological inverse of n.

Proof.- By 3.6, for any n, not $\left.\right|_{B U(n)}$ induces in homology the same map as $P_{n} \circ \tau_{n}$, i.e. the identity.
3.8 COROLLARY.- τ is the right homotopical inverse of n.

Proof,- It follows directly from 3.7 and the Appendix.
s3.2 Stable splitting of the space $\mathbf{c} X$.
In this paragraph, we study the splitting of the space $c X$ in the wedge of less complicated spaces $D_{n}(\mathcal{Z}, X)$, for any coefficient system $\boldsymbol{\zeta}$.
3.9 DEFINITION.- Given a coefficient system β and a space X, we define

$$
D_{n}(f, x)=\frac{F_{n} \subset x}{F_{n-1} \subset x}
$$

As any morphism between coefficient systems $\mathrm{f}: \boldsymbol{b} \boldsymbol{b}$ induces a map $f_{X}: c X+c^{\prime} X$ preserving the filtration, it induces also maps

$$
f_{n}: D_{n}(\xi, x)+D_{n}\left(\xi^{\prime}, x\right)
$$

3.10 PROPOSITION [9].- $D_{n}(\xi, x)$ is homeomorphic to the quotient. $\zeta_{n}{ }^{x} \Sigma_{n} x^{n} / \zeta_{n}{ }^{x} \varepsilon_{n} \sigma_{n} x$.

Proof.- The map $\quad f_{n} x_{\Sigma_{n}} x^{n} \rightarrow F_{n} c x^{\circ} \rightarrow D_{n}(f, x)$ sends $f_{n} x_{n}{ }_{n}{ }_{n} x$ to the base point, so it induces a map

$$
\frac{F_{n} \times \Sigma_{n} x^{n}}{F_{n} \times \Sigma_{n} \sigma_{n} x}+D_{n}(f, x)
$$

It is easy to see that it is a homeomorphism.
[
As there is an obvious homeomorphism,

$$
\frac{f_{n} x_{n} x^{n}}{f_{n} x_{n} \Sigma_{n} \sigma_{n} x}+\frac{F_{n}{ }_{x} \Sigma_{n} x^{(n)}}{\beta_{n} x_{n} \Sigma_{n}{ }^{[n]}},
$$

where $x^{(n)}=\bigcap_{i=1}^{n} x$ is the $n^{\text {th }}$ smash power of $x, D_{n}(\xi, x)$ is also homeomorphic to the latter space.
3.11 PROPOSITION. ${ }^{[\sqrt{2}}$ Let $f: b \rightarrow \zeta^{\prime}$ be a morphinism of coefficient systems. Then ,

1) If, for any n, ε_{n} acts freely on \boldsymbol{G}_{n} and ζ_{n}^{\prime}, and f_{n} is a weakhumotopy equivalence, so is the induced map f_{n}.
ii) if, for any n, f_{n} is an equivariant honotopy equivalence, then the induced map f_{n} is a homotopy equivalence.
3.12 DEFINITION.- Let ζ be a coefficient system, and we define
 we define the map

$$
s_{k, n}: \beta_{n}+\left(i_{k}\right)^{r}
$$

by

$$
\varepsilon_{k, n}(c)=\left(\left[\begin{array}{cc}
c & \psi_{1}
\end{array}\right], \ldots,\left[\begin{array}{c}
c
\end{array} \psi_{r}\right]\right) .
$$

We say that β is separated if In $\xi_{k, n} \subset F\left(\beta_{k}, r\right)$ for any k, n.
3.13 EXAMPLES .- $\mathcal{E}_{\infty}, \mathcal{U}_{\infty}, F\left(R^{\infty}\right)$ and \mathscr{L}_{∞} are separated.
3.14 definition.- Let \mathcal{G} be a separated coefficient system. We define the map

$$
J_{k, n}: \beta_{n} \times x^{n} \rightarrow F\left(\beta_{k}, r\right) \times D_{k}(\beta, x)^{r}
$$

as
$j_{k, n}\left(c ; x_{1}, \ldots, x_{n}\right)=\left(\varepsilon_{k, n}(c) ;\left[c_{\phi_{1}} ;\left(x_{\psi_{1}}(1) \ldots, x_{\phi_{1}}(k)\right)\right], \ldots\right.$,

$$
\ldots,\left[c_{\phi_{r}} ;\left(x_{\psi_{r}}(1), \ldots, x_{\psi_{r}}(x)\right)\right] .
$$

As it is equivariant with respect to the actions of Σ_{n} on the domain and Σ_{r} on the range, we have in the limit the map

$$
j_{k}: c X+F\left(\beta_{k}\right)\left(D_{k}(\beta, X)\right) .
$$

To get the splitting maps h_{k}, we need a technical result of [9]
3.15 THEOREM.- There is a covariant functor, W, from the category of coefficient systems to the category of pointed topological spaces, with the following natural maps
i) A contraction of $W(f)$: i.e. a homotopy $d: 0 \sim 1$.
ii) For each k, an injection
iii) An inclusion
iv) An inclusion

$$
\begin{aligned}
& e_{k}: \beta_{k}+W(\xi) \\
& i: \prod_{k=1}^{N} W(\xi)+H(\xi) \\
& j: R^{\infty}+W(\xi)
\end{aligned}
$$

Notice that by i) $F(H(\zeta))(X)$ has the reak homotopy type of $Q X$, for any connected space X. He denote the equivalence as w.
3.16 DEFINITION.- Let be a separated coefficient system. He define the map

$$
h_{k}: c x \stackrel{j_{k}}{+} F\left(\beta_{k}\right)\left(D_{k}(\beta, x)\right) \stackrel{F\left(e_{k}\right)}{+} F(H(\xi))\left(D_{k}(\xi, x)\right) \stackrel{W}{+} Q\left(D_{k}(\beta, x)\right)
$$

and \dot{h}_{k} is the adjoint stable map.
By abuse of notation h_{k} and \hat{h}_{k} represent also the restrictions to $F_{n} \mathrm{c} X$, for any n.

3.17 PROPOSITION.- The map

$$
\hat{h}_{n}: \Sigma^{\infty} F_{n} \subset X \rightarrow \Sigma^{\infty} D_{n}(\beta, x)
$$

is induced by the obvious identification map.

Proof.․ It is inmediate since the map

$$
j_{n, n}: \xi_{n} \times x^{n} \rightarrow F\left(\beta_{n}, 1\right) \times D_{n}(\xi, x)
$$

is given by the identification.
iiow we can state the splitting theorem.
3.18 THEOREA [9]--Let be a separated coefficient system. Then, the sum of the maps $\hat{h}_{1}, \ldots, \hat{h}_{n}$

$$
\hat{k}_{n}: \Sigma^{\infty} F_{n} c x \rightarrow \Sigma^{\infty} \bigvee_{k=1}^{n} D_{k}(\beta, x)
$$

is a stable homotopy equivalence for any X and any n (even $n=\infty$).
3.19 COROLLARY.- Let X be a connected space and a separated coeificient system with β_{n} contractible for any n. Then $Q X$ splits stably as the wedge of $D_{k}(\vec{k}, x)$.

Proof.- It follows from 3.18 since in this case QX has the stable homotopy type of $c X$.
3.3 Definition of \hat{c}_{k}.

We study the splitting in the case $\boldsymbol{f}=\boldsymbol{F}\left(\mathbb{R}^{\infty}\right)$ and $X=B U(1)$. We drop the index $\overrightarrow{\boldsymbol{\zeta}}$ when there is no possible confusion.
3.20 THEOREM.- Let $X=T(\xi)$ be the Thom space of the vector bundle

E, Then $D_{k}(X)$ is homeomorphic to $T\left(E^{(k)}\right)$ where $\xi^{(k)}=F\left(R^{-}, k\right) x_{L_{k}}(\xi)^{k}$.

Proof:- Choose a riemannian metric on ξ and let $D(\xi), S(\xi)$ be the associated disc and sphere bundle.

On $\xi^{(k)}$ we have an obvious metric induced by the one on $\xi^{\text {. With }}$ this metric we have.

$$
\begin{aligned}
& D\left(f^{(k)}\right)=F\left(R^{-}, R\right) x_{\Sigma_{k}} D(i)^{k} \\
& S\left(\xi^{(k)}\right)=F\left(\mathbb{R}^{\infty}, k\right)_{\Sigma_{k}}\left({\left.\underset{i=1}{k} D(\xi)^{i-1} \times S(\xi) \times D(\xi)^{k-i}\right)}^{v} .\right.
\end{aligned}
$$

and the identification map

$$
F\left(\mathbb{R}^{\infty}, k\right) x_{\Sigma_{k}} D(\xi)^{k} \rightarrow \frac{F\left(\mathbb{R}^{\infty}, k\right) \times \varepsilon_{\varepsilon_{k}} T(\xi)^{k}}{\left.F\left(\mathbb{R}^{\rho}, k\right) x_{\varepsilon_{k}} f \cdot\right\}}
$$

induces the homeomorphism

$$
\left.T\left(\xi^{(k)}\right) \approx D_{k} \cdot T(\xi)\right)
$$

0

3.21 COROLLARY.- $D_{k}(B U(1))$ has the homotopy type of $T\left(r^{(k)}\right)$

Proof.- As $B U(1)$ has the homotopy type of $T(\gamma), D_{k}(B U(1))$ has the homotopy type of $D_{k}(T(\gamma))$ that ic, by 3.21 , such of $T\left(r^{(k)}\right)$.

As $r^{(n)}$ is classified by the map.

$$
F\left(\mathbb{R}^{\infty} \times k\right) \times \Sigma_{k} B U(1)^{k}=B \varepsilon_{k} S U(1) \xrightarrow{P_{k}} B U(k) .
$$

it has a standard orientation and Thom class, t_{k}, induced by its complex structure.
3.22 DEFINITION. - The characteristic class $\hat{c}_{k} \in H^{2 k}(B U ; \mathbb{Z})$ is the one represented by the stable map

$$
\Sigma^{\infty} B U \xrightarrow{T} \Sigma^{\infty} Q B U(1)^{\hat{h}_{k}} \Sigma^{\infty} D_{k}(B U(1))=\Sigma^{\infty} T_{r}(k) \stackrel{t_{k}}{+} \Sigma^{2 k} \mathbb{H} \mathbb{Z}
$$

CHAPTER 4 : Characterization of \hat{c}_{k}.

In this chapter, we characterize the elements $\hat{c}_{k} \in H^{2 k}(B U ; Z)$ in terms of the universal Chern classes, $\left\{c_{n}\right\}_{n \in \mathcal{N}}$. To do it, we evaluate the Kronecker product $\left\langle\hat{c}_{k}\right.$, $a>$ on a basis of $H_{2 k}(B U ; \mathbb{Z})$, and we use the duality between the singular homology and cohomology of BU.

The best way to evaluate $\left\langle\hat{c}_{k}\right.$, a \rangle, is to reduce it $\bmod p$, for any prime p, and to use the calculations of the singular homology with \mathbf{Z}_{p} coefficients for iterated loop spaces, as stated in the first paragraph.
14.1 Behaviour of the map \hat{h}_{k} in homology.

For any space X, and any E_{∞}-operad $\mathcal{C}_{\text {, }} \subset X$ has a natural structure of H -space ; so, $H_{\boldsymbol{*}}\left(c X, \mathbb{Z}_{p}\right)$ is a \mathbb{Z}_{p}-algebra with the associated Pontrjagin product. Our aim, in this paragraph, is to describe it as it is done in [8] for any p.
4.1 THEOREM [8], [10$]$. Let \mathcal{F} be an E_{∞}-operad and x-space. Then,
a) If $p=2$, for any, i, n, there are natural homeomorphisms, $Q^{i}: H_{n}\left(X ; \mathbb{Z}_{2}\right) \rightarrow H_{n+i}\left(X ; \mathbb{Z}_{2}\right)$
such that
i) $Q^{i}(x)=0$
if $\operatorname{deg} x>1$
ii) $Q^{i}(x)=x^{2}$
if $\operatorname{deg} x=1$.
b) If $\mathrm{p} \neq 2$, for any i, n, there are natural homeomorphisms $Q^{1}: H_{n}\left(x ; \mathbb{Z}_{p}\right) \rightarrow H_{n+2 i(p-1)}\left(x ; \mathbb{Z}_{p}\right)$
such that

1) $Q^{i}(x)=0$
if deg $x>2 i$
ii) $Q^{i}(x)=x^{p}$
if $\operatorname{deg} x=21$

For use in the next definition, let

$$
\beta: H_{n}\left(X ; \mathbb{Z}_{p}\right) \rightarrow H_{n-1}\left(X ; \mathbb{Z}_{p}\right)
$$

be the Bockstein map associated to the short exact sequence,

$$
0+\mathbb{Z}_{p}+\mathbb{Z}_{p 2}+\mathbb{Z}_{p}+0
$$

4.2 DEFINITION.- a) If $p=2$, for any finite sequence of natural numbers, $I=\left(i_{1}, \ldots, i_{k}\right)$, we define its length as $\ell(I)=k$, and the associated homomorphism

$$
Q^{1}=Q^{i_{1}} \ldots \ldots \circ Q^{i} k .
$$

We say that 1 is admissible if, for any $j, 2 i_{j}>i_{j-1}$.
b) If $p \neq 2$, for any finite sequence of natural numbers $I=\left(\varepsilon_{1}, i_{1}, \varepsilon_{2}, i_{2}, \ldots, \varepsilon_{k}, i_{k}\right)$, where, for any j, ε_{j} is equal to 0 or 1 and $i_{j}>\varepsilon_{j}$, we define its length as $\ell(I)=k$ and the associated homomorphism

$$
Q^{I}=\beta_{1}^{\varepsilon_{1}} \circ Q^{i_{1}} \circ \varepsilon^{\varepsilon_{2}} \circ Q^{i_{2}} \ldots \ldots \beta^{\varepsilon_{k}} \circ Q^{i_{k}} .
$$

We say that I is admissible $i f$, for any $j, ~ p f_{j}-\varepsilon_{j} \geqslant i_{j-1}$.
Now, we can state a result giving the structure of $H_{*}\left(c, X, Z_{p}\right)$ in terms of $H_{*}\left(X ; Z_{p}\right)$, valid for any prime p.
4.3 THEOREM [8], [10]-Let $\left\{x_{\alpha}\right\}_{\text {ach }}$ be a basis of $H_{*}\left(X ; \mathbb{Z}_{\bar{p}}\right)$ as \mathbf{Z}_{p}-module. Identifying X_{a} with its image in $H_{*}\left(c x ; \mathbb{Z}_{p}\right)$ under the inclusion $X \subset C X ; H_{*}\left(c X ; \mathbb{Z}_{p}\right)$ is the free graded commutative algebra generated by the set

$$
\left\{Q^{I}\left(x_{a}\right) \alpha \in A \text { and } I \text { is admissible }\right\} .
$$

So, $H_{*}\left(c X_{;} ; \mathbf{Z}_{p}\right)$ is generated as $\mathbf{Z}_{\mathbf{p}}$-module by the set $Q^{I} Q^{\left(x_{\alpha_{1}}\right)} Q^{I_{2}}\left(x_{\alpha_{2}}\right) \ldots Q^{I_{n}}\left(x_{q_{h}}\right): n \in N, a_{1} \in \Lambda$ and I_{i} is admissible, for any, i\}.

To state a similar result for $F_{k}(c X)$, we need to define the height of such monomials. For any $x=Q^{I}\left(x_{a_{1}}\right) \ldots Q^{I}\left(x_{q_{n}}\right)$, its height is

$$
h(x)=\sum_{i=1}^{n} p^{\ell\left(I_{i}\right)} .
$$

4.4 THEOREM 「.241-Let $\left\{x_{\alpha}\right\}_{\alpha \in \Lambda}$ be, as before, a basis of $H_{*}\left(X ; Z_{p}\right)$ as Z_{p}-module. Then, the inclusion induces a monomorphism in homology

$$
H_{\star}\left(F_{k} \subset X ; Z_{p}\right) \rightarrow H_{\star}\left(\subset X ; \mathbb{Z}_{p}\right)
$$

with image the $\mathbf{Z}_{\mathbf{p}}$-module generated by the monomials of height less, or equal than k.

