A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/140254

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

CHARACTER DEGREES AND A CLASS OF EINITE PERMUTATION GROUPS

KEVIN THACKER

> A dissartation for the degree of Doctor of Philcsophy submitted io the University of Warwick and consisting of research conducted at the Mathematics Institute.

September, 1979.

SUMMARY

Let f.c.d.(G) denote the set of the degrees of the faithful irreducible complex characters of a finite group G. (Of course f.c.d.(G) may be empty). Chapter 1 is concerned mainly with the structure of those groups G satisfying the condition that \mid f.c.d.(G) $\mid=1$, groups which are labelled "high-fidelity" groups, By means of the regular wreath product construction it is shown that the class of high-fidelity groups is "large" in the sense that every group is isomorphic to both a subgroup and a factor group of some high-fidelity group.

Use is made of some of D.S. Passman's results classifying soluble half-transitive groups of automorphisms in describing the structure of a special class of high-fidelity groups, namely those which are soluble with a complemented unique minimal normal subgroup. The same situation minus the condition that the unique minimal normal subgroup is complemented is studied in Chapter 2. There arises naturally a generalisation of half-transitive group action in which, instead of being identical, the orbit sizes are the same up to multiplication by powers of some prime. Such an action is called " q '-halftransitive", where q is the prime concerned.

The results of Chapters 3 and 4 produce a classification, similar to Passman's classification mentioned above, of the possibilities for a finite soluble group G which acts q '-halftransitively on the non-trivial elements of a faithful irreducible G-module over the
 from one infinite family of groups and a small number of exceptions in the case $q=3$, the possibilities for G turn out to be just those on Passman's list.

Finally, in Chapter 5, an upper bound of 6 is obtained on the nilpotent length of a soluble high-fidelity group with a unique minimal normal subgroup.

CONTENTS

pageINTRODUCTION. 1
CONVENTIONS, TERMINOLOGY, AND NOTATION. 3
BASIC RESULTS 7
CHAPTER 1. HIGH-FIDELITY AND PRIMITIVE SOLUBLE GROUPS. 11
CHAPTER 2. SOLUBLE HIGH-FIDELITY GROUPS WITH A UNIQUE 48MINIMAL NORMAL SUBGROUP.
CHAPTER 3. SOLUBLE q'-HALFTRANSITIVE GROUPS OF LINEAR 72 TRANSFORMATIONS OF A GF(q)-VECTOR SPACE. I
CHAPTER 4. SOLUBLE q'-HALFTRANSITIVE GROUPS OF LINEAR 106 TRANSFORMATIONS OF A GF(q)-VECTOR SPACE. II
CHAPTER 5. BOUNDING THE NILPOTENT LENGTH OF A SOLUBLE 167 HIGH-FIDELITY GROUP WITH A UNIQUE MINIMAL NORMAL SUBGROUP.
REFERENCES. 170

ACKNOWLEDGEMENTS

I am extremely grateful to my supervisor, Dr. T.O. Hawkes, for all
his vaiuable help and advice throughout the preparation of this thesis.

I gratefully acknowledge the financial support of a grant from the Science Research Council during the period in which this research was conducted.

INTRODUCTION

The greater part of this thesis (Chapters 3 and 4) is concerned with the orbit sizes of the action of a finite soluble group G on the elements of a faithful irreducible G-module over a finite field. This study grew quite naturally out of a consideration of some questions in the character theory of finite groups, and the arrangement of material in this thesis is designed to reflect this. Our starting point, then, must be within the theory of group characters.

There are many results connecting the structure of a finite group G to the set c.d.(G) of the degrees of the irreducible complex characters of G. For example, it is a well known fact that $|c . d .(G)|=1$ if and only if G is abelian. Several more results of this type are recorded by I.M. Isaacs in Chapter 12 of [8]. If $|c . d .(C)|=2$ then ([8] Corollary 12.6) the group G is metabelian. A result due to S.C. Garrison, which appears as Esroiiary $i 2.2 i$ or [8], establishes that if G is soluble then the nilpotent length of G is at most $|c . d .(G)|$.

What connections, if any, can be established between the structure of a finite group G and the various subsets of c.d.(G)? We may conveniently denote the set of the degrees of the faithful irreducible complex characters of a finite group G by f.c.d.(G) (which may, of course, be empty).

Chapter 1 is concerned mainly with those groups G satisfying the condition that $|f . c . d .(G)|=1$, groups which I shall call "high-fidelity" groups. Although it is demonstrated that auch a condition imposes no obvious restrictions on the structure of an arbitrary group, attention is drawn to the action of a high-fidelity group G on the set of non-trivial irreducible characters of its minimal normal subgroups. In particular,
it is shown that this action is half-transitive (that is, with all orbits of the same size) when G is soluble with a complemented unique minimal normal subgroup (a primitive soluble group), and in this special case the classification of soluble half-transitive groups of automorphisms by D.S. Passman in [10] (with Isaacs), [11], [12], [13] enables us to give a virtually complete description of the group structure. In Chapter 2 we investigate what can be said in the same situation minus the condition that the unique minimal normal subgroup is complemented. It turns out that half-transitivity must be replaced by a slightly weaker condition in which the orbit sizes are all the same up to multiplication by powers of some prime q; I call such an action "q'-halftransitive".

Chapters 3 and 4 are both concerned with obtaining a classification, similar to Passman's classification mentioned above, of the possibilities for a soluble group G such that, for some prime q, G acts q^{\prime}-halftransitively on the non-trivial elements of a faithful irreducible G-module over the field of q elements. The case in which G has a non-cyclic abelian normal subgroup is handled in Chapter 3, the opposite case in Chapter 4. Many of Passman's results and techniques are employed in both these chapters, but especially in Chapter 4, the scheme of which mimics that of [13]. Besides a small number of exceptions for $q=3$, the final 1'st of possibilities differs from Passman's list in the half- transitive case only by the addition of an infinite family of groups, each of which is a semi-direct product of the form $N H$ where N is a member of an infinite family on Passman's list and H is a cyclic q-group.

In the short Chapter 5 the classification obtained in Chapters 3 and 4 is used in conjunction with Passman's classification and the main theorem of Chapter 2 to derive an upper bound of 6 on the nilpotent length of a soluble high-fidelity group with a unique minimal normal subgroup.

CONVENTIONS, TERMINOLOGY, AND NOTATION.

We adopt the convention that throughout this thesis all groups considered are finite. Homomorphisms of abstract groups will usually be written exponentially: thus g^{a} denotes the image of the group element g under the homomorphism a. However, following established usage, representations and characters will be written on the left (as will factor sets of projective representations and certain other maps). The term "module" will be understood to refer to a right module except when otherwise indicated.

If π is a set of primes, then a positive integer n is said to be a π-number if the only primes dividing n are in π. This 1 is a π-number for all sets of primes π. We shall use π^{\prime} to denote the set of primes not in π, and normally a set $\{p\}$ consisting of a single prime will be written simply as p. For any positive integer n and set of primes π we can express n as a product $a b$ where a is $a n$-number and b is a $\pi '$-number, called, respectively, the π-part and the π '-part of n.

If G is a group and π a set of primes then G is said to be a π-group if the order of G is a π-number. A m-subgroup, H, of G is said to be a hall r-subgroup of G if the order of H and the index of Hin G are co-prime.

Let G be a soluble group. The nilpotent length of G, written $n(G)$, is defined to be the smallest number of factors in a normal series of G with each factor nilpotent if G is non-trivial, zero otherwise.

A class \mathcal{F} of groups is said to be a formation when, for all groups G, we have (i) GeF implies that all epimorphic images of G are in \mathcal{F}, and (ii) if N_{1}, N_{2} are two normal subgroups of G such that the factor group $G / N_{i} \in \mathcal{F}$ for $1=1,2$, then $G /\left(N_{1} \cap N_{2}\right) \in \mathcal{F}$.

There follows a survey of notation used, which is, as far as possible, consistent with that of Huppert in [6] and with that of Isaacs in [8].

$H<G$	H is a proper subgroup of G
H \downarrow G	H is a normal subgroup of G
H char G	H is a characteristic subgroup of G
$\operatorname{Irr}(\mathrm{G})$	set of all irreducible complex characters of G
Firr (G)	$\{x \in \operatorname{Irr}(G): x$ is faithful\}
\hat{G}	group of linear complex characters of G
kerx	kernel of character x
$\operatorname{ker}(G$ on V)	kernel of the action of G on module V
$\mathrm{Hom}_{G}(U, V)$	group of G-homomorphisms from U to V
$\chi^{\mathbf{G}}, \mathrm{v}^{\mathrm{G}}$	induced character, module
X_{H}, V_{H}	restriction to H of character X, module V
θ^{8}	conjugate character
$\boldsymbol{G}_{\boldsymbol{\theta}}$	$\left\{\mathrm{g} \in \mathrm{G}: \theta^{\mathbf{g}}=\theta\right\}$
$\operatorname{Irr}(\mathrm{G} \mid \theta)$	$\left\{x \in \operatorname{Irr}(G): x_{N}=e \theta\right.$ some integer $\left.e\right\}$ where $N: G$ and
	$\theta \in \operatorname{Irr}(N) \text { such that } G_{\theta}=G$
B(N)	see page 33
$[x, \psi]$	$1 /\|G\|\left(\sum X(g) \psi\left(g^{-1}\right)\right)$ for characters X, ψ of G
$\operatorname{dim}_{K} V$	dimension of V over field K
KG	group algebra of G over field K
J (KG)	Jacobson radical of KG
S(KG)	socle of KG
$H^{2}\left(G, C^{x}\right)$	second cohomology group of G
$z^{2}\left(G, C^{x}\right)$	group of 2-cocycles (factor sets) of G
$\mathrm{B}^{2}\left(\mathrm{G}, \mathrm{C}^{x}\right)$	group of 2-coboundaries of G
GF(p^{n})	field of $\mathrm{p}^{\mathbf{n}}$ clements
$G L\left(n, P^{m}\right)$	general linear group of degree n over GF(p^{m})
SL(n, p^{m})	special linear group of degree n over GF(p^{m})
Sp($2 \mathrm{n}, \mathrm{p}^{m}$)	aymplectic group of degree 2 n over $\operatorname{GF}\left(p^{m}\right)$

S_{n}	symmetric group of degree n
C_{n}	cyclic group of order n
D_{8}	dihedral group of order 8
Q_{8}	quaternion group of order 8
$\mathcal{J}_{\left(q^{n}\right)}$	see Definition 1.14
$\mathscr{J}_{0}\left(q^{n}\right)$	see Definition 1.15
$\mathscr{J}_{k}\left(q^{n}\right)$	see page 27
$\mathscr{J}_{0}\left(q^{n}: q^{m}\right)$	see Definition 3.1
$G_{1} \times G_{2}$	direcr product of groups G_{1}, G_{2}
$G_{1} \sim G_{2}$	regular wreath product of G_{1} with G_{2}
$G_{1} Y G_{2}$	central product of groups G_{1}, G_{2}
$E(p, m)$	see page lo7

BASIC RESULTS

Listed below are those results from group theory and representation theory which are assumed. Some of these basic results are used in the course of proofs in this thesis without an explicit reference.

THEOREM. Orbit-stabiliser Theorem. (Huppert [6] I Satz 5.10 a).) If G is a group of permutations on a set X, then for each $X \in X$ the size of the G-orbit containing x is precisely the index in G of the stabiliser of x; that is, $\left|x^{G}\right|=\left|G: G_{x}\right|$ for all $x \in X$.

THEOREM. (Huppert [6] III Satz 4.2 b).) Let G be a soluble proup, and let F denote the Fitting subgroup of G. Then $C_{G}(F) \leqslant F$.

THEOREM. (Huppert [6] I Satz 4.6.) Let G be a cyclic group of order n. Then Aut(G) is isomorphic to the multiplicative group of equivalence classes mod n of integers prime to n. In particular, Aut (G) is abelian. and if G is a 2 -group then so is Aut (G).

THEOREM. (Huppert [6] V Satz 8.15.) Let G be a group, and lat A be a subgroup of Aut(G) such that A acts semi-regularly on the non-trivial clements of G. Then for all odd primes P the Sylow P-subgroups of A are cyclic, and the Sylow 2-subgroups of A are cyclic or generalised quaternion.

THEOREM. (Gorenstein [4] Chapter 6, Theorem 4.1.) Let G be a soluble group and π a set of primes. Then
(i) G contains a Hall π-subgroup :
(ii) any two Hall π-subgroups are conjugate in G;
(iii) any π-subgroup of G is contained in a Hall π-subgroup.

THEOREM. (Gorenstein [4] Chapter 5, Corollary 3.3.) Let p be a prime, and let P be a P-group. Assume that A is a subgroup of $\operatorname{Aut}(P)$ and that there exist normal A-invariant subgroubs P_{i} of P for $0 \leqslant i \leqslant n$ such that

$$
1=P_{0} \leqslant P_{1} \leqslant \cdots \leqslant P_{n-1} \leqslant P_{n}=P
$$

and such that A centralises P_{i+1} / P_{i} for $0 \leqslant i \leqslant n-1$. (A is said to stabilise the normal series $\left.1 \leqslant P_{1} \leqslant \ldots \leqslant P_{n-1} \leqslant P.\right)$ Then A is a p-group.

For each non-negative integer r let \mathcal{N}^{r} denote the class of soluble groups with nilpotent length at most r. From the definition of nilpotent length, \mathcal{N}^{0} consists of the trivial group, and \mathcal{N}^{1} is the class of all nilpotent groups. If $\mathcal{F}(p)=\mathcal{N}^{0}$ for all primes p then $\mathcal{N}^{\boldsymbol{1}}$ is locally defined by $\mathcal{F}(p)$; that is \mathcal{N}^{l} is precicely the class of those groups G such that for all primes p, if H / N is a chief factor of G with $p||H / N|$ then $G / C_{G}(H / N) \in \mathscr{F}(p)$. (See Huppert [6] VI Beispiel 7.6a).). In general it is easily verified that, provided \mathcal{N}^{r-1} is a formation, \mathcal{N}^{r} is locally defined by $\mathscr{F}(p)=\mathcal{N}^{r-1}$ for all primes p, whereupon an easy induction argument together with [6] VI Hauptsatz 7.5 yields the following result.

THEOREM. FOr each non-negative integer r the class \mathcal{N}^{r} is a formation. THEOREM. (Gorenstein [4] Chapter 3 Theorem 2.3.) If an abelian group G has an irreducible representation with kernel K then G / K is cyclic. In particular, a non-cyclic abelian group does not possess a faithful irreducible representation.

THEOREM. (Huppert [6] V Satz 5.17.) Let G bea group, p a prime, and let P be a normal p-subgroup of G. If X is an irreducible representation of G over a Field of charactaristic p, then P is contained in the kernel of X.

Let G be a group, and let x, ψ be complex characters of G. Then $[x, \psi]$ is defined by

$$
[x, \psi]=1 /|G|\left(\sum_{g \in G} x(g) \psi\left(g^{-1}\right)\right) .
$$

If $X(\psi)$ is irreducible then $[x, \psi]$ is precisely the multiplicity of $X(\psi)$ as an irreducible constituent of $\psi(x)$ (see Isaacs [8] Corollary 2.17 and prece ding discussion).

THEOREM. Frobenius Reciprocity. (Isaacs [8] Lemma 5.2.) Let G be a group and let H be a subgroup of G. If X is a complex character of G, and if θ is a complex character of H, then

$$
\left[x_{H}, \theta\right]=\left[x, \theta^{6}\right] .
$$

THEOREM. Clifford's Theorem. (Huppert [6] V Hauptsatz 17.3.) Let G be
 normal subgroup of G.
(i) If W is an irreducible $K N$-submodule of V then $V=\sum_{g \in G} \mathrm{Wg}$. Each Wg is an irreducible KN -module and V_{N} is completely reducible.
(ii) Let W_{1}, \ldots, W_{n} be a complete set of isomorphism types of irreducible $K N$-submodules of V. For $1 \leqslant i \leqslant n$ define V_{i} to be the sum of all $K N-$ submodules of V isomorphic to W_{i}. (The V_{i} are called the homogeneous components of V_{N}). Then

$$
v_{N}=v_{1} \oplus \ldots \oplus v_{n},
$$

and G permutes the V_{i} transitively by right multiplication.
(iii) For $1 \leqslant i \leqslant n$ define $A_{i}=\left\{g \in G: V_{i} g=V_{i}\right\}$. Then A_{i} is a subgroup of G, and V_{i} is an irreducible $K A_{i}$-module. Moreover. $V \propto V_{i}{ }^{G}$ and $n=\left|G: A_{i}\right|$ (iv) If $i \in\{1, \ldots, n\}$, then let θ_{i} denote the character of W_{i}. Assume that X is the character of V. Then there exists an integer e such that

$$
x_{N}=0 \cdot \sum_{i=1}^{n} \theta_{i}
$$

THEOREM. Schur's Lemma (Gorenstein [4] Chapter 3. Theorem 5.2.) If G is a group. K a field, and V an irreudicble $K G$-module, then $\mathrm{Hom}_{G}(V, V)$ is a division ring.

THEOREM. (Herstein [5] Theorem 7.c.) A finite division ring is necessarily a commutative field.

CHAPTER 1

HIGH-FIDELITY AND PRIMITIVE SOLUBLE GROUPS.

In this chapter the notion of a high-fidelity group is introduced (see Definition 1.2 below), and some special cases of such groups are considered. In particular, it is shown that there is a close connection between primitive soluble high-fidelity groups and soluble halftransitive groups of automorphisms (Theorem 1.18), allowing the use of D. Passman's classification of the latter groups (stated below as Theorem 2.16) in obtaining information about the former. The fact that the class of all high-fidelity groups is "large" (in the sense that every group appears as both a subgroup, and as a factor group, of some high-fidelity group) is demonstrated by Theorem 1.25 , in which it is shown that if H is any group and C any non-trivial cyclic groun, then the regular wreath product $C \underset{r}{\sim} H$ is a high-fidelity group. The final results of the chapter are all concerned with a particular subset of the set of all irreducible complex characters of a soluble group. This subset has the property that if all the characters in it share a common degree then (Theorem 1.32) the structure of the group concerned is restricted by the results on primitive soluble high-fidelity groups.

We follow [8] in using $\operatorname{Irr}(G)$ to denote the set of all irreducible complex characters of a group G. It will be convenient to fix a label for the set of faithful irreducible complex characters of a group.

NOTATION. Let G be a group. Then Firr(G) denotes the set

$$
\{x \in \operatorname{Irr}(G): x \text { is faithful }\}
$$

For an arbitrary group G the set $\operatorname{Firr}(G)$ may be empty. A solution
to the problem of deciding exactly when $\operatorname{Firr}(G)$ is non-empty was first given in a paper by K. Shoda ([15]) with acknowledgement to Y. Akizuki. The statement of this result (Theorem 1.21) requires a preliminary discussion of the structure of the socle of a group, and so, since such a discussion would be out of place here, for now we merely record an almost trivial result giving a condition on a group G that guarantees $\operatorname{Firr}(G) \neq \emptyset$, and also a necessary and sufficient condition that $\operatorname{Firr}(G) \neq \emptyset$ for a p -group G .

LEMMA 2.1 ([8] Theorem 2.32) (i) If G is a group with a unique minimal normal subgroup then $\operatorname{Firr}(G) \neq \varnothing$.
(ii) If G is a p-group then $\operatorname{Firr}(G) \neq \emptyset$ if and only if $Z(G)$, the centre of G, is cuclic.

NOTE. Lemma 1.1 (i) is not included in the statement of [8] Theorem 2.32, but the proof of [8] Theorem 2.32(b) includes an easy and obvious proof of the result.

DEFINITION 1.2. Let G be a group. We call G a high-fidelity group if $\operatorname{Fim}(G) \neq \varnothing$, and for all elements X, ψ, of $\operatorname{Firr}(G)$ we have $X(1)=\psi(1)$.

Obviously all cyclic groups are high-fidelity groups. A result by Choda ([16]) gives us some more examples.

THEOREM 1.3 (Shoda [16], Satz 12) Let G be a metabelian group such that $\operatorname{Firr}(G) \neq \emptyset$, and let A be a maximal abelian subgroup of G such that G^{\prime}. the derived group of G. is a subgroup of A. Then for all $x \in \operatorname{Firr}(G)$ we have $x(1)=|G: A|$. In particular, G is a high-fidelity group.

As an immediate consequence of our next reault, which is woll known and concerns the irreducible characters of Frobenius groups, we have further examples of high-fidelity groups.

LEMMA 1.4. ([8] Theorem 6.34(b)) Let G be a Frobenius group with Frobenius kernel R, say. If $X \in \operatorname{Irr}(G)$ such that $R \leqslant$ ker X, then there exists $\phi \in \operatorname{Irr}(R)$ such that $\phi^{G}=X$.

THEOREM 1.5. Let G be a Frobenius group with abelian Frobenius kernel R, say, such that $\operatorname{Firr}(G) \neq \varnothing$. Then $x(1)=|G: R|$ for all $x \in \operatorname{Firr}(G)$. In particular G is a high-fidelity group.

Proof. Let $x \in \operatorname{Firr}(G)$. Then by Lemma 1.4 there exists $\phi \in \operatorname{Irr}(R)$ such that $x=\phi^{G}$. Since R is abelian we have $\phi(1)=1$, wherelpon $x(1)=\phi^{G}(1)=|G: R| \phi(1)=|G: R|$.
Q.E.D.

Let p be a prime and let P be a class 2 p-group (that is, $P^{\prime} \leqslant Z(P)$) such that $Z(P)$ is cyclic. Write $Z=Z(P)$. By Lemma 1.1 we have $\operatorname{Firr}(P) \neq \varnothing$, and, since P / Z is abelian, Theorem 1.3 implies that P is a high-fidelity group. In Chapter 2 we shall require more information conceming the characters in Firr(P). Specifically we shall need to make use of the fact that if $X \in \operatorname{Firr}(P)$ and if λ is an irreducible constituent of x_{z}, then X and λ are fully ramified with respect to P / Z; that is $X(1)^{2}=|P: Z|$ or, equivalently, X is the unique irreducible constituent of λ^{p}. This fact is exactly the content of [9] Proposition 4.1 which is proved using the properties of group characters. We shall give an alternative proof, independent of character theory, which is based on showing that if A is a maximal normal abelian subgroup of P then $|A: Z|=|P: A|$, and then appealing to Theorem 1.3. (We remark that [16] Satz 12 is proved in terms of group representations and onits all mention of group characters.)

In order to prove the result mentioned above concerning maximal normal abelian subgroups of class 2 p-groupt, we shall use a very slightly modified version of [2] Proposition 3, namely Lamm 1.6 below.

DEFINITION. Let G be an abelian group, and let H be a cyclic group. A map $\delta: G \times G \rightarrow H$ is a pairing of G to H if, for all elements g_{1}, g_{2}, g_{3}, of G, we have

$$
\delta\left(g_{1}, g_{2} g_{3}\right)=\left(\delta\left(g_{1}, g_{2}\right)\right)\left(\delta\left(g_{1}, g_{3}\right)\right)
$$

and,

$$
\delta\left(g_{1} g_{2}, g_{3}\right)=\left(\delta\left(g_{1}, g_{3}\right)\right)\left(\delta\left(g_{2}, g_{3}\right)\right)
$$

If, in addition, $\delta(g, g)=1$ for all $g \in G$ then the pairing δ is said to be skew, and if $\delta(h, g)=1$ for all $g \in G$ implies that $h=1$, then we say that δ is non-singular.

Notice that if δ is/pairing from G to H and if $g \in G$, then $\delta(g, g)=(\delta(g, g))(\delta(1, g))=(\delta(g, g))(\delta(g, l))$, whereupon $\delta(1, g)=\delta(g, 1)=1$.

Although [2] Proposition 3 is stated in terms of a pairing of an ahelian grown ta \equiv commutative ring, the full ring structure is not used in the proof, and the proof of Lemma 1.6 follows the proof of [2] Proposition 3 closely. Nevertheless, it will be convenient to have the conclusions of Lemma 1.6 tailored to facilitate its application in Theorem 1.7 and $s o$, on balance, it seems worthwhile to give the proof in full.

LEMIA 1.6. Let G be an abelian group. and lat H be a cyclic group. Assume that δ is a skew non-singular pairing of G to H. Then there exist subgroups G_{1}, G_{2}, of G such that
(i) $G=G_{1} \times G_{2}, G_{1} \pm G_{2}$;
(1i) $\delta(x, y)=1$ for all elements x, y of $G_{i}(1=1,2)$;
(111) if, $g \in G$ such that $\delta(g, x)=1$ for all $x \in G_{1}$ thon $g \in G_{1}(1=1,2)$.

Proof. The proof is by induction on $|G|$. If $|G|=1$ then there is
nothing to prove. Therefore assume that $|G|>1$, and that if X is an abelian group with $|x|<|G|$ and if δ^{\prime} is a skew non-singular pairing of X to a cyclic group, then the conclusions of the lemma hold for X and δ^{\prime}.

Let n denote the exponent of G and let a_{1} be an element of G of order n. Suppose that there exists an integer $m<n$ such that $\left(\delta\left(a_{1}, g\right)\right)^{m}=1$ for all $g \in G$. Then $\delta\left(a_{1}^{m}, g\right)=1$ for all $g \in G$, and so, since δ is nonsingular, $a_{1}^{m}=1$, contradicting the fact that a_{1} has order $n>m$. Consequently there exists $a_{2} \in G$ such that $\delta\left(a_{1}, a_{2}\right)$ has order at least n in H. But $\left(\delta\left(a_{1}, a_{2}\right)\right)^{n}=\delta\left(a_{1}^{n}, a_{2}\right)=\delta\left(1, a_{2}\right)=1$, and hence $\delta\left(a_{1}, a_{2}\right)$ has order exactly n in H. Obviously a_{2} has order n in G.

Write $A_{1}=\left\langle a_{1}\right\rangle, A_{2}=\left\langle a_{2}\right\rangle$. We show that $A_{1} \cap A_{2}=1$. Clearly $A_{1} \cap A_{2}$ is cyclic, say $A_{1} \cap A_{2}=\langle a\rangle$. Since $a \in A_{2}$ and δ is skew we must have $\delta\left(a, a_{2}\right)=1$. Also $a \in A_{1}$, whence $a=a_{1}^{k}$ for some $k \leqslant n$. Therefore

$$
\left(\delta\left(a_{1}, a_{2}\right)\right)^{k}=\delta\left(a_{1}^{k}, a_{2}\right)=\delta\left(a, a_{2}\right)=1 .
$$

But $\delta\left(a_{1}, a_{2}\right)$ has order n in H, and therefore $k=n$. Thus $a=a_{1}^{n}=1$, and $A_{1} \cap A_{2}=1$.

Write $A=A_{1} \times A_{2}$, and $M=\{g \in G: \delta(g, a)=1$ for all $a \in A\}$. It is easily checked that the pairing δ restricted to A is a skew non-singular pairing of A to H, whence $A \cap M=1$. Let B denote the map $a m \delta(a,-)$, for all $a \in A$, where the space is to be filled by an element of A. Then B is a homomorphism from A to $\operatorname{Hom}(A, H)$, the group of homomorphisms from A to H. Since δ remains non-singular when restricted to A, it follows that B is a monomorphism. Write $\delta\left(a_{1}, a_{2}\right)=h$. Then, since H is cyclic, $\langle h\rangle$ is the unique subgroup of H of order n. Let $p \in \operatorname{Hom}(A, H)$. Clearly there exist integers t_{1}, t_{2}, such that $1 \leqslant t_{i} \leqslant n$ and

$$
a_{i}^{p}=h^{t_{i}}
$$

for $1=1,2$. If a denotes $a_{1}^{t_{2}} a_{2}^{-t} 1$ then it is easily verified that $a^{B}=\rho$. We conclude that B is an isomorphism from A to $\operatorname{Hom}(A, H)$.

Define the map γ by $\gamma: g \mapsto \delta(g,-)$ for all $g \in G$, with the space to be filled by an element of A. Then r is a homomorphism from G to $\operatorname{Hom}(A, H)$, and the kernel of r is precisely M. Clearly r restricted to A is the isomorphism B. It follows that Y is an isomorphism from G / M to $\operatorname{Hom}(A, H)$, and we have

$$
|G / M|=|\operatorname{Hom}(A, H)|=|A|
$$

Since $A \cap M=1$ we deduce that $G=A \times M$.
We have $|M|<|G|$, and, clearly, δ restricted to M is a skew non-singular pairing of M to H. Therefore we can apply induction to obtain subgroups M_{1}, M_{2}, of M such that
(i) $M=M_{1} \times M_{2}, M_{1} \cong M_{2}$;
(ii) $\delta(x, y)=1$ for all elements x, y, of $M_{i}(i=1,2)$;
(iii) if $g \in M$ such that $\delta(g, x)=1$ for all $x \in M_{i}$ then $g \in M_{i} \quad(i=1,2)$. Writing $G_{i}=A_{i} \times M_{i}$ for $i=1,2$, properties (i), (ii), (iii) in the statement of the lemma follow easily, and hence the lemma is proved by induction.
Q.E.D.

THEOREM 1.7. Lct p be a prime and let P be a class 2 p-group with cyclic centre, Z say. Then there exist two maximal normal abelian subgroups, A_{1}, A_{2}, of P such that $P / Z=A_{1} / Z \times A_{2} / Z$, and $A_{1} / Z E A_{2} / Z$.

Proof. Define a map $\delta: P / Z \times P / Z \rightarrow P^{\prime}$ by $\delta(x Z, y z)=[x, y]$ for all elements x, y, of P, where $[x, y]$ denotes the commutator $x^{-1} y^{-1} x y$. We shall show that 6 is a skew non-singular pairing of the abolian group P / Z to a cyclic group P^{\prime}.

Since P is class 2 we have $P^{\prime} \leqslant Z$. Therefore P / Z is abelian, and, since Z is cyclic, so if P^{\prime}. IF a, b, c, are olomerts of P then the fact
that P is class 2 implies that $[a b, c]=[a, c][b, c]$, and $[a, b c]=$ $[a, b][a, c]$. We check that δ is well-defined. If $x Z=x ' Z$ and $y z=y^{\prime} Z$, then there exist elements z_{1}, z_{2}, of z such that $x^{\prime}=x z_{1}$ and $y^{\prime}=y z_{2}$, and we have

$$
\left[x^{\prime}, y^{\prime}\right]=\left[x z_{1}, y z_{2}\right]=[x, y]\left[x, z_{2}\right]\left[z_{1}, y\right]\left[z_{1}, z_{2}\right]=[x, y] .
$$

It follows that δ is well-defined. That δ is a skew pairing is obvious. Suppose that $x Z \in P / Z$ such that $\delta(x Z, y Z)=1$ for all $y Z \in P / Z$. Then $[x, y]=1$ for all $y \in P$, which yields $x \in Z$, and we deduce that δ is non-singular.

By Lemma 1.6 there exist subgroups $A_{1} / Z, A_{2} / Z$, of P / Z such that
(i) $P / Z=A_{1} / Z \times A_{2} / Z, A_{1} / Z \cong A_{2} / Z$;
(ii) $\delta(x Z, y Z)=1$ for all elements $x Z, y Z$, of $A_{i} / Z \quad(i=1,2)$;
(iii) if $x Z \in P / Z$ such that $\delta(\Omega, y Z)=1$ for all $y Z \in A_{i} / Z$ then $x Z \in A_{i} / Z \quad(1=1,2)$.

Let $i \in\{1,2\}$, and let x, y, be elements of A_{i}. From (ii) we have $[x, y]=\delta(x Z, y Z)=1$, and it follows that A_{i} is abelian. Clearly $A_{i} \& G$, and A_{i} is a maximal normal abelian subgroup of P since, if $x \in C_{p}\left(A_{i}\right)$, then $\delta(x Z, y Z)=[x, y]=1$ for all $y \in A_{i}$, whereupon, by (iii), $x \in A_{i}$.
Q.E.D.

Let G be a group, and N a normal subgroup of G. If $g \in G$ and $\theta \in \operatorname{Im}(N)$ then θ^{g} denotes the irreducible character of N defined by $\theta^{g}(x)=$ $\theta\left(\mathrm{gxg}^{-1}\right)$ for all $x \in N$. The characters θ and θ^{g} are said to be conjugate in G. The stabiliser in G of θ, that is the set of all elements g of G such that $\theta^{G}=0$, is a subgroup of G and is denoted
 the eet $\left\{x \in \operatorname{Irr}(G):\left[X_{N}, \theta\right] \neq 0\right\}$ is denoted by $\operatorname{Irr}(G \mid \theta)$.

We are now in a position to give the altemative proof of
[9] Proposition 4.1 mentioned earlier.

THEOREM 1.8. Let p be a prime and let P be a class 2 p-group with cyclic centre, z say. Then $x(1)^{2}=|P: Z|$ for all $x \in \operatorname{Firr}(P)$. Also if $\lambda \in \operatorname{Firr}(Z)$ then $\operatorname{Irr}(P \mid \lambda)=\{\psi\}$ for some $\psi \in \operatorname{Firr}(P)$.

Proof. Since P is class 2 it follows that P is metabelian, and $\operatorname{Firr}(P) \neq \emptyset$ by Lemma 1.1. Let $x \in \operatorname{Firr}(P)$. If A is any maximal normal abelian subgroup of P then $A \geqslant Z \geqslant P^{\prime}$, and hence, by Theorem 1.3, we have $x(1)=|P: A|$. Therefore all maximal nomal abelian subgroups of P have the same index in P, and by Theorem 1.7 this index is precisely $|P: z|^{\frac{1}{2}}$. We deduce that $x(1)^{2}=|P: z|$ for all $x \in \operatorname{Firr}(P)$.

Now let $\lambda \in \operatorname{Firr}(Z)$, and let ψ be an irreducible constituent of λ^{P}. By Frobenius reciprocity we have $\left[\psi_{Z}, \lambda\right]$, the multiplicity of λ as an irreducible constituent of ψ_{Z}, is precisely $\left[\psi, \lambda^{P}\right]$, the multiplicity of ψ as an irreducible constituent of λ^{P}. Obviously $\psi \in \operatorname{Firr}(P)$ and $\psi_{Z}=\psi(1) \lambda$. Hence $\left[\psi, \lambda^{P}\right]=\psi(1)$. Now $|P: Z|=\lambda^{P}(1)$, and, as shown above, we have $\psi(1)^{2}=|P: Z|$. Therefore $\lambda^{P}=\psi(1) \psi$ and, since $x \in \operatorname{Irr}(P \mid \lambda)$ if and only if $\left[x, \lambda^{R}\right] \neq 0$, we have $\operatorname{Irr}(P \mid \lambda)=\{\phi\}$.
Q.E.D.

We next state Theorem 6.11 of [8] to which we shall need to refer many times.

THEOREM 1.9. ([8] Theorem 6.11). Let G be a group and N a nomal subgroup of G. Assume that $\theta \in \operatorname{Irr}(N)$, and write

$$
x=\left\{\psi \in \operatorname{Irr}\left(G_{\theta}\right):\left[\psi_{N}, \theta\right] \neq 0\right\}=\operatorname{Irr}\left(G_{\theta} \mid \theta\right)
$$

and

```
y={x\in\operatorname{Imp}(G):[xN;0]\not=0}.
```

Then
(i) ψ^{G} is irreducible for all $\psi \in X$;
(ii) the map $\psi \mapsto \psi^{\mathbf{G}}$ is a bijection from X to Y;
(iii) if $\psi^{G}=x$, with $\psi \in X$, then ψ is the unique irreducible constituent of $X_{G_{\theta}}$ which lies in X;
(iv) if $\psi^{G}=x$, with $\psi \in X$, then $\left[\psi_{N}, \theta\right]=\left[x_{N}, \theta\right]$.

If G is a group and N a normal subgroup of G, then we shall often identify the sets $\operatorname{Irr}(G / N)$ and $\{x \in \operatorname{Irr}(G): N \leqslant \operatorname{ker} x\}$; for, if $x \in \operatorname{Irr}(G)$ with $N \leqslant$ ker x then, by defining $x(g N)=x(g)$ for all $g \in G$, we have $x \in \operatorname{Irr}(G / N)$, and each element of $\operatorname{Irr}(G / N)$ arises in this way from some $X \in \operatorname{Irr}(G)$ with $N \leqslant$ kerx. (See, for example, [8] Lemma 2.22)

LEMMA 1.10. Let G be a group and N a normal subgroup of G. Assume that $\theta \in \operatorname{Irr}(N)$, and let K denote $k e r \theta$ - Then $K \& G_{\theta}$, and when θ is considered. in the natural way, as an element of both $\operatorname{Irr}(N / K)$ and $\operatorname{Irr}(N)$, we may identify the two sets $\operatorname{Irr}\left(G_{\theta} \mid \theta\right)$ and $\operatorname{Irr}\left(G_{\theta} / K \mid \theta\right)$. In addition, if $\theta(1)=1$ then

$$
G_{\theta}=\{g \in G:[g, x] \in K \text { for all } x \in N\} \text {, }
$$

and $N / K \leqslant Z\left(G_{G} / K\right)$.
Proof. It is easily verified that $K \& G_{\theta}$. Let $\psi \in \operatorname{Irr}\left(G_{\theta} \mid \theta\right)$. Since $\psi_{N}=e \theta$ for some integer e we must have $K \leqslant k e r \psi$. It follows immediately that the two sets $\operatorname{Irr}\left(G_{\theta} \mid \theta\right)$ and $\operatorname{Irr}\left(G_{\theta} / K \mid \theta\right)$ may be identified.

Now assume that $\theta(1)=1$. Then

$$
G_{\theta}=\left\{g \in G: \theta^{g}=\theta\right\}=\left\{g \in G: \theta^{g^{-1}}=\theta\right\}
$$

$=\left\{g \in G: \theta\left(g^{-1} \times g\right)=\theta(x)\right.$ for all $\left.x \in N\right\}$
$=\left\{g \in G: \theta\left(g^{-1} x^{-1} g\right)=\theta\left(x^{-1}\right)\right.$ for all $\left.x \in \mathbb{N}\right\}$
$=\left\{g \in G: \quad \theta\left(g^{-1} x^{-1} g\right)\left(\theta\left(x^{-1}\right)\right)^{-1}=1\right.$ for all $\left.x \in N\right\}$
$=\{g \in G: \theta([g, x])=1$ for $a l l x \in N\}$
$=\{g \in G:[g, x] \in K$ for $\operatorname{all} x \in N\}$.

It is an immediate consequence of the above that if $\theta(1)=1$ then $N / K \leqslant Z\left(G_{\theta} / K\right)$.
Q.E.D.

All the examples of high-fidelity groups we have met so far have the property that the common degree of the faithful irreducible characters has coincided with the index of an abelian normal subgroup. As we shall see later, it is easy to find high-fidelity groups of composite order which do not have this property, and the following example is of a highfidelity p-group which also lacks this property.

EXAMPLE. Let p be a prime, and let A be an elementary abelian p-group of order P^{3}. Let G be a Sylow p-subgroup of Aut (A), and write $P=A G$, the natural semi-direct product of A with G. We shall show not only that $\operatorname{Fim}(P) \neq \emptyset$ and $x(1)=p^{2}$ for all $x \in \operatorname{Firr}(P)$, but also that P contains no abelian normal subgroup of index p^{2}.
$\ddot{n}=$ have $\dot{\operatorname{u} u t(\lambda)} \cong \mathrm{GL}(3, p)$, whereupon G is isomorphic to a Sylow p-subgroup of $\mathrm{GL}(3, \mathrm{p})$. A Sylow p-subgroup of $\mathrm{GL}(3, \mathrm{p})$ is isomorphic to the group of all 3×3 upper uni-triangular matrices with entries in $\operatorname{GF}(p)$, the field of p elements. If a, b, c, are elements of $\operatorname{GF}(p)$ then

$$
\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)^{n}=\left(\begin{array}{ccc}
1 & n a & n b+\frac{n(n-1)}{2} a c \\
0 & 1 & n c \\
0 & 0 & 1
\end{array}\right)
$$

for all $n \geqslant 1$. Consequently it is easy to see that $G \cong D_{8}$ for $p=2$, and for $p>2$ the group G is an extraspecial group of order p^{3} and exponent p. It follows that $|P|=p^{6}$. Clearly A is a maximal normal abelian subgroup of P, and $|Z(P)|=p$. Since $Z(P)$ is cyclic Lemma 1.1 yields $\operatorname{Fimp}(P) \neq \square$.

Let $X \in \operatorname{Firr}(P)$, and write

$$
x_{A}=e \sum_{i=1}^{t} \lambda_{i}
$$

where $\lambda_{i} \in \operatorname{Irr}(A)$ for $1 \leqslant 1 \leqslant t$. Since A is abelian, we have $\lambda_{i}(1)=1$ for $1 \leqslant i \leqslant t$, and from the fact that x is faithful we deduce that

$$
\bigcap_{i=1}^{t} \operatorname{ker} \lambda_{i}=\operatorname{ker} x_{A}=1
$$

By Clifford's Theorem all the λ_{i} are conjugate in P, and therefore kerd $_{i}$ contains no non-trivial normal subgroup of P. Thus ker $\lambda_{i} \cap Z(P)=1$ for $1 \leqslant i \leqslant t$.

Write $\lambda=\lambda_{1}$ and consider P_{λ}. Obviously $A \leqslant P_{\lambda}$, and we see that $P_{\lambda}=A G_{\lambda}$, the semi-direct product of A with the stabiliser in G of λ. Since $t=\left|P: P_{\lambda}\right|=\left|G: G_{\lambda}\right|$ we have $t=1, p, p^{2}$, or p^{3}. If $t=1$ then $G_{\lambda}=G$, whereupon ker $\boldsymbol{\sim}$ \& . But, as noted above, kerd contains no non-trivial normal subgroup of P, and hence in this case ker $\lambda=1$, which is clearly impossible since A is not cyclic. Thus $t \neq 1$.

Write $X=\{\mu \in \operatorname{Irr}(A): \operatorname{ker} \mu \cap Z(P)=1\}$. It is easily seen that $|x|=p^{2}(p-1)$. Also $\lambda \in X$, and if μ is conjugate to λ in P then $\mu \in X$. Since $|x|=p^{2}(p-1)<p^{3}$, we have $t \not p^{3}$. Therefore $t=p$, or p^{2}. Suppose that $t=p$. Then $\left|G_{\lambda}\right|=p^{2}$. From the structure of G we see that if $H \leqslant G$ such that $|H|=p^{2}$ then $Z(G) \leqslant H$. Consequently $Z(G) \leqslant G_{\lambda}$. Since the λ_{i} are all conjugate in P it follows that the subgroups $P_{\lambda_{i}}$ are all conjugate in P, whereupon the subgroups $G_{\lambda_{i}}$ are all conjugate in G. Hence $Z(G) \leqslant G_{\lambda_{i}}$ for $1 \leqslant i \leqslant t$. By Leman 1.10 we have $[z(G), A] \leqslant \operatorname{ker}_{i}$ for $1 \leqslant i \leqslant t$, and thus

$$
[z(G), A] \leqslant \bigcap_{i=1}^{t} \operatorname{ker} \lambda_{i}=1
$$

a contradiction since $C_{P}(A)=A$.
Therefore $t=p^{2}$, and $\left|G_{\lambda}\right|=p$. Now $\mid A /$ ker $\lambda \mid=p$, and so
$\mid P_{\lambda} /$ ker $\lambda \mid=p^{2}$. It follows that $P_{\lambda} /$ ker λ is abelian. By Theorem 1.9 and Lemma 1.10 there exists $\psi \in \operatorname{Irr}\left(P_{\lambda} / \operatorname{ker} \lambda \mid \lambda\right)$ such that $\psi^{P}=X$. Hence $x(1)=\psi^{P}(1)=\psi(1) t=p^{2}$. Thus $x(1)=p^{2}$ for all $x \in \operatorname{Firr}(p)$.

Suppose that $B \& P$ such that $|P: B|=P^{2}$. Since P / B is abelian we have $P^{\prime} \leqslant B$. Now $P^{\prime}=[A, G][G, G]$ is abolicen of order P^{3}, but $C_{G}([A, G])=A[G, G]$ is non-abelian of order P^{4} and so B is non-abelian. Thus P contains no abelian normal subgroup of index p^{2}. This completes the example.

Let S denote the symmetric group of degree 4. Then S contains a unique minimal normal subgroup, N say. Also $N \cong C_{2} \times C_{2}$, and $C_{S}(N)=N$. Furthermore, N is complemented in S by a subgroup H of S, and $H \cong S / N \cong S_{3}$, the symmetric group of degree 3. Lemma 1.1 yields $\operatorname{Firr}(S) \neq \emptyset$. We have

$$
\sum_{\in \operatorname{Irr}(s)} \theta(1)^{2}=|s|=24
$$

and,

$$
\sum_{\substack{\theta \in \operatorname{J.rr}(S) \\ \theta \& F i r r(S)}}{ }^{\theta(1)^{2}}=|S / N|=6 .
$$

Therefore

$$
\sum_{\theta \in \operatorname{Firr}(\mathrm{S})}{ }^{\theta(1)^{2}}=24-6=18 .
$$

Since $\theta(1) \mid 24$ for all $\theta \in I \sim r(S)$ and $\theta(1) \geqslant 1$ for all $\theta \in \operatorname{Firr}(S)$, we deduce that S has exactly 2 faithful irreducible characters, both of degree 3. Hence S is a high-fidelity group.

The symmetric group of degree 4 is an example of a primitive soluble group. A group G is said to be primitive if G has a faithful primitive permutation representation. It is well known (see, for example, [6] II

Satz 3.2 \& Satz 3.3) that a soluble group G is primitive if and only if G contains a self-centralising minimal normal subgroup, or equivalently, if and only if $F(G)$, the Fitting subgroup of G, is the unique minimal normal subgroup of G. The structure of such groups is particularly easy to analyse for, if G is a primitive soluble group with unique minimal normal subgroup N, then N is an elementary abelian q-group for some prime q, and N is complemented in G by a subgroup, H say. Considered additively, N is an irreducible GF(q)H-module (where GF(q)H denotes the group algebra of H over the field GF(q)), which is faithful for H.

If A is an abelian group then \hat{A} denotes the group of all irreducible complex characters of A. As shown in $[6] \vee 6.4$, we have $A \bar{\xi} \hat{A}$.

IEMMA 1.11. Let A be an abelian group and assume that G is a subgroup of Aut (A). For $\lambda \in \hat{A}, \alpha \in G$, define λ^{α} by $\lambda^{\alpha}(a)=\lambda\left(a^{\alpha^{-1}}\right.$) for all $a \in A$. Then, with this definition, G may be regarded as a subgroup of Aut (\hat{A}). If A is an elementary abelian 9 -group then, with this definition, considered ãjíizvely, join i and \hat{A} are $G F(q) G$-modules, and if A is irreducible, 80 A A.

Proof. Clearly if $\alpha \in G$, then $\lambda \mapsto \lambda^{a}$ for all $\lambda \in \hat{A}$ is an automorphism of \hat{A}. As is easily checked, the map $\tau: A \rightarrow \hat{A}$ defined by

$$
\left(a^{T}\right)(\lambda)=\lambda(a)
$$

for all $a \in A, \lambda \in \hat{A}$, is an isomorphism. Moreover if G acts on \hat{A} in the obvious way tnen $\left(a^{\top}\right)^{a}=\left(a^{a}\right)^{\boldsymbol{*}}$ for all $a \in A, a \in G$. Consequently

$$
C_{G}(\hat{A}) \leqslant C_{G}(\hat{A})=C_{G}(A)=1
$$

If $\lambda \in \hat{A}$ and α, β, are elements of G then

$$
\lambda^{\alpha \beta}(a)=\lambda\left(a^{(\alpha \beta)^{-1}}\right)=\lambda\left(a^{\beta^{-1} a^{-1}}\right)=\lambda^{\alpha}\left(a^{\beta^{-1}}\right)=\left(\lambda^{\alpha}\right)^{\beta}(a)
$$

for all $a \in A$, whereupon $\lambda^{\alpha \beta}=\left(\lambda^{\alpha}\right)^{\beta}$. Thus G may be regarded as a subgroup of Aut (\hat{A}), and it follows immediately that if A is an elementary abolian
q-group then both A and \hat{A} are $G F(q) G$-modules. If M is a non-trivial proper G-invariant subgroup of \hat{A} then it is easily verified that $M^{\perp}=\{\mu \in \hat{A}: \mu(m)=1$ for all $\mathrm{m} \in \mathrm{M}\}$ is a non-trivial proper G-invariant subgroup of A . Since the map τ defined above is a G-isomorphism it follows that $\left(M^{\perp}\right)^{T-1}$ is a proper G-invariant subgroup of A, proving the statement about irreducibility. Q.E.D.

Let G be a group such that $G=G_{1} \times G_{2}$, the direct product of groups G_{1}, G_{2}. If $\phi \in \operatorname{Irr}\left(G_{1}\right)$ and $\theta \in \operatorname{Irr}\left(G_{2}\right)$ then, following [8], we define $x=\phi \times \theta$ by $x\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \theta\left(g_{2}\right)$ for all $g_{i} \in G_{i}, i=1,2$.

THEOREM 1.12. ([8] Theorem 4.21) Let $G=G_{1} \times G_{2}$ be the direct product of groups $G_{1}, G_{2} \cdot \underline{\operatorname{Then}} \operatorname{Irr}(G)=\left\{\phi \times \theta: \phi \in \operatorname{Irr}\left(G_{1}\right), \theta \in \operatorname{Irr}\left(G_{2}\right)\right\}$.

In the terminology of the theory of permutation groups, a group G of permutations on a set X with $|X|>1$ is said to act half-transitively on X if all G-orbits in X have the same size. Clearly, by the orbit-stabiliser theorem, to say that G acts half-transitively on X is equivalent to saying that $\left|G_{x}\right|=\left|G_{y}\right|$ for all elements x, y, of X. In the case in which $\left|G_{x}\right|=1$ for all $x \in X$ we say that G acts semi-regularly on X, and if G acts both semi-regularly and transitively on X then G is said to act regularly on X. The group G is said to act 3/2-transitively on X if G acts transitively on X and, for some $x \in X$, the group G_{x} acts half-transitively on $X \backslash\{x\}$.

LEMMA 1.13. Let G be a group with a unique minimal normal subgroup N.
Assume that N is abelian and that N is complemented in G by a subgroup H, say. Then G is a high-fidelity group if and only if H, regarded as a group of permutations on \hat{N}, acts half-transitively on (\hat{N}) with each stabiliser abelian. Moreover, if G is a high-fidelity group and $X \in F i r r(G)$ then $x(1)=\left|G: G_{\lambda}\right|$ for all $\lambda \in(\hat{N})^{*}$ and $(X(1),|N|)=1$.

Proof. The group G has a unique minimal normal subgroup and so, certainly, $\operatorname{Firr}(G) \neq \emptyset$. Let $X \in \operatorname{Firr}(G)$ and write

$$
x_{N}=e \sum_{i=1}^{t} \lambda_{i}
$$

where $\lambda_{i} \in \hat{N}$ for $l \leqslant i \leqslant t$. Since x is faithful, none of the λ_{i} is the trivial character. Choose $j \in\{1, \ldots, t\}$ and write $\lambda=\lambda_{j}$. Obviously $N \leqslant G_{\lambda}$, and therefore, since N is complemented in G by H, we see that $G_{\lambda}=N H_{\lambda}$. Let K denote $\operatorname{ker} \lambda$. Then $K \triangleleft G_{\lambda}$. The fact that N is abelian yields $\lambda(1)=1$, whereupon, by Lemma $1.10, N / K \leqslant Z\left(G_{\lambda} / K\right)$. Since $H \cap N=1$ we have $H_{\lambda} \cong H_{\lambda} K / K$, and

$$
\begin{equation*}
G_{\lambda} / K=N / K \times H_{\lambda} K / K \tag{1}
\end{equation*}
$$

By Theorem 1.9 and Lemma 1.10 the map $\psi \mapsto \psi^{G}$ is a bijection from the set $\operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$ to the set $\left\{\theta \in \operatorname{Irr}(G):\left[\theta_{N} ; \lambda\right] \neq 0\right\}$.

Assume that H acts half-transitively on ($\hat{N})^{*}$ with each stabiliser abelian, and let k denote the common size of all the H-orbits in ($\hat{N})^{*}$. If x, λ, t, are as above then we have

$$
t=\left|G: G_{\lambda}\right|=\left|H: H_{\lambda}\right|=k
$$

and, since H_{λ} is abelian, (1) implies that G_{λ} / K is abelian. There exists $\psi \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$ such that $X=\psi^{6}$, and hence

$$
x(1)=\psi^{G}(1)=\psi(1)\left|G: G_{\lambda}\right|=k
$$

It follows that if H acts half-transitively on (\hat{N}^{*} with each stabiliser abelian then G is a high-fidelity group.

Now assume that G is a high-fidelity group and let k denote the common degree of all the characters in $\operatorname{Firr}(G)$. Choose $\lambda \in(\hat{N})$. We shall show that $\left|H: H_{\lambda}\right|=k$, and that H_{λ} is abelian. If we write $K=$ ker λ then (1) above holds. Clearly $\psi^{G} \in \operatorname{Fim}(G)$ for all $\forall \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$, whereupor

$$
\psi^{G}(1)=\psi(1)\left|H: H_{\lambda}\right|=k
$$

for all $\psi \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$. By Theorem 1.12 we have

$$
\operatorname{Irr}\left(G_{\lambda} / K\right)=\left\{\mu \times \phi: \mu \in \operatorname{Irr}(N / K), \phi \in \operatorname{Irr}\left(\mathrm{H}_{\lambda} \mathrm{K} / \mathrm{K}\right)\right\}
$$

and it follows that

$$
\operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)=\left\{\lambda \times \phi: \quad \phi \in \operatorname{Irr}\left(H_{\lambda} K / K\right)\right\}
$$

Therefore, using (2),

$$
\phi(1)=\lambda(1) \phi(1)=(\lambda \times \phi)(1)=k /\left|H: H_{\lambda}\right|
$$

for all $\phi \in \operatorname{Irr}\left(H_{\lambda} K / K\right)$. Consequently $H_{\lambda} K / K$ is abelian, and $\phi(1)=1$ for all $\phi \in \operatorname{Irr}\left(H_{\lambda} K / K\right)$. Thus $\left|H: H_{\lambda}\right|=k$, and $H_{\lambda} \cong H_{\lambda} K / K$, an abelian group. We conclude that H acts half-transitively on (\hat{N}) with each stabiliser abelian.

Assume that G is a high-fidelity group, and let $X \in \operatorname{Firr}(G)$. Let $\mu \in(\hat{N})^{\#}$ such that $\left[X_{N}, \mu\right] \neq 0$. It is apparent from the proof above that $x(i)=\left|G: G_{\mu}\right|=\left|H: H_{\mu}\right|$. If $\lambda \in(\hat{N})^{\#}$ then, since H acts half-transitively on $(\hat{N})^{\#}$, we have

$$
x(1)=\left|H: H_{\mu}\right|=\left|H: H_{\lambda}\right|=\left|G: G_{\lambda}\right|
$$

as required. We see that $X(1)$ is the common size of all the H-orbits in $(\hat{N})^{*}$, and it follows that $x(1)\left|\left|(\hat{N})^{*}\right|\right.$. We have $|(\hat{N})^{*}|=|N|-1$, whereupon $x(1) \mid(|N|-1)$, and we conclude that $(X(1),|N|)=1$.

> Q.E.D.

The situation in which H is a group of automorphisms of a group N, and H acts half-transitivaly on N^{*}, has been studied by D. Passman in the series of papers [10] (with I. Isaacs), [11], [12]. [13], giving a classification of the possibilities for H if H is soluble. We shall state this claseification below after we have described two particular families
of groups that play a special part in Passman's work.

DEFINITION 1.14. If q is a prime and n a positive integer then $\boldsymbol{J}\left(q^{n}\right)$ denotes the group of automorphisms of the additive group of GF(q^{n}) consisting of all maps of the form

$$
x \longmapsto a x^{\circ}
$$

for all elements x, a, of $G F\left(q^{n}\right)$ such that $a \neq 0$, and for all $\sigma \in \operatorname{Aut}\left(\operatorname{GF}\left(q^{n}\right)\right)$, where Aut $\left(\operatorname{GF}\left(q^{n}\right)\right)$ denotes the group of field automorphisms, a cyclic group of order n.

We make a few easily verifiable observations about the group $\boldsymbol{J}^{\left(q^{n}\right)}$ and its action on the additive group of $G F\left(q^{n}\right)$. The subgroup, A say, of $J\left(q^{n}\right)$ consisting of all maps of the form
$x \longmapsto \mathbf{a x}$
for all elements x, a, of $\operatorname{GF}\left(q^{n}\right)$ such that $a \neq 0$, is cyclic of order $q^{n}-1$ and is normal in $\mathscr{J}\left(q^{n}\right)$. Clearly A acts transitively, in fact regularly, on the non-zero elements of $G F\left(q^{n}\right)$. Also A is complemented in $J\left(q^{n}\right)$ by a cyclic subgroup of order n consisting of all maps of the form

$$
\mathbf{x}=x^{\boldsymbol{\sigma}}
$$

for all $x \in \operatorname{GF}\left(q^{n}\right)$, $\sigma \in \operatorname{Aut}\left(G F\left(q^{n}\right)\right)$. Thus $\boldsymbol{J}\left(q^{n}\right)$ is metacyclic, and $\left|J\left(q^{n}\right)\right|=n\left(q^{n}-1\right)$. In addition, $\mathscr{J}\left(q^{n}\right)$ acts transitively on the non-zern elements of $\operatorname{GF}\left(1^{n}\right)$, and the stabiliser in $J\left(q^{n}\right)$ of an element of $\operatorname{GF}\left(q^{n}\right)^{*}$ is a cyclic group of order n.

It will be convenient to introduce some notation for certain subgroups of $\sqrt{\left(q^{n}\right)}$.

NOTATION. Let $k \mid n$, and let S denote the unique subgroup of Aut ($\operatorname{GF}\left(q^{n}\right)$) of order k. Then $\mathcal{J}_{k}\left(q^{n}\right)$ denotes the subgroup of $J\left(q^{n}\right)$ consisting of all maps of the form

$$
x \longmapsto a x^{\sigma}
$$

for all elements x, a, of $G F\left(q^{n}\right)$ such that $a \neq 0$, and for all $a \in S$.

