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ABSTRACT 

Amorphous carbon films were deposited by means of closed-field unbalanced magnetron 

sputtering (CFUBMS). The silicon content was fixed at 1.3 at. %, while the chromium content 

was increased by modification of the current applied to the chromium magnetrons, with two 

doping levels, 0.3 and 2.7 at. %. Both, hardness and thermal stability were found to decrease 

as result of increasing chromium. Ball-on-disk tests revealed friction coefficients of 0.06 at 

room temperature with similar specific wear rate in all films (~ 4 × 10-13 m3 N-1 m-1). Increasing 

annealing temperatures were found to reduce the coefficient of friction compared to room 

temperature values, while increasing the specific wear rate for all films.  
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1. Introduction 

Amorphous carbon coatings (a-C) are a metastable form of carbon with a wide range of 

applications due to their exceptional properties, such as chemical inertness, smoothness, 

high hardness, low friction and wear resistance [1]. These films have particular advantages 

in demanding applications, such as high performance tools, atomic microscope probes or 

hard disks [2,3]. Their outstanding tribological properties allow their application not only 

in the automotive sector [4–7], where they provide reductions in fuel consumption and CO2 

emissions [2], but also in harsh environmental conditions, such as the ones found in the low 

earth orbit [8]. Nevertheless, these films have several limitations, such as residual stresses 

that may lead to adhesion failure [9], thermal stability [10], fracture toughness [11] or the 

humidity and gaseous environment under which the contact occurs [12,13].  

Several dopants, both non-metallic [14–16] and metallic [17–22], have been previously 

investigated to overcome such drawbacks. Silicon has been reported to have an effect on 

the residual stresses of the films [23] and reduce the hardness up to a certain silicon content 

threshold in films without hydrogenated precursors [23,24]. The tribological properties 

have also been reported to be enhanced by silicon doping, reducing the coefficient of 

friction with increasing silicon content both at room temperature and high temperatures 

[25,26] due to the formation of silicon oxides on the sliding surface [27,28].  

Among the metallic dopants, chromium is known by its ability to form carbide 

nanoparticles within the carbon matrix. Chromium (a-C:Cr) doping has also been related 

to reduction in the residual stresses [29,30] and friction [4,30–32], while increasing the 

critical load [4,31,32] and fostering cluster formation as the content increases [33]. 

Different tribological behaviours have been reported under high temperatures for such 

dopants compared to non-doped films. The wear rate of these films has been reported to 

increase with increasing chromium content [34], while friction may be reduced with small 

chromium contents at high temperatures [33]. As for Si-Cr co-doping, Staia et al. [35] 

reported super-low friction values for temperatures as high as 450 ºC although the doping 

levels were not reported..  

In this work, we investigate the properties of chromium, silicon co-doped films deposited 

using closed-field unbalanced magnetron sputtering (CFUBMS), and the effect of 



4 
 

chromium additions on thermal stability of silicon-doped films as well as their mechanical 

and tribological properties. 

2. Experimental methods 

Amorphous carbon films with high sp2 carbon content were deposited at Teer Coatings Ltd. 

(Worcestershire, UK) using closed-field unbalanced magnetron sputtering equipment, Teer 

UDP-1250a. Circular AISI M42 high speed steel specimens of 30 mm diameter were used 

as substrates for the mechanical testing and steel foils were used for the chemical testing. 

Prior to deposition, all substrates were thoroughly cleaned in an ultrasonic bath with 

acetone for 10 minutes and dried using a hot air dryer.  

Six identical rectangular magnetron sputtering sources with an area of 1995 cm2 were used 

during the deposition with three pyrolytic carbon targets, two chromium targets (purity 

99.5%), which were situated in front of each other and one silicon target (purity 99.999%). 