With this, it is easy to prove.
4.5 THEOREM.- $\left.H_{*}\left(D_{k} ; f, x\right) ; \mathbb{Z}_{p}\right)$ is isomorphic, as \mathbb{Z}_{p}-module, to the one generated by the monomials of height k.

Proef.- As the inclusion $F_{k-1}(\subset X) \subset F_{k}(\subset X)$ is a cofibration, we have

$$
\dot{H}_{\star}\left(D_{k}(\zeta, X) ; Z_{p}\right) \div H_{*}\left(F_{k}(c x), F_{k-1}(c x) ; Z_{p}\right) .
$$

By 4.4, this inclusion induces a monomorphism in homology, so the long exact sequence splits, giving.

$$
0 \rightarrow H_{\star}\left(F_{k-1}(c x) ; \mathbb{Z}_{p}\right)+H_{\star}\left(F_{k}(c x) ; \mathbb{Z}_{p}\right) \rightarrow H_{\star}\left(F_{k}(c x), F_{k-1}(c x) ; \mathbb{Z}_{p}\right)+0
$$

As Z_{p} is a field, this exact sequence splits giving an isomorphism,

$$
\dot{H}_{\star}\left(D_{k}(\zeta, x) ; \mathbb{Z}_{p}\right)=\frac{H_{\star}\left(F_{k}(c x) ; \mathbb{Z}_{D}\right)}{H_{\star}\left(F_{k-1}(c x) ; \mathbb{Z}_{p}\right)}
$$

, and the \mathbf{Z}_{p}-module on the right is generated by the set of monomials of height k.
4.6 Theorem. - The stable map \hat{h}_{k} induces in homology the map $\left\langle\hat{h}_{k}\right\rangle_{*}$ which sends each monomial of height k to itself and all the others to zero.

Proof.- As the triangle.

commutes, all we need is to know the action of p_{k}.
By 4.5, it is obvious that p_{k} sends the monomials of height k to themselves and any other to zero.
54.2 Evaluation of $\left\langle\hat{c}_{k}\right.$, a \rangle.

He are going to use the classical result on the homology and cohomology of BU:
4.7 THEOREM [30].-Let $c_{n} \in H^{2 n}(B U ; \mathbb{Z})$ be the universal Chern class. Then
i) $H^{*}(B U ; \mathbb{Z})$ is the free graded commutative \mathbb{Z}-algebra generated by them, i.e.

$$
H^{*}(B U ; \mathbb{Z})=\mathbf{Z}\left[c_{1}, \ldots, c_{n}, \ldots\right] .
$$

If $\rho_{p}: H^{*}(: \mathbf{Z}) \rightarrow H^{*}\left(: Z_{p}\right)$ is the natural transformation induced by the projection $\mathbf{Z}+\mathbf{Z}_{p}$, we have.
ii) $H^{*}\left(B U ; \mathbb{Z}_{p}\right)$ is the free graded commutative \mathbb{Z}_{p}-algebra generated by the images $\quad \rho_{p}\left(c_{k}\right)$; i.e.

$$
H^{*}\left(B U ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p} \quad\left[\rho_{p}\left(c_{p}\right), \ldots, \rho_{p}\left(c_{n}\right), \ldots\right], \quad \text { and }
$$

iii) The induced map,

$$
\rho_{p}: H^{*}(B U ; \mathbb{Z})+H_{P}^{*}\left(B U ; \mathbb{Z}_{p}\right)
$$

sends c_{n} to $\rho_{p}\left(c_{n}\right)$ and reduces the coefficients mod p.
4.8 THEOREM [30].-There are elements $a_{n} \in H_{2 n}$ (BU(1); Z) such that
i) $H_{\star}(B U(1) ; \mathbb{Z})$ is the \mathbb{Z}-module generated by $\left\{\mathbf{a}_{\mathbf{n}}\right\}_{n \in \mathbb{N}}$
ii) $H_{*}(B U ; \mathbb{Z})$ is the free graded commutative \mathbb{Z}-algebra generated by the images under the inclusion $B U(1) \subset B U$, that we call also a_{n}; i.e.

$$
H_{*}(B U ; \mathbb{Z}) \approx \mathbb{Z}\left[a_{1}, \ldots, a_{n} \ldots\right]
$$

The same results are true with homology with coefficients in \mathbb{Z}_{p} and the elements $\rho_{p}\left(a_{n}\right)$, and the map ρ_{p}, is induced by reduction of coefficients mod p, ts before.

The action of the map

$$
\tau: B U \rightarrow Q B U(1)
$$

in homology, is easy to calculate using that t is a map of H-spaces ([27]).
4.9 THEOREM.- The map

$$
\tau_{\star}: H_{\star}\left(B U ; \mathbb{Z}_{p}\right) \rightarrow H_{\star}\left(Q B U(1) ; \mathbb{Z}_{p}\right)
$$

is the inclusion ; i.e., $\quad \tau_{*}\left(\rho_{p}\left(a_{r_{1}}\right) \ldots . \rho_{p}\left(a_{r_{n}}\right)\right)=\rho_{p}\left(a_{r_{1}}\right) \ldots \rho_{p}\left(a_{r_{n}}\right)$.

Proof.- As τ is an H-space map, all we need is to prove that $\tau_{*}\left(\rho_{p}\left(a_{n}\right)\right)=\rho_{p}\left(a_{n}\right)$, since τ_{*} commutes with the Pontrjagin product.

Recall that τ was constructed inductively starting with

$$
\tau_{1}=1_{B U(1)}: B U(1) \rightarrow B U(1)
$$

so the diagram

commutes, thus $\tau_{*}\left(\rho_{p}\left(a_{n}\right)\right)=\rho_{p}\left(a_{n}\right)$.
The last calculation we need is $\left\langle\rho\left(t \gamma^{(k)}\right), \rho_{p}\left(a^{k}\right)\right\rangle$, where $t_{\gamma}(k)$ is the Thom class of the vector bundle $\gamma^{(k)}$.
4.10 PROPOSITION, - Let ξ be an oriented vector bundle over a complex B with a unique 0 -cell, $\{*\}$. Giving to T_{ξ} a cell structure .with the the suspensions of the cells of B, the Thom class $t(\xi) \in H^{9}\left(T_{\xi}, \mathbb{Z}\right)$ is represented by the cochain that has, value 1 over the $q-c e l l p^{-1}\left(\left\{^{*}\right\}\right)$ and 0 on any other cell.

Proof:- By definition, if

$$
j: S^{q} \rightarrow T(\xi)
$$

is induced by the inclusion $p^{-1}(\{*\}) \rightarrow E \xi, t(\xi)$ is the Thom class if $j^{*}(t(\xi))$ is a generator of $H^{*}\left(s^{\Psi} ; \mathbb{Z}\right)$. As j is a cellular map. $t(\xi)$ is 1 evaluated on $p^{-1}(\{*\})$ and this is the only q-cell of $T(\xi)$.
4.11 PROPOSITION. - The element $\rho_{p}\left(a_{j}\right)^{k} \in H_{2 k}\left(T_{\gamma}(k), Z_{p}\right)$ is represented by the cell $\left\{{ }^{*}\right\} \times{ }_{c_{k}} D\left(\left.Y\right|_{s} 2\right)^{k}$.

Proof.- By $[15]$ this cell represents $\rho_{p}\left(a_{1}\right)^{k} \in H_{2 k}\left(D_{k}\left(\epsilon_{1}, s^{2}\right) ; \mathbb{Z}_{p}\right)$. So, taking cellular maps

$$
D_{k}\left(f_{1}, s^{2}\right)+D_{k}\left(f_{\infty}, B U(1)\right) \approx T_{\gamma}(k)
$$

we can consider $\rho_{p}\left(a_{1}\right)^{k}$ represented by the same cell, in $H_{2 k}\left(T_{Y}(k), Z_{p}\right)$
4.12 COROLLARY.- For any p,

$$
\left\langle\rho_{p}\left(t r^{(k)}\right), \rho_{p}\left(a_{1}^{k}\right)>=1\right.
$$

Proef.- It is immediate, since by $4.10 p_{p}\left(t_{Y}(k)\right.$ is one on the cell representing $o_{p}\left(a_{1}^{k}\right)$.
4.13 THEORE:1. - For any prime p

$$
\rho_{p}\left(\hat{c}_{k}\right)=\rho_{p}\left(c_{k}\right) \in H^{2 k}\left(B U, \mathbb{Z}_{p}\right)
$$

Proof.- We evaluate $\mathcal{P}_{p}\left(\hat{c}_{k}\right)$ on the basis of monomials in $\left\{a_{n}\right\} n_{\in} \mathbb{N}$

$$
\begin{aligned}
\left\langle p_{p}\left(\hat{c}_{k}\right), o_{p}\left(a_{i_{1}}\right) \ldots p_{p}\left(a_{i_{n}}\right)\right. & =\left\langle\tau h_{k}^{\hbar} h_{r}^{\hbar}\left(t_{r}^{(k)}\right), o_{p}\left(a_{i_{1}}\right), \ldots q_{p}\left(a_{i_{n}}\right)\right\rangle \\
& =\text { (by naturality of the Kronecker product) } \\
& =\left\langle t\left(\gamma^{k}\right), h_{k *} \tau_{*}\left(o_{p}\left(a_{i_{1}}\right), \ldots, p_{p}\left(a_{i_{n}}\right)\right)\right\rangle=
\end{aligned}
$$

(by 4.9) $=<t\left(r^{k}\right), \quad h_{k}\left(o_{p}\left(a_{i}\right) \quad p_{p}\left(a_{i_{n}}\right)>\right.$

To be non-zero the last product, we need,

$$
h\left(p_{p}\left(a_{i_{1}}\right), \ldots, \rho_{p}\left(a_{i_{n}}\right)\right)=k \quad \text {, so } n=k
$$

and

$$
\operatorname{deg}\left(\rho_{p}\left(a_{i_{1}}\right), \ldots, \rho_{p}\left(a_{i_{k}}\right)\right)=2 k \text {, so } \rho_{p}\left(a_{i_{1}}\right) \ldots \rho_{p}\left(a_{i_{k}}\right)=\rho_{p}\left(a_{i}\right)^{k}
$$

Then

$$
<\rho_{p}\left(\hat{c}_{k}\right), \rho_{p}\left(a_{i_{1}}\right), \ldots, \rho_{p}\left(a_{i_{n}}\right)>=\left\{\begin{array}{lll}
1 & \text { if } \quad \rho_{p}\left(a_{i_{1}}\right) \ldots \rho_{p}\left(a_{i_{n}}\right)=\rho_{p}\left(a_{1}\right)^{k} \\
0 & \text { otherwise } & \text { by } 4.12
\end{array}\right.
$$

As $p_{p}\left(\hat{c}_{k}\right)$ is the dual of $p_{p}\left(a_{1}\right)^{k}$ with respect to the basis of monomials in $\rho_{p}\left(a_{n}\right)$, it is $\rho_{p}\left(c_{k}\right)$. (see [6]).
4.14 THEOREM. - $\hat{c}_{k}=c_{k}$ in $H^{2 k}(B U ; \mathbb{Z})$.

Proof.- By 4.8, \hat{c}_{k} is a homogeneous polynomial of degree $2 k$ in $\left\{c_{n}\right\}_{n \in \boldsymbol{N}}$ and the coefficient $\quad_{i_{1}} \ldots i_{n}$ of $c_{\mathbf{i}_{1}} \ldots c_{\mathbf{i}_{n}}$ satisfies
i) $a_{i_{1}} \ldots i_{n} \equiv 0 \bmod p$, for any p_{1} if $c_{i_{1}} \ldots c_{i_{n}} \neq c_{k}$, so $\alpha_{i_{1}} \ldots i_{n}=0$,
ii) $a_{k} \equiv 1 \bmod p$, for any p, so $a_{k}=1$, thus $\hat{c}_{k}=c_{k}$.

CHAPTER 5.- Some results on immersions.

The next goal of this work, is to get a geometric interpretation of the elements

$$
\hat{c}_{k}(\xi) \in H^{2 k}(H ; \mathbb{Z})
$$

, for any treakly complex manifold M. In order to do that, we assume me have a complex bundle on $M, \quad \xi$, classified by a map

$$
f_{\xi}: H \rightarrow B U,
$$

That lifts to a map

$$
f_{\xi}^{\prime}: H \xrightarrow{f} B U \xrightarrow{T} Q B U(1)
$$

that has a nice geometric interpretation, given in [17], that we analyse in the first paragraph. The second one deals with the action of the map h_{k}^{*} on this interpretation. The last paragraph looks into the advantages of working with extensions in good position.

From now on, we shall work, when required, in the category of smooth (or C^{\bullet}) manifolds and maps. For each manifold $H, T M$ is its tangent bundle and T_{x} ! is the fibre over $x \in M$, and for any smooth map $f: N \rightarrow N, d f$ is the differential and it is a morphism of vector bundles

$$
d f: T N \rightarrow T M
$$

s5.1 Immersions and $\left.1 . M, F\left(\mathbf{R}^{\infty}, T(\xi)\right)\right]$.
First, we recall some facts about inmersions.
5.1 DEFINITION.- A map $f: M \rightarrow M$ is said to be an immersion if, for any $x \in U$, the map

CHAPTER 5... Some results on immersions.

The next goal of this work, is to get a geometric interpretation of the elements

$$
\hat{c}_{k}(\xi) \in H^{2 k}(H ; \mathbb{Z})
$$

, for any seakly complex manifold M. In order to do that, we assume we have a complex bundle on M, ξ, classified by a map

$$
f_{\xi}: M \rightarrow B U,
$$

That lifts to a map

$$
f_{\xi}^{\prime}: H \xrightarrow{f} B U \xrightarrow{\tau} Q B U(1)
$$

that has a nice geometric interpretation, given in [17], that we analyse in the first paragraph. Tine second one deals with the action of the map h_{k}^{*} on this interpretation. The last paragraph looks into the advantages of working with extensions in good position.

From now on, we shall work, when required, in the category of smooth (or C^{∞}) manifolds and maps. For each manifold M, TM is its tangent bundle and $T_{x} i$ i is the fibre over $x \in M$, and for any smooth map $f: N \rightarrow M, d f$ is the differential and it is a morphism of vector bundles

$$
d f: T N+T H
$$

55.1 Immersions and : $M, F\left(\mathbf{R}^{\infty}, T(\xi)\right)$].

First, we recall some facts about inmersions.
5.1 DEFINITION.- A map $f: N \rightarrow M$ is said to be an immersion if, for any $x \in H$, the map

$$
d f_{x}: T_{x} \|+T_{f(x)}{ }^{M}
$$

is a monomorphism.
Sometimes, it is useful to use the following characterization.
5.2 PROPOSITION.- A map $f: N \rightarrow M$ is an immersion iff the induced map $T N+f^{\star} T M$
is a vector bundle monomorphism .

Froof.- It follows immediatly from the definition.
—
Also, we shall use the existence and uniqueness of tubular neighbourhoods for immersions.
5.3 THEOREM. - [14]...Let $f: N+M$ be an immersion. de define its normal bundle as

$$
v=\frac{f^{\star} T M}{T N}
$$

Then,
i) There is an extension of f to an immersion

$$
\mathbf{f}: \quad v+M
$$

ii) Any two extensions are regularly homotopic relative to f.