DEFINITION 1.15. Let q be an odd prime, n a positive integer, and let V be a 2-dimensional vector space over the field $\operatorname{GF}\left(q^{n}\right)$. Then $J_{0}\left(q^{n}\right)$ denotes the group of all transformations of V of the form

$$
\binom{x}{y} \longmapsto\left(\begin{array}{cc}
a & 0 \\
0 & \pm a^{-1}
\end{array}\right)\binom{x}{y}
$$

and

$$
\binom{x}{y} \longmapsto\left(\begin{array}{cc}
0 & a \\
\pm a^{-1} & 0
\end{array}\right)\binom{x}{y}
$$

for all elements x, y, a, of $\operatorname{GF}\left(q^{n}\right)$ such that $a \neq 0$.
It is easily checked that $\left|\varlimsup_{0}\left(q^{n}\right)\right|=4\left(q^{n}-1\right)$. Let b be a generator of the cyclic multiplicative group of $\operatorname{GF}\left(q^{n}\right)$, and let c, d, denote the transformations

$$
\binom{x}{y} \longmapsto\left(\begin{array}{ll}
b & 0 \\
0 & b^{-1}
\end{array}\right)\binom{x}{y}
$$

and

$$
\binom{x}{y} \longmapsto\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}
$$

respectively. If B denotes the subgroup of $\int_{0}^{\prime}\left(q^{n}\right)$ generated by c, d, then $B \& C_{q^{n-1}} \times C_{2}$, with $B \& \mathscr{J}_{0}^{\left(q^{n}\right)}$ and $\left|\mathcal{J}_{0}\left(q^{n}\right): B\right|=2$. If denotes the transformation

$$
\binom{x}{y} \longmapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
$$

and if \mathbf{r} denotes $q^{n}-1$, then in terms of generators and relations we have
$\mathscr{J}_{0}\left(q^{n}\right)=\left\langle c, d, e: c^{\gamma}=d^{2}=e^{2}=1, c d=d c\right.$, ece $=c^{-1}$, ede $\left.=c^{r / 2} d\right\rangle$.
For all $v \in V^{*}$ the stabiliser in $\mathscr{J}_{0}\left(q^{n}\right)$ of v is a group of order 2, whereupon each $\mathscr{J}_{0}\left(q^{n}\right)$-orbit in v^{*} has size $2\left(q^{n}-1\right)$. In particular, $\mathscr{J}_{0}\left(q^{n}\right)$ does not act transitively on $V^{\#}$. Clearly we may regard $\left.\mathscr{J}_{0}^{(} q^{n}\right)$ as a group of transformations of a $2 n$-dimensional vector space v over the field GF(q), acting half-transitively on $\mathrm{v}^{\text {\# }}$.

The following theorem, Theoren 1.16, is a statement of Passman's results on half-transitive groups of automorphisms. The individual cases in Theorem 2.16 are not all stated explicitly in Passman's work, but these are easily deduced from the proofs given.

As in [6] I 9.10, we use $G_{1} Y G_{2}$ to denote a central product of two groups G_{1}, G_{2}. In writing $G_{1} Y G_{2}$ without additional comment there is always a certain amount of ambiguity, but for our purposes the meaning of $G_{1} Y G_{2}$ will always be obvious.

THEOREM 1.16 (Passman [10] (with Isaacs), [11], [12] , [13]). Assume that H is a group of automorphisms of a group N, such that H acts halftransitively but not semi-regularly on $N^{\prime \prime}$. Then N is an elementary abelian q-group for some prime q, and H acts irreducibly on N. If $|N|=q^{n}$ and H is soluble then either we may identify N with the additive group of $G F\left(q^{n}\right)$
 and H does not act transitively on N^{*}, or one of the following cases must hold.
(a_{1}) $q^{n}=3^{2},|H|=24, H_{x} a C_{3}$ for $x \in N^{*}, H \approx \operatorname{SL}(2,3)$; (a_{2}) $q^{n}=3^{2},|H|=48, H_{x} \quad S_{3}$ for $x \in \mathbb{N}^{*}, H \in \operatorname{GL}(2,3)$;
(b_{1}) $q^{n}=5^{2},|H|=48, H_{x} \cong C_{2}$ for $x \in N^{*}, F(H) \equiv Q_{8} Y C_{4}$; $\left(b_{2}\right) q^{n}=5^{2},|H|=96, H_{x} \equiv C_{4}$ for $\times \in N^{*}, F(H) \triangleq Q_{8} Y C_{4}$;
(c, $q^{n}=7^{2},|H|=72, H_{x} \cong c_{3}$ for $x \in N^{*}, F(H) \cong Q_{8} \times c_{3}$; (c_{2}) $q^{n}=7^{2},|H|=144, H_{x} \cong C_{3}$ for $x \in \mathbb{N}^{*}, F(H) \cong Q_{8} \times C_{3}$;
(d, $q^{n}=11^{2},|H|=48, H_{x} \cong C_{2}$ for $x \in N^{*}, F(H) \cong Q_{B}$;
$\left(d_{2}\right) \quad q^{n}=11^{2},|H|=240, H_{x} \cong C_{2}$ for $x \in N^{*}, F(H) \cong Q_{8} \times C_{5}$;
(e,) $q^{n}=27^{2},|H|=96, H_{x} \cong C_{2}$ for $x \in N^{*}, F(H) \cong Q_{8} Y C_{4}$;
(fi) $q^{n}=3^{4},|H|=32, H_{x} \cong C_{2}$ for $x \in N^{*}, F(H) \cong Q_{8} Y D_{8} ;$
$\left(f_{2}\right) \quad q^{n}=3^{4},|H|=160, H_{x} \cong C_{2}$ for $x \in N^{\#}, F(H) \cong Q_{8} Y D_{8} ;$
(fis) $q^{n}=3^{4},|H|=320, H_{x} \cong C_{4}$ for $x \in N^{\#}, F(H) \cong Q_{8} Y D_{8} ;$
(f_{4}) $q^{n}=3^{4},|H|=640, H_{x} \cong C_{8}$ for $x \in N^{\#}, F(H) \cong Q_{8} Y D_{8}$.
Furthermore, if H is imprimitive as a linear group on N then either $H \cong \mathscr{J}_{0}\left(q^{n / 2}\right)$, or $q^{n}=2^{6}$ and H is isomorphic to the dihedral group of order 18, or case (f_{1}) above holds.

LEMMA 1.17. ([8] Theorem 6.32 \& Corollary 6.33). Let H be a group which acts on $\operatorname{Irr}(N)$ and on the conjugacy classes of N for some group N. Assume that $\lambda(x)=\lambda^{h}(y)$ for all $\lambda \in \operatorname{Irr}(N), h \in H, x \in N$, where if x is an element of the conjugacy class, C, of N then $y \in c^{h}$. Then for each $h \in H_{2}$ the number of elements of $\operatorname{Irr}(N)$ fixed by h is equal to the nurber of conjugacy classes of N fixed by h. In addition, the number of H-orbits in $\operatorname{Irr}(N)$ is equal to the number of H-orbits in the set of conjugacy classes of N.

We are now in a position to prove that a primitive soluble highfidelity group is a 3/2-transitive permutation group.

THEOREM 1.18. Assume that G is a primitive soluble group and let N denote the unique minimal normal subgroup of G, complemented in G by a subgroup. H say. Then G is a high-fidelity group if and only if H acts half-transitively on (\hat{N}) with each stabiliser abelian. Moreover. if G is a hioh-

fidelity group then G is a $3 / 2$-transitive permutation grous.

Proof. The subgroup N is an elementary abelian q-group for some prime q, and the "if and only if" statement in the theorem follows imnediately from Lemma 1.13.

Assume that G is a high-fidelity group. Then, as a group of automorphisms of the group \hat{N}, the group H acts half-transitively on $(\hat{N})^{\prime \prime}$. We shall show that H acts half-transitively on N ". If H acts semiregularly on ($\hat{N})^{\prime \prime \prime}$ then Lemma 1.17 implies that H acts semi-regularly on $N^{\#}$. If H acts transitively on ($\hat{N})^{\#}$ then the number of H-orbits in \hat{U} is precisely 2, and, by Lemma 1.17, this is the number of H-orbits in N. Thus if H acts transitively on $(\hat{N})^{*}$ then H acts transitively on N^{*}. Hence we may assume that H acts neither semi-regularly nor transitively on ($\hat{N})^{*}$.

Let $|\mathrm{N}|=.q^{n}$, and let k denote the common order of the subgroups H_{λ} for all $\lambda \in(\mathbb{N})^{*}$. Suppose that there exists $x \in \mathbb{N}^{\#}$ such that $\left|H_{x}\right|>k$. In view of Lemma 1.17 it is apparent that H_{x} is not cyclic. If $H \leqslant \mathcal{T}\left(q^{n}\right)$ then there exists a normal subgroup, A, of H such that A and π / A are both cyclic, and such that A acts semi-regularly on ($\hat{N})^{*}$. By Lemana 1.17 the subgroup A acts semi-regularly on N^{*}, whence $H_{x} \cap A=1$ and $H_{x} \cong H_{x} A / A \leq H / A$, a contradiction since H / A is cyclic. Hence $H \neq \mathcal{J}\left(q^{n}\right)$. Suppose that case (c_{1}) of Theorem 1.16 holds. Then $\left|H_{\lambda}\right|=3$ for all $\lambda \in(\hat{N})^{*}$, whereupon $\left|H_{x}\right|>3$. Also $F(H) \cong Q_{8} \times C_{3}$ and $F(H)$ acts semi-regularly on $(\hat{N})^{*}$. By Lemma 1.17 the group $F(H)$ acts semi-regularly on N^{*}, whence $H_{x} \cap F(H)=1$. But $|H: F(H)|=3$, giving $\left|H_{x}\right| \leqslant 3$, a contradiction. Therefore case (c_{1}) does not hold, and so, since we have assumed that H acts neither semi-regularly nor tranzitively on ($\hat{N})^{\#}$. Theorem 1.26 yields that the only remaining possibilities are $H: \mathcal{J}_{0}\left(q^{n / 2}\right.$ with $\left|H_{\lambda}\right|=2$ for all $\lambda \in(\hat{N})^{*}$, or one of the cases $\left(d_{1}\right),\left(e_{1}\right),\left(f_{1}\right)$, must hold.

Hence H contains a central involution, z say, and $\left|H_{\lambda}\right|=2$ for all $\lambda \in(\hat{N})^{*}$. If $h \in H_{x}$ then by Lemma 1.17 there exists $\lambda \in(\hat{N})^{*}$ such that
$h \in H_{i}$, whereupon $h^{2}=1$. We deduce that H_{X} is an elementary abelian 2-group of order at least 4. But, since z acts without fixed points on $(\hat{N})^{*}$, we have $z \& H_{x}$, and it is easily checked that none of the possibilities for H we are considering contain such a subgroup H_{X}. This contradiction proves that $\left|H_{x}\right| \leqslant k$ for all $x \in N^{\#}$

Each H-orbit in $N^{(}$has size at least $|H| / k$. If t denotes the number of H-orbits in $(\hat{N})^{(\#)}$ then, since each H-orbit in $(\hat{N})^{(\#)}$ has size $|H| / k$, we must have $|(\hat{N})|=t(|H| / K)$. By Lemma $1.17 t$ is precisely the number of H-orbits in $N^{\text {* }}$, and therefore, from the fact that $|(\hat{N})|=\left|N^{*}\right|$, we see that each H-orbit in N^{*} has size precisely $|H| / K$. Thus H acts half-transitively on N.

We have $G=N H$. Define an action of G on the set of all elements of N by

$$
x(y h)=(x y)^{h}
$$

for all elements x, y, of N, and for all $h \in H$. Then G acts as a group of permutations on the elements of N, and G acts transitively since N acts transitively. It is easily verified that $H=G_{1}$, the stabiliser of $l \in N$. As shown above H acts half-transitively on N, whereupon G is a 3/2-transitive permutation group.
Q.E.D.

Thus, in the very special case in which G is a primitive soluble group as well as a high-fidelity group, we have strong restrictions on the structure of G; for example, it is not difficult to show that the nilpotent length of G is at most 4 . These restrictions arise because of conditions on the action of G on \hat{N}, where N denotes the unique minimal normal subgroup of G.

For an arbitrary group G the socle of G, written soc(G), is defined
to be the product of all minimal normal subgroups of G. Obviously soc(G) char G. We might ask whether, for an arbitrary high-fidelity group G, the conditions on the action of G on $\operatorname{Irr}(\operatorname{soc}(G))$ are strong enough to impose correspondingly strong restrictions on the structure of G. This is a question which we shall attempt to answer, necessitating a careful study of the action of a group G on $\operatorname{Irr}(\operatorname{soc}(G))$.

Let G be a group. For any field K, a KG-module consisting of a direct sum of irreducible KG-modules which are all mutually G-isomorphic is said to be homogeneous. An abelian minimal normal subgroup of G may be regarded additively in the usual way as an irreducible GF(q)G-module for some prime q. There are certain subgroups of $\operatorname{soc}(G)$ which will be of special interest, namely those subgroups formed by taking the product of all abelian minimal normal subgroups of G which lie in the same G-isomorphism class. If M is a subgroup of $\operatorname{soc}(G)$ formed in this way then $M \& G$, and we say that M is a homogeneous subgroup of $\operatorname{soc}(G)$. Considered adaitively, M is a homogeneous $G F(q) G$-module for some prime q.

NOTATION. If G is a group and N a subgroup of $\operatorname{soc}(G)$ then $B(N)$ denotes the set
$\{X \in \operatorname{Irr}(N):$ kerx contains no non-trivial normal subgroup of $G\}$

We turn our attention to the homogeneous subgroups of the socle of a group, together with the irreducible characters of such subgroups. It will be convenient to fix some notation which will remain fi:ed through to the end of the proof of Lemma 1.20 .

Let G be a group and M a homogeneous subgroup of soc(G). Assume that

$$
M=N_{1} \times N_{2} \times \ldots \times N_{C}
$$

where N_{1} is a minimal normal subgroup of G for $1 \leqslant 1 \leqslant c$, and let $\left|N_{1}\right|=q^{r}$ for some prime q. In addition let K denote $\operatorname{Hom}_{G}\left(N_{1}, N_{1}\right)$. Then K is a
finite dimensional vector space over the field $G F(q)$, say $\operatorname{dim}_{G F(q)} K=a$. We have $|\mathrm{K}|=q^{\mathrm{a}}$.

时 Schur's Lemma K is a division ring and so, by Wedderburn's well known theorem on finite division rings (see the list of basic results) it follows that K is a field. Additively, N_{1} is a vector space over K, and we have

$$
\left.r=\operatorname{dim}_{G F(q)^{N_{1}}}=\left(\operatorname{dim}_{K} N_{1}\right)\left(\operatorname{dim}_{G F}(q)\right)^{K}\right)=\left(\operatorname{dim}_{K} N_{1}\right) a,
$$

whence $\operatorname{dim}_{K} N_{1}=r / a$.
By Lemma 1.11, if for all $\lambda \in \hat{N}_{1}, a \in K$, we define

$$
\lambda^{\alpha}(x)=\lambda\left(x^{\alpha-1}\right)
$$

for all $x \in N_{1}$, then K becomes a subgroup of $\operatorname{Aut}\left(\hat{N}_{1}\right)$. It is easily verified that, additively, \hat{N}_{1} is a vector space over the field K. Since $N_{1} \equiv \hat{N}_{1}$ we have $\operatorname{dim}_{K} \hat{N}_{1}=\operatorname{dim}_{K} N_{1}=r / a$.

By assumption M is a homogeneous subgroup of $\operatorname{soc}(G)$, and therefore if $i \in\{1, \ldots, c\}$ then N_{i} is G-isomorphic to N_{1}. Let $\tau_{i}: N_{1} \rightarrow N_{i}$ be a G-isomorphism for $1 \leqslant i \leqslant c$. If $\lambda \in \hat{M}$ and if $i \in\{1, \ldots, c\}$ then let λ_{i} denote the element of \hat{N}_{1} defined by

$$
\lambda_{i}(x)=\lambda\left(x^{\top}\right)
$$

for all $x \in N_{1}$.
The results of 亡.M. Žmud' in [17] provide us with information concerning the subset of \hat{M} denoted by $B(M)$.

LEMMA 1.19. (Žmud [17] is 2 : 3.). The map $\lambda \mapsto\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}\right)$ is a bifection from \hat{M} to the set of all ordered subsets of \hat{N}_{1} of size c. He have $\lambda \in B(K)$ if and only if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}$, are linearly independent over K. In particular $B(K) \neq \emptyset$ if and only if $c \leqslant r / a$.

NOTE 1. In [17] the action of K on \hat{N}_{1} is not as defined above, but rather is defined by

$$
\lambda^{\alpha}(x)=\lambda\left(x^{\alpha}\right)
$$

for all $\lambda \in \hat{N}_{1}, a \in K, x \in N_{1}$. It is trivial to check that this difference does not affect the veracity of Lemma 1.19.

NOTE 2. The results of [17] are proved in rather greater generality than is indicated by Lemma 1.19. In [17] the author is concerned with those characters λ of M such that ker λ contains no non-trivial normal subgroup of G, and $\lambda=\mu_{1}+\mu_{2}+\ldots+\mu_{k}$ for some integer k with $u_{i} \in \hat{M} \quad(1 \leqslant i \leqslant k)$. Lemma 1.19 is the case $k=1$.

As an easy consequence of Lemma 1.19 we have the following result. LEMMA 1.20. If $c=r / a$ and $\lambda \in B(M)$ then $G_{\lambda}=C_{G}(M)$.

Proof. Assume that $c=r / a$ and that $\lambda \in B(M)$. Clearly $C_{G}(M) \leqslant G_{\lambda}$. To abtain the opposite inclusion, let $g \in G_{\lambda}$. If $x \in N_{1}$ and $i \in\{1, \ldots, c\}$ we have

$$
\lambda_{i}^{g}(x)=\lambda_{i}\left(g \times g^{-1}\right)=\lambda\left(\left(g \times g^{-1}\right)^{\tau i}\right)=\lambda\left(g\left(x^{\tau i}\right) g^{-1}\right),
$$

the last equality being a consequence of the fact that τ_{i} is a G-isomorphism. Hence

$$
\lambda_{i}^{g}(x)=\lambda\left(g\left(x^{T i}\right) g^{-1}\right)=\lambda^{g}\left(x^{T i}\right)=\lambda\left(x^{\top} i\right)=\lambda_{i}(x),
$$

and thus $\lambda_{i}^{g}=\lambda_{i}$.
By Lemma 2.19 the elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}$, of \hat{N}_{1} are inearly independent over K, and therefore, since $\mathrm{dim}_{K} \hat{N}_{1}=r / a=c$, we deduce that $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{c}\right\}$ is a K-basis for \hat{H}_{1}. As shown above, we have $\lambda_{1}^{g}=\lambda_{1}$ for $1 \leqslant i \leqslant c$, and, obviously, $\left(\lambda_{i}^{a}\right)^{g}=\left(\lambda_{1}^{g}\right)^{a}$ for all $a \in K$ and $1 \leqslant 1 \leqslant c$.

Consequently $g \in C_{G}\left(\hat{N}_{1}\right)$, and so, by Lemma 1.11, $g \in C_{G}\left(N_{1}\right)$. But, since M is homogeneous, we have $C_{G}\left(N_{1}\right)=C_{G}(M)$, whereupon $G_{\lambda} \leqslant C_{G}(M)$ and the proof is complete.
Q.E.D.

Next we state the result due to Akizuki and Shoda which gives a necessary and sufficient condition that $\operatorname{Firr}(G) \neq \varnothing$ for a gnoup G.

THEOREM 1.21. (Shoda [15]). Let G be a group, and let M_{1}, \ldots, M_{s}, denote the homogeneous subgroups of $\operatorname{soc}(G)$, with N_{i} a minimal normal subgroup of G contained in M_{i} for $1 \leqslant 1 \leqslant s$. If $i \in\{1, \ldots, s\}$ let q_{i} be a prime and r_{i} an integer such that $\left|N_{i}\right|=q_{i}^{r_{i}}$, and assume that M_{i} is a direct product of c_{i} G-isomorphic copies of N_{i}. In addition let the field $\operatorname{Hom}_{G}\left(N_{i}, N_{i}\right)$ have exactly $q_{i} a_{i}$ elements. Then $\operatorname{Firr}(G) \neq \varnothing$ if and only if $c_{i} \leqslant r_{i} / a_{i}$ for $1 \leqslant i \leqslant s$.

We shall require some facts concerning the structure of group algebras. Let G be a group, and K a field. The group algebra $K G$ is a quasi-Frobenius algebra (see, for example, [1] Chapter VIII 566 Remark 2). We denote the Jacobson radical of $K G$ by $J(K G)$. Since $M(K G)=0$ for all irreducible KG-modules M, an irreducible KG-module is an irreducible $K G / J$ ($K G$)-module and vice versa. In what follows we shall make no distinction between an irreducible KG-module and an irreducible KG/J(KG)-module.

The socle of KG, denoted by $S(K G)$, is defined to be the sum of all minimal right idsals in KG. It is a fact ([1] Chapter VIII Theorem 58.12) that $S(K G)$ is precisely the sum of all minimal left ideals in $K G$, and thus $S(K G)$ is a two-sided ideal in KG. Clearly $S(K G)$ is completely reducible, both as a right and as a left KG-module.

As in [14] Section 1.8, we may decompose the group algebre KG, considered as a right KG-module, into a direct sum of principal indecomposable subrodules, and there exist primitive idempotents $e_{1} \ldots . . \theta_{n}$, such
that

$$
\begin{equation*}
K G=e_{1} K G \oplus \ldots \oplus e_{n} K G \tag{1}
\end{equation*}
$$

is such a decomposition, where $1=e_{1}+\ldots+e_{n}$.
LEMMA 1.22. ([14] Theorem 1.8, Exercise 6 of Section 1.8). Let G bea group. K a field, and assume that the group algebra KG has the decomposition (1) above. If $i \in\{1, \ldots, n\}$ then
(i) the principal indecomposable KG-module e_{i} KG has a unique maximal submodule, namely $e_{i} J(K G)=e_{i} K G \cap J(K G) ;$ (ii) the module $e_{i} K G$ contains a unique irreducible submodule, and this irreducible submodule is G-isomorphic to $e_{i} K G / e_{i} J(K G)$.

Our next result is a statement of the well known structure theorem for a semi-simple algebra of finite dimension over a field.

THEOREM 1.23.([6] V $553,4$.$) Let A be a semi-simple algebra of finite$ dimension over a field K. Then A may be decomposed as a direct sum of minimal right ideals. Let $A=A_{1} \oplus \ldots \oplus A_{n}$ be any such decomposition. and assume that N is an irreducible A-module. In addition, let $\operatorname{dim}_{K} N=r$, and let $\operatorname{dim}_{K}\left(\operatorname{Hom}_{A}(N, N)\right)=a$. Then there are exactly r / a of the ideals A_{i} which are isomorphic to N as right A-modules.

NOTE. The exact formulation of Theorem 1.23 does not appear in [6]. The theorem is a combination of [6] V Hauptsatz 3.3, together with a direct consequence of the results in [6] V Satz 3.8, Satz 4.1, Haupsatz 4.4, Satz 4.5.

THEOREM 1.24. Let G be a group. K a field, and assume that the group alaebra KG has the decomposition (1) above. Then

$$
s(K G)=e_{1} s(K G) \oplus \ldots \oplus e_{n} s(K G)
$$

and $e_{i} S(K G)$ is an irreducible KG-submodule of the principal indecomposable KG-module $e_{i} K G$ for $1 \leqslant i \leqslant n$. Moreover KG/J(KG) and $S(K G)$ are isomorphic KG-modules. If N is an irreducible $K G$-module with $\operatorname{dim}_{K} N=r$ and $\operatorname{dim}_{K}\left(\operatorname{Hom}_{G}(N, N)\right)=a$, then there are exactly r / a of the $e_{i} S(K G)$ which are G-isomorphic to N.

Proof. Since $1=e_{1}+\ldots+e_{n}$, the decomposition

$$
S(K G)=e_{1} s(K G) \oplus \ldots \oplus e_{n} s(K G)
$$

is obvious. As remarked above, $S(K G)$ is a two-sided ideal in KG and a completely reducible right KG-module. Consequently, if $i \in\{1, \ldots, \dot{r}\}$ then $e_{i} S(K G)$ is a completely reducible KG-submodule of the principal indecomposable KG-module $e_{i} K G$. By Lemma 1.22 (ii) the module $e_{i} K G$ contains a unique irreducible submodule, and hence $e_{i} S(K G)$ is precisely that unique irreducible submodule of e_{i} KG. Moreover, again by Lemma 1.22(ii), the modules $e_{i} S(K G)$ and $e_{i} K G / e_{i} J(K G)$ are G-isomorphic.

From Lemma 1.22(i) and the decomposition (1) we see that

$$
K G / J(K G) \cong e_{1} K G / e_{1} J(K G) \oplus \ldots \oplus e_{n} K G / e_{n}^{J}(K G)
$$

as KG-modules. Thus, since $e_{i} S(K G) \cong e_{i} K G / e_{i} J(K G)$ for $1 \leqslant i \leqslant n$, it follows that

$$
\begin{equation*}
K G / J(K G) \cong e_{\perp} s(K G) \oplus \ldots \odot e_{n} s(K G)=s(K G) \tag{2}
\end{equation*}
$$

as KG-modules.
 Using (2) above and the fact that $K G / J(K G)$ is a semi-simple algebra over K, Theorem 1.23 implies that there are exactly r/a of the modules $e_{i} S(K G)$ which are G-isomorphic to N .
Q.E.D.

We are at last in a position to show that if H is any group, and C a non-trivial cyclic group, then $C \underset{r}{\sim} \mathrm{H}$ is a high-fidelity group. Details of the construction $C \underset{\sim}{\sim} H$ and its properties may be found in [6] I 515.

THEOREM 1.25. Assume that H is a group, and that C is a non-trivial cyclic group. Let G denote $C \underset{r}{\sim} H$, the regular wreath product of C with H. Then $\operatorname{Firr}(G) \neq \emptyset$. Furthermore, if $x \in \operatorname{Firr}(G)$ then $x(1)=|H|$, whereupon G is a high-fidelity group. Any group is isomorphic to a subgroup, and to a factor group, of some high-fidelity group.

Proof. From the nature of the construction $G=C \underset{\mathbf{r}}{\sim} \mathbf{H}$ we have the following facts. Firstly, $|G|=|C|^{|H|}|\mathrm{H}|$. Secondly, G contains a normal subgroup, D say, such that D is isomorphic to a direct product of $|H|$ copies of C. Thirdly, D is complemented in G by a subgroup, X say, such that $X \cong H$. Moreover, the $|X|$ direct factors of D may be labelled D_{x} as x varies over the elements of x, in such a way that

$$
y^{-1}\left(D_{x}\right) y=D_{x y}
$$

for all elements x, y, of X. Since $D_{x} \equiv C$, a cyclic group, there exists a generating set $\left\{d_{x}\right\}_{x \in X}$ for D such that

$$
y^{-1} d_{x} y=d_{x y}
$$

for all elements x, y, of X. Clearly $C_{G}(D)=D$, whence $\operatorname{soc}(G) \leqslant D$. Therefore $\operatorname{soc}(G)$ is abelian.

Let N be a minimal normal subgroup of G. Since N is abelian, it follows that N is an elementary abelian q-group for some prime q. Let M denote the homogeneous subgroup of soc(G), containing N, and assume that M is a direct product of c G-isomorphic copies of N . In addition, let $|N|=q^{r}$, and let $\left|\operatorname{Hom}_{G}(N, N)\right|=q^{a}$. Assume that S denotes the unique

Sylow q-subgroup of D, and write $E=\Omega_{1}(S)$; that is, E is the subgroup of S generated by all elements of S of order q. Obviously E is an elementary abelian q-group, and $|E|=q|X|$. Furthermore, if α denotes $|c| / q$, and if we write $e_{x}=\alpha_{x}^{\alpha}$, then $\left\{e_{x}\right\}_{x \in X}$ is a generating set for E and,

$$
\begin{equation*}
y^{-1} e_{x} y=e_{x y} \tag{1}
\end{equation*}
$$

for all elements x, y, of X. Clearly $E \subset G$, and $M \leqslant E$. In addition, $C_{X}(E)=1$.

Regarded additively, with X acting by conjugation, E is a GF(q)X-module with $G F(q)$-basis $\left\{e_{x}\right\}_{x \in X}$. From the nature of the X-action on the basis $\left\{e_{x}\right\}$, it is apparent that, as $\operatorname{GF}(q) X$-modules, the group algebra $G F(q) X$ and E are isomorphic. Since $D \leqslant C_{G}(N)$, it follows that N is irreducible as a GF(q)X-module, and that $\operatorname{Hom}_{G}(N, N)=\operatorname{Hom}_{X}(N, N)$. Now as a GF(q)Xmodule, M is the sum of all irreducible $\operatorname{GF}(q) X$-submodules of E which are X-isomorphic to N, and M is a direct sum of $c X$-isomorphic copies of N. Hence, by Theorem 1.24 , we have $c=r / a$. Theorem 1.21 yielus $\operatorname{Firr}(G) \neq \varnothing$. Let $X \in \operatorname{Firr}(G)$, and write

$$
x_{D}=e \sum_{i=1}^{t} \theta_{i}
$$

where $\theta_{i} \in \operatorname{Irr}(D)$ for $1 \leqslant i \leqslant t$. Let θ denote θ_{1}. Since D is abelian we have $\theta(1)=1$. From the fact that all the θ_{i} are conjugate in $G_{\text {, }}$ and since $x \in \operatorname{Firr}(G)$, it follows that $\operatorname{ker} \theta$ contains no non-trivial normal subgroup of G. We shall show that $G_{\theta}=D$. Clearly $D \leqslant G_{\theta}$, and, since $G=D X$, we must have $G_{\theta}=D X_{0}$. Again let N denote a minimal normal subgroup of G, with $q, M, C, r_{i}, a, E,\left\{e_{X}\right\}_{x \in X}$, as before. As proved above, $c=r / a$. We show first that $q\left|\left|X_{\theta}\right|\right.$.

Suppose that $q\left|\left|X_{\theta}\right|\right.$, and let y be an element of X_{θ} of order q. We have

$$
\begin{equation*}
\theta\left(e_{x}\right)=\theta^{y}\left(e_{x}\right)=\theta\left(y e_{x} y^{-1}\right)=\theta\left(e_{x y}-1\right) \tag{2}
\end{equation*}
$$

for all $x \in X$. Now y^{-1} permutes the elements of the set $\left\{e_{x}\right\}_{x \in X}$ by conjugation in orbits of length $q=\left|y^{-1}\right|$, and (2) shows that θ is constant on each orbit. Assume that y^{-1} permutes the elements of $\left\{e_{x}\right\}_{x \in X}$ in exactly k orbits, say E_{1}, \ldots, E_{k}, and for $1 \leqslant i \leqslant k$, let $e_{i} \in E_{i}$. Since $\left|e_{i}\right|=q$ we must have $\theta\left(e_{i}\right)^{q}=1$ for $1 \leqslant i \leqslant k$. Write

$$
f=\prod_{x \in X} e_{x},
$$

and let F denote $\langle f\rangle$. It is easily verified that $F \triangleleft G$. We have

$$
\begin{aligned}
& \theta(f)=\theta\left(\prod_{x \in X} e_{x}\right)=\theta\left(\prod_{i=1}^{k} \prod_{e_{x} \in E_{i}} e_{x}\right)=\prod_{i=1}^{k} \theta\left(\prod_{e_{x} \in E_{i}} e_{x}\right)= \\
& \prod_{i=1}^{k} \theta\left(e_{i}\right)\left|E_{i}\right|=\prod_{i=1}^{k} \theta\left(e_{i}\right)^{q}=1 .
\end{aligned}
$$

Hence $F \leqslant k e r \theta$ ', a contradiction since kere contains no non-trivial normal subgroup of G. Therefore $q \dagger\left|\mathrm{x}_{\theta}\right|$.

Let λ denote θ_{M}. Then $\lambda \in \operatorname{Irr}(M)$, and, since ker \leqslant ker θ, it follows that kerd contains no non-trivial normal subgroup of G. Thus $\lambda \in B(M)$. As noted above, we have $c=r / a$, whereupon Lemma 1.20 yields $G_{\lambda}=C_{G}(M)=C_{G}(N)$. Obviously $G_{\theta} \leqslant G_{\lambda}$, and we deduce that $X_{\theta} \leqslant G_{\theta} \leqslant C_{G}(N)$. Therefore X_{θ} centralises each minimal normal subgroup of G. In particular, X_{6} centralises each minimal normal subgroup of G contained in E.

As remarked earlier, regarded additively as a $G F(q) X$-module, E is isomorphic to the group algebra $\operatorname{GF}(q) X$. Clearly the minimal normal subgroups of G contained in E are precisely the irreducible $G F(q) X$-submodules of E, and, by Theorem 1.24, every irreducible $G F(q) X$-module is X-isomorphic to some $\operatorname{GF}(q) X$-submodule of E. Consequently X_{θ} centralises ach irreducible GF(q)X-module. Let

$$
1=Q_{0}<Q_{1}<\ldots<Q_{s-1}<Q_{s}=\Sigma
$$

be an X-composition series for E. Then Q_{i} / Q_{i-l} is an irreducible $G F(q) X$-module for $1 \leqslant i \leqslant s$. Hence X_{θ} is a q^{\prime}-group of automorphisms of the q-group E such that X_{θ} centralises Q_{i} / Q_{i-1} for $1 \leqslant i \leqslant s$. We deduce that $X_{\theta}=1$, and then $G_{\theta}=D X_{\theta}=D$.

By Theorem 1.9 we have $\theta^{G}=x$, whence $x^{(1)}=\theta^{G}(1)=\theta(1)|G: D|=|H|$ as required. It follows that G is a high-fidelity group. Since $H \cong X \cong G / D$ it is clear that any group is isomorphic to a sulugroup, and to a factor group, of some high-fidelity group.
Q.E.D.

We see from Theorem 1.25 that, if G is an arbitrary group, the conditions $\operatorname{Firr}(G) \neq \emptyset$ and all characters in $\operatorname{Firr}(G)$ have the same degree do not impose any obvious restrictions on the structure of G apart from those imposed by the condition that $\operatorname{Firr}(G) \neq \varnothing$ alone. Later, using a suitable generalisation of the idea of a half-transitive group of permutations on a set, we shall generalise the results obtained earlier in this chapter on primitive soluble high-fidelity groups to soluble high-fidelity groups with a unique minimal normal subgroup. We close this chapter by showing that if G is any soluble group, then there exists a certain non-empty subset of $\operatorname{Irr}(G)$, which we shall denote by Irr (G), such that the condition that all characters in Irr* (G) have the same degree imposes strong restrictions on the structure of \mathbf{G}.

For any soluble group G,let $n(G)$ denote the nilpotent length of G.

DEFINITION. If G is a soluble group then the subset $\operatorname{Irr}(G)$ of $\operatorname{Irr}(G)$ is defined by

$\operatorname{Irr}{ }^{\boldsymbol{d}}(G)=\{X \in \operatorname{Irr}(G): n(G / \operatorname{ker} X)=n(G)\}$.
Notice that $\operatorname{Firr}(G) \subseteq \operatorname{Irr}(G)$. However, as we shall show, it is an immediate consequence of [8] Theorem 12.14 that, unlike Firr(G), the set

Irr* (G) is non-empty for any soluble group G.

LEMMA 1.26. ([8] Theorem 12.24). Let G be a group, $x \in \operatorname{Irr}(G)$, and assume that $F / k e r x=F(G / k e r x)$. If F is not nilpotent then there exists $\psi \in \operatorname{Irr}(G)$ such that ker ψ ker X.

THEOREM 1.27. Let G be a soluble group. If $x \in \operatorname{Irr}(G)$ such that kerx is minimal among the kernels of all irreducible characters of G, then $x \in \operatorname{Irrt}(G) . \quad$ In particular $\operatorname{Ir} \boldsymbol{H}(G) \neq \emptyset$.

Proof. Let $x \in \operatorname{Irr}(G)$ such that kerx is minimal. If $F / k e r x$ denotes F(G/kerx) then, by Lemma 1.26 and the minimality of kerx, it follows that F is nilpotent, whereupon $F=F(G)$. Clearly, then, $n(G / \operatorname{ker} X)=n(G)$, giving $x \in \operatorname{Irr*}(G)$ as required.
Q.E.D.

If G is any group then $\Phi(G)$ denotes the Frattini subgroup of G.

LEMMA 1.28. ([6] III Satz 4.5). Let Ge beoup. Then $F(G) / \phi(G)=$ $F(G / \Phi(G))$ is a direct product of abelian minimal normal subgroups of G/*(G).

LEMMA 1.29. Let G be a soluble group, and assume that $x \in \operatorname{Irp}{ }^{*}(G)$ such that kerx is maximal among the kernels of characters in Irr\#(G). Then G/kerx is a primitive soluble group.

Proof. For all subgroups H of G such that ker $\leqslant H \leqslant G$, let \bar{H} denote the group H/kerx. Since $X \in \operatorname{Irm}(G)$ we have $n(G)=n(G)$. Assume that N is a noxmal subgroup of G such that kerx $\leqslant N$ and $n(G / N)=n(G)$. Theorem 1.27 Inplies that $\operatorname{Irr} *(G / N) \notin$, and hence there exists $\psi \in \operatorname{Irr}(G)$ such that $N \leqslant$ kerf and $n(G / k e r \psi)=n(G / N)=n(G)$. Thus kerx $\leqslant N \leqslant$ ker ψ, and \forall © Irri(G). Therefore, by maximality of kerx, we must have kerx $=\mathrm{N}=\mathrm{ker}$.

Let $M /$ kerx denote $\Phi(\bar{G})$. By Lemma 1.28 we have $F(\bar{G} / \Phi(\bar{G}))=F(\bar{G}) / \Phi(\bar{G})$, and consequently $n(G / M)=n(\bar{G} / \Phi(\bar{G}))=n(\bar{G})=n(G)$. Therefore, as proved above, we must have $M=$ ker X, whereupon $\phi(\bar{G})=1$. By Lemna 1.28 the group $F(\bar{G})$ is a direct product of minimal normal subgroups of \bar{G}, say $F(\bar{G})=\bar{N}_{1} \times \bar{N}_{2} \times \ldots \times \bar{N}_{t}$ where \bar{N}_{i} is a minimal normal subgroup of \bar{G} for $1 \leqslant i \leqslant t$. Suppose that $t \geqslant 1$. It is a fact that for any natural number n, the class of all soluble groups with nilpotent length at most n is a formation (see the list of basic results), and hence there exists $j \in\{1, \ldots, t\}$ such that $n\left(\bar{G} / \bar{N}_{j}\right)=n(\bar{G})$. Thus $\operatorname{ker} x \leqslant N_{j}$ with $n\left(G / N_{j}\right)=$ $n\left(\bar{G} / \bar{N}_{j}\right)=n(\bar{G})=n(G)$, and so, as shown above, we must have kerx $=N_{j}$. Therefore $N /$ kerx $=\bar{N}_{j}=1$, a contradiction. We deduce that $t=1$; that is, $F(\bar{G})$ is a minimal normal subgroup of \bar{G}. From the remarks made earlier concerning primitive soluble groups, it follows that $\bar{G}=G / k e r X$ is a primitive soluble group.
Q.E.D.

LEMMA 1.30. ([8] Theorem 12.19). Let G be a soluble group such that $F(G)<G$. If $x \in \operatorname{Irr}(G)$ such that $k e r X \notin F(G)$ then there exists $\psi \in \operatorname{Irr}(G)$ such that $\psi(1)>x(1)$ and ker $\psi<k e r x$.

LEMMA 1.31. ([8] Lemma 5.11). If G is a group and $\theta \in \operatorname{Irr}(H)$ for some subgroup, H, of G then

$$
\operatorname{ker}\left(\theta^{G}\right)=\bigcap_{G \in G}(\text { ker })^{g} .
$$

THEOREM 1.32. Assume that G is a soluble group such that all characters in $\operatorname{Imm}(G)$ have the same degree, and let $x \in \operatorname{Irrm}(G)$ such that kerx is maximal among the kernels of characters in Irra(G). Then G/kerx is a primitive soluble high-fidelity group, and $F(G) / k e r x$ is the unique minimal nomal subgroup of $G / k e r x$. In addition, $F(G)$ is abelian. Proof. Obviously we may assume that $G>1$. Lemma 1.29 implies that

G/kerx is a primitive soluble group. If $\zeta \in \operatorname{Firr}(G / k e r x)$ then ζ may be regarded as an element of $\operatorname{Irr}(G)$ such that ker $\boldsymbol{=}$ kerx. Then $n(G / \operatorname{ker} \zeta)=n(G /$ kerx $)=n(G)$, whereupon $\zeta \in \operatorname{Irrn}(G)$. Since, by assumption, all characters in $\operatorname{Irr}{ }^{\star}(G)$ have the same degree, it follows that all characters in Firr($G / k e r x$) have the same degree, and that the common degree of all elements of $\operatorname{Irrt}(G)$ is precisely the common degree of all elements of Firr($G /$ ker X). Thus, in particular, G/kerx is a high-fidelity group.

Assume that G is nilpotent. Then $G /$ kerx is nilpotent. The group $G /$ kerx is primitive, so that $G / k e r X=F(G / k e r X)$ is the unique minimal normal subgroup of G / kerX. Consequently G / kerX is cyclic. It follows that all characters in $\operatorname{Firr}(G / \operatorname{ker} X)$ have degree 1 , and thus all characters in $\operatorname{Irn}(G)$ have degree: 1. But G is nilpotent, whereupon $n(G)=1$, and Irr (G) consists of all non-trivial elements of $\operatorname{Irr}(G)$. Hence all characters in $\operatorname{Irr}(G)$ have degree 1 , and we deduce that G is abelian. Thus if G is nilpotent the theorem holds.

Assume now that G is not nilpotent; that is, assume that $F(G)<G$, and let F denote $F(G)$. Let $\zeta \in \operatorname{Irch}(G)$, and suppose that ker $\& F$. Then, by Lemma 1.30 , there exists $\psi \in \operatorname{Irr}(G)$ such that $\psi(1)>\zeta(1)$ and ker ψ < kers. Obviously $\psi \in \operatorname{Irr}{ }^{\star}(G)$, a contradiction since all elements of $\operatorname{Irr*}(G)$ have the same degree. Consequently kerc < F for all $\zeta \in \operatorname{Irr}{ }^{\wedge}(G)$ In particular, kerx $<F$, and therefore $F /$ kerx is the unique minimal normal subgroup of $G / k e r X$. It follows that $F / k e r x$ is an elementary abelian q-group for some prime q, and by Lemma 1.13 we see that if $\zeta \in \operatorname{Firr}(G / k e r x)$ then $q \dagger(1)$. Hence, if $\psi \in \operatorname{Irr}(G)$, then $q \dagger \psi(1)$.

Let Q denote $O_{Q}(G)$, and suppose that Q is non-abelian. Then, $1<Q^{\prime} 4 G$, where Q ' denotes the derived group of Q. Clearly there exists $G \in \operatorname{Irr}(G)$ such that $Q^{\prime} \not \approx$ kers. Let $\psi \in \operatorname{Irr}(G)$ be such that ker $\psi \leqslant$ kers and ker ψ is minimal among the kernels of all irreducible characters of G. By

Theorem 1.27 we have $\psi \in \operatorname{Irr} r^{\hbar}(G)$, and obviously $Q^{\prime} \not \leqslant$ ker ψ. Write

$$
\psi_{Q}=\mathrm{e} \sum_{i=1}^{\mathrm{t}} \theta_{i},
$$

where $\theta_{i} \in \operatorname{Irr}(Q)$ for $1 \leqslant i \leqslant t$. The θ_{i} are all conjugate in G, and therefore, since $Q^{\prime} \triangleleft G$ and $Q^{\prime} \neq k e r \psi$, we must have $Q^{\prime} \neq k \operatorname{ker} \theta_{1}$. Consequently $\theta_{1}(1)>1$. Now $\theta_{1}(1)| | Q \mid$, and Q is a q-group. Hence $q \mid \theta_{1}(1)$. But $\psi(1)=\operatorname{et} \theta_{1}(1)$, whereupon $q \mid \psi(1)$, a contradiction. We conclude that Q is abelian.

Let P denote the unique Hall q '-subgroup $\mathrm{cf} F$, so that $F=Q \times P$, and let R denote $Q \cap \operatorname{ker} x$. Then $R \triangleleft Q$ and $\operatorname{ker}_{X}=R \times P . \operatorname{Fix} 1 \neq \lambda \in \operatorname{Irr}(Q / R)$, and let 1_{p} denote the trivial character of P. By Theorem 1.12 we have $\lambda \times 1_{P} \in \operatorname{Irr}(F)$. Write $\mu=\lambda \times 1_{P}$. Since $\operatorname{ker} X=R \times P \leqslant \operatorname{ker} \mu$ it follows that μ is a non-trivial element of $\operatorname{Irr}(F / \operatorname{ker} X)$. Now $G / k e r X$ is a primitive soluble high-fidelity group, and therefore, by Lemma 1.13, if $\zeta \in \operatorname{Firr}(G /$ kerX) then $\zeta(1)$ is precisely the index in $G / k e r x$ of the stabiliser in $G /$ ker x of μ. But, as is easily checked, the stabiliser in $G / \operatorname{ker} x$ of μ is exactly $G_{\mu} / \operatorname{ker} x$, whence $\boldsymbol{\zeta}(1)=\left|G: G_{\mu}\right|$. Since $\mu=\lambda \times 1_{P}$ it follows that $G_{\mu}=G_{\lambda}$, whereupon $\zeta(1)=\left|G: G_{\lambda}\right|$. If $\psi \in \operatorname{Irrr}(G)$ then $\psi(1)=\zeta(1)$, and we conclude that $\psi(1)=\left|G: G_{\lambda}\right|$ for all $\psi \in \operatorname{Irr}{ }^{*}(G)$.

Since $F /$ ker is a minimal normal subgroup of $G / k e r x$ with $F=Q \times P$ and kerX $=R \times P$, clearly Q / R is a chief factor of G. Let $\phi \in \operatorname{Irr}(P)$, and then, by Theorem 1.12, we have $\lambda \times \phi \in \operatorname{Irr}(F)$. Write $\theta=\lambda \times \phi$, and let ξ denote θ^{G}. By Lemma 1.31 we have

$$
\operatorname{ker\xi }=\operatorname{ker}\left(\theta^{G}\right)=\bigcap_{\boldsymbol{B} \in G}(\operatorname{ker} \theta)^{\boldsymbol{g}}
$$

Since $R \triangleleft G$ with $R \leqslant \operatorname{ker} \theta$, we have $R \leqslant Q \cap \operatorname{ker} \leqslant \leqslant Q$ and $Q \cap \operatorname{kerg} \& G$.
 $Q \cap \operatorname{ker\xi }=R$. He deduce that $\operatorname{ker\xi } \leqslant R \times P=\operatorname{ker} X$, giving $n(G / \operatorname{ker} \xi)=$
$n(G / \operatorname{ker} X)=n(G)$.
Let $\xi=\xi_{1}+\ldots+\xi_{k}$, where $\xi_{i} \in \operatorname{Irr}(G)$ for $1 \leqslant i \leqslant k$. We jave $\operatorname{ker\xi }=\bigcap_{i=1}^{k} \operatorname{ker} \xi_{i}$,
and so, using the formation property again, there exists $j \in\{1, \ldots, k\}$ such that $n\left(G / \operatorname{ker} \xi_{j}\right)=n(G / \operatorname{ker} \xi)=n(G)$. It follows that $\xi_{j} \in I m^{*}(G)$. Let ψ denote ξ_{j}, so that $\psi \in \operatorname{Ir} r^{*}(G)$, and write

$$
\psi_{F}=e \sum_{i=1}^{t} \theta_{i}
$$

where $\theta_{i} \in \operatorname{Irr}(F)$ for $1 \leqslant i \leqslant t$. By Frobenius reciprocity we must have $\theta=\theta_{i}$ for some $i \in\{1, \ldots, t\}$. Now $\theta=\lambda \times \phi$, and hence $G_{\theta} \leqslant \mathcal{S}_{\lambda}$. Since $t=\left|G: G_{\theta}\right| \geqslant\left|G: G_{\lambda}\right|$ and $\psi(1)=$ et $\theta(1)$, we have

$$
\psi(1) \geqslant e\left|G: G_{\lambda}\right| \theta(1)=e\left|G: G_{\lambda}\right| \phi(1) .
$$

But $\psi \in \operatorname{Irr}{ }^{*}(G)$, and hence, as shown above, $\psi(1)=\left|G: G_{\lambda}\right|$. Thereiore $e \phi(1)=1$, whence $\phi(1)=1$. By varying ϕ over $\operatorname{Irr}(P)$ we see that $\phi(1)=1$ for all $\phi \in \operatorname{Irr}(P)$. Hence P is abelian, and thus $F=Q \times P$ is abelian.
Q.E.D.

CHAPTER 2

SOLUBLE HIGH-FIDELITY GROUPS WITH A UNIQUE
 MINIMAL NORMAL SUBGROUP.

In Chapter 1 it was shown that if G is a primitive soluble highfidelity group then G acts half-transitively on the non-trivial elements of \hat{N}, where N denotes the unique minimal normal subgrous $0=G$. In this chapter we consider a slightly larger class of soluble higi-fidelity groups, namely soluble high-fidelity groups with a unique minical normal subgroup. We show that if G is such a group with minimal normal sibgroup if then, although G does not necessarily act half-transitively on (ii), the action of G on ($\hat{N})^{*}$ is, in a certain well-defined sense, "alnost helf-transitive."

EXAMPLE.2.1. We construct a soluble high-fidelity group G of order 2^{14}. 3.7 with a unique minimal normal subgroup N such thet G does not act half-transitively on (\hat{N}) ${ }^{\#}$.

$$
\text { Let } A_{i}=\left\langle a_{i}\right\rangle, B_{i}=\left\langle b_{i}\right\rangle \text {, be cyclic groups oः orter } 4 \text { for }
$$ $1 \leqslant 1 \leqslant 3$, and let

$$
F=A_{1} \times A_{2} \times A_{3} \times B_{1} \times B_{2} \times B_{3}
$$

so that F is an abelian group of order 2^{12}. Define $\alpha \in \operatorname{Aut}(E)$ by $a_{i}{ }^{a}=b_{i}^{3}, b_{i}^{a}=a_{i}$, for $1 \leqslant i \leqslant 3$ extended to the whole of F in the obvious way. If $i \in\{1,2,3\}$ then

$$
a_{i} \xrightarrow{a} b_{i}^{3} \stackrel{a}{\longrightarrow} a_{i}^{3} \stackrel{a}{\longrightarrow} b_{i} \stackrel{a}{\longrightarrow} a_{i},
$$

and so $|a|=4$. Clearly α^{2} is the automorphism of F that acts by inverting each element. Next define $\beta \in \operatorname{Aut}(F)$ by $a_{i}^{B}=a_{i} b_{i}, b_{i}^{s}=a_{i} b_{i}^{2}$, for $1 \leqslant i \leqslant 3$ extended to the whole of F in the obvious way. If $\{\in\{1,2,3\}$ then

$$
a_{i} \stackrel{\beta}{\longmapsto} a_{i} b_{i} \longmapsto{ }^{\beta} a_{i}^{2} b_{i}^{3} \longmapsto \beta a_{i},
$$

and

$$
b_{i} \stackrel{B}{\longrightarrow} a_{i} b_{i}^{2} \stackrel{B}{\longrightarrow} a_{i}^{3} b_{i} \stackrel{\beta}{\longrightarrow} b_{i},
$$

whereupon $|B|=3$. Also

$$
a_{i}^{\left(\alpha^{3} \beta \alpha\right)}=b_{i}^{(\beta \alpha)}=\left(a b_{i}^{2}\right)^{\alpha}=a_{i}^{2} b_{i}^{3}=a_{i}^{\beta^{2}},
$$

and

$$
b_{i}^{\left(\alpha^{3} \beta \alpha\right)}=\left(a_{i}^{3}\right)^{(\beta \alpha)}=\left(a_{i}^{3} b_{i}^{3}\right)^{\alpha}=a_{i}^{3} b_{i}=b_{i}^{\beta^{2}} .
$$

Consequently $\alpha^{3} \beta \alpha=\beta^{2}$.

$$
\text { Define } \quad \gamma \in \text { Aut(F) by } a_{1}{ }^{\gamma}=a_{2}, b_{1}^{\gamma}=b_{2}, a_{2}^{\gamma}=a_{1}^{3} a_{2} a_{3}, b_{2}^{\gamma}=b_{1}^{3} b_{2} b_{3} \text {, }
$$ $a_{3}{ }^{\gamma}=a_{1} a_{2}^{3}, b_{3}{ }^{Y}=b_{1} b_{2}^{3}$, extended to the whole of F in the obvious. s way. He have

$a_{1} \stackrel{r}{\longmapsto} a_{2} \stackrel{r}{\longrightarrow} a_{1}^{3} a_{2} a_{3} \stackrel{r}{\longrightarrow} a_{2}^{3} a_{3} \stackrel{r}{\longrightarrow} a_{1}^{2} a_{2}^{2} a_{3}^{3} \stackrel{r}{\longrightarrow} a_{1} a_{2} a_{3}^{2} \stackrel{\gamma}{\longrightarrow} a_{1} a_{3} \stackrel{r}{r} a_{1}$,
and
 Similarly $b_{1} \gamma^{\mathbf{7}}=b_{1}, b_{2} \gamma^{7}=b_{2}, b_{3} \gamma^{7}=b_{3}$, and we deduce that $|\gamma|=7$. It is easily verified that $\alpha \gamma=\gamma \alpha$ and that $\beta \gamma=\gamma \beta$.

Write $\langle\alpha, \beta, \gamma\rangle=H$, so that $H \leqslant \operatorname{Aut}(F)$. If H_{1} denotes $\langle\alpha, \beta\rangle$, and if H_{2} denotes $\langle\gamma\rangle$, then $H_{1}=\left\langle\alpha, \beta: \alpha^{4}=\beta^{3}=1, \alpha^{-1} \beta \alpha=\beta^{-1}\right\rangle$, and $\mathrm{H}_{2} \cong \mathrm{C}_{7}$. Moreover $\mathrm{H}=\mathrm{H}_{1} \times \mathrm{H}_{2}$, and we have $|\mathrm{H}|=\mathbf{2}^{2} .3 .7=84$. Let G denote FH , the natural semi-direct product of F with H . It follows that $|G|=2^{14} \cdot 3.7$, and obviously G is soluble. Write $N=\Omega_{1}(F) \triangleleft G$. Then N is an elementary abolian 2-group of order 2^{6}, and clearly, $\operatorname{soc}(G) \leqslant \mathrm{N}$.

Regarded additively, N is a 6 -dimensional H-module over the field GF(2). Furthermore, if R denotes $\langle\beta\rangle$ then

$$
N=\left\langle a_{1}^{2}, b_{1}^{2}\right\rangle \oplus\left\langle a_{2}^{2}, b_{2}^{2}\right\rangle \oplus\left\langle a_{3}^{2}, b_{3}^{2}\right\rangle
$$

a direct sum of isomorphic irreducible $G F(2) R$-modules, faithful for R, and

$$
\mathrm{N}=\left\langle\mathrm{a}_{1}^{2}, \mathrm{a}_{2}^{2}, a_{3}^{2}\right\rangle \oplus\left\langle\mathrm{b}_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle
$$

a direct sum of isomorphic irreducible $\mathrm{GF}(2) \mathrm{H}_{2}$-modules, faithful for H_{2}. Clearly, then, N is a faithful irreducible module for the group $R \times H_{2} \cong C_{21}$, and it follows that N is the unique minimal normal subgroup of G. It is straightforward to check that $C_{G}(N)=\left\langle F, a^{2}\right\rangle$ and that $G / C_{C}(N) \equiv S_{3} \times C_{7}$.

The group G has a unique minimal normal subgroup and so, certainly, $\operatorname{Firr}(G) \neq \varnothing$. We shall show that $X(1)=84$ for all $X \in \operatorname{Firr}(G)$. Let $X \in \operatorname{Firr}(G)$, and write

$$
x_{F}=e \sum_{i=1}^{t} \lambda_{i}
$$

where $\lambda_{i} \in \operatorname{Irr}(F)$ for $1 \leqslant i \leqslant t$. Write $\lambda=\lambda_{1}$. Since F is abelian, we have $\lambda(1)=1$, and then, by Lemma $1.10, G_{\lambda}=\{g \in G:[g, x] \in \operatorname{ker} \lambda$ for all $x \in F\}$. Also, since $G=F H$, we have $G_{\lambda}=F_{\lambda}$. By Clifford's Therrem the λ_{i} are all conjugate in G, and from the fact that $x \in \operatorname{Firr}(G)$ we have $\operatorname{ker}_{F}=\bigcap_{i=1}^{t} \operatorname{ker} \lambda_{i}=1$. Consequently ker λ_{i} contains no non-trivial normal aubgroup of G for $1 \leqslant i \leqslant t$. In particular kerd contains no non-trivial normal subgroup of G.

Suppose that $H_{\lambda}>1$. Since $|H|=2 \mathbf{2}^{2} .3 .7$ we must have $2\left|\left|H_{\lambda}\right|\right.$, or $3\left|\left|H_{\lambda}\right|\right.$, or $\left.7 \| H_{\lambda}\right|$. Suppose that $2 \| H_{\lambda} \mid$. Then H_{λ} contains an involution of H. From the structure of the group H we see that H contains a unique involution, namely a^{2}. Hence $a^{2} \in H_{\lambda}$. It follows that $\left[a^{2}, x\right] \in \operatorname{ker} \lambda$ for all $x \in F$. But $x^{\alpha^{2}}=x^{-1}$ for all $x \in F$, whereupon $x^{2}=\left(x^{-1}\right)^{\alpha^{2}} x=\left[a^{2}, x\right]$ ϵ kerd for all $x \in F$. Thus ker $\geqslant\left\langle a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, b_{1}^{2}, b_{2}^{2}, b_{3}^{2}\right\rangle=N \in G$, a contradiction. Hence $2 \uparrow\left|H_{\lambda}\right|$.

