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S U M M A R Y

We study several geometric constructions associated to the map 

n : Q BU(1) -► BU. Using techniques of infinite loop spaces, we define 

a set of universal characteristic classes ck , proving that they agree 

with the Chern classes. We get geometric interpretations of them in 

terms of the k-tuple points of immersions. Also, we show some cases where 

this description is useful.



INTRODUCTION

In this dissertation we study the geometry of the map n : Q BU(1) •+■ BU,

following the Ideas developped by B.J. Sanderson In [2F] to study 

2 3
Mahowald's map a S -*• BU. Me describe the contents chapter by chapter.

Chapter 1 gives a slight Introduction to the main categories used In 

the work. In the first paragraph, we look Into Adams description of the 

category of spectra (see [1 ] ), including the definition of the homology 

and cohomology theories associated to a spectrum.

In the second paragraph we give Hay's description of the category of 

infinite loop spaces (see [21] ).

Chapter 2 contains the general theory of Infinite loop spaces to 

construct the map n . In the first paragraph we state May's recognition 

principle for infinite loop spaces ( [20] ), proving that BU 1s an 

infinite loop, as in [21] . Then, n is defined as the unique infinite 

loop map extending the inclusion BU(1) c BU. The last paragraph gives 

the approximation of Q BU(1) by c(BU(l)) for a convenient coefficient 

system £ as in [9] .

The main goal of chapter 3 is to define universal characteristic 

classes ck e H2k(BU,Z). The first paragraph follows Snaith ( [27] ) 

and Becker ( [3] ) to construct a map t : BU -*■ Q BU(1) that is the right 

homological inverse of n . Me begin the second paragraph by stating the 

stable splitting of QX got by F.Cohen-P. May and L. Taylor in [9] .

Me are then able to identify their space Dr(F(F*), BU(1)) as Ty ^  , 

the Thom space of the vector bundle * Ee«, *_ Yk • We prove also

that By ^  * Ee^ xE BU(l)k is homotopic to the classifying space
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/

of / U(1 principal bundles, Bzk / U(l), Then, the map Induced by 

the inclusion of groups

pk = B1k ; B ^  / U(l) BU(k)

classifies </k) and ct can be defined as the composition
K T

z" BU -?— > e" Q B U ^ A ,  S“ TY(k)--- \ zm MU(k)c— > E2kMU - L  £2k H 2

where t is the universal Thom class, so 

ck = t* hj (tY(k))

tv^k  ̂ being the Thom class of the vector bundle Y^ .

Chapter 4 is devoted to identifying ck in terms of the universal

Chem classes ck. We do this by evaluate the Kronecker product

<ck, a > for any a e H2k (BU; Z  ), Since H*(BU; Z) is a polynomial ring

ring on the classes {a4} , we only need to know
M e »

< ck’ at. > • • •t®j < tY ( k )
k* (a.- .... a.

1i V
)>

If we reduce the coefficients mod p for a prime p , we can use the

calculations done in C83 and [241 to get that t* is the inclusion
k

and hk annihilates all monomials but a^ . Using [16 ], we prove 

that <tYk , ajk> = 1 so ck« ck as elements of H*(BU;Zp). As this 

is true for any p, an easy argument shows that ck* ck in H*(BU;Z).

The three following chapters have the general aim of getting a geometric 

description of ck(£), for £ a complex vector bundle over a weakly complex 

manifold M,

It is known that such £ is classified by a homotopy class of maps

f 5 M -*■ BU .
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Using t, we define the composite map

= Tof^ : M - Q  BUCl) ,

and we study such maps In chapter 5. The first paragraph recalls the work 

of Koschorke and Sanderson [17] t classifying the homotopy class of f1 

by a bordlsm class of triples [(N,g,g)] , where g Is an embedding of 

N into M x F *  projecting to an immersion f: N + M and g classifies 

the normal bundle of f,v\ as a complex line bundle. In the second » 

paragraph, we study the manifold of k-tuple points, Nk, proving that 

the map f^: Nk M induced by f Is an Imnerslon with normal bundle 

v |j /ly . The last paragraph begins with some properties of the mani­

fold of based k-tuple points, N'k , proving that the map f'k: N'k -*• M 

induced by the projection is an immersion with normal bundle v 'k=
L I

v 'k ■ v x {0} / .  Then, we define an extension of f to v in 

good position, f, to be one that has, for any k, maps 

extending fk> f'k, making commutative the diagram

m

Thom-Pontrjagin construction of a

is homotopic to the 

bundle Mk -► Nk .

Chapter 6 is the tedious proof of the existence and uniqueness, up to
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isotopy, of extensions in good position, First, we prove the existence 

of a very particular kind of chart and, then, we glue them inductively by 

using a" tsotopy result similar to the one in Mather's notes [19] .

In chapter 7 we complete the geometric description of ck(e). The 

first paragraph contains an exposition of complex bordism and cobordism 

theory as sketched by Quillen in [25] getting, in particular, the inter­

pretation of the duality theorems of Lefschetz and Poincari and the elements 

representing the Thom class and the fundamental class of a weakly complex 

manifold M. Using it, in the last paragraph we get that

i*(P D( ¿kU))) = i* ( fk*( [Nk] ))

where i is the inclusion map 1 : M (M, Im ?k+1) and [ Nk] is

the fundamental class of [ Nk ]. As i* is a monomorphism we get the 

appropiate description of ck(e).

In the last chapter we try to recover some information about e from 

the triple (N,g,g), In the first paragraph we have a closer look the 

map n, and we use it to give, in the second paragraph, a general description 

of £ together with some interesting particular cases.

The work ends with an appendix on BU where we prove a result used in 

proving that the map t is the right homotopical inverse of n. .
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CHAPTER 1: A description of the categories used.

We work most of the time in the category, Top, of compactly generated 

weakly Haus dorfftopological spaces and continuous maps between them. The 

associated based category Top* has as objects spaces of Top together 

with a non degenerate base point, and as morphisms, maps of Top that pre­

serve the base point. Then, when we say a space,we mean an object of Top 

and a based space is an object of Top* .

These categories have been studied recently (see [18] , [28],[31]) 

and all the usual constructions (like taking suspensions or loops) are well 

defined in them. Also, they are good categories for doing homotopy theory 

and the associated homotopy categories are H Top and H Top* .

There are two interesting functors between them : 

the forgetful functor

F : Top* Top (or F: H Top* -*■ H Top) 

that forgets the base point, and the functor

( )+ : Top -► Top* (or ( )+ : H Top -*• H Top*)

that adds a disjoint base point to each space (i.e. X+ = X JL {*} ) .

Sometimes, we shall use the categories, CW, of CW complexes and 

cellular maps and, H CW, of spaces having the homotopy type of a CW 

complex and homotopy classes of maps between them. This category was 

studied in [22] and it is closed under the usual constructions. The associated 

pointed categories are CW* and H CW* .



§1.1 The stable category

In this paragraph we describe 1n short Boardman's stable category 

as done 1n [1 ] , [2 j .

1.1 DEFINITION.- A CW-spectrum E 1s given by

1) A sequence of based complexes {En > ,

i1) A sequence of cellular Inclusions { e n > where e n: SEn * En+l’ 

and SEn 1s the suspension of En.

Notice that the existence of t n Is equivalent to the existence of adjolnts 

en : En ■* ^n+l

and the spectrum E Is called an n -spectrum 1f the maps en are weak 

equivalences for every n. The Index set may run over the Integers or over 

«  =( 0,1 ,2,3,...,} .

1.2 NOTE.- Given a sequence of based complexes (En } n e N  and maps 

{tn }ne N » where en: SEn -► En+1 we can replace them inductively by 

homotopy equivalent complexes {E^} n £f( and cellular inclusions

{ Ep1 n £ N 9ivin9 a spectrum.

1.3 EXAMPLES.- a) Let G be a group. We say that a based complex X 1s 

the nth Eilenberg-MacLane space of G If the homotopy groups of X are

/

n4 ( X,* ) = <

if i=n 

otherwise.

This complex 1s unique up to homotopy (see [30 ] ) and we call 1t K(G,n).
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Then,the Eilenberg - MacLane spectrum of G, called IHG, is defined as 

follows:

i) The spaces are the Eilenberg-Maclane spaces 

m G n = K(G,n)

ii) The weak homotopy equivalences 

*n : K(G,n) + n(K(G,n+l))

are given by the uniqueness of the n-- Eilenberg-Maclane 

since.

Itj (n(K(G ,n+l))) = Hj+] (K(G,n+l))

space up to homotopy 

if i *n 

otherwise.

b) Let BU(n) be the classifying space of n-dimensional complex vector 

bundles and y11 the universal n-dimensional complex vector bundle 

over it. For a definition see Chapter 2.

We define the spectrum MU as follows:

i) The spaces are

MU2n = MU(n) the Thom space of Yn for n eN 

MU2n+i * S MU(n)

ii) The maps are:

c2n : S MU(n) -*■ S MU(n) the identity

e2n+l : ^ ^ u(n) "*■ MU(n+l) the map of Thom spaces

associated to the bundle map induced by the inclusion

BU(n) ---- » BU(n+l)

where is the trivial 1-dimensional complex vector bundle.
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1.4 DEFINITION.- A strict map between two spectra,

f : E -*• E*

1s given by a sequence of maps {fn> , where

and the diagram,
Sf

S E,n

cn cn

commutes for each n.

1.5 EXAMPLE.- It is known that,for any based space X, H^X; Z) 1s 

isomorphic to the group [X,K( Z, k)] , so the Thom class of the complex

t(Yn) : MU(n) - K( 2, 2n) .

Chosing inductively the maps tn so that

tgn : MU(n) -*■ K( I, 2n) 1s 1n the above class, and

^n+l : S M^(n) N( 2 , 2n+l) 1s given by the suspension of tgn•

we get a strict map of spectra,

t : MU •» M  Z .

1.6 DEFINITION.- We say that a spectrum E‘ is a subspectrum of E 1f 

for any n, E'n 1s a subcomplex of En and is the restriction of En.

We say that E' Is cofinal in E 1f for any cell ea 1n Ep there is some 

N such that the Nth suspension of ea lies in E^+N •

vector bundle Yn, t(Yn), can be interpreted as a homotopy class of maps.
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1.7 DEFINITION.- A map between spectra

f : E -  E'

is a class of couples (F.T), where E is a cofinal subspectrum of E 

and,

f : T *  E' ,

is a strict map of spectra. Two couples (Ej, fj) and (Eg, fg) are 

equivalent if the restrictions of both maps to Ê  n .. agree.

With these objects and morphisms, we define the category Sp .

See Cl] or (3Q ] for further details.

1.8 DEFINITION.- Let E be a spectrum and X a based space. We define 

the spectrum E a X by

i) The spaces (E A X)n = A X

ii) The maps M E n A X)+ En+]A'X 

are given by ê .

We can define a homotopy between maps of spectra 

F : V  fl

as a map F: E * i+ + e * such that the composites F ° i€ * f£ for «»0,1 

where 1 : E E a I+ are the obvious inclusions.

We denote by CE, E‘] the set of homotopy classes of maps from E 

to E‘ , and define the category H Sp, whose objects are those of Sp 

and whose morphism from E to E* are the elements of CE, E1] .

1.9 DEFINITION.- We define the kth tra^lation functor.

E*5 : Sp -► Sp



- 10 -

on objects by

*> £k<E>„ * Eo*k

tt) « i k , 

and on morphisms by

c k ( t(E, f) 3) - tfckCE).ikCf» 3 

where l k(f )„ . f„tk .

The Induced functor on H Sp 1s still called

1.10 DEFINITION.- The suspension functor 

E* : CW*-*- Sp

Is defined as follows:

For any complex X, e“ (X) 1s the spectrum given by

i) ( E"(X))n = SnX

11) e R : S(SnX ) -*• Sn+^(X) 1s the associativity homeomorphlsm.

For any map f: X -► Y, the strict map of spectra. 

e" f : e"(X) - e"(Y)

1s given by ( E*f)n = Sn f.

As In 1.9 , we also denote the Induced funtor 1n homotopy by £*.

We say that f 1s a stable map between two based complexes X and 

Y , If 1t Is a map of the associated suspension spectra

f : e"(X) -*• e"(Y).

Notice that a stable map Induces maps f : E M  + E a Y , for any 

spectrum E.
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1.11 DEFINITION.- Let E by a spectrum. We define the associated nth 

reduced homology and cohomology groups of a based complex, X, to be

En(X) = [e"S°, f "  (E A X) 3

En(X) = [ z" X , z" (E) ] for any n e 2.

Then, a stable map, f, from X to Y induces, by composition, 

the homomorphism,

fn : E> >

fn : En(X) -~En(Y) for any n c IN.

In this way {En> and {En} give homology and cohomology theories, 

from the category of CW complexes and stable maps.

Similarly, by composition, any map of spectra

f : E ■+• E*

induces natural transformations between the associated reduced homology 

and cohomology theories.

We define the (unreduced) homology and cohomology of a complex X as: 

En(X) ■ En(X+) . and

En(X) = En(X+) .

1.12 REMARK.- 1) If E is an n-spectr urn there is ah isomorphism

En(X) •* EX, En3 for any n (see [30] ).

Then, the reduced cohomology associated to the spectrum 

HG is isomorphic to the singular cohomology with coeffl- 

-tients in G.

ii) The reduced homology and cohomology theories associated 

to the spectrum MU are the complex bordism and cobordlsm 

as we shall see in chapter 7 .
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Si.2 Infinite loop spaces .

In this paragraph, we study the category of infinite loop spaces.

1.13 DEFINITION.- An infinite loop space X is a sequence (Xn , N 

where, for each n :

1) Xn is a based space, and 

ii) 3n is a homeomorphtsm, :flXn+j XR ,

Obviously, each infinite loop space has an associated n-spectrum.

1.14 DEFINITION.- A morphism of infinite loop spaces

is a sequence of maps 

the diagram

f : X -*-Y

{f„> n e m  * where’ fn : Xn '*"Yn and for each n’

®n+l **n+l

commutes.