Now, we can state the geometric interpretation of $\left[M, F\left(I R^{\infty}, T(\zeta)\right)\right]$ in terms of immersions.
5.4 DEFINITION.- Let ζ be an n-dimensional vector bundle over 8 . We define $\mathcal{J}(M, \zeta)$ as the set of bordism classes of triples (N, g, \bar{g}), where
i) The map $g=(f, e)$ is an embedding such that $f: N \rightarrow M$ is an immersion and $e: N \rightarrow \mathbf{R}^{\infty}$ is a map.
ii) Let v be the normal bundle of the immersion f. Then, the map g is a morphism of vector bundles

and the projection

$$
N \stackrel{\tilde{g}_{1}}{\rightarrow} \mathrm{~B}_{5} \times \mathbb{R}^{\infty}+\mathbb{R}^{\infty}
$$

is the map e .
$J(M, \zeta)$ is made an abelian group with the composition law induced by the disjoint union of manifolds.
5.5 DEFINITION.- Let \hat{M} be the one point compactification of M. We define the map

$$
\left.\beta:](M, \zeta) \rightarrow \hat{M}, F\left(\mathbb{R}^{\infty}, T(\zeta)\right)\right]
$$

as follows:
For any element of $\mathcal{J}(M, \zeta)$ we choose a representative (N, g, \bar{y}) and then we extend f to an immersion $f: v \rightarrow M$ satisfying,
i) The map $\left(f, e \cdot \Pi_{v}\right): E_{v}+M \times \cdot \mathbb{R}^{\infty}$ is an embedding, and
ii) There is an integer n such that, for any $m \in M, \bar{f}^{-1}(m)$ has at most n-points.

Now, the map $B\left(\left[N, g, \tilde{g}_{]}^{]}\right)\right.$is given by $B([(N, g, \dot{g})])(m)=\left\{\begin{array}{cc}\left\{e\left(\Pi_{v}(x)\right): x \in \bar{f}^{-1}(m)\right\} & \text { if maIm } F . \\ * & \text { otherwise. }\end{array}\right.$
i) The map $g=(f, e)$ is an embedding such that $f: N \rightarrow M$ is an immersion and $e: N \rightarrow R^{\infty}$ is a map.
ii) Let v be the normal bundle of the immersion f. Then, the map \dot{g} is a morphism of vector bundles

and the projection

$$
N \stackrel{\bar{g}_{1}}{\rightarrow} B_{\zeta} \times R^{\infty} \rightarrow I R^{\infty}
$$

is the map e .
$J(M, \zeta)$ is made an abelian group with the composition law induced by the disjoint union of manifolds.
5.5 DEFINITION.- Let \hat{M} be the one point compactification of M. We define the map

$$
\beta: J(M, \zeta) \rightarrow\left[\hat{M}, F\left(\mathbb{R}^{\infty}, T(\zeta)\right)\right\rceil
$$

as follows:
For any element of $\mathcal{J}(M, \zeta)$ we choose a representative (N, g, \bar{g}) and then we extend f to an immersion $\mp: \nu \rightarrow M$ satisfying,
i) The map $\left(F, e \circ \Pi_{v}\right): E_{v} \rightarrow M \times \mathbb{R}^{\infty}$ is an embedding, and
ii) There is an integer n such that, for any $m \in M, \bar{f}^{-1}(m)$ has at most n-points.

Now, the map $B([N, g, \tilde{g}])$ is given by $B\left([(N, g, \bar{g}) \mid)(m)=\left\{\begin{array}{c}\left\{e\left(\pi_{v}(x)\right): x \in \bar{f}^{-1}(m)\right\} \text { if } m \in \operatorname{Im} \mathbf{F} . \\ \text { otherwise. }\end{array}\right.\right.$
5.6 THEOREM [17]. a β is a group morphism, with the group structure on $\left[\hat{M}, F\left(R^{\infty}, T(\xi)\right)\right]$ given by the H-space structure of $F\left(R^{\infty}, T(\zeta)\right)$.
55.2 k -tuple points and the action of h_{k}^{*}.

First we describe the space of k-tuple points.
5.7 DEFINITION.- Let $f: X \rightarrow Y$ be a map. The space of ordered k-tuple points of f is the subspace of $F(X, k)$.

$$
\tilde{X}_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in F\left(X_{0} k\right): \text { For any } i, j \quad f\left(x_{j}\right)=f\left(x_{j}\right)\right\}
$$

We define the map $\tilde{f}_{k}: \tilde{x}_{k} \rightarrow Y$ by $\tilde{f}_{k}\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right)$.

Then, the following property is a direct consequence of the defini tion.
5.8 PROPOSITION.- Let $f^{k}: F(X, k) \rightarrow Y^{k}$ be the restriction of the $k^{\text {th }}$ power of f. Then,
i) $\tilde{X}_{k}=\left(f^{k}\right)^{-1}\left(\operatorname{diag}_{k} Y\right)$
ii) \bar{f}_{k} is the composite, $\tilde{X}_{k} \xrightarrow{f^{k} \mid} \operatorname{diag}_{k} Y \simeq Y$. [
5.9 DEFINITION. - The space \tilde{x}_{k} has an obvious ε_{k}-action, given by restriction of the action on X^{k} given by permuting factors. The space of k-tuple points of f is the quotient

$$
x_{k}=\dot{X}_{k} / \Sigma_{k}
$$

The map \vec{f}_{k} is ε_{k}-invariant, so, it induces a map $f_{k}: X_{k}+Y$.
To repeat these constructions in the category of manifolds, we have to we "self-transverse" maps.
5.10 DEFINITION.- Let $f ; N \rightarrow M$ be a map between manifolds, and M^{1} a submanifold of M. He say that f is transverse to M^{\prime} at $X \in N$ if it satisfies either
i) $f(x) \nmid M^{\prime}$

We say that f is transverse to M^{\prime} if f is transverse to M^{\prime} at x, for any $x \in \mathbb{N}$.
5.11 PROPOSITION [12].- Let f be transverse to M^{\prime}, then $f^{-1}\left(M^{\prime}\right)$ is a submanifold of N and it has the same codimension as M^{\prime} in M.
5.12 THEOREM 12 . - Let $C^{\infty}(N, M)$ be the space of all smooth maps from N to M, with the C^{∞}-lihitney topology. Then, for any M^{\prime}, submanifold of M, the set of maps transverse to M^{\prime} is dense in $C^{\infty}(N, M)$.
5.13 DEFINITION.- Let $f: N \rightarrow M$ be a map. He say that f is selftransverse, if , for any k, the map f^{k} is transverse to $\operatorname{diag}_{k}(M)$.
5.14 NOTE.- As in 5.12, the set of selftransverse map is dense in $C^{\infty}(N, M)([12])$. Since the set $\operatorname{Imm}(N, M)$, of immersions of N in M_{1} is open in $C^{\infty}(N, M)$, the set of all self-transverse immersions is dense in $\operatorname{Imm}(N, M)$.

Now, we relate the normal bundle of an immersion with the normal bundle of its k-tuple points.
5.15 PROPOSITION. - Let f be self-transverse map. Then, for any k, \tilde{N}_{k} is a manifold and \bar{f}_{k} is a map of manifolds.

Proof.- By 5.11, \tilde{N}_{k} is a submanifold of $F(N, k)$, that has the same codimension as $\operatorname{diag}_{k} M$ in M^{k}. The map \bar{f}_{k} is smooth since it is the restriction of a smooth map .
[
5.16 THEOREM.- Let f be a self-transverse immersion and v its normal bundle. Then, the map \vec{f}_{k} is an immersion, whose normal bundle \dot{v}_{k} is isomorphic to the restriction to \tilde{N}_{k} of v^{k}.

Proof.- The tangent bundle of a product of manifolds is the product of tangent bundle, so

$$
T\left(i^{k}\right) \simeq(T M)^{k} \quad \text { and } \quad T\left(N^{k}\right) \simeq(T N)^{k}
$$

Since $F(N, K)$ is open in N^{k}, its tangent bundle is the restriction of $(T N)^{k}$.

Also, the pull back commutes with the product, so

$$
\left(f^{k}\right)^{*}\left((T M)^{k}\right)=\left(f^{*}(T M)\right)^{k}
$$

Then, the normal bundle of the immersion f^{k} is

$$
\frac{\left(f^{k}\right)^{*}\left(T\left(M^{k}\right)\right)}{T\left(N^{k}\right)}=\frac{\left(f^{*}(T M)\right)^{k}}{(T N)^{k}}=v^{k}
$$

The restriction of v^{k}.
As f^{k} is transverse to diag $_{k}(M)$, the restriction

$$
\tilde{N}_{k}=\left(f^{k}\right)^{-1} \operatorname{diag}_{k}(M) \longrightarrow \operatorname{diag}_{k}(M)
$$

has the same normal bundle, i.e. the restriction of v^{k} to \bar{N}_{k}.
To finish the proof we only need to observe that \vec{f}_{k} is the product of $f^{k} \mid$ and a diffeomorphism.
5.17 PROPOSITION. - Let f be a self-transverse map. Then N_{k} is a smooth manifold, and f_{k} is a map of manifolds.

Proof.- The Σ_{k}-action on \bar{N}_{k} is smooth, free and properly discontinuous, so the space of orbits, N_{k}, is a smooth manifold and the induced map, f_{k}, is a smooth map ([6]).
\square
5.18 THEOREM.- Let f be self-transverse immersion and v its normal bundle. Then, the map f_{k} is an immersion, with normal bundle isomorphic to the quotient of $\tilde{\psi}_{k}$ under the Σ_{k}-action given by permuting the factors.

Proof.- The Σ_{k}-actions on $F(N, k)$ and M^{k} are smooth, so they induce a Σ_{k}-action on the tangent bundles and they are given also by permutation of factors.

The map f^{k} is Σ_{k}-equivariant, so the same applies to the map $(d f)^{k}$ and the inclusion $T N^{k} \rightarrow f^{*}(T M)^{k}$ is compatible with the Σ_{k}-action.

Then, they induce a ε_{k}-action on v^{k} and it is given by permutation of factors, Thus the map

$$
f_{k}=\tilde{f}_{k} / \Sigma_{k}: N_{k} \rightarrow \operatorname{diag}_{k} M
$$

has normal bundle the quotient

$$
\frac{\tilde{f}_{k}^{*}(T M) / \Sigma_{k}}{T N_{k} / \Sigma_{k}}=\frac{f^{*}(T M)^{k} / \Sigma_{k}}{T N^{k} / \Sigma_{k}} \simeq \frac{f^{*}(T M)^{k}}{(T N)^{k}} / \Sigma_{k} \cong i_{k} / \Sigma_{k}
$$

To end this paragraph, we study the action of the map \hat{h}_{k} on the geometric interpretation given by 5.6 .
5.19 DEFINITION,- We define the map $\theta^{k}: J(M, \zeta) \rightarrow \mathcal{J}\left(M, \zeta^{(k)}\right)$ as follows:

For any element of $J(M, \zeta)$, we can choose a representative (N, g, \bar{g}) where $g=(f, e)$ and f is a self-transverse immersion. We also choose embeddings $e_{k}: N_{k} \rightarrow R^{\infty}$. We define

$$
\theta^{k}([(N, g, g)])=\left[\left(N_{k}, g^{\prime}, g^{\prime}\right)\right]
$$

where,
i) $g^{\prime}=\left(f_{k}, e_{k}\right)$, with f_{k} the immersion defined in 5.9.
ii) $\tilde{g}^{\prime}=\left(\tilde{f}^{\prime}, \tilde{e}_{k}\right)$, where \dot{e}_{k} is an extension of the embedding e_{k} to $E_{y_{k}}$, and \vec{f}^{\prime} is the bundle map,

given as a quotient by the ε_{k}-action of the product map of the restriction of \ddot{g}^{-k}, and the map

$$
E_{\bar{y}_{k}}+F\left(\mathbf{R}^{\infty}, k\right)
$$

induced by e.

5.20 THEOREM.- [17] The diagram

commutes.
\square

s5.3 Pointed k-tuple noints and good position.

Before defining good position, we need to study the manifold of pointed k-tuple points and its normal bundle.

5.21 DEFINITION. - Let $f: X \rightarrow Y$ be a map. The space \tilde{X}_{k} has a ε_{k-1}

 action induced by permuting the first ($k-l$)-factors. We define the space of pointed k-tuple points as $X_{k}^{\prime}=\bar{X}_{k} / \Sigma_{k-1}$.The projection of X^{k} in the $k^{\text {th }}$ factor induces a map

$$
p: \tilde{x}_{k}+x
$$

that is Σ_{k-1}-invariant so it induces a map $\quad f_{k}^{\prime}: X_{k}^{\prime} \rightarrow X$.
Notice that we can also define tie space of $i^{\text {th }}$-pointed k-tuple point as

$$
x_{k}^{(i)}=\tilde{x}_{k} / \Sigma_{k-i}
$$

Then, the identification map

$$
\pi_{k}^{(i)}: x_{k}^{(i)} \rightarrow x_{k}^{(i-1)},
$$

is a ($k-i$)- cover, and the diagram

commutes.
5.22 PROPOSITION, - Let $f: N \rightarrow M$ be self transverse. Then, any $N_{k}^{(i)}$
is a smooth manifold and $f_{k}^{\prime}, \Pi_{k}^{\prime\{!}$ are smooth maps.

Proof,- $\tilde{\Pi}_{k}$ is a smooth manifold and, for any i, the Σ_{k-f}-action induced is smooth, free and properly discontinuous, so the quotient space $N_{k}^{(i)}$ is a snooth manifold and the projections $\pi_{k}^{(i)}$ are smooth. As p is a smooth map conpatible with the \sum_{k-i}-action, the induced map f_{k}^{\prime} is a sinooth riap.
5.23 PROPOSITION.- Let $f: H \rightarrow M$ be a self-transverse immersion. Then the map $p: \tilde{W}_{k} \rightarrow H$ is an imsersion with normal bundle \bar{y}_{k}^{\prime} isomorphic to the restriction of the product bundle $v^{k-1} \times\{0\}$.

Proof.- Using a riemannian metric, we can see the normal bundle as the orthogonal complement of $T N$ in f^{*} TM i.e.

$$
f^{*}(T M)=T N \Theta v
$$

so, using the product metric in $T M^{k}$, we have

$$
\bar{f}_{k}^{*}(T M)=T \tilde{i}_{k} \Theta \bar{v}_{k}
$$

By commutativity of

we have

$$
f_{k}^{*}(T M)=p^{*} f^{*}(\Pi 1)=p^{*}(T N) \Theta p^{*}(v)=T N_{k} \Theta v(p) \Theta p^{*}(v)
$$

so, as both are orthogonal complements

$$
v_{k}=p^{*}(v) \Theta v(p)
$$

But \bar{v}_{k} is the restriction of $v^{\dot{k}}$ and $P^{*}(v)$ is the restriction of $\{0\} \times v$, so, $v(p)=v^{k-1} \times\{0\}$.
5.24 THEOREIf.- Let $f: N+M$ be a self-transverse immersion. Then, the map f_{k}^{\prime} is an immersion whose normal bundle v_{k}^{\prime} is isomorphic to the quotient bundle $\quad \bar{y}_{k}^{\prime} / \varepsilon_{k-1}$ where the Σ_{k-1}-action is given by permutation of factors.

Proof.- As in 5.18, we see the ε_{k-1}-action on $T \tilde{N}_{k}$ and $T N$ induces one on \bar{y}_{k}^{\prime} given by permutation of factors. Then, as in 5.18 , the normal bundle of f_{k}^{\prime} is the quotient bundle.

NOTE.- There is a unique map of bundles, over π_{k}.

$$
\ddot{H}_{k}: y_{k}^{\prime} \rightarrow y_{k}
$$

closing the diagram,

and it is the quotient of the inclusion of bundles on \tilde{N}_{k}

$$
\dot{v}_{k}^{\prime} \in \bar{v}_{k}
$$

its image is the bundle $\underset{j=0}{n-1} v^{j} \times\{0\} \times v^{k-j-1} / \Sigma_{k}$, that we call also v_{k}^{\prime} and $i t$ is the normal bundle of $N_{k} \in \operatorname{Im} f$.