Suppose that $3\left|\left|H_{\lambda}\right|\right.$. Then H_{λ} contains a sylow 3-subgroup of $H_{,}$but

H contains a unique Sylow 3-subgroup, namely $R=\langle\beta\rangle$. Therefore $[\beta, x] \in \operatorname{ker} \lambda$ for all $x \in F$, and so $\left[\beta, a_{i}^{3}\right],\left[\beta, b_{i}^{3}\right]$, are elements of kerd for all $1 \leqslant i \leqslant 3$. But $\left[\beta, a_{i}^{3}\right]=a_{i}{ }^{B} a_{1}^{3}=b_{i}$, and $\left[3, b_{i}^{3}\right]$ $=b_{1} \beta_{b_{1}^{3}}^{3}=a_{i} b_{i}$, whereupon ker $\lambda \geqslant\left\langle a_{1}, a_{1} b_{1}, a_{2}, a_{2} b_{2}, a_{3}, a_{3} b_{3}\right\rangle=F \varangle G$, a contradiction. Hence $3 \dagger\left|H_{\lambda}\right|$.

Similarly it can be shown that $7{ }^{\dagger}\left|H_{\lambda}\right|$, and thus we were incorrect in supposing that $H_{\lambda}>1$. Consequently $H_{\lambda}=1$, giving $G_{\lambda}=F$. By Theorem 1.9 we have $\lambda^{G}=x$, and hence $x(1)=\lambda^{G}(1)=|G: F| \lambda(1)=84$. We conclude that $x(1)=84$ for all $x \in \operatorname{Firr}(G)$, and, in particular, G is a high-fidelity group.

All that remains to prove is that G does not act half-transitively on ($\hat{N})^{\#}$. Suppose that the action of G on ($\left.\hat{N}\right)^{\#}$ is half-transitive, and write $\bar{G}=G / C_{G}(N)$. Then $\bar{G} \equiv S_{3} \times C_{7}$, and by Lemma $1.11 \hat{N}$, regarded additively, is an irreducible $G F(2) \bar{G}$-module, faithful for \bar{G}. Moreover, since $(\bar{G})_{\mu}=G_{\mu} / C_{G}(N)$, the group \bar{G} acts half-transitively on $(\hat{N})^{*}$. Obviously the cyclic normal subgroup of \bar{G} of order 21 acts semi-regularly on (\hat{N})", whereupon $\left|(\bar{G})_{\mu}\right| \leqslant 2$ for all $\mu \in(\hat{N})^{*}$. Since $|\hat{N}|=2^{6}$ and $2||\bar{G}|$ it follows that \bar{G} does not act semi-regularly on $(\hat{N})^{\#}$, and then, from the fact that \bar{G} acts half-transitively on ($(\hat{N})^{\#}$, we must have $\left|(\bar{G})_{\mu}\right|=2$ for all $\mu \in(\hat{N})^{*}$. Let I denote the set of involutions of \bar{G}. Then

$$
\begin{equation*}
(\hat{N})^{*}=\bigcup_{x \in I}\left(C_{\hat{N}}(x)\right)^{\#} . \tag{1}
\end{equation*}
$$

From the structure of \bar{G} we have $|I|=3$, and the elements of I are all mutually conjugate in \bar{G}. Hence, if $I=\left\{x_{1}, x_{2}, x_{3}\right\}$ then $\operatorname{dim}_{\operatorname{GF}(2)} \hat{C}_{\hat{N}}\left(x_{1}\right)$ $=\operatorname{dim}_{G F}(2){ }^{C} \hat{N}^{\left(x_{2}\right)}=\operatorname{dim}_{G F(2)} C_{N} \hat{N}\left(x_{3}\right)=n$, say. Moreover, if $i, j \in\{1,2,3\}$ such that $i \neq j$, and if $\mu \in\left(C_{N}\left(x_{i}\right)\right)^{*} \cap\left(C_{N}^{N}\left(x_{j}\right)\right)^{*}$, then $\left\langle x_{i}, x_{j}\right\rangle \leqslant \bar{G}_{\mu}$ contradicting $\left|(\bar{G})_{\mu}\right|=2$. We deduce that the right hand side of (1) is a disjoint union, which gives

$$
63=2^{6}-1=\left|(\hat{N})^{(1)}\right|=3\left(2^{n}-1\right)
$$

clearly an impossibility. Therefore G does not act half-transitively on (N$)^{*}$, and this completes the example.

It is easily seen that in Example 2.1 the group G has precisely 2 orbits in ($\hat{N})^{\#}$; one of size 21 and one of size 42 . Thus the sizes of the G-orbits in $(\hat{N})^{\#}$ all have the form 21.(a power of 2). Loosely speaking we might say that G acts on $(\hat{N})^{*}$ half-transitively up to multiplication by powers of the prime 2. We shall show that something of the sort always occurs whenever G is a solwle high-fidelity group with unique minimal normal subgroup N.

Let G bs a group and $x \in \operatorname{Irr}(G)$. Following [8] we let $V(x)$ denote the vanishing-off subgroup of x; that is $V(x)=\langle g \in G: x(g) \neq 0\rangle$. We have $V(x) \triangleleft G$, and $V(x)$ may be characterised as the smallest subgroup H of G such that $X(g)=0$ for all $g \in G H$.

LEMA 2.2. ([8] Lemma 12.17). Let G be a group, H a subgroup of G, and $\theta \in \operatorname{Irr}(H)$. Assume that $X_{H}=\theta$ for each irreducible constituent, X, of θ^{G}. Then $V(\theta) \triangleleft G$.

Let G be a group. If there exists $x \in \operatorname{Irr}(G)$ such that $x(1)^{2}=|G: Z(G)|$ then G is said to be of central type. Our next result is a characterisation of groups of central type due to F. Demeyer and G. Janusz.

LEMSA 2.3. (Demeyer 8 Janusz [3] Theorem 2). Let G be a group. Then G is of central type if and only if for each prime p a Sylow p-subgroup S_{p} of G is of central type and $Z(G) \cap S_{p}=Z\left(S_{p}\right)$.

The following, rather technical lemma is proved in order to handle a particular case in the induction proof of Lemma 2.15 .

LEMA 2.4. Let G be a soluble group, " a set of primes, and let $P=O_{\nabla}(F)$ ihere F denotes $F(G)$. Assume that P is cyclic and that $P \in Z(G)$. In addition assume that $\lambda \in F i r r(P)$ such that $X(1)=\psi(1)$ for all elements
x, ψ, of $\operatorname{Irr}(G \mid \lambda)$. Then G contains a normal abelian Hall $\pi^{\prime \prime}$-subgroup and $x(1)$ is a π-number for all $x \in \operatorname{Irr}(G \mid \lambda)$.

Proof. Since $P=O_{\pi}(F)$ we have $F=P \times R$ for some normal nilpotent π^{\prime}-subgroup R of G. By Theorem $1.12 \operatorname{Irr}(F)=\{\mu \times \zeta: \mu \in \operatorname{Irr}(P)$, $\zeta \in \operatorname{Irr}(R)\}$. Let 1_{K} denote the identity character of R, and write $\xi=\lambda \times 1_{R}$. Then ξ is invariant in G and $\xi \in \operatorname{Irr}(F \mid \lambda)$. Let x be an irreducible constituent of ξ^{G}, whence $X \in \operatorname{Irr}(G \mid \lambda)$. Clearly $R \leqslant$ kerx, and $P \cap$ kerx $=1$ since $\lambda \in \operatorname{Firr}(P)$. If $g \in F$ then $g=x y$ fo. some $x \in P$, $y \in R$, whereupon $x(g)=x(1) \cdot \xi(g)=x(1) \lambda(x) \neq 0$. Consequently $F \leqslant V(x)$.

Suppose that $V(x)>F$. From the fact that $V(x) \propto G$ we may choose $L \triangleleft G$ such that $F \leqslant L \leqslant V(x)$ and L / F is a minimal normal subgroup of G / F. The solubility of G implies that L / F is an elementary abelian q-group for sone prime q. If Q denotes a Sylow q-subgroup of L then Q is not normal in L (otherwise $Q \leqslant O_{q}(G) \leqslant F(G)=F$), and thus $N_{G}(Q)<G$. Let H be a maximal subgroup of G containing $N_{G}(Q)$. By the Frattini argument we have $G=L\left(N_{G}(Q)\right)=L H$. Now $L=F Q$, and so, since $Q \leqslant N_{G}(Q) \leqslant H$, it follows that $G=F H$. By assumption $P \leqslant Z(G)$, whereupon $P \leqslant N_{G}(Q) \leqslant H$. Moreover $F=R P$, and, as a result, $G=R H$.

Write $X_{H}=\theta$. Since $G=R H$ and $R \leqslant \operatorname{kerX}$ it is obvious that $\theta \in \operatorname{Irr}(H)$. By Frobenius reciprocity θ is an irreducible constituent of ψ_{H} for each irreducible constituent ψ of θ^{G}. Suppose that ψ is an irreducible constituent of θ^{G} such that $\psi_{H} \neq \theta$. Then $\psi(1) ; \theta(1)=x(1)$. But $P \leqslant H$ which implies that $\theta \in \operatorname{Irr}(H \mid \lambda)$, and hence $\psi \in \operatorname{Irr}(\theta \mid \lambda)$, contradicting the assumption that all elements of $\operatorname{Irr}(G \mid \lambda)$ have the same degree. Thus $\psi_{H}=\theta$ for all irreducible constituents ψ of θ^{G}, and Lemma 2.2 yields $V(\theta) \triangleleft G$.

Clearly $V(\theta) \leqslant V(x)$. Let $g \in G$ such that $x(g) \neq 0$. Since $G=R H$ we can write $g=y$ for some $y \in R, h \in H$. Then, using the fact that Rskerx, we have $0 \neq x(g)=x(y h)=x(h)=\theta(h)$, and wo deduce that
$h \in V(\theta)$. Now let $g \in V(x)$. From the definition of $V(x)$ there exists an integer n and elements g_{i} of G such that $g={ }_{i=1}^{n} g_{i}$ and $x\left(g_{i}\right) \neq 0$ for $1 \leqslant i \leqslant n$. If $i \in\{1, \ldots, n\}$ then we can write $g_{i}=y_{i} h_{i}$ for some $y_{i} \in R$, $h_{i} \in H$. As shown above we must have $h_{i} \in V(\theta)$ for $1 \leqslant i \leqslant n$. Since $g=\left(y_{1} h_{1}\right)\left(y_{2} h_{2}\right) \ldots\left(y_{n} h_{n}\right)$, and in view of the fact that R and $V(\theta)$ are both normal subgroups of G, we can write $g=y h$ for some $y \in R$ and $h \in V(\theta)$. Consequently $V(x) \leqslant R(V(\theta))$. But $R \leqslant F \leqslant V(x)$, and $V(\theta) \leqslant V(x)$, whereupon $R(V(\theta)) \leqslant V(x)$. We conclude that $V(x)=R(V(\theta))$.

Let $g \in V(x)$. Then $g=y h$ for some $y \in R, h \in V(\theta)$. If $g \in V(x) \cap H$ then, since $V(\theta) \leqslant H$, we must have $y \in R \cap H$. But $R \leqslant k e r x$, and hence $\mathrm{R} \cap \mathrm{H} \leqslant \operatorname{ker} \theta \leqslant \mathrm{V}(\theta)$. Therefore $\mathrm{V}(\mathrm{x}) \cap \mathrm{H} \leqslant \mathrm{V}(\theta)$. The opposite inclusion is obvious, whence $V(x) \cap H=V(\theta)$. We have $Q \leqslant L \leqslant V(x)$ and $Q \leqslant H$. As a result $Q \leqslant V(x) \cap H=V(\theta)$, and we see that $Q \leqslant L \cap V(\theta) \triangleleft G$. Since Q is a Sylow q-subgroup of L it follows that Q is a Sylow q-subgroup of $\mathrm{L} \cap \mathrm{V}(\theta)$. By the Frattini argument $G=(L \cap V(\theta)) N_{G}(Q) \leqslant H$, a contradiction and thus we were incorrect in supposing that $V(x)>F$. It follows that $V(x)=F$. Since X was an arbitrary irreducible constituent of ξ^{G} we aust have $V(X)=F$ for all irreducible constituents X of ξ^{G}.

Assume that X and ψ are both irreducible constituents of ξ^{G}. Then $R \leqslant \operatorname{ker} x, R \leqslant \operatorname{ker} \psi$, and $V(x)=F=V(\psi)$. Moreover, x and are both elements of $\operatorname{Irr}(G \mid \lambda)$, whereupon $x(1)=\psi(1)$. Let $g \in G$. If $g \notin F$ then $X(g)=\psi(g)=0$. If $g \in F$ then, since $X_{F}=X(1) \xi=\psi(1) \xi=\psi_{F}$, we have $\chi(g)=\psi(g)$. Hence $\chi(g)=\psi(g)$ for all $g \in G$, and we deduce that $X=\psi$. Therefore $\operatorname{Irr}(G \mid \xi)=\{X\}$. Write $\bar{G}=G / R$ and $\bar{F}=F / R$. When E and X are considered, in the usual way, as elements of $\operatorname{Irr}(\bar{F})$ and $\operatorname{Irr}(\bar{G})$ respectively, we have $\operatorname{Irr}(\bar{G} \mid \xi)=\{x\}$. since $x_{F}=X(1) \xi$, Frobenius reciprocity yields $\bar{\xi}^{\bar{G}}=x^{(1)} x$. Thus

$$
\begin{equation*}
|\bar{G}: \bar{F}|=E^{\bar{G}}(1)=x(1)^{2} . \tag{1}
\end{equation*}
$$

Obviously $\bar{F} \leqslant Z(\bar{G})$, and since $X(1)^{2} \leqslant|\bar{G}: Z(\bar{G})|$ we must have $\bar{F}=Z(\bar{G})$. It follows that \bar{G} is a group of central type. Let p be a prime such that $p||\bar{G}|$, and let \bar{S} denote a Sylow p-subgroup of \bar{G}. Then $Z(\bar{S})>1$, and by Lemma $2.3 \mathrm{Z}(\overline{\mathrm{S}})=\overline{\mathrm{F}} \cap \overline{\mathrm{S}}$. Consequently $\mathrm{p}\left||\bar{F}|\right.$. Now $\bar{F}=F / R \cong P=O_{\pi}(F)$, and we deduce that $p \in \pi$. As a result $\bar{G}=G / R$ is a π-group, whereupon R is a normal hall π^{\prime}-subgroup of G.

Since $x \in \operatorname{Irr}(G \mid \lambda)$, and since, by (1), $x(1)$ is a π-number, it follows that $\psi(1)$ is a π-number for all $\psi \in \operatorname{Irr}(G \mid \lambda)$. Let $\zeta \in \operatorname{Irr}(R)$, and write $\phi=\lambda \times 5$. Then $\phi \in \operatorname{Irr}(F \mid \lambda)$, and $\phi(1)=5(1)$. Let ψ be an irreducible constituent of ϕ^{G}, and write

$$
\psi_{F}=e \sum_{i=1}^{t} \phi_{i}
$$

where $\phi_{i} \in \operatorname{Irr}(F)$ for $1 \leqslant i \leqslant t$. By Frobenius reciprocity $\phi=\phi_{j}$ for some $j \in\{1, \ldots, t\}$. Hence $\psi(1)=e t \phi(1)=e t \zeta(1)$, whereupon $\zeta(1) \mid \psi(1)$ Clearly $\psi \in \operatorname{Irr}(G \mid \lambda)$, and so $\psi(1)$ is a π-number. But R is a π^{\prime}-group, and $\zeta \in \operatorname{Irr}(R)$, whence in view of the fact that $\zeta(1)||R|$, we have $(\psi(1), \zeta(1))=1$. Thus $5(1)=1$, and so $\zeta(1)=1$ for all $\zeta \in \operatorname{Irr}(R)$. We conclude that R is abelian, and the proof is complete.
Q.E.D.

LEMMA 2.5. ([5] Chapter 5, Theorem 2.4.) Let p be a prime, and let A be a P^{\prime}-group of automorphisms of an abelian p-group P. If A centralises $\Omega_{1}(P)$ then $A=1$.

For any group G we denote the set of all primes dividing $|G|$ by $\pi(G)$.

LEMMA 2.6. Let G be a group, and let M be a cyclic subgroup of $Z(G)$.
Assume that N is a normal cyclic subgroup of G such that $M \leqslant N$ and
$\pi(N)=\pi(N)=\pi$, sav. Then $G / C_{G}(N)$ is a π-group. Moreover, if $\lambda \in \operatorname{Firr}(H)$ and $\mu \in \operatorname{Irr}(N \mid \lambda)$ then $\mu \in \operatorname{Firr}(N)$ and

$$
\left\{\phi^{G} ; \phi \in \operatorname{Irr}\left(C_{G}(N) \mid \mu\right)\right\} \subseteq \operatorname{Irr}(G \mid \lambda)
$$

Proof. Write $C=C_{G}(N)$. The group G / C is isomorphic to a subgroup of Aut(N). Suppose that G / C is not a π-group. Then there exists a prime $q \notin \pi$ and an element a of G / C of order q. Write $A=\langle a\rangle$. Clearly there exists $p \in \pi$ such that A does not centralise the unique Sylow p-subgroup, N_{p}, of N. But N is cyclic, and thus so is N_{p}. Hence, since $M \leqslant N$ and $p\left||M|\right.$, we must have $\Omega_{1}\left(N_{p}\right) \leqslant M \leqslant Z(G)$, whereupon A centralises $\Omega_{1}\left(N_{p}\right)$. Therefore, by Lemma 2.5, A centralises N_{p}, a contradiction. We conclude that G / C is a π-group.

Now let $\lambda \in \operatorname{Firr}(M)$, and let $\mu \in \operatorname{Irr}(N \mid \lambda)$. Since M and N are both cyclic with $\pi(M)=\pi(N)$, and since $\mu_{M}=\lambda$, it follows easily that $\mu \in \operatorname{Firr}(N)$. Lemma 1.10 yields
$G_{\mu}=\{g \in G:[g, x] \in$ ker μ for all $x \in N\}$, and so, from the fact that ker $\mu=1$, we see that $G_{\mu}=C_{G}(N)=C$. By Theorem 1.9 we have

$$
\left\{\phi^{G}: \phi \in \operatorname{Irr}(C \mid \mu)\right\}=\left\{x \in \operatorname{Irr}(G):\left[x_{N}, \mu\right] \neq 0\right\} .
$$

But if $x \in \operatorname{Irr}(G)$ with $\left[x_{N}, \mu\right] \neq 0$ then obviously $x \in \operatorname{Irr}(G \mid \lambda)$, and the result follows.
Q.E.D.

We shall require some of the ideas and results in [8] Chapter 11 on projective representations and Schur representation groups, and so we proceed to give a brief summary of the relevant material. (The term "projective representation" will be used here to mean "projective representation over $\mathbf{c "}^{\prime \prime}$ where \mathbf{C} denotes the field of complex numbers. We shall use "ordinary representation" in contrast to "projective representation"。)

THEOREM 2.7. ($[8]$ Theorem 11.2.) Let G be a group, and let N be a normal subgroup of G. Assume that Y denotes an irreducible representation of N which affords the character θ, and that θ is invariant in G. Then there exists a projective representation X of G such that for all $n \in N$ and $g \in G$ we have
(a) $X(n)=Y(n)$;
(b) $X(n g)=X(n) X(g)$;
(c) $X(g n)=X(g) X(n)$.

Furthemore, if X_{0} is another projective representation satisfying (a). (b), (c), then $X_{0}(g)=X_{0}(g) \mu(g)$ for some function $\mu: G \rightarrow C^{x}$ (where c^{x} denotes the multiplicative group of \mathbb{C}) which is constant on cosets of N.

We use the standard notation of group cohomology; that is, $H^{2}\left(G, \mathbb{C}^{x}\right)$ denotes the second cohomology group of a group G (where \mathbb{C}^{x} is a trivial G-module), $Z^{2}\left(G, C^{x}\right)$ denotes the group of 2 -cocycles, and $B^{2}\left(G, C^{x}\right)$ denotes the group of 2-coboundaries. We have $H^{2}\left(G, \mathbb{C}^{x}\right)=Z^{2}\left(G, C^{x}\right) / B^{2}\left(G, C^{x}\right)$, and we remark that if X is a projective representation of a group G then the factor set of X is an element of $Z^{2}\left(G, C^{x}\right)$.

THEOREM 2.8 ([8] Theorem 11.7). Let G be a group, N a normal subgroup of G, and let $\theta \in \operatorname{Irr}(N)$ such that θ is invariant in G. Assume that Y denotes an irreducible representation of N affording θ, and that X is a projective representation of G satisfying (a). (b; (c), of Theorem 2.7. Let α denote the factor set of X, and define $\beta \in z^{2}\left(G / N, c^{x}\right)$ by $B(g N, h N)=\alpha(g, h)$. Then B is well-defined and \bar{B}, the image of B under the natural homomorphism $Z^{2}\left(G / N, C^{x}\right) \rightarrow H^{2}\left(G / N, C^{x}\right)$, depends only on θ.

A central extension (Γ, p) of a group G is a group Γ together with a homomorphism ρ from r onto G such that kerp $\leqslant Z(\Gamma)$. If (Γ, p) is a central extension of a group G, then we say that a projective representation
X of G can be lifted to r if there exists an ordinary representation \mathbf{Y} of Γ and a function $\mu: \Gamma \rightarrow \mathbb{C}^{\mathbf{x}}$ such that

$$
Y(a)=X\left(a^{p}\right)_{\mu(a)}
$$

for all $a \in \Gamma$. If every projective representation of G can be lifted to Γ then (Γ, ρ) is said to have the projective lifting property for G.

THEOREM 2.9.([8] Theorem 11.17.). For any group G there exists a central extension (Γ, ρ) of G which has the projective lifting property for G. Furthermore, (Γ, D) can be chosen such that kerp $\cong H^{2}\left(G, c^{x}\right)$.

If G is a group, and if (Γ, ρ) is a central extension having the projective lifting property for G such that kero $\cong H^{2}\left(G, \mathbb{C}^{X}\right)$, then r is said to be a Schur representation group for G. Theorem 2.9 asserts the existence of a Schur representation group for any group G.

Let G be a group, N a normal subgroup of G, and let $\theta \in \operatorname{Irr}(N)$ such that θ is invariant in G. Under these hypotheses we say that (G, N, θ) is a character triple. There is a very close relationsinip between a character triple (G, N, θ) and another triple (Γ, A, λ) where r denotes a Schur representation group for the group G/N. To describe this relationship we define the (rather complicated) notion of an isomorphism between two character triples. If (G, N, θ) is a character triple then we have been using $\operatorname{Irr}(G \mid \theta)$ to denote the set of all elements X of $\operatorname{Irr}(G)$ such that X_{N} is a multiple of θ. Now let $\operatorname{Ch}(G \mid \theta)$ denote the set of all (possibly reducible) characters x of G such that x_{N} is a multiple of θ. We remark that if (G, N, θ) is a character triple, and if H is a subgroup of G containing N, then (H, N, θ) is a character triple, and $X_{H} \in \operatorname{Ch}(H \mid \theta)$ for all $x \in \operatorname{Ch}(G \mid \theta)$.

DEFINITION. Let (G, N, θ) and (Γ, M, ϕ) be character triples, and let
$\tau: G / N \rightarrow \Gamma / M$ be an isomorphism. For each subgroup H of G containing N let H^{\top} denote the subgroup of r such that $H^{\top} / M=(H / N)^{\top}$. Assume that whenever $N \leqslant H \leqslant G$ there exists a map $\cdot \dot{\sigma}_{H}: \operatorname{Ch}(H \mid \theta) \rightarrow \operatorname{Ch}\left(H^{\top} \mid \phi\right)$ such that the following conditions hold for all $N \leqslant K \leqslant H$ and for all elements X, \forall, of $\operatorname{Ch}(H \mid \theta)$.
(a) $\sigma_{H}(x+\psi)=\sigma_{H}(x)+\sigma_{H}(\psi) ;$
(b) $[x, \psi]=\left[\sigma_{H}(x), \sigma_{H}(\psi)\right]$;
(c) $\sigma_{K}\left(X_{K}\right)=\left(\sigma_{H}(X)\right)_{K} \tau ;$
(d) $\sigma_{H}(X \zeta)=\sigma_{H}(X) \zeta^{\tau}$ for all $\zeta \in \operatorname{Irr}(H / N)$ where ζ^{T} denotes the cheracter of $(H / N)^{\tau}$ defined by $\zeta^{\tau}\left(x^{\tau}\right)=\zeta(x)$ for all $x \in H / N$.

Let σ denote the union of the maps σ_{H}. Then (τ, α) is an iscrorphism from (G, N, θ) to (Γ, M, ϕ).

LEMA 2.10 ([8] Lemma 11.24) Let $(\tau, \sigma):(G, N, \theta) \rightarrow(\Gamma, M, \phi)$ be an isomorphism of character triples. Then σ_{G} is a bijection from $\operatorname{Irr}(G \mid \theta)$ to $\operatorname{Irr}(\Gamma \mid \phi)$. Furthermore, $\chi(1) / \theta(1)=\sigma_{G}(x)(1) / \phi(1)$ for all $x \in \operatorname{Irr}(G \mid \theta)$.

NOTE. Lemma 11.24 of [8] says rather more that is stated in Lema 2.10 atove; we have omitted all that is superfluous to our requirements.

THEOREM 2.11. ([8] Theorem 11.28.) Let (G,N, θ) be a character triple and let (r, ρ) be a central extension of G / N having the projective lifting property. If $A=\operatorname{ker\rho }$ then (G, N, θ) and (Γ, A, λ) are isomorphic character triples for some $\lambda \in \hat{A}$.

Let (G, N, θ) be a character triple, and let π denote $\pi(N)$. Let r Le a Schur representation group for G / N. Then, from the definition of a Schur representation group and using Theorem 2.11 , there exists a subgroup A of $Z(\Gamma)$ and an element λ of \hat{A} such that $\Gamma / A, G / N, A\left(H^{2}\left(G / N, C^{x}\right)\right.$. and (G, N, θ) is isomorphic to (Γ, A, λ). We shall show that $A / k e r \lambda$ is a п-group, but we need a preliminary lemma.

LEMMA 2.12. Let (G, N, θ) be a character triple and let \bar{B} denote the element of the group $H^{2}\left(G / N, \mathbb{C}^{x}\right)$ associated with (G, N, θ) as in Theorem 2.8. If π denotes $\pi(N)$ then $|\bar{B}|$ is a π-number.

Proof. Let Y denote an irreducible representation of N affording θ. Since $\bar{\beta}$ is defined in terms of a projective representation X of G satisfying (a), (b), (c), of Theorem 2.7([8] Theorem 11.2), we examine how such a representation X is constructed in the proof of [8] Theorem 11.2. If $g \in G$ and $n \in N$ then write $Y^{g}(n)=Y\left(g n g^{-1}\right)$. Since Y affords a G-invariant character θ, the representations Y, and Y^{g}, are similar for all $g \in G$. Choose a transversal T of N in G such that $l \in T$. For each $t \in T$ choose a non-singular matrix P_{t} such that $P_{t} Y_{t}{ }^{-1}=Y^{t}$. Clearly we may take P_{1} to be the $k \times k$ identity matrix where $k=\theta(1)$. Since each $g \in G$ is uniquely of the form $n t$ for some $n \in N, t \in T$, we can define X on G by $X(g)=Y(n) P_{t}$, and, as demonstrated in the proof of [8] Theorem 11.2, X is a projective representation of G satisfying (a), (b), (c), of Theorem 2.7.

Assume that a projective representation X of G has been constructed as above. Write $d_{t}=\operatorname{det}\left(P_{t}\right)$ for each $t \in T$. Then d_{t} is a non-zero complex number, and, since the field of complex numbers is algebraically closed, we can choose $c_{t} \in \mathbb{C}$ such that $\left(c_{t}\right)^{k}=d_{t}^{-1}$ for each $t \in T$. Write $P_{t}^{\prime}=c_{t} P_{t}$. Then $\operatorname{det}\left(P_{t}^{\prime}\right)=\left(c_{t}\right)^{k} d_{t}=1$ for all $t \in T$. clearly $P_{t}^{\prime} Y\left(P_{t}^{\prime}\right)^{-1}$ $=Y^{t}$ for all $t \in T$, and we can construct a new projective representation X^{\prime} of G as follows. If $g \in G$ with $g=n t$ for $n \in N, t \in T$, then we define $X^{\prime}(g)=Y(n) P_{t}^{\prime}$. The fact that X^{\prime} has been constructed in the same way as X implies that X^{\prime} satisfies (a), (b), (c), of Theorem 2.7. Let a denote the factor set of X '. Since \bar{B} depends only on θ, it follows that a gives rise to \bar{B} as described in the statement of Theorem 2.8.

Let g, h, be elements of G. Then $X^{\prime}(g) X^{\prime}(h)=X^{\prime}(g h) a(g, h)$. Write $g=n_{1} t_{1}, h=n_{2} t_{2}, g h=n_{3} t_{3}$, where $n_{i} \in N, t_{1} \in T$, for $1 \leqslant i \leqslant 3$. We have $X^{\prime}(g)=Y\left(n_{1}\right) P_{t_{1}}^{\prime}, X^{\prime}(h)=Y\left(n_{2}\right) P_{t_{2}}^{\prime}, X^{\prime}(g h)=Y\left(n_{3}\right) P_{t_{3}}^{\prime}$, and hence

$$
Y\left(n_{1}\right) P_{\tau_{1}}^{\prime} Y\left(n_{2}\right) P_{\tau_{2}}^{\prime}=Y\left(n_{3}\right) P_{\tau_{3}}^{\prime} a(g, h) .
$$

Therefore

$$
\operatorname{det}\left(Y\left(n_{1}\right) P_{t_{1}}^{\prime} Y\left(n_{2}\right) P_{t_{2}}^{\prime}\right)=\operatorname{det}\left(Y\left(n_{3}\right) P_{t_{3}}^{\prime} \alpha(g, h)\right),
$$

and since $\operatorname{det}\left(P_{t_{i}}^{\prime}\right)=1$ for $1 \leqslant i \leqslant 3$ it follows that

$$
\begin{equation*}
\operatorname{det}\left(Y\left(n_{2}\right)\right) \operatorname{det}\left(Y\left(n_{2}\right)\right)=\operatorname{det}\left(Y\left(n_{3}\right)\right)(\alpha(g, h))^{k} \tag{1}
\end{equation*}
$$

Write $\lambda(n)=\operatorname{det}(Y(n))$ for all $n \in N$. Then clearly λ is a linear complex character of N. Let m denote the order of λ as an element of the group of linear characters of N. Since $m=\mid N:$ ker $\lambda \mid$ we must have $m||N|$. We may rewrite (1) as

$$
\lambda\left(n_{1}\right) \lambda\left(n_{2}\right)=\lambda\left(n_{3}\right)(\alpha(g, h))^{k}
$$

Therefore

$$
\left(\lambda\left(n_{1}\right) \lambda\left(n_{2}\right)\right)^{m}=\left(\lambda\left(n_{3}\right)(\alpha(g, h))^{k}\right)^{m}
$$

But $(\lambda(n))^{m}=\lambda^{m}(n)=1$ for all $n \in N$, and so

$$
\begin{gathered}
(\alpha(g, h))^{k m}=\left(\lambda\left(n_{3}\right)\right)^{m}(\alpha(g, h))^{k m}=\left(\lambda\left(n_{3}\right)(\alpha(g, h))^{k}\right)^{m} \\
=\left(\lambda\left(n_{1}\right) \lambda\left(n_{2}\right)\right)^{m}=\left(\lambda\left(n_{1}\right)\right)^{m}\left(\lambda\left(n_{2}\right)\right)^{m}=1 .
\end{gathered}
$$

Since g, h. were arbitrary elements of G we deduce that $(\mathrm{a}(\mathrm{g}, \mathrm{h}))^{\mathrm{km}}=1$ for all elements g, h, of G. We have $k=\theta(1)$ and $\theta(1) \| N \mid$. As remarked above, $m||N|$, and hence $k m$ is a π-number where π denotes $\pi(N)$. If g, h, are elements of G then define $\beta(g N, h N)=\alpha(g, h)$. Since $(\alpha(g, h))^{k m}=1$ for all elements g, h, of G it follows that the order of B in the group $Z^{2}\left(G / N, \mathbb{C}^{x}\right)$ divides $k m, a \quad \pi$-number. Obviously then $|\bar{B}|$ is a \quad-number.

LEMMA 2.13. Let (G, N, θ) be a character triple, and let r denote a Schur representation group for G / N. Then there exists a subgroup A of $Z(\Gamma)$ and an element λ of \hat{A} such that $G / N \cong \Gamma / A,(G, N, \theta)$ and (Γ, A, λ) are isomorphic, and $A / k e r \lambda$ is a cyclic π-group where $\pi=\pi(N)$.

Proof. From the definition of a Schur representation group for $6 / \mathrm{N}$ there exists an epimorphism $\rho: r \longrightarrow G$ such that kerp $\leqslant Z(\Gamma)$, and kerp $\cong H^{2}\left(G / N, \mathbb{C}^{x}\right)$. Write $A=$ kerp. By Theorem 2.11([8] Theorem 11.28) there exists $\lambda \in \hat{A}$ such that (G, N, θ) and (Γ, A, λ) are isomerpinic. Now in the proof of [8] Theorem 11.28, the element λ of \hat{A} chosen so that (G, N, θ) and (r, A, λ) are isomorphic character triples satisfies $\lambda^{n}=\bar{B}^{-1}$ where η is a certain epimorphism from \hat{A} to $H^{2}\left(G / N, \mathbb{C}^{x}\right.$) (η is called the Standard map in [8]), and $\bar{\varepsilon}$ denotes the element of the group $H^{2}\left(G / N, \mathbb{C}^{x}\right)$ associated with (G, N, θ) as in the statement of Theorem 2.8. Since $\hat{A} \equiv A \equiv H^{2}\left(G / N, C^{x}\right)$, it follows that n is an isomorphism, and we deduce that $|\lambda|$, the order of λ in the group \hat{A}, is precisely $\left|\bar{\beta}^{-1}\right|$. Let π denote $\pi(N)$. By Lemma $2.12|\bar{e}|$ is a π-number, whereupon $|\lambda|$ $=\left|\bar{B}^{-1}\right|=|\bar{B}|$, a π-number. But $|\lambda|=\mid A /$ ker $\lambda \mid$ and we conclude that A/ker \boldsymbol{k} is a cyclic π-group.
Q.E.D.

Our next result is the well known characterisation of p-groups in which eack abelian characteristic subgroup is cyclic due to P. Hall.

LEMMA 2.14.([6] III Satz 13.10). Let p be a prime, and let P denote a p -group such that all abelian characteristic subgroups of P are cyclic. Then one of the following must hold.
(i) P is cyclic:
(ii). $P=P_{1} Y P_{2}$ where $1 \neq P_{1}$ is extraspecial of exponent P and P_{2} is cyclic ;
(iii) $p=2$ and P is generalised quaternion, dihedral, or semi-dihedral with $|P| \geqslant 16 ;$
(iv) $P=2$ and $P=P_{1} Y P_{2}$ where $1 \neq P_{1}$ is extraspecial and either P_{2} is dihedral semi-dihedral or generalised quaternion, with $\left|P_{2}\right| \geqslant 16$ or P_{2} is cyclic.

We are now in a position to prove the key result in our investigation into the structure of soluble high-fidelity groups with a unique minimal normal subgroup. The motivation for Theorem 2.15 below (which is also of some independent interest) is as follows. Let G be a soluble high-fidelity group with a unique minimal normal subgraup, N say. Then N is an elementary abelian q-group for some prime q. Let $1 \neq \lambda \in \hat{N}$, and write $\mathrm{K}=$ ker λ. Clearly N / K is a group of order q , and by Lemma 1.10 $N / K \leqslant Z\left(G_{\lambda} / K\right)$. By Theorem 1.9 and Lemma 1.10 we have

$$
\left\{x \in \operatorname{Irr}(G):\left[x_{N}, \lambda\right] \neq 0\right\}=\left\{\phi^{G}: \phi \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)\right\}
$$

Let n denote the common degree of all the characters in $\operatorname{Firr}(G)$. If $\quad x \in \operatorname{Irr}(G)$ such that $\left[x_{N}, \lambda\right] \neq 0$ then, obviously, $x \in \operatorname{Firr}(G)$, whereupon $x(1)=n$. Consequently $\phi^{G}(1)=n$ for all $\phi \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$. It follows that N / K is a cyclic subgroup of $Z\left(G_{\lambda} / K\right)$, and $\lambda \in \operatorname{Firr}(N / K)$ such that all the characters in $\operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$ have the same degree, namely, $n /\left|G: G_{\lambda}\right|$.

It is desirable, therefore, to have information about the following situation: G is a soluble group, M is a cyclic subgroup of $Z(G)$, and $\lambda \in \operatorname{Firr}(M)$ has the property that all characters in $\operatorname{Irr}(G \mid \lambda)$ share the same degree. The group $\operatorname{SL}(2,3)$ gives an easy example of such an arrangement.

EXAMPLE. Let G denote the group $\operatorname{SL}(2,3)$, and write $M=Z(G)$. Then $|G|=24$, and $|M|=2$. Moreover, M is the unique minimal normal subgroup of G. Let λ denote the unique non-trivial element of $\operatorname{Irr}(M)$. Clearly λ is invariant in G, and $x \in \operatorname{Irr}(G \mid \lambda)$ if and only if $x \in \operatorname{Firr}(G)$. Let $x \in \operatorname{Firr}(G)$. We have $x_{n}=x(1) \lambda$. By Frobenius reciprocity the multiplicity of x as an irreducible constituent of λ^{0} is exactly $x(1)$, and hence

$$
\sum_{x \in \operatorname{Firr}(G)} x(1)^{2}=\lambda^{G}(1)=|G: M|=12
$$

Since $x \in \operatorname{Firr}(G)$ implies that $x(1)>1$, it follows that Firr (G) consists of three characters each of degree 2. Thus G is a high-fidelity group. In particular, all characters in $\operatorname{Irr}(G \mid \lambda)$ have degree 2.

THEOREM 2.15. Let G be a soluble group, and let M be a cyclic subgroup of $Z(G)$. Assume that $\lambda \in \operatorname{Firr}(M)$ such that $X(1)=\psi(1)$ for all elements X, ψ, of $\operatorname{Irr}(G \mid \lambda)$, and write $\pi=\pi(M)$. Then $X(1)$ is a π-number for all $X \in \operatorname{Irr}(G \mid \lambda)$, and G contains an abelian Hall π^{\prime}-subgroup.

Proof. The proof is by induction on $|G: M|$. If $|G: M|=1$ then G is abelian and the theorem is obviously true. Now assume that G, M, λ, π, are as in the statement of the theorem, and then the induction hypothesis is as follows : whenever X is a soluble givup with Y a cyclic subgroup of $Z(X)$ such that $|X: Y|<|G: M|$ and μ is an element of $\operatorname{Firr}(Y)$ having the property that $\theta(1)=\phi(1)$ for all elements θ, ϕ, of $\operatorname{Irr}(X \mid \mu)$, then, writing $\pi_{0}=\pi(Y)$, it follows that $\theta(1)$ is a $\pi_{0}-$ number for all $\theta \in \operatorname{Irr}(X \mid \mu)$ and that X contains an abelian Hall π_{0}^{\prime}-subgroup.

We shall have two cases to consider according to whether or not there exists $p \in \pi$ such that $O_{p}(G)$ contains a non-cyclic abelian characteristic subgroup. Let η denote the common degree of all the characters in $\operatorname{Imr}(G \mid \lambda)$.

CASE 1. For all $p \in \pi$ the subgroup $O_{p}(G)$ roatains no non-cyclic abelian characteristic subgroup.

In this case for all $p \in \pi$ the structure of $O_{p}(G)$ is given by Lemma 2.14. Assume first that $O_{p}(G)$ satisfies efther (i) or (iii) of Lemma 2.14 for all $p \in \pi$. Then aither $O_{p}(G)$ is cyclic, or $p=2,\left|O_{p}(G)\right| \geqslant 26$, and $O_{p}(G)$ is dihedral, semidihedral, or generalised quaternion for each $\mathrm{P} \in \pi$. Let $\mathrm{P} \in \pi$. If $\mathrm{O}_{\mathrm{P}}(\mathrm{G})$ is cyclic, then write $\mathrm{N}_{\mathrm{P}}=\mathrm{O}_{\mathrm{p}}(\mathrm{G})$. If $\mathrm{O}_{\mathrm{p}}(\mathrm{G})$
is not cyclic then $p=2$ and $O_{2}(G)$ contains a cyclic characteristic subgroup of index 2 which is its own centraliser in $\mathrm{O}_{2}(G)$. In this case let N_{2} denote such a cyclic characteristic subgroup. Hence for each $p \in \pi$ N_{p} is a cyclic characteristic subgroup of $O_{p}(G)$ which is its own centraliser in $O_{p}(G)$. Let N denote the product of all the subgroups N_{p}. Clearly N is a cyclic normal subgroup of G containing M, and $\pi(N)=\pi=\pi(M)$. If C denotes $C_{G}(N)$ then $C \triangleleft G$ and, by Lemma $2.6, G / C$ is a π-group. Let $\mu \in \operatorname{Irc}(N \mid \lambda)$. Lemma 2.6 yields $\mu \in \operatorname{Firr}(N)$, and

$$
\left\{\phi^{G}: \phi \in \operatorname{Irr}(C \mid \mu)\right\} \subseteq \operatorname{Irr}(G \mid \lambda)
$$

Thus for all $\phi \in \operatorname{Irr}(C \mid \mu)$ we have $|G: C| \phi(1)=\phi^{G}(1)=n$, the common degree of all the characters in $\operatorname{Irr}(G \mid \lambda)$, whereupon $\phi(1)=n /|G: C|$ for all $\phi \in \operatorname{Irr}(\mathrm{c} \mid \mu)$.

Since $C \triangleleft G$ we must have $O_{p}(C)=O_{p}(G) \cap C$ for all primes p. Now $i \hat{i}$ p is a prime then $O_{p}(G) \cap C$ is precisely the centraliser in $O_{p}(G)$ of N. But for each $p \in \pi$ the group N_{p} is its own centraliser in $O_{p}(G)$. He deduce that $N_{p}=O_{p}(C)$ for all $p \in \pi$, and hence, if F denotes $F(C)$, then $N=O_{\pi}(F)$. Thus C is a soluble group, n a set of primes, $O_{\pi}(F)=N \leqslant Z(C)$ where F denotes $F(C)$, and $\mu \in \operatorname{Firr}(N)$ such that all elements of $\operatorname{Irr}(C \mid \mu)$ have the same degree, namely $n /|G: C|$. Hence, by Lemma 2.4, C contains e normal abelian Hall π^{\prime}-subgroup, and $\pi /|G: C|$ is a π-number. But, as remarked above, G / C is a π-group, and it follows that G contains an abelian Hall $\boldsymbol{\pi}^{\prime-}$-subgroup and n, the common degree of all characters in $\operatorname{Im}(G \mid \lambda)$, is a π-number. We conclude that if $O_{p}(G)$ satisfies either (i) or (iii) of Lemma 2.14 for all $p \in \pi$ then the theorem holds.

Hence we may assume that there exists $p \in \pi$ such that $O_{p}(G)$ satisfies either (ii) or (iv) of Lemma 2.14. Write $P=O_{p}(G)$. Then $P=P_{1} Y P_{2}$ where $1 \neq P_{1}$ is extraspecial, and either P_{2} is cyclic, or $p=2,\left|P_{2}\right| \geqslant 16$, and P_{2} is dihedral, semi-dihedral, or generalised quaternion. Let Q denote
$C_{P}(\Phi(P))$. Then Q is a characteristic subgroup of P, whereupon $Q \subset G$. Moreover $Q=P$ if P_{2} is cyclic, and $|P: Q|=2$ if P_{2} is dihedral, semidihedral, or generalised quaternion with $\left|P_{2}\right| \geqslant 16$. In fact $Q=Q_{1} Y Q_{2}$ where $Q_{1} \geq P_{1}$ is extraspecial, and Q_{2} is cyclic. Clearly Q is a class 2 p-group with cyclic centre.

Write $R=Q M$, and let N denote $Z(R)$. Obviously $\pi(R)=\pi(N)=\pi$, and $M \leqslant N<R \triangleleft G$. Let $C=C_{G}(N)$, and choose $\mu \in \operatorname{Irr}(N \mid \lambda)$. Then by Lemma 2.5 it follows that G / C is a π-group, and that $\mu \in \operatorname{Firr}(N)$ with

$$
\left\{\phi^{G}: \phi \in \operatorname{Irr}(C \mid \mu)\right\} \subseteq \operatorname{Irr}(G \mid \lambda)
$$

Consequently all elements of $\operatorname{Irr}(C \mid \mu)$ have the same degree, namely $n /|G: c|$.
Let L denote the normal Hall p^{\prime}-subgroup of M. Then, clearly, $R=Q M=Q \times L$, and $N=Z(R)=Z(Q) \cdots L$. If ζ denotes $\mu_{Z(Q)}$ then Theorem 1.8 implies that $\operatorname{Irr}(Q \mid \zeta)=\{\psi\}$ for some $\psi \in \operatorname{Firr}(Q)$. Let ξ $=\mu_{L^{+}}$. Using Theorem 1.12 and the fact that $\mu=\boldsymbol{\zeta} \times \xi$ it follows easily that $\operatorname{Irr}(R \mid \mu)=\{\theta\}$ where $\theta=\psi \times \xi$. Now μ is invariant in C, and hence $\theta^{8} \in \operatorname{Irr}(R \mid \mu)$ for all $g \in C$. We deduce that θ is invariant in C, whence (C, R, θ) is a character triple. Moreover, $\phi \in \operatorname{Irr}(C \mid \theta)$ if and only if $\phi \in \operatorname{Irr}(C \mid \mu)$, and thus all the characters $\operatorname{in} \operatorname{Irr}(C \mid \theta)$ have degree $n /|G: c|$.

Let r be a Schur representation group for C / R. Then, by Lemma 2.13, there exists a subgroup A of $Z(\Gamma)$ and an element ζ of \hat{A} such that $C / R \cong \Gamma / A,(C, R, \theta)$ and (Γ, A, ζ) are isomorphic character triples, and $A / k e r \zeta$ is a π-group. Write $K=$ kers, $\bar{\Gamma}=\Gamma / K$, and $\bar{A}=A / K$. Then, in the usual way, we consider 5 as an element of $\operatorname{Firr}(\bar{A})$ and identify $\operatorname{Irr}(\Gamma \mid \zeta)$ with $\operatorname{Irr}(\bar{\Gamma} \mid \zeta)$. Let $\psi \in \operatorname{Irr}(\bar{\Gamma} \mid \zeta)$. It follows from Lemma 2.10 that there exists $\phi \in \operatorname{Irr}(C \mid \theta)$ such that

$$
\phi(1) / \theta(1)=\psi(1) / 5(1) .
$$

Since $5(1)=1$, and aince, as proved above, all characters in $\operatorname{Irr}(C \mid \theta)$
have degree $n /|G: C|$, we see that

$$
\phi(1)=n /|G: c| \theta(1)
$$

for all $\psi \in \operatorname{Irr}(\bar{\Gamma} \mid \zeta)$.
Clearly $\bar{\Gamma}$ is soluble. Moreover \bar{A} is a cyclic subgroup of $Z(\bar{\Gamma})$ with $\pi(\bar{A}) \subseteq \pi$, and $\zeta \in \operatorname{Fimr}(\bar{A})$ has the property that all characters in $\operatorname{Irr}(\bar{\Gamma} \mid \zeta)$ have degree $n / G: C \mid \theta(1)$. Since $M<R$ we have

$$
|\bar{\Gamma}: \bar{A}|=|\bar{S}: A|=|C: R|<|C: M|<|G: M|,
$$

and so, writing $\pi_{0}=\pi(\bar{A})$, the induction hypothesis inplies that $n /|G: C| \theta(1)$ is $a \pi_{0}$-number, and that \bar{r} contains an abelian Hall π_{0}^{\prime}-subgroup. But $\pi_{0} \subseteq \pi$, and therefore $n /|G: C| \theta(1)$ is a π-number. Also any Hall π_{0}^{\prime}-subgroup of $\bar{\Gamma}$ must contain a Hall π^{\prime}-subgroup of $\bar{\Gamma}$, and thus $\bar{\Gamma}$ contains an abelian Hall π '-subgroup.

As remarked above the group G / C is a π-group, whence $|G: C|$ is a π-number. Also R is a π-group, and therefore, since $\theta \in \operatorname{Irr}(R)$, it follows that $\theta(1)$ is a x-number. We daduce that n, the comnon degree of all elements of $\operatorname{Irr}(G \mid \lambda)$, is a π-number. Let H be a Hall π '-subgroup of G. Obviously $H \leqslant C$. Since R is a π-group we have $H \cap R=1$, whereupon $H £ H R / R$. It is apparent that $H R / R$ is a Hall π^{\prime}-subgroup of the group $C / R \cong \Gamma / A \cong \bar{\Gamma} / \bar{A}$. Now \bar{A} is a π-group, end, as proved above, $\bar{\Gamma}$ contains an abelian Hall $\pi^{\prime \prime-s u b g r o u p . ~ T h e r e f o r e ~} \bar{\Gamma} / \bar{A}$, and hence C / R, contains an abelian Hall π^{\prime}-subgroup, and since all Hall π^{\prime}-subgroups C / R are isomorphic it follows that $H R / R \cong H$ is abelian. This completes Case 1.

CASE 2. There exists $p \in \pi$ such that $O_{p}(G)$ contains a non-cyclic abelian charactoristic subgroup.

Let R_{0} denote a non-cyclic abelian characteristic subgroup of $O_{p}(G)$.

Obviously $R_{0} \triangleleft G$. Write $R=R_{0} M$. Then $R \triangleleft G$, and R is abelian (since R_{0} is abelian and $M \leqslant Z(G))$. Moreover, R is not cyclic, and $\pi(R)=\pi$. Let $\quad \phi \in \operatorname{Irr}(R \mid \lambda)$, and write $K=$ ker ϕ. Clearly $K \cap M=1$, whence $M \cong M K / K \leqslant R / K$. it follows that $\pi(R / K) \geq \pi(M)=\pi$, and so, since $\pi(R / K) \subseteq \pi(R)=\pi$, we have $\pi(R / K)=\pi$. By Lemma $1.10 R / K \leqslant Z\left(G_{\phi} / K\right)$, and Theorem 1.9 and Lemma 1.10 together imply that

$$
\left\{x \in \operatorname{Irr}(G):\left[x_{R} \hat{j} \phi\right] \neq 0\right\}=\left\{\psi^{G}: \psi \in \operatorname{Irr}\left(G_{\phi} / K \mid \phi\right)\right\}
$$

Obviously if $x \in \operatorname{Irr}(G)$ such that $\left[x_{R}, \phi\right] \neq 0$ then $x \in \operatorname{Irr}(G \mid \lambda)$, whereupon $x(1)=n$. Consequently $\psi(1)\left|G: G_{\phi}\right|=\psi^{G}(1)=n$ for all $\psi \in \operatorname{Irr}\left(G_{\phi} / K \mid \phi\right)$, and we deduce that $\psi(1)=n /\left|G: G_{\phi}\right|$ for all $\psi \in \operatorname{Irr}\left(G_{\phi} / K \mid \phi\right)$.

Therefore G_{ϕ} / K is a soluble group, and R / K is a cyclic subgroup of $Z\left(G_{\phi} / K\right)$ with $\pi(R / K)=\pi$. Moreover, $\phi \in \operatorname{Firr}(R / K)$ such that all elements of $\operatorname{Irr}\left(G_{\phi} / K \mid \phi\right)$ have degree $n /\left|G: G_{\phi}\right|$. Since R is abelian: but not cyclic we must have $M<R$, whereupon

$$
\left|G_{\phi} / K: R / K\right|=\left|G_{\phi}: R\right|<\left|G_{\phi}: M\right| \leqslant|G: M| .
$$

Therefore the induction hypothesis implies that $n /\left|G: G_{\phi}\right|$ is a π-number, and that G_{ϕ} / K contains an abelian Hall π^{\prime}-subgroup.

Let I denote the set $\operatorname{Irr}(R \mid \lambda)$. Clearly G acts as a group of permutations on I, and the above argument establishes that $n /\left|G: G_{\phi}\right|$ is a π-number for each $\phi \in I$. Thus, writing $m(\phi)=n /\left|G: G_{\phi}\right|$, we have

$$
\begin{equation*}
n=m(\phi)\left|G: G_{\phi}\right|, \tag{1}
\end{equation*}
$$

where $m(\phi)$ is a π-number, for each $\phi \in I$. Let $\phi \in I$. By Frobenius reciprocity the multiplicity of as an irreducible constituent of $\lambda^{\text {R }}$ is the multiplicity of λ as an irreducible constituent of ϕ_{M}. But R is abolian, whereupon $\phi(1)=1$, and we have $\phi_{M}=\lambda$. Hence each element of I appears as an irreducible constituent of λ^{R} with multiplicity 1.

Therefore, since $\lambda^{R}(1)=|R: M|$, we have $|I|=|R: M|$. Suppose that $q \mid n$ for some prime q such that $q \notin \pi$. Then (1) implies that $q \|\left|G: G_{\phi}\right|$ for each $\phi \in I$; that is, q divides the size of each G-orbit in I. Consequently q divides $|I|=|R: M|$, and hence $q||R|$. But, as remarked above, $\pi(R)=\pi$, a contradiction. We deduce that n, the common degree of all characters in $\operatorname{Irr}(G \mid \lambda)$, is a π-number. Let $申 \in I$, and let H denote a Hall π^{\prime}-subgroup of $G_{\dot{\phi}}$. Using (1) and the fact that n is a π-number we see that $\left|G: G_{\phi}\right|$ is a π-number, and it follows that H is a Hall π^{\prime}-subgroup of G. Writing $K=\operatorname{ker} \phi \triangleleft R$, we must have that K is a π-group, and so $H \cap K=1$. Thus $H \cong H K / K$. Clearly $H K / K$ is a Hall $\pi^{\prime \prime}$-subgroup of G_{ϕ} / K. As proved above, the group G_{ϕ} / K contains an abelian Hall $\pi^{\prime \prime}$-subgroup, and so, since all Hall $\pi^{\prime \prime}$-subgroups of G_{ϕ} / K are isomorphic, we conclude that $H K / K \cong H$ is abelian. This completes Case 2, and hence the lemma is proved by induction.
Q.E.D.

We remark that Theorem 2.15 above may be stated in terms of projective representations, and such a formulation is given below as Theorem 2.16. The proof that the two theorems are equivalent, which would be teo much of a digression here, is omitted.

THEOREM 2.16. iet G be a soluble group, and let a be a (complex) factor set of G. Assume that \bar{a} denotes the image of a under the natural homomorphism $Z^{2}\left(G, C^{x}\right) \rightarrow H^{2}\left(G, C^{x}\right)$, and let π denote the sut of primes dividing $|\bar{a}|$. Assume further that all irreducible projective representations of G with factor set a share the same degree. Then the derree of any imreducible projective rapresentation of G with factor set a is a π-number, and G contains an abelian Hall π '-subgroup.

Theorem 2.15 may be given yet a third formulation in the language
of the theory of twisted group algebras, but we do not include such a formulation here. Instead we move on to give a definition that generalises the idea of a group acting half-transitively on a set.

DEFINITION. Let G be a group of permutations on a set X, such that $|X|>1$, and let π be a set of primes. We say that G acts π-halftransitively on X if there exists $a n$-number b such that $\left|X^{G}\right|=b . s(x)$ for all $x \in X$, where $s(x)$ is a π^{\prime}-number depending on x, and x^{G} denotes the G-orbit containing x. In addition, if $b=|G|_{\pi}$, the π-part of the integer $|G|$, then we say that G acts π-semiregularly on X.

Clearly π-halftransitivity is identical to half-transitivity when $\pi=\pi(G)$, and in this case π-semiregular action is semiregular. Also, by the orbit-stabiliser theorem, it is an easy consequence of the definition that a group G acts π-halftransitively on a set X if and only if there exists a π-number c such that $\left|G_{x}\right|=c . t(x)$ for all $x \in X$, where $t(x)$ is a π number depending on x.

THEOREM 2.17. Let G be a soluble group with a unique minimal normal subgroup N, an elementary abelian q-group for some prime q. Assume that G is a high-fidelity group. Then G acts q^{\prime}-halftransitively on the nontrivial elements of \hat{N}_{1} and G_{λ} contains an abelian Hall q^{\prime}-subgroup for each $1 \neq \lambda \in \hat{N}$. Writing $\bar{G}=G / C_{G}(N)$ and regarding \hat{N} additively, \hat{N} is an irreducible $\operatorname{GF}(q) \overline{\mathrm{G}}$-module, faithful for $\overline{\mathrm{G}}$, such that $\overline{\mathrm{G}}$ acts q^{\prime}-halftransilively on ($\hat{N})^{*}$.

