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ABSTRACT: The use of arene/Ru/TsDPEN catalysts bearing a heterocyclic group on the TsDPEN in the asymmetric transfer 

hydrogenation (ATH) of dihydrosoquinolines (DHIQs) containing meta- or para-substituted aromatic groups at the 1-position 

results in the formation of products of high enantiomeric excess. Previously, only 1-(ortho-substituted)aryl DHIQs with an electron-

rich fused ring, gave products of high ee, therefore this approach solves a long-standing challenge for imine ATH. 

Since the first report by Noyori et al. in 19961 of the asymmetric trans-

fer hydrogenation (ATH)2 of 1-substituted-3,4-dihydroisoquinolines 

(DHIQs) 1 in order to form asymmetric tetrahydroisoqunolines 

(THIQs) 2 (Figure 1) using Noyori-Ikariya catalysts 

(arene/Ru/TsDPEN type) such as 1 and 2, there has been a great deal 

of interest in this class of reaction.3 Other catalysts, including the re-

lated tethered catalysts such as 34 and N’-alkylated TsDPEN-based cat-

alysts such as 45 (Figure 2) have been applied to the ATH of DHIQs. 

1-Alkyl (including 1-benzyl and 2-phenethyl) DHIQs are generally ex-

cellent substrates which give products in high enantioselectivity (Fig-

ure 3) when catalysts 1 and 2 are used in the reactions.1,3,6 In contrast, 

1-aryl substituted DHIQs exhibit a more complex pattern of reactivity 

with this class of catalyst and previous work has indicated that they can 

only be consistently reduced to products of high ee if there is an ortho-

substituent on the aromatic ring at the 1-position of the substrate (Fig-

ure 3).1,7 This is presumably due to the requirement for the presence of 

a hindered substituent at this position.  

 

 
Figure 1. Dihydroisoquinoline (DHIQ) reduction by ATH with 

arene/Ru/TsDPEN complexes 1-4 (Figure 2, Figure 3). 

 

In addition, an electron-rich aromatic ring in the fused arene compo-

nent of the DHIQ (typically one or two methoxy groups)6,7 is also ben-

eficial for the formation of products of high ee to be generated in the 

reductions of 1-aryl DHIQs. In contrast, very few reports have appeared 

on the ATH of non-electron-rich 2-aryl/non ortho-substituted 

DHIQs.7b DHIQ ATH has also been reported using the Rh(III) and 

Ir(III)/Cp* derivatives of the Noyori-Ikariya Ru(II) catalysts, with a 

similar pattern of results observed but also some complex observations 

reported from a study of the kinetics of the reductions.8 Therefore this 

class remains an unsolved challenged for ATH with arene/Ru/TsDPEN 

catalysts such as 1-4 even some 24 years since Noyori et al.’s first re-

port, despite their potential for the synthesis of valuable pharmaceutical 

target molecules such as solifenacin9a and TRPM8 antagonists9b (Fig-

ure 4). Other approaches to the enantiomeric synthesis of 1-aryl THIQs 

include the use of Ir/chiral diphosphines in asymmetric hydrogena-

tion,10 the incorporation of ATH catalysts into a protein structure,11 and 

enzymatic methods.12 In this report we describe a practical solution to 

the challenge presented by unhindered/electron-poor 1-aryl DHIQs 

based on the accessible (arene)/Ru/TsDPEN class of ATH catalysts.  

 

 



 

 

Figure 2. Catalysts employed in the ATH of DHIQs - 1-4; known cat-

alysts for this application, 5-7 complexes reported in this paper.   

 

During the course of an ongoing project on N-alkylated TsDPEN lig-

ands in the complexes we evaluated heterocycle- and ester-containing 

catalysts 5-7 (Figure 2)13 in the ATH of unhindered/e-poor 1-aryl 

DHIQs and found that these worked very well with these challenging 

substrates, with 5 being the best in our studies. In common with other 

reports on DHIQ ATH,6 we used a 5:2 azeotropic combination of for-

mic acid and triethylamine (FA/TEA) as the hydrogen source. Products 

were formed in higher enantioselectivity than with any other 

arene/Ru/TsDPEN ATH catalysts that we are aware of.  