A carousel was mounted inside the chamber, allowing two-axis rotation. The coating 

thickness was measured by means of Calotest and displayed an overall thickness of 2.5 ± 

0.2 µm. The films consisted of a Cr thin layer that improved the adhesion to the substrate, 

a gradient CrCSi layer and an outer a-C:Si or a-C:Si,Cr layer. The current applied to the 

targets varied among the different films, affecting the atomic content of each element, 

which were measured via x-ray photoelectron spectroscopy (XPS). 

Ball-on-disk experiments were carried out using a Multi-Function Tribometer MFT-5000 

(Rtec Instruments, Inc., San Jose, CA, USA) and 6.3 mm diameter Al2O3 balls as 

counterpart. The temperature was controlled on the surface of the samples to ensure that 

the desired temperature was achieved. The tests started 40 min after the temperature was 

reached to provide sufficient temperature homogenization. The load applied was 10 N, 

while a frequency of 1 Hz and a linear speed of 1 cm s-1 were employed. The tests were 

carried out at increasing temperatures until the counterpart reached the substrate. Wear was 

measured by means of an Alicona InfiniteFocus instrument (Alicona Imagine GmbH, Graz, 

Austria) and specific wear rates were obtained by the relationship between the volume of 

material lost in the wear track and the product of the applied load and the sliding distance 

in five different measurements along the wear track. 

Hardness and elastic moduli of the different films were determined by means of nano-

indentation using NanoTest Xtreme (Micromaterials Ltd., Wrexham, UK) with a diamond 
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Berkovich indenter. The mean hardness and reduced Young’s modulus were obtained from 

a minimum of 20 indentations. The indentation depth was limited to 200 nm, which is 

below a tenth of the coating thickness and aided minimising the influence of both surface 

roughness and substrate on the measured mechanical properties. The Oliver and Pharr [36] 

method was used to extract the reduced elastic modulus and hardness from the load-

displacement curves. 

Raman spectroscopy measurements were performed using an inVia reflex Raman 

microscope (Renishaw PLC., Wotton–under–Edge, UK). The data was recorded using 

1800 line/mm rotating grating and Cobolt solid-state laser (λ = 514 nm) through a 20× 

objective lens. The laser power was limited to 2 mW to avoid damaging the films surface. 

The spot size was limited to 5 µm and the spectra were recorded for 10 s during 10 

accumulations, from 300 cm-1 to 2400 cm-1. High temperature measurements were 

performed in air using a TS 1500 Linkam hot stage (Linkam Scientific Instrument, 

Tadworth, UK). The spectra were recorded at different specimen temperatures (25, 100, 

150, 200, 250, 300, 350 and 400 ºC) with a heating rate of 10 ºC /min. The spectra presented 

in this work were fitted using a double Gaussian model to ease the comparison with 

literature. 

The chemical composition and bonding states of the carbon were analysed by means of 

XPS. The first batch were bombarded with Ar+
 ions for a total of 1 hour to remove the 

surface contaminants. Measurements were taken every 5 minutes and allowed the 

estimation of the relative sp3/sp2 ratio of the bulk film. The second batch were annealed in 

vacuum for 15 minutes at four different temperatures, 250 ºC, 300 ºC, 350 ºC and 400 ºC. 

The first set of measurements was carried out in a Kratos Axis Ultra DLD 

(Kratos Analytical, Manchester, UK). The second set was made using an Omicron 

Nanotechnology Multiprobe system (Omicron NanoTechnology GmbH, Taunusstein, 

Germany). The work function and binding energy scale of both spectrometers were 

calibrated before any experiment against the Fermi edge and 3d5/2 peak of a 

polycrystalline Ag sample. In the case of the compositional analysis, clean metallic foils 

were used to determine the analyser transmission function and the detection efficiency. Al 

Kα (hυ =1486.7 eV) x-ray beams were used in both cases. The CasaXPS software was 

used for peak fitting with Voigt mixed Gaussian−Lorentzian line shapes, asymmetry 

parameters included for the sp2 carbon component, and the background of each analysed 

photoelectron emission band was subtracted using the Shirley method [37].   
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3. Results and discussion 

3.1. As-deposited characterisation 

The silicon and chromium content of each film was modified through variations in the 

current applied to the targets. The same bias voltage and silicon target current were used 

during the deposition of the different films and all inherent changes in content were due to 

the addition of chromium.  