Proof. Let n denote the common degree of all the characters in Firr(G), and let $1 \neq \lambda \in \hat{N}$. Write $K=k e r \lambda$, and then N / K is a cyclic group of order q. By Lemma 1.10 and Theorem 1.9, we have $N / K \leqslant Z\left(G_{\lambda} / K\right)$, and

$$
\left\{x \in \operatorname{Irr}(G)=\left[x_{N}, \lambda\right] \neq 0\right\}=\left\{\phi^{G}: \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)\right\}
$$

If $x \in \operatorname{Irr}(G)$ such that $\left[x_{N}, \lambda\right] \neq 0$ then obviously $x \in \operatorname{Firr}(G)$, whereupon $x(1)=n$. Hence $\phi^{G}(1)=n$ for all $\phi \in \operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$. It follows that N / K is a cyclic subgroup of $Z\left(G_{\lambda} / K\right)$ of order q, and $\lambda \in \operatorname{Firr}(N / K)$ such that all elements of $\operatorname{Irr}\left(G_{\lambda} / K \mid \lambda\right)$ have the same degree, namely $n /\left|G: G_{\lambda}\right|$. Therefore, by Theorem 2.15, there exists an integer, $\alpha(\lambda)$ say, such that

$$
\begin{equation*}
q^{\alpha(\lambda)}=n /\left|G: G_{\lambda}\right|, \tag{1}
\end{equation*}
$$

and G_{λ} / K contains an abelian Hall q^{\prime}-subgroup. From (1) we have

$$
\begin{equation*}
\left|G: G_{\lambda}\right|=n / q^{\alpha(\lambda)} \tag{2}
\end{equation*}
$$

Let b denote the $q^{\text {'-part }}$ of n, so that $n=b . q^{k}$ for some integer k and $q \nmid \mathrm{~b}$. Then (2) implies that there exists an integer $B(\lambda)(=k-\alpha(\lambda))$ such that

$$
\left|G: G_{\lambda}\right|=b \cdot q^{B(\lambda)} .
$$

But $\left|G: G_{\lambda}\right|$ is precisely the size of the G-orbit containing λ, and it follows that G acts q^{\prime}-halftransitively on $(\hat{N})^{*}$. Agair. let $\lambda \in(\hat{N})^{*}$. and let H denote a Hall q^{\prime}-subgroup of G_{λ}. Write $K=$ ker λ, whereupon K is a q-group. Therefore $H \cap K=1$, and so $H \cong H K / K$. Clearly $H K / K$
 Hall q^{\prime}-subgroup, and, since all Hall q^{\prime}-subgroups of G_{λ} / K are isomorphic, it follows that $H K / K \cong H$ is abelian.

The last statement in the theorem follows easily from Lemma 1.11 and from the fact that $(\bar{G})_{\lambda}=G_{\lambda} / C_{G}(N)$ for all $\lambda \in \hat{N}$.
Q.E.D.

CHAPTER 3

SOLUBLE a^{\prime} - HALFTRANSITIVE GROUPS OF LINEAR TRANSFORMATIONS OF A GF(q) - VECTOR SPACE. I

In this chapter and the next we study the following situation: G
 for G, and G acts q^{\prime}-halftransitively on $V^{\#}$. Our aim will be to obtain a classification of the possibilities for such a group G similar to Passman's classification of soluble half-transitive groups of autororphisms. We will require many of Passman's techniques and results, sore of which will be needed in an adapted form. Where clarity or continuity of argument demands it, an adapted proof will be given in full, together with a reference to the original result.

The method I have adopted for solving the classification problem defined above is similar to the way in which Passman attacked the problem of classifying soluble half-transitive groups of automorphisms in the series of papers [10] (with Isaacs), [11], [12], [13]. Essentially Passman split the problem into two cases according to whether the group acting was primitive or imprimitive as a linear group. The problem we are concemed with here will also be split into two cases, although not eccording to primitivity or imprimitivity. The distinction I shall make is whether or not the group acting contains a non-cyclic abelian normal subgroup. It will he seen that these two cases correspond closely enough to the primitive and imprimitive cases to enable us to use many of Passman's methods.

We first conaldor the case in which the group acting does contain a non-cyclic abelian normal subgroup, and we begin by describing a family of groups that occur as particular examples of this case.

DEFINITION 3.1. Let q be a prime such that $q>2$, and let n be a positive integer and a non-negative integer auch that $q q^{m}$. Also lat V denote
a 2-dimensional vector space over the field $G F\left(q^{n}\right)$. Aut $\left(G F\left(q^{n}\right)\right)$ is a cyclic group of order n and since $q^{m} \mid n$ there exists a unique subgroup of $\operatorname{Aut}\left(\operatorname{GF}\left(q^{n}\right)\right.$) of order q^{m}. Let S denote such a subgroup. Let $J_{0}\left(q^{n} ; q^{m}\right)$ denote the group of all maps from V to V of the form

$$
\binom{x}{y} \longmapsto\left(\begin{array}{cc}
a & 0 \\
0 & \pm a^{-1}
\end{array}\right)\binom{x^{\sigma}}{y^{\sigma}}
$$

and

$$
\binom{x}{y} \longmapsto\left(\begin{array}{cc}
0 & a \\
\pm a^{-1} & 0
\end{array}\right)\binom{x^{0}}{y^{0}}
$$

for all elements $x_{\text {. }} . y_{\text {, }}$ a of $G F\left(q^{\bar{u}}\right)$ such that $a \neq 0$, and for all $\sigma \in S$.

THEOREM 3.2. (i) $\mathcal{J}_{0}\left(q^{n}\right)$ \& $\mathcal{J}_{0}^{(} q^{n} ; q^{m}$) and $\left|\mathscr{J}_{0}\left(q^{n} ; q^{m}\right)\right|=4 q^{m}\left(q^{n}-1\right)$; (ii) $\mathcal{J}_{0}\left(q^{n} ; q^{m}\right)$ is soluble;
(iii) V is a faithful, irreducible module for $\mathscr{T}_{0}\left(q^{n} ; q^{m}\right)$ of dimension $2 n$ over the field GF(q);
(iv) $\mathscr{J}_{0}\left(q^{n} ; q^{m}\right)$ acts q^{2} halftransitively on V^{*} and for all $V \in V^{*}$ the stabiliser in $\left.J_{0}^{(} q^{n} ; q^{m}\right)$ of v is cyclic of order $2 q^{a(v)}$ for some integer $a(v)$ depending on v.

Proof. It is easily checked that $J_{0}\left(q^{n}\right) \& J_{0}\left(q^{n} ; q^{m}\right)$ and that $\mathscr{J}_{0}\left(q^{n}\right)$ is complemented in $\mathscr{J}_{0}\left(q^{n} ; q^{m}\right)$ by the cyclic subgroup consisting of all maps of the form

$$
\binom{x}{y} \longmapsto\binom{x^{\sigma}}{y^{\sigma}}
$$

for all ofS. Since the order of this subgroup is $q^{\mathbb{m}}$ (the order of S), and since $\left|\mathscr{J}_{0}^{\prime}\left(q^{\eta}\right)\right|$ is $4\left(q^{n}-1\right)$ it follow that $\mid \mathscr{J}_{0}\left(q^{n} ; q^{M} \mid\right.$ is precisely $4^{m}\left(q^{n}-1\right)$. The solubility of $\mathscr{V}_{0}\left(q^{n} ; q^{m}\right)$ is obvious since both $\mathcal{J}_{0}\left(q^{n}\right)$ and $\mathscr{J}_{0}\left(q^{n}: q^{m}\right) / \mathscr{J}_{0}\left(q^{n}\right)$ are soluble.

Everything in (iii) is clear from the definitions of $\mathscr{V}_{0}\left(q^{n} ; q^{m}\right)$ and V and so it only remains to prove (iv). Let $v \in V^{(1)}$ and let H denote tine stabiliser in $\mathscr{V}_{0}\left(q^{n} ; q^{m}\right)$ of v. As we have seen in Chapter l the stabiliser in $\mathscr{V}_{0}\left(q^{n}\right)$ of any element of $V^{\#}$ is a group of order 2. Therefore $\left|\mathrm{H} \cap \mathscr{J}_{0}\left(q^{n}\right)\right|=2$. Since $q \dagger\left|\mathscr{J}_{0}\left(q^{n}\right)\right|$ and $\mathscr{J}_{0}\left(q^{n}\right)$ has index q^{m} in $\mathscr{J}_{0}\left(q^{n} ; q^{m}\right)$ it follows that $\mathscr{\mathscr { O }}_{0}\left(q^{n}\right)$ is a normal Hall $q^{\prime-s u b g r o u p ~ o f ~} \mathscr{\mathscr { O }}_{0}\left(q^{n} ; q^{m}\right)$, and we deduce that $|H|_{q^{\prime}}=\left|H \cap \mathscr{J}_{0}^{\prime}\left(q^{n}\right)\right|=2$. Obviously $H \cap \mathscr{V}_{0}^{(}\left(q^{n}\right) 4 H$, and hence H is a cyclic group of order $2 q^{\alpha}$ for some integer $\alpha_{\text {. }}$
Q.E.D.

It will be convenient to have a description of the group $\mathscr{V}_{0}\left(q^{n} ; q^{m}\right)$ in terms of generators and relations. Let q, n, m, V and S be as above and let b be a generator of the multiplicative group of $G F\left(q^{n}\right)$. In addition, let c, d, e denote the maps

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
b & 0 \\
0 & b^{-1}
\end{array}\right)\binom{x}{y}, \quad\binom{x}{y} \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y},
$$

and

$$
\binom{x}{y} \longmapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
$$

respectively for all elements x, y, of $\operatorname{GF}\left(q^{n}\right)$. As shown in Chapter 1 , we have, writing $\gamma=q^{n}-1$,

$$
\mathscr{J}_{0}\left(q^{n}\right)=\left\langle c, d, e,: d^{\prime}=d^{2}=e^{2}=1, c d=d c, \text { ece= } c^{-1} \text { ede }=d^{1 / 2} d\right\rangle
$$

The froup S is cyclic of order q^{m}. Suppose $S=\langle\tau\rangle$ and let $\varepsilon \in \mathcal{V}_{0}^{(}\left(q^{n} ; q^{m}\right)$ denote the map

$$
\binom{x}{y} \longmapsto\binom{x^{\tau}}{y^{\tau}}
$$

Clearly f has order q^{m} and $\mathscr{F}_{0}\left(q^{n} ; q^{m}\right)=\langle c, d, e, f\rangle$. Also it is easily checked that $f d=d f$ and $f e=e f$. Write $k=q^{m}$. Recall that the subgroup $\mathscr{T}_{k}\left(q^{n}\right)$ of $\mathscr{T}\left(q^{n}\right)$ is defined to be the subgroup consisting of all maps of the form

$$
x \longmapsto a x^{0}
$$

for all elements x, a, of $\operatorname{GF}\left(q^{n}\right)$ such that $a \neq 0$, and for all $\sigma \in S$. Now it is easily seen that the subgroup $\langle c, f\rangle$ of $\mathscr{V}_{0}\left(q^{n} ; q^{m}\right)$ is isomorphic to the group $\mathscr{J}_{k}\left(q^{n}\right)$. Hence $\mathscr{V}_{0}\left(q^{n} ; q^{m}\right)$ contains elements c, d, a, and f such that $\left.\mathscr{T}_{0}^{(} q^{n} ; q^{m}\right)=\langle c, d, e, f\rangle,|c|=\gamma,|d|=|e|=2,|f|=k$, $[c, d]=[d, f]=[e, f]=1$, ece $=c^{-1}$, ede $=c^{\prime / 2}$ e and $\langle c, f\rangle \cong \mathscr{C}_{k}\left(q^{n}\right)$.

We shall require the next result in the proof of Lemma 3.5 later in this chapter.

LEMMA 3.3. Let G be a 2 -group containing three distinct normal subgroups R_{1}, R_{2}, R_{3}, each of order 2. Assume that G / R_{i} is cyclic or generalised quaternion for $1=1,2,3$. Then $6 \cong C_{2} \times C_{2}$.

Proof. Let $R_{1}=\langle a\rangle, R_{2}=\langle b\rangle, R_{3}=\langle c\rangle$. Since G / R_{1} is either cyclic or generalised quaternion, G / R_{i} has a unique involution for $i=1,2,3$. But both $c R_{1}$ and $b R_{1}$ are involutions in G / R_{1}; honce $c R_{1}=b R_{1}$, giving $c=b$ or $c=b a$. Now $c \neq b$ since $R_{2} \neq R_{3}$, and so $c=b a$. Therefore, writing $T=\left\langle R_{1}, R_{2}, R_{3}\right\rangle$, we have $T \& C_{2} \times C_{2}$ and $T \& G$.

Suppose that $g \in G \backslash T$. Then $g R_{i}$ is a non-trivial elemont of G / R_{i} for $1=1,2,3$, and of is a non-trivial element of G / T, a 2 -group. Let 2° be the order of the element $g T$ in the group G / T. Then $g^{2 e} \in T$ and $g^{2 f} \& T$ for $f<$.

If $\mathrm{g}^{2^{e}}=1$, then $\mathrm{g}^{2^{-1}-1}$ is an involution in G, and so $\mathrm{g}^{2^{0-1}} R_{1}$ is an involution in G / R_{1}. Hence $g^{2^{0-1}} R_{1}=b R_{1}$, giving $g^{2^{e-1}} \quad b$ or ba, and then $s^{2 \theta-1} \in T$, a contradiction. Therefore $g^{2 \theta} \neq 1$.

If $g^{2^{e}}=a$, then $g^{2^{e-1}} R_{1}$ is an involution in G / R_{1} and so, arguing as before, $g^{2^{e-1}}=b$ or ba, again a contradiction. Hence $g^{2^{e}} \neq a$.

Similarly $g^{2^{e}} \neq b$ and $g^{2^{e}} \neq c$. But $T=\{1, a, b, c\}$ and we are forced to conclude that $G T=\emptyset$. Thus $G=T \cong C_{2} \times C_{2}$.
Q.E.D.

ASSUMPTIONS. From this point up to the end of Theorem 3.9 we work under the assumptions that G is a soluble group, q is a prime and V is an irreducible $G F(q) G$-module, faithful for G, such that G acts q '-halftransitively on V^{*}. In addition we essume that G contains a non-cyclic abelian normal subgroup.

LEMMA 3.4. We have $q \neq 2$ and there exists $N \triangleleft G$ such that $N \equiv C_{2} \times C_{2}$.
Proof. Since G contains a non-cyclic abelian normal subgroup, G must contain a non-cycli= abelian normal p-subgroup for some prime p. Let M be such a normal p-subgroup of G and restrict V to M. By Clifford's Theorem

$$
v_{M}=v_{1} \oplus \ldots \oplus v_{t}
$$

where each V_{i} is the direct sum of M-isomorphic irreducible $\operatorname{GF}(q)$ M-modules, a homogeneous component of $V_{M^{\circ}}$ Let W_{i} be an irreducible direct summand of V_{i} for $1 \leqslant i \leqslant t$, and let R_{i} denote the kernel of M on W_{i}.

From the fact that V_{i} is homogeneous, it follows that R_{i} is the kernel of if on V_{i} for $1 \leqslant 1 \leqslant t$. Also $R_{i}>1$ for $1 \leqslant 1 \leqslant t$ aince M is abelian but not cyclic and, from the faithfulness of V, we have $t>1$ and $\widehat{\Omega}_{1}^{t} R_{i}=1$. Let H_{i} denote the stabiliser in G of V_{i}. Then $H_{i}=\left\{g \in G: V_{i} g=V_{i}\right\}$ and, by Clifford's Theorem, v_{i} is an irreducible $\operatorname{GF}(q) H_{1}$-module, G permutes the V_{i} tranaitively, $V \equiv v_{i}^{G}$, and $\left|G: H_{i}\right|=t$ for $1 \leqslant 1 \leqslant t$. If K_{i} denotes $\operatorname{ker}\left(H_{i}\right.$ on $\left.V_{1}\right)$, then $K_{i} \cap M=R_{i} \& H_{i}$ for $1<1 \leqslant t$ and $\bigcap_{i=1}^{t} K_{i}=1$. Clearly, if $v \in V_{i}^{*}$ for some $i \in\{1, \ldots, t\}$, then $G_{v} \leqslant H_{i}$. We have
$t>1$, and so let $v_{i} \in V_{i}^{\#}, v_{j} \in V_{j}^{\#}$ where $i \neq j$ and write $v=v_{i}+v_{j}$. For $\varepsilon \in G_{v}$ obviously $v_{i} g=v_{i}$ or v_{j} and so we have a homomorphism from G_{v} to the symmetric group on $\{i, j)$ whose kernel is $G_{v_{i}} \cap G_{v_{j}}$. Therefore $\left|G_{v}: G_{v_{i}} \cap G_{v_{j}}\right|$ $\leqslant 2$. Since $\left|G_{v_{i}}\right|_{q^{\prime}}=\left|G_{v}\right|_{q^{\prime}}$, by q^{\prime}-halftransitivity, we have

$$
\begin{equation*}
\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}}\right|=q^{\alpha} \text { or } 2 q^{\alpha} \tag{1}
\end{equation*}
$$

for some integer $\alpha \geqslant 0$. (We allow the case $q=2$.) Let r be a prime such that $r \neq 2, q$. Then (1) shows that $G_{v_{j}}$ contains a Sylow x-subgroup of $G_{v_{i}}$. since $O_{r}\left(G_{v_{i}}\right) \leqslant Q$ for all Sylow r-subgroups, $Q_{\text {, of }} G_{v_{i}}$, by varying v_{j} inside V_{j} we see that

$$
\begin{equation*}
O_{r}\left(G_{v_{i}}\right) \leqslant K_{j} \tag{2}
\end{equation*}
$$

Fy letting j vary under the restriction $1 \neq j$ we deduce that $0_{r}\left(G_{v_{i}}\right) \leqslant \bigcap_{j \neq i} K_{j}$. sow $O_{r}\left(K_{i}\right)$ char $K_{i} \& G_{v_{i}}$, and so $O_{r}\left(K_{i}\right) \& G_{v_{i}}$. Thus $O_{r}\left(K_{i}\right) \leqslant O_{r}\left(G_{v_{i}}\right)$, whence

$$
o_{r}\left(k_{i}\right) \leqslant \bigcap_{j=1}^{t} k_{j}=1 .
$$

Consequently, for all primes r such that $p \neq 2 . q$, we have

$$
\begin{equation*}
o_{r}\left(k_{i}\right)=1 \tag{3}
\end{equation*}
$$

Since M is a nontrivial normal p-subgroup of G and G has a faithful, irreducible module, V, over $\operatorname{GF}(q)$, a field of characteristic q, it follows that $p \neq q$. We have $1<R_{i} \leqslant O_{p}\left(K_{i}\right)$ and therefore, using (3), we see that $p=2$. Hence $q \neq 2$.

Let $g \in O_{2}\left(K_{i}\right)$. since $O_{2}\left(K_{1}\right)$ char $K_{i} \& G_{v_{i}}$, we have $O_{2}\left(K_{i}\right) \& G_{v_{i}}$, and It follows that $O_{2}\left(X_{1}\right) \leqslant O_{2}\left(G_{v_{1}}\right)$. Therefore $O_{2}\left(X_{1}\right) \leqslant 8$ for all sylow 2 subgroups s of $G_{v_{i}}$. Again let $j \neq i$ and $v_{j} \in V_{j}^{*}$. From (1) we have $\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}}\right|^{=} q^{\alpha}$ or $2 q^{\alpha}$ for some integer $a \geqslant 0$, and so, if I is a Syiow 2-subgroup of $G_{v_{i}} \cap G_{v_{j}}$ and s is a sylow 2-subgroup of $G_{v_{i}}$ containing T, then $|S: T| \leqslant 2$, whence $T \& S$. Therefore $g^{2} \in T \leqslant G_{V_{j}}$. By varying
v_{j} inside V_{j} we see that $g^{2} \in K_{j}$, and by varying f we see that

$$
\begin{equation*}
\mathbf{s}^{2} \in \bigcap_{j=1}^{t} k_{j}=1 . \tag{4}
\end{equation*}
$$

Hence for all $g \in O_{2}\left(K_{i}\right)$ we have $g^{2}=1$, and we deduce that $O_{2}\left(K_{1}\right)$ is an elementary abelian 2-group.

We next show that if $i \in\{1, \ldots, t\}$ and if $v_{i} \in V_{i}^{*}$, then there exists $j \neq 1$ and $v_{j} \in V_{j}^{\#}$ auch that $2 \| G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}} \mid$. Suppose, on the contrary, that for all $j \neq i$ and for all $v_{j} \in V_{j}^{\#}$ we have $2 \nmid\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}}\right|$. Then for all $j \neq i$ and for all $v_{j} \in V_{j}^{\#}$ the subgroup G_{j} contairs a Sylow 2-subgroup of $G_{v_{i}}$. Now $R_{i} \& G_{v_{i}}$ and R_{i} is a 2-group. Hence $R_{i} \leqslant O_{2}\left(G_{v_{i}}\right)$, and so R_{i} is contained in each Sylow 2-subgroup of $G_{v_{i}}$. Therefone R_{i} is a subgroup of $G_{v_{j}}$ for all $v_{j} \in V_{j}^{\#}$ and for all $j \neq i$, giving that $R_{i} \leqslant K_{j}$ for all $j \neq 1$. But $R_{i} \leqslant K_{i}$ and hence $R_{i} \leqslant \bigcap_{j=1}^{t} K_{j}=1$, a contradiction. We conclude that for any $v_{i} \in V_{i}^{\#}$ there exists ${ }_{j}=1 \neq i$ and $v_{j} \in V_{j}^{\#}$ such that $2\left|\left|G_{v_{i}}: \epsilon_{v_{i}} \cap G_{v_{j}}\right|\right.$.

Suppose that $t \geqslant 3$ and choose $i \in\{1, \ldots, t\}$. Pick $v_{i} \in V_{i}^{\#}$ and then, In view of the previous paragraph, we may choose $j \in\{1, \ldots, t\}$ and $v_{j} \in v_{j}^{*}$ such that $j \neq i$ and $2 \| G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}} \mid$. Since $t \geqslant 3$ there exists $k \in\{1, \ldots, t\}$ such that $k \neq 1$ and $k \neq j$. Let $v_{k} \in V_{k}^{\#}$ and write $v=$
$v_{i}+v_{j}+v_{k}$. Using a similar argument to the one used carlier, there is a homomorphism from G to the symotric group on $\{1, j, k$ \} whose kernel is $G_{v_{i}} \cap G_{v_{j}} \cap G_{v_{k}}$. Therefore $\left|G_{v}: G_{v_{i}} \cap G_{v_{j}} \cap G_{v_{k}}\right|=1,2,3$ or 6 and then since $\left|G_{v}\right|_{q^{\prime}}=\left|G_{v_{i}}\right|_{q^{\prime}}$ and $q \neq 2$, it follows that $\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}} \cap G_{v_{k}}\right|=d$ or 2d for some odd integer d. But $\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}} \cap G_{v_{k}}\right|=$
$\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}}\right| \cdot\left|G_{v_{i}} \cap G_{v_{j}}: G_{v_{i}} \cap G_{v_{j}} \cap G_{v_{k}}\right|$ and $2\left|\left|G_{v_{i}}: G_{v_{i}} \cap G_{v_{j}}\right|\right.$. Therefore $2 \dagger\left|G_{v_{i}} \cap G_{v_{j}}: G_{v_{i}} \cap G_{v_{j}} \cap G_{v_{k}}\right|$, and hence $G_{v_{k}}$ costains a sylow 2-aubgroup of $G_{v_{i}} \cap G_{v_{j}}$. since $O_{2}\left(G_{v_{i}} \cap G_{v_{j}}\right)$ is contained in each sylow 2-aubgroup of $G_{v_{i}} \cap G_{v_{j}}$, by varying v_{k} inaide v_{k} we see that

$$
\begin{equation*}
0_{2}\left(G_{v_{i}} \cap G_{v_{j}}\right) \leqslant K_{k} . \tag{5}
\end{equation*}
$$

By varying k subject to the condition $i \neq k \neq j$ we have

$$
O_{2}\left(G_{v_{i}} \cap G_{v_{j}}\right) \leqslant \bigcap_{i \neq k \neq j} K_{k}
$$

Since $O_{2}\left(K_{i} \cap K_{j}\right)$ char $K_{i} \cap K_{j} \& G_{v_{i}} \cap G_{v_{j}}$, it follows that $O_{2}\left(K_{i} \cap K_{j}\right) \triangleleft$ $G_{v_{i}} \cap G_{v_{j}}$ and so $O_{2}\left(K_{i} \cap K_{j}\right) \leqslant O_{2}\left(G_{v_{i}} \cap G_{v_{j}}\right)$. Therefore

$$
o_{2}\left(k_{i} \cap k_{j}\right) \leqslant \bigcap_{k=1}^{t} k_{k}=2
$$

Now $R_{i} \cap R_{j} \leqslant O_{2}\left(K_{i} \cap K_{j}\right)=1$, and in consequence $R_{i} \cong R_{i} R_{j} / R_{j} \leqslant M_{i} / R_{j}$, a cyclic group. Hence R_{i} is cyclic. But $R_{i} \leqslant O_{2}\left(K_{i}\right)$, and $O_{2}\left(K_{i}\right)$ is an elenentary abelian 2-group as proved earlier. Therefore $\left|R_{i}\right|=2$. The group M is a non-cyclic abelian 2-group and M / R_{i} is cyclic. Hence $M \cong C_{2 e} \times C_{2}$ for some integer $e \geqslant 1$.

On the other hand, if $t=2$, we have $R_{1} \cap R_{2}=1$, giving $R_{1} \cong R_{1} R_{2} / R_{2} \leqslant$ M / R_{2}, a cyclic group. It follows that R_{1} is cyclic and, since $R_{1} \leqslant O_{2}\left(K_{1}\right)$, an elementary abelian 2 -group, we must have $\left|R_{1}\right|=2$. Then, as above, $M £ C_{2} e^{\times} C_{2}$ for some integer $e \geqslant 1$.

Thus we have shown that, for $t \geqslant 3$ or for $t=2, M \cong C_{2} \times C_{2}$ for some $e \geqslant 1$. Writing $N=\Omega_{2}(M)$, we have $N \triangleleft G$ and $N \cong C_{2} \times C_{2}$.
Q.E.D.

NOTATION. Let N denote a normal subgroup of G such that $N \equiv C_{2} \times C_{2}$. (The existence of such a subgroup N is guaranteed by Lemma 3.4) By Clifford's Theorem we have

$$
v_{N}=v_{1} \oplus \ldots \oplus v_{t}
$$

where the V_{i} are the homcgeneous componente of V_{N}. To continue fixing our notation, let H_{i} denote the stabiliser in G of V_{i}, R_{1} the kemel of N on V_{i}, and K_{i} the kernel of H_{i} on V_{i} (whence $R_{i}=K_{i} \cap N$) for $1 \leqslant i \leqslant t$. By clifford's Theorem, V_{i} is an irreducible $G F(q) H_{i}$-module. Furthermore
$\left|G: H_{i}\right|=t$ and all the H_{i} are conjugate in G. Clearly $\left|R_{i}\right|=2$ for $1 \leqslant 1 \leqslant t$ and $\bigcap_{i=1}^{t} K_{i}=1$. Let L denote $c_{G}(N)$. Obviously $L \leqslant H_{i}$ for $1 \leqslant i \leqslant t$ and G / L is isomorphic to a subgroup of Aut $(N) \cong S_{3}$.

LEMMA 3.5. If t is defined as above, then $t=2$.

Proof. Clearly $t>1$. There are exactly three non-equivalent, non-trivial irreducible representations of N over the field $G F(q)$, and so $t=2$ or $t=3$. Hence the lemma will be proved if we show that $t=3$ is impossible. So suppose, if possible, that $t=3$. Then R_{1}, R_{2}, R_{3} are the three distinct subgroups of N of order 2.

Let $v_{1} \in V_{1}^{*}$ and suppose that $O_{2}\left(G_{v_{1}}\right) \leqslant K_{j}$ for some $j \neq 1$. Then $R_{1} \leqslant O_{2}\left(G_{v_{1}}\right) \leqslant K_{j}$. But $R_{j} \leqslant K_{j}$ and therefore $\left\langle R_{1}, R_{j}\right\rangle=N \leqslant K_{j}$, clearly an impossibility. Thus, if $j=2$ or $j=3$, then $O_{2}\left(G_{v_{1}}\right) \nless K_{j}$. Exactly as in Lemma $3.4(1)$, for $j \neq 1$ and $v_{j} \in v_{j}^{*}$, we have $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{j}}\right|=q^{a}$ or $2 q^{\alpha}$ for some $a \geqslant 0$. If for all $v_{j} \in v_{j}^{\#}$ we have $2 \dagger\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{j}}\right|$, then it is easily seen that $O_{2}\left(G_{\nabla_{1}}\right) \leqslant K_{j}$, a contradiction. Therefore there exist $v_{2} \in V_{2}^{*}, v_{3} \in V_{3}^{*}$ such that $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{2}}\right|=2 q^{B}$ and $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{3}}\right|$ $=2 \boldsymbol{q}$ for some $B, Y \geqslant 0$.

Exactly as in Lemma $3.4(5)$ we have $O_{2}\left(G_{v_{1}} \cap G_{v_{2}}\right) \leqslant K_{3}$ and $O_{2}\left(G_{v_{1}} \cap G_{v_{3}}\right) \leqslant K_{2}$. Write $M=O_{2}\left(G_{v_{1}}\right)$. Then $M \cap G_{v_{2}} \leqslant O_{2}\left(G_{v_{1}} \cap G_{v_{2}}\right) \leqslant K_{3}$. similarly $M \cap G_{v_{3}} \leqslant K_{2}$. since $M \cap G_{v_{2}} \leqslant K_{3} \leqslant G_{v_{3}}$, it followe that $M \cap G_{v_{2}} \cap G_{v_{3}}=M \cap G_{v_{2}}$ and similarly, $M \cap G_{v_{2}} \cap G_{v_{3}}=M \cap G_{v_{3}} \leqslant K_{2}$. Therefore

$$
\begin{equation*}
M \cap G_{v_{3}}=M \cap G_{v_{2}} \leqslant K_{2} \cap K_{3} \tag{6}
\end{equation*}
$$

Write $K=O_{2}\left(K_{1}\right)=M \cap K_{1}$ and consider $K \cap G_{V_{2}}$. Clearly $K \cap G_{v_{2}} \in M \cap G_{v_{2}}$, whereupon $K \cap G_{v_{2}} \in K_{2} \cap K_{3}$. But $K \leqslant K_{1}$, and hence $K \cap G_{v_{2}} \leqslant K_{1} \cap K_{2} \cap X_{3}=1$. Let T be a Sylow 2-zubgroup of $G_{v_{1}} \cap G_{v_{2}}$ and lot s be a sylow 2-subgroup of $G_{v_{1}}$ auch that $S \geqslant T$. since $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{2}}\right|$ $=2 q^{B}$, we have $|s: T|=2$, whence T \& . Also $K<M=O_{2}\left(G_{v_{1}}\right)$ and it
follows that $K \leqslant S$. Now $K \cap T \leqslant K \cap G_{v_{2}}=1$, giving

$$
2=|\mathrm{S} / \mathrm{T}| \geqslant|\mathrm{KT} / \mathrm{T}|=|\mathrm{K} / \mathrm{K} \cap \mathrm{~T}|=|\mathrm{K}| .
$$

Therefore, since $R_{1} \leqslant K$ and $\left|R_{1}\right|=2$, we have $K=R_{1}$. For any prime r with $r \neq 2$, q, we have $O_{r}\left(K_{1}\right)=1$ by Lemma 3.4 (1). Consider $O_{Q}\left(K_{1}\right)$. Since $C_{G}(N)=L \leqslant H_{1} \leqslant G$ and $|G / L|\left|\left|S_{3}\right|=6\right.$, and using the fact the $| G: H_{1} \mid=t=3$, we see that $\left|H_{1}: L\right| \leqslant 2$. Now $q \geqslant 2$, and so $O_{q}\left(K_{1}\right) \leqslant L$. Clearly $L \leqslant N_{G}\left(K_{1}\right)$ and therefore, since $O_{q}\left(K_{1}\right)$ char K_{1}, we must have $O_{q}\left(K_{1}\right) \& L$. Hence $O_{q}\left(K_{1}\right) \leqslant O_{q}(L)$. But $O_{q}(L)$ char $L \& G$, giving $O_{q}(L) \& G$. We conclude that $O_{q}\left(K_{1}\right) \leqslant O_{q}(L) \leqslant O_{q}(G)=1$, and it follows that $F\left(K_{1}\right)=O_{2}\left(K_{1}\right)=R_{1}$. Since G is soluble, so is K_{1}, and hence $C_{K_{1}}\left(F\left(K_{1}\right)\right)=F\left(K_{1}\right)$. Therefore $K_{1}=R_{1} \cong C_{2}$. Similarly $K_{2}=R_{2}$ and $K_{3}=R_{3}$.

From (6)

$$
M \cap G_{v_{2}} \leqslant K_{2} \cap K_{3}=R_{2} \cap R_{3}=1
$$

With T and S as above, we have $M \leqslant S$, and, since $M \cap T \leqslant M \cap G_{v_{2}}=1$, it follows that

$$
2=|S / T| \geqslant|M T / T|=|M / M \cap T|=|M| .
$$

Hence

$$
\begin{equation*}
M=O_{2}\left(G_{v_{1}}\right)=R_{1} \tag{7}
\end{equation*}
$$

for all $\nabla_{1} \in V_{1}^{\#}$. Similarly $O_{2}\left(G_{v_{2}}\right)=R_{2}$ for all $v_{2} \in V_{2}^{\#}$ and $O_{2}\left(G_{v_{3}}\right)=R_{3}$ for all $V_{3} \in V_{3}$.

Write $L_{2}=O_{2}(L)$. Then, clearly, $L_{2} \triangle G$ and $O_{2}\left(L / R_{i}\right)=L_{2} / R_{i}$ for $1=1,2$, 3. If $v_{i} \in V_{i}^{*}$, then $G_{v_{1}} \cap L_{2} \& G_{v_{i}}$ and hance $G_{v_{1}} \cap L_{2} \leqslant \mathcal{O}_{2}\left(G_{v_{i}}\right)$ ar_{1} for $1=1,2,3$. It follows that v_{i} is a faithful module for the 2-group L_{2} / R_{i}, and L_{2} / R_{i} acte semi-regularly on $V_{1}^{\#}$ for $1=1,2,3$. The structure of a group that acts semi-regularly as a group of automorphiame
is well-known. In particular, a 2-group that acts semi-regularly as a group of autoworphisms is either cyclic or generalised quaternion. Hence L_{2} is a 2-group containing three distinct normal subgroups, R_{1}, R_{2}, R_{3}, each of order 2 such that L_{2} / R_{i} is cyclic or generalised quaternion for $i=1,2$, 3. Therefore $L_{2} \equiv C_{2} \times C_{2}$ by Lemma 3.3, giving $L_{2}=N$. If r is a prime such that $r \neq 2, q$, and if $v_{1} \in V_{1}^{\#}$, then $O_{r}\left(G_{v_{1}}\right) \leqslant K_{2}$ by Lemma 3.4(2). But $\left|K_{2}\right|=2$, and so $O_{r}\left(G_{v_{1}}\right)=1$ for all $v_{1} \in V_{1}^{\#}$. If L_{r} denotes $O_{r}(L)$, we have $G_{v_{1}} \cap L_{r} \triangleleft G_{v_{1}}$, and it follows that $G_{v_{1}} \cap L_{r} \leqslant O_{r}\left(G_{v_{1}}\right)=1$ for all $v_{1} \in V_{1}^{*}$ * Hence L_{r} acts semi-regularly on $V_{1}^{* *}$. Since, for any prime $r \neq 2$, an r-group that acts semi-regularly as a group of automorphisms is cyclic, we conclude that L_{r} is cyclic for all primes r such that $r \neq 2$, q. Clearly $O_{Q}(L) \leqslant O_{Q}(G)=1$, and hence $E(L)=N \times A$ where A is a cyclic group of odd order.

Now $N \leqslant F(L)$, and so $C_{G}(F(L)) \leqslant C_{G}(N)=L$. Therefore $C_{G}(F(L))$ $=C_{L}(F(L))=F(L)$. It follows that $H_{2} / F(L)$ is isomorphic to a subgroup of $\mathrm{H}_{1} / \mathrm{C}_{\mathrm{H}_{1}}(\mathrm{~N}) \times \mathrm{H}_{1} / \mathrm{C}_{\mathrm{H}_{1}}(\mathrm{~A})$, which is clearly abelian because $\mathrm{C}_{\mathrm{H}_{1}}(\mathrm{~N})=\mathrm{L}$, $\left|H_{1} / L\right| \leqslant 2$, and because A is cyclic. Hence $H_{1} / F(L)$ is abelian. Let $v_{1} \in V_{1}^{\#}$. Since $G_{v_{1}} \cap F(L)=R_{1}$, we have $G_{v_{1}} / R_{1} \xlongequal{ } G_{v_{1}} F(L) / F(L)<H_{1} / F(L)$, an abelian group. Thus $G_{v_{1}}$ is nilpotent, and hence $4 \dagger\left|G_{v_{1}}\right|$ by (7). Therefore, by q^{\prime}-halftransitivity, $\psi\left|\left|G_{v}\right|\right.$ for all $v \in V^{\text {" }}$.

We next show that N is a Sylow 2-subgroup of L. Let Q be a Sylow 2-subgroup of L, and let $v_{1} \in V_{1}^{*}$. As we have proved above, $U\left|\left|G_{v_{1}}\right|\right.$, whence $4 \| Q_{v_{1}} \mid$, and therefore $Q_{v_{1}}=R_{1}$. It follows that Q / R_{1} is a 2 -group that acts faithfully on V_{1} and semi-regularly on V_{1}, and we deduce that Q / R_{1} is either cyclic or generalised quaternion. Similarly Q / R_{2} and Q / R_{3} are cyclic or generalised quaternion. Thus, by Lemma 3.3, we have $Q \cong C_{2} \times C_{2}$ and so $Q=N$.

We have already shown that $\left|H_{1} / L\right| \leqslant 2$. Suppose that $\left|H_{1} / L\right|=2$ and let P be a Sylow 2-subgroup of H_{3}. Then $|P|=8$ and $C_{2} \times C_{2} \cong M \leqslant P$.

Now P is non-abelian (since otherwise $P \leqslant C_{G}(N)=L$, contradicting the fact that N is a Sylow 2-subgroup of L), and therefore P is isomorphic to the tihecral group of order 8. The kernel of H_{1} on V_{1} is exactly R_{1}, and so V_{1} is a faithful module for $P / R_{1} \cong C_{2} \times C_{2}$. Then it is obvious that there exists $v_{1} \in V_{1}^{*}$ such that $4 \| p_{v_{1}} \mid$, whence $4 \| G_{v_{1}} \mid$, which, as we have seer, is impossible. Therefore $\left|H_{1} / L\right| \neq 2$. The only remaining possibility is $\left|H_{1} / L\right|=1$, so suppose this is the case. We have $H_{1}=H_{2}=H_{3}=L \triangleleft G$. If $v_{1} \in V_{1}^{\#}, v_{2} \in V_{2}^{\#}$, then, clearly, $G_{v_{1}+v_{2}}=G_{v_{1}} \cap G_{v_{2}}$. By q^{\prime}-halftransitivity $\left|G_{v_{1}}\right|_{q^{\prime}}=\left|G_{v_{1}+v_{2}}\right|_{q^{\prime}}$, and hence $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{2}}\right|=q^{\alpha}$ for some $\alpha \geqslant 0$. But, by varying v_{2} inside V_{2}, we see that $G_{v_{2}}$ contains a Sylow 2-subgroup of $G_{v_{1}}$ for all $v_{2} \in V_{2}^{\#}$. Therefore $R_{1}=O_{2}\left(G_{v_{1}}\right) \leqslant K_{2}=R_{2}$, a contradiction. Hence $\left|\mathrm{H}_{1} / L\right| \neq 1$, and our assumption that $t=3$ must be false. Q.E.D.

NOTATION. In view of Lemma 3.5 we have $\left|G: H_{1}\right|=\left|G: H_{2}\right|=2$. Hence $H_{i} \triangleleft G$ for $i=1,2$. But H_{1} is conjugate to H_{2} in G and therefore $H_{1}=H_{2}=H$, say.

Before proceeding with our analysis of the structure of G, we state, without preof and combined into a aingle lemma, two results concerning soluble transitive linear groups. The first result, Lemma 3.6(i), is Hilfssatz 3 of [7] and the second, Lemma 3.6 (ii), is Hilfssatz 4 of [7]. LEMMA 3.6 (Hupport [7]). Let A be a group and let p be a prime. Assume that W is a $G F(p) A$-module, faithful for A, and A acts transitively on $W^{\prime \prime}$. Then
(1) A is primitive as a linear group on W;
(1i) if A contains a normal subgroup, Q, such that Q is isomorphic to the quaternion group of order 8 , then W_{Q} is irreducible.

LEMUA 3.7. For $1=1,2$, we have $K_{1}=R_{i}$ and H / K_{i} aote transitively on $V_{i}^{\text {\# }}$.

Proof. Let $v_{2} \in V_{2}^{*}$ and suppose that $R_{1} \leqslant G_{v_{2}}$. Now $\left|R_{1}\right|=2$ and $R_{1} \cap K_{2}=1$ (since $K_{1} \cap K_{2}=1$), and therefore $\left|R_{1} K_{2} / K_{2}\right|=2$. It follows that $R_{1} K_{2} / K_{2}$ is central in H / K_{2}. Since V_{2} is an irreducible $G F(q) H / K_{2}$-module, faithful for $\mathrm{H} / \mathrm{K}_{2}$, the non-trivial element of $\mathrm{R}_{1} \mathrm{~K}_{2} / \mathrm{K}_{2}$ acts like scalar multiplication by -1 on V_{2} and thus acts fixed-point-freely on $V_{2}^{\#}$ But $G_{V_{2}} \geqslant K_{2}$ and $G_{V_{2}} \geqslant R_{1}$. Hence $R_{1} K_{2} / K_{2}$ is contained in the stabiliser in H / K_{2} of V_{2}, a contradiction. Therefore we have shown that $R_{1} \cap G_{v_{2}}=1$ for all $v_{2} \in V_{2}^{*}$, and, using the same argumen with the subscripts 1 and 2 interchanged, we jeduce that

$$
\begin{equation*}
R_{i} \cap G_{\nabla_{j}}=1 \tag{8}
\end{equation*}
$$

for $i, j \in\{1,2\}$ such that $i \neq j$ and for all $v_{j} \in V_{j}^{\#}$.
If $v_{1} \in V_{1}^{*}, v_{2} \in V_{2}^{*}$, then, by Lemma $3.4(1)$, we have $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{2}}\right|$ $=q^{\alpha}$ or $2 q^{\alpha}$ for some $\alpha \geqslant 0$. However, if $2 \dagger \mid G_{v_{2}}: G_{v_{1}} \cap G_{v_{2}}$ l, then $G_{\mathbf{v}_{2}}$ contains a Sylow 2-subgroup of $G_{v_{1}}$, and hence contains $O_{2}\left(G_{v_{1}}\right)$. But then $R_{1} \leqslant O_{2}\left(G_{v_{1}}\right) \leqslant G_{v_{2}}$, contradicting (8), and we conclude that $\left|G_{v_{1}}: G_{v_{1}} \cap G_{v_{2}}\right|=2 q^{\alpha}$. By q^{\prime}-halftransitivity, $\left|G_{v_{1}}\right|_{q^{\prime}}=\left|G_{v_{1}+v_{2}}\right|_{q^{\prime}}$, and tence $2 \| G_{v_{1}+v_{2}}: G_{v_{1}} \cap G_{v_{2}} \mid$. As before, the existence of a homomorphism from $G_{v_{1}+v_{2}}$ to the symmetric group on $\{1,2\}$ with kernel $G_{v_{1}} \cap G_{v_{2}}$ implies that $\left|G_{v_{1}+v_{2}}: G_{v_{1}} \cap G_{v_{2}}\right| \leqslant 2$, and therefore we have shown that

$$
\begin{equation*}
\left|G_{v_{1}+v_{2}}: G_{v_{1}} \cap G_{v_{2}}\right|=2 \tag{9}
\end{equation*}
$$

for all $v_{2} \in V_{1}^{*}{ }^{*} V_{2} \in V_{2}^{*}$
Let $v_{1} \in V_{1}^{*}, v_{2} \in V_{2}^{*}$ and let $g \in G \mathcal{H}$. Wo have $H_{v_{1}+v_{2}}=G_{v_{1}+v_{2}} \quad H$ $=G_{v_{1}} \cap G_{v_{2}}$, and hence, from (9), there existe $x \in G_{v_{1}+v_{2}}$ auch that $x \notin H$, Clearly $x=$ hg for some $h \in H$, and, since $V_{1} g=V_{2}, V_{2}=V_{1}$, we must have $v_{1}(h g)=v_{1} x=v_{2}$ and $v_{2}(h g)=v_{2} x=v_{1}$. Let $v_{2} g^{-1}=v \in V_{1}^{\prime \prime}$, and then $v_{g}=v_{2}=v_{1}(h g)=\left(v_{1} h\right) g_{0}$ giving $v_{1} h=v_{\text {. By keeping }} v_{2}$ fixed and varying
v_{1} inside $v_{1}^{\#}$, we see that for all $v_{1} \in V_{1}^{\#}$ there exists $h \in H$ such that $v_{1} h=v$. Thus H acts transitively on v_{1}^{*}, and so, since $K_{1}=\operatorname{ker}\left(H\right.$ on $\left.v_{1}\right)$, the group H / K_{1} acts transitively on $V_{1}^{\#}$. Similarly H / K_{2} acts transitively on $V_{2}^{\text {\# }}$

By the renark immediately following (4) in Lemma 3.4, the group $O_{2}\left(K_{1}\right)$ is an elementary abelian 2-group. Also, since $K_{1} \cap K_{2}=2$, we have $\mathrm{O}_{2}\left(\mathrm{~K}_{1}\right) \cong \mathrm{O}_{2}\left(\mathrm{~K}_{1}\right) \mathrm{K}_{2} / \mathrm{K}_{2} \triangleleft \mathrm{H} / \mathrm{K}_{2}$. Now V_{2} is a $\mathrm{GF}(\mathrm{q}) \mathrm{H} / \mathrm{K}_{2}$-module, faithful for H / K_{2}, and H / K_{2} acts transitively on V_{2}^{*}. Therefore, by Lemma 3.6(i), $\mathrm{H} / \mathrm{K}_{2}$ is primitive as a linear group. In particular, each abeliar normal subgroup of H / K_{2} is cyclic and hence $\left|O_{2}\left(K_{1}\right)\right| \leqslant 2$. Since $R_{1} \leqslant O_{2}\left(K_{1}\right)$, it follows that $R_{1}=O_{2}\left(K_{1}\right)$. From Lemma 3.4(3) we have $O_{r}\left(K_{1}\right)=1$ for all primes r such that $r \neq 2, q$. Clearly $O_{q}\left(K_{1}\right)$ char $K_{1} \triangleleft H$, and hence $O_{q}\left(K_{1}\right) \leqslant O_{Q}(H)$. Since $H \varangle G$, it follows that $O_{Q}(H) \leqslant O_{q}(G)=1$, and we deduce that $O_{q}\left(K_{1}\right)=1$. Therefore $F\left(K_{1}\right)=O_{2}\left(K_{1}\right)=R_{1}$. But $\left|R_{1}\right|=2$, and so, since $C_{K_{1}}\left(F\left(K_{1}\right)\right)=F\left(K_{1}\right)$, we have $K_{1}=F\left(K_{1}\right)=R_{1}$. similarly $K_{2}=R_{2}$. Q.E.D.

Before proceeding to state and prove the main theorem of this chapter, we describe, and fix a symbol to represent a particular coluble group of order 96.

DEFINITION 3.8. Let $A=G L(2,3)$. Then, writing $Z=2(A)$, we have $|z|=2$, and there exist subgroups B, Y of A such that $B=\operatorname{SL}(2,3), Y \not C_{2}$ and $A=B Y$. Let X be any group of order 2. We may define a group, which we denote by $A_{\text {, }}$ as followe:

$$
\Delta=\langle A, X:[B, X]=1,[Y, X]=z\rangle
$$

If we write $E=B \times X$, then $E\left(\operatorname{SL}(2,3) \times C_{2}\right.$ and $A=E Y$ where Y acts non-trivially on both $O_{2}(E) / Z(E)$ and $Z(\Sigma)$. Clearly Δ is soluble and $|\Delta|=96$.

THEOREM 3.9. Let G be a soluble group: q a prime and V az irredtcible GF(q)G-module, faithful for G. Assume that G acts q^{\prime}-halfiransitively on V^{*} and that G contains a non-cyclic abelian normal subgroup. oten $q \neq 2$, the dimension of V over $G F(q)$ is $2 n$ for some integer n, and either $G \equiv \mathscr{C}_{0}^{T}\left(q^{n}: q^{m}\right)$ for some m such that $q^{m} \mid n$, or $n=2, q=3$ atd G satisfies one of the following:
(i) $G \cong Q_{8} Y D_{8}$;
(ii) $G \propto \operatorname{SL}(2,3) Y D_{8}$;
(iii) $G \cong \Delta$;
(iv) $G \cong G L(2,3) Y D_{8}$.

Proof. By Lemmas 3.4, 3.5, and 3.7 we have $q \neq 2$ and there exists $N \triangleleft G$ such that $N ⿷ C_{2} \times C_{2}$ and

$$
v_{N}=v_{1} \oplus v_{2}
$$

where v_{i} is a homogeneous component of v_{N} for $i=1$, 2. Therefore, writing $n=\operatorname{dim}_{G F}(q) V_{2}$, we have $\operatorname{dim}_{G F(q)} V=2 n$ as required. If y is the stabiliser in G of V_{1} then H is also the stabiliser in G of V_{2} and, by the sbovementioned lemanas, if K_{i} denotes $\operatorname{ker}\left(H\right.$ on V_{i}) and R_{i} denotes ker($\binom{$ on }{$V_{i}}$, then $K_{i}=R_{i} \cong C_{2}$ for $i=1$, 2. Moreovor H / K_{i} acts transitively on V_{i}^{*} for $1=1,2$.

Assume that H / K_{1} acte regulerly on V_{1}^{*}. Then $\left|H / K_{1}\right|=\left|V_{1}^{*}\right|=q^{n}-1$. since $\left|K_{1}\right|=|G: H|=2$, it followe that $q||G|$. Therofore G acte halftransitively on V^{*} and we can apply Theorem 1.16. If $v \in V_{1}^{*}$ then $G_{v}=K_{1}>1$, and hence G does not act semi-regulariy on V ". Aiso G is imprimitive as inncar group on V aince $C_{2} \times C_{2} \equiv N \subset G$ and therafore by Theorem 1.16 we bave either $G \equiv \mathscr{T}_{0}\left(q^{n}\right)$, or $n=2, q=3$, and $G: Q_{8} Y D_{8}$, or $n=3, q=2$, and G is isomorphic to the dihedrel group of order 28. But wo have shown that $Q \neq 2$, and hance, if H / K_{1} acts regulaniy on V_{1}^{*}. then aither $G=\mathscr{C}_{0}\left(q^{n}\right)=\mathscr{C}_{0}\left(q^{n} ; 1\right)$, or $n=2, q=3$, and $G=q_{8} Y D_{8}$
(case (i) in the statement of the theorem).
Therefore we may assume that H / K_{1} acts transitively but not regularly on $V_{1}^{\#}$. Hence, by Theorem 1.16, one of the following two cases must hold.

CASE 1. We may identify V_{1} with the additive group of $\operatorname{GF}\left(q^{n}\right)$ in such a way that $H / K_{1} \leqslant \mathscr{J}\left(q^{n}\right)$.

CASE 2. One of the cases $\left(a_{1}\right),\left(a_{2}\right),\left(b_{1}\right),\left(b_{2}\right),\left(c_{2}\right),\left(d_{2}\right)$, $\left(f_{2}\right),\left(f_{3}\right),\left(f_{4}\right)$, of Theorem 1.16 holds for the group H / K_{1} and the module V_{1}.

We show that case 1 leads to the conclusion that $G \equiv \mathscr{F}_{0}\left(q^{n}: q^{\text {m }}\right)$ for some integer m such that $q^{m} \mid n$, and that Case 2 leads to the conclusion that $n=2, q=3$, and G satisfies (ii), (iii), or (iv) in the statement of the theorem.

CASE 1. With suitable identification $H / K_{1} \leqslant \mathscr{J}\left(q^{n}\right)$.
Let $v_{1} \in V_{1}^{*}$. Then $H_{v_{1}} / K_{\perp}$ is cyclic, and therefore $H_{v_{1}}$ is central-bycyclic, whereupon $H_{v_{1}}$ is abelian. Now $H_{v_{1}}=G_{v_{1}}$ and, by Lemma 3.4(2), $O_{r}\left(G_{\nabla_{1}}\right) \leqslant K_{2} \equiv C_{2}$ for all primes r such that $r \neq 2, q$, whence $O_{r}\left(G_{\nabla_{1}}\right)=1$ for all such primes r. Since $G_{v_{1}}$ is abelian we conclude that $r+\left|G_{v_{1}}\right|$ for all primes r such that $r \neq 2, q_{1}$, and since H / K_{1} acts transitively on $V_{1}^{\# \#}$ there exist integers m_{3}, β, such that $\left|G_{v_{1}}\right|=2^{B} q^{m}$ for all $v_{1} \in V_{1}^{*}$. By q^{\prime}-halftranaitivity, if $\nabla \in V^{*}$ then $\left|G_{v}\right|^{1}=2^{8} Q^{m(v)}$ for some integer $m(v)$ depending on V. Let $v_{2} \in V_{2}^{\#}$ and let $g \in G \backslash H$. Since $V_{1} g=V_{2}$ it follows that $G_{v_{2}}$ is conjugate in G to $G v_{1}$ for some $v_{1} \in V_{1}$, and hence $G_{v_{2}}$ is an abelian group of order $2^{B} q^{m}$. Also, since $K_{1}^{g}=X_{2}$, the group $G_{v_{2}} / K_{2}$ is isomorphic to $G_{v_{1}} / K_{1}$, a cyclic group.
since $\mathscr{V}\left(q^{n}\right)$ is metacyclic we have H / K_{1} is metaoyclic. Clearly $O_{Q}\left(H / K_{1}\right)$ is trivial, and it follows that H / K_{2} contains a normal Hall
$q^{\prime-s u b g r o u p, ~} R / K_{1}$ say. Obviously R is a normal Hall $q^{\prime-s u z a r o: p ~ o f ~} H$. As shown above, if $v_{1} \in V_{1}^{*}$ then $\left|H_{v_{1}}\right|=2_{q}^{\beta} q^{m}$, and hence, by the transitivity of H on $V_{1}^{\#}$, we have $|H|=2^{\beta} q^{m}\left(q^{n}-1\right)$. Thus $|R|=2^{B}\left(q^{n}-1\right)$. Let $v_{1} \in V_{1}^{\#}$. Clearly $\left|H_{v_{1}} \cap R\right|=\left|R_{v_{1}}\right|=2^{B}$ and therefore $\left|R: R_{v_{1}}\right|=\varepsilon^{n}-1$, whereupon R acts transitively on V_{1}^{*}. Hence R / K_{1} acts transitively $c=V_{1}^{*}$.

We claim that $\beta=1$. We have $\beta \geqslant 2$ and $s o$, in orcer to obtain a contradiction, suppose that $\beta>1$. Let I denote the set of ron-central involutions of R / K_{1}. We show that $|I| \geqslant q^{n / 2}+1$, using a very slightly adapted version of the proof of [12] Lemma 1.2. Since $v_{1} \in V_{1}^{\#}$ inplies that $\left|R_{v_{1}} / K_{1}\right|=2^{\beta-1}$, and since $\beta>1$ by assumption, we have

$$
v_{1}^{\#}=\bigcup_{x \in I}\left(c_{v_{1}}(x)\right)^{\#} .
$$

Also, if $v_{1} \in V_{1}^{\#}$, then $R_{v_{1}} / K_{1} \leqslant G_{v_{1}} / K_{1}$, a cyclic group. Herse $R_{\nabla_{1}} / K_{1}$ is cyclic and, in particular, $R_{v_{1}} / K_{1}$ contains a unique element of I. Therefore the above union is disjoint. Let $k=\max \left(\operatorname{dim}\left(C_{V_{1}}(x)\right)\right)$ as x varies over I, and suppose first that $k \leqslant n / 2$. Then

$$
q^{n}-1=\left|v_{1}^{\#}\right| \leqslant|I|\left(q^{n / 2}-1\right)
$$

giving $q^{n / 2}+1$ < $|I|$ as required. Now suppose $k>n / 2$ and let $k=\operatorname{dim} C_{v_{1}}\left(x_{0}\right)$ for some $x_{0} \in I$. If $x \neq x_{0}$ then $G_{1}(x) \cap G_{V_{1}}\left(x_{0}\right)=\langle 0\rangle$ and so dinc $v_{i}(x)$ $\leqslant \mathrm{n}-\mathrm{k}$. Thus

$$
q^{n}-1 \leqslant q^{k}-1+(|I|-1)\left(q^{n-k}-1\right)
$$

and, since $n / 2<k<n$, we obtain $q^{n / 2}<q^{k} \leqslant|I|-1$ as required.
Let $x \in I$ and $f i x v_{2} \in V_{2}^{\#}$. Since x is a non-central iavolution in N / K_{1}, we may choose $v_{1} \in V_{1}^{*}$ auch that $x \in R_{v_{1}} / K_{1}$. The group $G_{v_{2}}$ is abelian and hence containa a unique Sylow 2 -aubgroup, s aay. Clearly S / K_{2} is cyolic of order 2^{B-1}. since $B>1$ we have $4\left|\left|G_{v}\right|\right.$ for all $V \in V^{*}$ and, by Lemme $3.7(8)$, we have $\left|G_{v_{1}}+v_{2}: G_{v_{1}} \cap G_{v_{2}}\right|=2$. Therefore $2 \| G_{v_{1}} \cap G_{v_{2}} \mid$.

