A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/140397

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
q-COHOMOLOGICALLY COMPLETE AND q-FSEUDOCONVEX DOMATNS
by

Giuseppe Vigna Suria

A dissertation submitted for the degree of Doctor
of Philosophy at the University of Warwick

September 1979

TABLE OF COITENTS

Acknowlodgenents 1
Summary 2
Introduction 3
CHAPTE? 1:- The projected zeenvelope ofholomorphy
Sl:- The Koszul complex of a point 6
§2:- The test classes ε
S3:- The envelone of holomer iny 9
 12
§5:- The projected q-envelone of hol omorphy 27
§6:- A digression 28
CHAFTER 2:- Pseudoconvexity and completeness
§l:- Xartogs' figures and completeness 20
§2:- q-Fs nudoconvexity ard q-completeness 23
S3:- The main classical theorem 26
CHUPTE: 3:- A gene:alisation of the main
classical theorem§1:- Relationshir between q-pseudocorvexityand various forms of q-comnleteness28
§?:- Inextendibility of cohomolozy classos 37
S:- The main thecrem 39
S4:- Counterexamples 40
CHAB TER 4:- The inextendibility index
gl:- The inextendibility index 4
§2:- The analytic touching number 51
CHAPTER 5:- Dolbeanit and Leray representatives
for the test classes
Cl:- The double Koszul complex 54
§̧2:- Explicit form for the test classes 58
Appendix:- A differential topological remark
on the distance function 61
references 64

Thanks ane due to all those people, acadenic and not, who, in difierent ways, heiped me during the period that I spent at warwick, specially to Erof. Jinmy Eells for his warm, I should say latin, friendship and to Frof. Alberto Conte who was my first teacher and helped me to 2079 here.

It is a desperate task to express in words my gratitude to my friend :̈ike Dastrood, who also is my supervisor, so I will not even try: but the deop iniluence that his natural talent of mathematician and teacher had and has on my scientific education should not go wnobserved: this thesis has been written under his constant and encouraging help and important parts were developed directly by him. I do not believe that a student can be helped more by his supervisor.

I am al30 grateful to Erof. David Epstein for showing me now to prove the result contained in the appendix.

I 2! 30 Nould like to thank the "Consiglio Nazionale delle Sicerche" for financially supporting me for three years with a grant (po3. n. 204.804) in spite of bureaucratic difficulties and the Sathematics Institute of the Unirersity of sarwick for the kind hospitality.

SUMMASY

This dissertation is devoted to the study of the different viewpoints from which an open subset, D of a Stein manifold in can be considered, as the geometric concents of q-completeness and qpseudoconvexity and the analytic ideas of vanishing of cohomology groups after a certain levei and inextenditility of conomology classes or rolomorphic functions.

The idea is to generalize to any inteser q the woll known equivalence between 0-completeness and 0-cohomolorical completeness (see theorem 2. .1).

A step in this direction, namely that if D is q-complete thon it is 3lso q-cohomologicaily complete, was done in 1962 by Andreotti and Grauert, but the converse implication is still an open problem.

Using a rather iniirect tool invoivines certain cohomolozy classes called "test classes" we can manace to prove that if D is cohomologically q-complete and has c^{2} bcundary then it is q-conplete, and this is probably the nost interesting result appearing in this thesis (see theorem ?.3.1).

This method however can also be applied to answer certain natural questions about inextendibility of cohomology classes, analogous to inextendibility of hoiomorphic functions for domains of holomorphy, and the answer turns out to be not surprising if D has C^{2} boundary (see theorem 4.1.8) but less intultive in the general case and courterexamples illustrating this beraviour are discussed in chapter 3 , section 4.

In particular we describe a particulary interestina application of the test classes that gives a lown b bound on the number of analytic functions needed to define an analytic subvariety just touchine \bar{D} at a point x belonging to its boundary provided the bohaviour of $\partial \mathrm{d}$ near x is inown (see theocem 4.2.3).

All these resui. rs cante deduced without innowing the explicit expression for these coronolosy classes, but such an expression in terms of Doibeaut cohonoiogy and Cech cohomolegy ls given in the last chapter; it can be otserved that the test classes are relatel to the Zochner-itrtirelli kernel.
E. E. Levi noticed in his paper [14]that a domain of holomorphy with C^{2} boundary contained in a complex space C^{n} is $0-p s e u d o c o n v e x$ (for the definition of these concepts see chapter 2 , section 2).