XPS measurements of the as-deposited films were employed to measure the bonding states 

of C and Si through the estimation of the binding energies (BE) of the C 1s and Si 2p peaks. 

Measurements of the bulk film were also obtained through an Ar+ sputtering process that 

removed the majority of oxides on the surface. The C 1s core-level spectrum was 

deconvoluted into four main features; carbon sp2 contribution, carbon sp3 contribution, 

silicon/chromium carbides and residual surface contaminants. The sp2-bonded carbon was 

centred at 284.3 eV and represented roughly 60-70% of the peak total area. The sp3 bonded-

carbon peak area ratio is shown in Table 1 and was found to vary according to the doping, 

18-22 %. This peak was separated by 0.9 eV from the latter, in agreement with prior results 

presented elsewhere for hydrogen-free carbon films through the comparison with electron 

energy loss spectroscopy (EELS) [38–40]. Any chromium doping was found to reduce the 

sp3 carbon content of the films, as shown in table 1. Silicon and chromium carbides were 

present at similar energies, 283.5 eV [19], which complicated their differentiation. 

Nonetheless, the relative area of such peak varied from 4.2 % to 8.2 % in a-C:Si,Cr (1) and 

a-C:Si,Cr (2) respectively, while the silicon carbide area in a film with similar silicon 

content, a-C:Si was found to be 2.2 %. Films with high chromium and low silicon content 

have been reported to display CrxSi compounds [19], although these compounds were not 

found in the present work, probably due to the reduced content of both elements. Surface 

contaminants were found between 286 eV and 290 eV in the form of oxygen functional 

groups, such as carboxylic and carbonyl (C-O and C=O) [40,41]. 

The deconvolution of the bulk coating Si 2p peak was studied for all the samples at room 

temperature before and after the Ar+ sputtering of the surface. The spectra of the non-

sputtered solely silicon-doped films were dominated by Si-O-C, but both SiOx (103 eV – 

105 eV) and Si-C bonds were present. Chromium doping induced a shift in the Si 2p peak 

and was found to reduce the fraction of Si-O-C bonds by 10 %, while the relative area of 
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Si-C increased with chromium doping (Fig. 1a). The spectra acquired through Ar+ 

sputtering of the surface were represented by two main photoelectron emission lines, as 

shown in Fig. 1b. The main emission line represented 80 % of the spectra and accounted 

for the silicon bonded with carbon atoms, in the form of Si-C bonds, centred at 100.3 eV. 

The second emission line, at 101.6 eV, represented the silicon oxide mixed bonds, Si-O-C, 

which has been attributed effects in the friction properties [42]. The three films presented 

similar relative areas for each of the emission lines. Non-sputtered films reported in the 

literature [43,44] have displayed different Si 2p peaks and three variable photoelectron 

emission lines depending upon doping. The non Ar+ sputtered measurements are in 

agreement with those presented by other authors using angle-resolved XPS (ARXPS) [25], 

where improved surface sensitivity was achieved by increasing the take-off angle. 

Furthermore, reduced take-off angle measurements provided information from greater 

depth, similarly to the measurements obtained from the bulk of the coating using Ar+ 

sputtering 

The hardness values are summarized in Table 1. These properties were found to decrease 

as result of the silicon doping to 16.1 ± 1.0 GPa and 182.7 ± 7.0 GPa respectively, similar 

to other non-doped carbon films in the literature [45–47]. The addition of chromium 

reduced the hardness and reduced Young´s modulus compared to those values of the film 

solely doped with silicon, 13.5 ± 1 GPa and 160.0 ± 6.3 GPa, despite the increase in the sp3 

carbon content presented earlier. Increasing chromium content was found to induce further 

reductions in these properties, to 10.4 ± 1 GPa and 145.4 ± 6.0 GPa. The progressive 

reduction in hardness with doping could be induced by a decrease in residual stresses as 

well as graphitisation [23,33]. Chromium-doped films displayed the lower H/E ratio, which 

has previously been related with the higher plasticity of tougher films [48], while a-C-Si 

displayed a higher H/E ratio often related with improved wear resistance due to a higher 

elastic strain-to-break [49]. 