If \leq is cyclic, then K_{2} is the unique subgroup of S of order 2, whereupon K_{2} is the unige subgroup of $G_{v_{2}}$ of order 2. But then $2\left|\left|G_{v_{1}} \cap G_{v_{2}}\right|\right.$ imp?ies that $K_{2} \leqslant G_{v_{1}}$, contradicting Lemma $3.6(8)$ since $K_{2}=R_{2}$. Hence S is not cycilic and we conclude that $S \cong C_{2 \beta-1} \times C_{2}$. Let T denote $\Omega_{1}(S)$. Th.EX $T \cong C_{2} \times C_{2}$ and T contains all involutions of $G_{V_{2}}$. Therefore $K_{2} \leqslant T$. since $2\left|\left|G_{v_{1}} \cap G_{v_{2}}\right|\right.$ we can choose $h \in G_{v_{1}} \cap G_{v_{2}}$ such that $| h \mid=2$. Obviously $h \in T$. Aiso $h \in R$ and it follows that $h \in R_{v_{l}}$. From Lemma 3.7(8) we have $K_{1} \cap G_{v_{2}}=1$, ard therefore $h \ell K_{1}$. Hence $h K_{1}$ is an element of order 2 in $R_{v_{1}} / K_{1}$ and so, since x is also an involution in $R_{v_{1}} / K_{1}$, a cyclic group, we fust have $h K_{1}=x$. Again by Lemma $3.7(8)$ we have $K_{2} \cap G_{v_{1}}=1$, whence $b \notin K_{2}$. Therefore $h \in T K_{2}$. It follows that there are at most 2 possibilities for h and hence there are at most 2 possibilities for $h k_{1}=x$. But then $q^{n / 2}+1 \leqslant|I| \leqslant 2$, which is clearly impossible. Therefore our assumption that $\beta>1$ is false and we conclude that $\beta=1$.

As a consequence we see that $|H|=2 q^{m}\left(q^{n}-1\right),|G|=4 q^{m}\left(q^{n}-1\right)$, and if $v \in V^{*}$, then $\left|G_{v}\right|=2 q^{m(v)}$ for some integer $m(v)$ depending on v. Since $p / K_{1} \leqslant \mathscr{J}\left(q^{n}\right)$ and $\left|\mathscr{V}\left(q^{n}\right)\right|=n\left(q^{n}-1\right)$, we must have $q^{m} \mid n$. Clearly $|R|=2\left(q^{n}-1\right)$ and so R / K_{1} acts regularly on $V_{1}^{\#}$. Let p be an odd prime. OEvSously $O_{f}(H)=O_{p}(R) \cong O_{p}(R) K_{1} / K_{1}=O_{p}\left(R / K_{1}\right)$. By the structure of srocips that act semi-regularly as groups of automorphisms we have $O_{p}\left(R / K_{1}\right)$ is cyclic. Hence $O_{p}(H)$ is cyclic for all odd primes p. Write $Q=O_{2}(H)$. Then, clearly, $Q \& G$ and $Q=O_{2}(R)$. Since Q / K_{1} acts semi-regularly on V_{1}^{*}. it follows that Q / K_{1} is either cyclic or generalised quaternion.

Suppose that Q / K_{1} is isomorphic to the quaternion group of order 8. Then, using Lerina $3.6(i 1)$, since R / K_{1} acts transitively on V_{1}^{*} and $Q / K_{1} \& R / K_{1}$, we deduce that V_{1} is an irreducible Q / K_{1}-module. But, as is well known, G_{g} hes, up to equivalerce, anique faithful irreducible representation over $\operatorname{GF}(q)$ for any odd prime q, and this rapresentation bas degree 2. Thus $2=\operatorname{dim} V_{2}=n$. But then $q^{m} \mid n$ implies $q^{m}=2$, whence $\left|H / K_{1}\right|=q^{n}-1$
contradicting our assumption that H / K_{1} does not act regularly or: V_{1}. Therefore Q / K_{1} is not isomorphic to the quaternion group oforder 9 , and hence Q / K_{1} is either cyclic or generalised quaternion of order at least 16. Clearly N / K_{1} is the unique subgroup of Q / K_{1} of order 2 and $N \leqslant Z(H)$. Therefore, writing $\bar{G}=G / N_{,} \bar{H}=H / N$, etc., we have $F(\bar{H})=F(H) / N$ and \bar{Q} is either cyclic (if Q / K_{1} is) or a dihedral group. We shall show that, in either case, G contains a normal hall q'-subgroup.

Suppose that \bar{Q} is a dihedral group. Then \bar{Q} contains a ckaracteristic cyclic subgroup of index $2, \bar{Q}_{0}$ say. Write $A=A u t(\bar{Q})$. We have $C_{A}\left(\bar{Q}_{0}\right) \& A$ and $A / C_{A}\left(\bar{Q}_{0}\right)$ is isomorphic to a subgroup of Aut $\left(\bar{Q}_{0}\right)$, a 2-group. Now $C_{A}\left(\bar{Q}_{0}\right)$ is a group of automorphisms of the 2 -group \bar{Q} and $C_{A}\left(\bar{Q}_{0}\right)$ stabilises the normal series $1 \leqslant \bar{Q}_{0} \leqslant \bar{Q}$. Hence $C_{A}\left(\bar{Q}_{0}\right)$ is a 2 -group and we ceduce that A is a 2 -group. As shown above, $O_{p}(H)$ is cyclic for all odd primes p. Also $F(\bar{H})=F(H) / N$ and therefore, writing $\bar{Y}=O_{2}(F(\bar{H}))$, we see that \bar{Y} is a cyclic group of odd order and $\bar{F}(\bar{H})=\bar{Q} \times \bar{Y}$. Let \bar{X} denote $\bar{Q}_{0} \times \bar{Y}$. Then, since \bar{Q}_{0} char \bar{Q}, we have \bar{X} char $F(\bar{H})$ char \bar{H}, whence \bar{X} char \bar{H}. In addition $|F(\bar{H}): \bar{X}|=2$ and \bar{X} is cyclic. Clearly $\bar{Y} \varangle \bar{H}$ and hence $O_{\bar{H}}(\bar{Y}) \& \bar{H}$. Since $O_{\bar{H}}(F(\bar{H})) \leqslant F(\bar{H})$, it follows that $O_{\bar{H}}(\bar{Y}) / Z(F(\bar{H}))$ is isomorphic to a subgroup of $A u t(\bar{Q})=A$, a 2 -group. Therefore $C_{\bar{H}}(\bar{Y})$ is a normal, nilpotent subgroup of \bar{H}, so $C_{\bar{H}}(\bar{Y}) \leqslant F(\bar{H})$ and then, clearly $O_{\bar{p}}(\bar{x})=\bar{x}$.

Now suppose that $\bar{Q}=O_{2}(\bar{H})$ is cyclic. As in the previous paragraph, $0_{2}(F(\bar{H}))$ is cyclic, and therefore $F(\bar{H})$ is cyclic. In this case write $\bar{X}=F(\bar{H})$.

Thus, whether \bar{Q} is cyclic or dihedral, the group H contains a characteristic cyclic subgroup, \bar{X}, such that $C_{H}(\bar{X})=\bar{X}$. Claarly $\bar{X} \& \bar{\sigma}$ and hence, witing $\bar{C}=o_{\bar{G}}(\bar{X})$, we have $\bar{C} \& \bar{G}$. since $\bar{C} \cap \bar{H}=c_{\bar{H}}(\bar{X})=\bar{X}$. we ese that

$$
|C / X|=|C H / H| \leqslant|G / H|=2 .
$$

Obviously $q \dagger|\bar{x}|$ and therefore $q||\bar{C}|$. The group \bar{G} / \bar{C} is isczorpinic to a subgroup of Aut (\bar{X}), an abelian group since \bar{X} is cyclic. Heace \bar{G} / \bar{C} is abelian and we deduce that \bar{G} contains a normal Hall q '-subgrow. Therefore, since $\bar{G}=G / N$ and $|N|=4$, the group G contains a normal fall ε_{2}^{\prime}-subgroup, M say.

If $v \in V^{*}$, then $\left|G_{v}\right|=2 q^{m(v)}$. Hence $\left|M_{v}\right|=\left|G_{v} \cap r\right|=2$ and it follows that M acts half-tmansitively on V^{*} with each stabiliser of order 2 . Now $C_{2} \times C_{2} \cong \subset M$, and therefore M is imprimitive. Hence Ey Zieorem 1.16, we have $M \cong \mathscr{C}_{0}\left(q^{n}\right)$, or $2 n=4, q=3$ and $M \cong Q_{8} Y D_{8}$, or $2 a=6, q=2$ and M is isomorphic to the dihedral group of order 18. But we iave shown $q \neq 2$, and if $n=2$, then $q^{m} \mid n$ implies $q=1$ giving $\left|H / K_{1}\right|=q^{n}-1$ which we have assumed not to be the case. Hence $M \approx \mathscr{J}_{0}\left(q^{\text {I }}\right)$.

Write $Y=q^{n}-1$. From the structure of $\mathscr{J}_{0}^{\left(q^{n}\right)}$ we see tisat there exist elements c_{0}, d_{0}, e_{0}, of M such that
$M=\left\langle c_{0}, d_{0}, e_{0}: c_{0}=d_{0}^{2}=e_{0}^{2}=\left[c_{0}, d_{0}\right]=1, e_{0} c_{0} e_{0}=c_{0}^{-1}, e_{0} d_{c} e_{0}=c_{0}^{\prime / 2} d_{0}\right\rangle$.
Clearly $H \cap M=R=\left\langle c_{0}, d_{0}\right\rangle \cong c_{\gamma} \times C_{2}$. Also $N=\left\langle c_{0}^{\gamma / 2}, d_{0}\right\rangle$ asd, relabelling if necessary, $K_{1}=\left\langle d_{0}\right\rangle, K_{2}=\left\langle c_{0}{ }^{\prime} 2_{d}\right\rangle$. Herce, siriting $c=\left\langle c_{0}\right\rangle$, we have $R=c \times K_{1}=c \times K_{2}$. Let B be a Sylow q-subsroup of G. Then $B \leqslant H$ and $|B|=q^{m}$. Also $H=R B$. Obviously there exists $\nabla_{1} \in V_{1}^{*}$ such that $B \leqslant G_{v_{1}}$ and then $B \cong B K_{1} / K_{1}=G_{v_{1}} / K_{1}$, a cyclic group as proved earlior. Hence B is cyclic.

Let T dencte $O_{2}(R)=O_{2}(C)$. Clearly $T \& G$. In addition let I denote the unique Sylow 2-subgroup of C. We have $L K_{1} / K_{i}=O_{2}\left(H / K_{1}\right) \& H / K_{i}$ for $1=1,2$ and, since $L K_{i} / K_{i}$ is a cyclic 2 -group, the group Aut $\left(\Sigma K_{i} / K_{i}\right)$ is a 2 -group. We deduce that, since $q^{m}=|B|=\left|B K_{i} / K_{i}\right|$, the group $B K_{i} / K_{i}$ centralises $L K_{1} / K_{1}$ for $1=1,2$, Hence $[B, L] \leqslant K_{1} \cap K_{2}=1$, whence B contralises L. since $T \& G$, and $T \times L=C$, we have $B \leqslant N_{G}(C)$, and hence $|C B|=\left(q^{n}-1\right) q^{m}$ and $H=C B \times K_{1}=C B \times K_{2}$. Therefore $C B E H / K_{2} \leqslant \mathscr{J}\left(q^{n}\right)$.
and hence $C B \cong \mathscr{V}_{k}\left(q^{n}\right)$.
From the description of $\mathscr{F}_{0}\left(q^{n} ; q^{m}\right)$ in terms of generators and relations, given at the start of this chapter, there exist elements c, d, e, f of $\mathscr{C}_{0}\left(q^{n} ; q^{m}\right)$ such that $\mathscr{T}_{0}^{(}\left(q^{n} ; q^{m}\right)=\langle c, d, e, f\rangle$, $|d|=r,|d|=|e|=2,|f|=k \quad[c, d]=[d, f]=[e, f]=1$, ece $=c^{-1}$ ede $=c^{/ 2} d$, and $\langle c, f\rangle \cong \mathscr{T}_{k}\left(q^{n}\right)$. Hence $\langle c, f\rangle \pm$ cB via an isomorphism, ϕ say, which maps the group $\langle c\rangle$ to the group C. Write $c^{\phi}=c_{1} \in C$, and $f^{\phi}=f_{1} \in C B$. Also, let B_{1} denote $\left\langle f_{1}\right\rangle$, a cyclic group of order q^{m}.

Obviously there exist $v_{1} \in V_{1}, v_{2} \in V_{2}^{\#}$, such that both $B_{1} \leqslant G_{v_{1}}$ and $B_{1} \leqslant G_{v_{2}}$. By Lemma 3. $7(9),\left|G_{v_{1}+v_{2}}: G_{v_{1}} \cap G_{v_{2}}\right|=2$, and, since for all $v \in V^{\#}\left|G_{v}\right|=2 q^{m(v)}$ for some integer $m(v)$, we see that $B_{i}=G_{v_{1}} \cap G_{v_{2}}$ $=H_{v_{1}+v_{2}}=G_{v_{1}+v_{2}} \cap H$. Let $e_{1} \in G_{v_{1}+v_{2}}$ such that $\left|e_{1}\right|=2$. Then $e_{1} \notin H$. In fact $e_{1} \in M$. Clearly $G / M=B_{1} M / M \Perp B_{1}$, a cyclic group, and $C_{2} \equiv M / R \triangleleft G / R$. Hence G / R is abelian. Now $G_{v_{1}+v_{2}} \cong G_{v_{1}+v_{2}} R / R=G / R$, whence $G_{v_{1}}+v_{2}$ is abelian and, in particular e_{1} contralises $B_{1}=\left\langle f_{1}\right\rangle$. Thus, relabeliing $d_{0}=d_{1}$, we see that G contains elements $c_{1}, d_{1}, e_{1}, f_{1}$ such that the map p given by $\rho^{\rho}=c_{1}, f_{i}=d_{1}, f=e_{1}, f^{\rho}=f_{1}$, extends to an isomorphism from $\mathscr{J}_{0}\left(q^{n} ; q^{m}\right)$ to G. This concludes Case 1 .

CASE 2. One of the cases $\left(a_{1}\right),\left(a_{2}\right),\left(b_{1}\right),\left(b_{2}\right),\left(c_{2}\right),\left(d_{2}\right),\left(f_{2}\right),\left(f_{3}\right),\left(f_{4}\right)$ of Theorem 1.16 holds for the group H / K_{1} and the module V_{1}.

We first elininate all possibilities except (a_{1}) and (a_{2}). Suppose that H / K_{1} is one of the groups described in $\left(b_{1}\right),\left(b_{2}\right),\left(c_{2}\right),\left(d_{2}\right),\left(f_{2}\right)$, $\left(f_{3}\right),\left(f_{4}\right)$. Then we see that $q\left|\left|H / K_{1}\right|\right.$. Therafore, aince $| K_{1}|=|G: H|=2$, we have $q\left||G|\right.$, whence G acts half-transitively on V^{*}. Clearly G is imprimitive and does not act semi-regularly on $V^{\boldsymbol{*}}$, and hence, by Theorem 1.16, we have three possibilities for G. Either $G=\mathcal{F}_{0}\left(q^{n}\right)$, or $=2, q=3$ and $G \cong Q_{B} Y D_{B}$, or $n=3, q=2$ and G is isomorphic to the dihedrel group of order 18. However, we have shown $g \not 2$, and $150 \Perp Q_{g} Y D_{8}$, then $|G|=32$,
giving $\left|H / K_{1}\right|=8$ which does not occur in the possibilities for H / K_{1} we are considering. Hence $G \equiv \mathcal{J}_{0}^{(}\left(q^{n}\right)$, and therefore, from the structure of $\mathscr{J}_{0}\left(q^{n}\right)$. G contains a normal abelian subgroup of index 2. It follows that E: $/ K_{1}$ contains a normal abelian subgroup of index at most 2 , and, as is eas:ly checked, this does not occur in cases $\left(b_{1}\right),\left(b_{2}\right),\left(c_{2}\right),\left(d_{2}\right),\left(f_{2}\right)$, $\left(f_{3}\right),\left(f_{4}\right)$, a contradiction.

Hence we have $q=3, n=2$, and either $H / K_{1} \cong \operatorname{SL}(2,3)$, (case (a_{1})), or $:=/ K_{1} \cong G L(2,3)$, (case $\left(a_{2}\right)$). Write $H_{2}=O_{2}(H)$. Then $K_{i} \leqslant H_{2}$ for $i=1,2$, ance $H_{2} / K_{1}=O_{2}\left(H / K_{1}\right) \pm Q_{8}$. Let $g \in G H$. We have $K_{1}^{g}=K_{2}$, and hence conjugation by g induces an isomorphism from H / K_{1} to H / K_{2}. Thus $H_{2} / K_{2} \cong H_{2} / K_{1}$ $\ldots Q_{8}$. It is easily seen that this fmplies $H_{2}=P \times K_{1}=P \times K_{2}$ for some subgroup, P, of H_{2} such that $P \equiv Q_{8}$. Let x, y be two elements of onder 4 in E such that $\langle x, y\rangle=P$, and let $C_{2} \propto K_{1}=\langle z\rangle$. Then, as is easily checked, there are exactly four subgroups of H_{2} isomorphic to Q_{8}, namely $\langle x, y\rangle,\langle x, y z\rangle,\langle x z, y\rangle,\langle x z, y z\rangle$.

Let C be a Sylow 3-subgroup of G. Then $|C|=3$ and $C \leqslant H$. Also, since there are exactly four subgroups of H_{2} isomorphic to Q_{8}, the group C cust normalise cale such eubgroup, Q say. Clearly $Q C \ldots \operatorname{SL}(2,3)$. Let B denote $Q C$, and then, if $H / K_{1} \cong \operatorname{SL}(2,3)$, we have $H=B \times K_{1}=B \times K_{2}$ where E £ $\mathrm{SL}(2,3)$, and $\mathrm{Q} \triangleleft \mathrm{H}$.

Suppose that $H / K_{1} m G L(2,3)$. Then there exists $M \& H$ such that $\mathrm{K} / \mathrm{K}_{1} \geq \mathrm{SL}(2,3)$. Since $\mathrm{M} / \mathrm{H}_{2}=\mathrm{F}\left(\mathrm{H} / \mathrm{H}_{2}\right)$ char $\mathrm{H} / \mathrm{H}_{2} \varangle \mathrm{G} / \mathrm{H}_{2}$, we see that $\mathrm{M} \varangle G$, and clearly $K=B \times K_{1}=B \times K_{2}$. Let $g \in G$. The group C normalises Q and permutes the other three subgroups of H_{2} incmorphic to Q_{8} transitively. Hrite $C=\langle c\rangle$. We have $c \in M \& G$, and therefore $g^{-1} \in M$. Aleo $Q \& M_{\text {, }}$ and it follows that $Q^{g c g^{-1}}=Q$, whance

$$
\begin{equation*}
\phi^{5 C}=\phi^{5} \tag{10}
\end{equation*}
$$

New $\alpha^{s} £ Q_{8}$ and aince $H_{2}=O_{2}(H) \& \sigma_{0}$ we have $\alpha^{S} \leqslant H_{2}$. But (10) above
implies that $C=\langle c\rangle$ normalises Q^{g}, and so $Q^{g}=Q$. Therefore $Q \triangleleft G$.
We remark that, replacing M by H, the proof given above that $Q \subset G$ in the case $H / K_{1} \cong G L(2,3)$ shows that $Q \varangle G$ in the case $H / K_{1} \cong \operatorname{SL}(2,3)$. Hence, in either case, $Q \triangleleft G$.

Assume that $H / K_{1} \cong S L(2,3)$. Then $H=B \times K_{1}=B \times K_{2}$, where $B=Q C \cong S L(2,3)$. Write $D=C_{G}(Q)$. Then $D \triangle G$ and G / D is isomorphic to a subgroup of $\operatorname{Aut}(Q) \approx S_{4^{\circ}}$. We have $|G|=4 .|\operatorname{SL}(2,3)|=96$ and, clearly, $|D \cap H|=4$. Therefore $|H / H \cap D|=12$ and $|G / D|=12$ or 24. Suppose, first, that $|G / D|=12$. Then $|D|=8$. Also, since $N \leqslant Z(H)$, we have $C_{2} \times C_{2} \simeq N \leqslant D$, and $D \neq H$ since $|D \cap H|=4$. If D is abelian, then $G=\langle H, D\rangle$ $\leqslant C_{G}(N)$, whence $N \leqslant Z(G)$; clearly an impossibility. Hence D is non-abelian, and we conclude that D is isomorphic to the dihedral group of order 8. Now $G / C_{G}(D)$ is isomorphic to a subgroup of Aut(D), a 2-group. Hence $C \leqslant C_{G}(D)$, and therefore $Q C=E$ centralises D. Clearly $\langle B, D\rangle=G$, and so, since $B \cap D=Q \cap D=Z(Q)=Z(B)$, we have $G=B D \cong \operatorname{SL}(2,3) Y D_{8}$, which is case (ii) in the statement of the theorem.

Next suppose thet $|G / D|=24$. Then $|D|=4$ and $D=N \pm C_{2} \times C_{2}$. Let $v_{1} \in V_{1}^{*}, V_{2} \in V_{2}^{*}$. From the action of $H / K_{i} \equiv \operatorname{SL}(2,3)$ on V_{i}, we have $\left|G_{v_{i}} / K_{i}\right|=3$ for $1=1,2$. Therefore $G_{v_{i}}$ is a cyclic group of order 6_{0} and K_{i} is the unique Sylow 2-subgroup of $G_{v_{1}}$ for $i=1,2$. since $K_{1} \cap K_{2}=1$, we have $2 \dagger\left|G_{v_{1}} \cap G_{v_{2}}\right|$. Ey Lemma $3.6(g)$ we see that $\left|G_{v_{1}}+v_{2}: G_{v_{1}} \cap G_{v_{2}}\right|=2$. Let Y be a Sylow 2-subgroup of $G_{v_{1}+v_{2}}$. Then $|Y|=2$ and, clearly, $Y \cap\left(G_{v_{1}} \cap G_{v_{2}}\right)=1$. since $G_{v_{1}} \cap G_{v_{2}}=H_{v_{1}} \cap H_{v_{2}}=H_{v_{1}+v_{2}}=G_{v_{1}+v_{2}} \cap H_{\text {, }}$ we have $Y \cap H=1$. Therefore $G=H Y$.

By assumption $|G / D|=24$, and aince $C_{G}(Q)=D=N$, we have $G / N \equiv S_{4^{\circ}}$. the full automorphism group of $Q \equiv Q_{8}$, Clearly, then, Y acta non-trivially by conjugation on $H_{2} / N=O_{2}(H) / Z(H)$. Also Y acte non-trivially on $N=Z(H)$. Thus, since $G=H Y$ and $H=B \times K_{1}=B \times K_{2} ¥ \operatorname{SL}(2,3) \times C_{2}$, we cee casily that G is isomorphic to the group, Δ, defined in Definition 3.8.

This is case (iii) in the statement of the theoram.
We now drop our assumption that $H / K_{1} \cong \operatorname{SL}(2,3)$ and assu=e, instead, that $H / K_{1} \cong G L(2,3)$. As shown above, we have $Q_{8} \cong Q \varangle G$. Also, If B denotes $Q C$, then $B \times K_{1}=B \times K_{2}=M 4 G$. Clearly $|G|=292$. Again let D denote $C_{G}(Q)$, and again we have $D \odot G$ with G / D isomorphic to a subgroup of Aut $(Q) \cong S_{4^{*}}$. Also $D \cap H=N$, and hence

$$
24=|H / N|=|H / H \cap D|=|H D / D| \leqslant|G / D| .
$$

Therefore $|G / D|=24$, whence $|D|=8$, and we see that $D \neq H$. If D is abelian, then $G=\langle H, D\rangle \leqslant C_{G}(N)$, giving $N \leqslant Z(G)$ which is clearly impossible. Hence D is non-abelian, and we deduce that D is isomorphic to the dihedral group of order 8. From the action of $H / K_{i} \cong G L(2,3)$ on v_{i}, we have $G_{v_{i}} / K_{i} \cong S_{3}$ for all $v_{i} \in v_{i}^{*}$, for $i=1,2$. Hence, by 3^{\prime} halftransitivity, $\left|G_{v}\right|_{3},=4$ for all $v \in V^{\#}$. Let R denote $C_{G}(D)$. Then R 4 G and G / R is isomorphic to a subgroup of Aut(D), a 2-group.

Let $d \in D N$ such that $|d|=2$, and let $v \in V^{\prime \prime}$ such that $d \in G_{v}$. Since $D \cap H=N_{\text {, }}$ we have $d \& H$ and $D=\left\langle N_{1} d\right\rangle$. Write $v=v_{1}+v_{2}$ where $\nabla_{1} \in V_{i}$ for $1=1,2$. Since $d \& H$, it follows that $V_{1} d=V_{2}, V_{2} d=V_{1}$ and then, from the fact that $d \in G_{v_{1}+v_{2}}$, we have $v_{1} d=v_{2}, v_{2} d=v_{1}$, and $v_{i} \in V_{i}^{\prime \prime}$ for $1=1,2$. Let T be a Sylow 2-subgroup of G_{v} such that $d \in T$. We have $|T|=4$, and then, ince $|G: H|=2$, we see that $T \cap H>1$. Let $T_{1}=T \cap H \& C_{2}$. We have $T_{1}=T \cap H \leqslant G_{v_{1}+v_{2}} \cap H=G_{v_{1}} \cap G_{v_{2}}$. By Lamma 3.6(8), we see that $K_{1} \cap G_{v_{2}}=K_{2} \cap G_{v_{1}}=1$, and hence $T_{1} \cap r^{\prime}=1$. Now $B=\operatorname{QCESL}(2,3)$, and $M=B \times K_{2}=B \times K_{2}$. Therefore all involutions in M are contained in $N=K_{1} \times K_{2}$, and we deduce that $T_{1} \cap M=1$.

Since G / R is a 2 -group, we bave $C \leqslant R$. Clearly $T_{1} \leqslant C_{G}(d)$ and $s 0_{0}$ aince $N=Z(H)$ and $T_{1} \leqslant H_{1}$ we see that $T_{1} \leqslant C_{G}\left(\left\langle H_{0} d\right\rangle\right)=C_{G}(D)=R$. Obvioualy $Q \leqslant R$, and hence $\left\langle B, T_{j}\right\rangle \leqslant R_{1}$ giving $|R| \geqslant 48$. Also

degree 3. $(1=1,2)$. Clearly, then, in all three cases $H_{\nabla_{i}}$ cc:ains a unique Sylow 3-subgroup of G for $i=1,2$. Let C_{1} and C_{2} be two Syiow 3-subgroups of G such that $C_{1} \neq C_{2}$, and let $v_{i} \in V_{i}^{*}$ such that $C_{1} \leqslant H_{v_{i}}$ for $i=1,2$. It follows that $3 \nmid H_{v_{1}} \cap H_{v_{2}}$.

Now $K_{1} \cong K_{1} K_{2} / K_{2} \triangleleft H / K_{2}$, and hence the non-trivial eleme:t of K_{1} acts like multiplication by -1 on V_{2}. Thus $K_{1} \cap H_{w}=1$ for eil $w \in V_{2}^{*}$, and, in particular $K_{1} \cap H_{v_{2}}=1$. Therefore, in cases ($£ \pm$) and (iii) we have $H_{v_{1}} \cap H_{\nabla_{2}}=1$, and in case (iv) we have $\left|H_{\nabla_{1}} \cap H_{v_{2}}\right| \leqslant 2$.

If $g \in G \mathcal{H}$ then, clearly $V_{1} g=V_{2}$ and $v_{2} g=V_{1}$. Hence $H_{v_{i}}=G_{v_{i}}$ for $i=1$,2. Using the familiar argument we have $\left|G_{v_{1}+v_{2}}: G_{v_{2}} \cap G_{v_{2}}\right| \leqslant 2$ and we deduce that $\left|G_{v_{1}+v_{2}}\right| \leqslant 2$ in cases (ii) and (iii), and $\left|G_{v_{1}+v_{2}}\right| \leqslant 4$ in case (iv). It follows that the size of the G-orbit containi=s $v_{1}+v_{2}$ is at least $96 / 2$ in cases (ii) and (iii), and at least 192/4 in case (iv). Hence, in all three cases, the size of the G-orbit containing $v_{1}+v_{2}$ is divisible by 48. But $\left|V^{*}\right|=3^{4}-1=80$, and so the size of the 5 -orbit containing $\mathrm{v}_{1}+\mathrm{v}_{2}$ is exactly 48.

We have $\left|G_{v_{1}}\right|=6$ (cases (ii) and (iii)) or $\left|G_{v_{1}}\right|=12$ (case (iv)) and hence, in all cases, the size of the G-orbit containing ∇_{1} is $96 / 6=$ $192 / 12=16$, and this orbit is exactly $V_{1}^{*} \bigcup V_{2}^{*}$. Now $48+16<80$ and therefore there exists $u \in V^{*}$ such that $u \notin V_{1}^{*} \cup v_{2}^{*}$ and u is not in the G-orbit containing $\nabla_{1}+v_{2}$. We have $u=u_{1}+u_{2}$ for some $u_{1} \in V_{1}{ }^{*}, u_{2} \in V_{2}^{*}$ since $K_{1} \cap G_{u_{2}}=1$, it follows that $\left|G_{u_{1}} \cap G_{u_{2}}\right| \leqslant 3$ in cases (ii) anc (iii), while in case (iv) wo have $\left|G_{u_{1}} \cap G_{u_{2}}\right| \leqslant 6$. Therefore, from $\left|G_{u_{1}+n_{2}}: G_{u_{1}} \cap G_{u_{2}}\right| \leqslant 2$, we deduce that $\left|G_{u_{1}+u_{2}}\right| \leqslant 6$ in cases (11) and (iii), and $\left|G_{u_{1}+u_{2}}\right| \leqslant 12$ in case (iv). It follows that, in all trree ceses, the size of the G-orbit containing $u_{1}+u_{2}=u$ is at least $96 / 6=$ $192 / 12=16$. However, $80-(48+16)=16$ and hance the size of the G-orbit containing u is exactly 16 .

Therefore there are exactly three G-orbits in V^{*}, two of size 16 and
one of size 48. Hence G acts 3^{\prime}-halftransitively on V^{*} and we conclude that cases (ii), (iii), and (iv) of Theorem 3.9 do occur.

We close this chapter with a number of results concerning the group $G L(2,3)$ and its representations over the field $G F(3)$, results that we shall require in Chapter 4. It is easily checked that the matrices

$$
a=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right), \quad b=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), c=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad d=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
$$

generate GL(2,3). In terms of generators and relations we have
$G L(2,3)=\left\langle a, b, c, d: a^{4}=b^{4}=c^{3}=d^{2}=1,[a, b]=a^{2}=b^{2}, c^{-1} a c=a b\right.$, $\left.c^{-1} b c=a, d a d=b, d b d=a, d c d=a c^{2}\right\rangle$.

Also $|\operatorname{GL}(2,3)|=48$. Moreover $\langle a, b, c\rangle=\operatorname{SL}(2,3)$, and $O_{2}(\operatorname{SL}(2,3))=O_{2}(\operatorname{GL}(2,3))$ $=F(G L(2,3))=\langle a, b\rangle \cong Q_{B} . \quad$ clearly $Z(G L(2,3))=Z(\operatorname{SL}(2,3))=\left\langle a^{2}\right\rangle$.

NOTATION. For any group G let $i(G)$ denote the set of non-central involutions of G .

LEMMA 3.10. There are exactly eight conjugacy classes of the group GL $(2,3)$, of which, besides the identity class, two consist of elements of order 2, one consists of elements of order 4, two consist of elementa of order ${ }^{8,}$ one consists of elements of order ${ }^{3}$ and one conaists of elements of order 6. In addition $\mid i(\operatorname{GL}(2,3) \mid=12$.

Proof. Write $G=G L(2,3)$. Throughout this proof we shall use the same notation as in the description of $G L(2,3)$ in terms of generators and relations given above. Two classes of G are obvious, namely $K_{1}=\{1\}$ and $K_{2}=\left\{a^{2}\right\}$. Let K_{3} denote the conjugacy class of G containing b. Clearly $\left\{a, a^{3}, b, b^{3}, a b, a b^{3}\right\} \subseteq K_{3}$. It is easily checked that $(a d)^{2}=b$, and hence $C_{G}(b) \geqslant\langle c d\rangle: C_{8}$. Therefore $\left|K_{3}\right|=\left|G: C_{G}(b)\right| \leqslant 48 / 8=6$ and it follows that $K_{3}=\left\{a_{0} a^{3}, b, b^{3}, a b, a b^{3}\right\}$ and $C_{0}(b)=\langle c d\rangle$.

The group $\langle c\rangle$ is a Sylow 3 -subgroup of G and abd is an element of crder 2 such that $(a b c) c(a b d)=c^{2}$. We see easily that $N_{G}(\langle c\rangle)=\left\langle c, a b d, a^{2}\right\rangle$ $\equiv S_{3} \times C_{2}$, and hence G contains exactly $48 / 12=4$ Sylow 3-subgroups, each cf order 3. Clearly $C_{G}(c)=\left\langle c, a^{2}\right\rangle \cong C_{6}$, and we deduce that the set of all elements of G of order 3 forms a conjugacy class, K_{4} say, of size 8. liow $c a^{2}$ is an elenient of G of order 6 and $a^{2} \in Z(G)$. Obviously $C_{G}\left(c a^{2}\right)$ $=C_{G}(c)$, and therefore, if K_{5} denotes the conjugacy class containing ca ${ }^{2}$, we have $\left|K_{5}\right|=\left|K_{4}\right|=8$.

Let K_{6} denote the conjugacy class of G containing d. If $3\left|\left|C_{G}(d)\right|\right.$. then d centralises some element of G of order 3, e say, giving $\left|C_{G}(e)\right|$ $\geqslant\left|\left\langle a^{2}, e, d\right\rangle\right|=12$ which is impossible since, as shown above, the set of elecients of G of order 3 forms a conjugacy class K_{4} of size 8. Hence $3 \nmid\left|C_{G}(d)\right|$. We have $C_{G}(d) \cap\langle a, b\rangle=\left\langle a^{2}\right\rangle$ and then, clearly, $c_{G}(d)=\left\langle a^{2}, d\right\rangle$ $=C_{2} \times C_{2}$. Therefore $\left|K_{6}\right|=\left|G: C_{G}(d)\right|=48 / 4=12$.

Let K_{7} denote the conjugacy class containing $c d$. Now ($\left.c d\right)^{2}=b$, and hence $C_{G}(c d) \leqslant C_{G}(b)$. But, as shown above, $C_{G}(b)=\langle c d\rangle$ and so, obviously, $c_{G}(c d)=\langle c d\rangle$. Therefore $\left|K_{7}\right|=\left|G: \Sigma_{G}(c d)\right|=48 / 8=6$. clearly (cd) ${ }^{5}$ is an element of G of order 8. Suppose (cd) ${ }^{5} \in K_{7}$. Then there exists $g \in G$ such that $(c d)^{g}=(c d)^{5}$, and hence

$$
b^{g}=\left((c d)^{2}\right)^{g}=\left((c d)^{g}\right)^{2}=\left((c d)^{5}\right)^{2}=(c d)^{2}=b
$$

It follows that $g \in C_{G}(b)=\langle c d\rangle$ which is clearly impossible. Therefore (cd) ${ }^{5} \& K_{7}$. Obviously $C_{G}\left((c d)^{5}\right)=C_{G}(c d)=\langle c d\rangle$ and so, writing K_{B} for the conjugacy clase of G containing (cd) ${ }^{5}$, we have $\left|K_{8}\right|=\left|K_{7}\right|=6$.

That K_{1}, \ldots, K_{8} are all the conjugacy classea of G follows casily from

$$
\sum_{1=1}^{8}\left|K_{1}\right|=1+1+6+8+8+12+6+6=48=|G| .
$$

and since K_{6} is the unique conjugacy class of non-central involutions of G we must have $|i(G)|=\left|K_{6}\right|=12$.
Q.E.D.

In order to prove Theorem 3.13 below on the representations of GL $(2,3)$ over the field $G F(3)$ we shall require the following two results from the theory of modular representations of finite groups. The first, Theorem 3.11, is the well-known result on the number of inequivalent irreducible modular representations of a group over a splitting field and is proved in [24], Theorem 1.5. The second result, Theorem 3.12, is a characterisation of the splitting fields for a group and is proved in [1], Theorem 70.3.

If g is an element of a group G, then, for any prime p, g is said to be a p^{\prime}-element of G if $|g|$ is prime to p.

THEOREM 3.11 ([14] Theorem 1.5). Let G be a group and K a splitting field for G such that the characteristic of K is $p>0$. Then the number of inequivalent imreducible representations of G over K is exactly the ' number of conjugacy classea of G consisting of p^{\prime}-elements.

Following [1] Dofinition 70.2, we aay a representation θ of a group G over a field L is realisable in a subfield, K, of L if there exists a representation θ^{\prime} of G over K auch that θ and θ^{\prime} are equivalent representations of G over L.

THEORFM 3.12 ([1] Theorem 70.3). Let L denote an algebraically closed field. A subfield K of L is a eplitting field for a group G if and only if each irraducible roprasontation of G over L is realisable in K.

THEOREM 3.13. There exist exactly two non-equivalent faithful, irreducible representations of $\mathrm{GL}(2,3)$ over the field $\mathrm{GF}(3)$, say θ_{1} and θ_{2}. Let W_{1} and W_{2} be modules for $\operatorname{GL}(2,3)$ affording θ_{1} and θ_{2} respectively and, for $i=1,2$, let X_{i} denote the set $\{H: H \leqslant G L(2,3)$ and H is the stabiliser in $G L(2,3)$ of some $\left.w \in W_{i}\right\}$. Then we have
(i) $\operatorname{dim}_{G F(3)} W_{1}=\operatorname{dim}_{G F(3)} W_{2}=2$;
(ii) GL(2,3) acts transitively on W_{i}^{*} for $i=1,2$;
(iii) if $H \in X_{i}$ then $H \cong S_{3}$ and $\left|x_{i}\right|=4$ for $1=1,2$;
(iv) $x_{1} \cap x_{2}=\varnothing$;
(v) if R is a Sylow 3 -subgroup of $G L(2,3)$ and $g \in i(G L(2,3))$ such that $\langle R, g\rangle \in X_{i}$ then, letting z derote the non-trivial element of $Z(G L(2,3))$, we have $S_{3} \cong\langle R, g z\rangle \notin X_{i}$ for $i=1,2$.

Proof. Write $G=G L(2,3)$. Let K denote $G F(3)$ and let L denote an algebraically closed field such that K is a subfield of L. Again we use the same notation as the description of $\operatorname{GL}(2,3)$ in terms of generators and relations given above.

For $i=1,2$ define θ_{i} as follows.
$\theta_{1}(a)=\theta_{2}(a)=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right), \theta_{1}(b)=\theta_{2}(b)=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), \theta_{1}(c)=\theta_{2}(c)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. $\theta_{1}(d)=\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right), \theta_{2}(d)=\left(\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right)$.

It is easily checked that θ_{1} and θ_{2} extend to the whole of G to give two non-equivalent faithful irreducible representations of Gover K. Now $G / Z(G)=S_{4}$ and it is easily seen that S_{4} hae two non-equivalent faithful irreducible representationa over the field K. Lat $\boldsymbol{\theta}_{3}$ and θ_{4} be two such representations for $G / Z(0)$. Clearly we may regard θ_{3} and θ_{4} as non-equivalent irreducible rapresentations of G over K with $\operatorname{ker}\left(0_{3}\right)$ $=\operatorname{ker}\left(\theta_{4}\right)=Z(G)$.

We have $\langle a, b, c\rangle=\operatorname{SL}(2,3) \varangle G L(2,3)$ and hence, writing $S=\langle a, b, c\rangle$ the group G/S has order 2. Therefore G / S has two non-equivalent irreducible representations over K and it follows that G has two non-equivalent irreducible representations, θ_{5}, θ_{6}, over K such that $\operatorname{ker}\left(\theta_{5}\right)=\operatorname{ker}\left(\theta_{6}\right)=S$.

Since K is a subfield of L we see that $\theta_{1} \ldots \ldots, \theta_{6}$ are representations of G over L and it is easy to check that $\theta_{1}, \ldots, \theta_{6}$ are irreduciole and non-equivalent over L. But L is algebraically closed and hence is a splitting field for G. By Lemma 3.10 the group G contains exactly six conjugacy classes of $3^{1-e l e m e n t s ~ a n d ~ s o, ~ b y ~ T h e o r e m ~ 3.11, ~ t h e r e ~ e x i s t ~}$ exactly six non-equivalent imreducible representations of G over L. Hence $\left\{\theta_{1}, \ldots, \theta_{6}\right\}$ is a complete set of non-equivalent irreducible representations of G over L. Clearly θ_{i} is realisable in K for $1 \leqslant i \leqslant 6$, and therefore, by Theorem 3.12, K is a aplitting field for G. We deduce that $\left\{\theta_{1}, \ldots, \theta_{6}\right\}$ is a complete set of non-equivalent irreducible representations of G over K. In particular, we sez that, up to equivalence, G has precisely two faithful, irreducible representations over K, namely θ_{1} and θ_{2}. We remark that the degree of θ_{i} is 2 for $i=1,2$.

Let $W_{1}, W_{2}, X_{1}, X_{2}$, be defined as in the statement of the theorem. Then (i) is clear since, for $i=1,2, \operatorname{dim}_{K_{i}}{ }_{i}$ is precisely the degree of θ_{i}. Let Q denote the group $\langle a, b\rangle$ and write $a^{2}=2$. Then $Q \equiv Q_{8}$ and $Z(G)=Z(Q)$ $=\left\langle a^{2}\right\rangle=\langle z\rangle$. Clearly z acts like acalar multiplication by -1 on W_{1} and W_{2}. Let $i \in\{1,2\}$. Since z is the unique involution in Q, if $w \in W_{i}^{*}$ then $S_{W} \cap Q=1$. Hence Q acts semi-regularly on W_{i}^{*} But $|Q|=8=3^{2}-1=\left|W_{j}^{*}\right|$, whence Q acte transitively on W_{i}^{*}. Thus G acts transitively on W_{i}^{*}. If $w \in W_{i}^{*}$ then $\left|G_{w}\right|=48 / 8=6$ and, since $G_{w} \cap Q=1$, we have $G_{w} \neq G_{w} Q / Q=G / Q$ ES_{3}. Hence, if $\mathrm{H} \in \mathrm{X}_{1}$, then H ㅌ S_{3}.

Let $H \in X_{i}$. Since $C_{W_{i}}(H)$ is a non-trivial, proper subspace of W_{i}. a 2-dimenaional vector space over $K_{\text {, }}$ we aust have $\operatorname{dim}_{K} C_{W_{1}}(H)=1$. Clearly

$$
W_{i}^{*}=\bigcup_{H \in X_{i}}\left(c_{W_{i}}(H)\right)^{\#}
$$

and it is easily seen that this union is disjoint. Hence

$$
8=\left|w_{i}^{*}\right|=\left|x_{i}\right| .2
$$

and we deduce that $\left|x_{i}\right|=4$. This completes the proof of (ii) and (iii).
Again let $i \in\{1,2\}$, and let $H_{i} \in X_{i}$. Then there exists $w \in H_{i}^{\#}$ such that $H_{1}=G_{w}$. If $g \in G$ then $w g \in W_{i}^{*}$ and $G_{w g}=\left(G_{w}\right)^{g}=H_{1}^{g}$, whence $H_{1}^{g} \in X_{i}$. On the other hand, if $H_{2} \in X_{i}$ then there exists $u \in H_{i}^{*}$ such that $H_{2}=G_{u}$. But G acts transitively on W_{i}^{*} and so there exists $g \in G$ such that $w g=u$, giving $H_{2}=G_{u}=G_{w g}=\left(G_{w}\right)^{g}=H_{1}^{g}$. Thus $H_{2} \in X_{i}$ if and only if H_{2} is conjugate to H_{1} in G, and we deduce that X_{i} is a complete conjugacy class of subgroups of G for $i=1,2$. Therefore, to show $X_{1} \cap x_{2}=\varnothing$, we need only show that there exists $H \in X_{1}$ such that $H \notin X_{2}$.

Let $H=\langle c, a b d\rangle$. It is easily checked that $H \cong S_{3}$ and we have

$$
\begin{gathered}
\theta_{1}(c)=\theta_{2}(c)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot \theta_{1}(a b d)=\theta_{1}(a) \theta_{2}(b) \theta_{1}(d)=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right), \\
\theta_{2}(a b d)=\theta_{2}(a) \theta_{2}(b) \theta_{2}(d)=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right) .
\end{gathered}
$$

The above matrices show clearly that $\left.\mathrm{C}_{\mathrm{W}_{1}}(\mathrm{H})=\mathrm{C}_{\mathrm{H}_{2}}(\mathrm{c}) \cap \mathrm{C}_{\mathrm{W}_{2}}(\mathrm{abd})\right\rangle\langle 0\rangle$ and $C_{W_{2}}(H)=C_{W_{2}}(c) \cap C_{W_{2}}(a b d)=\langle 0\rangle$. Thus $H \in X_{1}$ but $H \notin X_{2}$ and we have proved (iv).

Assume that $i \in\{1,2\}$. Let R be a Sylow 3-subgroup of G and $g \in i(G)$ such that $\langle R, g\rangle \in X_{i}$. Writing $\langle R, g\rangle=T_{1}$, we must have $\langle 0\rangle \neq C_{W_{i}}\left(T_{1}\right)$ $=C_{W_{i}}(R)=C_{W_{i}}(g)$. Write $T_{2}=\langle R, g z\rangle$ and suppose $T_{2} \in X_{i}$. Then $\langle 0\rangle$ $\neq C_{W_{i}}\left(T_{2}\right)=C_{W_{i}}(g z)=C_{W_{i}}(R)=C_{W_{1}}(g)$. Hence there exists $w \in W_{i}^{\#}$ such that $\left.G_{w}\right\rangle\langle g, g z\rangle$. But then $z \in G_{w}$, contradicting the fact that z acts like scalar multiplication by -1 on W_{1}. Therefore $T_{2} \notin X_{1}$ and we have proved (v).
Q.E.D.

The final two results in this chapter give us another characterisation of the group $\operatorname{GL}(2,3)$.

LEMMA 3.14. Let $S=S L(2,3)$, and let Q denote $O_{2}(S)$. Then if x, y, are elements of S such that $\langle x, y\rangle=Q$, there exists $e \in S$ such that $|e|=3$ and $e^{-1} x e=x y, e^{-1} y e=x$.

Proof. Since $S=\operatorname{SL}(2,3)$ there exist elements a, b, c of S such that

$$
s=\left\langle a, b, c: a^{4}=b^{4}=c^{3}=1,[a, b]=a^{2}=b^{2}, c^{-1} a c=a b, c^{-1} b c=a\right\rangle
$$

We have $\langle a, b\rangle=O_{2}(S)=Q \cong Q_{B}$. Let X denote the set of ordered pairs $\{s, t\}$ of elements of s such that $\langle s, t\rangle=Q$. Two elements $\{s, t\},\left\{s^{\prime}, t^{\prime}\right\}$, of X are equal if and only if $s=s^{\prime}$ and $t=t^{\prime}$. We claim $|x|=24$. For if $\{s, t\} \in X$ then clearly $|s|=|t|=4$ and there are exactly six elements of Q of order 4 . Hence for any element $\{s, t$ \} of X there are six choices for s. Once s is chosen, $\langle s, t\rangle=Q$ if and only if $t \in Q \backslash\langle s\rangle$, and so there are four choices for t. Therefore there are exactly $6.4=24$ possibilities for $\{s, t\}$.

Now $S=\operatorname{SL}(2,3) \leqslant \operatorname{GL}(2,3)$ and, clearly, for all $g \in \operatorname{GL}(2,3)$ the map $\{s, t\} \longmapsto\left\{s^{g}, t^{g}\right\}$ is a permutation of the set X. Write $\operatorname{GL}(2,3)=G$. Let $\{s, t\} \in X$ and suppose $g \in G$ such that g fixes $\{s, t\}$. Then $s=s{ }^{g}$ and $t=t^{g}$. But $\langle s, t\rangle=Q$, and hence $g \in C_{G}(Q)=Z(G)$. Therefore G permutes the elements of X in an orbit of size $|G: Z(G)|=24=|X|$, whence G acts transitively on X.

Let x, y be elements of S such that $\langle x, y\rangle=Q$. Then $\{x, y\} \in X$ and so, since $\{a, b\} \in X$ and G acts transitively on X, there exists $g \in G$ such that $x^{g}=a, y^{g}=b$. Write $e=c^{g^{-1}}$. We have $e \in S$ and $|e|=|c|=3$. Also

$$
x^{e}=\left(g^{-1}\right)^{e}=\left(g^{-1} g^{-1}\right)\left(g a g^{-1}\right)\left(g c g^{-1}\right)=g\left(c^{-1} a c\right) g^{-1}=(a b)^{-1}=a^{-1} g^{-1}=x y
$$

and

$$
y^{e}=\left(g b g^{-1}\right)^{e}=\left(g c^{-1} g^{-1}\right)\left(g b g^{-1}\right)\left(g c g^{-1}\right)=g\left(c^{-1} b c\right) g^{-1}=a^{g^{-1}}=x
$$

Q.E.D.

LEMMA 3.25. Let H be a group of order 48 and assume there exists a subgroup. T, of H such that $T \cong S L(2,3)$, and an element h of $i(H)$ such that h acts non-trivially by conjugation on $\mathrm{O}_{2}(\mathrm{~T}) / \mathrm{Z}(\mathrm{T})$. Then $\mathrm{H} \equiv \mathrm{GL}(2,3)$.

Proof. Write $P=O_{2}(T)$. Then $P \cong Q_{8}$ and, since h acts non-trivially on $P / Z(P)$, we see easily that there exist elements x, y of P such that $\langle x, y\rangle=P$ and $x^{h}=y, y^{h}=x$. Now $T \simeq \operatorname{SL}(2,3)$ and hence, by Lemma 3.14, there exists $e \in T$ such that $|e|=3$ and $x^{e}=x y, y^{e}=x$.

We have heh $\in T$. Also

$$
x^{\text {heh }}=y^{e h}=x^{h}=y \text {, and } y^{\text {heh }}=x^{e h}=(x y)^{h}=x^{3} y
$$

But $x^{x e^{2}}=y$ and $y^{x e^{2}}=x^{3} y$. Therefore (heh) $\left(x e^{2}\right)^{-1}$ centralises both x and y, whence $($ heh $)\left(x e^{2}\right)^{-1} \in C_{T}(P)=Z(P)=\left\langle x^{2}\right\rangle$. It follows that heh $=x e^{2}$ or $x^{3} e^{2}$. However \mid heh $\left|=|e|=\left|x e^{2}\right|=3\right.$, whereas $| x^{3} e^{2} \mid=6$ and we conclude that heh $=x e^{2}$.

Since T contains a unique involution, namely $x^{2} \in Z(H)$, we must have $h \& T$, and hence $H=\langle T, h\rangle$. Therefore

$$
\begin{gathered}
H=\left\langle x, y, e, h: x^{4}=y^{4}=e^{3}=h^{2}=1,[x, y]=x^{2}=y^{2}, e^{-1} x e=x y,\right. \\
\left.e^{-1} y e=x, h x h=y, h y h=x, h e h=x e^{2}\right\rangle,
\end{gathered}
$$

and, comparing this with the description of $\mathrm{G}_{\mathrm{A}}^{-}(2,3)$ in terms of generators and relations given earlier, we see that $H: G L(2,3)$.
Q.E.D.

CHAPTER 4

SOLUBLE q^{\prime} - HALFTRANSITIVE GROUPS OF LINEAR

TRANSFORMATIONS OF A GF(q) - VECTOR SPACE. II

In this chapter we continue our investigation into the structure of a soluble group G such that, for some prime q, the group G acts q^{\prime}-halftransitively on the non-trivial elements of V , an irreducible GF(q)G-module, faithful for G. If G contains a non-cyclic abelian normal subgroup, then Theorem 3.7 applies and we know all the possibilities for G. Therefore we now turn our attention to the case in which G contains no non-cyclic abelian normal subgroup. If G acts q^{\prime}-semiregularly on V^{*}, then, since G contains no non-trivial normal q-subgroup, the Fitting subgroup of G acts semi-regularly on V^{*}. In this case the well-known results on semi-regular groups of automorphisms enable us to analyse the structure of G (see Chapter 5), and so we shall normally work under the assumption that G does not act q^{\prime}-semiregularly.

Although we shall require results from all four of Passman's papers on soluble half-transitive automorphism groups, [10] (with Isaacs), [11], [12]. [13], we shall find [13] particularly useful. Not only shall we make frequent references to results in [13] and, as far as possible, adopt notation consistent with that in [13], but we shall also iwitate the general scheme of [13], as will be explained.

Let G be a group such that G contains no non-cyclic abelian normal subgroup, and let P be normal p-subgroup of G for some prime p. Then, clearly, every characteristic abelian subgroup of P is cyclic. Following [13] we call such a group, P, a group of symplectic type. and, by Lemma 2.14, if p is odd then P is a central product of a cyclic p-group with an extraspecial p-group of exponent p, and if $p=2$, then P is a central product of a 2-group which is cyclic, dihedral, semi-dihedral, or generalised
quaternion, with an extraspecial 2-group.
In line with [13] (p. 671), we make the following definition.

DEFINITION. A group E is said to be of type $E(p, m)$ if p is a prime such that, for odd p, E is an extraspecial group of order $p^{2 m+1}$ and exponent p, and, for $p=2$, the group E is a central product of a cyclic group of order 2 or 4 with an extraspecial group of order $2^{2 m+1}$.

Suppose that P is a p-group of symplectic type. As remarked in [13] (p. 671), if $p>2$ then $\Omega_{2}(P)$ is either cyclic (if P is) or of type $E(p, m)$, with $m \neq 0$. If $p=2$, then $\phi(P)$ is cyclic and $\Omega_{2}\left(C_{p}(\phi(P))\right)$ is either.cyclic (if P is cyclic or if P is dihedral, semi-dihedral, or generalised quatemion of order at least 16) or of type $E(2, m)$ with $m \neq 0$. Thus, with the above exceptions, P contains a characteristic subgroup of type $E(p, m)$ with $m \neq 0$. We state this formally in the following lemma.

LEMMA 4.1. Let G be a group such that G contains no non-cyclic abelian normal subgroup, and let P be a normal p-subgroup of G for some prime p. Then, writing $E=\Omega_{1}(P)$ for $p>2$ and $E=\Omega_{2}\left(C_{p}(\phi(P))\right.$ for $p=2$, we have $E \triangleleft G$ and either E is of type $E(p, m)$ for some $m \neq 0$, or P is cyclic. or $P=2$ and P is dihedral. semi-dihedral, or generalised quaternion of onder at least 16.

To describe the scheme of this chapter, let G be a soluble group containing no non-cyclic abelian normal subgroup, q a prime, and V an irreducible $G F(q) G$-module, faithful for G, such that G acts q '-halftransitively but not q^{\prime}-semiregularly on V^{*}. The following is a broad outline, indicating the correspondences with [13], of the main steps in the analysis of the structure of G given in the rest of this chapter.

1. A Reduction Lemma (Lemma 4.4) is proved which, loosely speaking, enables us, in deciding which groups of type $E(p, m)$ might occur as normal
subgroups of G, to assume that, if $E \triangleleft G$ such that E is of type $E(p, m)$, then V_{E} is irreducible. Lemma 4.4 is analogous to, and proved in the same way as, the Reduction Lemma (Lemma 1.8) in [13].
2. Using the techniques of [13] Section 2 and relying on arithmetic considerations to rule out many cases, we prove (Theorem 4.21) that, for p odd, $O_{p}(G)$ is cyclic, and if $E \triangleleft G$ with E of type $E(2, m)$ for $m \neq 0$, then either $m=1$, or $q=3$ and $E \cong Q_{8} Y D_{8}$. This corresponds to Sections $2,3,4$, and 5 of [13].
3. We consider the restriction of V to a particular cyclic normal subgroup $A=Z\left(C_{F}(\Phi(F))\right)$ of $G($ where F denotes the Fitting subgroup of $G)$. In the case where V_{A} is homogeneous as an A -module we are able to deduce all the possibilities for G (Theorem 4.44). The use of Lemma 3.1 of [13] (stated below as Lemma 4.26) is essential at this stage. This corresponds to Section 6 of [13].
4. Finally we investigate the possibility that V_{A} is not homogeneous and we show that this case does not occur. (Theorem 4.45). The assumption of primitivity in [13] means that there is no corresponding step in [13].

Before proceeding to the statement and proof of the Reduction Lemma, we record two results to which we shall refer several times in the course of this chapter. The first, Lemma 4.2 , is merely a statement of some of the information contained in Lemmas 1.4 and 1.5 of [13] , concerning the action of a group, E, of type $E(p, m)$ on a $\operatorname{GF}(q) E$-module. Lemma $4.2(1)$ is precisely [13] Lemma 1.14(ii) and Leuma $4.2(i i)$ is precisely [13] Lemma 1.5(i).

LEMMA 4.2 ([13] Lemnas 1.4 (1.5). Let E be a group of type $E(p, m)$. let
 that E' acts semi-reqularly on V^{*}. Then
(i) if $e \in E \backslash Z(E)$ such that $|e|=p$, then $\operatorname{dim}_{G F(q)} C_{v}(e)=n / p$;
(ii) there exists $x \in V^{*}$ such that $E_{x}=1$ with the following exceptions which occur for $p=2$: (a) $q^{n}=3^{2}, E \cong D_{8}$; (b) $q^{n}=5^{2}, E \cong Q_{8} Y C_{4}$; (c) $q^{n}=3^{4}, E \cong Q_{8} Y D_{8}$. In each of these exceptions $\left|E_{x}\right|=2$ for all $x \in V^{*}$.

The second result, Lemma 4.3, is a formalisation of an idea already used in Chapter 3.

LEMMA 4.3. Let π be a set of primes and assume that a group G acts π-halftransitively as a group of permutations on a set X. In addition. assume that G contains a normal Hall π-subgroup, H. Then H acts halftransitively on X, and if G does not act π-semiregularly on X, then H does not act semi-regularly.

Proof. If $x \in X$ then $\left|H_{x}\right|=\left|G_{x} \cap H\right|=\left|G_{x}\right|_{\bar{n}}$, since by assumption ii is a normal Hall m-subgroup of G. The result then follows easily. Q.E.D.