This observation introduced a challenging question for complex analists, which can beloosely stated as: is the converse true?

It was soon realized that the hypothesis on the boundary can be removed provided 0 -pseudoconvexity is replaced by 0-completeness and that replacing \mathbb{w}^{n} with any Stein manifold does not create any serious trelicle; moreover o-completeness mares sense even if the analytic donain that ne are considering is not an owen sucset of a larger one and the Levi problem can be restated as:

If D is a O-complete analytic nanifold (space) is D Steir: ?
The question was studied by mathematicians like Oka, Lelong, Bremermann and others; an interesting survoy of the histcrical developerent of this problem is contained in the introduction of [8], and in the same paoer Grauert gives a positive answer to the above question for manifolis. In 1961 Narasimhan solved again in the affirmative the Levi problem for analytic spaces, in his article [15].

Meanwhile other powerful tools for the study of analytic spaces had beer developed, specially cohomology theory, and a famous result known as Cartan's theorem 3 showed that a Sitein space is always 0-cohomologically complete (see definition 2.2.3).

The situation was then very well settled bocause it is easy to prove the converse of this last statement, and so if D is an annlytic stace the following properties are equivalent:
(a) $D i=$ a Stoin space (which is an analytic-function theore-
tic concept),
(b) D is 0 -complets (geometric-analytis),
(c) D is echomolosically 0-complete (alg=braic-analytic).

However an integer, zevo, appeas in the formulation of (b) and (c), so it is natural to ask whether the equivalsnce of (b) and (o) still holds when O is replaced by another integer a .

The first step in this airection is due to Andreoti and Crauert (see prop. 3.2 .1): namely they proved that a q-complete analytic space is necessarily q-cohonologically complete.

The converse implication is, as far as we know, stiIl unsolved nowadars (see[-9] problem IV, p. 57), the difficulty consisting in the fact that it is not easy to define in a suitable way the concept of "c-3tein space".

In this dissertation I have been studying this proolem in the particula but intuitively and historically important case when D is an open subset with C^{2} bourdary of a Stain manifold A, going bace to a sort of "q-ievi problem" as originally stated.

The methoi used here is indirect but rather efficient and involves certain natural cohomology classes, called test classes, that have been studied already, though in a quite implicit way, by Andreotti and : orguet in [3] by means of the Eochnec-ilartinsili integral formala and in a more "cohomological" way by Sastwood in [5] and Laufer in [?3].

The test classas provide a powerful tool which finally enables us to answer in the aftirmative to the problem considered: namely we can prove that a domin with C^{2} boundary contained in a stein minifold 13 q-pseuduconvex if and only if it is q-cohomolopically complete (3 ee theornm :3.1).

This method is also usefill to compare the concepts considered above (q-comploteness, q-pseudoconvexity and q-conomolofical complateness) with other rather classical ones like pseudoconvexity ia Gramert and Fritzsche (see ief. 2.1.4).

Moreover we can investirgate some intuitive questions about inextendibility of conomology classes already studied by Andreotti and Norsuet in [3] that arise natuanlly fron the classical definition of domain of holomorphy ant the observation that holomorphic functions can be considered as 0 cohomolory classes (see theorem 4.1.3).

The general impression that arises from these results is that open subsets of stein manifolds behove in a rood, intuitire ray analorous to domains of holomorphy if their boundary is c^{2}, but inexpected conc:uvions can be deduced if we drop this h;pothesis: some examples of this odi benaviour are shown and discussed making use of complements of analytic varieties (example 3.4.2).

The rethods used in this dissertation can also be applied to investigate the nature of germs of analytic varieties just "touching" at a point x the closure \bar{D} of an open 3 ubset D of an analytic manifold provided we know the "bending" of the boundary of D at x, and a lower. bound to the feometric codimension (=minimal number of perms of anaIytic functions necessary to define it) is given (see theorem 4.2.3).

Finally the cohomolofy classes used to deduce the above results are explicitely described in tems of Dolbezult nucheray cohomolory: this is dane in chapter 5.