Inductively we have the bundle over \tilde{N}_{k}

$$
z_{k}^{(i)}=v^{k-i} \times\{0\}
$$

that gives a quotient bundle $v_{k}^{(i)}$ on $N_{k}^{(i)}$ and it is included in v_{k} by the quotient of the map

$$
\dot{v}_{k}^{(i)}=\tilde{v}_{k}
$$

having as image in \vec{v}_{k} the bundle

$$
\bigcup_{j_{1}+j_{2}+\ldots+j_{i}+i=k} v^{j_{1}} \times\{0\} \times v^{j_{2}} \times\{0\} \ldots \times v^{j_{i}} \kappa_{k}
$$

that we call also $v_{k}^{(i)}$ and $i t$ is the normal bundle of N_{k} in Im f_{i} Then the bundles over N_{k}

$$
\left(y_{k}, v_{k}^{\prime}, v_{k}^{\prime \prime}, \ldots, v_{k}^{(k-1)}\right)
$$

are the normal bundles of N_{k} in

$$
\left(M, \operatorname{Im} f_{1}, \operatorname{Im} f_{2}, \ldots, \operatorname{Im} f_{k-1}\right)
$$

Simmilarly, if we call also $v_{k}^{(i)}$ the bundle over N_{k}^{\prime} induced by $\dot{v}_{k}^{(i)}$, we have that the bundles over N_{k}^{\prime}

$$
\left(y_{k}^{\prime}, v_{k}^{\prime \prime}, \ldots, v_{k}^{(k-1)}\right)
$$

are the normal bundles of N_{k}^{\prime} in

$$
\left(N, \operatorname{Im} f_{1}^{\prime} \operatorname{Im} f_{2}^{\prime}, \ldots, \operatorname{Im} f_{k-1}^{\prime}\right)
$$

and there is an obvious map from one set of bundles to another.
Now we turn to the description of good position.
5.25 DEFINITION.- Let $f: N+M$ be a self-transverse immersion with normal bundle v. An immersion extending f.

$$
\mp: v \rightarrow M
$$

is said to be in good position if, for any k, there are immersions

$$
\begin{aligned}
& \bar{F}_{k}^{\prime}: v_{k}^{\prime} \rightarrow N, \text { extending } f_{k}^{\prime}, \\
& F_{k}: v_{k} \rightarrow M, \text { extending } f_{k}, \text { and } \\
& \overline{\boldsymbol{f}}_{k}: \pi_{k}^{*}\left(v_{k}\right) \rightarrow v, \text { map of vector bundle over } f_{k}^{\prime},
\end{aligned}
$$

such that:
i) For any k, the diagram

commutes, where the inclusion $v_{k}^{\prime} \subset \pi_{i}^{*}\left(v_{k}\right)$ is induced by the obvious isomorphism, $n_{k}^{\star}\left(v_{k}\right) \approx v_{k}^{\prime} \bullet f_{k}^{\prime *}(v)$.
ii) $\operatorname{Im} f_{k}$ is the set of multiple points of F with multiplicity greater or equal to k.

In the next chapter we prove the existence and uniqueness of this extension, but now we are interested in seeing the importance of having one.
5.26 DEFINITION. - Let us assume that $[(N, g, \tilde{g})]$ lies in $J(M, \zeta)$ and \mathbf{f} is an extension of f in good position. We define

$$
\begin{aligned}
& \underline{M}_{k}=\operatorname{cl}\left(\operatorname{Im} F_{k}-\operatorname{Im} F_{k+1}\right) \in \operatorname{Im} F_{k} \\
& \underline{N}_{k}=\operatorname{cl}\left(\operatorname{Im} f_{k}-\operatorname{Im} F_{k+1}\right) c \operatorname{Im} F_{k}
\end{aligned}
$$

then, the obvious map $M_{k} \rightarrow N_{k}$ is a cube bundle classified by the map

$$
N_{\underline{k}} \rightarrow F\left(R_{i}^{\infty} k\right) x_{\Sigma_{k}} B \zeta^{k}
$$

Also, the restriction

$$
f_{k} \mid: f_{k}^{-1}\left(M_{k}\right)+M
$$

is an embedding, so we can consider N_{k} lying in M_{k} and M_{k} in v_{k},
so we have,
5.27 PROPOSITION.- The map associated to the triple $(N, g, \dot{g}), h$, restricts to the composite

$$
M_{\underline{k}} \rightarrow F\left(\mathbb{R}^{\infty}, k\right) x_{\Sigma_{k}} E S^{k} \rightarrow F_{k}\left(F\left(\mathbb{R}^{\infty}, T(\zeta)\right)\right) .
$$

\square
5.28 COROLLARY.- If h is as in 5.27, it restricts to the map

$$
M-\operatorname{Im} F_{k+1} \quad+F_{k}\left(F\left(R^{\infty}, T(\zeta)\right)\right)
$$

Proof.- We glue the restrictions to $M_{1}, M_{2}, \ldots, M_{k}$ and all of them factor through F_{k}.
\square
5.29 PROPOSITION.- The composite map

$$
M=\operatorname{Im} F_{k+1} \xrightarrow{h} F_{k}\left(F\left(\mathbb{R}^{\infty}, T(\zeta)\right)\right) \xrightarrow{h_{k}} T\left(\varsigma^{(k)}\right)
$$

is the Thom Pontrjagin construction on the bundle $M_{k} \rightarrow N_{k}$.

Proof.- It is imediate, since the composition maps all the points in the cube bundle as the classifying map does and send the rest to the base point.
\square

CHAPTER 6 : Extensions in good position.

In this chapter, we construct an extension of a self-transverse inmersion

$$
f: H \rightarrow H
$$

to an imnersion of its nomal bundle , v, that is in good position.
It is done by glueing inductively a special type of chart described in the first paragraph.
56.1 Sone preliminaries .

Let us prove the existence of a special type of chart.
6.1 DEFIIIITION.- Let V be a real vector space. The set of subspaces $\left\{H_{i}\right\}_{i=1}^{r}$ is said to be in general position $i f$, for any sequence $1 \leq i_{1}<\ldots<i_{s} \leq r$, we have

$$
\operatorname{cod}\left(H_{i_{1}} \cap \ldots \cap H_{i_{s}}\right)=\operatorname{cod} H_{i_{1}}+\ldots+\operatorname{cod} H_{\mathbf{i}_{s}}
$$

Motice that, for any two different sets of subspaces of V in general position $\left\{H_{i}\right\}_{i=1}^{r}$ and $\left\{H_{i}^{\prime}\right\}_{i=1}^{r}$, satisfying $\operatorname{dim} H_{i}=\operatorname{dim} H_{i}^{\prime}$, for any i, there is a linear automorphsim of V

$$
\psi: V+V,
$$

such that, for any $i_{1} \quad \psi\left(H_{i}\right)=H_{i}^{\prime}$.
6.2 OEFINITION,_ Let M be a manifod. The set of submanifolds $\left\{H_{i}\right\}_{i=1}^{r}$ is said to be in general position at $y \in M_{1} \cap \ldots \cap M_{r} \quad$ if the set $\left\{T_{y} H_{i}\right\}$, of subspaces of $T_{y} M$ is in general position.

The set of submanifolds $\left\{M_{i}\right\}_{\{=1}^{r}$ is said to be in general position
if for any $1 \leq i_{1}<\ldots<i_{s} \leq r$ and any $y \in M_{i_{1}} \cap \cdots n H_{i_{s}}$, the set of subinanifolds $\left\{\mathrm{H}_{\mathbf{i}_{j}}\right\}_{j=1}$ is in general position at y .
6.3 THEOREM ([12]).- Let $\left[M_{i}\right\}_{i=1}^{r}$ be a set of submanifolds of M, in general position at $y \in \Pi_{i} \quad \ldots \quad H_{r}$, and $\left\{\|_{i}\right\}_{i=1}^{r}$ a set of subspaces of \mathbb{R}^{m} in general position. Then, if $\operatorname{dim} \|_{i}=\operatorname{dim} M_{i}$ and $m=\operatorname{dim} M$, there is a chart at y,

$$
\phi:(H, y) \rightarrow\left(\mathbf{R}^{m}, 0\right)
$$

such that, for any $i, \phi^{-1}\left(H_{i}\right)=M_{i} \cap H$.
6.4 THEOREM. - Let f be a self-transverse immersion and let y be a point of M such that $f^{-1}(y)=\left\{x_{1}, \ldots, x_{k}\right\}$. Then, the set of subspaces of Ty M, $\left\{d f\left(T x_{i}(N)\right)\right\}_{i=1}^{r}$, is in general position.

Proof.- Let us define $H_{i}=\operatorname{df}\left(\mathrm{Tx}_{i}(N)\right)$ and let $\left\{i_{j}\right\}$ be a subsequence $0 \leq i_{1}<\ldots<i_{s} \leq r$.

He define

$$
\begin{aligned}
& \bar{x}=\left(x_{i_{1}}, \ldots, x_{i_{s}}\right) \in F(N, s) \\
& \bar{y}=(y, \ldots, y) \in \operatorname{diag}_{s} N .
\end{aligned}
$$

Then, we have $f^{S}(F \bar{X})=\bar{Y}$. As f is self-transverse,

$$
\begin{aligned}
\operatorname{Ty}(M)^{5} & =d f^{5}\left(T_{x}(F(N, s))\right)+T_{\bar{y}} \text { diaq} M= \\
& =\left(H_{i_{1}} \quad \ldots\left(H_{i_{s}}\right)+T_{\bar{y}} \text { diaq} M\right.
\end{aligned}
$$

so

$$
s \cdot \operatorname{dim} M=\operatorname{dim} H_{i_{1}}+\ldots+\operatorname{dim} H_{i_{s}}+\operatorname{dim} \operatorname{diag}_{s} M-\operatorname{dim}\left(H_{i_{1}} \ldots . .0 H_{i_{s}} \cap \operatorname{diag}, M\right)
$$

Thus,

$$
\operatorname{cod} H_{i_{1}}+\ldots+\operatorname{cod} H_{i_{i}}=\operatorname{dimM} M-\operatorname{dim} H_{i_{1}} n \ldots n H_{i_{i}}=\operatorname{cod} H_{i_{1}} \cap \ldots n H_{i_{s}}
$$ and the set $\left\{H_{i}\right\}_{i=1}^{r}$ is in general position.

6.5 THEOREM. - Let f be a self-transverse immersion and $a=\operatorname{cod} f=\operatorname{dim} M-d i m i$. For any y \&il, if $f^{-1}(y)=\left\{x_{1}, \ldots, x_{r}\right\}$, there are
i) a chart for H at $y, \psi:(w, y) \rightarrow\left(R^{m}, 0\right)$
ii) disjoint charts for N at $x_{i}, \phi_{i}:\left(U_{i}, x_{i}\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$
such that, if $t=d i m i-r a$, the composite map $\left(R^{t} \times\left(R^{a}\right)^{r-1}, R^{t}\right) \xrightarrow{\phi_{i}^{-1}}\left(U_{i}, I m f_{r}^{\prime}\right) \xrightarrow{f}\left(\mathbb{W}, I m f_{r}\right) \xrightarrow{\downarrow}\left(\mathbb{R}^{t} \times\left(\mathbb{R}^{a}\right)^{r}, \mathbb{R}^{t}\right)$
is defined and it is the inclusion

$$
\mathbf{R}^{\mathrm{t}} \times\left(\mathbf{R}^{\mathrm{a}}\right)^{r-1} \leadsto \mathbf{R}^{\mathrm{t}} \times \bar{H}_{i} \hookrightarrow \mathbf{R}^{\mathrm{t}} \times\left(\mathbf{R}^{\mathrm{a}}\right)^{\mathbf{r}},
$$

where $\bar{H}_{i}=\left(\mathbb{R}^{a}\right)^{i-1} \times\{0\} \times\left(\mathbb{R}^{a}\right)^{r-i}$.

Proof.- In f_{r}^{\prime} is a submanifolid of $N \mathrm{~N}$ in a neighbourhood of $\mathrm{x}_{\boldsymbol{i}}$; so, for each i, there are submanifold charts of In f_{r}^{\prime} at x_{i}

$$
x_{i}:\left(v_{i}, v_{i}^{n} \operatorname{Im} f_{r}^{\prime},\right) \rightarrow\left(\mathbb{R}^{n}, \mathbb{R}^{t}\right),
$$

such that they are pairwise disjoint and $f \mathbb{F}_{\mathbf{i}}$ is an embedding.
We chose a submanifold chart of $\operatorname{Im} f_{r}$ at y

$$
\psi:\left(N, W \cap \operatorname{Im} f_{r}\right) \rightarrow\left(\mathbb{R}^{m}, \mathbb{R}^{t}\right)
$$

such that $f^{-1}(W) \subset \underset{i=1}{\mathbf{u}} V_{i}$ and they satisfy 6.3 with

$$
\begin{aligned}
& H_{i}=R^{t} \times \bar{H}_{i} \quad \text { and } \\
& M_{i}=f\left(V_{i}\right)
\end{aligned}
$$

If, now, we define $U_{i},=V_{i} \cap f^{-1}(W)$, the composite, $\bullet:\left(\mathbb{R}^{t} \times\left(\mathbb{R}^{a}\right)^{r-1}, \mathbb{R}^{t}\right)^{x_{i}^{-1}}\left(U_{i}, \operatorname{Im} f_{r}^{\prime} \cap U_{i}\right) \xrightarrow{f}\left(W, \operatorname{Im} f_{r} \cap!\right) \stackrel{\psi}{\rightarrow}\left(\mathbb{R}^{t} \times\left(\mathbb{R}^{a}\right)^{r}, \mathbb{R}^{t}\right)$ is a diffeomorphism onto $\left(H_{i}, \mathbb{R}^{t}\right)$.

Defining,

$$
\left.\phi_{i}:\left(U_{i}, \operatorname{Im} f_{r^{n}}^{\prime} U_{i}\right) \xrightarrow{x_{i}}\left(\mathbb{R}_{\times}^{t} \times\left(\mathbb{R}^{a}\right)^{r-1}, \mathbb{R}^{t}\right) \stackrel{\Phi}{\rightarrow}\left(H_{i}, \mathbb{R}^{t}\right) \xrightarrow{\bar{p}_{i}}\left(\mathbb{R}^{t} \times \mathbb{R}^{a}\right)^{r-1}, \mathbb{R}^{t}\right)
$$

where $\overline{\mathrm{p}}_{\mathrm{i}}$ is the projection into all factors but the $\mathrm{i}^{\text {th }}$, we get the appropiate chart.
6.6 REMARK. If both M and N are compact manifolds, there are finite coverings by charts $\left\{\left(W, \psi_{j}\right)\right\}_{j=1}^{p}$ and $\left\{\left(u_{j i}, \phi_{j i}\right)\right\}_{j=1}^{p} r_{j=1}$ such that
i) H_{j} meets $\operatorname{Im} f_{1}, \operatorname{Im} f_{2}, \ldots, \operatorname{Im} f_{r_{j}}$ but does not meet $\operatorname{Im} f_{r_{j}}+1$.
ii) $f^{-1}\left(u_{j}\right)={\underset{j}{j}}_{\substack{0}} u_{i j}$.
iii) For any $j,\left(w_{j}, \psi_{j}\right)$ and $\left\{\left(u_{j i} \phi_{j i}\right)\right\} \underset{i=1}{r_{j}}$ satisfy 6.5 .

Obviously then, these charts send the stratification

$$
\left(M, \operatorname{Im} f_{1}, \operatorname{Im} f_{2}, \ldots, \operatorname{Im} f_{r}\right)
$$

into the stratification of $\mathbb{R}^{t} \times\left(\mathbb{R}^{\mathbf{a}}\right)^{r}$ given by $\left\{H_{i}\right\}$ and their finite intersections.
6.7 DEFINITION.- Let M^{\prime} be a submanifold of M. A partial tubular neighbourhood of M^{\prime} in M is a triple $T=(\xi, \epsilon, e)$ where
i) ξ is an inner product bundle over M^{\prime}.