LEMMA 4.4. Reduction Lemma. (cf. [13] Lemma 1.8). Let Ge a soluble group, q a prime, V an irreducible $G F(q) G$-module, faithful for G, such that G acts q^{\prime}-halftransitively but not q^{\prime}-semiregularly on $V^{* \prime}$. Assume $E \varangle G$ such that E is of type $E(p, m)$ with $m \neq 0$. Then there exists a soluble group \bar{G} and an irreducible $G F(q) \bar{G}$-module U, faithful for \bar{G}, such that
(i) \bar{G} acts q^{\prime}-halftransitively on U^{*} :
(ii) there exists $\bar{E} \varangle \bar{G}$ such that $\bar{E} \equiv E$ and $V_{\bar{E}}$ is irreducible;
(iii) if $E \not \equiv Q_{B}$ then \bar{G} doos not act q^{\prime}-semirequiarly on $U^{\prime \prime}$;
(iv) if $p>2$, or if $p=2$ and $m \geqslant 2$, then either $q=3$ and $E \approx D_{8} Y Q_{g}$, or $\overline{\bar{G}}$ contains no non-cyclic abelian normal subrroup.

Proof. We construct \bar{G}, \bar{E}, U exactly as in [13] Lemma 1.8. Let U be an
irreducible constituent of V_{E}. Since, by Clifford's Theorem, all irreducible constituents of V_{E} are conjugate in G, we see that U is faithful for E. Let $N=\left\{g: g \in G, U_{g}=U\right\}$. Obviously N is a subgroup of G. Also $E \leqslant N$ and U is an irreducible $G F(q) N$-module. Let $u \in U^{*}$ and assume $g \in G_{u}$. Clearly $U g$ is an irreducible $G F(q) E$-module and therefore, since $0 \neq u \in U \cap U g$, we must have $U=U g$. Thus $G_{u} \leqslant N$ for all $u \in U^{*}$.

Let K denote the kernel of N on U. Then, writing $\bar{G}=N / K$, obviously \bar{G} is soluble, and we see that U is an irreducible $G F(q) \bar{G}$-module, faithful for \bar{G}, such that \bar{G} acts q^{\prime}-halftransitively on $U^{\#}$. Write $\bar{E}=E K / K$. Since E acts faithfully and irreducibly on U, it follows that $E \equiv \bar{E} \varangle \bar{G}$ and $U_{\bar{E}}$ is irreducible. Hence we have proved (i) and (ii).

If \bar{G} acts q '-semiregularly on U then the p-group \bar{E} acts semi-regularly on U^{*}. But $\bar{E} \cong E$, a group of type $E(p, m)$ with $m \neq 0$. Hence $E \equiv Q_{8}$. This yields (iii). Finally assume that either $p>2$ or that $p=2$ and $m \geqslant 2$. In addition, assume that \bar{G} contains a non-cyclic abelian normal subgroup. Then the structure of $\overline{\mathrm{G}}$ is given in Theorem 3.7. If $\overline{\mathrm{G}}$ satisfies (iii) of that theorem, that is, if $\bar{G} \cong \Delta$, then $F(\bar{G}) \cong Q_{8} \times C_{2}$ which is clearly impossible. If $\bar{G} \cong \mathscr{J}_{0}\left(q^{n} ; q^{k}\right)$ for some integers n, k, then \bar{G} contains a normal abelian subgroup of index $2 q^{k}$ and hence cannot possibly contain \bar{E}. Therefore $\overline{\mathrm{G}}$ satisfies (i), (ii) or (iv) of Theorem 3.7, giving $q=3$, and we see easily that $\bar{E} £ Q_{8} Y D_{8}$.
Q.E.D.

ASSUMPTIONS. From this point up to the end of Lemma 4.20 we work under the assumptions that G is a soluble group, q is a prime, and V is an n-dimensional irreducible $G F(q) G$-module, faithful for G, such that G acts q^{\prime}-halftransitively but not q^{\prime}-semiregularly on $V^{\boldsymbol{\prime \prime}}$. There exists $E \subset G$ such that E is of type $E(p, m)$ with $m \neq 0$ and V_{E} is irreducible. In addition we assume that G contains no non-cyclic abelian normal subgroup. We remark that $p \neq q$.

We shall require several of the results of [13] Section 2 in precisely the same form but valid under the weaker assumptions of q 'halftransitivity (instead of half-transitivity) and the absence of noncyclic abelian normal subgroups of G (instead of primitivity). These results appear below as Lemmas 4.5-4.10 corresponding to Lemmas 2.1-2.6 respectively in [13]. We shall not give the revised proofs in full since the revisions required are minimal, but we shall always be careful to point out exactly where the proofs need modifying and how these modifications can be made.

Following [13] (pp $677-678$), we define the type of E as follows.

$$
\begin{array}{ll}
\text { type } I & : p>2, \\
\text { type II } & : p=2,|Z(E)|=2, \\
\text { type III }: p=2,|Z(E)|=4, Z(E) \leqslant Z(G), \\
\text { type IV } & : p=2,|Z(E)|=4, Z(E) \notin Z(G) .
\end{array}
$$

LEMMA 4.5. (cf. [13] Lemma 2.1). Let $s \geqslant 1$ be minimal such that
$|Z(E)| \mid q^{s}-1$. Let M be any subgroup of G such that $E \leqslant M \leqslant C_{G}(Z(E))$. Then $M \leqslant G L\left(p^{m}, q^{s}\right)$ and this representation of M is absolutely irreducible. Furthermore $n=s p^{m}$ and we have

```
type I : s|(p-1),
type II : s = 1,
type III: s=1 or 2,
type IV : s=2 and if \overline{M}}\mathrm{ is a q'-subgroup of G
```

such that $E \leqslant \bar{M}$ and $\bar{M} \notin C_{G}(Z(E))$, then $\bar{M} \leqslant G L\left(p^{m+1}, q\right)$ and this is an absolutely irreducible representation.

Proof. An examination of the proof of [13] Lemma 2.1 reveals that the assumption of half-transitivity is not used, and the assumption of primitivity is used oniy to ensure that $\mathrm{V}_{\mathrm{Z}(\mathrm{E})}$ is homogeneous as a

We shall require several of the results of [13] Section 2 in precisely the same form but valid under the weaker assumptions of $\mathbf{q}^{\mathbf{\prime}-}$ halftransitivity (instead of half-transitivity) and the absence of noncyclic abelian normal subgroups of G (instead of primitivity). These results appear below as Lemmas 4.5-4.10 corresponding to Lemmas 2.1-2.6 respectively in [13]. We shall not give the revised proofs in full since the revisions required are minimal, but we shall always be careful to point out exactly where the proofs need modifying and how these modifications can be made.

Following [13] (pp 677-678), we define the type of E as follows.

$$
\begin{array}{ll}
\text { type I } & : p>2, \\
\text { type II } & : p=2,|Z(E)|=2, \\
\text { type III }: p=2,|Z(E)|=4, Z(E) \leqslant Z(G), \\
\text { type IV } & : p=2,|Z(E)|=4, Z(E) \notin Z(G) .
\end{array}
$$

LEMMA 4.5. (cf. [13] Lemma 2.1). Let $s \geqslant 1$ be minimal such that $|Z(E)| \mid q^{s}-1$. Let M be any subgroup of G such that $E \leqslant M \leqslant C_{G}(Z(E))$. Then $M \leqslant G L\left(p^{m}, q^{s}\right)$ and this representation of M is absolutely irreducible. Furthermore $n=s p^{m}$ and we have

> type I $: s \mid(p-1)$,
> type II $: s=1$,
> type III $: s=1$ or 2,
> type IV $: s=2$ and if \bar{M} is a q^{\prime}-subgroup of G
such that $E \leqslant \bar{M}$ and $\bar{M} \notin C_{G}(Z(E))$, then $\bar{M} \leqslant G L\left(p^{m+1}, q\right)$ and this is an absolutely irreducible representation.

Proof. An examination of the proof of [13] Lemma 2.1 reveals that the assumption of half-tranaitivity is not used, and the assumption of primitivity is used only to ensure that $\mathrm{V}_{\mathrm{Z}}(\mathrm{E})$ is homogeneous as a
$\mathrm{Z}(\mathrm{E})$-module. Therefore we need only show that $\mathrm{V}_{\mathrm{Z}(\mathrm{E})}$ is homogeneous without recourse to the assumption of primitivity. But this is trivial since $V_{Z(E)} \equiv\left(V_{E}\right)_{Z(E)}$ and V_{E} is irreducible.

> Q.E.D.

As individual lemmas in the sequence 2.1-2.6 of [13] are established, they are often required in the proofs of subsequent lemmas in the sequence. We adopt the obvious convention that Lema 4.5 above plays exactly the same part in the proofs of Lemma 4.6-4.10 as [13] Lemma 2.1 plays in the proofs of [13] Lemmas 2.2-2.6. For example, for the purposes of establishing Lemma 4.7 below, the references to [13] Lemma 2.1 in the proof of [13] Lemma 2.3 are to be taken as references to Lemma 4.5, and so on. Similarly, Lemmas 4.6-4.10 play the roles of [13] Lemmas 2.2-2.6 respectively.

Lemma 2.2 of [13] is a general result concerning modules for p-groups, and we reproduce it below as Lemma 4.6.

LEMMA 4.6. ([13] Lemma 2.2). Let M be a p-group acting faithfully and absolutely irreducibly on a vector space W over the field F. Let $\operatorname{dim}_{F} W=K$. Then there exist subgroups N and K of M and an N-subspace U of W such that the representation of M on W is induced from that of N on U. Furthermore $K=\operatorname{ker}(N$ on U) and either
(i) $|M: N|=k, \operatorname{dim}_{F} U=1$ and N / K is cyclic, or
(ii) $|M: N|=k / 2, \operatorname{dim}_{F} U=2, P=2$ and N / K is dihedral, semi-dihedral or generalised quaternion.

LEMMA 4.7.(cf. [13] Lemma 2.3). Let ω denote the exponent of a Sylow p-subgroup of $C_{G}(Z(E))$. Then for all $\times \in V^{*}$ we have

$$
\begin{array}{ll}
\text { type } I & :\left|G: G_{x}\right|_{p} \leqslant p^{m} \cdot \min \left\{\omega,\left|q^{s}-1\right|_{p}\right\}, \\
\text { type II }:\left|G: G_{x}\right|_{p} \leqslant p^{m+1} \cdot \min \left\{\omega_{p}\left|q^{2}-1\right|_{p}\right\}, \\
\text { type III }:\left|G: G_{x}\right|_{p} \leqslant p^{m} \cdot \min \left\{\omega_{p}\left|q^{2}-1\right|_{p}\right\}, \\
\text { type IV }: \mid G: G_{x}!_{p} \leqslant p^{m+1} \cdot \min \left\{\omega_{v}\left|q^{2}-1\right|_{p}\right\} .
\end{array}
$$

Proof. Inspection of the proof of [13] Lemma 2.3 reveals that the assumption of primitivity is not used and the assumption of halftransitivity is used only in that it guarantees that for all $x, y \in V^{*}$,

$$
\left|\dot{G}: G_{x}\right|_{p}=\left|G: G_{y}\right|_{p} .
$$

But, clearly, since $p \neq q$, the above equality follows from the weaker assumption of q^{\prime}-halftransitivity, and hence the proof of [13] Lemma 2.3 is easily modified to give the proof we require.
Q.E.D.

LEMMA 4.8. (cf. [13] Lemma 2.4). Let $A=C_{G}(E)$. Then A is a normal cyclic subgroup of G which is central in $C_{G}(Z(E))$ and acts sepi-regularly on V^{*}. Assume that, if $\mathrm{p}=2$, then $\mathrm{m} \geqslant 3$. Then there exists $\times \in \mathrm{V}^{*}$ such that $G_{x} \cap A E=1$ and $\left|G: G_{x}\right|_{p} \geqslant\left|A_{p}\right| p^{2 m}$ where A_{p} is the normal Sylow p-subgroup of A. This yields

$$
\begin{aligned}
& \text { type I }: \omega \geqslant p^{m}\left|A_{p}\right|,\left|q^{s}-1\right|_{p} \geqslant p^{m+1}, \\
& \text { type II } \quad: \omega \geqslant p^{m-1}\left|A_{p}\right|,\left|q^{2}-1\right|_{p} \geqslant p^{m}, \\
& \text { type III }: \omega \geqslant p^{m}\left|A_{p}\right|,\left|q^{2}-1\right|_{p} \geqslant p^{m+2}, \\
& \text { type IV } \quad: \omega \geqslant p^{m-1}\left|A_{p}\right|,\left|q^{2}-1\right|_{p} \geqslant p^{m+1}
\end{aligned}
$$

Proof. An examination of the proof of [13] Lemma 2.4 reveals that the assumption of primitivity is not used, and the assumption of half-transitivity is used only in that it guarantees that, for all $y, j \in V^{* \prime}$,

$$
\left|G: G_{x}\right|_{p}=\left|G: G_{y}\right|_{p}
$$

But the above equality follows from the weaker assumption of q '-halftransitivity, and hence the proof of [13] Lemma 2.4 is easily adapted to provide the proof we require.
Q.E.D.

LEMMA 4.9. (cf. [13] Lemma 2.5). Let $H=C_{G}(Z(E))$. Then G has the following structure.
(i) $6 / \mathrm{H}$ is cyclic;
(ii) $H / A E$ acts faithfully on $W=E / Z(E)$ and, as a linear group on W, we have $H / A E \leqslant S p(2 m, p)$;
(iii) AE/A is elementary abelian of order $p^{2 m}$;
(iv) A is cyclic.

Proof. We remark that $W=E / Z(E)$ is made into a symplectic space of dimension 2 m over GF (p) by means of the non-singular skew-symmetric bilinear form induced on $E / Z(E)$ by the commutator map $[$,$] on E$. Inspection of the proof of [13] Lemma 2.5 reveals that the assumption of half-transitivity is not used, and the assumption of primitivity is only used to ensure that a certain normal 2-subgroup of G, namely $B_{2}=O_{2}\left(C_{H}(W)\right)$, is of symplectic type; that is, B_{2} contains no non-cyclic, abelian characteristic subgroup. But, clearly, the weaker assumption that G contains no non-cyclic abelian normal subgroup guarentees that B_{2} is of symplectic type. Hence the proof of [13] Lemma 2.5 is easily modified to give the proof we require.
Q.E.D.

LEMMA 4.10. (cf. [13] Lemma 2.6). We must have one of the following.

$$
\begin{array}{ll}
\text { type I } & : p=3, m \leqslant 2, \\
\text { type II } & : p=2, m \leqslant 6, \\
\text { type III } & : p=2, m \leqslant 3, \\
\text { type IV } & : p=2, m \leqslant 5
\end{array}
$$

Proof. An examination of the proof of [13] Lemma 2.6 reveals that the assumption of primitivity is not used and the assumption of half-transitivity is used only in that it guarantees that, in the case $p=3, m=1$, the fact that E does not act semi-regularly on $V^{* \prime}$ implies that $p\left|\left|G_{x}\right|\right.$ for
all $x \in V^{*}$. But obviously, since $p \neq q$, the weaker assumptio: of q^{\prime}-halftransitivity leads to the same conclusion, and hence the proo of [13] Lemma 2.6 is easily adapted to provide the proof we require.
Q.E.D.

The following result will enable us to eliminate many of the remaining cases.

LEMMA 4.11. (i) Assume that if $p=2$ then we have both $m \geqslant 2$ and either $q \neq 3$ or $E \not \equiv Q_{8} Y D_{8}$. Then $\mid E \|\left(q^{n}-1\right)$.
(ii) Assume that $q \backslash|\operatorname{Sp}(2 m, p)|$, and that either $p=2$ or $q||G: H|$. Then G acts half-transitively on v^{*}, we must have $p=2$, and if $m \neq 1$ then $E \cong Q_{8} Y D_{8}$ with $q=3$.

Proof. Assume that if $p=2$ then we have both $m \geqslant 2$ and either $q \neq 3$ or $E \notin Q_{B} Y D_{8}$. Then, by Lemma $4.2(i i)$, there exists $x \in V^{\#}$ such t^{2}.at E_{x} $=G_{x} \cap E=1$. Therefore $|E|\left|\left|G: G_{x}\right|\right.$, and it follows that $| E \mid$ divides the size of the G-orbit containing x. Now $(|E|, q)=1$ and hence, by q^{\prime}-halftransitivity, $|E|$ divides the size of each of the G-orbirs in $V^{\text {\# }}$. We conclude that $|E|$ divides $\left|V^{\#}\right|=\left(q^{n}-1\right)$ and thus we have proved (i). Assume now that $q \dagger|\operatorname{Sp}(2 m, p)|$ and that either $p=2$ or $q \nmid G: H \mid$. By Lemma 4. 9 (ii), the group H/AE is isomorphic to a subgroup $\mathrm{O} E \mathrm{Sp}(2 \mathrm{~m}, \mathrm{p})$, and therefore $q \dagger|H / A E|$. Now A is a normal cyclic subgroup of G and hence, since $O_{q}(G)=1$, we have $q||A|$. Clearly $q \dagger| E \mid$ and it follows that $q \nmid A E \mid$, whence $q||H|$. If $p=2$ then $| G: H \mid \leqslant 2$ and so, since $p \neq q$, we must have $q \nmid|G: H|$. On the other hand, if $p \neq 2$ then, by assumption, qX|G: $H \mid$. Therefore, whether $p=2$ or $p \neq 2$, we have $q \nmid G: H \mid$ and we conciute that q \mid |G|. Thus G acts half-transitively on V.

Assume that $E \not Q_{B}$. Then E does not act semi-regularly on V^{*}. Hence O does not act semi-regularly on V^{*} and the possibilities for G are listed
in Theorem 1.16. clearly $G \neq \mathscr{J}_{0}\left(q^{n / 2}\right)$ since $\mathscr{J}_{0}\left(q^{n / 2}\right)$ contains a normal subgroup isomorphic to $C_{2} \times C_{2}$. If $G \leqslant \mathscr{J}\left(q^{n}\right)$, tinen G, 三nd nence E, is metacyclic, whence $p=2, m=1$. In all the remaining possibilities for G in Theorem 1.16, we see that $p=2$, and either $n=10 \sum_{0} \equiv Q_{8} Y D_{8}$ and $q=3$. This completes the proof of (ii).
Q.E.D.

Next we state, without proof, a result concerning the onder of the group $\operatorname{Sp}(2 \mathrm{~m}, \mathrm{p})$. A proof is given in [6] II 9.13.

LEMMA 4.12. We have

$$
|\operatorname{Sp}(2 m, p)|=\left(p^{2 m}-1\right) p^{2 m-1}\left(p^{2 m-2}-1\right) p^{2 m-3} \ldots\left(p^{2}-1\right) p
$$

LEMMA 4.13. The case $p=3, m=1$, does not occur.

Proof. Suppose that $p=3, m=1$. Then $|E|=27$ and by, Lema 4.11 (i), we have $27 \mid\left(q^{n}-1\right)$. If $q=2$ then by Lemma 4.5 , we have $a=5$, giving $27 \mid 63$, a contradiction. Hence $q \neq 2$. Now $q \neq 3$ and so, since $|\operatorname{sp}(2,3)|$ $=24$ and $|G: H| \leqslant 2$, it follows that $q||S p(2,3)|$ and $q||G: 4|$. Therefore, by Lemma 4.11(ii), we have $p=2$, a contradiction. Tius the case $p=3, m=1$ does not occur.

> Q.E.D.

LEMMA 4.14. The case $p=3, m=2$, does not occur.
Proof. Suppose that $p=3, m=2$. Then $|E|=3^{5}=243$ and, by Lemma 4.11(i), we have $243 \mid\left(q^{n}-1\right)$. If $q=2$ or $q=5$, then $s=2$ and then, by Leuma 4.5, we have $n=18$. But it is easily checked that $243 \nmid\left(2^{18}-1\right)$ and $243 \nmid\left(5^{18}-1\right)$, and we deduce that $q \neq 2, q \neq 5$. Now $q \neq 3$ and so, since $|S p(4,3)|$ $=3^{4.5 .2^{7}}$ and $|G: H| \leqslant 2$, it follows that $q||\operatorname{Sp}(4,3)|$ and $q| G: H \mid$. Therefore, by Lemma 4.11(ii), we have $p=2$, a contradiciion. Thus the case $p=3, m=2$, does not occur.

Q.E.D.

The following result is included merely to simplify some of the arithmetical checking in Lemmas 4.16-4.20.

LEN'A 4.15. Let a, b, k be positive integers such that k is odd. Then $2^{\mathrm{L}} \mid\left(k^{2^{a}}-1\right)$ if and only if $2^{b-a+1} \mid\left(k^{2}-1\right)$.

Proof. If t is an even positive integer then, since $k^{t}-1=\left(k^{t / 2}-1\right)\left(k^{t / 2}+1\right)$, we have $4 \mid\left(k^{t}-1\right)$. Therefore $4 f\left(k^{t}+1\right)$. We have

$$
\begin{aligned}
\left(k^{2^{a}}-1\right)= & \left(k^{2^{a-1}}-1\right)\left(k^{2^{a-1}}+1\right)=\left(k^{2^{a-2}}-1\right)\left(k^{2^{a-2}}+1\right)\left(k^{2^{a-1}}+1\right)=\ldots \\
& \left(k^{2}-1\right)\left(k^{2}+1\right)\left(k^{4}+1\right) \ldots\left(k^{2 a-1}+1\right)
\end{aligned}
$$

and then, since $4+\left(k^{2^{c}}+1\right)$ for $c \geqslant 1$, we see $2^{b} \mid\left(k^{2^{a}}-1\right) \Leftrightarrow$ $2^{b}\left|\left(k^{2}-1\right) 2^{a-1} \Longleftrightarrow 2^{b-a+1}\right|\left(k^{2}-1\right)$.
Q.E.D.

LEMA 4.16. The case $p=2, m=6$, does not occur.

Proof. Suppose that $p=2, m=6$. By Lemma 4.10 we see that E is type $I I$, whence $|z(E)|=2$. Therefore $s=1$ and hence, by Lemma 4.5, we have $n=2^{6}=64$. Now $|E|=2^{13}$ and, using Lemma 4.11(i), it follows that $2^{13} \mid\left(q^{2^{6}}-1\right)$. Lemma 4.15 yields $2^{8} \mid\left(q^{2}-1\right)$. It is easily checked that $2^{8} \mid\left(q^{2}-1\right)$ implies that $q \neq 3,5,7,11,13,17$, or 31 , and therefore, since $\left|S_{p}(12,2)\right|=2^{36} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 31$, we deduce that $q H|S p(12,2)|$. Hence, by Lemma 4.11(ii), we have $m \leqslant 2$, a contradiction. Thus the case $p=2$, $\mathrm{m}=6$ does not occur.

Q.E.D.

Lemen 4.17. The case $p=2, m=5$, does not occur.

Proof. Suppose that $p=2, m=5$. Then $s=1$ or 2 depending on whether $|Z(E)|=2$ or 4 and whether $q \equiv 1$ or $-1 \bmod 4$. Hence, by Lemma 4.5, we have $n=2^{5}$ or 2^{6} and if $n=2^{6}$ then $|z(E)|=4$. Also if $|z(E)|=2$
then $|E|=2^{11}$, and if $|Z(E)|=4$ then $|E|=2^{12}$. By Lema 4.11(i) we have $|E| \mid\left(q^{n}-1\right)$.

If $n=2^{5}$ then $2^{11} \mid\left(q^{2^{5}}-1\right)$, and Lemma 4.15 yields $2^{7} \mid\left(q^{2}-1\right)$. If $n=2^{6}$ then $|Z(E)|=4$, and it follows that $|E|=2^{12}$, whence $2^{12} \mid\left(q^{2^{6}}-1\right)$ and, using Lemma 4.15, we deduce that, again, $2^{7} \mid\left(q^{2}-1\right)$. It is easily checked that $2^{7} \mid\left(q^{2}-1\right)$ implies that $q \neq 3,5,7,11,17,31$, and therefore, since $|S p(10,2)|=2^{35} \cdot 3^{6} \cdot 5^{2} \cdot 7.11 .17 .31$, it follows that $q||\operatorname{Sp}(10,2)|$. Hence, by Lemma 4.11(ii), we have $m \leqslant 2$, a contradiction. Thus the case $p=2, m=5$, does not occur.
Q.E.D.

LEMMA 4.18. The case $p=2, m=4$, does not occur.

Proof. Suppose that $p=2, m=4$. Using the same argument as in the proof of Lemma 4.17, we see that in this case we must have $2^{6} \mid\left(q^{2}-1\right)$. It is easily checked that $2^{6} \mid\left(q^{2}-1\right)$ implies that $q \neq 3,5,7,17$, and therefore, since $|\operatorname{Sp}(8,2)|=2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7.17$, it follows that $q \dagger|\operatorname{Sp}(8,2)|$. Hence, by Lemma 4.11 (ii), we have $m \leqslant 2$, a contradiction. Thus the case $p=2, m=4$, does not occur.
Q.E.D.

LEMMA 4.19. The case $p=2, m=3$, does not occur.

Proof. Suppose that $p=2, m=3$. Again using the argument in the proof of Lemma 4.17, we see that in this case we must have $2^{5} \mid\left(q^{?}-1\right)$. It is easily checked that $2^{5} \mid\left(q^{2}-1\right)$ implies that $q \neq 3,5,7$, and therefore, since $|S p(6,2)|=2^{9} .3^{4} .5 .7$, it follows that $q||S p(6,2)|$. Hence, by Lema 4.12(ii), we have $m \leqslant 2$, a contradiction. Thus the case $p=2$, $m=3$, dows not occur.
Q.E.D.

LEMMA 4.20. If $p=2$ and $m=2$, then $q=3$ and $E \cong Q_{8} Y D_{8}$.

Proof. Assume that $p=2, m=2$, and suppose that either $q \neq 3$ or that $E \neq Q_{8} Y D_{8}$. As before, $s=1$ or 2 depending on whether $|z(E)|=2$ or 4 and whether $q \equiv 1$ or $-1 \bmod 4$. By Lemma 4.5 we have $n=2^{2}$ or 2^{3}, and if $n=2^{3}$ then $|z(E)|=4$. Also if $|z(E)|=2$ then $|E|=2^{5}$, and if $|z(E)|=4$ then $|E|=2^{6}$. We have assumed that either $q \neq 3$ or $E \neq Q_{B} Y D_{8}$, and therefore, by Lemma $4.11(i)$, it follows that $|\Sigma| \mid\left(q^{n}-1\right)$.

If $n=2^{2}$, then $2^{5} \mid\left(q^{2^{2}}-1\right)$ and Lemma 4.15 yields $2^{4} \mid\left(q^{2}-1\right)$. If $n=2^{3}$, then $|Z(E)|=4$ and it follows that $|E|=2^{6}$, whence $2^{6} \mid\left(q^{2^{3}}-1\right)$ and, using Lemma 4.15, we deduce that again, $2^{4} \mid\left(q^{2}-1\right)$. It is easily checked that $2^{4}+\left(q^{2}-1\right)$ for $q=3$ or 5 , and therefore $q \nmid 3$ or 5 . Since $|\operatorname{Sp}(4,2)|=2^{4} \cdot 3^{2} .5$ we conclude that $q \backslash|\operatorname{Sp}(4,2)|$. Hence, by Lemma 4.11(ii), we have $q=3$ and $E £ Q_{8} Y D_{8}$, a contradiction. Therefore we were incorrect in supposing that either $q \neq 3$ or $E \neq Q_{B} Y D_{8}$ and, as a result, we must have both $q=3$ and $E \approx Q_{8} Y D_{8}$.
Q.E.D.

We now drop the assumptions stated immediately after the proof of Lemma 4.4 and we collect together the preceeding results to obtain the following theorem.

THEOREM 4.21. Let G be a soluble group. q a prime, and V an irreducible GF(q)G-module. faithful for G, such that G acts q^{\prime}-halftransitively but not q'-gemiregularly on V^{*}. Assume that G contains no non-cyclic abelian normal subgroup. Then for all odd primes P we have $O_{p}(G)$ is cyclic, and if $E 4 G$ such that E is of type $E(2, m)$ with $m \neq 0$, then either $m=1$ or $q=3$ and $E \cong Q_{8} Y D_{8}$.

Proof. Let p be a prime auch that $p>2$ and write $P=O_{p}(G)$. Suppose P
is not cyclic. Then by Lemma 4.1 there exists a subgroup, E, of P such that $E \triangleleft G$ and E is of type $E(p, m)$ with $m \neq 0$. But then, using the Reduction Lemma and Lemmas $4.10,4.13,4.14$, we have a contradiction. Hence P is cyclic. Now suppose $E \triangleleft G$ such that E is of type $E(2, m)$ with $m \geqslant 2$. Then, by the Reduction Lemma and Lemmas 4.10, 4.16-4.20, we have $q=3$ and $E \cong Q_{8} Y D_{8}$.
Q.E.D.

Theorem 4.21 completes Step 2 in the outline of this chapter given earlier. Before proceeding to Step 3 we state and prove two useful lemmas, and, for convenience, record the results from [11] to which we shall need to refer.

LEMMA 4.22. Let G be a group of order 96 such that $F(G) \cong Q_{8} Y C_{4}$ and $G / F(G) \equiv S_{3}$. Assume that $|Z(G)|=2$ and that there exists $g \in G \backslash C_{G}(Z(F(G)))$ such that $g^{2}=1$. Then there exists at least one irreducible GF(3)G-module which is faithful for G, and if W is any such $\operatorname{GF}(3) G$-module then $\operatorname{dim}_{G F(3)}{ }^{W}=4$ and there exists $w \in W^{*}$ such that $4\left|\left|G_{w}\right|\right.$.

Proof. Write $F=F(G)$, and let $F=Q Z$ where $Q \neq Q_{8}$ and $Z \neq C_{4}$ such that $|Q \cap z|=2$ and $[Q, z]=1$. Clearly $Z=Z(F)$. It is easily seen that Q is characteristic in F, and therefore $Q \varangle G$. Let C be a Sylow 3-subgroup of G. Then $|C|=3$ and C centralises Z. Write $N=C_{G}(Z)$, and then, since $|Z(G)|=2<4=|Z|$, we must have $N<G$. Now FC \& N and $|F C|=3.16$ $=48$, giving $|G: F C|=2$. Therefore $F C=N \varangle G$. If C centralises Q then C centralises $Q Z=F$, whence $C \varangle N$ and $C=O_{3}(N) \leqslant F(N) \leqslant F(G)$, a contradiction. Hence C does not centralise Q and so.clearly, Q $\equiv \operatorname{SL}(2,3)$.

Let $z=\langle a\rangle$ and write $a^{2}=z$. By assumption there exists $g \in G N$ euch that $g^{2}=1$, and we must have gag $=a^{-1}$. Clearly $Q C \subset G$, and therefore, writing $T=\langle Q C, g\rangle$, we have $|T|=48$, and $Q \in T$ with $Q \subset \in \operatorname{SL}(2,3)$.

Let $R=C_{G}(Q / Z(Q))$. Then $R \triangle G$ and $C \neq R$. Therefore R is a normal 2-subgroup of G, and we deduce that $R=F$. Consequently $g \notin R$ and, by Lemma 3.15, it follows that $T \cong G L(2,3)$. Also $|G: T|=2$, whence $T \triangleleft G$.
 (obviously such a module exists since $T \cong \operatorname{GL}(2,3)$), and let W be a nontrivial irreducible submodule of the $\operatorname{GF}(3) G$-module U^{G}. The group G has a unique minimal normal subgroup, namely $\langle z\rangle=Z(Q)=Z(T)=Z(G)$. Now z acts like scalar multiplication by -1 on U, and hence acts in exactly the same manner on U^{G}. Therefore W is faithful for G, and we heve demonstrated the existence of an irreducible $\operatorname{GF}(3)$ G-module which is faithful for G, namely W.

Now assume that W is any irreducible GF(3)G-module, faithful for G, and in addition assume that U is an irreducible constituent of W_{T}. Obviously U is faithful for T, and therefore, by Lemma 3.13(i), we have $\operatorname{dim}_{G F(3)} \mathrm{U}=2$. Let H denote the stabiliser in G of U. Then
$H=\{h: h \in G, U$ and $U h$ are T-isomorphic $\}$.

Since $T \leqslant H$ and $|G: T|=2$, we must have $H=T$ or $H=G$. Suppose $H=G$. Then U and $U a$ are T-isomorphic as GF(3)T-modules. The element g is a noncentral involution in T, and therefore there exists $u \in U^{*}$ such that $g \in T_{u}$. By Lemma 3.13(ii) we have $T_{u}=S_{3}$, and hence $T_{u}=\langle L, g\rangle$ for some Sylow 3-subgroup, L, of G. Since U and Ua are T-isomorphic, it follows that there exists $x \in\left(U_{a}\right)^{*}$ auch that $T_{x}=T_{u}$. Consider the element ua of (Ua) . Clearly

$$
T_{u a}=\left(T_{u}\right)^{a}=\left\langle L^{a}, g^{a}\right\rangle
$$

Now $L \leqslant N=C_{G}(Z)$ and thus $L^{a}=L$. Also, since gag $=a^{-1}$, we must have $g^{a}=a^{2} g=g z$. Therefore $T_{u a}=\langle L, g z\rangle$. But then x, ua are two elements of (Ua) auch that $T_{x}=T_{u}=\langle L, g\rangle$ and $T_{u a}=\langle L, g z\rangle$, contradicting

Lemma 3.13(v). Hence $H \neq G$ and we conclude that $H=T$.
By Clifford's Theorem we have

$$
W_{T}=U \oplus U a
$$

where U and U are not T-isomorphic, and $W \equiv U^{G}$. Thus $\operatorname{dim}_{G F(3)} W=4$. All that remains to prove is that there exists $w \in W^{*}$ such that $4\left|\left|G_{w}\right|\right.$. Since $F=Q Z$ it is easily seen that $|i(F)|=6$ and that, if $f \in i(F)$, then no Sylow 2-subgroup of G centralises f. Let $f \in i(F)$. Clearly thert exists $w \in W^{\#}$ such that $f \in G_{W^{\prime}}$, and since Q acts semi-regularly on $W^{\#}$, we must have $G_{w} \cap F=F_{w}=\langle f\rangle$. Now $G_{w} \cap F \subset G_{w}$, and therefore, from the fact that no Sylow 3-subgroup of G centralises f, we deduce that ${ }^{3}| | G_{w} \mid$. Write $w=u+v$ with $u \in U, v \in U a$. If $v=0$ then $G_{w}=G_{u}=T_{u} \cong S_{3}$, contradicting $3 \nmid\left|G_{w}\right|$. Hence $v \in(U a)^{*}$, and similarly $u \in U^{*}$.

$$
\text { Clearly } G_{u} \cap G_{v}=T_{u+v}=T \cap G_{u+v} \text {. since }!G_{u+v}: G_{u} \cap G_{v} \mid \leqslant 2 \text { and }
$$ $f \in G_{u+v} \backslash\left(G_{u+v} \cap T\right)$, it follows that $\left|G_{u+v}: G_{u} \cap G_{v}\right|^{\prime}=2$. Hence, if we can show that $2 \| G_{v} \cap G_{u} \mid$, then $4 \| G_{u+v} \mid$ and the proof is complete. Suppose that $2 \dagger\left|G_{u} \cap G_{v}\right|$. Then, since $G_{u}=T_{u}$ and $G_{v}=T_{v}$, we have $2 \nmid\left|T_{u} \cap T_{v}\right|$. Recall that $T_{u} \cong T_{v} \cong S_{3}$ and thus, since $o f\left|G_{u+v}\right|$, we see that $3 \nmid T_{u} \cap T_{v} \mid$, whence $T_{u} \cap T_{v}=1$. Let L be a Sylow 3-subgroup of G such that $L \leqslant T_{u}$ and let g_{1}, g_{2}, g_{3} be the three involutions in T_{u}, so that $T_{u}=\left\langle L, g_{i}\right\rangle$ for $1=1,2,3$. Write

$$
X_{1}=\left\{K: K=T_{x} \text { for some } x \in U^{(\#}\right\}, X_{2}=\left\{K: K=T_{x} \text { for some } x \in(U a)^{\#}\right\}
$$

Then, since U and Ua are not T-isomorphic, by Lemma 3.13(iii) and (iv) we have $\left|x_{1}\right|=\left|x_{2}\right|=4$, and $x_{1} \cap x_{2}=\varnothing$. Arguing as above we see that $L \leqslant T$ ua Since $T_{u} \cap T_{v}=1$, it follows that $T_{u a} \neq T_{v}$. Also $g_{i} \notin T_{\text {ua }}$ for $1=1,2,3$. (since if $g_{1} \in T_{u a}$ then $T_{u a}=\left\langle L, g_{i}\right\rangle=T_{u}$ contradicting $X_{1} \cap X_{2}=\varnothing$). If $i \in\{1,2,3\}$ then g_{i} is a non-central involution of T, and hence there exists $Y_{i} \in X_{2}$ such that $g_{i} \in Y_{i}$. Suppose that $Y_{i}=X_{j}$ for $1 \notin \mathrm{j}$. Then
$\mathbf{y}_{i} \geqslant\left\langle g_{i}, g_{j}\right\rangle=T_{u}$, contradicting $X_{1} \cap X_{2}=\varnothing$. Clearly, then, y_{1}, Y_{2}, $Y_{3}, T_{u a}$, and T_{v} are all distinct elements of X_{2}, a contradiction since $\left|x_{2}\right|=4$. Thus we were incorrect in supposing that 2$\rceil\left|G_{v} \cap G_{u}\right|$, and therefore $4 \| G_{w} \mid$.

Q.E.D.

LEMMA 4.23. Let G be a group such that $F(G)=Q \times B$ where $Q \equiv Q_{\hat{0}}$ and B is cyclic of odd order. Assume G is metacyclic. Then there exists $T \triangleleft G$ such that T and G / T are cyclic, $|F(G): T|=2$, and $C_{G}(T)=T$. In addition $i(G)=\varnothing$.

Proof. Since G is metacyclic there exists $S \varangle G$ such that both S and G / s are cyclic. In particular $Q S / S$ is cyclic. Therefore, since $Q S / S \cong Q / S \cap Q$ and $Q \cong Q_{g}$, we have $|S \cap Q|=4$. Writing $T=(S \cap Q) \times B$, we must have $S \leqslant T$, whence $T \& G$ with both T and G / T cyclic. Also

$$
|F(G) / T|=|Q T / T|=|Q / T \cap Q|=|Q / S \cap Q|=2
$$

write $C=C_{G}(T)$. Then $C \in G$ and C stabilises the chain $Q \geqslant T \cap Q \geqslant 1$. Therefore $C / C_{C}(Q)$ is a 2 -group. But, since $F(G)=Q T$, we have $C_{C}(Q) \leqslant$ $C_{G}(F(G))$. From the fact that G is metacyclic, it follows that G is soluble, and we deduce that

$$
C_{C}(Q) \leqslant C_{G}(F(G))=Z(F(G)) \leqslant T .
$$

Hence C / T is a 2 -group. We have $T \leqslant Z(C)$, and therefore C is a normal nilpotent subgroup of G. Thus $C \leqslant F(G)$ and it follows easily that $C=T$. Let $g \in G$ such that $g^{2}=1$. Since G / T is cyclic and $|F(G) / T|=2$, we must have $g \in F(G)$, whence $g \in Z(Q) \leqslant Z(G)$. We conclude that $\mathcal{I}(G)=\emptyset$.
Q.E.D.

Lemme 4.24 below is precisely [11] Proposition 3.3 and Lemme 4.25 is
a combination of two results in [11] ; specifically, Leman 4.25(i) is [11] Proposition 1.2 and Lemma 4.25 (ii) is [11] Lemma 1.5. Lemma 4.26 is also a combination of two results in [11], namely [11] Lemmas 1.3 and 1.4, but appears in the form below (without proof) as Lemma 3.1 of [13].

For the purposes of stating Lemmas $4.24-4.26$ below, we assume that G is a soluble group, q is a prime and V is an irreducible GF(q)G-module, faithful for G, with $\operatorname{dim}_{G F(q)} V=n$.

LEMMA 4.24. ([ll] Proposition 3.3). Assume that G acts half-transitively but not semi-regular.ly on $v^{* \prime}$. In addition assume that either there exists a normal self-centralising cylic subgroup of G, A say, or that $F(G)=Q \times B$ where B is a cyclic group of odd order, $Q \cong Q_{8}$ and A denotes $Z(F(G))$. Then V_{A} is homogeneous.

LEMMA 4.25. ([ll] Proposition 1.2 \& Lemma].5). Assume that p is a prime such that $p\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$. Then
(i) if there exists a normal self-centralising cyclic subgroup A of G such that V_{A} is homogeneous then $\left.G \leqslant \mathscr{J} q^{n}\right)$;
(ii) if $F(G)=Q \times B=F$, say, where B is a cyclic group of odd order. $Q \cong Q_{8}$, and $V_{Z(F)}$ is homogeneous, then either $G \leqslant \mathscr{T}\left(q^{n}\right)$, or $p=2$, or $p=3$. LEMMA 4.26. ([11] Lemmas 1.3 8 1.4). Assume that p is a prime such that $p \| G_{x} \mid$ for all $x \in V^{*}$, and that A is a cyclic normal subgroup of G such that V_{A} is homogeneous. Let r depote the dimension over $G F(q)$ of an irreducible constituent of V_{A}, and write $n / r=k$. Consider those subgroups. P, of G containing A such that $|P / A|=P$ and $P \cap G_{x}>1$, for some $x \in V^{*}$. If exactly λ_{1} of such subgroups are contained in $C_{G}(A)$, and exactly λ_{2} are not then
(i)

$$
\frac{q^{k r}-1}{q^{r}-1} \leqslant \lambda_{1}\left\{1+\frac{q^{r(k-1)}-1}{q^{r}-1} j+\lambda_{2}\left\{\frac{q^{r k / p}-1}{q^{r / p}-1}\right\} ;\right.
$$

(ii) $q^{r}+1 \leqslant 2 \lambda_{1}+\lambda_{2}\left(q^{r / p}+1\right)$ for $k=2$;
(iii) $q^{T}<2\left(\lambda_{1}+\lambda_{2}\right)$ for $k>2$.

ASSUMPTIONS. Throughout the rest of this chapter we shall assume that G is a soluble group, q is a prime, and V is an irreducible GF(q)G-module, faithful for G, such that G acts q^{\prime}-halftransitively but not q^{\prime}-semiregularly on $V^{\#}$. In addition we shall assume that G contains no non-cyclic abelian normal subgroup.

NOTATION. We fix some notation as follows. Let n denote $\operatorname{dim}_{\operatorname{GF}(q)}$ V. Let F denote $F(G)$, and write $F_{2}=O_{2}(G)$. If B denotes $O_{2},(F)$, then Theorem 4.21 implies that B is cyclic, and we have $F=F_{2} \times B$. Let A denote $Z\left(C_{F}(\oplus(F))\right)$. Clearly A is an abelian normal subgroup of G, and hence, by assumption, A is cyclic. Obviously $B \leqslant A$. Finally, let p be a prime such that $p \neq q$ and $p \| G_{x} \mid$ for all $x \in V^{*}$. (The existence of such a prime p is guaranteed by the assumption that G acts $q^{\prime-h a l f t r a n s i t i v e l y ~}$ but not q^{\prime}-semiregularly on $V^{\#}$.)

As indicated in the outline of this chapter given earlier, we shall have two cases to consider according to whether or not V_{A} is homogeneous. However, if F_{2} is generalised quaternion of order at least 16 , or if F_{2} is cyclic, dihedral or semi-dihedral, then the following lemma gives the structure of G without having to assume anything about V_{A}.

LEMMA 4.27. Assume that F_{2} is generalised quaternion of order at least 16 , or that F_{2} is cyclic, dihedral, or semi-dihedral. Then V_{A} is homogeneous and $\left.G \leqslant \mathscr{M} q^{n}\right)$.

Proof. We see easily that F contains a characteristic cyclic subgroup, A_{1} eay, auch that $A \leqslant A_{1}$ and $\left|F: A_{1}\right| \leqslant 2$. Urite $C=C_{G}\left(A_{1}\right)$. Now C stabilises the chain $F_{2} \geqslant F_{2} \cap A_{1} \geqslant 1$, and hence $C / C_{C}\left(F_{2}\right)$ is a 2-group.

But we have

$$
C_{C}\left(F_{2}\right) \leqslant C_{G}(F)=Z(F),
$$

and

$$
Z(F) \leqslant A \leqslant A_{1} \leqslant Z(C)
$$

Therefore $C / Z(C)$ is a 2-group, and it follows that C is a normal nilpotent subgroup of G. Hence $C=C_{G}\left(A_{1}\right) \leqslant F$, and we see easily that $C_{G}\left(A_{1}\right)=A_{1}$.

We have $G / C_{G}\left(A_{1}\right)$ is a subgroup of $\operatorname{Aut}\left(A_{1}\right)$, an abelian group. Obviously $q \nmid\left|A_{1}\right|$, and therefore G contains a normal Hall q '-subgroup, N say. By Lemma 4.3, the group N acts half-transitively but not semi-regularly on V^{*}, and by Theorem 1.16, we have V_{N} is irreducible. Also A_{1} is a normal cyclic self-centralising subgroup of N, and hence, by Lemma 4.24, we have $\mathrm{V}_{\mathrm{A}_{1}}$ is homogeneous. Clearly, then, V_{A} is homogeneous. In addition, we may apply Lemma 4.25 to obtain $\left.G \leqslant \mathcal{J}^{(} q^{n}\right)$.
Q.E.D.

We add to the list of assumptions given above as follows.

ASSUMPTIONS. In view of Lemma 4.27 above, we assume that F_{2} is neither generalised quaternion of order greater than or equal to 16 , cyclic, dihedral, nor semi-dihedral. By Lemma 4.1, if E denotes $\Omega_{2}\left(C_{F_{2}}\left(\phi\left(F_{2}\right)\right)\right.$ then $E \subset G$ and E is of type $E(2, m)$ for some $m \neq 0$. Clearly $C_{F}(\theta(F))=A E$. In addition we assume that V_{A} is homogeneous.

NOTATION. Let H denote $C_{G}(A)$, and let r denote the dimension over $G F(q)$ of an irreducible constituent of $\mathbf{V}_{\mathbf{A}}$.

Our next two results are both from Section 6 of [13], namely [13] Lemmas 6.2 and 6.3. Although the assumptions of [13] Section 6 are slightly different from the assuptions we are working under (haiftransitivity instead of q^{\prime}-halftransitivity, and primitivity instead of merely the absence of non-cyclic abelian normal subgroups), it is easily
seen that these assumptions play no part in the proofs of [13] Lemmas 6.2 and 6.3. Therefore we refer to [13] Lemmas 6.2 and 6.3 for proofs of Lemmas 4.28 and 4.29 below.

LEMMA 4.28. ([13] Lemma 6.2). We have $O_{2}(H / A E)=1$. Also $H / A E$ acts faithfully on $E / Z(E)$ considered as a symplectic space of dimension 2 m over $\operatorname{GF}(2)$, whence $H / A E \leqslant S p(2 m, 2)$.

LEMMA 4.29. ([13] Lemma 6.3). He have
(i) $H \leqslant \operatorname{GL}\left(n / r, q^{r}\right)$ and r is the least integer such that $|A| \mid q^{r}-1$,
(ii) G / H is cyclic of order dividing r,
(iii) $n=2^{m} \omega r$ for some integer ω.

LEMMA 4.30. If $m=1$ then we have one of the following:
(i) G acts half-transitively on V^{*};
(ii) $G \leqslant J\left(q^{n}\right)$:
(iii) $q=3$ and $2\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$.

Proof. Assume that $m=1$. Then, since we have assumed that E is not dihedral, either $E £ Q_{8}$, or $E \cong Q_{8} Y C_{4^{*}} \quad$ Assume that G does not act half-transitively on v^{*} and that $\left.G \neq \mathscr{J} q^{n}\right)$. We shall show that if $q=3$ then $2\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$, and that if $q \neq 3$ then G does not exist.

Assume that $q=3$. If $E \equiv Q_{8}$ then, clearly, we have $E=E \times B$, where, in the notation introduced carlier, $B=O_{2},(F)$, a cyclic group of odd order. In this case wa have $A=Z(F)$ and, since we have assumed that V_{A}, is homogeneous and that $G \neq \mathscr{F} q^{n}$, Lemma $4.25(i i)$ yields $p=2$ or 3. But $P \notin Q$ and $q=3$, and therefore $2 \| G_{x} \mid$ for all $x \in V^{*}$. If $E \cong Q_{8} Y C_{4}$ then E does not act semi-regularly on V^{*}, and hence there exists $y \in V^{*}$ such that $E_{y}>1$. Therefore, in this case, by q^{\prime}-halftransitivity, we have $2\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$. Hence if $q=3$ then 2$|\left|G_{x}\right|$ for all $x \in V^{*}$.

Now suppose, if possible, that $q \neq 3$. Clearly $q||A E|$, and, by Lemma 4.28, H/AE $\leqslant \operatorname{Sp}(2,2) \cong S_{3}$. Since $q \neq 2,3$, it follows that $q||H|$. By Lemma 4.29 the group G / H is cyclic, and therefore G contains a normal Hall q^{\prime}-subgroup, N say. Hence, by Lerma 4.3, the group N acts halftransitively but not semi-regularly on V^{*}, and, by Theorem $1.16, V_{N}$ is irreducible. Let t denote the common size of all the N-orbits in $V_{\text {\# }}^{\text {\# }}$. We have assumed that G does not act half-transitively on V; whence $q||G / N|$, and we see easily that there exists a G-orbit in $V^{\#}$ with size at least qt. Thus

$$
\begin{equation*}
q t \leqslant\left|v^{*}\right|=q^{n}-2 \tag{1}
\end{equation*}
$$

As remarked above, either $E \cong Q_{8}$, or $E \cong Q_{8} Y C_{4}$. Suppose that $E \cong Q_{8}$. Then, as also remarked above, $F=F(G)=E \times B$. But $F=F(N)$, and we can apply Theorem 1.16 to obtain the possibilities for N. Clearly $N \notin \mathscr{G}_{0}^{(}\left(q^{n / 2}\right)$ since $\mathscr{J}_{0}\left(q^{n / 2}\right)$ contains a normal subgroup isomorphic to $c_{2} \times c_{2}$ whereas $O_{2}(N)=E \approx Q_{8}$. Therefore either $N \leqslant \mathscr{J}\left(q^{n}\right)$, or N is one of the cases $\left(c_{1}\right)$, $\left(c_{2}\right),\left(d_{1}\right),\left(d_{2}\right)$. But it is easily checked that if N is one of the cases $\left(c_{1}\right),\left(c_{2}\right),\left(d_{1}\right),\left(d_{2}\right)$, then (1) does not hold, and hence $N \leqslant \mathscr{V}\left(q^{n}\right)$. It follows that N is metacyclic. Now $F(N)=F=E \times B$ where $E \equiv Q_{g}$ and B is cyclic of odd order, and thus, by Lemma 4.23 , there exists $T \& N$ such that $|F: T|=2$ and $C_{N}(T)=T$. By Lemma 4.24 we have V_{T} is homogeneous. It is easily seen that there exist exactly three cyclic subgroups of G of index 2 in F. We have $|G / N|$ is a power of q where $q \neq 2,3$ and $N_{G}(T) \geqslant N$. r.learly, then, $N_{G}(T)=G$ and hence $T \& G$. If $C_{G}(T)=T$ then Lemma $4.25(i)$ yiolds $G \leqslant T Q^{n}$, a contradiction. Hence $C_{G}(T)>T$, and therefore, since $C_{G}(T) \cap N=C_{N}(T)=T$, we have

$$
1 \leqslant C_{G}(T) / T: C_{G}(T) N / N \leqslant G / N
$$

Thus $q\left|\left|C_{G}(T)\right|\right.$, and we deduce that there exists $g \in C_{G}(T)$ such that $| g \mid=q$. since $G / C_{G}(E)$ is isomorphic to a subgroup of $\operatorname{Aut}\left(Q_{8}\right) \cong S_{4}$, we have
$\left|G / C_{G}(E)\right| \mid 24$, and it follows that $g \in C_{G}(E)$. But then $g \in C_{G}(F)=Z(F)=A$, whence $q\left||A|\right.$ which is clearly impossible. We conclude that $E \not \equiv Q_{8}$.

Finally suppose that $E \cong Q_{8} Y C_{4}$. Clearly $N \notin \mathscr{J}\left(q^{n}\right)$ since E is not metacyclic. Therefore, by Theorem 1.16, we have $N \approx \mathscr{V}_{0}\left(q^{n / 2}\right.$) or N is one of the cases $\left(b_{1}\right),\left(b_{2}\right),\left(e_{1}\right)$. But it is easily checked that if N is one of the cases $\left(b_{1}\right),\left(b_{2}\right),\left(e_{1}\right)$ then (1) does not hold, and hence $N \cong \mathscr{S}_{0}\left(q^{n / 2}\right)$. If $q^{n / 2}-1$ is not a power of 2 then $O_{2}\left(\mathscr{V}_{0}\left(q^{n / 2}\right)\right.$) is abelian. But $E \leqslant O_{2}(N)$, and it follows that $q^{n / 2}-1$ is a power of 2. Thus either $n=2$ or $q^{n}=3^{4}$. But we have assumed that $q \neq 3$, and hence $n=2$. We deduce that t, the size of an N-orbit in $v^{\#}$, is exactly $2\left(q^{n / 2}-1\right)$ $=2(q-1)$, giving

$$
q t=2 q(q-1)>(q+1)(q-1)=q^{2}-1
$$

which contradicts (1). Therefore $E \not \equiv Q_{8} Y C_{4}$.
Q.E.D.

ASSUMPTIONS. From this point until the end of Lemma 4.41, we work under the assumption that $m=1$. In addition we shall assume that G does not act half-transitively on v^{*}, and that $G \neq \mathscr{F}\left(q^{n}\right)$. Then Lema 4.30 implies that $q=3$ and $2\left|\left|G_{x}\right|\right.$ for all $x \in V *$.

LEMMA 4.31. We must have $3||\mathrm{H} / \mathrm{AE}|$.

Proof. Suppose that $3 Y|H / A E|$. Then, since $H / A E \leqslant S p(2,2) \& S_{3}$ and $O_{2}(H / A E)=1$ by Lemma 4.28, we must have $H=A E$. Now $3 \dagger|A E|$ and G / H is cyclic. Therefore G contains a normal hall 3'-subgroup, N say. By Lemma 4.3 the group N acts half-transitively but not semi-regularly on $\boldsymbol{V}^{\boldsymbol{*}}$. Suppose that $N \leqslant \mathscr{V}\left(3^{n}\right)$. Then N is metacyclic, and hence, since we have assumed that E is not dihedral, $E \neq Q_{B}$. It follows that $F=F(N)$ $=E \times B$, and thus, by Lemma 4.23, $f(N)=\varnothing$. But $2\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$. and we deduce that $1(N) \nsubseteq$, a contradiction. Therefore $N \not \mathscr{J}\left(3^{n}\right)$.

Suppose that $N \cong \mathscr{F}_{0}\left(3^{n / 2}\right)$. If $\mathscr{\mathscr { O }}_{0}\left(3^{n / 2}\right)$ is not a 2 -group then $O_{2}\left(\mathscr{J}_{0}\left(3^{n / 2}\right)\right)$ is abelian. Since $E \leqslant O_{2}(N)$ we see that N is a 2-group. Therefore A is a 2 -group and $G / C_{G}(A)=G / H=G / A E$ is isomorphic to a subgroup of Aut (A), a 2 -group. Thus $3 \dagger|G|$ and it follows that G acts half-transitively on $\mathrm{v}^{\#}$, a contradiction. Hence $\mathrm{N} \not \equiv \mathscr{V _ { 0 }}\left(3^{\text {n/2 }}\right)$.

Using Theorem 1.16 we conclude that $n=2$ and N acts transitively on V^{*}. Hence G acts transitively on $V^{\#}$, a contradiction. Therefore we were incorrect in supposing that $3 \nmid \mathrm{H} / \mathrm{AE} \mid$, whence $3||\mathrm{H} / \mathrm{AE}|$.

NOTATION. Since we have assumed that $m=1$ and that E is not dihedral, we must have $E \equiv Q_{8}$, or $E \not \equiv Q_{8} Y C_{4}$. In either case E contains a characteristic subgroup isomorphic to Q_{B}. Let Q denote such a subgroup. Then $Q \triangleleft G$ and $Q \cong Q_{A}$. Also $Q \leqslant E$ and, clearly, $A E=A Q$. Let C denote $C_{G}(Q)$. Obviously $C \& G$, and $A \leqslant C$.

LEMMA 4.32. The group C/A is cyclic of order dividing r, and if $2||H / A E|$ then $G=H C$ and $G / A=H / A \times C / A$.

Proof. We shall show that $H \cap C=A$. We have $H \cap C=C_{G}(A) \cap C_{G}(Q)$ $=C_{G}(A Q)$. Let R denote $C_{G}(A Q)$. Then, since $\left|F_{2}: F_{2} \cap A Q\right| \leqslant 2$, we see that R stabilises the chain

$$
F_{2} \geqslant F_{2} \cap A Q \geqslant 1
$$

whence $R / C_{R}\left(F_{2}\right)$ is a 2-group. But

$$
C_{R}\left(F_{2}\right) \leqslant C_{G}(F)=Z(F) \leqslant A,
$$

and $A \leqslant Z(R)$. Hence $R / Z(R)$ is a 2-group, and it follows that R is a normal nilpotent subgroup of G. Therefore $R \leqslant F$, and we see easily that $R=A$. Thus $H \cap C=C_{G}(A Q)=R=A$.

We have

$$
C / A=C / H \cap C \cong C H / H \leqslant G / H,
$$

and, by Lemma 4.29, G / H is cyclic of order dividing r. Hence C / A is cyclic of order dividing r.

Assume that $2||\mathrm{H} / \mathrm{AE}|$. By Lemma 4.31 we have 3$| \mathrm{H} / \mathrm{AE} \mid$ and, by Lemma 4.28, we have H/AE is isomorphic to a subgroup of S_{3}. Therefore $|H / A E|=6$, and it follows that $|H / A|=24$. Also G / C is isomorphic to a subgroup of Aut $(Q) \cong S_{4}$, and hence $|G / C| \leqslant 24$. Thus
$24 \geqslant|G / C| \geqslant|H C / C|=|H / H \cap C|=|H / A|=24$,
whence $G=H C$. Obviously, then, $G / A=H / A \times C / A$.
Q.E.D.