A sinciaיinint mart of this dissertation will be pubiished in a jolnt pzoer. co-ruthor richacl G. Eastrood, to appear with title "iseutoconvex and Cohomoloiscally Complete Domains".

CHAPTER 1: The Projected q-Envelope of Holomorphy.

Let M be a n-dimensional Stein manifold, $n \geqslant 2$, an open connected subset $D \subseteq M$ will be called domain. This chapter is dedicated to the construction, for a domain $D \subseteq M$, of a sequence of sets

$$
D \subseteq E_{n-2}(D) \subseteq E_{n-3}(D) \subseteq \ldots . \subseteq E_{0}(D) \subseteq N
$$

the utility of which will be shown later; $E_{q}(D), q=0,1, \ldots, n-2$, is called the projectad q-envelore of holomorbhy of D; sone algebraic machinery is necessary to construct these sets and to show that they are well defined. Ne start with

S 1: The Koszul Complex of a Point.

Let R be a commatative unitary ring and consider the graded algebra $\Lambda^{\cdot} R^{n}=\left\{\Lambda^{p} R^{n}\right\}_{p 6 Z}$. Ne shall identify, as natural, $\Lambda^{1} R^{n}$ with R^{n} and with the R-module of column vectors of n elements of Ω. If $f_{1}, f_{2}, \ldots, f_{n}$ belong to R, they determine an element f in $\Lambda^{1} p^{n}$, and so they can be used to define a k-homomorpinis.
$d=d_{\underline{f}}: \Lambda \cdot R^{n} \longrightarrow \Lambda \cdot R^{n}$ given by $d_{f}(\mu)=\underline{f} \mu w, \forall N \in \Lambda^{n} n^{n}$ It is imediate to check that $d \circ d=0$, i, e, that d is 3 differential (of degree +1).

The resulting complex ($\Lambda \cdot R^{n}, d_{\underline{f}}$) is called the Koszul complex of \underline{f} and R and we shall denote it by $K^{\prime}(f, R)=\left\{K^{P}(\underline{f}, R)\right\}$ pe Z^{\prime}

If \bar{M} is any R-module we can define the Koszul complex $K^{\circ}(\underline{f}, \bar{M})$ by $K^{P}(\underline{f}, M)=K^{P}(\underline{f}, R) \otimes_{R^{M}}$ and differential $d_{\underline{f}} \approx ;$

Notice that $K^{p}(\underline{f}, \mathcal{M})=0$ for $p<0$ and $p>n, K^{O}(\underline{f}, M)=M$ and there is a natural identification $K^{n}(\underline{f}, \vec{M}) \stackrel{i}{\sim} \vec{M}$.

Ais a matter of notation we indicate with $F_{1}, F_{2}, \ldots, F_{n}$ the formal symbols occurring in $K^{\prime}(\underline{f}, M)$, so that $f=\sum_{j=1}^{n} f_{j} f_{g}$ and

1: $\sum^{n}(\underline{f}, \hat{M}) \longrightarrow \hat{M}$ is given by $i\left(m F_{1^{\wedge}} F_{2^{\wedge}} \ldots \wedge F_{n}\right)=m, \forall m \in \tilde{M}$. The cohomology of $K^{\cdot}(\underline{f}, \bar{H})$ is indicated by $H^{\cdot}(\underline{f}, M)$.

Lemma 1.1.1:- If for some $j=1,2, \ldots, n, f_{j}$ is a unit of A the complex $K(\underline{\underline{i}}, \vec{M})$ is acyclic, i.e. $H^{P}(\underline{\underline{f}}, \tilde{M})=0 \quad \forall p$.

Proof:- Choose $E \in$? s.t. $f_{j}=1$ and define a homomorphism $h: K^{p+1}(\underline{f}, \bar{M}) \longrightarrow K^{p}(\underline{f}, \tilde{M}), \forall_{p}$, as follows: an element $w \in K^{p+1}(\underline{f}, \tilde{M})$ can bo uniquely writton as $w=F_{j} \wedge u+v$, where $u \in K^{P}(\underline{f}, \widetilde{M})$, $v \in K^{p+1}(f, M)$ and F_{j} does not appear in u and v : define $h(r)=g \cdot u$. Then $(h d+d h)(w)=h d\left(F_{j} \wedge u\right)+h d(v)+d h\left(F_{j} \wedge u\right)+d h(v)=$ $h\left(\sum_{i \neq j} f_{i} F_{i} \wedge F_{j} \wedge u\right)+h\left(\sum_{i=1}^{n} f_{i} F_{i} \wedge v\right)+d(g \cdot u)=-\sum_{i \neq j} g f_{i} F_{i} \wedge u \cdot$ $g f_{j} \cdot v+d(g \cdot u)=g f_{j} F_{j} \wedge u+g f_{j} v=F_{j} \wedge u+v=i$, i.e. $h d+d h=I d e n-$ tity; therefore $K^{\prime}(\underline{f}, \tilde{M})$ is homotopy equivalent to the zero complex and so it is acyclic. \square