We have defined the category 1^ of infinite loop spaces and morphisms

1.15 DEFINITION.- The functor

( )o : I » ^ T°P*

is defined as follows;

i) On objects, (X)Q ■ XQ

ii) On morphisms, (f)Q * fQ

Ue say that a space 1s an infinite loop space if it 1s 1n the image of 

( )Q and similarly with maps.
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1.16 DEFINITION.- We define the functor

00 _  

ft : sp i

as follows:

For any spectrum E we define n°"(E)n - lim nm-n Em where the 

limit is taken with respect to the maps

nm n

nm-n
m _m-n— > ft flE.m+1

 ̂jj(m+l )■
m+1

the homeomorphisms n( n"(E^+1) ♦ ft"(E)n are given by the limit of the 

identities.

For any morphism f= [(E, f)] the associated map is defined cellularly 

as follows:

Let e be a cell of E and let N be an index such that SNea m a

lies in E fJ. Then,there is defined the map 

f ; c. *  E' * »  •

giving the restriction of the map n“(f) to nm‘ne . In the limit,n a
these restrictions glue together, giving maps

ft“ (f)n : n“(E)n - n“(E*)n

that produce a morphism of infinite loop spaces.

By abuse of notation we denote also by sT the composite functor 

Sp *• CW*

and also the induced functor in the homotopy categories.

1.17 PROPOSITION C23 E* and n* are adjoint functors,

□

If we define Q * ft* t", then 1t is easy to prove the following 

result,
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i) Q(X) is the infinite loop space generated by X ; i.e., X is 

included in Q(X) and any map to an Infinite loop space f: X -► Y 

has a unique extension to a map of infinite loop spaces

f : QX -*• Y

ii) For any based Cli complexes X,Y, there is a 1:1 correspondence

[Z* X, I*Y ] + [X, Q(Y)] 

given by adjuntion.

□

1.18 PROPOSITION.-

Notice that by i) there is a unique map of infinite loop spaces

c : Q QX QX

extending the identity; ^  is called the "collapsing map".
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CHAPTER 2 : The map „ : QBU(1)+ BU

The object of this chapter is the definition and study of the map 

n : Q BU(1) *BU

, the unique map of infinite loop spaces that extends the inclusion.To do 

this, we need tv/o standard results of infinite loop space theory, the 

"recognition principle", to know when a space is homotopic to an infinite 

loop space, and the "approximation theorem", giving the structure of QX 

for a connected space X. These results are given in the next two paragraphs.

»2.1 BU as infinite loop space.

To state and use the "recognition principle", we need some familiarity 

with the concept of operad and examples of it.

2.1 DEFINITION.- An operad £  is

i) A sequence of spaces { ^ (n)} n >0 with £(0)={# }

ii) A composition law for any n,jj,..., j

♦ :£(n)* g C J ^ x  ...x £(Jn)- £(j) 
n

where j= e j,- ; and an element lc £(1) 
i=l 1

satisfying:

A) For each n and ce £(n)

<p (l;c) = c

B) For each n and ce£(n)

<p ( c j l ^ ^ l )  = c 

n copies

i1i) For each n ; a right Enaction on £(n)

a : j£(n) x En +^(n)

where En is the symmetric group of n letters. We denote



- 16 -

this action by a (c,o )* ca, and it satisfies:

A) For each ce^(n), c^iftj.), i«l,...,n and oe

♦ (Ca ; C1 ’* ’ * * c n ) = * ( c ’ Ca " 1( D  ’•'•’C a-1(n)^ a*Jl.... V

where 

B1= (1

o(j,.... j j  acts on by permuting the blocks
1 n n-1

• ••••j1} ®2=(J i »* * * i+ Jg)*** Bn=(̂  2 j)

as a does with (1 ,...,n).

B) For each C£^(n), c ^ a n d  i=l.... n

♦(c; ci°i »•••»cncrn ^  ♦(c»c-|»* *• »cn) (oji ... 9 on) where

(o-| t ... Con) acts on ( 1.... j) leaving the blocks fixed

and permuting the letters in each Bi as oi does.

2.2 EXAMPLES.- 1) Let X be a space. We define the endomorphisms operad 

of X, as follows:

i) 5x(n) = (f: Xn -► X : f is a continuous map }

ii) <t>: Cy(n)x 5x0] )* ••• "5x(Jn) + Cx(j) is given by composition: i.e

♦(f; 91 .....9n)=Hg1x,...,x gn)

iii) The Enaction on i^n) is given by composition; i.e. for any 

o e En we define a : Xn -► Xn by the formula o(xj,...,xn)*

* (xa(l)’*'',xa(n)) ' Then tf,e actlon is given by fo * f« a

2) Let fl" be the limit of { F 0 }^ ^  with lespect to the maps

Fn + lRn x {0} •*> lRn+1 •

We define the isometries operad, , as follows:

i) t„(n) - (♦:( *")" ; 4* is an injective linear isometry}

ii)and iii). A *  in 1) , the composition law and the Enaction are 

given by composition.
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3) Let Ir= [0,1] r be the standard cube in IRr. We call an r-llttle 

cube a map c: int Ir + int Ir, of the type XjX,...,x Xr , where 

X^: (0,1) -► (0,1) is a strictly increasing affine map.

We define the r-Httle Cubes operad , r as follows:

i) ^>r(n)=' {(Cj,...,cn): c. are r-cubes with disjoint closures}

*1) 4 : & r(")x £ r(j]) x,...,x # r (jn) > £ r(j) 1s given by composi­

tion;

il J4 ((C'j»• • • >Cp), (d-|, , . . ,dj ) , . . . ,  (dj, . . . ,dj ))

- V■(cr d!....cl'dj,.....cnadl.....cn-d"n)

,1i> (C1....cn>°'<(c,<l)....co(n)>

In all three cases is easy to show that they are operads and the identity map 

is the 1.

2.3 DEFINITION.- A morphism between two operads

f: £ -  &  ,

is a sequence of maps, (fn) , with fn:£(n) |£'(n) and satisfying

i) For each n,jj,...,Jn , the diagrams

£(n) x £ ( j , ) x .... x£ ( j n) _ ! _ > £ ( j )

fnxV ... «f,
1 Jn

^(n)^(j.)x,!..,*i?'(jn) - ----

commute.

ii) fl(^)* V
ii1) For each n, the diagrams



commute.

2.4 EXAMPLE.- If we Identify the r-Httle cube c^, with the (r+l)-little 

cube c^xl , we get a morphism of operads.

£  r ■“ ^ r +1

given by the inclusions ^ p(n)c l£r+1(n). We can define a new operad
oo

'fym by lf«,(n)= u f r(n) and we get inclusions c , for any r.

2.5 DEFINITION.- Let £  be an operad and X a space. We said that 

X is a j* -space if there is a morphism of operads

h -

that we call a l£ -action on X.

Notice that G is given by a sequence of maps 

6>n:^(n) x Xn -*-X

commuting with the composition law and the s^-action.

2.6 DEFINITION.- An operad #  is an Em-operad if, for any n,^(n) 

is contractible and the ^-action on ^(n) is free.

A space X is an E„-space if it has a ^ ’-action for some Ew-operad

c.
2.7 EXAMPLES 1) £ m is an Ew-operad since the Enaction is obviously 

free and X  (n) is contractible for any n (see E21 ] ).
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2) ^  1s an E^-operad since the j^-action Is free and (n) has 

the homotopy type of the space,

F( Of", n) » {(x1 .... xn)c C0f)n : xi t Xj for 1j<J j (see [17]]

and
F( 0T,n) Is contractible ([11] ).

2.8 PROPOSITION.- Let X be an Infinite loop space. Then, 1t has a natural 

^-action (in particular, any infinite loop, space is an E^-space).

Proof.- Let Yr be such that X= nrYr. We define the maps 

0 n: £ r(n) x (orYr)n - arYr ,

where ® n((c^.... cn); fj,...,fn) : (Ir, 3Ir) (Yr , *) is the map sending
-1 ^

any x,lying in Im c4 to f,(c. («)) and any point outside u Im ct 
1 1 1  1«1 1

to the base point.

These maps produce a j£r-act1on on X. So, X 1s a J2r-space for 

any r, and, as such actions are compatible, X is a ^-space.

□

The recognition principle is a partial converse of this result.

2.9 THEOREM.- [ 2o ] Let X be a connected E^-space. Then X has the 

weak homotopy type of an infinite loop space.

□

Now, we define the space BU, in a way appropriate to prove that 

it Is an infinite loop spaces.

2.10 DEFINITION.- The Stiefel manifold of k-frames In ln is defined 

as the space

Vk n* {(Xj.... Xk) e (Cn)k: (Xi} *  ̂ Is orthonormal },

with the topology induced by (C11)^ .
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\

The Grassmann manifold of k>planes in Cn is the space

Gk ns V is a k-dimensional complex subspace of Cn } ,

with the quotient topology of the map

* : ^k,n+ Gk,n

that sends each k-frame into the subspace that it generates.

Over Gk n , we define the k-dimensional complex vector bundle y k 

by E ^  = {(x,V) : xc.Ve G k>n }

Using the isomorphism Cn* lkx tn“k, we can consider Gk as the 

set of k-planes in Ckx Cn“k .

Identifying a k-plane in Ckx Cn“k with the one in CkxCn+^~k 

given by inclusion

rn-k » rn-k rn. -n+l-kI -+ C x{0} -»• C ,

we have an inclusion Gk n c Gk n+j , and we define BU(k)=

k «
In the same way we have y - Yk

n*k K’

u G, 
n=k k,n

2.11 THEOREM [23],«BU(k) classifies classes of isomorphic k-dimensional 

complex bundles over any paracompact space, and y is its universal bundle.

□

Identifying a k-plane V c Ck x Cn k with thefr*<|-plane

C • V c Ck+1 x C n"k we get an inclusion Gk n  <= Gk+1 n+1 and in the

limit we have BU(k)c BU(k+l), so we can define BU=5 BU(k).
k»l

2.12 THEOREM [23 >  BU classifies 7T»H» •( complex bundles over

any paracompact space. □
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Let U(n) be the group of unitary automorphisms of Cn and

k l
U(k.-t) the group of unitary automorphisms of C x f  . Then we have the 

following results.

2.13 PROPOSITION.- The map

« : -llf e a .  . 6k n
U(k)*U(n-k)

t,
given by o([g]) = g( | x{0} ) is a homeomorphism

Proof.- As both spaces are compact Hausdorff, it is enough to see that 

a is a continuous bijection.

a is continuous since it is the map induced by the continuous map

tx : U(k, n-k) - VR>n

given by ¡ ¡ ( g H g ^ ) .... gtek)) where (e1 ,...,en) is the standard

basis of Ck x tn"k .

The bijectivity of a is immediate.

□

2.14 THEOREM.- In the limit, the maps

a : u.(.k.»*J—  ^ BU(k)
U(k)xU(»)

and

a : ---  - BU
u(.)xU(-)

are homeomorphisms.

Proof.- It is an immediate consequence of 2.13 and the fact that the 

maps a commute both with the Inclusions Gk n c Gk n+1 and

Gk,n c Gk+1 ,n+1 *

□
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2.15 REMARK,« By 2.14, a point xcBU, can be Interpreted either as 

a subspace of C*x t" of the .type ...»€•...•!• VO {0} »,..§ {0} •..., 

.where V is a k-dimenslonal subspace of some l^x C11"^ , or as a class 

of unitary automorphisms of C*x t” .

Also, by fixing a bijective linear isometry C*xC" % I* we 

have both interpretations with l" instead of t* x I* .

2.16 THEOREM BU has the homotopy type of an infinite loop space

Proof.- We want to prove that BU is an -¿^-space, so we need to define 

maps hn :£j.n) x(BU)n •> BU .

Let be ge ̂ ( n )  and x^eBU for 1=1.... n. Chose automorphism

f. : C“x t" - C“x C“

representing x... Then, hn(g; Xj.... xn) is the class of the automorphism

f : C"x C” - f x  C~

defined as follows:

t g( the complexification of g . 0* Im(g( x , f is the 

unique map that makes the following diagram commute

(C“x C " ) ( c " ) nx(C")n_ 9£?L~>C"x f  

f ̂ x *»• * fp

/»— r»,n sh / n # n •= ,=(l xC )------ > (C ) x(C ) -------- > C xt

, where sh is the appropiate reordering map.

On the complementary subspace of Im(g{x g^) we define f as the 

identity.



It is easy to prove that the class of f i 

choice of f. and that the maps hn so defined, 

composition law and the Enaction.

Now, we define the map

n : Q BU(1 ) -*• BU

independent of the 

commute with the

□

as the unique map of infinite loop spaces extending the inclusion.
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§2.2 The space Q BU(1)

We give a sketch of the proof of the approximation theorem for the 

space QX, when X is a connected space, and look with some detail into 

the case X= BU(1). To do it we need to develop the concept of a coefficient 

system (see [ 9  ]).

2.17 DEFINITION.- The category a has as objects the finite sets:

n - (0,1 ,..., n}

based at 0, and as morphism from n to m , all the Injective based maps 

^ ! n -► m «

It is easy to see that any such map 4 decompose as the product 

of a permutation aCEp and an injective order-preserving based map from 

£  to m, 4 . Also, any injective order-preserving based map, $ , decomposei 

as a finite product of "degeneracy" maps

aq,n : —  ■*" Hil for ('= 0.... n

where

/ <
\ i + l

if 1 s q  

if 1 > q

2.18 DEFINITION.- A coefficient system, ^  , 1s a contravariant functor.

A -*■ Top*

where ^ ( 0) = { *}

From now on, we will denote ^  (n) simply by jpn , and f  n has

an obvious e -action, n

Notice that to know on morphisms we only need to know it on the 

elements of En and the "degeneracy" maps.
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2.19 EXAMPLES.« 1) Any operad, 'ty , has associated a natural structure 

of coefficient system taking Ç»n= £ (n). \p(o) is given by the ^-action

on i£(n) for any aeEn and aq n* j^(oq n) is the map given by

Cqfn(c)= ♦(c »*q) for any c«£(n)

where sq= (1.... 1 , * , 1 .....1 )e f (1 )% p(0)* f  (1 )n~<l .