LEMMA 4.33. We must have $|\mathrm{A}|>2$ and $\mathbf{r} \neq 1$.

Proof. Suppose that $|A|=2$. Then $H=C_{G}(A)=G$, and clearly $Q=E=F(G)$. Since $H / A E=G / Q$ is isomorphic to a subgroup of S_{3} and $3||G / Q|$, there exists $S \varangle G$ such that $Q \leqslant S$ and $|S: Q|=3$. Clearly $S £ \operatorname{SL}(2,3)$. Now $2\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$, and Q acts semi-regularly on $V^{\#}$. Hence there exists $g \in I(G)$ such that $g \notin S$. Therefore $|G|=48$. By Lenma 4.28 the group G / Q acts faithfuily on $E / Z(E)$, and it follows that g acts non-trivially on $Q / Z(Q)$. Thus, by Lemma 3.15, we have $G \equiv G L(2,3)$, and, by Theorem 3.13, $n=2$ and G acts transitively on V^{*}, a contradiction. We conclude that $|A| \neq 2$, and then, since $|A| \geqslant Z(E)>1$, and $|A| \mid 3^{r}-1$, it follows that $|A|>2$ and $r \neq 1$.
Q.E.D.

LEMMA 4.34. If $n=4$ then $G £ G L(2,3) Y C_{4}$.
Proof. By Lamma 4.29(ii1) we have $4=n=2 \omega r$ for some integer w, and
hence $r=1$ or 2. But, by Lemma 4.33, we have $r \neq 1$, whence $r=2$. Also by Lemma 4.33 we have $|A|>2$, and therefore, since $|A| \mid 3^{2}-1$, we see that $|A|=4$ or 8 . Thus $E \cong Q_{8} Y C_{4}$, and $F_{2}=F$. Clearly all involutions of $A E$ are contained in E, and therefore Lemma 4.2(ii) implies that there exists $y \in V^{*}$ such that $G_{y} \cap A E=(A E)_{y}=1$.

By Lemma 4.28 the group $H / A E$ is isomorphic to a subgroup of S_{3}, and, by Lemma $4.29(\mathrm{ii})$, the group G / H is cyclic of order dividing $r=2$. By Lemma 4.26 we have $3||H / A E|$, and hence $| G / A E \mid=3,6$, or 12. Now G_{y} $\propto G_{y} A E / A E \leqslant G / A E$, and therefore, since $2\left|\left|G_{y}\right|\right.$, we see that $| G_{y} \mid=2^{\alpha} .3^{B}$ where $2^{a} \leqslant|G / A E|_{2}$ so that $a=1$ or 2 and $\beta=0$ or 1 . Thus, by 3^{1-} halftransitivity, $\left|G_{x}\right|=2^{a}$ or $2^{a} .3$ for all $x \in V^{*}$.

Since G does not act half-transitively on V^{*}, there exists $v \in V^{*}$ such that $\left|G_{v}\right|=2^{\alpha}$. Hence

$$
\begin{aligned}
& 80=3^{4}-1=\left|v^{\#}\right| \Rightarrow\left|G: G_{v}\right|=|G| / 2^{a}=\left(|G / A E| / 2^{a}\right)|A E|= \\
& \left(|G / A E|_{2} / 2^{\alpha}\right) \cdot 3 \cdot|E| \cdot|A E / E|=4 B|A E / E|\left(|G / A E|_{2^{\prime}} 2^{a}\right) .
\end{aligned}
$$

It follows that $|A E / E|=|G / A E|_{2} / 2^{\alpha}=1$, and hence $A E=E$, giving $|A|=4$. Therefore $E=F_{2}=F$, whence $O_{2}(G / E)=1$. Thus $|G / E| \neq 12$. Since $|G / E|_{2}=2^{\alpha}$ and $\alpha \geqslant 1$, we see that $2\left||G / E|\right.$, and hence $G / E \cong S_{3}$. Therefore $\alpha=1$ and $\left|G_{x}\right|=2$ or 6 for all $x \in V^{*}$. Also $|G|=96$.

We have $G_{y} \cap E=1$ and $2 \| G_{\mathbf{y}} \mid$. Hence there exists $g \in G E$ such that $g^{2}=1$. Suppose that $g \& C_{G}(A)=H$. Then $|z(G)|=2$, and Lemma 4.22 yields that there existe $x \in V^{*}$ such that $4 \| G_{x} \mid$, a contradiction. Hence $g \in C_{G}(A)$, and ve see easily that $A=Z(G)$.

Let K be a Sylow 3-subgroup of G. Then $|K|=3$ and, clearly, $Q K \equiv \operatorname{SL}(2,3)$. Obviously $Q K \cap A=Z(Q K)=Z(Q)$ and hence $E K=Q K A$ mLL 2,3$) \mathrm{YC}_{4}$. Also EK $\subset G$. It is easily seen that $\mathrm{QK} \varangle G$ and Lemma 4.28 implies that g acte non-trivially on $Q / Z(Q)$. Using Lemma 3.25 and writing $T=\langle Q K, B\rangle$, we have $T M(2,3)$. Then, since $T \cap A=Z(T)$,
it follows that $G=T A \equiv G L(2,3) Y C_{4}$.
Q.E.D.

EXAMPLE. We show that the case $G \approx \operatorname{GL}(2,3) Y C_{4}$ does occur. That is, we show that if $G \cong G L(2,3) Y C_{4}$ then there exists a 4 -dimensional irreducible GF(3)G-module, V, such that V is faithful for G and G acts 3 -halftransitively but not ${ }^{3}$ '-semiregularly on V^{*}.

Assume that $G \equiv G L(2,3) Y C_{4}$, and let A denote $Z(G) \equiv C_{4}$. There exists $T \triangleleft G$ such that $T \cong G L(2,3)$ and $G=T A$ with $T \cap A=Z(T)$. If F denotes $F(G)$, then $F \cong Q_{8} Y C_{4}$ and $G / F \cong S_{3}$. Let W be a 2-dimensional irreducible GF(3)T-module, faithful for T, (such a module exists since $T £ \operatorname{GL}(2,3)$), and write $V=W^{G}$. Clearly $\operatorname{dim}_{G F(3)} V=4$, and it is easily seen that V is an irreducible $G F(3) G$-module which is faithful for G.

Since $A=Z(G)$ and $G=T A$ we have $V_{T}=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are T-isomorphic irreducible GF(3)T-modules, both faithful for T. By Lemma 3.13(iii), if $x \in V_{i}^{*}$ then $T_{x} \simeq S_{3}$, and, since obviously $G_{x}=T_{x}$, we have $G_{x} \cong S_{3}(i=1,2)$. Let $y \in V_{i}^{*}$. Then $G_{y} \cong S_{j}$ and the size of the G-orbit containing \dot{y} is exactly $\left|G: G_{y}\right|=|G| /\left|G_{y}\right|=96 / 6=26$. This orbit is clearly $v_{1}^{*} \cup v_{2}^{*}$.

Since V_{1} and V_{2} are T-isomorphic, there exists $u \in V_{2}^{*}$ such that $T_{u}=T_{\mathbf{y}}$. Using the familiar argument we have $\left|G_{y+u}: G_{\mathbf{y}} \cap G_{u}\right| \leqslant 2$ and hence $\left|G_{y+u}\right|=6$ or 12. Suppose that $\left|G_{y+u}\right|=12$. Then, since $G_{y+u} \geqslant T_{y}$ and $T_{y} \cap F=1$, we must have $\left|G_{y+u} \cap F\right|=2$. Obviously $G_{y+u} \cap F \triangleleft G_{y+u}$ and hence there exists an involution in FNA which is centralised by a Sylow 3-subgroup of G. However, from the structure of G it is easily seen that this is impossible, and we conclude that $\left|G_{y+u}\right|=6$. Therefore the aize of the G-orbit containing $y+u$ is exactly $96 / 6=16$.
clearly there exists $y^{\prime} \in V_{1}^{*}$ such that $T_{y} \cap T_{y^{\prime}}=1$. Hence there exists $u^{\prime} \in V_{2}^{*}$ such that $T_{y} \cap T_{u^{\prime}}=1$. since $\left|G_{y+u}: G_{y} \cap G_{u^{\prime}}\right| \leqslant 2$
we deduce that $\left|G_{y+u^{\prime}}\right| \leqslant 2$, whence the size of the G-orbit containing $y+u^{\prime}$ is 96 or 48 . But $96>80=3^{4}-1=\left|V^{*}\right|$, and thus the size of the G-orbit containing $y+u^{\prime}$ is exactly 48.

We have $48+16+16=80=\left|V^{*}\right|$, and hence G has exactly three orbits on $V^{\#}$, two of size 16 and one of size 48. Therefore G acts 3'halftransitively but not 3^{1}-semiregularly on $\mathrm{v}^{\text {" }}$.

LEMMA 4.35. If $r=2$ then $n=4$ and $G \cong G L(2,3) Y C_{4}$.
Proof. Assume that $r=2$. Then $|A| \mid 3^{2}-1$ and, since $|A|>2$ by Lemma 4.33, we have $|A|=4$ or 8 , whence $F_{2}=F$ and $E \cong Q_{8} Y C_{4}$. By Lemma 4.29(iii) we have $n=2^{m} \omega r$ for some integer ω and therefore, since $m=1$ and $r=2$, it follows that $4 / n$. If $n=4$ then $G \cong G(2,3) Y C_{4}$ by Lemma 4.34. Hence, to prove the lemma, it will be sufficient to show that if $n>4$ then G does not exist.

Suppose that $n>4$. Since $4 \mid n$ we must have $n \geqslant 8$. By Lerma 4.28 we have $H / A E \leqslant S p(2,2) \cong S_{3}$, and by Lemma 4.29 se have G / H is syclic of order dividing $r=2$. Also $3||H / A E|$ by Lema 4.31 and hence, if K denotes a Sylow 3-subgroup of G, then $|K|=3$ and $K \leqslant H$. Obviously K centralises A and K acts non-trivially on $Q / Z(Q)$, whence $Q K a \operatorname{SL}(2,3)$. Write $S=Q K A=A E K$. We have $K \& S / A E=O_{3}(H / A E)$, giving $S<G$. Therefore, since $Q \triangleleft G$ and $Q K \varangle S$, we see easily that $Q K \triangleleft G$. Clearly $|H: S| \leqslant 2$. Assume that $h \in H \backslash A E$ such that $h^{2}=1$. We must have $H=\langle s, h\rangle$. Write $T=\langle Q K, h\rangle$. Then $|T|=48$ and $Q K \leqslant T$ with $Q K \cong \operatorname{SL}(2,3)$. Using Lemma 4.28 we see that h acts non-trivially on $Q / Z(Q)$, whence, by Lemma 3.15, $T \equiv G L(2,3)$. We have $A=Z(H)$ and $H=T A$ with $T \cap A=Z(T)$. Therefore $H \equiv G L(2,3) Y C_{4}$ or $G L(2,3) Y C_{8}$. Also $T \& H \& G$, and it follows that V_{T} is completely reducible. Since $\operatorname{soc}(T)=Z(Q)$ and $Z(Q)$ ects semi-regularly on $v^{(\underline{m}}$, we have

$$
v_{T}=v_{1} \oplus v_{2} \oplus \ldots \oplus v_{c}
$$

where, for $1 \leqslant i \leqslant c, v_{i}$ is an irreducible $G F(3) T$-module, faithful for T. By Theorem 3.13 we see that $\operatorname{dim}_{i}=2$ for $1 \leqslant i \leqslant c$, and hence $c=n / 2$. Clearly, if h is as above, then $\operatorname{dim} C_{v_{i}}(h)=1$ for $1 \leqslant i \leqslant n / 2$, whence $\operatorname{dim}_{V}(h)=n / 2$.

Now assume that $h \in A E \backslash A$ such that $h^{2}=1$. Clearly h is an involution in $E \backslash Z(E)$ and hence, by Lemma $4.2(i)$, $\operatorname{dimc}_{y}(h)=n / 2$.

Thus we have shown that

$$
\begin{equation*}
\operatorname{dim}_{v}(h)=n / 2, \tag{1}
\end{equation*}
$$

for all $h \in i(H)$. Now if $i(H) \subseteq A E$ then $i(H) \subseteq E \subseteq Q_{8} Y C_{4}$, whence $|i(H)|=6$. On the other hand, if $i(H) \not \subset A E$, then as demonstrated above, we have $H \cong \operatorname{GL}(2,3) Y C_{4}$ or $\operatorname{GL}(2,3) Y C_{8}$. In this case it is easily checked that $|i(H)|=18$. Therefore we conclude that

$$
\begin{equation*}
|i(H)| \leqslant 18 \tag{2}
\end{equation*}
$$

Suppose that $2 \| H_{x} \mid$ for all $x \in V$. Then it follows that

$$
v^{*}=\bigcup_{h \in i(H)}\left(C_{v}(h)\right)^{*}
$$

Therefore, using (1) and (2), we deduce that

$$
3^{n}-1 \leqslant 18\left(3^{n / 2}-1\right)
$$

whence $3^{n / 2}+1 \leqslant 18$, contradicting $n \geqslant 8$. Hence there exists $y \in V^{*}$ such that $2 \nmid\left|H_{y}\right|$. Now $2\left|\left|G_{y}\right|\right.$ since G does not act 3^{\prime}-semiregularly. Also $|G / H| \leqslant 2$, and we conclude that $\left|G_{y}\right|_{2}=2$. Thus, by 3^{\prime}-halftransitivity, we have

$$
\begin{equation*}
\left|G_{x}\right|=2, \text { or } 6 \tag{3}
\end{equation*}
$$

for all $x \in V^{*}$. In addition, since $H=C_{G}(A)$ and $G \cap H=1, \cdots$ have $|G: H|=2$ and A is not central in G.

Since $|A| \leqslant 8$ and $|F: A E| \leqslant 2$, it follows that $|\bar{F}| \leqslant 54$. Let $f \in i(E)$. Then $f \in i(H)$ and hence, by (1), $\operatorname{dimC}_{V}(f)=n / 2$. Let $f^{\prime} \in i(f)$ such that $f^{\prime} \neq f$. If $x \in C_{V}(f) \cap C_{V}\left(f^{\prime}\right)$, then $\left\langle f, f^{\prime}\right\rangle \leqslant F_{x}$, whence $4\left|\left|F_{x}\right|\right.$ and 4$|\left|G_{x}\right|$. Therefore, since $\left|G_{x}\right|_{2}=2$ for all $x \in V^{\#}$, we have $c_{v}(f)^{\prime \prime} \cap c_{v}\left(f^{\prime}\right)^{*}=\varnothing$, and thus

$$
\operatorname{dim}_{V}\left(f^{\prime}\right) \leqslant n / 2
$$

for all $f^{\prime} \in \mathbf{i}(F)$.
Write $R=C_{G}(Q / Z(Q))$. Since any Sylow 3-subgroup acts faithfully on $Q / Z(Q)$ we must have $3\left||R|\right.$. Therefore R is a 2 -group and $R \leqslant F_{2}=F$.

Suppose that $g \in i(G)$ such that $g \& F$. Then $g \& R$ and hence, writing $\mathrm{L}=\langle Q K, \mathrm{~g}\rangle$, we have $\mathrm{L} \cong \mathrm{GL}(2,3)$ by Lemma 3.15. Let A_{o} deno:e the subgroup of A of order 4. Clearly $A_{0} \triangle G$, and $E=Q A_{0}$. Let N denote the group $L A_{0}=L E$. We have $L \cap A_{0}=Z(L) \propto C_{2}$, and therefore

$$
|N|=|L| \cdot\left|A_{0}\right| /\left|L \cap A_{0}\right|=48.4 / 2=96
$$

Also

$$
N / E=L E / E \cong L / E \cap L=L / Q \& S_{3} .
$$

Thus, aince $F(N)=E$, we have $N / F(N) \geq S_{3}$.
Suppose that g does not centralise $A_{0}=Z(F(N))$. Let w be an irreducible submodule of V_{N}. We have $\operatorname{soc}(N)=Z(Q)$, and $Z(Q)$ scts semiregularly on V^{*}. Hence W is faithful for N and, by Lemma 4.22, there exists $x \in W^{*}$ such that $4\left|\left|N_{x}\right|\right.$. Therefore 4$|\left|G_{x}\right|$, contradicting (3) above. Thus E centralises A_{0}.

Write $A=\langle A\rangle$. Since g centralises A_{0}, the subgroup of A of order 4, we see that either g cuntralises A, or $|A|=8$ and $a^{B}=a^{5}$.

Let U be an irreducible constituent of V_{A}, and let be the representation of A afforded by U. Then, if $|A|=8$ and $a^{g}=a^{5}$, the A-module Ug affords the representation ϕ^{\prime} of A where $\phi^{\prime}(a)=\phi^{\left(a^{5}\right)}$. But the representations ϕ and ϕ^{\prime} are not equivalent (since dinU $=2$ and, as shown in the proof of Lemma 3.10, there is no element of $\operatorname{GL}(2,3)$ of order 8 which is conjugate in $\operatorname{GL}(2,3)$ to its own fifth porer), contradicting the assumption that V_{A} is homogeneous. We conclude that g centralises A, whence $g \in C_{G}(A)=H$.

Therefore we have shown that if $g \in i(G)$ then either $g \in i(i)$ or $g \in i(F)$. Hence, using (1) and (4), we have $\operatorname{dim}_{V}(g) \leqslant n / 2$ for all $g \in i(G)$. Also $i(H) \cap i(F)=i(E)$, whence $|i(H) \cap i(F)|=6$.

Therefore, using (2) and the fact that $|F| \leqslant 64$, we have
$|i(G)|=|i(H) \cup i(F)|=|i(H)|+|i(F)|-6 \leqslant|i(H)|+|F|-6 \leqslant 76$.

But, clearly, since $2 \| G_{x} \mid$ for all $x \in V^{*}$, we have

$$
v^{*}=\bigcup_{g \in i(G)}\left(c_{v}(g)\right)^{\#},
$$

and hence

$$
3^{n}-1 \leqslant 76\left(3^{n / 2}-1\right)
$$

which yields $3^{n / 2}+1 \leqslant 76$, the final contradintion since $n \geqslant 8$.

We break uff from this sequence of results classifying the possibilities for G in order to describe, and fix a symbol, Σ, to represent a particular soluble group of order 480. Subsequently we shall show (Lemma 4.41) that ε occurs as a possibility for G.

Recall that, as noted in Chapter 3, there exist elements a, b, c, d, of $\operatorname{GL}(2,3)$ such that

$$
\begin{aligned}
G L(2,3) & =\left\langle a, b, c, d: a^{4}=b^{4}=c^{3}=d^{2}=1,[a, b]=a^{2}=b^{2}\right. \\
& \left.c^{-1} a c=a b, c^{-1} b c=a, d a d=b, d b d=a, d c d=a c^{2}\right\rangle .
\end{aligned}
$$

DEFINITION 4.36. The group $Z\left(\operatorname{GL}\left(2,3^{2}\right)\right)$ is cyclic of order 8 , consisting of scalar matrices. Let $z \in Z\left(G L\left(2,3^{2}\right)\right.$) such that $|z|=4$. Now $G L(2,3) \leqslant \operatorname{GL}\left(2,3^{2}\right)$, and there exists $d \in G L(2,3)$ such that $d^{2}=1$ and $G L(2,3)=\langle S L(2,3), d\rangle$. Write $e=z d$. Then, clearly $|e|=4$ and $e^{2}=z^{2} \in Z(\operatorname{GL}(2,3))$. We define a subgroup, Σ_{1}, of $\operatorname{GL}\left(2,3^{2}\right)$ by

$$
\Sigma_{1}=\langle\operatorname{SL}(2,3), e\rangle .
$$

Obviously $\left|\dot{\Sigma}_{1}\right|=48$ and there exist elements a, b, c, of $\operatorname{SL}(2,3)$ such that

$$
\begin{aligned}
& \Sigma_{1}=\left\langle a, b, c, e: a^{4}=b^{4}=c^{3}=e^{4}=1,[a, b]=a^{2}=b^{2}=e^{2},\right. \\
& \left.c^{-1} a c=a b, c^{-1} b c=a, e^{-1} a e=b, e^{-1} b e=a, e^{-1} c e=a c^{2}\right\rangle .
\end{aligned}
$$

It is easily seen that the dihedral group of order 10 has a faithful, irreducible representation of degree 2 over $\operatorname{GF}\left(3^{2}\right)$, and hence there exists a subgroup, L, of $G L\left(2,3^{2}\right)$ such that D is dihedral of order 10. Let S denote the unique Sylow 5-subgroup of D and let f be an involution in D. With z as above and writing $t=z f$, we define a subgroup, ε_{2}, of $\mathrm{GL}\left(2,3^{2}\right)$ by

$$
\Sigma_{2}=\langle s, t\rangle
$$

Obviously $\left|\Sigma_{2}\right|=20$ and, if $S=\langle s\rangle$, then

$$
\Sigma_{2}=\left\langle s, t: s^{5}=t^{4}=1, t^{-1} s t=s^{-1}\right\rangle
$$

Noting that $Z\left(\Sigma_{1}\right)=\left\langle z^{2}\right\rangle=Z\left(\Sigma_{2}\right)$, we form a central product of the groups Σ_{1}, Σ_{2} in the obvious way and define

$$
\Sigma=\Sigma_{1} Y \Sigma_{2}
$$

We have $|\Sigma|=\left|\Sigma_{1}\right|\left|\Sigma_{2}\right| / 2=480$, and, clearly, Σ is soluble.

LEMMA 4.37. If $\mathbf{r}>2$ then
(i) $2||G / H|$;
(ii) $\mathrm{r}=4, \mathrm{n}=8$;
(iii) $H / A E \cong S_{3}, G / A \cong H / A \times C / A$;
(iv) $\left|G_{x}\right|_{3},=2$ for all $x \in V^{*}$;
(v) G contains no subgroup isomorphic to $C_{2} \times C_{2} \times C_{2}$;
(vi) $|A|=10$ or 20 and if $|A|=20$ then $|G / H|=2$.

Proof. Assume that $r>2$. Recall that $q=3$ and $2 \| G_{x} \mid$ for all $x \in V^{*}$ by Lemma 4.30 since we have assumed that $G \neq \mathscr{N} q^{n}$) and that G does not act half-transitively. Since, by assumption, V_{A} is homogeneous we are in a position to apply Lemma 4.26 with $p=2$. Let λ_{1}, λ_{2} be defined in the statement of Lemma 4.26. We remark that Lemma 4.29(iii) implies that $k=n / r \geqslant 2$ and therefore either (ii) or (iii) in Lemma 4.26 must hold.

We first obtain an upper bound for λ_{1}. Clearly λ_{1} is at most the number of involutions in the group H/A. Now $C_{2} \times C_{2} \cong A E / A \varangle H / A$, and by Lemma 4.28, we have $H / A E \leqslant S p(2,2) \cong S_{3}$, whence $|H / A| \leqslant 24$. Also by Lemma 4.28 the group $H / A E$ acts faithfully on $A E / A$ and hence, if S / A is a Sylow 2-subgroup of H / S, we see that either $S / A \& D_{8}$ or $S / A=A E / A$. Thus S/A contains at most 5 involutions. Clearly H/A has at most 3 Sylow 2-subgroups and any two such subgroups intersect in AE/A, which contains exactly 3 involutions. Hence

$$
\left.\lambda_{i} \leqslant \text { (number of involutions in } H / A\right) \leqslant 3(5-3)+3=9 .
$$

Suppose that $2 \nmid G / H \mid$. Then $\lambda_{2}=0$ and Lemma $4.26(i 1)$ and (i1i) both yield

$$
3^{r}<2.9=18
$$

contradicting our assumption that $r>2$. Therefore $2||G / H|$, and since, by Lemma 4.29 (ii), the group G / H is cyclic of order dividing r, we deduce that $2 \mid r$. Thus $r \geqslant 4$.

We have $|H / A| \leqslant 24$ and G / H is cyclic. Clearly then $\lambda_{2} \leqslant 24$. If $k=n / r>2$ then Lemma $4.26(i i i)$ gives

$$
3^{r}<2(9+24)=66
$$

contradicting $r \geqslant 4$. Hence $k=2$, and Lemma 4.26(ii) gives

$$
3^{r}+1 \leqslant 18+24\left(3^{r / 2}+1\right)
$$

whence $3^{r / 2} \leqslant 41 / 3^{r / 2}+24$, and we deduce that $r \leqslant 4$. Therefore we have $r=4$ and, since $k=n / r=2$, it follows that $n=8$. Hence we have proved (i) and (ii).

We next show that $H / A E \approx S_{3}$. We have $H / A E \leqslant S p(2,2) \nsubseteq S_{3}$ and, by Lemma 4.31, we also have $3||\mathrm{H} / \mathrm{AE}|$. Hence if we can show 2$||\mathrm{H} / \mathrm{AE}|$ then it will follow that $H / A E \cong S_{3}$. Suppose that $2 \dagger|H / A E|$. Then $H / A E \approx C_{3}$ and $A E / A$ is the unique Sylow 2-subgroup of H / A, whence $\lambda_{1} \leqslant 3$. To obtain an upper bound for λ_{2} we need to count the involutions of G / A that are not in H / A. The group G/H is cyclic of order 2 or 4, and hence there exists a unique subgroup, N / H say, of G / H such that $|N / H|=2$. Clearly N/A contains all involutions of G/A. We have $|\mathrm{N} / \mathrm{AE}|=6$ and $C_{3} \equiv H / A E$ acts faithfully on $A E / A$. If N/AE acts faithfully on $A E / A$, then, using the same argument used to establish (1) above, we see that the group N/A contains at most 9 involutions, 3 of which are contained in AE/A. Hence, if $N / A E$ acts faithfully on $A E / A$, we have $\lambda_{2} \leqslant 9-3=6$. On the other hand, if $N / A E$ does not act faithfully on $A E / A$, then N / A contains a normal Sylow 2-subgroup which has order 8, and we see easily that $\lambda_{2} \leqslant 4$. We conclude that in oither case $\lambda_{2} \leqslant 6$, and by Lemma 4.26 (ii) we have

$$
3^{4}+1 \leqslant 6+6\left(3^{2}+1\right)
$$

whence $82 \leqslant 66$, a contradiction. Therefore $2\left||\mathrm{H} / \mathrm{AE}|\right.$ and $\mathrm{H} / \mathrm{AE} \cong \mathrm{S}_{3}$.
By Lemma 4.27 we have $G / A=H / A \times C / A$ where $C=C_{G}(Q)$, and C / A is cyclic of order dividing $r=4$. Let $A E \leqslant L \leqslant H$ such that $|L / A E|=3$. Cbviously L $\varangle G$. Let M be the subgroup of G such that $M / A=L / A \times C / A$. Clearly $M \triangleleft G$ and $|G: M|=2$. Suppose that $4 \| G_{x} \mid$ for all $x \in V^{*}$. Then, since $M_{x}=G_{x} \cap M_{\text {, }}$ we have $2 \| M_{x} \mid$ for all $x \in V^{*}$. It is easily seen that V_{M} is irreducible, and hence we can apply Lemma 4.26 to the group M. Obviously $\lambda_{1} \leqslant 3, \quad \lambda_{2} \leqslant 4$, and since $k=n / r=2$, Lemma 4.26(ii) gives

$$
3^{4}+1 \leqslant 6+4\left(3^{2}+1\right)
$$

Hemce $82 \leqslant 46$, a contradiction. Therefore $\left|G_{x}\right|_{2}=2$ for all $x \in V^{*}$. Since A acts semi-regularly on $V^{\#}$ and since $|G / A|=3.2^{\alpha}$ for some a, we have $\left|G_{x}\right|_{3}{ }^{\prime}=\left|G_{x}\right|_{2}=2$ for all $x \in V^{*}$.

Suppose that $X \leqslant G$ such that $X \approx C_{2} \times C_{2} \times C_{2}$. Then, clearly, there exists $y \in V^{*}$ such that $4 \| x_{y} \mid$. Hence $4 \| G_{y} \mid$, a contradiction. Therefore G contains no subgroup isomorphic to $c_{2} \times c_{2} \times c_{2}$.

All that remains to prove is that $|A|=10$ or 20 , and that if $|A|=20$ ther $|G / H|=2$. Let $y \in V^{*}$. Since $|H / A E|_{2}=2$ and $|G / H|=2$ or 4 we have

$$
\left|G: G_{y}\right|_{2}=|G|_{2} / 2=\left(|G / H| \cdot|H / A E|_{2} \cdot|A E|_{2}\right) / 2=|G / H| \cdot|A E|_{2} .
$$

By 3^{\prime}-halftransitivity we have $\left(|G / H| \cdot|A E|_{2}\right)$ divides $\left|V^{\#}\right|=3^{8}-1$, and ter.ce

$$
\begin{equation*}
|G / H| \cdot|A E|_{2} \leqslant 32 \tag{2}
\end{equation*}
$$

We have $\left.2||G / H|$, and hence $| A E\right|_{2} \leqslant 16$. Clearly, then, $|A|_{2} \leqslant 4$. Now r is the least integer such that $|A| \mid 3^{r}-1$, and we have shown that $r=4$. T:erefore $5||A|$ and it follows that $| A \mid=10$ or 20 . If $|A|=20$ then $|A E|_{2}=16$ and (2) implies that $|G / H|=2$.

Q.E.D.

LEMMA 4.38. If $r>2$ then $|A|=10$.

Proof. Assume that $r>2$. Then (i) - (vi) of Lemma 4.37 must hold. Write $D=C_{G}(Q / Z(Q))$. Then $C=C_{G}(Q) \leqslant D$. Now $G / C \cong H / A$ and, by Lemma 4.28, the group $H / A E$ acts faithfully on $E / Z(E)$ and thus faithfully on $Q / Z(Q)$. Hence we see that

$$
D / A=C_{G}(Q / Z(Q)) / A=A E / A \times C / A .
$$

We show that the case $|A|=20$ does not occur. Suppose that $|A|=20$. Then $E \cong Q_{8} Y C_{4}$ and, by Lemma 4.37(vi), we have $|G / H|=2$. Hence $|C / A|=2$ and it follows that, if R is a Sylow 2-subgroup of C, then $|R|=8$. By Lemma $4.37(v)$ we have $R \neq C_{2} \times C_{2} \times C_{2}$.

Suppose that $R \cong C_{4} \times C_{2}$. Then, since $R \cap A$ is a cyclic group of order 4, there exists an involution, g say, such that $g \in C \backslash A$. Clearly $g \in C_{G}(E)$. But E contains a subgroup, Y say, such that $Y \equiv C_{2} \times C_{2}$, and we see that $\langle Y, g\rangle \cong C_{2} \times C_{2} \times C_{2}$, contradicting Lemma $4.37(v)$. Hence $R \notin C_{4} \times C_{2}$.

Suppose that R is cyclic. We have $R \leqslant C=C_{G}(Q)$ and $R \cap Q=Z(Q)$, wherice $Q R £ Q_{8} Y C_{8}$. We see easily that $Q R$ is a Sylow 2-subgroup of D. Also $E \leqslant Q R$ and $E \cong Q_{8} Y C_{4}$. Clearly all involutions of $Q R$ are contained in E, and it follows that all involutions of D are contained in $E \leqslant H$. From the definitions of λ_{1}, λ_{2}, we see that only those involutions, $g A$, of the group $G / A=H / A \times C / A$, such that the coset $g A$ contains an involution of G contribute to a count of λ_{1} or λ_{2}. Thus no involution of the group $D / A=A E / A \times C / A$ contributes to count of λ_{2}. By Lemma 4.37 (1), the group H / A contains at most 9 involutions.

Therefore we see easily that $\lambda_{1} \leqslant 9, \lambda_{2} \leqslant 6$, and Lemma $4.26(i i)$ yields

$$
3^{4}+1<18+6\left(3^{2}+1\right),
$$

giving $82 \leqslant 78$, a contradiction. Hence R is not cyclic.

We deduce that R is a non-abelian group of order 8 , so that $R \cong Q_{8}$ or D_{8}. Let A_{0} denote the subgroup of A of order 4. Clearly $A_{0} 4 G$, and $Q A_{0}=E$. Since R is non-abelian and $A_{0} \leqslant R$, we must have $H=C_{G}(A)$ $=C_{G}\left(A_{0}\right)$. Suppose that there exists $g \in i(G)$ such that $g \notin H, g \notin D$. Let K be a Sylow 3-subgroup of G. Then $|K|=3$ and it is easily checked that $E K \triangleleft G$. Clearly $Q K \triangleleft G$ and $Q K \cong \operatorname{SL}(2,3)$. Writing $T_{0}=\langle Q K, g\rangle$ and $T=\langle E K, g\rangle$, we have $\left|T_{O}\right|=48,|T|=96$. Now $g \notin D=C_{G}(Q / Z(Q))$ and so, by Lemma 3.15, it follows that $T_{0} \cong G L(2,3)$. We have $F(T)=E \cong Q_{8} Y C_{4}$ and $A_{0}=Z(E)=Z(F(T))$. Since $g \notin H=C_{G}\left(A_{0}\right)$ we deduce that $|Z(T)|=2$ and $g \in T \backslash C_{T}(Z(F(T)))$. Also

$$
T / F(T)=T / E=T_{0} E / E \cong T_{0} / E \cap T_{0}=T_{0} / Q \cong S_{3}
$$

Let W be a non-trivial irreducible submodule of V_{T}. Since $\operatorname{soc}(T)=Z(Q) \leqslant A$ and A acts semi-regularly on V^{*}, we must have that W is faithful for T, whence, by Lemma 4.22 , there exists $y \in W^{*}$ such that $4 \| T_{y} \mid$. Hence $4\left|\left|G_{y}\right|\right.$, contradicting Lemma 4.37(iv). We conclude that there exists no $g \in i(G)$ such that $g \notin H, g \notin D$. Hence if $g A$ is an involution in the group G / A such that $g A \notin H / A, g A \notin D / A$, then the coset $g A$ contains no involution of G and therefore cannot contribute to a count of λ_{2}. Thus we see easily that $\lambda_{2} \leqslant 4$ and, using $\lambda_{1} \leqslant 9$, Lemma $4.26(i i)$ gives a contradiction.

We conclude that $|A| \neq 20$ and so, by Lemma 4.37 (vi) we must have $|A|=10$.
Q.E.D.

LEMMA 4.39. If $\mathrm{r}>2$ then a Sylow 2-subgroup of C is cyclic of order ${ }^{4}$ or 8.

Proof. Assume that $r>2$. Then (i) m ($v i$) of Lemma 4.37 must hold, and, in addition, $|A|=10$ by Lemma 4.38. Hence $E=Q 』 Q_{B}$. Let S denote the unique Sylow 5 -subgroup of A. Then $S \& G$ and $F=F(G)=Q \times S$. Also
F acts semi-regularly on $v^{\#}$. In deriving $\lambda_{1} \leqslant 9$ in Lemma 4.37(1) we allowed the three involutions of the group $A E / A=F / A$ to contribute to a count of λ_{1}. But, since F acts semi-regularly, this is clearly impossible and we deduce that

$$
\begin{equation*}
\lambda_{1} \leqslant 6 . \tag{1}
\end{equation*}
$$

Let R be a Sylow 2-subgroup of C. Clearly $C=A R$ and $R \cap A=Z(Q)$. We have

$$
R / Z(Q)=R / R \cap A \cong R A / A=C / A \text {, }
$$

and C / A is a cyclic group of order 2 or 4. Thus R is an abelian group of order 4 or 8 and $R / Z(Q)$ is cyclic.

Suppose that R is not cyclic. Clearly, then, there exists a cylic subgroup, L_{0} say, of R such that $\left|L_{0}\right| \leqslant 4$ and $R=Z(Q) \times L_{0}$. We have $G / A=H / A \times C / A$ and $F=Q \times S \leqslant H$. Let D denote the subgroup of G such that $D / A=F / A \times C / A$. Now $Q \cap R=Z(Q)$ and hence $Q R=Q \times L_{0} \cdot$ Clearly QR is a Sylow 2-subgroup of D, and therefore any Sylow 2-subgroup of D has the form $Q \times L$, for some cyclic subgroup, L, of C. It follows that all involutions of D are contained in C. Hence if $g A$ is an involution in the group $D / A=F / A \times C / A$ such that $g A \not C / A$, then the coset gicontains no involution of G and thus cannot contribute to a count of λ_{2}. Therefore, noting that C / A is cyclic and thus contains a unique involution, we see that λ_{2} is at most one more than the number, a say, of involutions of G / A which are in neither H / A, nor D / A. Since $G / A=H / A \times C / A$ and, aince, as in Lemma 4.37 (1), the group H/A contains at most 9 involutions, 3 of which are contained in F / A, we see that $\alpha=6$ and

$$
\begin{equation*}
\lambda_{2} \leqslant a+1=7 \tag{2}
\end{equation*}
$$

If there is no involution in $H \backslash Z(Q)$ then obviously $\lambda_{1}=0$ and

Lemma 4.26(ii) yields

$$
3^{4}+1 \leqslant 7\left(3^{2}+1\right)
$$

giving $82 \leqslant 70$, a contradiction. Hence there exists $h \in i \backslash Z(\hat{\gamma})$ such that $h^{2}=1$. Clearly C contains exactly 5 Sylow 2 -subgroups, and h permutes these subgroups by conjugation. It follows that h normalises some Sylow 2-subgroup, R_{0} say, of C. As shown above we must have $R_{0} \geq C_{2} \times C_{2}$ or $C_{2} \times C_{4}$, and hence, writing $Y=\Omega_{1}\left(R_{0}\right)$, we have $Y \equiv C_{2} \times C_{2}$ and h normalises Y. Let $X=\langle Y, h\rangle$. Then $|X|=8$. If h centralises Y then $X \equiv C_{2} \times C_{2} \times C_{2}$, contradicting Lemma $4.37(v)$. Hence h does rot centralise Y. Obviously $Z(Q) \leqslant Y$ and h centralises $Z(Q)$. Thins, if $\mathrm{Z}(\mathrm{Q})=\langle\mathrm{z}\rangle$ and $\mathrm{g} \in \mathrm{YZ}(\mathrm{Q})$, then $\mathrm{hgh}=\mathrm{zg}$. Therefore $(\mathrm{hg})^{2}=\mathrm{hg} \hat{\mathrm{g}} \mathrm{g}=\mathrm{zg} \cdot \mathrm{g}$ $=z \in A$, whence hgA is an involution in G/A. Since $R_{0} \cap H=Z(Q)$ we must have $g \notin H$. As a result hgA $\notin H / A$. Also $h \in H \backslash Q$ and thus hgA $\notin D / A$. Therefore the involution hgA is one of those involutions of G / A which contribute to a count of α.

If the coset hgA does not contain an involution of G then hga cannot contribute to a count of λ_{2}, whence $\lambda_{2} \leqslant 6$. But we have $\lambda_{1} \leqslant 6$ from (1), and Lemma 4.26(ii) yields

$$
3^{4}+1 \leqslant 12+6\left(3^{2}+1\right)
$$

giving $82 \leqslant 72$, a contradiction. Thus the coset hgA contains an involution of G and so there exists $d \in A$ such that $(h g d)^{2}=1$.

Now $g \& H=C_{G}(A)$ and therefore conjugation by g is an automorphism of A of order 2. But a cyclic group of order 10 has a uniqueautomorphism of order 2, namely the automorphism that acts by inverting each element. Hence gdg $=d^{-1}$ and, using the fact that $h \in H=C_{G}(A)$, we see that
$(\text { hgd })^{2}=$ hgdhgd $=$ hghdgd $=$ zgdgd $=2 d^{-1} d=2$,

Lemma 4.26(ii) yields

$$
3^{4}+1 \leqslant 7\left(3^{2}+1\right)
$$

giving $82<70$, a contradiction. Hence there exists $h \in H \backslash(Q)$ such that $h^{2}=1$. Clearly C contains exactly 5 Sylow 2 -subgroups, and h permutes these subgroups by conjugation. It follows that h normalises some Sylow 2-subgroup, R_{0} say, of C. As shown above we must have $R_{0} \equiv C_{2} \times C_{2}$ or $C_{2} \times C_{4}$, and hence, writing $Y=\Omega_{1}\left(R_{0}\right)$, we have $Y \cong C_{2} \times C_{2}$ and h normalises Y. Let $X=\langle Y, h\rangle$. Then $|X|=8$. If h centralises Y then $X \cong C_{2} \times C_{2} \times C_{2}$, contradicting Lemma 4.37(v). Hence h does rot centralise Y. Obviously $Z(Q) \leqslant Y$ and h centralises $Z(Q)$. Thus, if $Z(Q)=\langle z\rangle$ and $g \in M Z(Q)$, then $h g h=z g$. Therefore $(h g)^{2}=h g h g=2 g . g$ $=z \in A$, whence hgA is an involution in G / A. Since $R_{0} \cap H=Z(Q)$ we must have $g \notin H$. As a result $h g A \notin H / A$. Also $h \in H \backslash Q$ and thus $h g A \notin D / A$. Therefore the involution hgA is one of those involutions of G / A which contribute to a count of α.

If the coset hgA does not contain an involution of G then hgA cannot contribute to a count of λ_{2}, whence $\lambda_{2} \leqslant 6$. But we have $\lambda_{1} \leqslant 6$ from (1), and Lemma 4.26(ii) yields

$$
3^{4}+1 \leqslant 12+6\left(3^{2}+1\right)
$$

giving $82 \leqslant 72$, a contradiction. Thus the coset hgA contains an involution of G and so there exists $d \in A$ such that $(\text { hgd })^{2}=1$.

Now $g \notin H=C_{G}(A)$ and therefore conjugation by g is an automorphism of A of order 2. But a cyclic group of order 10 has a uniqueauromorphism of order 2, namely the automorphism that acts by inverting each element. Hence $g d g=d^{-1}$ and, using the fact that $h \in H=C_{G}(A)$, we see that
$(\text { hgd })^{2}=$ hgdhgd $=$ hghdgd $=2 g d g d=z d^{-1} d=2$.
contradicting (hgd) ${ }^{2}=1$. Thus we were incorrect in supposing that a Sylow 2-subgroup of C is not cyclic, and we conclude that any such subgroup is cyclic.
Q.E.D.

LEMMA 4.40. If $r>2$ then $n=8$ and $G \cong \Sigma$.

Proof. Assume that $r>2$. Then (i) - (vi) of Lemma 4.37 must hold and $|A|=10$ by Lemma 4.39. Again let S denote the unique Sylow 5-subgroup of A. We have $F=Q \times S$ and F acts semi-regularly on V^{*}. By Lemma 4.37(i.v) we have $G / A=H / A \times C / A$, and from Lemma 4.39 (1) we have $\lambda_{1} \leqslant 6$. As in Lemma 4.37 (1) we see that the group H/A contains at most 9 involutions, and, since C / A is cyclic, it follows that the group G / A contains at most 10 involutions which are not in H / A. Let gA denote the unique involution in C/A. By Lemma 4.39 a Sylow 2-subgroup of C is cyclic, and hence C contains a unique involution, namely the non-trivial element of $Z(Q)$. Therefore the coset gA does not contain an involution of G and thus cannot contribute to a count of λ_{2}. Hence $\lambda_{2} \leqslant 9$ and, in fact, λ_{2} is precisely the number of involutions of the group G / A of the form hgA, where $h A$ is an involution in H/A such that the coset hgA contains an involution of G. That is, λ_{2} is precisely the number of involutions, $h A$, of the group H / A such that the coset hgA contains an involution of G.

Let T denote a Hall 5^{\prime}-subgroup of H. Since S is a Sylow 5-subgroup of H and $S \leqslant Z(H)$, we must have $H=T \times S$. Obviously $T 4 G$. We have $A E=E=Q \times S$ and Lemma 4.37(iii) implies that $H / E \cong S_{3}$. Hence $|H|=240$ and $|T|=48$. Let K be a Sylow 3-subgroup of G. Clearly $K \leqslant T$, and $Q K \cong \operatorname{SL}(2,3)$. Also $|T: Q K|=2$. We show that the group T contains a unique involution, namely the non-trivial element of $Z(Q)$.

Suppose that $h \in T \backslash Z(Q)$ such that $h^{2}=1$. Then $h \in H \backslash F$ and, by Leuma 4.28, we see that h acts non-trivially on $E / Z(E)=Q / Z(Q)$. Since $h \not \subset Q K$
we deduce that $T=\langle Q K, h\rangle$ and, by Lemma 3.15 , we have $T \cong G(2,3)$. Write $Z(Q)=\langle z\rangle$. With reference to Leana 3.10 we see that \bar{z} contains exactly 12 non-central involutions, say $h=h_{1}, h_{2}, \ldots, h_{12}$, where $h_{i+6}=h_{i} z$ for $1 \leqslant i \leqslant 6$. Hence $h_{1} A, \ldots, h_{6} A$, are six distinct involutions in H / A, not contained in F/A.

The group C contains exactly 5 Sylow 2-subgroups and obviously h permutes these subgroups by conjugation. Therefore there exisis a Sylow 2-subgroup R say, of C, such that h normalises R. By Lefma $4.39 R$ is cyclic of order 4 or 8 . Let R_{0} denote the subgroup of R of order 4, and let $R_{0}=\langle g\rangle$. Clearly $g A$ is the unique involution in C / A. Suppose that h centralises R_{0}. It is easily seen that $Q K$ centralises C, and hence $T=\langle Q K, h\rangle$ centralises $R_{0} A$. If the coset $h_{i} g A$ contains an involution of G for some $i \in\{1, \ldots, 6\}$ then there exists $d \in A$ such that $1=\left(h_{i} g d\right)^{2}$. In this case then, since $h_{i} \in T \leqslant C_{G}\left(R_{0} A\right)$, we have

$$
1=\left(h_{i} g d\right)^{2}=h_{i} g d h_{i} g d=h_{i}^{2}(g d)^{2}=(g d)^{2}
$$

whence $g d$ is an involution in C, contradicting the fact that z is the unique involution in C. Therefore for $1 \leqslant i \leqslant 6$ the coset h_{i} gA does not contain an involution of G. It follows that $\lambda_{2} \leqslant 3$ and, using $\lambda_{1} \leqslant 6$, Lemma 4.25(ii) gives a contradiction. We conclude that h does not centralise R_{o}.

Write $L=T R_{0} . \quad$ Then $|L|=96$ and it is trivial to check that L satisfies all the conditions of Lemma 4.22. Also $\operatorname{soc}(L)=Z(Q)$ and $Z(Q)$ acts semi-regularly on V^{*}. Thus if W is a non-trivial irreducible submodule of V_{L} then W is faithful for L and, by Lemna 4.22, there exists $y \in W^{*}$ such that $4\left|\left|L_{y}\right|\right.$. Hence 4$|\left|G_{y}\right|$, contradicting Lerma 4.37(iv). Therefore we ware incorrect in supposing that there exists $h \in T \backslash Z(Q)$ such that $h^{2}=1$ and it follows that z is the unique involution in T, and hance in H .

As a consequence we have $\lambda_{1}=0$. Let P be a Sylow 2 -suigroup of T. Then $|P|=16$. Since $Z(Q)$ is the unique subgroup of order 2 in P and $Z(Q)$ acts semi-regularly on V^{*}, the group P acts semi-regularly on $V^{\#}$, whence P is isomorphic to a generalised quaternion group of order 16. Therefore there exists $e \in P$ such that $e \notin Q$ and $|e|=4$. We must have $e^{2}=z \in Z(Q)$. Clearly $T=\langle Q K, e\rangle$ and e acts non-trivially on $Q / Z(Q)$. It follows that there exist elements a, b, of Q such that $a^{e}=b, b^{e}=a$ and $Q=\langle a, b\rangle$. He have QK $\cong \operatorname{SL}(2,3)$ and hence, by Lemma 3.14, there exists $c \in \mathbb{Q K}$ such that $|c|=3$ and $a^{c}=a b, b^{c}=a$. We have

$$
a^{e^{-1} c e}=b^{c e}=a^{e}=b=a^{a c^{2}},
$$

and

$$
b^{e^{-1} c e}=a^{c e}=(a b)^{e}=b a=b^{a c^{2}} .
$$

Therefore $\left(e^{-1} c e\right)\left(a c^{2}\right)^{-1} \in C_{T}(Q)=Z(Q)$, whence $e^{-1} c e=a c^{2} z$ or $a c^{2}$. But $|c|=3$ and so $\left|e^{-1} c e\right|=3$, whereas $\left|\mathrm{ac}^{2} z\right|=6$, and hence $e^{-1} c e=a c^{2}$. Thus we can write $T=\langle Q K, e\rangle$ in terms of generators and relations as follows.

$$
\begin{aligned}
& T=\left\langle a, b, c, e: a^{4}=b^{4}=c^{3}=e^{4}=1,[a, b]=a^{2}=b^{2}=e^{2},\right. \\
& \left.c^{-1} a c=a b, c^{-1} b c=a, e^{-1} a e=b, e^{-1} b e=a, e^{-1} c e=a c^{2}\right\rangle .
\end{aligned}
$$

Comparing this with the description of Σ_{1} in terms of generators and relations given in Definition 4.36 , we see that $T \cong \Sigma_{1}$.

The group C contains 5 Sylow 2-subgroups and so there exists one such subgroup, R say, such that e normalises R. We have $R \equiv C_{4}$ or C_{8}. Let R_{0} denote the subgroup of R of order 4 and write $R_{0}=\langle t\rangle$. Clearly tA is the unique involution in C / A, and $t^{2}=z$. Now $\lambda_{1}=0$ and thus Lemma $4.26(i i)$ implies that $82 \leqslant 10 \lambda_{2}$, whence $\lambda_{2} \geqslant 9$. Since H / A contains at most 9 involutions our remarks at the beginning of this proof on the
size of λ_{2} imply that if $h^{\prime} A$ is any involution in H / A then the coset $h^{\prime} t A$ contains an involution of G. Hence the coset etA contains an involution and it follows that there exists $d \in A$ such that $(e=d)^{2}=1$. Clearly conjugation by t is an automorphism of A of order 2, and therefore conjugation by t inverts each element of A. Hence, using the fact that $e \in H=C_{G}(A)$, we have

$$
1=(\text { etd })^{2}=\text { etdetd }=\text { etedtd }=\text { etetd }^{-1} d=\text { etet }
$$

Therefore

$$
e t=(e t)^{-1}=t^{-1} e^{-1}=t^{3} e^{3}=\left(t t^{2}\right)\left(e^{2} e\right)=(t z)(z e)=t e,
$$

and we conclude that e centralises $\langle t\rangle=R_{0}$.
Thus conjugation by e is an automorphism of R of order 2 which centralises R_{0}. Consequently we must have either e centralises R or $|R|=8$ and, if $R=\langle f\rangle$, then $e^{-1} f e=f^{5}$. Suppose that $|R|=8$ and write $R=\langle f\rangle$. Clearly $\left\langle f^{2}\right\rangle=R_{0}$. Consider the group $X=\left\langle a e f, f^{2}\right\rangle$. Since $a \in Q$ and $f \in C=C_{G}(Q)$ we see that a and f commute. Also, as shown above, e centralises $R_{0}=\left\langle f^{2}\right\rangle$. Hence the two generators of X comute. Now $e^{-1} f e=f$ or f^{5}, and in either case it is easily checked tinat |aef| $=4$ and (aef) ${ }^{2} \neq z=f^{4}$. It follows that $X \equiv C_{4} \times C_{4}$. But then, ojviously, there exists $y \in V^{*}$ such that $4\left|\left|X_{y}\right|\right.$, whence 4$|\left|G_{y}\right|$, contradicting Lemma 4.37(iv). Hence $|R| \neq 8$ and we deduce that $R=R_{0}=\langle t\rangle$.

Write $S=\langle s\rangle$. We have

$$
c=\left\langle s, t: s^{5}=t^{4}=1, t^{-1} s t=s^{-1}\right\rangle
$$

Comparing this with the description of Σ_{2} in terms of generators and relations given in Definition 4.36 we see that $C \nsubseteq \boldsymbol{\Sigma}_{\mathbf{2}}$.

It is aasily checked that $Q K$ contrallses C, and hence, since $T=\langle Q K, Q\rangle$ and e centralises C, it follows that T centralises C. Also $G=H C=T C$
and $T \cap C=Z(Q)$. Hence

$$
G=T C \cong \Sigma_{1} Y \Sigma_{2}=\Sigma
$$

Q.E.D.

Our next result shows that the case $G \mathfrak{Z} \Sigma$ does occur.

LEMMA 4.41. Let $G \cong \Sigma$. Then there exists an irreducible $G F(3) G$-module V, faithful for G, such that $\operatorname{dim}_{G F(3)} V=8$ and $\left|G_{x}\right|_{3}$, $=2$ for all $x \in V^{*}$. Proof. Write $L=\operatorname{GF}\left(3^{2}\right)$. The groups Σ_{1}, Σ_{2}, are both subgroups of $G L\left(2,3^{2}\right)$. Hence, for $i=1,2$, there exists an $L \Sigma_{i}$-module U_{i} such that U_{i} is faithful for Σ_{i} and $\operatorname{dim}_{L} U_{i}=2$. Clearly U_{i} is irreducible for $i=1,2$. Write $U=U_{1} \otimes_{L} U_{2}$. Then, since $\Sigma=\Sigma_{1} Y \Sigma_{2}$, we can make U into an $L \Sigma$-module in the obvious way. It is easily seen that U is irreducible and faithful for Σ. Also $\operatorname{dim}_{L} U=4$.

Assume that $G \cong \Sigma$. Then there exists an irreducible LG-module, V say, such that V is faithful for G and $\operatorname{dim}_{L} V=4$. Naturally we may regard V as a $G F(3) G$-module, and $\operatorname{dim}_{G F(3)} V=8$. We shall show $\left|G_{x}\right|_{3}=2$ for all $x \in V^{\text {\# }}$ in nine steps.

STEP 1: $|i(G)|=90$.
Since $G \cong \Sigma=\Sigma_{1} Y \Sigma_{2}$ it follows that there exist subgroups, T, C, of G with the properties that (i) $G=T C$; (ii) $[T, C]=1$; (iii) $T E \Sigma_{1}$, $C \equiv \Sigma_{2}$; (iv) $|T \cap C|=2$. Write $T \cap C=\langle z\rangle$. Then z is the unique central involution of G, and z acts like scalar multiplication by -1 on V.

Write $Q=O_{2}(T)$. From the structure of $T \equiv \Sigma_{1}$ we have $F(T)=O_{2}(T)$ $=Q \equiv Q_{B}$. Clearly $Z(Q)=\langle 2\rangle$. It is easily seen that T contains exactly 3 Sylow 2-subgroups, each a generalised quaternion group of order 16, and any 2 such subgroups intersect in Q. Since a generalised quaternion group of order 16 contains exactly 10 elements of order 4, and Q contains
and $T \cap C=Z(Q)$. Hence

$$
G=T C \cong \Sigma_{1} Y \Sigma_{2}=\Sigma
$$

Q.E.D.

Our next result shows that the case $G \cong \Sigma$ does occur.

LEMMA 4.41. Let $G \cong \Sigma$. Then there exists an irreducible $G F(3) G$-module V, faithful for G, such that $\operatorname{dim}_{G F(3)} V=8$ and $\left|G_{x}\right|_{3},=2$ for all $x \in V^{*}$.

Proof. Write $L=\operatorname{GF}\left(3^{2}\right)$. The groups Σ_{1}, Σ_{2}, are both subgroups of GL(2, 3^{2}). Hence, for $i=1,2$, there exists an $L \Sigma_{i}$-module U_{i} such that U_{i} is faithful for Σ_{i} and $\operatorname{dim}_{L} U_{i}=2$. Clearly U_{i} is irreducible for $i=1,2$. Write $U=U_{1} \otimes_{L} U_{2}$. Then, since $\Sigma=\Sigma_{1} Y \Sigma_{2}$, we can make U into an LL-module in the obvious way. It is easily seen that U is irreducible and faithful for E. Also $\operatorname{dim}_{L} U=4$.

Assume that $G \underline{\Sigma}$. Then there exists an irreducible LG-module, V say, such that V is faithful for G and $\operatorname{dim}_{L} V=4$. Naturally we may regard V as a $G F(3) G$-module, and $\operatorname{dim}_{G F(3)} V=8$. We shall show $\left|G_{x}\right|_{3}:=2$ for all $x \in V^{\text {\# }}$ in nine steps.

STEP 1: $|i(G)|=90$.
Since $G \propto \Sigma=\Sigma_{1} Y \Sigma_{2}$ it follows that there exist subgroups, T, C, of G with the properties that (i) $G=T C$; (ii) $[T, C]=1$; (iii) $T ⿷ \Sigma_{1}$, $C \cong \Sigma_{2}$; (iv) $|T \cap c|=2$. Write $T \cap C=\langle z\rangle$. Then z is the unique central involution of G, and z acts like scalar multiplication by $\mathbf{- 1}$ on V.

Urite $Q=O_{2}(T)$. From the stmucture of $T 』 \Sigma_{1}$ we have $F(T)=O_{2}(T)$ $=Q \cong Q_{B}$. Clearly $Z(Q)=\langle z\rangle$. It is easily seen that T contains oxactly 3 Sylow 2-subgroups, each a generalised quaternion group of order 16, and any 2 such subgroups intersect in Q. Since a generalised quaternion group of order 16 contains exactly 10 elements of order 4 , and Q contains
and $T \cap C=Z(Q)$. Hence

$$
G=T C \not \approx \Sigma_{1} Y \Sigma_{2}=\Sigma
$$

Q.E.D.

Our next result shows that the case $G \cong \Sigma$ does occur.

LEMMA 4.41. Let $G \cong \Sigma$. Then there exists an irreducible $G F(3) G$-module V, faithful for G, such that $\operatorname{dim}_{G F(3)} V=8$ and $\left|G_{x}\right|_{3},=2$ for all $x \in V^{*}$. Proof. Write $L=\operatorname{GF}\left(3^{2}\right)$. The groups Σ_{1}, Σ_{2}, are both subgroups of $\operatorname{GL}\left(2,3^{2}\right)$. Hence, for $i=1,2$, there exists an $L \Sigma_{i}$-module U_{i} such that U_{i} is faithful for Σ_{i} and $\operatorname{dim}_{L} U_{i}=2$. Clearly U_{i} is irreducible for $i=1,2$. Write $U=U_{1} \otimes_{L} U_{2}$. Then, since $\Sigma=\Sigma_{1} Y \Sigma_{2}$, we can make U into an LE-module in the obvious way. It is easily seen that U is irreducible and faithful for Σ. Also $\operatorname{dim}_{L} U=4$.