Insert Table 1 near here 

Raman spectroscopy is used to investigate the bonding structure of carbon-based films and 

their domain size [50]. Amorphous carbon coatings display two active modes between 

1000 cm-1 and 1800 cm-1 named D and G respectively (Fig. 2) [51]. The D peak, found at 

1350 cm-1, has A1g symmetry and involves the breathing mode of the sp2 sites in rings 

[52,53]. On the other hand, the G peak centres at 1580 cm-1, has E2g symmetry and involves 
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the in-plane stretching vibrations of all pairs of sp2 atoms in either rings or chains [52,53]. 

The analysis of the Raman spectra of carbon films renders three main parameters, G peak 

position, full-width half-maximum of the G peak, FWHM(G), and the intensity ratio 

between both D and G peaks.  

As presented in Table 1, silicon doping was found to induce a blue shift in the G-peak 

position, increased width and reduced peak ratio from that of the rest. The position of this 

peak has been previously related with the bond stretching of the sp2 sites and would present 

a blue with decreasing sp3 contents in  films that were deposited without hydrogenated 

precursors [52,54]. The reason for such behaviour has been attributed to changes in the sp2 

configuration, moving from rings to olefinic groups [14,55]. Silicon doping induces the 

opening of sp2-carbon rings due to its inability to form π-π* bonds with carbon atoms, which 

also provides a blue shift [23,56,57]. In addition, it increases the symmetry of the peak, 

which leads to an increase in the FWHM(G) [58], promotes the formation of Si-C and sp3 

–hybridised C-C, and reduces the sp2-carbon clusters size from those of the a-C, reducing 

the peak ratio [14,23]. Meanwhile, the film with the lower content of chromium, a-C:Si,Cr 

(1), displayed a red shift with regards to a-C:Si, attributed to a reduction in the internal 

stress of the film, and a reduction in the FWHM(G). This width has previously been used 

in the literature to estimate both the mechanical properties and sp3 carbon content of pure 

carbon films [59,60]. It is indeed correlated with the carbon hybridisation through the 

symmetry of the G peak, as it increases with both sp3 content and FWHM(G) [60,61]. This 

symmetry may also be related to cluster size reductions and the formation of olefinic groups 

[54], which bonds are shorter than the aromatic bonds and have higher vibration 

frequencies [54]. The ID/IG ratio of the latter film was also found to increase and might be 

due to the cluster size increase, previously introduced, as it is directly related to the ratio 

between both peaks [62].  

The higher chromium content specimen, a-C:Si,Cr (2) displayed a larger red shift, a large 

drop in width and an increased peak ratio. This confirmed the tendency observed in the 

latter film, the role of chromium as a clustering enhancer [29] and its ability to 

counterbalance the silicon effect. 

3.2. High temperature characterisation 

Several temperature steps, ranging from 25 ºC until graphitisation of the films, were applied 

to study the thermal stability via Raman Spectroscopy. As shown in Fig. 3, the films had a 
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variable initial stage, which length was defined by the doping and a second stage, where 

the relaxation took over until the eventual graphitisation and desorption of the film.  