2) The Stiefel coefficient system. [fn is defined as follows:

On objects

L^,>n= vn,«T { v̂l.... vn)«( O n: ivi} is orthonormal }

= {$: IRn -► IR" : $ is an Injective linear isometry)

For any injective based map <)eA(n»m) we define the associated 

injective linear isometry

$ : Rn r"1

given by

♦(Xj.... Xn)=(0,...,Xj,...»Xg,..., x .....0 )

l ! Î
♦ d )  *(2) ♦(n)

and the map ÿ = (/($) is given by composition.

3) Let X be a space. The coefficient system f(X) of configurations in X 

is defined as follows:

On objects

/=tX)n ■ F(X»n)« {(X],...,xn)£ /*: x ^  Xj for any i/j >

For any injective based map $eA(n,m) we define the map

* : F(X,m) -► F(X,n) 

by

♦(xl...• *xm ) * (x^^j.... x^^„j)

r
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2.20 DEFINITION.» A morphism between coefficient system f If is

a natural transformation between the functors and#*.

Notice that the associated maps fn: are maPs of En-spaces.

2.21 EXAMPLES 1) Any morphism between operads induces a morphism between 

the associated coefficient systems.

2) We define the morphism.

- n * m)

given by the maps

that sends each little r-cube to its center and the configuration we get 

in int I" to R" by a chosen homeomorphism

3) We define the morphism

b: &m - r art
given by the maps

V  vn.. * *(*'•>

that send the n-frame {x.}n to the . > -  IR- ,

4) We define the morphism

a : X. *
given by the maps

an:Z _ -*• Vn n “ ,n n,»

where

an(f) - (f(en )....fC«ln))

where (e. .} “ is the standard basts of the tth factor of (IR*)11 .
J 1 j»l

Now we associate, in a natural wa# to each coefficient system, ̂ , 

a construction on topological spaces denoted c.
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2.22 DEFINITION,- Let ^  be a coefficient system. We define the functor,

c: Top* •+■ Top*

as follows:

For any based space X

-LL & «r
r=0 y t

c X = ----- --------<v>
00

» the quotient of the space JJ_ xXr by the equivalence relation
r=0 ' r

generated by the relations

(c ♦» xi.... xr) % (c » X^1 )** * * ,x$tr)^ ^or an^ ♦cACL»£)
wLc-c * a • * */ » 4 I«* i
For any morphism g: X Y, the map

e g  : c X + c ï

is given by

c 9( [(c; xi.... xr) ])= C(c; 9(x1),...,g(xr)) ].

Notice that for any morphism of coefficient systems f: j£ •

we have a natural transformation f: c + c' given, for any space X, by 

the map

fx : c X + c' X

defined by

fy( |(c: Xj,...tXp} |) = |(fp(c); x^,...,xr)|

2.23 REMARK,- If we define

r
Fn c X * Im C _U_ t, x xr - cX ) 

r*0 ' r

We get a natural filtration of c X, that is preserved by c g 

for any map g: x -► Y so we can consider the functor c taking values 

in the category of filtered topological spaces.
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Also, for any map of coefficient systems f; ^  preserves

the filtration, so the natural transformation f can be considered too 

in the category of filtered topological spaces.

2.24 LEfWA l9 1- i) The inclusion Fn_i c X + Fn c X is a cofibration 

ti) the diagram

Now it is easy to prove inductively the following

2.25 PROPOSITION C 9 3 .•• Let f: ^  be a morphism of coefficient

systems. Then,

i) if, for any n^En acts freely on If n and If ‘ and ffl is a weak 

homotopy equivalence, then f ̂  is a weak homotopy equivalence for any X.

ti) if, for any n, fn is an equivariant homotopy equivalence, then 

fx is a homotopy equivalence for any X.

2.26 DEFINITION.- Let X be a based space. The map

n

is a push out, where <jn .n-i-1

a n : cn X * 1,11 s" x

is given by:

is tha map that sends a point t elm c. to (c,^(t),x) and any point 
r 1 •

tJ u Im c. to the base point.
M-l 1

As the are compatible, in the limit we get
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2.27 THEOREM ([20]),. If X is connected, then ^  1s a weak homotopy 

equivalence for any n (even n* •).

2.28 COROLLARY.-* If X Is connected and 1s any of ^  or

^  c X has the weak homotopy type of QX.

Proof.- The maps a»B»^ of 2.21 satisfy 2.25 so any two of the cX 

have the same weak homotopy type. Thus by 2.27 each one has the weak homotopy 

type of QX.

In particular, we want to study the space F( 01“) (DU(1)) since It 

has the homotopy type of Q t)U(l).

2.29.- DEFINITION.- Let G be a group. Then, En / G is the group of 

(n*n)-matrices with entries 1n G such that each row or column has a unique 

non-zero entry. The composition law is given by the product of matrices and 

the law in G.

If G-U(l), we have an obvious inclusion 

En /U(l) cU(n).

and using 1t, we can interpret the elements of z /U(l) as unitary 

transformations of Cn that act by permuting the elements of the standard 

basis and multiplying them by modulus one scalars.

2.30 PROPOSITION.- If we define B(rn /U(l)) = ---- -----------  , then

(En /U(l))xU(.)

it is the classifying space of En /U(l)-pr1ncipal bundles.

Proof.- With this definition, it 1s easy to see that B(zn /U(l)) 1s the 

quotient of EU(n) » the total space of the universal U(n)-pr1ncipal bundle, 

by the En /U(l)-action induced by the inclusion £n /U(1) c U(n).

)



Since EU(n) is contractible and the zn /U(l) action Is free the quotient 

is the classifying space of En /U(l)-principal bundles ( [30) ).

We define

Let

P „ : B /U(l) -*■ BU(n) as the limit map of

. . ___U(n,m)________ f ll(n,m)

" ,k I/UCIJxUH (> U (n)x'J(m)

V  F d O j x ^  BU(l)n - B ^ / U t l ) )

be a map classifying the )-principal bundle

F(R*\n)x EU( 1 )n -*■ F( IR*\n)x BU(l)n .
£n

then we have the following results.

2.31 PROPOSITION.- qn is a homotopy equivalence.

Proof.- EU(1) and F( IR",n) are contractible , so F( R**,n)x EU(l)n is 

a contractible space. As the obvious En J  11(1) action is free, the 

quotient space F( R*\n) x ^  BU(l)n is a classifying space for

^ U(l)"principal bundles and F( IR , n)x EU(n) is the universal bundle • 

( [30] ), Thus the map qn that classifies it has to be an equivalence.

2.32 PROPOSITION.- The diagram

F( P“,n)x BU(i)n-------—

* F( R ,n-()x BU(|)n-t %-i ■*B(In_(/U( |))
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commutes up to homotopy , where the map Tn 1s given by a chosen 
In_j -equlvarlant Inclusion of F( |R*n-1) 1n F( P",n) and the fight hand

vertical map 1s Induced by the Inclusion of groups.

Proof.- It Is easy to see that the r n /U(l)-pr1nc1pal bundle classified by 

the map qn*Tn has a reduction to the pull-back by qn_j of the universal 

sn> l /  U(l)-princ1pal bundle.

By Induction, we choose maps

that are homotopy Inverses of qn and ,a1so, they commute the above 

diagram .

Now , we define in as the composition

%  : H  V U( 1 » --------> F(«R-,n)wr BU(l)n
n

B(rn /U(l))---- FOR-.n)*t BU(l)n---------------- > Fn( F( R-)(BU(1)))
n

2.33 PROPOSITION.- The diagram
inB(rn ;u(D) ♦ Fn(F( IR*)(BU(1)))

comr.i/tes up to homotopy.

Proof.- It follows immediatly from the definition of 1n .

We choose a map

B(l*;u(l))— ^F( |R-)(BU(1 ))

such that 1. Blt*/U(l))~1n
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CHAPTER 3 . Definition of the Characteristic Classes c k .

As seen in chapter 1, to define ck e H2k(bU;Z), it is enough to 

give the corresponding maps:

ck : E* DU -*• E2kIII Z.

They are the composite maps

z°° bll l r00 1 bU(l) \  TV<k) \  E2 k H 2 >

where T is defined in §3.1 follo\/ing [271 , hk is the splitting 

map of §3.2 (see l9J ) and tk is the Tliom class of the bundle

Y{k) = F(IR°\ k)x (Y)k .
\

§3.1 The map x ; BU -*■ Q liU(l)

The construction is done by inductive use of the "transfer".

3.1 THEOREM ( L4J ).-Let 5 be a fibre bundle over a finite complex B, 

with fibre a compact G-r.ianifold, where G is a compact Lie group. Then, 

there is a stable map, called the transfer map,

t( C) : B+ ■* E+

such that the composite of the maps induced in singular cohomology, with 

coefficient in a ring R,
* *

M*(B; R) l H*(E;R) \  H*(B;R)

is the multiplication by x(F), the Euler characteristic of F.

Moreover, the construction is natural with respect to morphisms of 

fibre bundles.



3.2 THEOREM.- Let

Pn : B in /U(l) - W(n)

be the map defined in 2.30. Then, there is a stable map 

tn : BU(n)*- & In /U(l)+

that is the right homological inverse of pn .

Proof.- The bundles,

pn>k: -U (n>k)______  . .U (".fc)

(ln/U(l)MJ(k) U(n) xU(k)

have fibre the U(n) manifold - U (n)—
y u m

By 3.1 there are stable maps,

t ,/_!!L"..fc) )* .  u(r ,k)_____ )♦
’ l U(r)xU(k) / | V U(l)»(k) / ,

such that pn k . x k induces in singular cohomology multiplication 

by X( U(n)/yU(l)) = 1 (by [15] ).

As the Tn,k conr,,ute w1th the Inclusions, there is in the limit a 

stable map,

\  : BU(n)+ - B^/U(l)t

such that the map P°Tn induces the identity in singular cohomology. 

Thus ^  is the right homological inverse of pn .

To be able to take the limit of the we use the following
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3.3 THEOREM [27].- Let 5 be a fibre bundle with fibre the compact 

G-manifold F, for G a compact Lie group, and $G the associated G-prin- 

cipal bundle. Let be a G-submanifold of F and N an equivariant 

tubular neighbourhood of F, in F. If there is an equivariant vector field 

on F such that the induced vector field on 3N is homotopic to the 

outward normal field through a homotopy of non-zero vector fields, and the 

vectors have moduli 1 outside N, the diagram

T(P')
B,+ (E F-, )+

commutes.

3.4 THEOREM.- Let

: Be0O /U(1) - Bu

be the limit of pn> Then, there is a stable map, 

T- : BU+ + Be^ /U(l)+

that is the right homological inverse of p^ .

Proof.- Snaith proved, in [27] , that the inclusion

U(") U(n*D

satisfies the hypothesis of 3.3, so the diagram.

BEn /U(l)+

commutes.
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The diagram of U(n+ty£n+1 /U(l) bundles

EU(n+l)
xJ(n)

U(n+1)
--- • BU(n)

BU(n) uv"; rn+i/U(l) i

^ ll/nilt
— • BU(n+l)EU("+D *U(n+1 )— ^(>1+1) 

U(n+,\ +1/U(l)

commutes; so, by naturality of the transfer, the diagram

BU(n)
I .

+ “ ----- *(EU(n+l)| x U(n^l)
BU(n) U(n+1) rn+1 U(l)

BU(n+l)+----!niU|EU(n+i)
U(n+1)

*U(n+l)
zn+l /U0 )

- BEn+l W

commutes.

Thus, the diagram

B £n /U(l)1BU(n )+ —

1 , 1
BU(n+l)+ J S Z U b En+1 /U(l)+

commutes, and we get in the limit a stable map 

t. : BU+ - Bew /U(1)+

that is, obviously, the right homological inverse of p

Ai \«* C i 3 , A*»*

t. : BU -► BEa,/'U(l)
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3.5 DEFINITION.- Me define the map T : BU -*• Q BU(1) as the composite

? Q(i ) c
BU " Q BEw /U(1) Q Q BU(1) - Q BU(1),

where 7m is the adjoint of the stable map T<i> .

3.6 LEMMA [27] .- The maps

i _
B U(l) J1 Q BU(1) + BU and

Pn
B 1̂ / U(l) +n BU(n) C BU 

induce the same homomorphism in homology.
□

3.7 THEOREM [27j .- T is the right homological inverse of n .

Proof.- By 3.6, for any n, not I induces in homology the same map
lBU(n)

as pno tr , i.e. the identity.

□

3.8 COROLLARY.- t is the right homotopical inverse of n •

Proof.- It follows directly from 3.7 and the Appendix.

$3.2 Stable splitting of the space c X .

In this paragraph, we study the splitting of the space c X in the 

wedge of less complicated spaces Dn(£,X), for any coefficient system £.

3.9 DEFINITION.- Given a coefficient system 4 and a space X, we define

Fn c X
Dntf,X) «

Fn-lc X  ‘
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As any morphism between coefficient systems Ç induces a

map f^ : cX -*• c'X preserving the filtration, 1t induces also maps

fn : Dn ^ »  x> - Dn ^ ' ’ x)

3.10 PROPOSITION [9].- Dn( X) is homeomorphic to the quotient

e«\  X"/ °„* •

Proof.- The map € * Xn -► Fn c X ' * D„( X) sends C *  « X -----  rn n n * r ' rn l  n

to the base point, so it induces a map

^ V "  . y i ? . * )

f»V "x
It is easy to see that it is a homeomorphism.