 

 
Figure 3. Summary of state of the art of DHIQ ATH using 

arene/Ru/TsDPEN catalysts (R,R)-1 and (R,R)-2 and closely related de-

rivatives; dihydroisoquinoline (DHIQ) reduction products illustrated. 

 

 
Figure 4. Structure of solifenacin, a muscarine acetylcholine receptor 

antagonist, and a recently reported TRPM8 antagonist which formed 

the basis for further optimisations.  

 

In our initial tests, we used catalyst (R,R)-5 in the reduction of the par-

ent 1-phenyl-DHIQ 8 in formic acid 5:2 azeotrope (FA:TEA) using a 

range of catalysts. Since its ATH using catalyst (R,R)-1 had been re-

ported to give a product 9 in just 29% ee (90% yield)7b, this was felt to 

have obvious scope for improvement. In order to eliminate a significant 

effect of solvent (we have preciously found that catalysts (R,R)-5-7 per-

form most effectively in DCM), our repeat of the reduction of substrate 

9 with catalyst (R,R)-1 in DCM gave a product of just 24% ee and 45% 

conversion.  Using the cymene derivative (R,R)-2, the product 9 was 

formed in just 11% conversion and 42% ee., and with tethered catalyst 

(R,R)-3  the result was worse with a product formed in just 10% ee 

(although a conversion of 97%). With furan-containing catalyst (R,R)-

5, however, reduction to the THIQ 9 was achieved in an impressive 

90% ee (93% conversion and 70% isolated yield), and the enantiose-

lectivity was unchanged in DCM and MeCN solvent. Catalyst (R,R)-6, 

bearing a thiophene ring, gave a reduction product in 91% ee although  

just 86% conversion after the same 48h reaction time, whereas ester-

containing catalyst (R,R)-7 gave a product in just 77% conversion (in 

96h) and 49% ee. Significantly, reduction using the N’-benzyl-func-

tionalised catalyst (R,R)-4 gave a racemic product in just 12% conver-

sion, highlighting a remarkable effect of the heterocyclic ring on the 

reduction selectivity. 

 

 
Figure 5. Asymmetric reduction of DHIQ 8 (Table 1). 

 

Table 1. ATH of 2-phenyl DHIQ 8a  

Entry Catalyst t/h Conv/% ee/% 

1 (R,R)-1 48 45 24 

2 (R,R)-2 48 11 42 

3 (R,R)-3 16 97 10 

4 (R,R)-5 24 93 90c 

5 (R,R)-5b 24 90 90 

7 (R,R)-6 48 86 91 

8 (R,R)-7 96 77 49 

9 (R,R)-4 72 12 0 

a. conditions as given in Figure 5, solvent is DCM unless otherwise 

indicated. b. solvent is MeCN. c. Product isolated in 70% yield at 96 h 

(98% conversion). In all cases the configuration of 9 was the same (and 

as illustrated) and determined by correlation with the reported result 

using (R,R)-1.7b 

 

 



 

Figure 6. Products from non e-rich DHIQ reduction obtained in this 

project, using catalyst (R,R)-5 and the conditions shown in Figure 5, 

o/n reaction time. Configurations were assigned by analogy with 9 (Ta-

ble 1). a. First report of formation by ATH using arene/Ru/TsDPEN 

catalysts to our knowledge. b. 85% yield, 92% ee reported using (R,R)-

1.7b 

 

Having made this unexpected observation, we tested the reductions of 

a further series of non e-rich DHIQs using catalyst (R,R)-5, and ob-

tained the products illustrated in Figure 6. It was found that para- 

and/or meta- substituted products were consistently formed in high ee, 

typically 90% or greater, and where comparable, in higher ee than re-

ported for catalyst (R,R)-1 (15; 36% ee, 16; 36% ee,18; 39% ee, 19; 