Let now \mathcal{O} be a sheaf of commutative unitary rings on a topological space M and \mathcal{M} be a sheaf of \mathcal{O}-modules, moreover suppose that $f_{1}, f_{2}, \ldots, f_{n} \in \Gamma(M, Q)$; we shall denote by $\mathscr{H}(\underline{f}, \mathcal{C})$ the Koszui complex of sheaves given by the complex of complete presheaves

$$
f_{0} \cdot(\underline{f},(b)(U)=k \cdot(\underline{f} \mid u, \Gamma(U, C b))
$$

for all open set $U \subseteq M$ (we remark that restriction maps clearly commute with d_{f}, and so they are maps of complexes).

Throughout this dissertation, unless otherwise explicitiv stated M will be a n-dimensional, $n \geqslant 2$, Stein manifold and Q, its structure sheaf Θ.

If $x \in M$ it is always possible (see[7] 3atz 1 p. 91) to choose sections $f_{1}, f_{2}, \ldots, f_{n} \in \Gamma(M, \theta)$ s.t.
$\{x\}=V\left(f_{1}, f_{2}, \ldots \ldots, f_{n}\right)=\left\{y \in M\right.$ s.t. $\left.f_{1}(y)=f_{2}(y)=\ldots . . f_{n}(y)=n\right\}$ If these functions also give local coordinates of M at x, which can al ways be arranged, we shall denote them by $z_{1}, z_{2}, \ldots \ldots, z_{n}$.

The koszul complex of the polnt $\underline{x} \in M$ (with respect to tho
functions $f_{1}, f_{2}, \ldots, f_{n}$) is by definition the Koszul complex of sheaves $f(\underline{f}, 9)$.

As a consequence of lenna 1.1.1 we have the following
Proposition 1.1.2 :- For every analytic sheaf © the complex of sheaves $\mathcal{R} \cdot(\underline{f}, \mathcal{M})$ is acyclic on $14-\{x\}$ (i.e. $\forall y \neq x$ the complex of θ_{y}-modules $K(f, C \neq)_{y}$ is acyclic $)$.

Eroot: $-\forall y \neq x \quad \exists j=1,2, \ldots \ldots, n$ s.t. $f_{j}(y) \neq 0$, i.e. the gern $\left(\tilde{f}_{j}\right)_{y} \in \Theta_{y}$ is a unit. Lemaz 1.1.1 says precisely that $\mathbb{K} \cdot(\underline{\varepsilon}, \mathcal{O})_{y}$ is an acyclic complex of θ_{y}-nodules.

Therefore the sequence of sheaves
$0 \longrightarrow R^{0}\left(\underline{f}, M_{0}\right) \xrightarrow{d_{e}} R_{i}^{i}\left(\underline{f}, M_{0}\right) \xrightarrow{d_{f}} \ldots \ldots R^{n}\left(\underline{f}, M_{0}\right) \longrightarrow 0$
is exact on $M-\{x\}$, and so it can be split into short exact sequences, i.e. there exist sheaves $\mathscr{H}_{s}(\underline{f}, C / \not), s=0,1, \ldots, n-2$ on $n-\{x\}$ s.t. the sequences
$0 \longrightarrow \mathscr{L}_{s}(\underline{f}, \mathcal{H}) \longrightarrow R^{n-s-1}(\underline{f}, \mathcal{H}) \longrightarrow \mathscr{L}_{s-1}(\underline{f}, \mathcal{H}) \longrightarrow 0$
 c^{16}.