As there is an obvious homeomorphism,

*" C  ». X «n r

Pn £n "
£ x {*>
pn r_

where X ^ =  A  X is the nth smash power of X , D (1?, X) is 
i=l n

also homeomorphic to the latter space.
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M l  PROPOSITION.- Let f:£ -♦ £  be a morphism of coefficient systems. Then

1) If . for any n %t n acts freely on £ n a n d ^  , and fn is a 

weakhomotopy equivalence, so is the induced map fn .

it) if , for any n , fn 1s an equivariant honotopy equivalence, then 

the induced map fR Is a homotopy equivalence.

ii .*

3.12 DEFINITION.- Let $ be a coefficient system, and we define
. / n 1 M Jn«l i.jfft».. k -*2

P|c ■ f|c/Ek * If r ** (k/ and the set 1s {+,.... * r > ,

we define the map

*k,n : ?n + 

by

tk,n(c) = ( Cc *\1.....CC *r ])•

We say that f is separated if Im 5^  c F(ek,»c) for any k,n .

3.13 EXAMPLES £  , tf, f( R“) and are separated.

3.14 DEFINITION.- Let jf be a separated coefficient system. We define 

the map

' 4, • * "  *  f( ek .«-) « »k( f. X)r 

as

Jk,nic;Xl»* * *»Xn )s(*k,n(c>J [c* l ^ (1 )»•••*x^ (»))]....

Ccv ix*r(i),,,,,V o o )] *9 • • • t
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As It 1s equivariant with respect to the actions of £ on the
n

domain and zr on the range, we have 1n the limit the map 

Jk : c X + F(*)(Dk(f, X)).

To get the splitting maps hk, we need a technical result of C9J

3.15 THEOREM.- There 1s a covariant functor, W, from the category of 

coefficient systems to the category of pointed topological spaces, with 

the following natural maps

1) A contraction of W( £) : i.e. a homotopy d: 0 «x. 1 .

11) For each k, an injection
ek : Bfc - M ( ^ )

111) An inclusion 1 : -U. W ( f ) - W (f)

iv) An inclusion j : R" W(#)

0

Notice that by 1) F(U(£))(X) has the weak homotopy type of QX, 

for any connected space X. He denote the equivalence as w.

3.16 DEFINITION.- Let $ be a separated coefficient system. He define 

the map

V  C X +k ^ k ^ V  £ ’X»  F"6k) F(U(£))(Dk(£,X)) " Q(Dk(?,X 

and hk is the adjoint stable map.

a

By abuse of notation hk and hfc represent also the restrictions to 

Fn c X, for any n.

3.17 PROPOSITION.- The map

hn : zm Fn c X - zm Dn0f, X)



- 40 -

1s Induced by the obvious Identification map.

Proof. • It Is Imnedlate since the map

f V * "  *'<«„*!>

1s given by the Identification.

□

fiow we can state the splitting theorem.

3.18 THEOREM [9].-Let ^  be a separated coefficient system. Then, the 

sum of the maps hj,..., hn

k„ ; r - F n c * . r  ^  0kU , x )

is a stable homotopy equivalence for any X and any n (even n=*>).

3.19 COROLLARY.- Let X be a connected space and Ç a separated 

coefficient system with fn contractible for any n. Then QX splits 

stably as the wedge of Dk( £,X).

Proof.- It follows from 3.18 since in this case QX has the stable 

homotopy type of c X.

□



S 3.3 Definition of ck *

We study the splitting in the case £ = |R") and X ■ BU(1). We

drop the index when there is no possible confusion. *

ip
J

3.20 THEOREM.- Let X* T U )  ^  the Thom space of the vector bundle e,

Then D^fX) is homeomorphic to T ( ^ k^) where 5^ »  F(F",k)>L. U ) k • 
K fck

Proof.- Choose a riemannian metric on 5 and let 0(5), S(e) be the 

associated disc and sphere bundle.

On we have an obvious metric induced by the one on 5. With

this metric we have.

P F O T ,  k) x D d /

k
S(ctk)) = FCIR“, k K  ( w DU)1"1 * S(0 xD(Ok_1 ) 

k i=l

and the identification map

F U R " ,  k)x_ D(Ok ♦ F ( R " ,  k)x T(c)k 

FOR', «) tK  t* J

Induces the homeomorphism

T(c(k)) - M n n )  -•
□

f k l
3.21 COROLLARY.- DR(BU(1)) has the homotopy type of T(yv ')

proof.- As BU(1) has the homotopy type of T(y), D^Bl^l)) has the 

homotopy type of D|C(T(y ) K ^  *’* > by 3.21,**^ »/ T ( y ^ ) .

D

m m m r n m m m a m m m m s m



As Y*n) is classified by the map.

F( R"* BU(1)k - Brk/U(l) 5* BU(K)

it has a standard orientation and Thom class, tk, induced by its complex 

structure.

3.23 DEFINITION.- The characteristic class cfc ‘ H2k(BU; Z) is the one 

represented by the stable map

*

E* BU l i"QBU(l) k+ r“Dk(BU(l)) - E- T Y(k) !k E2 k IHZ
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CHAPTER 4 : Characterization of ck .

In this chapter, we characterize the elements c^ e H2k(BU; Z ) in

terms of the universal Chern classes, fcn } . To do it, we evaluate
. " n £ N

the Kronecker product < cfc, a > on a basis of H2k(BU;Z), and we

use the duality between the singular homology and cohomology of BU.

any prime p, and to use the calculations of the singular homology with 

Zp coefficients for iterated loop spaces, as stated in the first paragraph.

For any space X, and any E^-operad £, cX has a natural structure 

of H-space ; so, H*(c X, 2 p) is a ^-algebra with the associated 

Pontrjagin product. Our aim, in this paragraph, is to describe it as 1t 1s 

done in C8 ] for any p.

4.1 THEOREM C8] ,C 101 .- Let $  be an E^-operad and X a £-space. Then,

The best way to evaluate < ck, a > , is to reduce it mod p, for

§4.1 Behaviour of the map hk in homology.

a) If p=2, for any, i,n, there are natural homeomorphisms,

such that

1) Q (x) * 0

11) q V )  = x2

if deg x > 1

if deg x * i .

b) If pj<2, for any i,n, there are natural homeomorphisms

such that
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t) Q V )  - 0

11) q V )  * xP

For use in the next definition, let

1f deg x >21

1f deg x - 21

be the Bockste1n map associated to the short exact sequence,

0 -  2 p -  z p2 -  Zp 0

4.2 DEFINITION.- a) If p=2, for any finite sequence of natural numbers,

I * ^ ....  ik). we define its length as £(I)=k, and the associated

homomorphism

I *1 *k
Q - Q ' o . . .  oQ •

We say that I is admissible If, for any j, 21j » 1 ^  .

b) If p/2 , for any finite sequence of natural numbers

I*( ei»ii»e2»'*2....  v V ’ where» for any j I s  equal to 0 or 1

and 1j > ej , we define its length as £(I)*k and the associated 

homomorphism

Q
I E1 J l  E2 B o Q oB 2 Gk ’k o .. .  o B o Q

We say that I is admissible if, for any j,
PV  Ej * V l  *

Now, we can state a result giving the structure of H*(c X, Zp) In 

terms of H*(X; Zp), valid for any prime p.

4.3 THEOREM [8] , [101-Let ( y  be a basis of H*(X;Z) as
a*A "

Z p-module. Identifying xq with Its image 1n H*(cX;Zp) under the 

inclusion X c c X ; H*(c X; Z p) 1s the free graded commutative algebra

generated by the set

(Ql(xa ) aeA and I 1s admissible) .
n
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So, H*(c X; Z ) is generated as Z  -nodule by the set 
P p

! 1 h
(Q (x _ ) Q (x„ ) ••• Q n(x ):neW, a-«A and I. is admissible, “ 1 0 2  cy, • i

for any, i > .

To state a similar result for Ft(c X), we need to define the height
I,

of such monomials. For any x= Q 1(x ) ... Q "(x ), its height is

n t[I.) 
h(x) - r p 1-1

4.4 THEOREM [241- Let {x } be, as before, a basis of H*(X ;ZZ )
° aeA p

as 2p-module. Then, the inclusion induces a monomorphism in homology

H*(Fk c X ; Z p) -H*(c X ; ZZp)

with image the Z p-module generated by the monomials of height less , or 

equal than k.
□

With this, it is easy to prove.

4.5 THEOREM.- H*(Dt f £, X); Z ) is isomorphic, as Z n-module, to the one 

generated by the monomials of height k.

Proof.- As the inclusion Fk_j(c X) c Fk(c X) is a cofibration, we have 

H*(Dk( £, X); Z  ) ^ H*(Fr (c X), F ^ c  X);Z ).

By 4.4, this inclusion induces a monomorphism in homology, so the 

long exact sequence splits, giving.

0 - H*(Fm (c X); Z p) -  H,(Fk(cX);Zp) - H*(F|((cX),Fk.1(cX); Z p) » 0. 

As Z p is a field, this exact sequence splits giving an isomorphism.
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H*CDk(0,X ) ; Z p)
H«(Fk(cX);Zp) 

H*(Fk_1(cX); Z p)

, and the Z p-module on the right is generated by the set of monomials 

of height k.

□

4.6 THEOREM.- The stable map h^ induces 1n homology the map (hk)* 

which sends each monomial of height k to itself and all the others to 

zero.

Proof.- As the triangle.

commutes, all we need is to know the action of p^.

By 4.5, it is obvious that pk sends the monomials of height k 

to themselves and any other to zero.

□
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§4.2 Evaluation of < c^, a > .

We are going to use the classical result on the homology and cohomo­

logy of BU:

4.7 THEOREM [30].-Let cne H^n (BU; Z) be the universal Chern class. 

Then
*

i) H (BU; Z) is the free graded commutative Z- algebra generated 

by them, l.e.

H*(BU;Z) - Z  [Cl,...,cn....  ] .

* *
If pp : H ( : Z) -*• H ( ; Z p ) is the natural transformation 

Induced by the projection Z -*-Zp , we have.

★
ii) H (BU; Zp) is the free graded commutative Z p-algebra generated 

by the images Pp(cfc); l.e.

H (BU;Zp) Zp [ Pp(Cj),..., Pp(cn)»***] • and

ill) The induced map,

Pp: H*(BU; Z) - H!(BU;Zp),

sends cn to Pp(cn) and reduces the coefficients mod p .

□

4.8 THEOREM [30].-There are elements ap c H2n (BU(1); Z ) such that

i) H*(BU(1);Z) is the ZZ-module generated by (a_}
n nclN

11) H*(BU;Z) 1s the free graded commutative Z-algebra generated by 

the Images under the Inclusion BU(1) c BU, that we call also an 

1 .e.
H*(BU; Z) * Z  i:a-| •..., an,... ] .
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The same results are true with homology with coefficients In TL and
P

the elements Pp(an)» an<J the map Pp , 1s Induced by reduction of 

coefficients mod P, rs before.

□
The action of the map

t : BU -*• Q BU(1 )

1n homology, 1s easy to calculate using that t is a map of H-spaces 

(C 27 D ).

4.9 THEOREM.- The map

t* : H*(BU;Zp) - H*(Q BU(l);Zp)

1s the inclusion ; 1.e., T*(pp(ar^,...,P p (arJ ) =  p ^ )  ... Pp(ar )

Proof.- As t 1s an H-space map, all we need 1s to prove that 

t*( Pp(an O =Pp(an)» s*nce T* commutes with the Pontrjagin product.

Recall that t was constructed inductively starting with 

T1 = ^BU(1) : BU(1> -*BU(1)

so the diagram

BU(1)------ * BU

I 1
Q BUtl)

commutes, thus T*( Pp(an))= Pp(an) •

/l ) k
The last calculation we need 1s < p( t '), pp(a ,) > , where

00 001s the Thom class of the vector bundle Y
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4.10 PROPOSITION,- Let s be an oriented vector bundle over a complex B 

with a unique 0-cell, {*}. Giving to T 5 a cell structure .with the the 

suspensions of the cells of B, the Thom class t($) e ̂ (Tj ., Z) 1s repre­

sented by the cochain that has . value 1 over the q-cell p"^({*}) and 

0 on any other cell.

Proof.- By definition, 1f

j : S1* - T(e)

1s induced by the Inclusion p“1 ({ *} ) -*■£ C , t ( 5) 1s the Thom class 

If J (t( e)) 1s a generator of H (sH ; TL ). As j 1s a cellular map, 

t(5) 1s 1 evaluated on p-1({ *} ) and this is the only q-cell of T(e).

□

4.11 PROPOSITION.- The element Pp(aj)k e H2k ( T y ^ . Z p )  1s represented 

by the cell {*} x̂, D(y| 2 )k.

Proof.- By Cl5 ] this cell represents pp(a1)k 6 H2k^Dk^ ^1 *s2)»2 p)*

So, taking cellular maps

Dk( S2) Dk(^,BU(l)) » TY(k)

we can consider Pp(a1)k represented by the same cell, 1n H2(((TY^k^vZp)

□

4.12 COROLLARY.- For any P,

<Pp(tY(k)) . Pp(a ,k)>- 1

Proef.- It 1s immediate, since by 4.10 Pp(ty^) is one on the cell 

representing pp(a, ).

□

4.13 THLORE'l.- For any prime p
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P p(ck) = f\>(ck) « h2I< (BU • Zp)

Proof.- We evaluate p^(ck) on the basis of monomials In p n }
n eIN

< p|3(ck)* P p ^ i ^ ” * P|,(»in )» ■ <t"hJ(tYik,).(|)(aii).... ^(a. )

* (by natural1ty of the Kronecker product)

* <^(y )»^k* T*(Pp(a-ĵ )»•••»f^(ai )) > *

(by 4.9)= <t(y ), *•«*(pp(ai^) Pj)(ai ) >

To be non-zero the last product, we need,

h(pD(at )»*...pD(a. ))= k , so n=k
' 1  ” 1 n

and

Then

^ 9  (pp(a-f i)»• * * »Pp(aih) )* 2k • so Pp(a1i)...pp(aik)=Pp(ai)k

< Pp^ck^>pp̂ ai ^ ... Pp(a-j ) * s '

1 If Pp(a1j)**‘Pp(*1 )= pp(ai)k

by 4.12

otherwise

As Pp(ck) 1s the dual of Pp(a1)k with respect to the basis of 

monomials in PD(an)» tt P p (c k ) .  ( see [6] ).