If, now, we define $U_{i},=V_{i} \cap f^{-1}(W)$, the composite,
 is a diffeomorphism onto $\left(H_{i}, \mathbb{R}^{t}\right)$.

Defining,

$$
\left.\phi_{i}:\left(U_{i}, \operatorname{Im} f_{r^{n}}^{\prime} U_{i}\right) \xrightarrow{x_{i}}\left(\mathbb{R}^{t} \times\left(\mathbb{R}^{a}\right)^{r-1}, \mathbb{R}^{t}\right) \stackrel{\Phi}{\leftrightarrows}\left(H_{i}, \mathbb{R}^{t}\right) \xrightarrow{\bar{p}_{i}}\left(\mathbb{R}^{t} \times \mathbb{R}^{a}\right)^{r-1}, \mathbb{R}^{t}\right)
$$

where $\bar{p}_{\boldsymbol{i}}$ is the projection into all factors but the $\boldsymbol{j}^{\text {th }}$, we get the approplate chart.
6.6 REMARK. If both M and N are compact manifolds, there are finite coverings by charts $\left\{\left(N, \psi_{j}\right)\right\}_{j=1}^{p}$ and $\left\{\left(u_{j i}, \phi_{j i}\right)\right\} \underset{j=1}{p} r_{j=1}$ such that
i) H_{j} meets $\operatorname{Im} \mathrm{f}_{1}, \operatorname{Im} f_{2}, \ldots, \operatorname{Im} f_{r_{j}}$ but does not meet $\operatorname{Im} f_{r_{j}}+1$.
ii) $f^{-1}\left(y_{j}\right)={\underset{j}{j}{ }_{j=1}}_{u_{i j}}$.
iii) For any $j,\left(w_{j}, \psi_{j}\right)$ and $\left\{\left(v_{j i} \phi_{j i}\right)\right\} \underset{i=1}{r_{j}}$ satisfy 6.5 .

Obviously then, these charts send the stratification

$$
\left(M, \operatorname{Im} f_{1}, \operatorname{Im} f_{2}, \ldots, \operatorname{Im} f_{r}\right)
$$

into the stratification of $\mathbb{R}^{t} \times\left(\mathbb{R}^{\mathrm{a}}\right)^{r}$ given by $\left\{H_{f}\right\}$ and their finite intersections.
6.7 DEFINITION.- Let M^{\prime} be a submanifold of M. A partial tubular neighbourhood of M^{\prime} in M is a triple $T=(\xi, \epsilon, e)$ where
i) ξ is an inner product bundle over M^{\prime}.
ii) ϵ is a map $\epsilon: M^{\prime}+\mathbb{R}^{+}$
iii) e is an embedding into an open subset $e: D_{\epsilon}(\xi) \rightarrow M$. where $D_{\epsilon}(\xi)$ is the open disc bundle of radius $\epsilon(y)$ over any $y \in M$.

In the case $\epsilon=1$ it agrees with the definition of tubular neighbourhood.

Let $T_{1}=\left(\xi_{1}, \epsilon_{1}, e_{1}\right)$ and $T_{2}=\left(\xi_{2}, \epsilon_{2}, e_{2}\right)$ be two partial tubular neighbourhoods, of M^{\prime} in M, we say that the isomorphisms of inner product bundles

$$
\psi: \xi_{1} \longrightarrow \xi_{2}^{\prime}
$$

is an isomorphism between T_{1} and T_{2} if there is a map $\epsilon^{\prime}: M^{\prime} \rightarrow \mathbb{R}^{+}$ such that $\epsilon^{\prime} \leq \inf \left(\epsilon_{1}, \epsilon_{2}\right)$, and the diagram

commutes. Notice that if $\epsilon_{1}=\epsilon_{2}=\epsilon^{\prime}=1$ we have the usual isomorphism between tubular neighbourhoods.

$$
\begin{gathered}
\text { If } T=(\xi, \epsilon, e) \text { is a tubular neighbourhood of } M^{\prime} \text { in } M \text { and } \\
h:\left(M, M^{\prime}\right) \xrightarrow{\sim}\left(N, N^{\prime}\right)
\end{gathered}
$$

is a diffeomorphism of manifold pairs, we define

$$
h_{\star}(T)=\left(\left(h^{-1}\right)^{\star} E, \quad \epsilon o h^{-1}, \text { hoe. } \bar{h}^{-1}\right)
$$

where $h^{-1}:\left(h^{-1}\right)^{*} \xi+\xi$ is the isomorphism over h^{-1}.
6.8 LEMMA.- Let B be an open set in $\mathbb{R}^{m^{\prime}} \times(0) \subset \mathbb{R}^{m},\left(\xi_{j}, e_{p}\right)$ and
$\left(\xi_{2}, e_{2}\right)$ tubular neighbourhoods of B and $\mathbb{R}^{m^{\prime}}$ in \mathbb{R}^{m}. For any compact set $V_{c}^{\prime}=B$ there is an isotopy

$$
H: \mathbb{R}^{m} \times I \rightarrow \mathbb{R}^{m}
$$

such that $H_{0}=i d$, and an isomorphism of vector bundles,

$$
\psi:\left.\left.\left(H_{1}^{-1}\right)^{*} \xi_{1}\right|_{V} \rightarrow \xi_{2}\right|_{V},
$$

inducing an isomorphism of tubular neighbourhoods.

Proof.- Let $\beta:\left.\left.\xi_{1}\right|_{B} \rightarrow \xi_{2}\right|_{B}$ be the isomorphism of vector bundles given by the derivative of the map $e_{1} e_{2}^{-1}$. Then, there exists an automorphism

$$
\eta:\left.\xi_{2}\right|_{B}+\left.\xi_{2}\right|_{B}
$$

such that for any $x \in B \quad n_{x}$ is self-adjoint and the composite $\psi=$ nob is an isomorphism of inner product bundles.

Now, we want to define the isotopy. Let ψ_{t} be the isomorphism of vector bundle, $\psi_{t}=(1-t) \beta+t_{\psi}$.

Now, we chose a neighbourhood of V in B, V_{1}, such that the composition

$$
V_{1} \times I \xrightarrow{e_{1}^{-1} \times 1} \xi_{1} \times I \xrightarrow{\psi_{t}} \xi_{2} \xrightarrow{e_{2}} V_{1}
$$

is defined. Let $V_{2} \in V_{1}$ be a neighbourhood of V in B such that, for any $0 \leq s, t \leq 1$, we have $g_{s}\left(V_{2}\right) \subset g_{t}\left(V_{1}\right)$.

Let

$$
\rho: \mathbf{R}^{m} \rightarrow[0,1]
$$

be a smooth map with compact support in V_{2} and $\rho=1$ on a neighbourhood of V. Then, the maps

$$
G_{s, t}: \mathbb{R}^{m}+\mathbb{R}^{m}
$$

defined by

$$
G_{s, t}(x)=\left\{\begin{array}{cc}
(1-\rho(x)) x+\rho(x) g_{t} g_{s}^{-1}(x) & x \in v_{2} \\
x & x \in V_{2}
\end{array}\right.
$$

are smooth, and as $G_{t}=1$, there is a $\delta>0$ such that $G_{s, t}$ is a diffeomorphism for any $|s-t|<\delta$.

Let n be such that $1 / n<\delta$, then the maps,

$$
H_{t}=G_{0, t / n}, \ldots, G_{k-1 / n} t, t
$$

give the required isotopy.

Notice that if the maps $e_{1} e_{2}^{-1}$ preserves the filtration of ξ_{1} and ξ_{2} given by the hyperplanes, all the construction can be done preserving it.
56.2 Construction of extensions in good position.

In this paragraph f is a self-transverse immersion of N in M. With the notation

$$
\left(\xi, \xi^{\prime}, \xi^{\prime \prime}, \ldots, \xi^{(n-1)}, P\right)
$$

we mean an n-tuple of fiber bundles over the manifold P with fibre,

$$
(\left(\mathbb{R}^{\mathbf{a}}\right)^{n}, \underbrace{n}_{i=1} \bar{H}_{i},{\underset{i, i=1}{n} \bar{H}_{i} \cap \bar{H}_{j}, \ldots, \underbrace{n}_{i=1} L_{i},\{0\})}^{n}
$$

when $L_{i}=\{0\} \times \mathbb{R}^{a} \times\{0\}$ and \bar{H}_{i} are as in 6.5 .
6.9 THEOREM.- Let N_{k} be the manifold of the deepest multiple points, then, there are embeddings:

$$
\begin{aligned}
& f_{k}^{\prime}:\left(v_{k}^{\prime}, y_{k}^{\prime \prime}, \ldots, N_{k}^{\prime}\right) \rightarrow\left(N, \operatorname{Im} f_{2}^{\prime}, \ldots, \operatorname{Im} f_{k}^{\prime}\right) \\
& f_{k}:\left(v_{k} u_{k}^{\prime}, v_{k}^{\prime \prime}, \ldots, N_{k}\right) \rightarrow\left(M, \operatorname{Im} f, \operatorname{Im} f_{2}, \ldots, \operatorname{Im} f_{k}\right)
\end{aligned}
$$

such that the diagram

$$
\begin{aligned}
& \left(v_{k}^{\prime}, v \underset{k}{\prime \prime}, \ldots, N_{k}^{\prime}\right) \xrightarrow{\bar{f}_{k}^{-1}}\left(N, \operatorname{Im} f_{2}^{\prime}, \ldots, \operatorname{Im} f_{k}^{\prime}\right) \\
& \left(v_{k}^{\prime}, v{ }_{k}^{\prime \prime}, \ldots, N_{k}\right) \xrightarrow{\bar{f}_{k}^{\prime}}\left(\operatorname{Im} f_{,} \operatorname{Imf}{ }_{2}, \ldots, \operatorname{Im} f_{k}\right)
\end{aligned}
$$

commutes.

Proof.- Without loss of generality, we can assume that N_{k} is connected, since otherwise we can repeat the construction for each component.

First, we reorder the coverings of 6.6 , in such a way that $\left\{W_{i}\right\}{ }_{j=1}^{P_{0}}$ are all that meet $\operatorname{Im} f_{k}$, and, for any $\ell,{\underset{j=1}{\ell}}_{j} W_{j}$ is connected.
$\left\{U_{j i}\right\}^{P_{0}} k$ is the associated covering of $\operatorname{Im} f_{k}^{\prime}$ in N. $j=1 \quad i=1$

$$
P_{0}
$$

Now, we chose and open covering of $\operatorname{Im} f_{k},\left\{W_{j}^{\prime}\right\}{ }_{j=1}$, satisfying
i) $W_{i} \subset c l W_{i}^{\prime} \subset H_{i}, \quad$ and
ii) For any $\ell,{\underset{j}{u}=1}_{\mathcal{u}} W_{j}$ is connected.

We define $\quad U_{j i}^{\prime}=U_{j} i^{n f^{-1}}\left(W_{j}^{\prime}\right)$

For any j, we define the n-tuple of fibre bundles:

$$
\left(\xi_{j}, \xi_{j}^{\prime}, \xi_{j}^{\prime \prime}, \ldots, W_{j} \cap \operatorname{Im} f_{k}\right)=\left(W_{j} \cap \operatorname{Im} f_{k}\right) \times\left(\left(\mathbb{R}^{a}\right)^{k},{\underset{i=1}{k} H_{i},{\underset{b}{b},}_{k}^{u}=1}_{H_{h}}^{H_{n}} H_{i}, \ldots,\{0\}\right)
$$

and the embedding

$$
\begin{aligned}
e_{j}:\left(W_{j} \cap \operatorname{Im} f_{k}\right) \times\left(\left(\mathbb{R}^{a}\right) ;{\underset{i=1}{k}}_{\substack{k}} H_{i}, \ldots,(0\}\right) \xrightarrow{\Psi_{j} \mid \times 1} \mathbb{R}^{t} \times\left(\left(\mathbb{R}^{a}\right)^{k},{\left.\underset{i=1}{k} H_{i}, \ldots,\{0\}\right)}_{\substack{\Psi_{j}^{-1}}}\left(M, \operatorname{Imf}, \operatorname{Imf} f_{2}, \ldots, \operatorname{Im} f_{k}\right) \cap W_{j} .\right.
\end{aligned}
$$

The couple $\left(\xi_{j}, e_{j}\right)$ is a tubular neighbourhood of $W_{j} \cap \operatorname{lm} f_{k}$ in $M_{\text {. }}$ Symilarly, we define the bundles,
and the embeddings

$$
e_{j i}:\left(U_{j i} \cap \operatorname{Im} f_{k}^{\prime}\right) \times\left(\left(R^{a}\right)^{k-1} \underset{h=1}{k-1} H_{h}^{\prime}, \ldots,\{0\}\right) \rightarrow\left(N, \operatorname{Im} f_{2}^{\prime}, \ldots, \operatorname{Imf} f_{k}^{\prime} h U_{j i} .\right.
$$

the bundle maps

$$
\Phi_{j}: \xi_{j}^{\prime}=\prod_{i=1}^{k} \xi_{j i}^{\prime}+\xi_{j}
$$

induced by the inclusions,

$$
\left(\mathbb{R}^{a}\right)^{k-1} \xrightarrow{\sim} H_{i} \hookrightarrow\left(\mathbb{R}^{a}\right)^{k}
$$

makes commutative the square

Now, we construct tubular neighbourhood of N_{k}^{\prime} and N_{k} by glueing these bundles inductively after they have being changed by an isotopy, as follows:

Assume that we have already constructed a n-tuple of bundles $\left(\zeta_{e}, \zeta_{e}^{\prime}, \ldots, B_{e}\right)$ on an open neighbourhood of $\underset{j=1}{e}\left(c 1 W_{j}^{\prime} \cap \operatorname{Im} f_{k}\right.$ in Im f_{k} and an embedding,

$$
g_{e}:\left(\zeta_{e}, \zeta_{e}^{\prime}, \ldots, B_{e}\right) \rightarrow\left(M, \operatorname{Im} f_{1}, \ldots, B_{e}\right)
$$

also n-tuples of bundles $\left(\zeta_{e}^{\prime}, \ldots, f^{-1}\left(B_{e}\right)\right)$ and an embedding,

$$
g_{e}^{\prime}:\left(c_{e}^{\prime}, \ldots, f^{-1}\left(B_{e}\right)\right) \rightarrow\left(N, \operatorname{Im} f_{2}^{\prime}, \ldots, f^{-1}\left(B_{e}\right)\right)
$$

and a map of bundles

$$
\Psi_{e}:\left(\zeta_{e}^{\prime}, \ldots, f^{-1}\left(B_{e}\right)\right)+\left(\zeta_{e}^{\prime}, \ldots, B_{e}\right)
$$

over f and such that $f \circ g_{e}^{\prime}=g_{e} \circ \psi_{e}$.
Let A_{e} be an open set in Im f_{k} such that

$$
{\underset{j}{j=1}}_{e}^{\left(c 1 W_{j}\right) \cap \operatorname{Im} f_{k} \in A_{e} \in c l A_{e} \in B_{e} .}
$$