As z matter of notation $\mathscr{L}_{3}\left(\underline{f}, \theta\right.$ and $\ell^{p}(\underline{f}, \theta)$ will be indicatei simply with $\mathscr{L}_{s}(\underline{f})$ and $\AA^{p}(\underline{f})$; this is by far the most interesting case.
§2: The Test Classes.

As we have just seen, there are exact sequences of sheaves
$0 \longrightarrow \mathscr{L}_{s}(\underline{f}) \longrightarrow \mathbb{R}^{n-3-1}(\underline{f}) \longrightarrow \mathscr{L}_{s-1}(\underline{f}) \longrightarrow 0$
on $M-\{x\}$, for $s=0,1, \ldots, n-2$.
The connecting homomorphisms of the corresponiling long exact
sequences of cohomology
$\ldots \ldots \longrightarrow H^{s}\left(M-\{x\}, \mathscr{L}_{s-1}(\underline{f})\right) \xrightarrow{\delta} H^{s+1}\left(M-\{x\}, \mathscr{L}_{s}(\underline{f})\right) \longrightarrow$
my be composed to give maps

$$
\delta_{s}(\underline{f}): \Gamma\left(x_{1}-\{x\}, \mathscr{L}_{-1}(£)\right) \longrightarrow H^{s+1}\left(M-\{x\}, \mathscr{L}_{s}(f)\right)
$$

Now we observe that the restriction map $r: \Gamma(M, O) \rightarrow M_{i}(i)-\{x\}, O$
is an isomorphism by Riemann romovable singularity theorem and de call again $\delta_{S}(f)$ the mapgiven by the composition

$$
S_{s}(\underline{f}) \circ i \circ r: \Gamma(M, \theta) \longrightarrow H^{s+1}\left(M-\{x\}, \mathscr{L}_{s}(\underline{f})\right) \text {. }
$$

If g is an element of $M(M, O)$ we obtain test classes $\alpha_{s}(E, \underline{f})=\operatorname{def} \delta_{S}(\underline{f})(g) \in H^{3+1}\left(M-\{x\}, \mathscr{L}_{s}(\underline{f})\right), \quad s=1,1, \ldots, n-2$.

We shall shortly see that the test classes $\alpha_{s}(g, f)$ are of particular interest when the germ $\tilde{g}_{x} \notin \tilde{g}_{x}(\underline{f})$, where $\mathcal{J}_{x}(f)$ denotes, as classically, the stalk at x of the sheaf of ideals generated by f this is the case if $g=1$, and $\alpha_{S}(1, \underline{f})$ will be written simply $\alpha_{s}(x, £)$.

The test classes say an important wom about the envelope of holomorphy of a domain DsM.

S 3: The Envelope of Holomorphy.

If D is a domain in a Stein manifold il there exists always a connected Stein manifold $E(D)$, called the envelope of holomorphy of D, which contains D and is chazacterized by the fact that every holomorphic function on D extends uniquely to $E(D)$. $E(D)$ is not necessarily a subset of M because "3heeting" can occur (see [11] p.43), but In general $E(J)$ is a Rlemann domain over M with projection

$$
\pi: E(D) \longrightarrow M
$$

(the terminology Rlemann domain just means that π is i local isomo-
rphism). This notation will be retained for the rest of this dissertation, and the symbol π will zlways indicate the projection of a Riemann domain. This situation can be expressed by means of diagrams as follows:
(a) Firstly the diagran
(a)

(b) If we call \mathcal{O}_{E} the structure sheaf of $E(D)$, the map π induces a nap $\pi^{2}: \theta \longrightarrow \theta_{E}$ given by $\pi^{*}(g)(y)=\operatorname{def}, g(\pi(y)), \forall y \in \Xi(D)$; the diagram
(b)

where r indicates the restriction map, commutes and $r: \Gamma\left(\Sigma(D), \theta_{E}\right) \longrightarrow \Gamma(D, \theta)$ is an isomorphism.