79% ee).7b Several of the products were reported, to the best of our 

knowledge, for the first time in high ee using an arene/Ru/TsDPEN 

catalyst in ATH (indicated in Figure 6). Tolerated substituents included 

meta- and para- chloro, and methyl and para-bromo, iodo and meth-

oxy, nitro and trifluoromethyl groups (not all meta- substituted sub-

strates were tested), as well as meta-/para- combinations of electron-

rich groups. The synthesis of amine 15 was carried out on a 1.1g (5 

mmol) scale and gave a product of 91% ee in 71% isolated yield. In 

contrast, the furan-catalyst (R,R)-5 is less effective at the ATH of ortho-

substituted aryl substituted substrates; the reduction of the ortho-chlo-

rophenyl substrate gave no product 12, and the ortho-methyl/methylox-

yphenyl imines gave products 17 and 19 respectively in low yield alt-

hough in good-excellent ee. Hence there is a clear complimentary (and 

mutually exclusive) pattern of selectivity between Noyori-Ikariya cat-

alysts such as (R,R)-1, (R,R)-2 and the heterocycle-functionalised 

(R,R)-5. This may reflect the extra steric hindrance around catalyst 

(R,R)-5 which is less accommodating to a bulky 2-aryl substituent, 

however the formation of a racemic product using catalyst (R,R)-4 in 

the prototype substrate test indicates the importance of an additional 

involvement of the furan in the reaction transition state. 

 

The study was also extended to a series of electron rich substrates and 

the simpler 1-methyl substrates, with the resulting THIQs (yields and 

ees) shown in Figure 7. 

 

 
Figure 7. Products of ATH of electron-rich 1-aryl and 1-methyl DHIQs 

in this project, using catalyst (R,R)-5 and the conditions shown in Fig-

ure 5, o/n reaction time. a. First report of formation by ATH using 

arene/Ru/TsDPEN catalysts to our knowledge. b. formate formed. 

 

As expected on the basis of previous literature reports,1.6.7 di-methoxy-

substituted 1-aryl imines were reduced in high ee with (R,R)-5 and 

slightly higher than similar reported examples using catalyst (R,R)-1 

(24; 84% ee, 27; 75% ee),7b however the difference was not as signifi-

cant as for the electron-poor products in Figure 6. It should be noted 

that the imine precursor of 26 was fully reduced by TLC however the 

product was formed as a mixture of formylated (major) and non-

formylated (minor) amines. In addition, we compared catalyst (R,R)-5 

with the reported results for formation of the methyl-substituted prod-

ucts 28 and 29 and the products were formed in 81 and 80% ee respec-

tively; slightly lower ee than have already been reported using (R,R)-1 

and (R,R)-2 as ATH catalysts (Figure 1).1,2,3,6  

 

It is not clear exactly how the modified catalyst (R,R)-5 controls the 

asymmetric reduction in these cases. However the control of the enan-

tioselectivity of the reduction is believed to involve a transition state in 

which the protonated iminium ion forms a H-bond to the SO2 of the 

tosylate group whilst a known 6/CH interaction also operates to stabi-

lise the transition state (Figure 8A),3 which is analogous to the control 

of ketone reductions with this class of catalyst.14 However the selectiv-

ity is likely to be low because transitions state (ts) for reduction to either 

enantiomer can be stabilised by similar interactions. The additional fu-

ran group (in (R,R)-5) may engage in an interaction which serves to 

stabilise the ts leading to the observed major enantiomer (Figure 8B). 

The lack of selectivity observed with catalyst (R,R)-4 suggests that this 

is an electronic effect involving the heteroatom rather than a simpler 

steric or -stacking effect. Conversely, the additional steric hindrance 

in (R,R)-5 results in slower reduction (and hence incomplete conver-

sions) for more hindered substrates i.e. containing ortho-substituted 

aryl groups. 

 

 
Figure 8. A. established mode of reduction of protonated imine cation 

using known catalyst (R,R)-1. B. proposed mode of reduction with ad-

ditional stabilising interaction between the furan in catalyst (R,R)-5 and 

the 1-aryl ring in the substrate. 

 

Conclusions 

In conclusion, we have demonstrated that the addition of a heterocyclic 

group to the basic nitrogen atom of the TsDPEN ligand in an 

arene/Ru/TsDPEN ATH complex renders it an excellent catalyst for 

the reduction of a previously very challenging class of DHIQ substrate 

for this application. The value of the methodology is highlighted by the 

formation of products 9 and 21, which are precursors of pharmaceutical 

target molecules (Figure 5). The mode of action remains to be fully 

understood but the presence of a heterocycle is important; replacement 

with a benzyl group does not have a beneficial effect. 
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