Assume that $G \underline{\Sigma}$. Then there exists an irreducible LG-module, V say, such that V is faithful for G and $\operatorname{dim}_{L} V=4$. Naturally we may regard V as a $G F(3) G$-module, and $\operatorname{dim}_{G F(3)} V=8$. We shall show $\left|G_{x}\right|_{3}=2$ for all $x \in V^{\#}$ in nine steps.

STEP 1: $|i(G)|=90$.
Since $G £ \Sigma=\Sigma_{1} Y \Sigma_{2}$ it follows that there exist subgroups, T, C, of G with the properties that (i) $G=T C$; (ii) $[T, C]=1$; (iii) $T \sum \Sigma_{1}$, $C \equiv \Sigma_{2}:$ (iv) $|T \cap C|=2$. Write $T \cap C=\langle z\rangle$. Then z is the unique central involution of G, and z acts like scalar multiplication by -1 on V.

Write $Q=O_{2}(T)$. From the structure of $T \Sigma \Sigma_{1}$ we have $F(T)=O_{2}(T)$ $=Q \cong Q_{\hat{0}}$. Clearly $Z(Q)=\langle z\rangle$. It is asily seen that T contains oxactly 3 Sylow 2-subgroups, each a generalised quaternion group of order 16, and any 2 such subgroups intersect in Q. Since a generalised quaternion group of order 16 contains exactly 10 elements of order 4, and Q contains
exactly 6 elements of order 4 we see that T contains exactly $3(10-6)+6$ $=18$ elements of order 4. From the structure of $C \equiv \Sigma_{2}$ we see that C contains exactly 5 Sylow 2-subgroups each a cyclic group of order 4. Thus C contains exactly $2.5=10$ elements of order 4.

Since neither T nor C contains an involution other than z, it follows that if $g \in i(G)$ then $g=t c$ for some $l \neq t \in T, l \neq c \in C$. Then $1=g^{2}=t^{2} c^{2}$ implies that $t^{2}=c^{2}=z$. Therefore $g \in i(G)$ if and only if $g=t c$ for some $t \in T, c \in C$ such that $|t|=|c|=4$. We have shown that T contains exactly 18 elements of order 4 , and that C contains exactly 10 elements of order 4. Also if $t \in T, c \in C$ with $|t|=|c|=4$ we have $t^{3} c=t z c=t c^{3}$, and hence $|i(G)|=18.10 / 2=90$.

STEP 2: if $x \in V^{*}$ then $\left|G_{x}\right|=6,3,2$, or 1 , and if $g_{1}, g_{2} \in i(G)$ such that $g_{1} \neq g_{2}$ then $x \in\left(C_{V}\left(g_{1}\right)\right)^{\#} \cap\left(C_{V}\left(g_{2}\right)\right)^{*}$ implies that $G_{x} \equiv S_{3}$. Let S denote $O_{5}(C)$. Then $S \& G$ and $F(G)=Q \times S$. Consider $T S=T \times S$. We have $|G: T S|=2$ and $i(G) \cap T S=\varnothing$. Let $x \in V^{*}$ and let P be a Sylow 2-subgroup of G_{x}. Since $1(G) \cap T S=\varnothing$ we must have $P \cap T S=1$ and hence $|P| \leqslant 2$. Therefore $\left|G_{x}\right|_{2} \leqslant 2$. We have $|G|=480=2^{5} .3 .5$ and clearly S, a Sylow 5-subgroup of G, acts semi-regularly on $V^{\underline{\prime \prime}}$. Thus $5 \nmid\left|G_{x}\right|$ and it follows that $\left|G_{x}\right|=6,3,2$, or 1 . Let $g_{1}, g_{2} \in i(G)$ such that $g_{1} \not \not g_{2}$ and let $x \in\left(C_{v}\left(g_{1}\right)\right)^{*} \cap\left(C_{v}\left(g_{2}\right)\right)^{*}$. Then $x \in V^{*}$ and G_{x} contains two distinct involutions, namely g_{1} and g_{2}. Therefore G_{x} is a non-abelian group of order 6 , whence $G_{x} \Perp S_{3}$.

STEP 3: if $h \in i(G)$ then $\operatorname{dim}_{L} C_{V}(h)=2$.
Let R denote a Sylow 2-subgroup of QC. Then, clearly, $Q \leqslant R$ and $R \cong Q_{8} \mathrm{YC}_{4}$. The group R contains exactly 6 involutions distinct from $z_{\text {. }}$ Let $g \in i(G) \cap R$. Considering V as $\operatorname{GF}\left(^{3}\right) R$-module, Lemma 4.2(i) implies that $\operatorname{dim}_{\operatorname{GF}(3)} C_{V}(g)=4$, whence $\operatorname{dim}_{L} C_{v}(g)=2$. Let $h \in i(G)$. If
$x \in\left(C_{v}(h)\right)^{*} \cap\left(C_{v}(g)\right)^{*}$ then, by Step 2 , we have $G_{x} \cong S_{3}$. But QC $\varangle G$ and $3 \nmid Q C \mid$, and hence, since $\langle g\rangle \leqslant G_{i n} \cap Q C$, we see that $1<\left(G_{x} \cap Q C\right)$ $\triangleleft G_{x} \cong S_{3}$ and $3 \nmid\left|G_{x} \cap \mathbb{Q}\right|$, clearly an impossibility. Thus $\left(C_{V}(h)\right)^{*} \cap$ $\left(C_{V}(g)\right)^{*}=\varnothing$, and we deduce that $\operatorname{dim}_{L} c_{v}(h) \leqslant 2$. Now if $h \in i(G)$ then $h z \in i(G)$. Thus we have $\operatorname{dim}_{L} C_{v}(h) \leqslant 2$ and $\operatorname{dim}_{L} c_{v}(h z) \leqslant 2$. But clearly $v=c_{v}(h)-c_{v}(h z)$, and it follows that $\operatorname{dim}_{L} c_{v}(h)=\operatorname{dim}_{L} c_{v}(h z)=2$.

STEP 4: G contains exactly 4 Sylow 3 -subgroups, say $K_{1}, K_{2}, K_{3}, K_{4}$, and for $1 \leqslant i \leqslant 4$ we have $\operatorname{dim}_{L} C_{v}\left(K_{i}\right)=2$.

Since $T \cong \Sigma_{1}$ there exists a subgroup, M, of T such that $M \equiv \operatorname{SL}(2,3)$. Obviously $M \triangleleft G$, and all Sylow 3 -subgroups of G are contained in M. Thus G contains exactly 4 Sylow 3 -subgroups, $K_{1}, K_{2}, K_{3}, K_{4}$, say. By Theorem 3.13 any faithful irreducible module for $\operatorname{GL}(2,3)$ over the field $\mathrm{GF}(3)$ has dimension 2, and thus, any faithful irreducible module for $\operatorname{SL}(2,3)$ over GF(3) has dimension 2. Hence, considering V as a $G F(3) G-m o d u l e$ and writing

$$
v_{M}=w_{1} \oplus \ldots \oplus w_{a}
$$

where each W_{j} is an irreducible $G F(3) M$-module, we see easily that each W_{j} is faithful for M, whence $\operatorname{dim}_{G F(3)} W_{j}=2$ for $1 \leqslant j \leqslant \alpha$. It follows that $a=4$. Let $i \in\{1, \ldots, 4\}$. Clearly $\operatorname{dim}_{G F(3)} C_{W_{j}}\left(K_{i}\right)=1$ for $1 \leqslant j \leqslant 4$, and therefore $\operatorname{dim}_{G F(3)} c_{V}\left(K_{i}\right)=4$. We conclude that $\operatorname{dim}_{L} C_{V}\left(K_{i}\right)=2$. STEP 5: if $X=\left\{x: x \in V^{*}, 3| | G_{x} \mid\right\}$, then $|x|=4 \cdot\left(3^{4}-1\right)$. Clearly

$$
x=\bigcup_{i=1}^{4}\left(c_{v}\left(k_{i}\right)\right)^{*} .
$$

If $1 \leqslant 1 \neq j \leqslant 4$, then $x \in\left(C_{v}\left(K_{i}\right)\right)^{*} \cap\left(C_{v}\left(K_{j}\right)\right)^{*}$ implies that $\left\langle K_{i}, K_{j}\right\rangle \leqslant G_{x}$, which is clearly impossible since, by Step 2, we have $\left|G_{x}\right|<6$. Thus the above union is diejoint and, since $\mathrm{dim}_{2} \mathrm{C}_{v}\left(\mathrm{~K}_{i}\right)=2$ for $2 \leqslant 1 \leqslant 4$, we must have $|x|=4\left(3^{4}-1\right)$.

STEP 6: $G_{x} \cong S_{3}$ for at least one $x \in V^{\boldsymbol{\#}}$.
Suppose that for all $x \in V^{*}$ we have $G_{x} \neq S_{3}$. Let $x \in V^{*}$. Since $\left|G_{x}\right|$ $=6,3,2$, or 1 by Step 2 and $G_{x} \neq S_{3}$, it follows that G_{x} contains a unique involution. Therefore if $g_{1}, g_{2} \in i(G)$ such that $g_{1} \neq g_{2}$ then, clearly, $\left(C_{v}\left(g_{1}\right)\right)^{\#} \cap\left(C_{V}\left(g_{2}\right)\right)^{*}=\emptyset$. By Step 3 we have $\operatorname{dim}_{L} c_{V}(h)=2$ for all $h \in i(G)$, and hence

$$
3^{8}-1=\left|v^{*}\right| \geqslant\left|\bigcup_{h \in i(G)}\left(c_{v}(h)\right)^{*}\right|=|i(G)|\left(3^{4}-1\right)=90\left(3^{4}-1\right)
$$

giving $3^{4}+1 \geqslant 90$, a contradiction. Thus there exists at least one $x \in \dot{V}^{*}$ such that $G_{x} \equiv S_{3}$.

STEP 7: if $x \in V^{*}$ Buch that $G_{x} \cong S_{3}$ then $\operatorname{dim}_{L} C_{V}\left(G_{x}\right)=1$.
Let $x \in V^{*}$ such that $G_{x} \cong S_{3}$. Then $G_{x}=\langle K, h\rangle$ for some Sylow 3-subgroup, K, of G and for some $h \in i(G)$. By Steps 3 \& 4 we have $\operatorname{dim}_{L} C_{V}(h)=\operatorname{dim}_{L} C_{V}(K)=2$, and hence, since $0 \neq x \in C_{v}\left(G_{x}\right)=C_{V}(h) \cap C_{v}(K)$, we must have $\operatorname{dim}_{L} C_{V}\left(G_{X}\right)=1$ or 2. Let W denote $C_{V}(K)$. Then $\operatorname{dim}_{L} W=2$ and, writing $N=N_{G}(K)$, it follows that W is a module for the group N over the field L. Clearly we have $S \leqslant N$.

Suppose that $\operatorname{dim}_{L} C_{V}\left(G_{x}\right)=2$. Then $C_{V}\left(G_{x}\right)=W$ and G_{x} is a subgroup of the kernel of N on W. But, as shown in Step 2, if $y \in V^{*}$ then $\left|G_{y}\right| \leqslant 6$. Therefore, since $\left|G_{x}\right|=6$, we see that G_{x} is precisely the kernel of N on H, whence $G_{x} \triangleleft N$. In particular S normalises G_{x}. It is easily seen that $C_{G}(S)=T S$ and, as observed in Step 2 , we have $I(G) \cap T S=\varnothing$. Hence $h \notin C_{G}(S)$. Therefore, since $h \in G_{x} \cong S_{3}$, it is obvious that S does nct normalise G_{x}, a contradiction. Thus $\operatorname{dim}_{L} C_{v}\left(G_{x}\right) \neq 2$, and we conclude that $\operatorname{dim}_{L} C_{V}\left(G_{x}\right)=1$.

STEP 8: if $x \in X$ then $G_{x} \cong S_{3}$.
Let $x \in V^{*}$ such that $G_{x} \approx S_{3}$. Then $G_{k}=\langle K, h\rangle$ for erme Sylow 3-subgroup, K, of G and for some $h \in i(G)$. As in Step 7, writing $W=C_{V}(K)$
and $N=N_{G}(K)$ we have that W is a module for the group H of dimension 2 over the field L and $S \leqslant N$. By Step 7 we have $\operatorname{dim}_{L} C_{V}\left(G_{x}\right)=\operatorname{din}_{L} C_{K}(h)=1$. Since $W=C_{W}(h) \odot C_{W}(h z)$, we must have $\operatorname{dim}_{L} C_{W}(h z)=1$. Write $\pi_{1}=C_{W}(h)$, $W_{2}=C_{W}(h z)$.

It is easily seen that W contains exactly 10 distinct one-dimensional subspaces, and, clearly, S permutes these subspaces in two orbits of size 5. We claim that the S-orbit containing W_{1} does not contain W_{2}. For, if $\left(H_{1}\right) s=W_{2}$ for some $s \in S$ and if $w \in W_{1}^{*}$, then $w s \in W_{2}=C_{W}(h z)$, whence (ws)(hz) =ws. But $S \cong C_{5}$ and $S 4 G$. Hence we may write $s h=L^{\alpha}$ for some a. Then

$$
\text { ws }=\text { (ws)hz }=\text { whs } s_{z}=w s^{a_{z}}
$$

which yields $w=w\left(s^{\alpha-1} z\right)$. Thus $s^{\alpha-1} z \in G_{W}$. But $1 \neq s^{\alpha-1} z \in F=Q \times S$ and F acts semi-regularly on $V^{\#}$, a contradiction. We conclude that W_{1} and W_{2} are in different S-orbits.

We have $C_{G}\left(W_{1}\right)=G_{x}$, and $C_{G}\left(W_{2}\right)=\langle K, h z\rangle E S_{3}$. Therefore, since any one-dimensional subspace of W is either $\left(H_{1}\right) s$ or $\left(W_{2}\right) s$ for some $s \in S$, we must have $G_{y} \equiv S_{3}$ for all $y \in W^{*}=C_{V}(K)^{*}$. Let $i \in\{1, \ldots, 4\}$. Then the Sylow 3 -subgroup K_{i} of G is conjugate to K, and it follows that there exists $g \in G$ such that $\mathrm{Wg}=\mathrm{C}_{\mathrm{v}}\left(\mathrm{K}_{\mathrm{i}}\right)$. Therefore if $\mathrm{x} \in\left(\mathrm{C}_{\mathrm{v}}\left(\mathrm{K}_{\mathrm{i}}\right)\right)^{*}$ then $x=y g$ for some $y \in W^{*}$, whence $G_{x}=\left(G_{y}\right)^{g} \equiv G_{y} \equiv S_{3}$. To complete this step we marely remark that $x=\bigcup_{i=1}^{4}\left(C_{V}\left(K_{i}\right)\right)$.
STEP 9: $\left|G_{x}\right|_{g,}=2$ for all $x \in V^{*}$.
By Step 2 we have that if $x \in V^{\#}$ then $\left|G_{x}\right|=6,3,2$, or 1. Thus wo need only show that $\left.2\left|\left|G_{x}\right|\right.$ for all $x \in V^{(1)}$ to establish that $| G_{x}\right|_{3} \mid=2$ for all $x \in V^{*}$. Clearly $2\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$ if and only if

$$
\begin{equation*}
v^{*}=\bigcup_{h \in 1(G)}\left(c_{v}(h)\right)^{\#} \tag{1}
\end{equation*}
$$

Let $x \in V^{\#}$. Step 2 implies that $x \in\left(C_{V}\left(h_{1}\right)\right)^{\#} \cap\left(C_{V}\left(h_{2}\right)\right)^{*}$ for distinct elements h_{1}, h_{2} of $i(G)$ if and only if $G_{x} \cong S_{3}$. Also, using Step 8 , we see that $G_{x} \cong S_{3}$ if and only if $x \in X$. Now if $G_{x} \cong S_{3}$ then G_{x} contains exactly 3 elements of $i(G)$, and it follows that x is an element of exactly 3 subsets of $V^{\#}$ of the form $\left(C_{v}(h)\right)^{\#}$ for some $h \in i(G)$. By Step 3 we have $\operatorname{dim}_{L} C_{V}(h)=2$ for all $h \in i(G)$, and hence to calculate $\nmid \bigcup_{h \in i(G)}\left(C_{v}(h)\right)^{\#} \mid$ we must subtract 2 from $|i(G)| \cdot\left(3^{4}-1\right)=90\left(3^{4}-1\right)$ for each element of X.

By Step 5 we have $|x|=4\left(3^{4}-1\right)$, and hence

$$
\left|\bigcup_{h \in i(G)}\left(c_{v}(h)\right)^{\#}\right|=90\left(3^{4}-1\right)-2\left(4 \cdot\left(3^{4}-1\right)\right)=82\left(3^{4}-1\right)=3^{8}-1=\left|v^{\#}\right| .
$$

Therefore (1) holds, and the proof is complete.

This completes our investigation of the case $m=1$, and we now drop our assumptions, stated immediately after the proof of Lemma 4.30, that $m=1$, that G does not act half-transitively on v^{*}, and that G $\left.\leqslant \mathbb{J}^{n}{ }^{n}\right)$. We proceed to examine the case $m=2$ working under the assumptions stated immediately before and immediately following Leuma 4.27 and using the notation introduced there.

LEMMA 4.42. If $m=2$ then $q=3$ and $E \cong Q_{8} Y D_{8}$, and either G acts halftransitively on V^{*} or
(i) $H / A E \cong C_{3}$ or S_{3};
(ii) $r=1,3$, or 4 ;
(iii) $4\left|\left|G_{x}\right|\right.$ for all $x \in V^{*}$.

Proof. Assume that $m=2$. Then by Theorem 4.21 we have $q=3$ and $E \equiv Q_{8} Y D_{8}$. Therefore $4 \nmid A \mid$, giving $E=F_{2}=O_{2}(G)$ and $A E=F=F(G)$. Recall that $H=C_{G}(A)$. Let \bar{H} denote $H / A E$ and let \bar{R} denote $F(\bar{H})$. By

Lemma 4.28 we have that \bar{H}, as a linear group on the symplecti= space $E / Z(E)$, is a subgroup of $\operatorname{Sp}(4,2)$ and $O_{2}(\bar{H})=1$.

By Lemma 4.12 we have $|\mathrm{Sp}(4,2)|=2^{4} \cdot 3^{2} .5$. Assume tinat $\underset{i}{ }|\overline{\mathrm{R}}|$. Then, since $O_{2}(\bar{H})=1$, we must have $\bar{R}=1$ or $\bar{R} \approx C_{5}$. If $\overline{\bar{j}}=\bar{Z}(\overline{\bar{B}})=1$ then, clearly, $\bar{H}=1$, whence $H=A E$. If $\bar{R} \cong C_{5}$ then $\mid \bar{H} \| 20$. Trus, whether $\bar{R}=1$ or $\bar{R} \equiv C_{5}$, we must have $3 十|H|$. By Lemma 4.29 (ii) the group G / H is cyclic, and hence G contains a nommal Hall $3^{\prime \prime}$-subgroup, s say. By Lemma 4.3 we see that N acts half-transitively but not semi-resilarly on V^{*}. Clearly $N \notin \mathscr{F}\left(3^{n}\right)$ since $E \leqslant N$ and E is not metacyclic. Also $N \not \mathscr{F}_{0}^{\left(3^{n / 2}\right)}$ since $\mathscr{F}_{0}^{\left(3^{n / 2}\right)}$ contains an abelian subgroup of sidex 2 whereas $E \leqslant N$ and a maximal abelian normal subgroup of E has $i=\underline{e} e x 4$ in E. It follows that N must satisfy one of the cases $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right),\left(f_{4}\right)$, of Theorem 1.16. But in all these cases we have $F(N) \equiv Q_{8} Y D_{E}$, and thus $|A|=2$ which yields $C_{G}(A)=H=G=N$. Therefore if $3 P|E|$ then G acts half-transitively on V^{*}.

Assume that G does not act half-transitively on V^{*}. Then $3||\bar{z}|$. We need some of the facts concerning the group $\operatorname{Sp}(4,2)$ and its action on a 4-dimensional symplectic space W given in the discussion fmediately following Lemma 4.1 in [13]. Let L be a Sylow 3 subgroup of $\mathrm{Sy}(4,2)$. Then, as stated in [13] (and as is easily checked), $L \cong C_{3} \times C_{3}$, and $W=W_{1} \bullet W_{2}$ where W_{1} and W_{2} arc 2-dimensional non-isotropic subspaces normalised by L. Also, as shown in [13], the group $\operatorname{Sp}(4,2)$ sonsains no elament of order 15.

Since we have assumed that $3||\bar{R}|$, and since $\operatorname{Sp}(4,2)$ contai-s no element of onder 15, it follows that \bar{R} is a 3 -group. Therefore $\overline{\mathcal{R}}: C_{3}$ or $C_{3} \times C_{3}$. We use the argument at the beginning of the proof of [13] Lame 4.4 to show that $\bar{R} \not C_{3} \times C_{3}$. Suppose that $\bar{R} \equiv C_{3} \times C_{3}$. Then \bar{R} is a sylow 3-subgroup of $\operatorname{Sp}(4,2)$ and hence, writing $W=E / Z(E)$, we have $W=W_{1}$ - W_{2} where W_{1} and W_{2} are 2-dimenaional non-isotropic subspeces
normalised by \bar{R}. Let $E_{1} / Z(E)=W_{1}, E_{2} / Z(E)=W_{2}$. Then, since W_{1} and W_{2} are non-isotropic, E_{1} and E_{2} are non-abelian groups of order 8. But E_{1} and E_{2} both admit automorphisms of order 3 , whence $E_{1} \equiv E_{2} \equiv Q_{8}$ and we have

$$
E=E_{1} E_{2} \cong Q_{8} Y Q_{8} \nsubseteq Q_{8} Y D_{8}
$$

contradicting $E \propto Q_{8} Y D_{8}$. Hence $\bar{R} \notin C_{3} \times C_{3}$, and we conclude that $\bar{R} \cong C_{3}$. Thus $\bar{H} \simeq C_{3}$ or S_{3}, which proves (i).

The group E does not act semi-regularly on $V^{\#}$, and so there exists $y \in V^{*}$ such that $2 \| E_{y} \mid$. Therefore $2 \| G_{y} \mid$ and, by 3^{\prime}-halftransitivity we have $2 \| G_{x} \mid$ for all $x \in V^{*}$. By assumption V_{A} is homogeneous, and hence we can apply Lemma 4.26 with $p=2$. Note that it is Lemma 4.26 (iii) that applies since, by Lemma 4.29 (iii), we have $4=2^{m} \geqslant n / r$. Since $|H / A| \leqslant 96$ and G / H is cyclic we must have $\lambda_{1} \leqslant 96, \lambda_{2} \leqslant 96$. Lemma 4.26 (iii) yields

$$
3^{r}<2(96+96)=384
$$

and we deduce that $r \leqslant 5$. But if $r=5$ then, since $|G / H|$ divides r, we have $\lambda_{2}=0$ and Lemma 4.26(iii) gives a contradiction. Thus $r \leqslant 4$. Now $4 \dagger|A|$ and r is the least integer such that $|A| \mid 3^{r}-1$. It follows that r $\neq 2$ and we have proved (ii).

All that remains to prove is that $4 \| G_{x} \mid$ for all $x \in V^{*}$. Suppose that there exists $y \in V^{*}$ such that $\psi \nmid\left|G_{y}\right|$. Then, since $2\left|\left|G_{j}\right|\right.$, we must have $\left|G_{y}\right|_{2}=2$. Therefore, by 3'-halftransitivity, $\left|G_{x}\right|_{2}=2$ for all $x \in V^{*}$. Let $h \in i(G) \cap E$. By Lemma 4.2(i) we have $\operatorname{dim}_{V}(h)=n / 2$. Let $g \in i(G)$ such that $g \notin E$, and let $x \in C_{v}(h) \cap C_{v}(g)$. Since $h \in E_{x}$ we have $2 \| E_{x} \mid$. But $g \in G_{x} \backslash E_{x}$ and $g \in i(G)$, whence $2\left|\left|G_{x} / E_{x}\right|\right.$ and 4$|\left|G_{x}\right|$. Therefore $x=0$, and we deduce that $C_{v}(h) \cap C_{V}(g)=0$. Hence for all $g \in i(g)$ we
have $\operatorname{dimc}_{v}(g) \leqslant n / 2$. Since $\left|G_{x}\right|_{2}=2$ for all $x \in V^{*}$ it follows that

$$
\begin{equation*}
v^{\#}=\bigcup_{g \in i(G)} c_{v}(g)^{*} \tag{1}
\end{equation*}
$$

Suppose that $r=4$. Then $|A|=10$ and $|H| \leqslant 960$. Since $|G / K| \leqslant r=4$ we have $|G| \leqslant 3840$. Certainly $|i(G)| \leqslant|G| \leqslant 3840$ and (1) yields

$$
3^{n}-1=\left|v^{*}\right| \leqslant 3840\left(3^{n / 2}-1\right)
$$

giving $3^{n / 2}+1 \leqslant 3840$. But, by Lemma $4.29(i i i)$, we see that $n \geqslant 2^{m} r=16$, and we have a contradiction. Hence $r \neq 4$.

Suppose that $r=3$. Then $|A|=26$, so let B denote the subgroup of A of order 13. Now $B \leqslant A \leqslant Z(H)$ and so, if T denotes a Hall 13'-subgroup of H, then we have $H=T \times B$. Also $T \leqslant 192$ and $i(G) \subseteq T$. Consequently $|i(G)| \leqslant 192$ and (1) yields

$$
3^{n}-1=\left|v^{*}\right| \leqslant 192\left(3^{n / 2}-1\right)
$$

giving $3^{n / 2}+1 \leqslant 192$. But $n \geqslant 2^{m}=12$, and we have a contradiction. Hence $x \neq 3$.

Therefore $r=1$, whence $|A|=2$ and $H=G$. Thus $G / E=H / A E \neq C_{3}$ or S_{3}. The group $E \cong Q_{g} Y D_{8}$ contains exactly 10 non-central involutions and hence, if $2 \nmid|G / E|$, then $i(G) \subseteq E$ which yields $|i(G)| \leqslant 10$. Assume that $2||G / E|$, and let $S / Z(E)$ be a Sylow 2-subgroup of $G / Z(E)$. Clearly $|S / Z(E)|=32$, and the group $E / Z(E)$ has index 2 in $S / Z(E)$. Let $s Z(E) \in S / Z(E)$ such that $s Z(E) \notin E / Z(E)$ and $|s Z(E)|=2$. By Lemma 4.28 the group G / E acts faithfuily on $E / Z(E)$, and hence, writing $W=E / Z(E)$, wo have $\left|C_{W}(s Z(E))\right| \leqslant 8$. If $t Z(E) \in E / Z(E)$ then $|s t Z(E)|=2$ if and only if $t Z(E)$ $\in C_{W}(S Z(E))$. Thus the group $S / Z(E)$ contains at most 8 involutions not contained in $E / Z(E)$. Clearly $G / Z(E)$ contains three Sylow 2-subgroups, any two of which intersect in $E / Z(E)$. Hence the group $G / Z(E)$ contains
at most $3.8=24$ involutions not contained in $E / Z(E)$, winence G =ontains at most $2.24=48$ involutions not contained in E. It follens siat $|i(G)| \leqslant 48+10=58$. Thus, whether $G / E \equiv C_{3}$ or S_{3}, we have $\mid\{(G) \mid \leqslant 58$, and (1) yields

$$
3^{n}-1=\left|v^{*}\right| \leqslant 58\left(3^{n / 2}-1\right)
$$

which implies that $3^{n / 2}+1 \leqslant 58$. Hence $n \leqslant 6$. But $2^{m}=4$ diviさes n, and we conclude that $n=4$. Since $\left|G_{x}\right|_{2}=2$ for all $x \in V^{\#}$, it EOllois that $|G|_{2} / 2$ divides the size of each G-orbit in V^{*}, and thus $|G|_{2} / 2$ Eivices $\left|V^{*}\right|=80$. Hence $|G|_{2} \leqslant 32$, and therefore E is a Sylow $2-s i j g r e \div p$ oi G. Let K be a Sylow 3-subgroup of G. Then $G=E K$.

Now E contains exactly 10 non-central involutions, and therefore E contains precisely 5 subgroups isomorphic to $C_{2} \times C_{2}$ containing $Z(E)$. Each of these subgroups is normal in E, and clearly K normalises at least one such subgroup, M say. But then $M \cong C_{2} \times C_{2}$ and $Y \varangle G$, contradicting our assumption that G contains no non-cyclic abelian normal sibgroup. Hence we were incorrect in supposing that there exists $y \in V^{*}$ such tha: $4 \dagger\left|G_{y}\right|$, and we conclude that $4 \| G_{x} \mid$ for all $x \in V^{\#}$.
Q.E.D.

LEMMA 4.43. If $m=2$ then G acts half-transitively on v^{*}.

Proof. Assume that $m=2$. By Lemma 4.42 we have $q=3$ and $\equiv Q_{8} Y D_{8}$. Suppose that G does not act half-transitively on V^{*}. Then (i), (ii), (iii), of Lemma 4.42 wust hold. If $r=3$ then, since $|G / H| \mid 3$ and $|\because / A E|_{2} \leqslant 2$, we must have $2 \| G_{x} \cap A E \mid$ for all $x \in V^{\#}$. In this case, then, $2 \| \Sigma_{x}$! for all $x \in V^{*}$, and Lemma $4.1(i i)$ yields $n=4$, a contradiction since $F=3$ and $r \mid n$.

Suppose that $r=4$, and write $L / A E=F(G / A E)$. Since G / B is cyclic of order dividing 4 and $H / A E \equiv C_{3}$ or S_{3}, we see easily that $|G: L| \leqslant 2$
and $L / A E$ is cyclic of order 3,6 , or 12. Clearly either V_{L} is irreducible, or $V_{L}=V_{1} \oplus V_{2}$ where V_{1} and V_{2} are irreducible GF(3)L-modules such that $\left(V_{1}\right) g=V_{2},\left(V_{2}\right) g=V_{1}$, for all $g \in G \backslash L$. Let U denote a non-trivial irreducible submodule of V_{L}. Since $r=4$ we must have $|A|=10$ and we see easily that $\operatorname{soc}(G)=\operatorname{soc}(L)=A$. From the fact that A acts semiregularly on V^{*} it follows that U is faithful for L. If $x \in U^{*}$ then $4\left|\left|G_{x}\right|\right.$, and hence 2$|\left|G_{x} \cap L\right|$. Therefore $2\left|\left|L_{x}\right|\right.$ for all $x \in U^{*}$ and, since obviously U_{A} is homogeneous, we can apply Lemma 4.26 to the group L and the module U. It is easily seen that $\lambda_{1} \leqslant 15, \lambda_{2} \leqslant 16$. Now if V_{L} is irreducible then $\operatorname{dimU}=n$, whence $(\operatorname{dimU}) / r>2$, and Lemma 4.26 (iii) gives a contradiction.

Therefore $V_{L}=V_{1} \oplus V_{2}$ where V_{i} and V_{2} are irreducible $G F(3) L$-modules, faithful for L, such that $\left(V_{1}\right) g=V_{2},\left(V_{2}\right) g=V_{1}$, for all ge G\L. If $x \in V_{1}^{*}$, then $G_{x} \leqslant L$, whence $L_{x}=G_{x}$, and L acts 3^{\prime}-halftransitively but not 3'-semiregularly on $V_{1}^{\#}$. Clearly dim $V_{1}=n / 2$. However, $L / A E$ is cyclic and so L contains a normal Hall 3^{\prime}-subgroup, N say. By Lerman 4.2 the group N acts half-transitively but not semi-regularly on v_{1}, and clearly $N \notin \mathscr{J}\left(3^{n / 2}\right)$ and $N \neq \mathscr{J}_{0}^{\left(3^{n / 4}\right)}$. Hence, by Theorem 2.16, we see that N must satisfy one of the cases $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right),\left(f_{4}\right)$ in the statement of that theorem. But then we have $n / 2=4$, whence $n=8$, contradicting the fact that $2^{m} r=16$ divides n. Thereforer$m 4$.

Using Lemma 4.42 (ii) we conclude that $r=1$, which yields $|A|=2$ and $C_{G}(A)=H=G$. Thus $G / E=H / A E \propto C_{3}$ or S_{3}. Since $4\left|\left|G_{x}\right|\right.$ for all $x \in V^{\dagger}$ we see that $2\left|\left|E_{x}\right|\right.$ for all $x \in V^{(\omega}$, and therefore, by Lemma 4.1(ii). we have $n=4$ and $\left|E_{x}\right|=2$, for all $x \in V^{*}$. Consequantly $G / E=S_{3}$. Let X be a Sylow 3-subgroup of G. As observed in the proof of Lama 4.42, the aroup E contains exactly 5 subgroups isomorphic to $C_{2} \times C_{2}$ containing $Z(E)$. Each of thase aubgroups is nommal in E, and, clearly, K normalises at least one such abgroup, M say. Thus EK $\leqslant N_{G}(M)$. Lat gemz(E).

Then g is a non-central involution in E, and there exists $y \in \mathbb{V}^{*}$ such that $E_{y}=\langle g\rangle$. Since $E_{y}=E \cap G_{y}\left\langle G_{y}\right.$ it follows that $G_{y} \leqslant C_{G}(g)$, and, since $M=\langle Z(E), g\rangle$, we must have $G_{y} \leqslant C_{G}(g) \leqslant N_{G}(M)$. Now $4 \| G_{y} \mid$, and therefore $2\left|\left|G_{\mathbf{y}}: G_{y} \cap E\right|\right.$. Hence $G_{y} \nmid E K$. But $| G: E K \mid=2$ and we deduce that $W_{G}(M) \geqslant\left\langle E K, G_{y}\right\rangle=G$, giving $M \triangleleft G$, the final contradiction since G contains no non-cyclic abelian normal subgroup. Thus G acts halftransitively on $\mathrm{v}^{\text {券. }}$.
Q.E.D.

The preceeding results are collected together to obtain the following theorem.

THEOREM 4.44. Let G be a soluble group, q a prime, and V an irreducible $G F(q) G$-module, faithful for G, such that $\operatorname{dim}_{G F(q)} V=n$ and G acts q^{\prime} halftransitively but not q^{\prime}-semiregularly on $v^{\text {\# }}$. Assume that G contains no non-cyclic abelian normal subgroup, and that if A denotes $Z\left(C_{F}(\varphi(F))\right)$ where $F=F(G)$ then V_{A} is homogeneous. Then one of the following must hold.
(i) G acts half-transitively on $\mathrm{V}{ }^{\#}$;
(ii) $G \leqslant \mathscr{J}\left(q^{n}\right)$;
(iii) $\underline{a}^{n}=3^{4}$ and $G \equiv \operatorname{GL}(2,3) Y C_{11}$;
(iv) $q^{n}=3^{8}$ and $G \cong \Sigma$, where Σ is the group defined in Definition 4.36.

Proof. By Theorem 4.21 we have $O_{p}(G)$ is cyclic for all odd primes p. Lat F_{2} denote $O_{2}(G)$ and write $E=\Omega_{2}\left(C_{F_{2}}\left(\varphi\left(F_{2}\right)\right)\right.$). If F_{2} is generalised quaternion of order at least 16 , or if F_{2} is cyclic, dihedral or semidihedral, then by Lemma 4.27 we have $\left.G \leqslant \mathscr{J} q^{n}\right)$. Therefore we may assume that F_{2} is not cyclic, dihedral, or semi-dinedral, and that F_{2} is not a generelised quaternion group of order greater than or equal to 16 . Then by Lemaa 4.1 the group E is of type $E(2, m)$ for some $m \neq 0$ and by Theorem
4.21 we have $m=1$ or $m=2$. If $m=2$ then, by Lemma 4.43, the group G acts half-transitively on v^{*}, and hence we may assume that $\mathrm{m}=1$. Therefore Lemmas 4.30-4.35 and Lemmas 4.37-4.40 imply that if G does not act half-transitively on v^{*}, and if $G \nLeftarrow \mathscr{J}\left(q^{n}\right)$, then $q=3$ and either $n=4$ and $G \cong \operatorname{GL}(2,3) Y C_{4}$, or $n=8$ and $G £ \Sigma$.
Q.E.D.

This concludes Step 3 in the outline of this chapter given earlier. We now drop the assumptions, stated immediately following the proof of Lemma 4.27, that V_{A} is homogeneous and that F_{2} is neither generalised quaternion of order at least 16 , cyclic, dihedral, nor semi-dihedral. We proceed to Step 4 , the investigation of the possibility that V_{A} is not homogeneous, under the assumptions stated immediately preceding Lemma 4.27 and using the notation introduced there.

LEMMA 4.45. The case in which V_{A} is not homogeneous does not occur.

Proof. Suppose that V_{A} is not homogeneous. Then, by Lenma 4.27, it follows that F_{2} is neither generalised quatemion of order greater than or equal to 16 , cyclic, dihedral, nor semi-dihedral. Consequently $q \neq 2$ and Lemma 4.1 yields that, writing $E=\Omega_{2}\left(C_{F_{2}}(\phi(F))\right)$, we have E is a group of type $E(2, m)$ with $m \neq 0$.

Let

$$
v_{A}=v_{1} \oplus \ldots v_{t}
$$

where V_{i} is a homogeneous component of V_{A}. Since, by assumption, V_{A} ie not homogeneous we have $t>1$. Let S_{i} denote the stabiliser in G of V_{i} for $1 \leqslant 1 \leqslant t$. Then $C_{G}(A) \leqslant S_{i}$ and $\left|G: S_{i}\right|=t$ for $1<1<t$. Also the S_{i} are conjugate in G. Now $G / C_{G}(A)$ is isomorphic to a subgroup of Aut(A), an abelian group. Thus $S_{1}=S_{2}=\ldots=\delta_{t}=S$, say, and $s \& G$.

The V_{i} are permuted by G and if $i \in\{1, \ldots, t\}$ and $g \in G$ the: $V_{i} \tilde{\varepsilon}=V_{i}$ if and only if $g \in S$. Hence if $i \in\{1, \ldots, t\}$ and $x \in V_{i}^{\# \#}$ then $G_{x} \leqslant 5$, whence $G_{x}=S_{x}$. By Clifford's Theroem each V_{i} is an irreducible GF(q)S-module and, clearly, $\left(V_{i}\right)_{A}$ is homogeneous for $1 \leqslant i \leqslant t$.

Since $S \varangle G$ we must have $F(S) \leqslant F=F(G)$. From the fact ti: $\equiv=C_{G}(A) \leqslant S$ it follows that $E \leqslant S$, whence $A E \leqslant F(S)$. Now $|F: A E| \leqslant 2$, and $=1$ structure of F_{2}, a 2-group of symplectic type, we see that $\boldsymbol{s}\left(C_{2}(S)\right)=\Phi\left(F_{2}\right)$ Therefore, writing $L=F(S)$, we have $\Phi(L)=\Phi(F)$, and so

$$
C_{L}(\phi(L))=L \cap C_{F}(\phi(F))=L \cap A E=A E
$$

Consequently $Z\left(C_{F}(F)\right)=A=Z\left(C_{L}(\Phi(L))\right)$. Clearly $\operatorname{soc}(S) \leqslant A$, and, since A acts semi-regularly on v^{*}, the module v_{i} is faithful for $S(1 \leqslant i \leqslant t)$.

We have shown that v_{1} is an irreducible $G F(q) S$-module, fai=hful for S, and, since $G_{x}=S_{x}$ for all $x \in V_{1}^{*}$, we see that S acts q^{\prime}-hal=-ransitively but not $q^{\prime-s e m i r e g u l a r l y ~ o n ~} V_{1}^{\#}$. Obviously S is soluble.

Suppose that S contains a non-cyclic abelian nomal subgro:?. Then the possibilities for S are given in Theorem 3.9. If S satisfies (íi) in Theorem 3.9 then $\Omega_{1}\left(O_{2}(S)\right) \equiv C_{2} \times C_{2}$ and clearly, $\Omega_{1}\left(O_{2}(S)\right) \& G$ a contradiction. If S satisfies (i), (ii), or (iv) of Theorea $3 . j$ then we must have $|A|=2$, giving $A<Z(G)$ which contradicts our assumption that V_{A} is not homogeneous. Hence $S \equiv \mathscr{T}_{0}\left(q^{\alpha}: q^{\beta}\right)$ for some integers α, B, such that $q^{\beta} \mid \alpha$. But $O_{2}\left(\mathscr{J}_{0}^{(} q^{\alpha}: q^{\beta}\right)$) is abelian unless $q^{\alpha}-1$ is a power of 2, and we have a non-abelian subgroup of $O_{2}(S)$, namely Ξ. Hence $q^{\alpha}-1$ is a powar of 2. Therefore either $\alpha=2$ and $q=3$, or $a=1$ and q is a Farmat prime. As a consequence we see that q ta. which yieIds $s=0$ and

$$
|s|=\left|\mathscr{T}_{0}\left(a^{a}: q^{\beta}\right)\right|=\left|\mathscr{T}_{0}^{\left(a^{\alpha}\right)}\right|=4\left(q^{a}-1\right) .
$$

It follows that S is a 2 -group, whence A is a 2 -group and $G / C_{G}(A)$ is a 2-group. Since $C_{G}(A) \leqslant S \leqslant G$ we conclude that G is a 2 -group, and G acts half-transitively but not semi-regularly on $\mathrm{V}^{\boldsymbol{*}}$. Also G is imprimitive as a linear group, and hence Theorem 1.16 implies that either $G \equiv \mathscr{J}_{S}\left(q^{n / 2}\right)$, or $G \cong Q_{8} Y D_{8}$, or $q=2$ and G is isomorphic to the diredral
 abelian normal subgroup, and we have $q \neq 2$. Hence we were incorrect in supposing that S contains a non-cyclic abelian normal subgroup, and thus S contains no such subgroup.

We have shown above that $A=Z\left(C_{L}(\Phi(L))\right)$ where L denotes $F(S)$, and we have $\left(V_{1}\right)_{A}$ is homogeneous. Therefore we can apply Theorem 4.44 to the group S and the module V_{1}. Suppose that either (iii) or (iv) of that theorem holds. Then $q=3$ and $A \cong C_{4}$ or $C_{10^{\circ}}$. But both C_{4} and C_{10} possess a unique (up to equivalence) faithful irreducible representation over GF(3), contradicting our assumption that V_{A} is not homogeneous. Thus either S acts half-transitively on v_{1}^{*}, or $S \leqslant \mathscr{I}\left(q^{\alpha}\right)$ where α denotes $\operatorname{dim}_{G F}(q)^{v_{1}}$. Let B denote the dimension over $G F(q)$ of an irreducible constituent of $\left(v_{1}\right)_{A}$.

We proceed to eliminate the possibility that $S \leqslant \mathscr{G}\left(q^{a}\right), s o$, in order to obtain a contradiction, suppose that $\left.S \leqslant \mathscr{J} q^{\alpha}\right)$. Then S is metacyclic, whereupon E is metacyclic, and it follows that $E Q_{8}$. Therefore $L=F=E \times B$ where B is a cyclic group of odd order, and $Z(F)=A$. By Lemma 4.23 we have $i(S)=\varnothing$. We deduce that if $x \in V_{1}^{\# \#}$ then $2 \nmid \|_{x} \mid$. From the fact that S acts q^{\prime}-halftransitively but not q^{\prime}-semiregulariy on v_{1} there exists a prime, p say, distinct from q, such that $p \| s_{x} \mid$ for all $x \in V_{1}^{*}$, and we have shown that $p \neq 2$.

By Lomme 4.23 there exists a normal cyclic subgroup T of S such that $|F: T|=2$ and S / T is cylic. Clearly $A \leqslant T$ and $|T: A|=2$. Also wo have $2^{m}=2$, and, by Lemme $4.29(1 i 1)$, we see that $2 \geqslant a / B$. We apply

Lemma 4.26 to the group S, the module V_{1}, and the restriction of v_{1} to A. Since $\alpha / \beta \geqslant 2$ it follows that either Lemma 4.26(ii) or Lemma 4.26(iii) applies. We have $p \neq 2$ and $|T: A|=2$ where S / T is cyclic. Hence S / A is central-by-cyclic, and we must have S/A abelian with a unique cyclic Sylow p-subgroup. But then either $\lambda_{1}=0, \lambda_{2} \leqslant 1$, or $\lambda_{1} \leqslant 1, \lambda_{2}=0$, and both of these cases contradict Lemma $4.26(i i)$ and (iii). Hence $\left.s \neq \mathscr{(} q^{\alpha}\right)$.

The only remaining possibility is that S acts half-transitively on $V_{1}^{\#}$, so suppose that this is the case. Since S does not act q^{\prime}-semiregularly on $V_{1}^{\#}$ it follows that S does not act semi-regularly on $V_{1}^{\#}$. As proved above, $s \notin \mathscr{J}\left(q^{\alpha}\right)$ and s contains no non-cyclic abelian normal subgroup. Therefore we see that the possibilities for S, q, α are precisely those given in cases $\left(a_{1}\right),\left(a_{2}\right),\left(h_{1}\right),\left(b_{2}\right),\left(c_{1}\right),\left(c_{2}\right),\left(d_{1}\right),\left(d_{2}\right),\left(e_{1}\right),\left(f_{2}\right)$, $\left(f_{3}\right),\left(f_{4}\right)$ in the statement of Theorem 1.16. Obviously cases (a_{1}), (a_{2}), are impossible since in these cases $|A|=2$ and $A \leqslant Z(G)$. It is easily checked that in the remaining cases $q \dagger|S|$ and $q\left||\operatorname{Aut}(A)|\right.$. But $C_{G}(A) \leqslant S \leqslant G$. and $G / C_{G}(A)$ is isomorphic to a subgroup of Aut (A). Therefore $q \dagger|G|$, and :se deduce that G acts half-transitively but not semi-regularly on $V^{\text {\#* }}$. Since V_{A} is not homogeneous G is imprimitive as a linear group, and Theorem 1.16 implies that either $G \equiv \mathscr{J}_{0}\left(q^{n / 2}\right)$, or $G \equiv Q_{8} Y D_{8}$, or $q=2$ and G is isomorphic to the dihedral group of order 18. But both $\mathscr{J}_{0}\left(q^{n / 2}\right)$ and $Q_{g} Y D_{g}$ contain non-cyclic abelian normal subgroups, and we have $q \neq 2$, the final contradiction.
Q.E.D.

With the groups $\mathscr{F}\left(q^{n}\right), \mathscr{J}_{0}\left(q^{n}: q^{m}\right), \Delta, \Sigma$, as defined in Definitions $1.14,3.1,3.8,4.36$, respectively we collect together the results of this chapter and Chapter 3 to obtain the following theorem.

THEOREM 4.46. Let G be a soluble group, q a prime, V an irreducible GF(q) G-module, faithful for G, such that G acts q^{\prime}-halftransitively but not q^{\prime}-semiregularly on $V^{\text {T. }}$. Let n denote dim $\operatorname{GF}(q){ }^{V}$. Then one of the following cases must hold.
(i) G acts half-transitively on $\mathrm{V}^{\text {* }}$;
(ii) $\left.G \leqslant \mathscr{T} q^{n}\right)$;
(iii) $G \equiv \mathscr{J}_{0}\left(q^{n / 2}: q^{m}\right)$ for some integer m such that $q^{m} \mid n / 2$;
(iv) $q^{n}=3^{4}$ and $G \cong \operatorname{SL}(2,3) Y D_{8}$;
(v) $q^{n}=3^{4}$ and $G \cong \Delta$;
(vi) $q^{n}=3^{4}$ and $G \approx \operatorname{GL}(2,3) Y D_{8}$;
(vii) $q^{n}=3^{4}$ and $G \cong G L(2,3) Y C_{4}$;
(viii) $q^{n}=3^{8}$ and $G \equiv$.

Proof. Write $A=Z\left(C_{F}(\varphi(F))\right)$ where F denotes $F(G)$. If G contains a non-cyclic abelian normal subgroup then the possibilities for G are given in Theorem 3.9. Notice that if $G \equiv Q_{8} Y D_{8}$ then G acts halftransitively on V^{*}. If G-containis no non-cyclic abelian normal subgroup then Lemma 4.45 implies that V_{A} is homogeneous and the possibilities for G are given in Theorem 4.44 .
Q.E.D.

CHAPTER 5

BOUNDING THE NILPOTENT LENGTH OF A SOLUBLE

HIGH - FIDELITY GROUP WITH A UNIQUE MINIMAL NORMAL
SUBGROUP.

In this chapter we bound the nilpotent length of a soluble group which acts faithfully, irreducibly, and q'-semiregularly as a group of linear transformations of a vector space over the field $\operatorname{GF}(q)$ for some prime q. We conclude by using this bound, together with the main results from earlier chapters, to show (Theorem 5.2) that if G is a soluble high-fidelity group with a unique minimal normal subgroup then $n(G)$, the nilpotent length of G, is at most 6 .

LEMMA 5.1. Let G be a soluble group, q a prime, and let V be an irreducible GF(q)G-module, faithful for G, such that G acts q^{\prime}-semiregularly on ${ }^{*}$. Then $n(G) \leqslant 3$.

Proof. Write $F=F(G)$. Since V is a faithful, irreducible G-module over the field of characteristic q we must have $O_{q}(G)=1$, whereupon $q \dagger|F|$. The fact that G acts q^{\prime}-semiregularly on $V^{\# \prime \prime}$ implies that G_{v} is a q-group for each $v \in V^{*}$, and therefore F acts semi-regularly on V^{*}. From the structure of groups that act semi-regularly as groups of automorphisms we deduce that if p is an odd prime then $O_{p}(G)$, the unique sylow p-subgroup of F, is cyclic, and $\mathrm{O}_{2}(G)$, the unique Sylow 2-subgroup of F , is either cyclic or generalised quaternion.

Let B denote the normal Hall 2^{\prime}-subgroup of F. Then B is a cyclic group of odd order, and $F=O_{2}(G) \times B$. If $O_{2}(G)$ is cyclic then write $A=F$. If $O_{2}(G)$ is generalised quaternion of order at least 16 then $O_{2}(G)$ contains a charactoristic cyclic subgroup of index $2, R$ say. Clearly R is self-centraliaing in $O_{2}(G)$. In this case write $A=R \times B$. Thus,
if $\mathrm{O}_{2}(G)$ is generalised quaternion of order at least 16 , or if $\mathrm{O}_{2}(G)$ is cyclic, then A is a normal cyclic subgroup of G such that $|F: A| \leqslant 2$ and $C_{F}(A)=A$.

Assume that $\mathrm{O}_{2}(\mathrm{G})$ is either generalised quaternion of order at least 16, or cyclic, and let A denote the normal cyclic subgroup of G constructed in the previous paragraph. Let N denote $C_{G}(A)$. Then N stabilises the chain

$$
0_{2}(G) \geqslant o_{2}(G) \cap A \geqslant 1
$$

and so $\mathrm{N} / \mathrm{C}_{\mathrm{N}}\left(\mathrm{O}_{2}(\mathrm{G})\right.$) is a 2 -group. Also the solubility of G implies that $C_{G}(F)=Z(F)$, and hence

$$
C_{N}\left(O_{2}(G)\right) \leqslant C_{G}(F)=Z(F) \leqslant A \leqslant Z(N)
$$

Therefore $N / Z(N)$ is a 2-group, and consequently N is a normal nilpotent subgroup of G. It follows that $N \leqslant F$, whereupon $N=C_{G}(A)=A$. We conclude that $G / A=G / C_{G}(A)$ is isomorphic to a subgroup of Aut (A), an abelian group, and then, obviously, $n(G) \leqslant 2$.

Hence we may assume that $O_{2}(G)$ is isomorphic to the quaternion group of order 8. Write $Q=O_{2}(G)$, so that $F=Q \times B$ with $Q \approx Q_{B}$ and B a cyclic group of odd order. As above we have $C_{G}(F)=Z(F)$, and therefore, writing $L=Z(F), S=C_{G}(Q), T=C_{G}(B)$, we see that the map $\rho: G / Z \rightarrow G / S \times G / T$ defined by $\rho: g Z \longmapsto(g S, g T)$ for all $g \in G$ is well-defined and is a monomorphism. Thus G / Z is ivomorphic to a subgroup of $G / S \times G / T$.

Now B is cyclic, and hence G/T is abelian. Also G / S is isomorphic to a subgroup of $A u t(Q) \equiv S_{4}$, the aymmetric group of degree 4. Clearly $F / Z=C_{2} \times C_{2}$, and p maps F / Z isomorphically onto the subgroup $\mathrm{FS} / \mathrm{S} \times 1$ of $G / S \times G / T$ (where 1 denotes the trivial subgroup of G / T). Then, from the structure of the group S_{4}, it is casily seon that G / F is isomorphic to a subgroup of $\mathrm{s}_{3} \times E$ for some abelian group E which yielde $n(G / F)$ \& 2 ,
and hence $n(G) \leqslant 3$.

THEOREM 5.2. Let G be a soluble high-fidelity group with a unique minimal normal subgroup. Then $n(G) \leqslant 6$.

Proof. Let N denote the unique minimal normal subgroup of G. Then N is an elementary abelian q-group for some prime q. Write $R=C_{G}(N)$. We show first that $n(R) \leqslant 3$. Let $1 \neq \lambda \in \hat{N}$, and then, by Theorem 2.17, the group G_{λ} contains an abelian Hall q^{\prime}-subgroup, H say. If Q denotes $O_{q}\left(G_{\lambda}\right)$ then $H \cap Q=1$, whence $H \cong H Q / Q$, and clearly, $H Q / Q$ is a Hall q '-subgroup of G_{λ} / Q. Since $Q=O_{q}\left(G_{\lambda}\right)$ it follows that the group G_{λ} / Q contains no non-trivial normal q-subgroup, and so $F\left(G_{\lambda} / Q\right)$ is a normal q^{\prime}-subgroup of G_{λ} /Q. Now G is soluble, and hence so is G_{λ} / Q. Consequently $F\left(G_{\lambda} / Q\right)$ is a subgroup of each Hall q^{\prime}-subgroup of G_{λ} / Q, and therefore, in particular, $F\left(G_{\lambda} / Q\right) \leqslant H Q / Q$, an abelian group. As a result $H Q / Q \leqslant C / Q$, where C/Qdenotes the centraliser in G_{λ} / Q of the subgroup $F\left(G_{\lambda} / Q\right)$. But the solubility of G_{λ} / Q implies that $C / Q \leqslant F\left(G_{\lambda} / Q\right)$, and hence $H Q / Q=F\left(G_{\lambda} / Q\right)$. Thus $H Q \varangle G_{\lambda}$, and since H is a Hall g^{\prime}-subgroup of G_{λ} we deduce that $G_{\lambda} / H Q$ is a q-group. It follows easily that $n\left(G_{\lambda}\right)<3$, and then, in view of the fact that $R=C_{G}(N) \leqslant G_{\lambda}$, we have $n(R) \leqslant 3$.

Let \bar{G} denote G / R. Clearly \bar{G} is soluble. Theorem 2.17 implies that, regarded additively, \hat{N} is an irreducible $\operatorname{GF}(q) \bar{G}$-module, faithful for \bar{G}, such that \bar{G} acts q^{\prime}-halftransitively on ($\left.\hat{N}\right)^{*}$. If \bar{G} acts q^{\prime}-semiregularly on ($\hat{N})^{*}$ then $n(\bar{G}) \leqslant 3$ by Lemma 5.2. If \bar{G} does not act q '-semiragularly on $(\hat{N})^{*}$ then Theorem 4.46 liste the possibilities for \bar{G}, and, using Theorem 2.16 for the half-transitive case, it is a simple matter to check that $n(\bar{G}) \leqslant 3$.

We conclude that R is a normal subgroup of G auch that both $n(R) \in 3$ and $n(G / R) \leqslant 3$. Hence $n(G) \leqslant 6$ as required.

REFERENCES

1. C. Curtis and I. Reiner, Representation theory of finite groups and associative algebras (Wiley-Interscience, New York, 1962).
2. F.R. Demeyer, "Galois theory in separable algebras over commutative rings", Illinois J. Math. 10 (1966) 287-295.
3. ——— and G.J. Janusz, "Finite groups with an irreducible representation of large degree", Math. Z. 108 (1969) 145-153.
4. D. Gorenstein, Finite groups (Harper and Row, New York, 1968).
5. I.N. Herstein, Topics in algebra (Xerox College Publishing, Lexington, Mass., 1964).
6.

B. Huppert, Endliche Gruppen I (Springer, Berlin 1967).
7. - "Zweifach transitive, auflösbare Permutationsgruppen", Math. Z. 68 (1957) 126-150.
8. I.M. Isaacs, Charecter theory of finite groups (Academic Press, New York, 1976).
Q. and D.S. Passman, "Groups with representations of bounded degrea", Canad. J. Math. 16 (1964) 299-309.

- Groups", Canad. J. Math. 18 (1966) 1243-1250.

11. D.S. Pasaman, "Solvable half-transitive automorphiem groups", J. Aleabra 6 (1967) 285-304.
12. \longrightarrow "Solvable 3/2-transitive permutation groups", J. Algebra 7 (1967) 192-207.
13. -, "Exceptional 3/2-transitive permutation groups", Pacific J. Math. 29 (1969) 669-713.
14. B.M. Puttaswamaiah and J.D. Dixon, Modular representation theory of finite groups (Academic Press, New York, 1977).
15. K. Shoda, "Bemerkungen über vollständig reduzible Gruppen", J. Fac. Sci. Tokyo (1) II (1931) 203-209.
16. - "Über die monomalen Darstellungen einer endlichen Gruppe", Proc. Phys. - Math. Soc. Japan 15 (1933) 251-257.
17. È.M. Znud', "On isomorphic linear representations of finite groups", (Russian) Mat. Sb. (N.S.) 38 (80) (1956) 417-430.