A good reference for all the above is [16].
A reason for calling, the cohomology classes $\alpha_{s}(g, f)$ test classes is given by the following

Pronosition 1.3.1:- Suppose $x \in M-D$ and $g \in \Gamma(M, O)$ is chosen in such a way that the germ $\tilde{\mathrm{g}}_{\mathrm{x}} \not \mathrm{g}_{\mathrm{x}}(\mathrm{f})$. e.g. $g(x) \neq 0$. Then
$x \in \pi^{\prime}(E(D))$ if and only if $\left.\quad \alpha_{0}(E, \underline{f})\right|_{D} \neq 0$
where $\left.\alpha_{0}(g, \underline{f})\right|_{D}$ denotes the image of $\alpha_{0}(g, \underline{f})$ under the restriction
$=: H^{l}\left(N-\{x\}, \mathscr{L}_{O}(\underline{f})\right) \longrightarrow H^{l}\left(D, \mathscr{L}_{O}(\underline{f})\right)$.
fronf:-(cfr.[5] Theorem 2.1). For $i=1,2, \ldots ., n$ set $f_{i}^{*}=\pi^{*}\left(i_{1}\right)$,
and construct the Koszul complex $f^{\circ}\left(\underline{f}^{*}\right)$ on $E(D)$; by proposition 1.1.2 $k^{\prime}\left(\underline{f}^{*}\right)$ is exact on $E(D)-\pi^{-1}(x)$, and we have an exact sequence of sheaves on $E(D)-\pi^{-1}(x)$

whre $\mathscr{L}_{0}=$ Ker d_{f} and so is a coherent sheaf.
In the following diagram with exact rows

the square on the right hand side is commutative and so the map indicated with a dotted line that makes the first square commutative exists and is unique. By taking cohonology and using the above diagram (b) we obtain a commutative diagram

Now if $x \notin \pi(E(D)), E\left[i /-\pi^{-1}(x)=E(D)\right.$ which is Stein and by Cartan's Theorem $E \pi^{*}\left(\alpha_{0}(g, \underline{f})=0\right.$ and so also $\alpha_{0}(g, \underline{f})_{D}=0$.

To prove the converse we first remark that, since π is a local isomorphism, it induces an isomorphism

$$
\pi^{*}: f_{\pi(y)}(\underline{f}) \cdots g_{y}\left(\underline{f}^{*}\right) \quad \forall y \in E(D)
$$

In particular $\pi^{*}(g) \notin \oint_{y}\left(f^{*}\right), \quad \forall y \in \pi^{-1}(x)$.
If $\left.\alpha_{0}(E, f)\right|_{D}=0$ there exist functions $h_{1}, h_{2}, \ldots, h_{n}$ in $\Gamma(D, O)$ s.t. $\sum_{i=1}^{n} h_{i} f_{i}=$ G, but, since $r i \Gamma\left(\Sigma(D), O_{i}\right) \rightarrow M_{(D, O}$ is an isomorphism thers zre functions $h_{i}^{*} \in \Gamma\left(E(D), \theta_{E}\right)$, with $r\left(h_{i}^{*} ;=h_{1}\right.$, 3.t. $\left.\sum_{i=1}^{n} n_{i}^{*} f_{i}^{*}=\pi r_{F}^{*}\right)$. Now if $x \in \pi(E(D)), \exists y \in E(D), \pi(y)=x$,
so wo find that $\pi^{*}(g) \in G_{y}\left(f^{*}\right)$, contradicting, by the above remark, our choice of g. The proposition is therefore proved. \square

If $H^{P}(D, \theta)=0$ for $p=1,2, \ldots, n-1$, then it is easy to show that $H^{1}\left(D, \mathscr{L}_{0}(f)\right)=0$ (cfr. Frop. $3 \cdot 1 \cdot 3$) for any \underline{f} defining a point x © M - D, and hence we can deduce that D is Stein. This suggests that we could use the test classes $\alpha_{S}\left(x, \underline{f} \|_{D}\right.$ for $s=0,1, \ldots, n-1$ to measure how far D is from being stein.

It follows from the above proposition that whether $\alpha_{0}(x, s) I_{0}$ vanishes or not is independent of choice of f and only depends on x and D. In the next section we shall prove that the same is true for $\left.\alpha_{s}(x, f)\right|_{D}$ provided $f_{1}, f_{2}, \ldots, f_{n}$ form a local coondinate system of M at x.
$\oint 4:$ Selationship between $H_{0}(\underline{f}, \theta)$ and $K_{(}(\underline{z}, \theta)$.