Both $\left(\xi_{e+1}, e_{e+1}\right)$ and ($\left.\zeta_{e}, g_{e}\right)$ are tubular neighbourhoods of $\mathrm{B}_{\mathrm{e}} \cap \mathrm{W}_{\mathrm{e}+1} \mathrm{so}$, by 6.8 , there i is an isotopy,

$$
H_{t}: M \times I \rightarrow M
$$

preserving the filtration of M by $\operatorname{Im} f_{1}, \operatorname{Im} f_{2} \ldots$, and an isomorphism,

$$
\psi=\left.\left.\left(H_{1}^{-1}\right)^{*} \xi_{e+1}\right|_{A_{e} \cap W_{e+1}} \stackrel{\sim}{\longrightarrow} \xi_{e}\right|_{A_{e} n W_{e+1}}
$$

preserving the filtrations of both bundles.
Then, we define

$$
\begin{aligned}
& \zeta_{e+1}=\zeta_{e} \quad y_{e} \quad\left(H_{1}^{-1}\right)^{*} \xi_{e+1} \\
& g_{e+1}=g_{e} \quad e_{e+1} \cdot H_{1}
\end{aligned}
$$

and, obviously, it is a tubular neighbourhood over $\left(A_{e} u\left(W_{e+1} n{ }^{n} f_{k}\right)\right.$ in M.
At both H and preserve the filtration. They lift to H^{\prime} and Y^{\prime} on N, ζ^{\prime} and ζ^{\prime}, giving,

$$
\begin{aligned}
& \zeta_{\mathrm{e}+1}^{1}=\xi_{e}^{\prime} U_{Y},\left(M^{1-1}\right)_{E}^{*} e_{e+1}^{\prime} \\
& g_{\mathrm{e}+1}^{\prime}=g_{e}^{\prime} U_{Y} \cdot e_{e+1}^{\prime} \circ \bar{H}_{1}^{\prime}
\end{aligned}
$$

and a unique extension ${ }^{*} \mathrm{e}+1$ -

After finite induction, we have constructed a bundle ξ, and a embedding onto an open subset

$$
g: E \rightarrow M
$$

so for any $y \in \operatorname{Im} f_{k}$

$$
\xi_{y}=T\left(\xi_{y}\right)_{0} \xrightarrow{d g} T_{y} M \rightarrow T_{y} M / T_{y} \operatorname{Im} f_{k}=\left(v_{k}\right)_{y}
$$

is an isomorphism and, as gpreiaves filtration. it gives an sumaphirm of lunate

$$
\alpha:\left(\xi, \xi^{\prime}, \ldots, N_{k}\right) \xrightarrow{\sim}\left(v_{k}, v_{k}^{\prime}, \ldots, N_{k}\right) .
$$

that lifts to an isomorphism

$$
a^{\prime}:\left(\xi^{\prime}, \ldots, N_{k}^{\prime}\right) \leadsto\left(v_{k}^{\prime}, \ldots, N_{k}^{\prime}\right)
$$

Thus, if we define

$$
f_{k}^{\prime}=g^{\prime} \circ \alpha^{-1} \text { and } f_{k}=g \circ \alpha^{-1}
$$

we get the maps we were looking for.
6.10 NOTE. - If we choose an isomorphism

$$
\theta: \Pi_{k}^{*}\left(v_{k}\right)=\bar{f}_{k}^{\prime}{ }^{*}(v)
$$

we can define $\bar{f}_{k}^{\prime \prime}$ as the composite of θ and the map

$$
f_{k}^{\prime *}(v) \rightarrow v
$$

Then, the map $\bar{f} \mid \operatorname{Im} \bar{f}_{k}^{\prime}$ is defined as the only one that make the following diagram commute

and, obviously, \bar{f} is in good position.
6.11 THEOREM.- Let $f: N \rightarrow M$ be a self-transverse immersion. Then, there is an extension in good position

$$
\bar{f}: v \rightarrow M
$$

Proof.- It is done constructing, inductively, the maps

$$
\begin{aligned}
& \bar{f}_{\ell}: v_{\ell} \rightarrow M \\
& \bar{f}_{\ell}: v_{\ell}^{\prime} \rightarrow N
\end{aligned}
$$

and then \bar{f} is defined as in 6.10.

If k is the deepest intersection, the result is 6.9 .
We show how to construct \bar{f}_{k-1} and \bar{f}_{k-1}^{\prime} form \bar{f}_{k} and \bar{f}_{k}^{\prime}

Let us define

$$
\begin{aligned}
& \left(\bar{N}_{k-1}^{\prime}, \overline{\bar{N}}_{\bar{k}-1}^{\prime}\right)=f_{k-1}^{\prime-1}\left(\operatorname{Im} \bar{f}_{k}^{\prime}, \bar{f}_{k}^{\prime}\left(D\left(v_{k}^{\prime}\right)\right)\right) \quad \text { and } \\
& \left(\bar{N}_{k-1}, \overline{\bar{N}}_{k-1}\right)=f_{k-1}^{-1}\left(\operatorname{Im} \bar{f}_{k}, \bar{f}_{k}\left(D\left(v_{k}\right)\right)\right)
\end{aligned}
$$

 are maps,

$$
\begin{aligned}
& y_{k-1},\left.\right|_{\bar{N}_{k-1}} \stackrel{\sim}{\sim} y_{k} \xrightarrow{\sim} D\left(y_{k}\right) \quad \text { and } \\
& \left.y_{k-1}^{\prime}\right|_{\tilde{N}_{k-1}^{\prime}} \xrightarrow{\sim} y_{k}^{\prime} \xrightarrow{\sim} D\left(y_{k}^{\prime}\right) .
\end{aligned}
$$

If we define g and q^{\prime} as the composite of \bar{f}_{k} and \bar{f}_{k}^{\prime} with the above diffeomorphism, the diagram,

commutes.
Now we proceed as in 6.9 constructing inductively ξ and ξ^{\prime}, glueing charts on the bundles, leaving unchanged $\left.v_{k-1}^{\prime}\right|_{k_{k-1}}$ and $\left.v_{k-1}\right|_{N_{k-1}}$.

Then, we get the maps \bar{f}_{k-1}^{\prime} and \bar{f}_{k-1} and, the map $\left.\bar{f}\right|_{\left.v\right|_{i m}} \bar{f}_{k-1}^{\prime}$
is defined as in 6.10 . It is in good position since the maps

$$
\begin{gathered}
\bar{f}_{k-1}^{\prime} \text { and } \bar{f}_{k-1} \text { and the new maps } \\
v_{k} \leadsto \xrightarrow{\because} D\left(v_{k}\right) \xrightarrow{\bar{f}_{k}} M \\
v_{k}^{\prime} \leadsto D\left(v_{k}^{\prime}\right) \xrightarrow{\bar{f}_{k}^{\prime}} M
\end{gathered}
$$

make the approplate diagram commute.

Similarly, we proceed the induction.downwards, shrinking at each step the width of the image of the normal bundle, and after a finite number of steps, we get the desired extension in good position

$$
\bar{f}: v \rightarrow M .
$$

\square
6.11 REMARK.- By uniqueness of tubular neighbourhoods for immersions ([13]), any extension of f is regular homotopic to the one constructed, so any extension is regular homotopic to one in good position.

CHAPTER 7 Geometric Interpretation of the Classes $\hat{\mathrm{c}}_{\mathrm{k}}$.
To get this geometric interpretation, we have to use complex cobordism, so the first paragraph is a review of the theory, as sketched in ([25]). together with some results of [5].
s7.1 Review of complex cobordism .
7.1 DEFINITION.- Let M be a manifold and $\xi: M \rightarrow B O$ be a map. A complex orientation of ξ, is a map, $\xi^{\prime}: M+B U$ such that the diagram

a specified

commutes up to homotopy, where the map $B U \rightarrow B O$ is the limit of the inclusions $\mathrm{BU}(\mathrm{n}) \rightarrow \mathrm{BO}(2 n)$.

The couple (M, v^{\prime}) is a weakly complex manifold if M is a compact manifold and $v^{\mathbf{\prime}}$ is a complex orientation of a map

$$
v: M+B O
$$

classifying the stable normal bundle of M.

Similarly, we define weakly complex manifolds with boundary, making compatible the orientations of int M and ∂M.
7.2 DEFINITION.- For any pair of spaces, (x, A), we consider the set of triples (M, v^{\prime}, f), where (M, v^{\prime}) is an n-dimensional weakly complex compact manifold and f is a map of pairs,

$$
f:(M, \partial M)+(X, A) .
$$

On this set, we define the following equivalence relation:
Two triples $\left(M, v^{\prime}, f\right)$ and $\left(\bar{M}, \bar{v}^{\prime}, \bar{f}\right)$ are cobordant if there is an $(n+1)$-dimensional weakly complex compact manifold $\left(W, \zeta^{\prime}\right)$, possibly with corners, and a map

$$
F: U \rightarrow X
$$

such that
i) aly splits in three parts M, \bar{M} and δW, and M and \bar{M} are disjoint.
ii) ξ^{\prime} on M and \bar{M} agrees with v^{\prime} and \bar{v}^{\prime}.
iii) $\left.F\right|_{M}=f,\left.F\right|_{\bar{M}}=\bar{f}$ and $F(\delta W) \subset A$.

The set of equivalence classes, $U_{n}(X, A)$, is called the $n^{\text {th }}$ complex bordism set and it is given a group structure with the operation induced by disjoint union of manifolds.

If g is a map of pairs

$$
g:(X, A)+(Y, B)
$$

we define a homomorphism

$$
g_{n}: U_{n}(X, A)+U_{n}(Y, B)
$$

by

$$
g_{n}\left(\left[\left(H, v^{\prime}, f\right)\right]\right)=\left[\left(H, v^{\prime}, g \circ f\right)\right] .
$$

Obviously, the map defined is functorial.
As always, we define

$$
\begin{array}{ll}
U_{n}(x)=U_{n}(x, \phi) & \text { for any space } x \\
\tilde{U}_{n}((x, *))=U_{n}\left(X_{4},\{*)\right) & \text { for any based space }(x, *)
\end{array}
$$

7.3 THEOREM.- The functors $\left\{U_{n}\right\}$ define a generalised homology theory on the category of pairs of topological spaces.

For a detailed proof see [5], we just recall that the boundary homomorphism

$$
a_{n}: U_{n}(X, A) \rightarrow U_{n-1}(A),
$$

is defined by

$$
\partial_{n}\left(\left[\left(M, v^{\prime}, f\right)\right]\right)=\left[\left(M, v \|_{\partial M},\left.f\right|_{\partial M}\right)\right] \text {. }
$$

and for any $U \subset X$ open, the inverse map of the excision

$$
e:(X-U, A-U) \subset(X, A)
$$

is given by

$$
\left(e_{\star}\right)^{-1}\left(\left[\left(M, v^{\prime}, f\right)\right]\right)=\left[\left(f^{-1}(x-u), v^{\prime}|, f|\right)\right] .
$$

Now, we define the associated cohomology theory.
7.4 DEFINITION.- Let $f: N \rightarrow M$ be a map of manifolds, we define $\operatorname{cod} f=\operatorname{dim} M-\operatorname{dim} \mathcal{N}$. If cod f is even, we say that f has a complex orientation if there is a complex vector bundle over $M, 5$, and an embedding $\mathrm{e}: \mathrm{N} \rightarrow \mathrm{E}_{5}$ such that the classifying map of the normal bundle has a complex orientation.

If $\operatorname{cod} f$ is odd, we say that f has a complex orientation if the map

$$
N \xrightarrow{f} M \sim M \times\{0\} \leftrightarrow M \times \mathbb{I}
$$

has one.
Notice that a complex orientation of the map $M \rightarrow$ is equivalent to a complex orientation of the map classifying the stable normal bundle of M.
7.5 DEFINITION, - Let M be a compact manifold, We consider the set of triples (N, f, α) where N is a compact manifold, $f: N \rightarrow M$ is a proper map of manifolds of codimension n and α is a complex orientation of f.

Two triples (N, f, a) and $\left(N^{\prime}, f^{\prime}, a^{\prime}\right)$ are cobordant, if there is a triple (W, F, Λ) where
i) W is a compact manifold with $a \mathrm{~W}=\mathrm{Nu} \mathrm{N}^{1} \cup \delta \mathrm{~W}$.
ii) $F: W \rightarrow M \times I$ is a map of manifolds transuerse to $M \times\{ \}$ for $i=0,1$, and $\left.\left.F\right|_{N}: N \rightarrow M * 10\right\}$ and $\left.F\right|_{N^{\prime}}: N^{+} \rightarrow M \times\{1\}$ agree with f and f^{\prime}, and $F(\delta W) \subset a M \times I$.
iii) Λ is a complex orientation of F.

The set of equivalence classes, $U^{n}(x)$ is the $n^{\text {th }}$ complex cobordism set and a group structure is given by the operation induced by disjoint union of manifolds.

Similarly, if (M, A) is a manifold pair, we can define $U^{n}(M, A)$ as cobordism classes of triples ($N, f, a)$ where $\operatorname{Im} f \in M-A$.

To define the action of a map of manifolds $g: M \rightarrow M^{\prime}$ on the complex cobordism groups, we need to define transverse intersection, as follows:

Let $[(N, f, a)]$ be lying in $U^{n}\left(M^{\prime}\right)$. Let $e: N \rightarrow E(\xi)^{b_{e}}$ the embedding given by the complex orientation. We chose an embedding $e^{\prime}: M \rightarrow \mathbb{R}^{\ell}$. By 5.12 we can assume that $E(\xi) \times M$ and $N x \quad \mathbb{R}^{\ell}$ have transverse images in $E_{E} \times \mathbb{R}^{2}$. Then we define, $N \nrightarrow M$, the transverse intersection of N and M, as the intersection of those images.

The map

$$
f^{\prime}: N \neq M+M
$$

is given by the second projection. Obviously, it has a complex orientation
a^{\prime}, associated to a, and the class $\left[\left(N \pitchfork M, f^{\prime}, a^{\prime}\right)\right] \in U^{n}(M)$,
is independent of all the choices in volved. We have defined a homomorphism

$$
g^{n}: U^{n}\left(M^{\prime}\right)+U^{n}(M) .
$$

As before, we define $\tilde{U}^{n}(X, *)=U^{n}(X,\{*\})$ for any pointed space ($\mathrm{X}, *$) .
7.6 THEOREM.- The functors $\left\{U^{n}\right\}$ define a generalised cohomology theory on the category of manifold pairs.
\square
Now, we sketch a proof of the theorem stating that these theories agree with thos associated to the spectrum MU.

7.7 THEOREM.- There are natural isomorphisms

$$
\begin{array}{ll}
\tilde{U}_{*}(X, *)=\tilde{U}_{*}(X, *) & \text { for any pointed space }(x, *) \\
\tilde{U}^{*}(M, *)=\tilde{M}^{*}(M, *) & \text { for any manifold }(M, *) .
\end{array}
$$

Proof.- We prove it for $X=s^{0}=M$. The general case essentially the same. Recall that the coefficients associated to MU are

$$
\tilde{M} u_{n}\left(s^{0}\right)=\mathscr{M} u^{-n}\left(s^{0}\right)=\lim _{k}\left[s^{2 k-n}, M U(k)\right] .
$$

Then we define the map

$$
\alpha: \tilde{M} U_{n}\left(s^{0}\right)+\tilde{U}_{n}\left(5^{0}\right)
$$

as follows:
Let $x \in \tilde{M U}_{n}\left(S^{0}\right)$. We chose a representative $(f) \in\left[S^{2 k-n}, M U(k)\right]$ where $f: S^{2 k-n} \rightarrow M U(k)$ is transverse to $B U(k) \subset M U(k)$ (it can be done by 5.12) and then, we define $a(x)=\left[f^{-1}(B U(k)]\right]$. It is easy to prove
that it is a well defined element of $\bar{U}_{n}\left(5^{0}\right)$, independent of the choices.
Also, we define the map $B: \tilde{U}_{n}\left(s^{0}\right)+\tilde{M U}_{n}\left(S^{0}\right)$ on an element $y=\left[\left(M, v^{\prime}\right)\right] \in \tilde{U}_{n}\left(S^{0}\right)$ by chosing an embedding $e: M \hookrightarrow R^{2 k-n}$. such that the associated normal bundle has a complex orientation. Now, we extend e to an embedding $\bar{e}: v(e) \rightarrow \mathbb{R}^{2 k-n}$.