2k/4.14 THEOREM.- Ck = ck in HtR(BU;2)
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Proof.-

icn>ne H

A

By 4.8, ck 1s a homogeneous polynomial of degree 2k 1n

and the coefficient a. . of c< ... c. satisfies
i **• M  1n

1) a, t i )  5 0  mod p ,  for any p, 1f c. ... c, i c. , 
i n  M  'n K

SO a. . * o ,
'1 ••• *n

11) ak = 1 mod p, for any p, so ak = 1 , 

thus ck = ck .

□
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CHAPTER 5.- Some results on immersions.

The next goal of this work, is to get a geometric interpretation of 

the elements

ck(C ) £ H2k(M;Z)

,for any weakly complex manifold H. In order to do that, we assume we have 

a complex bundle on M, c , classified by a map

7*1» «.i lift* To ,v.Ap

f5 : M * BU ,

f T
f' : M -»• BU •«. Q BU(1)

tAot a nice geometric interpretation, given in [17] , that

we analyse in the first paragraph. The second one deals with the action 
*

of the map hj. on this interpretation. The last paragraph looks Into the 

advantages of working with extensions in good position.

From now on, we shall work, when required, in the category of smooth 

(or C" ) manifolds and maps. For each manifold M, T M is Its tangent 

bundle and T ii 1s the fibre over x e M, and for any smooth map 

f: N -*■ M, d f is the differential and it 1s a morphism of vector bundles

d f : T N -► T H

55.1 Immersions and L M, F( K ” , T(?))J.

First, we recall some facts about immersions. t

5.1 DEFINITION.- A map f: H -tH is said to be an immersion If, for any 

x £ N, the map
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CHAPTER 5.« Some results on immersions.

The next goal of this work, 1s to get a geometric interpretation of 

the elements

ck(C ) £ HZk(H; Z)

,for any v/eakly complex manifold M. In order to do that, we assume we have 

a complex bundle on M, e , classified by a map

/i/f> to n. v».«.p

f5 : M -► BU ,

f T
f' : II BU -► Q BU(1)

Tfiot a nice geometric interpretation, given in [17] , that

we analyse in the first paragraph. The second one deals with the action 
★

of the map h|, on this interpretation. The last paragraph looks into the 

advantages of working with extensions in good position.

From now on, we shall work, when required, in the category of smooth 

(or C- ) manifolds and maps. For each manifold M, T M is its tangent 

bundle and Txi! is the fibre over x c M, and for any smooth map 

f: N + H, d f is the differential and it is a morphism of vector bundles

d f : T N T 11

55.1 Immersions and I. M, F( R°°, T(e))J.

First, we recall some facts about immersions.

5.1 DEFINITION.- A map f: N -t M is said to be an immersion 1f, for any 

x £ N, the map
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dV Txri - Tf(x)M

is a monomorphism.

Sometimes, it is useful to use the following characterization.

5.2 PROPOSITION.- A map f: N M is an immersion iff the induced map

TN -► f* TM

is a vector bundle monomorphism .

Proof.- It follows immediatly from the definition.

□
Also, we shall use the existence and uniqueness of tubular neighbour­

hoods for immersions.

5.3 THEOREM.- [14].„Let f: N -v M be an immersion. We define its normal 

bundle as

f* TM 
v = ------

TN

Then,

i) There is an extension of f to an immersion 

T : v M

ii) Any two extensions are regularly homotopic relative to f.

Now, we can state the geometric interpretation of [M,F(IR*, T(c))] 

in terms of immersions.

5.4 DEFINITION.- Let ; be an n-dimensional vector bundle over B. We 

define J (M, c) as the set of bordism classes of triples (N,g,g), 

where
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i) The map g= (f,e) is an embedding such that f: N -► M is an 

immersion and e : N -*• R* is a map.

ii) Let v be the normal bundle of the immersion f. Then, the 

map g is a morphism of vector bundles

is the map e .

J (M,ç) is made an abelian group with the composition law induced 

by the disjoint union of manifolds.

5.5 DEFINITION.- Let M be the one point compactification of M . We 

define the map

as follows:

For any element of we choose a representative (N,g,g)

and then we extend f to an immersion 7  : v ->• M satisfying,

i) The map ( 7, e® ) : E M x.jf is an embedding, and

9

and the projection

N * BÇ*R°°+IR®

S:3(M,;) -  fM, F ( R “ , T(ç))i

ii) There is an integer n such that, for any m e M, f ^ m )  

has at most n-points.

Now, the map B(I N,g,gl ) is given by



i) The map g= (f,e) is an embedding such that f: N -► M is an 

immersion and e : N -*• F* is a map.

ii) Let v be the normal bundle of the immersion f. Then, the 

map g is a morphism of vector bundles 

9
E ------- ► E x IR
v C

I ¿1 J .
N --------* B?x K

and the projection
g‘l

N - Bç * « T + I R *

is the map e .

"J (M,c) is made an abelian group with the composition law induced 

by the disjoint union of manifolds.

5.5 DEFINITION.- Let M be the one point compactification of M . We 

défine the map

S:3(M,ç) - [M, F( IR“ , T(ç))t

as follows:

For any element of ^(M.c) we choose a representative (N.g.g) 

and then we extend f to an immersion 7  : v -*■ M satisfying,

i) The map ( 7, e° ) : E y ■* M x if is an embedding, and

ii) There is an integer n such that, for any m e M, f^fm) 

has at most n-points.

Now, the map 3(C N.g,^ ) is given by

f f e( r?v(x)) : xef’^(m)) if melm 7  . 

B( C(N,g,g) i )(m) = <
★ otherwise.
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5.6 THEOREM fl7j.~ g is a group morphism, with the group structure on

[ M,F(F°°, T(£))] given by the H-space structure of F ( F “ ,T(c)).
□

§<5.2 k-tuple points and the action of h* .

First we describe the space of k-tuple points.

5.7 DEFINITION.- Let f: X ■+Y be a map. The space of ordered k-tuple 

points of f is the subspace of F(X,k).

Xk = {(x!.... xk) e F(X»k) : For any i, j f(xi )= f(Xj) }.

We define the map fk : Xk -► Y by fk(x1,... ,xk)= ffx^.

Then, the following property is a direct consequence of the defini

tion.

5.8 PROPOSITION.- Let fk: F(X,k) + Yk be the restriction of the kth 

power of f. Then,

i) Xk = (fk)_1 (diagk Y)

- fk\
ii) fk is the composite, Xk-----* diagk Y * Y .

□

5.9 DEFINITION.- The space Xk has an obvious j^-action, given by restric-
k

tion of the action on X given by permuting factors. The space of 

k-tuple points of f is the quotient

Xk = V Ek ‘

The map fk is ^-invariant, so, it induces a map fk: Xk ■* Y.

To repeat these constructions in the category of manifolds, we t»<w« f. **« 

"self-transverse" maps.



- 56 -

5.10 DEFINITION.- Let f; N M be a map between manifolds, and M ‘ a 

submanifold of M. IJe say that f is transverse to M ‘ at xcN if it 

satisfies either

1) f(x) J M'

or ii) Tf(x)M- d f(Tx N) ♦ Tf(x) M' .

He say that f is transverse to M' if f is transverse to M* at 

x, for any xcN.

5.11 PROPOSITION [12].- Let f be transverse to M ‘, then f”l(M') is 

a submanifold of N and it has the same codimension as M' in M.

□

5.12 THEOREM [12].-Let C°°(N,M) be the space of all smooth maps from N 

to M, with the C"-Uhitney topology. Then, for any M'y submanifold of 

M, the set of maps transverse to M 1 is dense in C°°(N,M).

□

5.13 DEFINITION.- Let f: N -*• M be a map. Vie say that f is selftrans- 

verse, if , for any k, the map fk is transverse to diagk(M).

5.14 NOTE.- As in 5.12, the set of self-transverse map is dense in 

C”(N,M) ( [12] ). Since the set Imm(N,M), of immersions of N in M, 

is open in C“(N,M), the set of all self-transverse immersions 1s dense 

in Imm(N,M).

Now, we relate the normal bundle of an Inmersión with the normal bundle 

of its k-tuple points.

5.15 PROPOSITION.- Let f be a self-transverse map. Then, for any k,

Nk is a manifold and fk is a map of manifolds.
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Proof.- By 5,11, Nk is a submanifold of F(N,k), that has the same

k *"
codimension as diagk M in H . The map fk is smooth since it is the 

restriction of a smooth map .

□

5.16 THEOREM.- Let f be a self-transverse inmersión and v its normal

bundle. Then, the map fk is an immersion, whose normal bundle v k is
* k

isomorphic to the restriction to Nk of v .

Proof.- The tangent bundle of a product of manifolds is the product of 

tangent bundle, so

T(Mk) » (T M)k and T(Nk) « (T N)k 

1/
Since F(N,k) is open in N , its tangent bundle is the restriction 

of (T N)k.

Also, the pull back commutes with the product, so 

(fk)*((TM)k) « (f*(TM))k .

1/
Then, the normal bundle of the immersion f 1s

(fk)*(T(Hk)) . (f*lTH))k . vk

T(Nk) (TN)k

The restriction of v .
1/

As f 1s transverse to diagk(M), the restriction 

\  - ( f V 1 d1agk(M)---» diagk(M)

k **
has the same normal bundle, i.e. the restriction of v to Nk .

To finish the proof we only need to observe that fk is the product
L

of f I and a diffeomorphlsm.

□
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5.17 PROPOSITION.- Let f be a self-transverse map. Then Nk is a 

smooth manifold, and fk is a map of manifolds.

Proof.- The reaction on Nk is smooth, free and properly discontinuous, 

so the space of orbits, N^, is a smooth manifold and the induced map, 

fk, is a smooth map ( [6] ).

0

5.18 THEOREM.- Let f be a self-transverse inmersión and v its normal 

bundle. Then, the map fk is an immersion, with normal bundle isomorphic

to the quotient of vk under the Enaction given by permuting the factors.

1/
Proof.- The reactions on F(N,k) and M are smooth, so they induce a 

Enaction on the tangent bundles and they are given also by permutation of 

factors.

kThe map f is Ek~equi vari ant, so the same applies to the map 

(d f)k and the inclusion TNk -► f*(TM)k is compatible with the Enaction.

k
Then, they induce a Enaction on v and it is given by permutation 

of factors, Thus the map

fk " V Ek 5 Nk " dia9k M

has normal bundle the quotient

f* (TM)/Ek f*(TM)k/Ek

V *  ‘ ~ ^ T
A

To end this paragraph, we study the action of the map hk on the 

geometric interpretation given by 5.6 .



5.19 DEFINITION.- We define the map e k ;7(M,;) +7(M, as

follows:

For any element of we can choose a representative (N,g,g)

where g=(f,e) and f is a self-transverse immersion. We also choose 

embeddings ek: Nk r ". We define

© (C (N.g.g)] ) = [ (Nk,g,,g<) ]

where,

i) 9* ■ (fk. ek), with fk the immersion defined in 5.9

11) g' = (f',ek), where ek is an extension of the embedding ek

to E , and f' is the bundle map,
\

" W k>

r  «  i
Bç(k)

given as a quotient by the j^-actlon of the product map of the restriction
"k

of g , and the map

E- - F( F “, k)
vk

induced by e.

5.20 THEOREM.- [17] The diagram

7(M,c) — -— » [ M, F( IR”, T(c)) ] 

D(M,c(k))--- *[H, F( F", T(c(k))) ]

commutes.
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s5.3 Pointed k-tuple noints and good position.

Before defining good position, we need to study the manifold of pointed 

k-tuple points and its normal bundle.

5.21 DEFINITION.- Let f: X -*• Y be a map. The space xk has a j;k  ̂

action induced by permuting the first (k-1)-factors. We define the 

space of pointed k-tuple points as X£ = Xk/£k  ̂ .

k tli
The projection of X in the k factor induces a map

that is Ek_.j-invariant so it induces a map fj| : Xk -*■ X

th

as

Notice that we can also define the space of i -pointed k-tuple point

xk1) ■ V * m

Then, the identification map

n (1) . x(i) ^ x(i-l)I. • *1, -► »

is a (k-i)- cover, and the diagram

n.

commutes.

5.22 PROPOSITION.- Let f: N + M  be self transverse. Then, any N^)
t* \

is a smooth manifold and f£ , R'*' are smooth maps.
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Proof.» fik is a smooth manifold and, for any i, the z ̂ -action induced 

is smooth, free and properly discontinuous, so the quotient space 

is a smooth manifold and the projections n ̂  are smooth. As p is a 

smooth map compatible with the ^.-action, the induced map f£ is a 

smooth map.

5.23 PROPOSITION.- Let f: II -*-M be a self-transverse immersion. Then the

map p: Nk -*• H is an immersion with normal bundle isomorphic to

k-1
the restriction of the product bundle v x {0} .

Proof.- Using a riemannian metric, we can see the normal bundle as the 

orthogonal complement of TN in f* TM i.e.

f*(TM) = TN ©  v 

1/
so, using the product metric in TH , we have

fk(TM) = T.\ e  ^ k

By commutativity of

we have
* *

fk(TM) = p f (Til) = p (TN) &  P (v) «= TNk ©  v(p) © p (v)

so, as both are orthogonal complements

vk * P (v) ©  v(p)

But vk 1s the restriction of vK and p (v) is the restriction of 

(0}*v  , so, v(p) “  ̂ « {0} .
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5.24 THEOREM.- Let f; N M be a self-transverse immersion. Then, the 

map is an immersion whose normal bundle v£ is isomorphic to the 

quotient bundle vjyE|c_i where the -action is given by permutation 

of factors.

Proof.- As in 5.18, we see the -action on Tlik and TN induces 

one on given by permutation of factors. Then, as in 5.18, the

normal bundle of f£ is the quotient bundle.
□

NOTE.- There is a unique map of bundles, over nk .

B k : \  * A

closing the diagram,

T N ---  TM

1 f
\  ----*vk

and it is the quotient of the inclusion of bundles on Nk

°k c \  *

1 k-i-1
its image is the bundle u vJ x {0} x v J /l. , that we call also

j=0 K
vk and it is the normal bundle of Nk c Im f .