In what follows we shall suppose that $f_{1}, f_{2}, \ldots, f_{n}$ is a general collection of global functions s.t. $V\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\{x\}$, and that $z_{1}, z_{2}, \ldots, z_{n}$ are global functions that give local coordinates of M at x and s.t. $V\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\{x\}$. There is a relationship between f and \underline{z} : it is given by the followins

Lemma 1.4.2 :- There exists a matrix valued holomorphic function $A: M \longrightarrow c^{n \times n}$ s.t. $A \underline{z}=\underline{f}$.

Eroof:- Let of denote the ideal sheaf of x, and $\theta^{n \times n}$ the sheaf of germs of $n \times n$ matrices of holomorphic functions. As usual we shall indicate with f^{n} the sheaf of column vectors with entries in J. Consider the exact sequence of sheaves
$0 \longrightarrow \theta^{n \times n} \xrightarrow{n} \Psi \operatorname{Ger} 9^{n} \longrightarrow 0$
whern $\psi(A)=A \underline{z} \forall A \in \theta^{n \times n}(\psi$ is surjective by dofinition
oi $\left.z_{2}, z_{2}, \ldots ., z_{n}\right)$.
Since $\theta^{n \times n}$ and g^{n} are coherent sineaves, also Ker ψ is coherent, and by Cartan's Theorem $3, H^{l}($ M, Ker $\Psi)=0$.

The long exact sequence of cohcmolony associated to the above sequance of sheaves shows that the map

$$
\left.\psi: \Gamma^{n}\left(n, \theta^{n * n}\right) \longrightarrow \Gamma_{(i,}, g^{n}\right)
$$

is surjective. Noreover $£ \in \Gamma\left(M, j^{n}\right)$ by definition and the conclusion follows. \square

Lenma 1.4.2 (corollary to Lemma 1.4.1):- There exists a mav of complexes $A^{*}: \hbar{ }^{*}(\underline{z}) \longrightarrow K(\underline{f})$ s.t. $A^{0}: O=\mathcal{K}^{0}(\underline{z}) \longrightarrow \mathcal{F}^{0}(\underline{\underline{I}})$ is the identity.

Proof:- Identify, as usual $\mathcal{K}^{\prime}(\underline{z})$ and $\mathcal{K}^{\prime}(\underline{f})$ with θ^{n} ant define $A^{l} ; k^{I}(\underline{z}) \longrightarrow \ell^{1}(\underline{f})$ by means of the map A mentioned in the above Lemma; A^{*} is then automatically determined by the requirement for A^{0} and by imposing it to be a map of graded algebras. One only needs to checis that A° is a map of complexes, and this is an immediate consequence of the fact that $A \underline{z}=\underline{f} \cdot \square$

We remark that $A^{n}: f^{n}(\underline{z}) \longrightarrow f^{n}(\underline{f})$ acts by multiplication with det A; we want now a map of complexes $B^{*}: f^{\circ}(\underline{f}) \longrightarrow \mathrm{F}_{\mathrm{f}}(\underline{z})$ with suitable properties. To do this we need a purely algebraic

Lemm 1.4.3:- Let R be a commutative unitary ring, $z, f \in \Lambda^{1} n^{n}$, and suppose that there exists a map of complexes

$$
A^{\prime}: K^{\prime}(\underline{z}, K) \longrightarrow K^{\prime}(\underline{I}, K)
$$

s.t. $A^{0}: K^{0}(z, R) \rightarrow K^{0}(f, R)$ is the identity;

Then there is also a map of complexes
$g^{\circ}: K^{\prime}(\underset{\sim}{f}, R) \longrightarrow K^{\prime}(\underset{\sim}{2}, R)$
3.t. after the natural Ldentification of $K^{n}(\underline{f}, i)$ and $K^{n}(\underline{z}, \bar{x})$ with
$R, B^{n}: K^{n}(\underline{f}, q) \longrightarrow K^{n}(\underline{z}, R)$ is ths identity. Proof:- Let R - Mod be the category of i-modules ani consider the contravariant functor

$$
\text { Hon }(, R): R \text {-chod } \longrightarrow R-C \text { Mod }
$$

Using a classical notation, if $\tilde{M} \in E-C H o d$, Hom ($\overline{\mathrm{I}}, \mathrm{R})$ will be indicated by X^{*} (tine dual of \bar{H}), and if $h: M \longrightarrow N$ is a homomonphism of R-modiles, h^{*} will ミtand for $\operatorname{Hom}(h, R): \tilde{N}^{*} \longrightarrow \tilde{M}^{*}$.