Let (\bar{g}, g) be the classifying map of v. Then, we define

$$
f: S^{2 k-n} \rightarrow M U(k)
$$

by

$$
f(t)=\left\{\begin{array}{cc}
\bar{g}\left(e^{-1}(t)\right) & \text { if } t \in \operatorname{Im} \bar{e} \\
* & \text { if } t \nmid \operatorname{Im} \bar{e}
\end{array}\right.
$$

i.e. the Thom-Pontrjagin construction associated to $v(e)$. If we define $B(y)=[f]$, it is easy to see that B is well defined and it is the inverse map of α.

To end this paragraph, we state some results on duality of the U^{*} and U_{*} theories as proved in [5].
7.8 DEFINITION.- Let ξ be an n-dimensional bundle over M and ξ^{\prime} a complex orientation of $i t$. We define the class $t(\xi) \in U^{n}(T(\xi))$ as

$$
t(\xi)=\left[\left(M, 1, \xi^{\prime}\right)\right]
$$

where $1: M \rightarrow T(\xi)$ is induced by the zero-section.

$$
\text { 7.9 PROPOSITION [5] .- } t(\xi) \text { is a Thom class of } \xi \text {. }
$$

Proof.- It is immediate from the definition of Thom class.
7.10 THEOREM -[5] .- i) Let M be an n-dimensional weakly complex closed manifold. Then, the Poincare duality isomorphism associated to $t\left(v_{M}\right)$,

$$
P D: U_{Q}(M) \doteqdot U^{n-q}(M)
$$

is given by

$$
\operatorname{PD}\left(\left[\left(N, f, \xi^{\prime}\right)\right]\right)=\left[\left(N, f, v^{\prime}\right)\right]
$$

when v ' is the complex orientation of v_{N} given by ξ ' and the complex orientation of v_{M}.
ii) Let M be an n-dimensional weakly complex compact manifold, Then, the Lefschetz duality isomorphism associated to $t\left(\nu_{M}\right)$

$$
L D: U_{q}(M, \partial M) \quad \Varangle U^{n-q}(M)
$$

is given as the one above.
7.11 COROLLARY,- Let M be an n-dimensional weakly complex manifold. Then, the fundamental class associated to $T\left(v_{M}\right)$ is given by $\left[\left(M, v^{\prime}\right), 1\right] \in U^{n}(M)$.

Proof.- It is the image of $1 \in U_{0}(M)$ under the duality of 7.10 .口

57.2 Geometric interpretation of $c_{k}(\xi)$.

In all this paragraph M is an n-dimensional weakly complex closed manifold and the map $\xi: M \rightarrow B U$ classifies an isomorphism class of complex vector bundles.
7.12 LEMMA.- Let M^{1} be a submanifold of M of codimension 0 . Then, the diagram
commutes for every q, where the vertical maps are induced by the inclusion and e_{*} is an isomorphism by the excision property.

Proof.- Let $x=[(N, \xi, f)] \in U_{n-q}(M)$. As M^{\prime} has codimension 0 , the class $i_{*}(x)=[(N, f, i \circ f)] \in U_{n-q}\left(M, M^{\prime}\right)$ can be represented by $\left[\left(f^{-1}\left(c l\left(M-M^{\prime}\right)\right), \xi^{\prime}|, i \circ f|\right)\right]$.

Following x clock wise, we get
$e_{*} L D^{-1} j^{*} P D\left(\left[\left(N, \xi^{\prime}, f\right)\right]\right)=e_{*} L D^{-1} j^{*}\left(\left[\left(N, f, \xi^{\prime}\right)\right]\right)=($ by 7.10$)=$
$\left.=e_{*} L D^{-1}\left(\left[\left(f^{-1}\left(C l\left(M-M^{\prime}\right)\right), j \circ f, \xi^{\prime}\right)\right)\right]\right)=$
(since f is transverse to M^{\prime}) =
$=e_{\star}\left(\left[\left(f^{-1}\left(c 1\left(M-M^{\prime}\right)\right), \xi^{\prime} \mid\right.\right.\right.$, jof $\left.) 1\right)=($ by 7.10$)=$
$=\left(\left[\left(f^{-1}\left(c 1\left(M-M^{\prime}\right)\right), \xi^{\prime} \mid, e_{0} j_{0} f\right)\right]\right)$
and this is $i_{*}(x)$ by the remark above.

Let $\hat{c}_{k}{ }^{v}(\xi)$ be the element of $M u^{2 k}(M)$ given by

$$
\Sigma^{\infty} M \xrightarrow{\xi} \Sigma^{\infty} B U \xrightarrow{\tau} \Sigma^{\infty} Q B U(1) \xrightarrow{\hat{h}_{k}} \Sigma^{\infty} T_{\gamma}(k) \xrightarrow{t_{k}} \Sigma^{2 k} M U .
$$

where t_{k} is the Thor class described in 7.8 , so $\hat{c}_{k}^{*}(\xi)=\hat{\xi}^{*} \circ \tau^{*} \circ \hat{h}_{k}^{*}\left(t_{k}\right)$
If $[(N, g, \bar{g})] \in(M, \gamma)$ is the element representing $\tau \cdot \xi$, we choose an extension in good position $\overline{\mathbf{f}}: v \rightarrow M$ and we define $M^{\prime}=\operatorname{Im} \bar{f}_{k+1}$. Then we have the following result
7.13 THEOREM.

$$
l_{*}\left(P D^{-1}\left(\hat{c}_{k}(\varepsilon)\right)=\zeta_{*}\left(\left[\left(N_{k}, f_{k} y_{k}\right]\right) \in U_{n-2 k}\left(M, \operatorname{Im} \dot{f}_{k+1}\right)\right.\right.
$$

Proof.- The diagram
commutes, since the left hand square is induced by inclusions and restrictions and the right hand triangle commutes by 3.18.

By definition, of $\hat{c}_{k}{ }^{\prime}(\xi)$ above,

$$
j^{*}\left(\hat{c}_{j}^{\nu}(\xi)\right)=j^{*} \circ(\operatorname{\tau o\xi })^{*} \circ \hat{h}_{k}^{*}\left(t_{k}\right)=(\tau 0 \xi \mid)^{*} p_{k}^{*}\left(t_{k}\right) .
$$

As by 5.30, 20ξ | is given by the Thom-Pontrjagin construction of M_{k} over $N_{k}, j^{*}\left(\hat{c}_{k}^{v}(M)\right)$ is the Thom class of M_{k}, and $\iota_{*}\left(P^{-1}\left(\hat{c}_{k}^{\nu}(\xi)\right)\right)=e_{*} L D^{-1} J^{*}\left(\hat{c}_{k}{ }^{\nu}(\xi)\right)$ is given by the same element, $\left[\left(N_{k}, f_{k}\right), v_{k}^{\prime}\right]$.

By definition, this element also represents $i_{\star}\left(\left[\left(N_{k}, f_{k}\right), v_{k}\right]\right)$.
7.14 THEOREM.- In singular cohomology theory, the Chern class $c_{k}(\xi)$ is the Poincare dual of $f_{k *}\left(\left[N_{k}\right]\right)$, when $\left[N_{k}\right]$ is the standard fundamental class of N_{k}.

Proof.- Using the natural transformation t from complex bordism and. cobordism to singular homology and cohomology, 7.13 is true when we replace U_{*} by H_{*}, so

$$
l_{*} \circ P D^{-1}\left(c_{k}(\xi)\right)=l_{*}\left(t\left(\left[\left(N_{k}, f_{k}, v_{k}\right)\right]\right)\right)=l_{*} f_{k *}\left(\left[N_{k}\right]\right) .
$$

Since M^{\prime} has the homotopy type of an $(n-2(k+1))$ dimensional complex, the map l_{*} is a monomorphism in this dimension, so

$$
P D^{-1}\left(c_{k}(\xi)\right)=f_{k *}\left(\left[N_{k}\right]\right)
$$

CHAPTER 8 Description of the bundle associated to an immersion.

In the preceeding chapters, we associated to any map

$$
\xi: M \rightarrow B U
$$

the composite map,

$$
\xi^{\prime}: M \stackrel{\xi}{\rightarrow} B U \xrightarrow{\tau} Q B U(1) \text {, }
$$

such that $\eta \circ \xi^{\prime}$ is homotopic to ξ. Then, replacing $Q B 1 J(1)$ by the weakly homotopic space $F\left(R^{\infty}\right)(B U(1))$ and applying [17] we got a cobordism class $[(N, g, g)]$ classifying the map ξ^{\prime}.

Now, we want to describe the inverse procedure, i.e. given the triple (N, g, g) to get a description of the associated complex bundle.
58.1 More about infinite loop spaces.

We want a closer study of the loop structure of BU.
8.1 DEFINITION. - Let B be an operad and $C: T_{*} \rightarrow$ Top $_{*}$ its associated functor. The functor

$$
F: T_{0 p_{\star}} \rightarrow \text { Top }_{\star}
$$

is called a 6 -functor iff there is natural transformation-

$$
\lambda: F C \rightarrow F
$$

such that the diagrams
i)

and
ii)

commute.
8.2 NOTE [20].- The functor $\Omega^{j} s^{i+j}$ is a b_{i+j}-functor for any $\mathrm{j} \geq 1$ and $1 \geq 0$,

Let us recall the "double bar" construction of May ([20]).
8.3 DEFIMITION. - Let \mathcal{C} be an operad, F a \mathscr{C}-functor and x a \mathscr{C}-space. Then, we define the space $B(F, \mathscr{G}, X)$ as the geometric realization of the simplicial complex $B_{*}(F, f, X)$ whose q-simplices are

$$
B_{q}(F, b, x)=F C^{q}(x),
$$

the face maps are given as follows

$$
\begin{array}{lcl}
a_{0} \text { by } & \lambda 1_{c}^{q}: & F C^{q+1}(x) \rightarrow F C^{q}(x) \\
a_{i} \text { by } 1_{F} 1_{c}^{1-1} c 1^{1-1}: & F C^{q+1}(x) \rightarrow F C^{q}(x) \\
a_{q} \text { by } 1_{F} 1^{q} \theta: F C^{q+1}(x) \rightarrow F C^{q}(x)
\end{array}
$$

where c is the collapsing map $C C+C$ and θ is the \mathscr{b}-action on X. The "degeneracy" maps are all given by the inclusion $X+c x$.
8.4 NOTE [20].- This construction commutes (up to homotopy) with Ω, ie.

$$
B(\Omega F, B, X) \mp \cap B(F, B, X) .
$$

Then for any E_{∞}-operad, \boldsymbol{b}, if we define $\mathscr{D}_{i+j}=\mathscr{b}_{i+j} \times \mathscr{C}$ we have, for any b-space X.

$$
B\left(\Omega^{j} S^{i+j}, \infty_{i+j}, x\right)=\Omega^{j} B\left(S^{i+j}, \infty_{i+j}, x\right)
$$

8.5 DEFIMITION, - Let \mathscr{C} be an E_{∞}-operas and $X a \mathscr{C}$-space. We define

$$
B_{i}(x)=1 \operatorname{lm} d B\left(S^{i+j}, D_{i+j}, x\right)
$$

where the limit is taken with respect to the maps $\Omega^{j} B\left(S^{i+j}, D_{i+j}, X\right) \rightarrow S^{j} B\left(\Omega S^{i+j+1}, \mathscr{D}_{i+j+1}, x\right) \neq \Omega^{j+1} B\left(S^{i+j+1}, D_{i+j+1}, X\right)$. It is obvious that $\left\{B_{i}(X)\right\}$
8.6 THEOREM [20] .- Let C and X be as in 8.5. Then, the maps

$$
x+B\left(D_{n}, D_{n}, x\right)+B\left(\Omega^{n} S^{n}, \theta_{n}, x\right) \rightarrow \Omega^{n} B\left(s^{n}, \infty_{n}, x\right)
$$

give in the limit the map

$$
i: X+B\left(D_{\infty}, D_{\infty}, X\right) \rightarrow B\left(Q, D_{\infty}, X\right) \rightarrow B_{0} X
$$

where the first map is a homotopy equivalence, the second one is a group completion and the last map is a weak equivalence.

So, if X is connected, i is a weak equivalence.
8.7 PROPOSITION [26].- Let, \mathscr{C} be an E_{∞}-operad and : $\boldsymbol{b}+\boldsymbol{b}$. a map of the associated coefficient systems.

Then, for any connected \mathscr{G}-space, X, the diagram

comutes.

Proof.- The diagram

commutes, the bottom half by [20] and the upper half by naturality.
8.8 NOTE. - Then, the map $\quad \eta: Q B U(1) \rightarrow B U$ is the composition

$$
Q B U(1) \rightarrow Q B U \rightarrow Q B_{0} B U \rightarrow B_{0} B U \mp B U
$$

and using the commutative diagram

the map n is homotopic to the composition

$$
Q(B U(1)) \ddagger C_{\infty}(B U(1)) \stackrel{k}{\rightarrow} F\left(I R^{\infty}\right)(B U(1)) \stackrel{\beta 0^{\infty}}{+} L_{\infty}(B U(1)) \rightarrow L_{\infty}(B U) \stackrel{\theta}{+} B U .
$$

89.2 Description of the bundle.

We can now describe the complex vector bundle associated to a triple (N, g, g).
8.9 THEOREM. - Let $h: M \rightarrow F\left(R^{\circ}\right)(B U(1))$ be the map associated to the triple (N, g, \dot{g}). Then, there are triples, $\left(N, g, g_{r}\right)$, such that the associated maps give a homotopy,

$$
h_{t}: M \rightarrow F\left(R^{\infty}\right)(B U(1))
$$

where $h_{0}=h$ and h_{1} factors as the composition

$$
M \stackrel{\ell}{\rightarrow} L_{\infty}(B U(1))^{a}+V_{\infty}(B U(1)) \stackrel{B}{\rightarrow} F\left(\mathbb{R}^{\infty}\right)(B U(1)) .
$$

Proof:- To lift h over β by a homotopy as described, is equivalent to change for any $m \in M$ the associated configuration in \mathbb{R}^{∞} to an orthonormal one. This is achieved by induction on $\left\{\operatorname{Im} \bar{f}_{k}\right\}_{k=0}^{n}$

In the $k^{\text {th }}$ step of the induction we have the map

$$
h \mid: N_{k}+F\left(R^{\infty}: k\right)
$$

and a homotopy from $\left.h\right|_{a N_{k}}$ to a map that factors as the composition

$$
\partial N_{k}+V_{\infty}(k) \rightarrow F\left(\operatorname{IR}^{\infty} ; k\right)
$$

We can extend it to a homotopy from $\left.h\right|_{N_{k}}$ to a map that factors

$$
N_{k} \stackrel{\bar{l}}{+} V_{\infty}(k)+F\left(\boldsymbol{R}^{\infty}, k\right)
$$

This is extended to M_{k} composing with the projection.

Notice that if all the original configurations were orthonormal, the lifting can be achieved directly.

By a similar induction, we lift \bar{l} to a composition

$$
M \longrightarrow L_{\infty}(B \cup(1)) \longrightarrow V_{\infty}(8 U(1))
$$

but this time no homotopy is involved.
8.10 REMARK. - Notice that if for any $m \in M, h(m)=\left[\left(x_{1}, \ldots, x_{k}\right),\left(L_{p}, \ldots, L_{k}\right)\right]$ and $\left(x_{1}, \ldots, x_{k}\right)$ are orthonormal in R^{∞}, the lifting is $f(m)=\left[e,\left(L_{i}, \ldots, L_{k}\right)\right]$ where $e \in L_{\infty}(k)$ has to satisfy $e\left(e_{i f}\right)=x_{i}$ for any i.
8.11 THEOREM. - Let h be the composite

$$
h: M \stackrel{\ell}{+} L_{\infty}(B U(1)) \stackrel{\alpha}{+} V_{\infty}(B U(1)) \stackrel{\beta}{\rightarrow} F\left(\mathbb{R}^{\infty}\right)(B U(1)) .
$$

The associated complex vector bundle, ξ, is given as follows:
Let $m \in M$ be such that $\ell(m)=\left[\left(e_{;}\left(L_{1}, \ldots, L_{k}\right)\right]\right.$. Then, the fibre ξ_{in} is $A \bullet B \subset C^{\infty} \times C^{\infty}$, where A is the orthogonal complement in $\mathrm{C}^{\infty} \times\{0\}$ of the complex subspace generated. fy the, configuration $\psi(e)$, and $B=\prod_{i=1}^{k} \hat{L}_{i}$, where \hat{L}_{i} is the image of L_{i} by the map e_{f}.