The initial stage was observed to be longer for solely silicon-doped films, while chromium-

doped films were found to present a shorter stage. The reduction on the thermal stability of 

the latter films could be attributed to the clustering, previously observed at room 

temperature, and the progressive rearrangement in the sp2 carbon phase [63]. The position 

of the G peak was found to be influenced by the dopants and to increase at different 

temperatures as result of rehybridisation. Silicon doping was found to delay its degradation 

until 200 °C, while chromium additions counterbalanced the silicon effect and accelerated 

the relaxation (150 ºC). Simulation studies [55] have reported silicon addition to reduce the 

clustering with increasing temperature, which agrees with the results presented in this work, 

while chromium doping displayed an opposite effect to such behaviour. Increasing sp3 

content has been associated with more stable films at higher temperatures than the ones 

reported in previously published work [64,65]. This supports the explanation of the thermal 

stability of the silicon-doped films given its effects on the overall sp3 network. The peak 

ratio of the films in this work, ID/IG, was found to remain rather steady during the same 

temperature steps as the position of the G peak and increased past them as a result of the 

increased presence of ordered aromatic rings [54,66]. Similar trends were observed when 

analysing the FWHM (G), where the disorder was found to decrease as a result of increasing 

thermal energy, as the film is becoming graphite-like. Both a-C:Si and a-C:Si,Cr (1) 

presented a sudden change at 400 ºC, which suggested its failure. The drop in the intensity 

peak rate at 400 ºC could suggest the transition from NC-graphite into graphite, while the 

film with the higher chromium content, a-C:Si,Cr (2), presented a lower thermal stability 

with such a change happening at 300 ºC. Similar results were observed by Ferrari et al. 

[54], who attributed it to an ordering trajectory from a-C to nc-graphite and was attributed 

to a hydrogen effusion from 400 ºC in ta-C:H films [66]. Nevertheless, such results also 

reported stable G peak position at 1600 cm-1 during several annealing steps, while in this 

work the G peak position reached its maximum value once the intensity peak ratio dropped. 

This could be related with the larger sp3 carbon content and thermal stability of tetrahedral 

amorphous films. 

The as-deposited films were also annealed under high vacuum conditions inside a 

preparation chamber within the XPS system. The compositions of the films were found to 

change upon increasing annealing temperatures. The C 1s core-level peak was studied, but 
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the evolution of the relative area of the C-C/C-H was not addressed due to the presence of 

surface contaminants. Nevertheless, such fraction was observed to drop with increasing 

temperatures in all the films [67], but the chromium-containing films presented a larger 

effect at lower temperatures than the solely-silicon doped, in agreement with the results 

previously presented.  

The Si 2p peak presented similar bonding states to those of the non Ar+ sputtered at room 

temperature as presented in Fig. 4. The relative area of Si-C increased as a result of such 

annealing in vacuum in all the cases, but the formation of SiOx bonds was also promoted 

in the Si,Cr-doped films at the expense of the Si-O-C bond fraction. It was observed that 

the presence of chromium had a direct impact in this fraction, decreasing it from 64 % in 

a-C:Si to 17 % in a-C:Si,Cr (2). Such reduction could have dramatic effects on the friction 

properties and could have affected its reduced thermal stability when compared with its 

peers, as carbon-silica bonds have been reported to be stronger than carbon-silicon bonds 

[68]. 

3.3. Tribological properties 

The friction coefficient was investigated for the same temperatures applied during the 

Raman measurements using an Al2O3 balls as counterpart. Results are summarised in Fig. 

5a. The films were studied beginning at room temperature up to the temperature at which 

the counterpart reached the substrate. This was found to be affected by the doping. 

Surface contaminants may be removed as result of friction, and hence inherent changes 

may take place within the film, such as the rupture of the bonds and consequent 

rehybridisation, both due to annealing temperatures and high-pressure contacts, while 

transfer layers can be created on the counterpart. All these effects will influence the friction 

coefficient during the running-in period and steady-state period. All doped coatings 

reported similar steady state friction coefficient values at room temperature, 0.05, as shown 

in Fig. 6a. Both a-C:Si and a-C:Si,Cr(1) required about 500 strokes to reach steady state, 

while a-C:Si,Cr (2) reached it after 1500 strokes. As the temperatures increased, friction 

dropped significantly. At 150 ºC, a-C:Si,Cr(1) presented the lowest coefficient of friction 

in this work, 0.009 ± 0.002, while the reduction in friction observed in the other films was 

less significant. The coefficient of friction of a-C:Si and a-C:Si,Cr(2) was found to be 0.019 