Inductively we have the bundle over Nk

;<<> . , w  « (o>
that gives a quotient bundle on N^1  ̂ and it is included in vk

by the quotient of the map

having as image in vk the bundle
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LJ v 1 x { 0 } x v ^ x{0> ...xv  ̂ A  ̂

jl+ j2+ « • ji,-*- i ~k

that we call also and it is the normal bundle of Nk in Im

Then the bundles over Nk

(k-1)

( V v k , v k v k )

are the normal bundlesof Nk in

(M, Im fj, Im f2>..., Im f ^ ) .

Simmilarly, if we call also the bundle over Nk induced

by v ( D  , we have that the bundles over N£

< * • • { ....

are the normal bundles of in

(N, Im f ‘ Im f £ ....  Im fj^ )

and there is an obvious map from one set of bundles to another.

Now we turn to the description of good position.

5.25 DEFINITION.- Let f: N -► M be a self-transverse immersion with 

normal bundle v. An immersion extending f.

T : v -*■ M

is said to be in good position if, for any k, there are immersions 

Tk : v£ > N , extending f‘ ,

Tfc : Vfc -*■ M , extending fk , and

: n.k(vk) v, map of vector bundle over fk ,
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such that:

1) For any k, the diagram

commutes,where the inclusion v£ c n 

isomorphism, nJ(vR) = v£ • fj|*( v ).

ii) Im Tr is the set of multiple points of T  with multiplicity 

greater or equal to k .

In the next chapter we prove the existence and uniqueness of this 

extension, but now we are interested in seeing the importance of having 

one.

5.26 DEFINITION.- Let us assume that C(N,g,g)] lies in 3(M,c) 

and T  is an extension of f in good position. We define

= cl(Im 7 r - Im Tk+1> c Im ?R 

N^ = cl (Im fR - Im 7r+^) c im TR

then, the obvious map -*■ N^ is a cube bundle classified by the map 

^  - F( FT k)*^ BCk .

Also, the restriction

\  | > 'i' < v  * "

is an embedding, so we can consider N^ lying in MR and in v R ,

'R(\>k) is induced by the obvious
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so we have,

5.27 PROPOSITION.- The map associated to the triple (N,g,g), h, restricts 

to the composite

^  - F(IR", k)x^ESk - Fk(F(IR”, T(ç))).

□

5.28 COROLLARY.- If h is as in 5.27, it restricts to the map

M - Im T k+1 - Fk(F(F" , T(c))) .

Proof.- We glue the restrictions to M^, and all of them

factor through Fk .

□

5.29 PROPOSITION.- The composite map

M - I">Tk+1 3  Fk(F(IR", T(ç))) !k T( ç<k>)

is the Thom Pontrjagin construction on the bundle ■* N^ .

Proof.- It is immediate, since the composition maps all the points in 

the cube bundle as the classifying map does and send the rest to the base 

point.

□
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CHAPTER 6 ; Extensions in good position.

In this chapter, we construct an extension of a self-transverse 

immersion

f : N f M

to an immersion of its normal bundle ,v , that is in good position.

It is done oy glueing inductively a special type of chart described 

in the first paragraph.

§6.1 Some preliminaries .

Let us prove the existence of a special type of chart.

6.1 DEFINITION.- Let V be a real vector space. The set of subspaces 
r

{H^} is said to be in general position if, for any sequence
i=l 

1 s i-j <. < 1 s r , we have

cod(H. n ... n H, ) = cod H. +...+ 
11 ’s ‘ ’l

cod H.j

Notice that, for any two different sets of subspaces of V in general
r r ,

position {H.} and {H!} , satisfying dim H, = dim H. , for
1 i=l 1 i=l 1 1

any i, there is a linear automorphsim of V

* : V * V ,

such that, for any i, i|»(Hi)= h ! .

r
6.2 DEFINITION. Let M be a manifod . The set of submanifolds (M.}

1 i-1
is said to be in general position at ye n ... n Mr if the set 

{Ty t||} , of subspaces of Ty M is in general position.

The set of submanifolds {M.}r is said to be in general position
1 i*l
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1f vor any 1 * ij' 

set of submanifolds

< ... < i sr and any y e M . n . • • n M . 
s i

{ H. } is in general position at y.
s

the

6.3 THEOREM ( [12] Let {M.} be a set of submanifolds of M, in
1 i=l

Mp , and (Hi>
i=l

a set of subspacesgeneral position at y e  

of K m in general position. Then, if dim II.. = dim Mj and m = dim H, 

there is a chart at y,

such that, for any i,

* : (W ,y) > ( K m , 0 ) 

♦“V i ) -  M. n W .
□

6.4 THEOREM.- Let f be a self-transverse immersion and let y be a point

of M such that f_1 (y)= {x1,...,x|(} . Then, the set of subspaces of Ty M,

{ df(Tx. (N))} r , is in general position.
1 i=l

Proof.- Let us define 1^ = dftTx^N)) and let {ij> be a subsequence 

0 s i-| < ... <i$ s r  .

Ue define

x = (x. , . . . , X j ) € F(N,s )
’l ’s

y = (y.. y) e diaĝ M.

Then, we have fs(F X)= Y . As f is seif-transverse, 

Ty(M)s = dfs(Tx (F(N,s))) + T- dia^ M =

= (H^ * ... « ^  )+ T- diag. M ,

so

s*dim M = dim H. +...+ dim H, + dim diag$ M-d1m(Hi •...•Hi n diag$ M)
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Thus,

cod H. +...+ cod H. = dim M- dim H. n , 
. ’l 's M

r
and the set (H.} is in general position. 

1 i=l

.. n

□

H. = cod H. n 
’s ’l

6.5 THEOREM.- Let f be a self-transverse immersion and a = cod f= dim M-dim C 

For any yd\, if f"^(y)* {Xj,...,x }, there are

i) a chart for M at y , 4 1  :(w,y) ( R m ,0)

ii) disjoint charts for N at x^) ( IRn,0)

such that, if t=dim M- r a, the composite map

( R ^  ( F a )r'1 , F t) _ ! u ( U i,Im f ; ) _ L ( W , I m  fp ) _ ! +  (IR*x (IRa )r,IRt)

is defined and it is the inclusion

R* x( F a)r” 1 R*x H. ^  F lx ( F a)r ,

where H. = ( F a)i_1x {0} x ( F a)r‘i .

Proof.- Im fp is a submanif»1«* of N in a neighbourhood of x^; so, for

each i, there are submanifold charts of Im f ‘ at x.r 1

Xi : (Vr  Im f;, ) -  ( lRn, IR1) , 

such that they are pairwise disjoint and f 1̂  is an embedding.

We chose a submanifold chart of Im fp at y

»: (W, W n Im fp) - ( F m ,IRt)

, r
such that f (W)c u V* and they sattlsfy 6.3 with 

1*1 1

= F fc x and 

Mi = fiV^
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If, now, we define

x-1

* :(1R1 x ( F a)r'1,lRt) i

U| , = n f '(H) , the composite,

(U., Im fp n Ui) t (W, Im f rn W) *  (»*>«( Fa)r ,Ft )

is a diffeomorphism onto (H^, IR*).

Defining,

♦v( »Im fpn U , ) - *

where p. is the projection into all factors but the ith, we get the 

appropiate chart.

6.6 REMARK. If both 

coverings by charts

M and N are compact manifolds, there are finite 
P p r.

{(W, and {(IL -, 4. J such that
J j=l 11 J1 j=l 1=1

i) Wj meets Im f] , Im f2.... Im fr

"> f’ '<V * lHi •

but does not meet Im f +1 .
rj

r.-
iii) For any j, (wj, *j) and {(uj1 t y)) J satisfy 6.5 .

Obviously then, these charts send the stratification 

(M, Im f„ Im f-,.... Im fr )

Into the stratification of B^x ( F a)r given by (1^) and their finite 

intersections.

6.7 DEFINITION.- Let M' be a submanifold of M. A partial tubular 

neighbourhood of M' in M is a triple T= ( C, £, e ) where

1) 5 is an inner product bundle over M* .
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If, now, we define [). , = V. n f_1(W) , the composite,

* :(K  x( R a )r • **) (Uj. Im f̂ , n Uj) l (W, Im fpn W) t (IRtx ( R a)r^ t)

is a diffeomorphism onto (H.,IRt).

Defining,

♦l:( ui‘Im <> U ^ - S 1 (P** (rY ' V ) ^  (Hi, IRt) ̂  ( RtxlRa)r'1,|Rt)

where p. is the projection into all factors but the ith, we get the 

appropiate chart.

6.6 REMARK. If both M and N are compact manifolds, there are finite

coverings by charts {(W , *.)> and {(U..,*..)} P ^  such that
J j=l 11 j=l i=l

i) U, meets Im f,, Im f-.... Im f but does not meet Im f +1 .
J ' £ rj rj

iii) For any j, (Wj.+j) and {(uj1 ty)} J satisfy 6.5 .

Obviously then, these charts send the stratification 

(M, Im f„ Im f2 ....» Im fp )

into the stratification of B^x ( F a )r given by (H1> and their finite 

intersections.

6.7 DEFINITION.- Let M' be a submanifold of M. A partial tubular 

neighbourhood of M' 1n M is a triple T- ( £> c , e ) where

i) C is an inner product bundle over M' .
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ii) e Is a map c ; M* -*■ IR*

111) e Is an embedding Into an open subset e : De(?) M .

where D£(s) Is the open disc bundle of radius e(y) over any 

y e M.

In the case e=l it agrees with the definition of tubular neighbourhood.

Let e^) and T2= *2» e2) be tw0 partial tubular

neighbourhoods,of M* in M, we say that the isomorphisms of inner product 

bundles

commutes. Notice that if e^= e2= = 1 we have the usual isomorphism

between tubular neighbourhoods.

If T * (C. e, e) is a tubular neighbourhood of M' in M and 

h: (M, M ‘) (N,N*)

is a diffeomorphism of manifold pairs, we define

* : ----, 52

is an isomorphism between and T2 if there is a map c' : M' -*• R + 

such that e' s inf ( ej, e2), and the diagram

M

h* (T) = ( ( h " V  e, eoh"1, hoe. h-1)

- _i _i *
where h : (h ) 5 -*• 5 is the isomorphism over h

6.8 LEMMA .- Let B be an open set in IRm x {0} c IRm , ($j,e^) and
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(g2, e2) tubular neighbourhoods of B and R m in F m . For any compact
(

set V c B there is an isotopy

H : lRm x I lRm

such that H0 = id, and an isomorphism of vector bundles,

*: I , - <2 |v •

inducing an isomorphism of tubular neighbourhoods.

Proof.- Let g: ^  | ^I be the isomorphism of vector bundles given
B B i

by the derivative of the map en e2 . Then, there exists an automorphism

n: H

such that for any x e. B is self-adjoint and the composite ^ =noB 

is an isomorphism of inner product bundles.

Now, we want to define the isotopy. Let be the isomorphism of 

vector bundle, ^  = (l-t)e + t^ .

Now, we chose a neighbourhood of V in B,V-|, such that the composi­

tion

V, X I
e"1 x 1

* *1
X I

h

is defined. Let V2 c V1 be a neighbourhood of V in B such that, 

for any O s s ,  t s l ,  we have 9S(V2) «= 9t(V-|)•

Let

p : Fm -► [0,13

be a smooth map with compact support in V2 and p =1 on a neighbourhood 

of V. Then, the maps
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G . ; K m -► IRm5 > t

defined by

Gs,t<x>'

- 1,(1-p (x))x + p(x) gt gs (x) x £ V2

XfV,

are smooth, and as Gt t=l, there is a 6 > 0 such that G$ t is a 

diffeomorphism for any |s-t| <6 .

Let n be such that 1/n < s, then the maps,

Ht = G0,t/n ••••» Gk-l/n t * *

give the required isotopy.

□

Notice that if the maps e^ e^1 preserves the filtration of ^  and ^  

given by the hyperplanes, all the construction can be done preserving it.

§6.2 Construction of extensions in good position.

In this paragraph f is a self-transverse immersion of N in M.

With the notation

( * X  .... e(n_1). p )

we mean an n-tu.ple of fiber bundles over the manifold P with fibre,

n _ n _ _ n
( (DT)n ,: u H,, u H.n H. ..... u L< , (0) )

i=i 1 ;.i=i 1 * • i*i

when * {0}x]Ra x {0} and are as in 6.5 .

6.9 THEOREM.- Let Nk be the manifold of the deepest multiple points, then, 

there are embeddings:
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: (v£, \ .... N£) —  (N, Im In f‘ )

Tjj • ( >  v k ,..., N^)— ► (M,Im f^Im f2>*• • »Im f^)

such that the diagram

f';1
K » v &••••• "¿)— !L* (N. Im Vz....  Im f* )

I f„ I f
(v^.v k .... Nk) _ % ( I m  f,Imf2..... Im ffc )

commutes.
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The couple (^, ej) is a tubular neighbourhood of l^n Im fk in M.

Syimilarly, we define the bundles,

( Sjf* eji.... ^ji n I"1 f k) * (U j i n f|<)x(( ®  * • • •» iO) )
a.k-1 k -1

and the embedding/

eji : (Ujin Im fk W ( * a)k“1» ^  Hh....  i°>) - O M m  f'z.... Imf^Jn

the bundle maps
. k

‘j = ej ■ ,1| 'j 

induced by the inclusions,

( IRa )k"ljr_» Hi c_^(lRa )k

makes commutative the square

Now, we construct tubular neighbourhood of Nk and Nk by glueing

these bundles inductively after they have being changed by an isotopy, as

follows:

Assume that we have already constructed a n-tuple of bundles

( 5 , tg.....Bfi) on an open neighbourhood of u (cl Wj)n Im fk

in Im ffc and an embedding,

9e : ( Ce . Cg .... Be) -*■ (H, Im f1..... Bg )
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also n-tuples of bundles ( ç^,.,.,f~^(Be)) and an embedding,

g'e = (<t....f_1(Be)) + (N’ Im f2....f ' V e »

and a map of bundles

c-1
»e : ........ f  (Be )) .........Be>

over f and such that fog'e= gg o \  .