Proof.- We chose automorphisms

$$
g_{\mathbf{i}}: C \times \mathbf{C}^{\infty} \rightarrow \mathbf{C} \times \mathbf{c}^{\infty}
$$

representing L_{i}, and then, we define the map

$$
g: \mathbf{c}^{\infty} \times \mathbf{c}^{\infty} \rightarrow \mathbf{c}^{\infty} \times \mathbf{c}^{\infty}
$$

on Im ($e_{c} \times e_{c}$) as the only one filling the diagram

On the orthogonal complement, g is defined as the identity. Then $\quad \xi_{\mathrm{m}}=\mathbf{g}\left(C^{\infty} \times\{0\}\right)$.
Let \bar{L}_{i} be the 1 -dimensional subspace of $f_{x}\{0\}$ given by

$$
t \equiv c \times\{0\} c c \times c^{j_{j}} \xrightarrow{\rightarrow} \times c^{k}
$$

where j_{i} is the inclusion in the $i^{\text {th }}$ factor. Then,

$$
g \circ\left(e_{c} \times e_{c}\right)\left(\bar{L}_{i}\right)=\left(e_{c} \times e_{c}\right) \operatorname{sh} g_{i}\left(\bar{L}_{i}\right)=\left(e_{c} \times e_{c}\right) \operatorname{sh}\left(L_{i}\right)=\hat{L}_{i} .
$$

On the other hand, the space A in the definition is orthogonal to Im $\left(e_{c} \times e_{c}\right)$, so g is the identity on it and, $g(A)=A$. Thus ξ_{m} splits as indicated
8.12 REMARK.

Recall that, if the map h is associated to the triple (N, g, g), and $\bar{f}: v \rightarrow M$ is an extension in good position of f, for any $m \in M$ such that $\bar{f}^{-1}(m)=\left(\alpha_{1}, \cdots, a_{k}\right)$ with $\alpha_{i} \in v_{n_{i}}$, in the associated $h(m)=\left[\left(x_{1}, \ldots, x_{k}\right) ;\left(L_{1}, \ldots, L_{k}\right)\right]$ we have $L_{i}=\bar{f}\left(n_{1}\right)$.

To end this work, we get more detailed information in some particular cases
8.13 EXAMPLE.- Let us consider a map $h: M \rightarrow F\left(\mathbb{R}^{\infty}\right)(B U(1))$ induced
by a map $h: M \rightarrow F(R)\left(S^{2}\right)$,
As $s^{2}=T\left(\epsilon^{2}\right)$, by 5.2, we can consider that it is represented by a triple (N, g, g) where $f: N \rightarrow M$ is a codimension one immersion with trivial nomal bundle. Then $\bar{f}: N \times D^{2} \rightarrow M$ is an extension of f in good position.

Let $\alpha: S^{2} \rightarrow C P^{1}=G_{1,2}$ be the one point extension of the map.

$$
a: D^{2}=D_{c}+C P^{\prime}
$$

defined by $\alpha(\lambda)=[\lambda, 1]=L_{\lambda} \quad$ Then, $[a]$ generates $\Pi_{2}\left(\left[P^{\infty}\right)\right.$.
Let $q: N \rightarrow \mathbf{R}^{\infty}$ be a map such that, for any $(x, z),\left(x^{\prime}, z^{\prime}\right) \in N \times D^{2}$ such that $f(x, z)=f\left(x^{\prime}, z^{\prime}\right), q(x)$ is orthogonal to $q\left(x^{\prime}\right)$. We can thes lift the map h to $V_{\infty}(B U(1))$ using q and the lines \hat{L}_{i} in 8.11 are given as follows:

Let be $u \in \mathbb{R}^{\infty}$. Then, we define the map

$$
\mathbf{U}: \mathbb{R}^{\prime} \times \mathbb{R}^{\prime} \rightarrow \mathbb{R}^{\infty} \times \mathbb{R}^{\infty}
$$

by $u(s, t)=(s u, t u)$. The subspaces \hat{L}_{i} are then $q\left(x_{i}\right)_{c}\left(L_{z_{i}}\right)$.
8.14 EXAMPLE.- Let consider now the maps

$$
h: M \rightarrow F\left(\mathbb{R}^{\infty}\right)(B \cup(1))
$$

that factors through $B U(1)$.
By 5.26 a map that factors through $F_{k}\left(F\left(\mathbb{R}^{\infty}\right)(B U(1))\right.$ can be represented by a triple (N, g, g) such that the immersion

$$
f: N \rightarrow M
$$

has multiple points of multiplicity at most k. So, a map that factors through BU(1) can be represented by a triple ($N, 9,9$) where f is an embedding of N in M, whose normal bundle is classified by a map in $B U(1)$.

Obviously, the bundle associated to any triple of this particular type is the Thom-Pontrjagin construction on the normal bundle of N in M.

It is easy to see that the restriction $r \mid c p^{n}$ is represented by the inclusion $C P^{n} \subset C P^{n+1}$.

APPENDIX: On maps $f: B U \rightarrow B U$.

The goal of this appendix is to prove that a map $f: B U \rightarrow B U$ that induces the identity in singular cohomology is itself homotopic to the identity. In order to do it, we have to recall the definition and some elementary properties of K-theory.
A. 1 DEFINITION. - K-theory is the generalised cohomology theory $\tilde{K}^{\boldsymbol{*}}$ whose functors are given by, for any pointed space X

$$
\left.\begin{array}{ll}
\bar{k}^{2 n}(x)=[x, B U \times \mathbb{Z}
\end{array}\right] \quad \text { and } \quad \begin{array}{lll}
\bar{K}^{2 n+1}(x)=\left[\begin{array}{lll}
X, & U
\end{array}\right] \quad \text { for any } n \geq 0 .
\end{array}
$$

where $U=\lim U(n)$.

The required natural equivalences at odd dimensions

$$
, \tilde{k}^{2 n+1}(s k)=\tilde{k}^{2 n+2}(x),
$$

are given by the homotopy equivalence $s \mathbb{d} \equiv B U \times \mathbb{Z}$ proved in Bott periodicity theorem ($[29$), and the equivalences at even dimensions

$$
\text { , } \dot{k}^{2 n}(s x)=\dot{k}^{2 n+1}(x) \text {. }
$$

are given by the equivalence $\quad a B U \approx U$.
A. 2 NOTE.- As \tilde{K}^{n} and \bar{K}^{n+2} are naturally isomorphic, it is useful sometimes to consider $\tilde{K}^{\text {* }}$ as a \bar{Z}_{2}-graded cohomology theory.

Also, when necessary, we associate to the singular cohomology with coefficient in R, the \mathbb{Z}_{2}-graded cohomology theory $H^{* *}(; R)$ given by

$$
\begin{aligned}
& \bar{H}^{0 *}(; R)=0_{n \geq 0} \tilde{H}^{2 n}(; R) \quad \text { and } \\
& \dot{H}^{1 *}(; R)=0_{n \geq 0} \dot{H}^{2 n+1}(; R) \text {. }
\end{aligned}
$$

A. 3 PROPOSITION [13].- Let h^{*} and $h^{\prime *}$ be two reduced cohomology theories and $h^{*}\left(S^{0}\right), h^{* *}\left(S^{0}\right)$ their coefficient systems. Then
i) If h^{*} takes value in the category of Q-vector spaces and

$$
T, T^{\prime}: h^{\star}+h^{\prime *},
$$

are two natural transformations that agree on the coefficients, then $T=T^{\prime}$.
ii) If both h^{*} and $h^{1 *}$ take values in the category of Q-vector spaces and

$$
T: h^{\star}\left(s^{0}\right) \rightarrow h^{1 *}\left(s^{0}\right)
$$

is a homomorphism, there is a natural transformation

$$
T: h^{\star}+h^{\prime \star}
$$

extending it.
A. 4 NOTE.- As an immediate consequence, any cohomology theory, h^{*}, taking values in the category of Q-vector spaces, is naturally equivalent to the theory $\tilde{H}{ }^{*}(; Q) 0 h^{*}\left(s^{0}\right)$.

The rest of the appendix, we assume some knowledge of the AtiyahHirzebruch spectral sequence of homology theory h^{*}, in particular that it is associated to an exact couple, $E C\left(X, h^{*}\right)$ and that the E^{∞} terms are the quotients of the filtration of $h^{*}(X)$ given by

$$
F_{p}\left(h^{*}(x)\right)=\operatorname{ker}\left(h^{*}(x) \rightarrow h^{*}\left(x_{p-1}\right)\right)
$$

where X_{p-1} is the $(p-1)$-skeleton of the complex X.
A. 5 DEFINITION. - The character of K-theory (or Chern character) is the composite natural transformation of \mathbb{Z}_{2}-graded cohomology theories.

$$
\text { ch : } \tilde{K}^{*} \rightarrow \tilde{K}^{*} \otimes Q \approx \tilde{H}^{* *}(; 0)
$$

where the second map is the natural equivalence of A.3.
A. 6 THEOREM. - Let X be a complex such that $\tilde{H}^{*}(x, \not \mathbb{Z})$ is free. Then, the Chern character

$$
\operatorname{ch}(x): \bar{K}^{*}(x) \rightarrow \hat{H}^{* *}(; q)
$$

is a monomorphism.

Proof:- The character induces a homomorphism of \mathbb{Z}_{2}-graded exact couples

$$
c h: E C\left(X ; \tilde{K}^{*}\right) \rightarrow E C\left(X ; \tilde{H}_{Q}^{* *}\right)
$$

As \tilde{K}^{*} is \mathbb{Z}_{2}-graded ordinary cohomology with coefficients in \mathbb{Z} the E^{\prime} term of its spectral sequence is $\tilde{H}^{\star *}(X ; \mathbb{Z})$. Obviously, the E^{\prime} term of the second exact couple is $\tilde{H}^{* *}(X ; 9)$, so we get that the induced homomarphism,

$$
\operatorname{ch}_{(1)}: \tilde{H}^{* *}(X ; Z) \rightarrow \tilde{H}^{* *}(X ; Q)
$$

is the coefficient homomorphism, so it is a monomorphism.

As ch is a map of exact couples, it commutes with the differentials, so in particular

$$
\bar{d}_{1} c h_{(1)}=c h_{(1)} d_{1}
$$

Since $\bar{d}_{1}=0$ and $c h(1)$ is a monomorphism, $d_{1}=0$.
Inductively we get $d_{2}=d_{3}=\ldots=0$ so the E^{-}-term is the E^{\prime}-therm.

The map

$$
\text { ch }: \frac{F_{\star}\left(\tilde{K}^{*}(x)\right)}{F_{\star-1}\left(\bar{K}^{*}(x)\right)} \rightarrow H^{* *}(x ; q)
$$

is then a monomorphism, so the map

$$
\operatorname{ch}: \bar{K}^{*}(X)+\tilde{H}^{\star *}(X ; Q)
$$

is a monomorphism too.
A. 7 THEOREM. - Let $f: B U+B U$ be a map such that the induced map in singular homology $f_{\star}: H^{*}(B U ; \mathbb{Z})+H^{*}(B U ; \mathbb{Z})$ is the identity. Then, f is homotopic to $1_{B U}$.

Proof.- The diagram

commutes, 50

$$
\operatorname{ch} f^{*}\left(i_{0}\right)=f^{*}\left(\operatorname{ch}\left(i_{0}\right)\right)=\operatorname{ch}\left(i_{0}\right)=\operatorname{ch} 1_{B U}^{*}\left(i_{0}\right)
$$

Where t_{0} is the inclusion

$$
B U \approx B U \times\{0\} c B U \times \mathbb{Z}
$$

H^{\star} ($\mathrm{BU} ; \mathbb{Z}$) is free, so, by $A .6$, ch is injective and then

$$
f^{*}\left(i_{0}\right)=l_{B U} *\left(i_{0}\right)
$$

So, there is a homotopy

$$
F: B U \times I \rightarrow B U \times \mathbb{Z}
$$

from i_{0} of to $i_{0} 01_{B U}$.

As $B U \times I$ is connected, $\operatorname{Im} F \in B U \times\{0\}$, so we can lift to a homotopy

$$
F: B U \times I \rightarrow B U
$$

from f to 1 BU .
[1] ADAMS, J. F.
[2] ADAMS, J. F.
[3] BECKER, J.
"Characteristic classes and K-theory, p.p.132-143, in Lecture Notes in Math. 428. Springer Verlag, (1974).
[4] BECKER, J. \& GOTTLIEB, D. "The transfer map and fibre bundles", Topology 14, (1975) 1-12.
[5] BOJANOWSKA, A. \& JACKOWSKI,5. "Cobordism and formal groups", Part one. Preprint series "B" No. 2. Institute of Mathematics, Polish Academy of Sciences. (1973).
[6] BRICKELL, F. CLARK,R.S. "Differentiable manifolds", Van Nostrand (1974).
[7] BROCKER, Th. \& Tom Dieck T. "Kobordismen 'heorie," Lecture Notes in Mathematics 178, Springer Verlag, (1970).
[8] COHEN, F.R., MAY, J.P, and LADA T.
[9] COHEN, F.R., MAY, J.P. and TAYLOR, L.
"Stable homotopy and generalised homology," Chicago Lectures Hotes in Mathematics. Chicago U.P. (1974).
"Infinite loop spaces", Annals of Mathematical Studies 90 , Princeton, U.P. (1978). Springer Verlag, (1970).
"The homology of. iterated loop spaces," Lecture Notes in Mathematics 533, Springer Verlag, (1976).
"The splitting of certain spaces CX ", Math. Proc. Cambridge Ph11. Soc. 84(1978). $465-496$

[21] MAY, J.P. et al,
[22] MILNOR, J.
[23] MILNOR, J. and STASHEFF
[24] NISHIDA, G.
[25] QUILLEN, D.
[26] SANDERSON, B.J.
[27] SNAITH, V.P.
[2B] STEENROD, N.
[29] STONG, R.
[30] SWITZER, R.M.
[31] VOGT, R.M.
" E_{∞} ring spaces and E_{∞} ring spectra," Lecture Notes in Mathematics, 577, Springer Verlag (1977).
"On spaces having the homotopy type of a CW complex:"
Tran A.M.S. 90(1959). 272-280.
"Characteristic classes", Annals of mathematical studies 76 , Princeton U.P. (1974).
"The nilpotency of the elements of the stable homotopy groups of sheres"; Journal Math. Soc., Japan 25 (1973) 707-73:
"Elementary proofs of some results of cobordism theory using 'Steenrod operations". Advances in Maths. 7 (1971), 29-56.
"The geometry of Mahowald orientations", p.p. 152-174, in Lecture Notes in Math. 76? Springer Verlag (1980).
"Algebraic cobordism and K-theory," Memoirs Am. Math. Soc. No. 221 (1979).
"A convenient category of topological spaces Michigan Math. Journal 14 (1967), 133-152.
"Notes on cobordism theory," Notes in Mathematics, Princeton U.P.(1968).
"Algebraic Topology: Homotopy and homology;" Die Grundlehren 212. Springer Verlag(1975)
"A Convenient category of topological spaces for homotopy."

Arc. Mat. 22(1971), 545-555.