± 0.003 and 0.023 ± 0.002 respectively (Fig. 6b). The duration of running-in was reduced 

in all cases compared to room temperature behaviour and steady-state was achieved before 
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500 strokes in doped films. These reductions in the coefficient of friction have been 

previously attributed to a sp3 
→ sp2 conversion followed by the ordering of the sp2 phase 

of the surface bonding [69]. This graphitisation, caused both by the temperature induced 

by the tribological contact and the annealing temperature, is also thought to lead to the 

development of a low shear strength tribolayer containing both carbon material and silicon 

oxides that have the potential to reduce friction. As consequence, a plausible explanation 

for the drastic increase in friction halfway through the test of a-C:Si,Cr (2) is the rupture 

and subsequent creation of a transfer layer, observed in friction studies exposed to different 

environments [70]. The fluctuations in a-C:Si behaviour have been previously related to 

unstable transfer layers in such doping [71]. At 200 ºC, the friction increased slightly in the 

case of the doped films, especially in the case of a-C:Si,Cr (2), which became 0.06 ± 0.01. 

The running-in was decreased to below 400 strokes for all of them, but a-C:Si,Cr (2) 

required 800 strokes (Fig. 6c). At 250 ºC, both a-C:Si and a-C:Si,Cr (1) reached steady state 

before 300 strokes (Fig. 6d), although a-C:Si,Cr (1) exhibited a stable behaviour. 

Nevertheless, chromium-containing films were found to be more susceptible to the 

annealing temperatures, in agreement with the results previously presented, which could 

have caused a progressive graphitisation on the upper layer. It is widely reported that carbon 

films reduce their hardness with temperature [10,72], and this could lead to an increased 

removal of material that could have acted as abrasive. The entrapment of the excess 

material in the contact may have caused the features observed in the wear track for a-

C:Si,Cr (1) at this temperature, as can be observed in Fig. 7, where a part of the wear track 

is presented for each sample and temperature. Meanwhile, the specimens that are subjected 

to a larger graphitisation and softening, such as a-C:Si,Cr (2), are believed to have been 

exposed to similar processes, although due to the larger extent of the graphitisation it caused 

the complete removal of the film as result of the friction. At 300 ºC, a-C:Si had a stable 

friction coefficient of 0.02 after 400 strokes, while a-C:Si,Cr (1) had a variable friction 

coefficient below 0.1 until 2000 strokes, when it increased and reached the friction 

coefficient of the substrate, by 3000 strokes (Fig. 6e). At 350 ºC, a-C:Si was found to fail 

as result of the experiment, exposing the substrate (Fig. 6f). The area mapping investigation 

of the wear track at all temperatures carried out by means of EDS did not show significant 

quantities of Al, potentially transferred from the ball counterpart, which may suggest that 

it did not act as a wear product. 
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The evolution of the specific wear rate with temperature was summarised in Fig.5b . At 

room temperature all the films had similar wear rates, with the a-C:Si presenting the lowest, 

3.9 × 10-13 m3 N-1 m-1. Chromium additions increased the specific wear rates, but there was 

no clear relationship with content at room temperature. At 150 ºC, the specific wear rate 

increased for all films without a clear relationship with the friction values. However, a-C:Si 

was found to have the lowest specific wear rate, again, with 5.2 × 10-13 m3 N-1 m-1, while 

a-C:Si,Cr (1) specific wear rate increased to 1.3 × 10-12 m3 N-1 m-1. As the temperature was 

increased to 200 ºC, a-C:Si,Cr (1) and a-C:Si,Cr (2) consistently reported higher specific 

wear rates, with 1.4 × 10-12 m3 N-1 m-1 and 4.2 × 10-12 m3 N-1 m-1 respectively. At 250 ºC, a-