Let be an open set in Im f^ such that

5 (cl W .) n Im f. c A c cl A c B . 
j=l J K e e e

Both ( çe+] » *e+1) an(I (Ce» 9e) are tubular neighbourhoods of 

Bg n  Wg+i so, by 6.8, there is an isotopy,

Ht : H x I + M

preserving the filtration of M by Im f^,Im fg... ,

and an isomorphism,

y
Aen V e„ "W e*l

preserving the filtrations of both bundles.

Then, we define

<e+l = ce *  (HÎ1}* çe+l 

9e+l = 9e *  ee+l oHl

and, obviously, 1t is a tubular neighbourhood over (Ag u(we+1n Im fk))1n M.

At both H and y preserve the filtration. They 11ft to H ‘ and y' 

on N, ç' and c*, giving.
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* 4 V W'Vei.1 

»¿♦i ■ 4 “,.'¿*,»51

and a unique extension ye+.| •

After finite induction, we have constructed a bundle £, and 

a embedding onto an open subset

9 : 5 H

so for any y e  Im f^

^ T V o  -  V -  V /Ty Im fk “ K > y  

is an isomorphism ra.nd , «.» jfr«**.»«» h> fa »Km . it 91**» «» ,J L*.tl4t

<*• ( 5» ?**•••» N^) — —»( Vĵ , N^).

that lifts to an isomorphism

«' : ( 5'.... N^)-=S-» { v j ..... N£) .

Thus, if we define

fi - g* 0 a'"1 and f a g oa’1 
k k

we get the maps we were looking for.

□

6.10 NOTE.- If we choose an Isomorphism

9 : n k ( vk) «■ fk *(v) ,

we can define f£ as the composite of e and the map

*  (v)  -  v
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k
Since fk carries  ̂ to the image of M O )  x v x  {0} f there 

are maps,

w l ;  and
Vl

vit
Vi

If we define g and q' as the composite of fk and f^ with the 

above diffeomorphism, the diagram,

VI

commutes.

Now we proceed as in 6.9 constructing inductively ? and e' , 

glueing charts on the bundles , leaving unchanged v ^ _ i a n d

V l  1?.
V I

k-1

Then, we get the maps f£ 1 and fk 1 and, the map f| .
im V l

is defined as in 6.10 . It is in good position since the maps

and fk., and the new maps

V s*  DK > -
\
- = — * M and

D(vJ).
?k
- * - >  M

make the appropiate diagram commute.
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Similarly, we proceed the induction.downwards, shrinking at each 

step the width of the image of the normal bundle, and after a finite 

number of steps, we get the desired extension in good position

6.11 REMARK.- By uniqueness of tubular neighbourhoods for immersions 

( Ll3]), any extension of f is regular homotopic to the one constructed, 

so any extension is regular homotopic to one in good position.
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To get this geometric Interpretation, we have to use complex cobordlsm, 

so the first paragraph 1s a review of the theory, as sketched 1n ( [25] ), 

together with some results of [5] .

57.1 Review of complex cobordism .

7.1 DEFINITION.- Let M be a manifold and 5: M -*• BO be a map. A complex

orientation of $, 1s a map , 5' : M -*■ BU such that

the diagram
C'

M -------- » BU

 ̂f
BO

«■ Spec.vfi«4.

commutes up to^homotopy, where the map BU BO 1s the limit of the in­

clusions BU(n) + B0(2n).

The couple (M, v') 1s a weakly complex manifold 1f M 1s a compact 

manifold and v' 1s a complex orientation of a map

v : M -*• BO

classifying the stable normal bundle of M.

Similarly, we define weakly complex manifolds with boundary, making 

compatible the orientations of int M and 3H.

7.2 DEFINITION.- For any pair of spaces, (X,A), we consider the set of 

triples (M, v', f), where (M, v') 1s an n-d1mens1onal weakly complex 

compact manifold and f 1s a map of pairs,

CHAPTER 7 Geometric Interpretation of the Classes Ĉ .

f : (M, 3M) (X.A) .
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On this set, we define the following equivalence relation:

Two triples (M, v', f) and (M, v*, ?) are cobordant if there is an 

(n+1)-dimensional weakly complex compact manifold (W, <;'), possibly 

with corners, and a map

F : H -*• X

such that

i) aW splits in three parts M, M and 6 W, and M and M are 

disjoint.

ii) on H and M agrees with v‘ and v‘ .

iii) FI = f , FI- = f and F(« W) cA .
M 'm

The set of equivalence classes, Un(X,A), is called the nth 

complex bordism set and it is given a group structure with the 

operation induced by disjoint union of manifolds.

If g is a map of pairs

g : (X,A) - (Y,B)

we define a homomorphism

9n : Un(X,A) - Un(Y,B)

by

gn ( C(M,v', f)] ) » C(M,v*, gof)] .

Obviously, the map defined is functorial.

As always, we define

U„(X) ■ Un(X,4 ) for any space X

un((x,*))« ) for any based space (X,*)
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7.3 THEOREM.- The functors i > define a generalised homology theory 

on the category of pairs of topological spaces.

For a detailed proof see [53 , we just recall that the boundary 

homomorphism

3n : Un<X - A > *  V l < * >  -

is defined by

f) ] ) = [ (3M, v'| , f| ) ].
n 3 M 3M

and for any U e. X open, the inverse map of the excision 

e : (X - U, A - U) c (X, A)

is given by

(e*)'1 ( [(M,v\ f)] ) « [ ( r ](X- U), v* | , f| ) ] • 

Now, we define the associated cohomology theory.

7.4 DEFINITION.- Let f: N M be a map of manifolds, we define

cod f = dim M- dim N . If cod f is even, we say that f has a complex 

orientation if there is a complex vector bundle over M, $, and an 

embedding e : N + E  c such that the classifying map of the normal 

bundle has a complex orientation.

If cod f is odd, we say that f has a complex orientation if the 

map

N — *■ M x {0} «-*■ Mx IR

has one.

Notice that a complex orientation of the map M -*■* is equivalent 

to a complex orientation of the map classifying the stable normal bundle

of M.
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7.5 DEFINITION,- Let M be a compact manifold, Ue consider the set of 

triples (N, f,o) where N is a compact manifold, f : N -t-M 1s a proper 

map of manifolds of codimension n and a Is a complex orientation of f.

Two triples (N, f,a) and (N't f1, o') are cobordant, if there 1s 

a triple (W, F, A ) where

i) M 1s a compact manifold with aW  - NuN* u <5 W .

H )  F : W -*-M x I 1s a map of manifolds transverse to M x {i } for

i* 0,1 , and F| : N * {0} and F | t :N’ -+-M x {1} agree 
N N*

with f and f', and F ( $ W ) c  a M  xl .

111) a 1s a complex orientation of F.

n f u
The set of equivalence classes, U (X) is the n complex cobordlsm 

set and a group structure 1s given by the operation Induced by disjoint 

union of manifolds.

Similarly, if (M, A) is a manifold pair, we can define Un(M, A) as 

cobordism classes of triples (N,f, a) where Im f = M - A.

To define the action of a map of manifolds g: M •+■ M' on the complex 

cobordism groups, we need to define transverse Intersection, as follows:

Let C(N, f,0 ) 3 be lying 1n Un(M'). Let e: N *.E(e) the 

embedding given by the complex orientation . We chose an embedding 

e* : M ♦ R'*. By 5.12 we can assume that E(g )x M and Nx R'* have 

transverse images 1n E^ x R* . Then we define, N d>M, the transverse 

Intersection of N and M, as the intersection of those images.

The map

f* : N / h M  H

1s given by the second projection. Obviously, 1t has a complex orientation
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a, associated to a , and the class [(NrhM, f', a')] e Un(M) , 

is independent of all the cho'«« in volved. We have defined a homomorphism

gn : Un (M*) -*• Un(M) .

As before, we define Un(X,*) = Un(X,{*} ) for any pointed space 

(X, *).

7.6 THEOREM.- The functors {Un } define a generalised cohomology theory 

on the category of manifold pairs.

□

Now, we sketch a proof of the theorem stating that these theories agree 

with the* associated to the spectrum MU.

7.7 THEOREM.- There are natural isomorphisms

U* (X, *) » MU* (X, *) for any pointed space (X,*)

U* (M, *) » MU* (M, *) for any manifold (M, *) .

Proof.- We prove 1t for X* f° = M . The general case essentially the same. 

Recall that the coefficients associated to MU are

MUn( $°) « RU"n (¿°) = 11m C S 2k-n, MU(k)] .

Then we define the map

a : MUn (5°) - Un (J°)

as follows;

Let x € MUn(5°). We chose a representative (f)c [ $2k~n, MU(k) ] 

where f; $ 2k“n •* MU(k) 1s transverse to BU(k) c MU(k) (it can be done 

by 5.12) and then, we define a(x)« ff_1(BU(k)) J. It is easy to prove
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that it is a well defined element of Un(S^), independent of the choices. 

Also, we define the map 0 : Un( 5° ) + M U n ( ) on an element

y= C(M, v') ] £ Un( ) by chosing an embedding e : M ] R 2k-n . 

such that the associated normal bundle has a complex orientation. Now,

i.e. the Thom-Pontrjagfn construction associated to v (e). If we define 

j (y) » [ f ] , it is easy to see that 3 is well defined and it 1s the 

inverse map of o.

and U* theories as proved in [5] .

7.8 DEFINITION.- Let c be an n-d1mensional bundle over M and c' a 

complex orientation of it. We define the class t(c) £ Un(T (?) ) as

t(?) = C(M, 1 , ?')]

where i : M -*■ T( ?) is induced by the zero-section.

■ pi/ — M
we extend e to an embedding e : v (e) -*• IR

Let (g, g) be the classifying map of v . Then, we define

f : i 2k_n - MU(k)

by

if t £ Im e

if t | Im e

*
To end this paragraph, we state some results on duality of the U

7.9 PROPOSITION [5] .- t(e) is a Thom class of 5 .
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Proof.- It is immediate from the definition of Thom class.

7.10 THEOREM [5] .- i) let M be an n-dimensional weakly complex closed 

manifold. Then, the Poincare duality isomorphism associated to t(vM),

PD : Uq (M) i Un"q (M)

is given by

PD( [(N, f, c () ]) = [(N, f, v') ]

when V  is the complex orientation of given by C  and the complex 

orientation of vM .

ii) Let M be an n-dimensional weakly complex compact manifold. Then, 

the Lefschetz duality isomorphism associated to t(vM )

LD : Uq (M, 3M) + Un"q(M)

is given as the one above.
□

7.11 COROLLARY.- Let M be an n-dimensional weakly complex manifold.

Then, the fundamental class associated to T( vM ) Is given by

t(M, v'), 1 ] c Un (M).

Proof.- It is the image of 1 e Uq (M) under the duality of 7.10 .

□

S 7.2 Geometric interpretation of ck(c) .

In all this paragraph M is an n-dimensional weakly complex closed 

manifold and the map c : M •+• BU classifies an isomorphism class of 

complex vector bundles.
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7.12 LEMMA.- Let M' be at submanifold of M of codimension 0, Then, 

the diagram

commutes for every q, where the vertical maps are induced by the inclu­

sion and e* is an isomorphism by the excision property.

Proof.- Let x = [(N, C , f) ] e Un_q (M). As M' has codimension 0, 

the class i*(x) = [ (N, £, 1 of) ] e Un_q (M, M') can be represented by 

C (f-1 (cl (M-M1) ), C | , 1 o f | )] .

Following x clock wise, we get

e* LD’ 1 j* PD ([ (N, f)])« e* LD’ 1 j*( [ (N,f,5*) ] ) . (by 7.10 ) •

j

LD
Uq(M-1nt M')Un_q(M-1nt M', il*)

• e* LD’ 1 ([ (f-1(cl(M-M')), j o f, 5'))])-*

(since f is transverse to M' ) =

e* (C (f' 1 (cl(M-M1)), c* | , jof) ])»(by 7.10) 

([ (f-1 (cl(M-M1)) , c'| , e 0 jof)] )

and this is i*(x) by the remark above.
□
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Let ckw (ç) be the element of MU2k(M) given by

r"M
Ç „ t h.

--- » l B U ---» E” QBU(1 ) — ^

A ★ ★ A it
where tk is the Thom class described in 7.8, so c£ (ç)x • hk(tk)

If t (N,g, g)] e (M.y) is the element representing t »e , we 

choose an extension in good position f : v M and we define 

M' * Im fk+1 . Then we have the following result

7.13 THEOREM.

commutes, since the left hand square is induced by inclusions and restric

tions and the right hand triangle commutes by 3.18 .

By definition, of (Ç) above,

J*( € / ( 0 ) = j*o (TOç )*o hj (tk) * ( toÇ| )* pl (tk) .

As by 5.30, t oÇ| is given by the Thom-Pontrjagln construction 

of Mk over Nk , j*( êk (H)) is the Thom class of Mk , and

t*(PD_1(c^ (ç))) • e* LD" 1 J* (ckv (ç)) is given by the same element, 

C(Nk, fk), ].

U  C PD_1( Ck* (Ç)) * V*([ (Nk, fk ^ ]  ) € Un_2k(M, Im fk+1)

Proof.- The diagram

2k
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By definition, this element also represents 1*( [(Nk, fk), v^]) .

□

7.14 THEOREM.- In singular cohomology theory, the Chern class cfc(E) Is 

the Poincare dual of fk ^([ Nk ]), when C ] 1s the standard fundamen­

tal class of Nk .

Proof.- Using the natural transformation t from complex bordism and . 

cobordlsm to singular homology and cohomology, 7.13 1s true when we replace 

U* by H* , so

c* o PD” 1 ( cR ( 0 )  = b *  (t( C(Nk , fk, vk ) ] ) )  = U  W C V ) -

Since M' has the homotopy type of an (n-2(k+l)) dimensional 

complex, the map t* 1s a monomorphism 1n this dimension, so

PD“1 (ckCO) = fk* (CNk]) .