C:Si reported values of 8.7× 10-12 m3 N-1 m-1, while the substrate was reached in the case 

of a-C:Si,Cr (2) with an specific wear rate of 1.9 × 10-11 m3 N-1 m-1. At 300 ºC, a-C:Si,Cr 

(1) failed and the substrate was also reached as a result of the friction. The specific wear 

rates were found to be 1.4 × 10-11 m3 N-1 m-1, over an order of magnitude larger than the 

1.5 × 10-12 m3 N-1 m-1 of a-C:Si at the same temperature. These results are in agreement 

with prior publications that found larger wear rates in solely Cr-doped diamond-like carbon 

films than in either Si-doped or non-doped with temperature [73] and some other 

publications that reported increased wear rates with increasing chromium-content [74].  

High temperature tribological properties followed the trend defined by Raman 

spectroscopy in terms of thermal stability with a single step difference between the failures, 

50 ºC, which could be due to the time-dependency of these films [75] or even the difference 

in the experimental set-up between ball-on-disk and high temperature Raman spectroscopy. 

Silicon, chromium co-doped films were found to consistently report similar friction values 

to a-C:Si or even lower in the case a-C:Si,Cr (1), which is in agreement with values 

previously reported for silicon-doped films against Al2O3 under different contact pressures 

[25,73,76,77]. The formation of Si-O compounds, observed in XPS, has previously been 

attributed lubrication effects [27,28]. Hence they could be responsible for reducing the wear 

when comparing the films containing chromium in this work with friction values of a-C:Cr 

coatings reported elsewhere [33,73], both at room and at high temperatures. These 

chromium additions were also found to induce changes in the Si 2p peak through reductions 

in the relative area of the silicon oxide bonding emission lines. Such change, could have 

influenced both the thermal stability of the films and the friction properties [68]. 
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As for the H/E relationship, no effect was observed in the friction properties among the 

doped films, although the higher H/E specimen, a-C:Si, showed a clear improvement in the 

wear behaviour compared with the chromium-containing films. Staia et al. [35] studied 

Si,Cr co-doping with contents between 0.5 – 10% at. Cr and 1 – 5 at. % Si and reported 

low friction values at temperatures as high as 450 ºC. High temperatures would be expected 

to induce an extended graphitisation and softening, as observed in this work, but the ten-

fold reduction in load employed, could have hindered the complete removal of the film. 

Further comparison was complicated since the actual contents were not disclosed, but 

according to the Raman spectroscopy results presented in this work, any chromium addition 

would have a negative effect on the thermal stability and wear rate. This assumption is 

partially in agreement with a recent publication by Santiago et al. [72], where higher 

chromium contents, than studied here, were considered. It was suggested that the formation 

of chromium carbide bonds, found to increase by any chromium content, is responsible for 

the reduction in both mechanical and wear properties, and that it is only when metallic 

chromium is distributed along the matrix, that the properties are enhanced. The fact that 

such improvement occurred for chromium contents above values presented in this work, 

may suggest that Si,Cr co-doped films could benefit from alternative deposition techniques 

such as HiPIMS. 

The failure of the higher chromium containing film, a-C:Si,Cr (2), at 250 ºC occurred in a 

different manner to the rest of the films since the counterpart reached the substrate, but the 

coating remained unaffected. This behaviour could be attributed to the reduction in 

hardness with temperature as previously mentioned. This agrees with the FWHM (G) 

evolution obtained from Raman spectroscopy and would allow an easier removal of the 

film by the counterpart. The failure in the rest of the specimens happened through the 

removal of the film as result of the increased temperature, along with a four-fold increase 

in roughness that could indicate structural changes. 

4. Conclusions  

Diamond-like carbon films either non-doped or doped with silicon and chromium were 

deposited via closed-field unbalanced magnetron sputtering techniques. Both dopants were 

found to have an effect in the mechanical properties. The hardness was reduced from 16.1 

± 1.0 GPa in the a-C:Si to 10.4 ± 1 GPa in a-C:Si,Cr (2) and the H/E’ ratio was reduced 

with increasing chromium content. Small silicon additions (<1.3 at. %) reduced the cluster 
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size and had a positive effect in the thermal stability of the films, increasing it, at least by 

50 °C, while chromium additions enhanced the clustering behaviour, counterbalanced any 

silicon effect and reduced the thermal stability. Ball-on-disk tests at 10 N with a Al2O3 ball 

as a counterpart reported friction coefficient values of 0.05 in the doped films. As the 

temperature was increased, a-C:Si and a-C:Si,Cr (1) consistently displayed low friction 

coefficient values (< 0.03) from 150 to 300 ºC, reporting the latter super-low friction at 150 

ºC (0.009 ± 0.002). As the temperature was increased, silicon, chromium co-doped films 

consistently reported a larger specific wear rate with increasing chromium doping having 

a direct effect. It is thought that both effects were induced by the alternative bonding 

conditions achieved by the presence of chromium. 
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Tables 

 

 

Table 1.  

Atomic content of the dopants, Raman parameters extracted from the fitting of the Raman 

spectra, sp3 C-C content of the films obtained from XPS, hardness and reduced Young’s 

modulus values for each of the films investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Si content 

(at. %) 

Cr content 

(at. %) 

G-peak  

(cm-1) 

FWHM  

(cm-1) 

ID / IG sp3 C-C 

content (%) 

H (GPa) E’ (GPa) 

a-C:Si 1.3 ± 0.1 0 1557 ± 2 169 ± 2 1.23 ± 0.10 22.5 ± 0.8 16.1 ± 1.0 182.7 ± 7.0 

a-C:Si,Cr (1) 1.4 ± 0.1 0.3 ± 0.1 1559 ± 1 165 ± 1 1.39 ± 0.01 20.9 ± 0.2 13.5 ± 0.8 160.0 ± 6.3 

a-C:Si,Cr (2) 1.5 ± 0.2 2.7 ± 0.3 1565 ± 2 147 ± 1 1.55 ± 0.06 18.0 ± 0.4 10.4 ± 0.8 145.4 ± 6.0 
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Figure captions 

Figure 1. 

XPS core-level spectra of the Si 2p orbital for all the films: (a) Non Ar+ sputtered at room 

temperature, (b) Ar+ sputtered at room temperature.  

Figure 2. 

Raman spectra of a-C:Si, a-C:Si,Cr (1) and a-C:Si,Cr (2) at room temperature. 

Figure 3.  

Analysis of the Raman spectra for each studied film as a result of the annealing 

temperature. (a) FWHM of the G peak; (b) G peak position; (c) Intensity ratio between D 

and G peaks. Note: when the error bars are not visible, their size is smaller than the 

markers. 

Figure 4.  

XPS core-level spectra of the Si 2p orbital for all the films studied in the present work 

under 250 °C annealing for 15 minutes. 

Figure 5.  

Bar diagram of the (a) steady state coefficient of friction during the last 1000 strokes; (b) 

specific wear rate as function of temperature for the ball-on-disk tests carried out on a-

C:Si, a-C:Si,Cr (1) and a-C:Si,Cr (2) against Al2O3. Note that each bar represents the 

average value of at least two tests performed at each temperature for the coefficient of 

friction, while the error bars in the specific wear rate were obtained by four measurements 

in different areas across each of the studied wear tracks for each temperature. * Failure of 

coating. 

Figure 6.  

Variation of the coefficient of friction with the number of strokes using 6.3 mm diameter 

Al2O3 balls as counterpart, 10 N load and 1 cm/s linear speed at (a) 25 °C, (b) 150 °C, (c) 

200 °C, (d) 250 °C, (e) 300 °C, (f) 350 °C. 

Figure 7.  
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3D surface profiles of the wear tracks for each of the specimens were included with the 

scale bar ranging from + 1 µm (orange-red) to -2 µm (purple-wine). At the higher 

temperature, a star refers to a variation in the scale due to the failures, ranging from +1 

µm to -12 µm.  
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 

 

 

 

 