0
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CHAPTER 8 Description of the bundle associated to an immersion.

In the preceeding chapters, we associated to any map 

e : M - BU

the composite map,

V  : M + BU l Q BU(1) ,

such that ijo?' is homotopic to £. Then, replacing Q BIJ(l) by the weakly 

homotopic space F( 1R°°)(BU( 1)) and applying M7] we got a cobordism class 

[(N.g.g)] classifying the map c'.

Now, we want to describe the inverse procedure, i.e. given the triple 

(N.g.g)t# a description of the associated complex bundle.

58.1 More about Infinite loop spaces.

We want a closer study of the loop structure of BU.

8.1 DEFINITION.- Let 6 be an operad and C : Top* -► Top* its associated 

functor. The functor

F : Top* + Top*

is called a & -functor iff there Is a natural transformatlon-

X  : F C - F

such that the diagrams

1)

commute.



8.2 NOTE [20] .- The functor n V +d ts a 6 ^-functor for any 

j i 1 and 1 * 0,

Let us recall the "double bar" construction of May ( [20] ).

8.3 DEFINITION.- Let €  be an operad, F a 6 -functor and X a £  -space. 

Then, we define the space B(F,6  , X) as the geometric realization of the 

slmplicial complex B*(F,£, X) whose q-simpUces are
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Bq(F,£, X) = F Cq (X),

face maps are given as follows

*0 by *lqc FCq+1(X) -► F Cq(X)

31 by 1F ij“1 c 1< H  : FCq+1(X) - F Cq(X)

3q
by lF lq 0 * FCq+1 (X) - F Cq(X)

where c 1s the collapsing map C C + C and 0 1s the action on X,

The "degeneracy" maps are all given by the Inclusion X -► CX .

8.4 NOTE [20J .- This construction commutes (up to homotopy) with n , 

l.e.
B( a F, g, X) i n B(F,*, X).

Then for any E^-operad, g  , If we define = ^i+j x &  

we have, for any &  -space X ,

B( nJ i 1+J ,o ^ 1+j , X) - nd BCS1+J,«^1+j , X).

8.5 DEFINITION.- Let g  bean E^-operad and X a &  -space. Me define
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Bt (X) = ltn. íí1 B ( 5 1+j, ^ i+j , X)

where the limit is taken with respect to the maps

It is obvious that { (X)} is an infinite loop space.

8.6 THEOREM [20] .- Let 6  and X be as in 8.5. Then, the maps

give in the limit the map

i : X - B( D, .off , X) - B(Q, , X) - BQ X

wit«»« the first map is a homotopy equivalence, the second one is a group 

completion and the last map is a weak equivalence.

So, if X is connected, i is a weak equivalence.

8.7 PROPOSITION [26] .- Let, 6  be an E^-operad and y : €  

a map of the associated coefficient systems.

Then, for any connected &  -space, X, the diagram

B(Dh,<A., X) - B(nn Sn,°&nf X) - nn B(ín,o^n , X)

□

cx

1
X

commutes.
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Proof.- The diagram

C . X  < _ * ---- X))

tl tl
» | D „ X  <— fil---  D. (BCD^ofi;. X))

i'
C X B (DJ)w ,off, X))

I 1
X <---* ---  B ( D , ^ .  X)

-* C . B 0 X

M o *

\

M 0 *

-> Bn X

commutes, the bottom half by [ 20 ] and the upper half by natural1ty.

□

8.8 NOTE.- Then, the map \) : Q BU(1) -► BU is the composition 

Q BU (1) •+• Q BU -*• Q BQ BU -► BQ BU i BU ,

and using the commutative diagram

Q( BU(1) )---► Q BU— ► Q Bq BU— ► BQ BU

. '1 i f '
F( F*)(BU(1)) + C J  BU(1) ) — > C J B U ) -  C J Q BU — ► BQ BU

L.BUd) -> LJL BU

the map n 1s homotopic to the composition

k „ B°a
Q( BU(1) ) + C J  BU(1) ) - F(IR )( BU(1) ) - L J  BU(1) ) - L„(BU) + 

<»
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S3.2 Description of the bundle.

We can now describe the complex vector bundle associated to a triple 

(N. g, g ).

8.9 THEOREM.- Let h : M -*• F( F “) ( BU(1) ) be the map associated 

to the triple (N, g, g ). Then, there are triples , (N, g, g r ), such 

that the associated maps give a homotopy,

ht : M + F( F") ( BU(1) ) , 

where hQ = h and ĥ  factors as the composition

M i  LJ  BU(1) ) \  V J  BU(1) ) 1 F(IR")( BU(1) ).

Proof.- To lift h over 3 by a homotopy as described, is equivalent

to change for any m « M the associated configuration in IR“ to an ortho-
n

normal one. This is achieved by induction on {Im ftl
K k=0

In the kth step of the induction we have the map 

h| : Nk + F(F"; k )

and a homotopy from hi . to a map that factors as the composition

'■ s
9 N k ♦ Vm ( k ) - F(IR“; k) .

We can extend it to a homotopy from hi to a map that factors

s

\  * V.Ck) > F C k )  •

This is extended to Mk composing with the projection.
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Notice that if all the original configurations were orthonormal, 

the lifting can be achieved directly.

By a similar induction, we lift 1 to a composition 

M _ > L J B U ( 1 )  ) -----» ( BU(1) )

but this time no homotopy is involved.

8.10 REMARK.- Notice that If for any m e M, h(m)= [(x1»•••*x|t).(L1... Lk)]

and (x.|.... x^) are orthonormal in F "  , the lifting 1s

^(m)= [e,(L^,...,L|c)] where e e LJk) has to satisfy e(e^)* 

for any i .

8.11 THEOREM.- Let h be the composite

h : M £ L J  BU(1) ) - Va(BU(l)) - F( F ”)( BU(1) ).

The associated complex vector bundle, e, 1s given as follows:

Let m c M be such that J? (m)* C(e;(L-j.... Lk ) ] . Then, the

fibre is A • B c C" x C“ , where A 1s the orthogonal complement

In 1“ x {0} of the C t i !>r.  ̂Ac .

configuration 41(e), and B = • L, , where Lj 1s the Image of
1*1 1 1

L. by the map eg.

Proof.- We chose automorphisms

gf : l x C %  C x i ”

representing Lj, and then, we define the map

g : C" x l” + C” x l”
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on Im (e^ x et) as the only one filling the diagram

(I x I* )k —  

x ®i

. Ml

(I- x r  r  ^
sh

(c-)k x (c-)k
V  ec

9

(t°° x t“)k -SU
sh

(t")k x (t-)k ♦ r * p

On the orthogonal complement, g is defined as the identity. 

Then çm = g (C " x {0} ).

Let be the 1-dimensional subspace of C* {0} given by

On the other hand, the space A in the definition is orthogonal to 

Im (egxeg), so g is the Identity on it and, g (A) = A . Thus 

splits as indicated

8.12 REMARK.

Recall that, if the map h is associated to the triple (N,g,g), 

and f : v -► M is an extension in good position of f, for any m e M

such that f_1(m) = (a 1.... a k) with a f € v . in the associated

h(m)*[ (x1 ,...,xk) ; (Lj,...,L|() ] we have Lj « f (n^) .

To end this work, we get more detailed information 1n some particular

cases

c» cx {o} c  i x  f  tkx r°k

where is the inclusion in the 1th factor. Then,

g o ( e ( x e()(Li)=(el xec) sh g ^ )  = (e( xe() sh (L̂  ) « ^  .

8.13 EXAMPLE.- Let us consider a map h : M •» F( R") ( BU(1) ) induced
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by a map h : M + F ( F ) C S 2 ),

2 2As S = T( £ ), by 5.2, we can consider that it 1s represented

by a triple (N, g, g) where f : N M is a «»dimension one Immersion

2
with trivial normal bundle. Then f : N x D -*■ M 1s an extension of f 

in good position.

2 l
Let a : S -*■ C P ■* Gj 2 be the one point extension of the map. 

a : D2 - Dc + CP'

defined by a ( A ) * [ A, 1 ] = Lx Then, [ a ] generates 77"2(C P").

Let q : N -*-R" be a map such that, for any 

(x,z),(x',z') € N x D2 such that f(x,z) = f(x', z'), q(x) 1s 

orthogonal to q(x'). We can the* 11ft the map h to BU(1) )
A

using q and the lines L^ in 8.11 are given as follows:

Let be u elR“ . Then, we define the map

u : » '  x IR* -  B T x IP"

A
by u( s,t ) - ( s u, t u). The subspaces L| «*■< then q(x^)| (Lz^).

8.14 EXAMPLE.- Let consider now the maps

h : M -*■ F ( D O (  BU(1) )

that factors through BU(1),

By 5.26 a map that factors through Fk (F(JR“’)( BU(1) ) can be 

represented by a triple (N, g, g ) such that the immersion

f : N + M
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has multiple points of multiplicity at most k. So, a map that factors 

through BU(1) can be represented by a triple (N.g.g) where f is 

an embedding of N in M, whose normal bundle is classified by a map 

in BU(1).

Obviously, the bundle associated to any triple of this particular 

type is the Thom-Pontrjagin construction on the normal bundle of N in 

N.

It is easy to see that the restriction y| „ is represented by
If pn

the inclusion CPn c CPn+1 .
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APPENDIX; On maps f ; BU BU ,

The goal of this appendix 1s to prove that a map f ; BU— »BU 

that Induces the Identity In singular cohomology 1s Itself homotopic to 

the Identity. In order to do It, we have to recall the definition and 

some elementary properties of K-theory.

A.l DEFINITION.- K-theory 1s the generalised cohomology theory K 

whose functors are given by,for any pointed space X

k2n (X) »[ X, BU* I ] and

K2n+1(X)- [ X, U ] , for any n i 0 ,

where U - 11m U(n).

The required natural equivalence?at odd dimensions 

, k2n+1 ( SK ) » k2n+2 (X) ,

art given by the homotopy equivalence nU * BU x Z  proved 1n Bott 

periodicity theorem ([29]), and the equlvalencerat even dimensions

, K2n ( SX ) » K 2n+1 (X) ,

4ht given by the equivalence rtBU a U .

A.2 NOTE.- As K n and K n+2 are naturally Isomorphic, 1t 1s useful 

sometimes to consider k * as a Z 2 -graded cohomology theory.

Also, when necessary, we associate to the singular cohomology with 

coefficient 1n R , the Z 2-graded cohomology theory H** ( ; R) given

by
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H °* (. ; R) = • H 2n( ; R) and
n i. 0

H ]* ( ; R) = • H 2n+1( ; R) .
n z 0

A.3 PROPOSITION [13 3 .- Let h and h'* be two reduced cohomology 

theories and h*(J°), h'*(/° ) their coefficient systems. Then

i) If h* takes value in the category of Q-vector spaces and

T, T' : h* +h'* ,

are two natural transformations that agree on the coefficients, 

then T = T' .

ii) If both h* and h'* take values in the category of Q-vector 

spaces and

T : h* (S° ) - h ' V 0 )

is a homomorphism, there is a natural transformation

T : h* -► h'* 

extending it.

□

A.4 NOTE.- As an immediate consequence, any cohomology theory, h* , 

taking values in the category of Q-vector spaces, is naturally equivalent 

to the theory H *( ; Q) 0 h* ( ).

The rest of the appendix, we assume some knowledge of the Atiyah- 

Hirzebruch spectral sequence of a homology theory h* , in particular 

that it is associated to an exact couple, E C(X,h*) and that the E* 

terms are the qudtients of the filtration of h*(X) given by
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Fpt h*(X) ) * ker ( h*(X) - h*(XH )) 

where Xp_j Is the (p-l)-skeleton of the complex X.

A.5 DEFINITION.- The character of K-theory (or Chem character) 1s the 

composite natural transformation of Z 2-graded cohomology theories.

c h : K * + K * ® Q * H * * (  ; Q)

where the second wap 1s the natural equivalence of A.3.

A .6 THEOREM.- Let X be a complex such that H *(X,ZZ) 1s free. Then, 

the Chern character

ch (X) : K *(X) - A **( •; Q)

Is a monomorphism.

Proof.- The character Induces a homomorphism of ZZ2~graded exact couples 

ch : E C (X ; K *) + E C(X ; H^** )

As K * 1s Z 2-graded ordinary cohomology with coefficients 1n ZZ 

the E' term of Its spectral sequence is ii **(X ;Z). Obviously, the 

E' term of the second exact couple 1s H **(X; $), so we get that the 

induced homomorphism,

ch{1) : H * *  (X ;Z )  -  H **(X ; 4) ,

1s the coefficient homomorphtsm, so 1t 1s a monomorphism.

As ch 1s a map of exact couples, It commutes with the differentials,

so In particular
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dl ch(i) = ch(i) dl *

Since d.| = 0 and ch^j is a monomorphism, d-j = 0.

Inductively we get dj»,..« 0 so E*-term is the E'-therm. 

The map

choo

F* (K *(X)) 

F*.-,(K*(X))

— > H ** (X ; U

is then-a monomorphism, so the map

ch : K * (X) - H ** (X ; Q) 

is a monomorphism too.

0

A.7 THEOREM.- Let f: BU -+ BU be a map such that the induced map in 

singular homology f* : H (BU ;2) + H (BU ; Z) is the Identity. 

Then, f is homotopic to 1BU .

Proof.- The diagram

K*( BU )

ch

H**(BU;Q)
f*« 1

BU

ch

*H**(BU;Q)

commutes, so

ch f*( iQ ) * f*(ch(iQ )) - ch(iQ) * ch 1BU ( 10 )t 

Where iQ is the inclusion
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BU » BU X { 0 } c- BUx ZZ

H* (BU ; IL) is free, so, by A.6, ch is injective and then

f ( 0̂ B̂U * ^ 0  ) *

So, there is a homotopy

F : BU X I -► BUx n

from i« of to in o 1 ,
0 0 BU

As BU X I is connected, Im F = BU x { 0 1, so we can lift to 

a homotopy

F : BU X I -V BU

BU *from f to 1
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