By applying this functor to the complex $K^{\circ}(\underline{z}, \hat{R})$, (respectively $\left.K^{\prime}(\underline{f}, R)\right)$ we obtain a coconplex $K^{\prime}(\underline{z}, R)$ with differential $\underset{\underline{z}}{*}$ of degree -1 (resp. $\mathrm{K}^{\prime}(\underline{f}, \boldsymbol{R})^{-.}$with differential $\underset{\underset{\sim}{*}}{\boldsymbol{*}}$).
$3 y$ functoriality of Hon (, R) the diagram

commutes $\forall \mathrm{p}$.
Now defing a R-homomorphism
$\Phi_{p}: K^{n}(\underline{f}, R) \longrightarrow\left[K^{n-p}(\underline{I}, R)\right]^{*}, \forall p$, as follows : for all multiindexes I, J with $|I|=p,|J|=n-p$, set

$$
\left\langle\Phi_{p}\left(F_{I}\right), F_{J}\right\rangle=\left\{\begin{array}{l}
0 \text { if IuJ } \neq\{1,2, \ldots, n\} \\
(-1)^{p(p-1) / 2+3 i_{j} n(I, J)}
\end{array}\right.
$$

otherwise
and extend it by if-linearity to all $K^{P}(f, F)$. It is immediate to chack that Φ_{p} is an isomorphism.

Moreover we have the following ilentity;
$\forall_{I}, \forall J$ with $|I|=p,|J|=n-p-1$ and $\forall i=1,2, \ldots, n$
(b) $\left\langle\Phi_{p+1}\left(F_{i} \wedge F_{I}\right), F_{J}\right\rangle=\left\langle\Phi_{p}\left(F_{I}\right), F_{i} \wedge F_{J}\right\rangle$.

Indeed both sides vanish unless $I \cup J \cup\{i\}=\{1,2, \ldots, \ldots, n\}$, and in this case we have:

$$
\begin{aligned}
& p(p+1) / 2+\operatorname{sign}(i, I, J)=p(p+1) / 2-p+\operatorname{sign}(I, i, J)= \\
& p(p-1) / 2+\operatorname{sign}(I, i, J)
\end{aligned}
$$

and the identity is proved.
The diagram
(c)

commutes \forall_{p}.
It is enough to prove that, $\forall I, \forall J$ with $|I|=2,|J|=n-p-1$,

$$
\left\langle\mathrm{d}_{\underline{f}}^{*} \circ \Phi_{\mathrm{p}}\left(F_{I}\right), F_{J}\right\rangle=\left\langle\Phi_{p+1} \circ d_{\underline{f}}\left(F_{I}\right), F_{J}\right\rangle
$$

But

$$
\begin{aligned}
& \left\langle d_{f}^{*} \bullet \Phi_{p}\left(F_{I}\right), F_{J}\right\rangle=\left\langle\phi_{p}\left(F_{I}\right), d_{f}\left(F_{J}\right)\right\rangle= \\
& \left\langle\Phi_{p}\left(F_{I}\right), \sum_{i=1}^{n} f_{i} F_{i} \wedge F_{J}\right\rangle=\sum_{i=1}^{n} f_{i}\left\langle\Phi_{p}\left(F_{I}\right), F_{i} \wedge F_{J}\right\rangle
\end{aligned}
$$

and, since the identity (b) holds, this is equal to

$$
\begin{aligned}
& \sum_{i=1}^{n} f_{i}\left\langle\Phi_{p+1}\left(F_{i} \wedge F_{I}\right), F_{J}\right\rangle=\left\langle\Phi_{p+1}\left(\sum_{i=1}^{n} f_{i} F_{i} \wedge F_{I}, F_{J}\right\rangle=\right. \\
& \left\langle\Phi_{p+1} \circ d_{f}\left(F_{I}\right), F_{J}\right\rangle, \text { and the identity is proved. } \\
& \text { Let us call } \Psi_{p} \text { the homomorphism constructed in the analogous }
\end{aligned}
$$ way that makes the diagram (d). appearing for typographical reasons in the following page. commutative \forall_{p}.

Define the homomorphism $B^{\prime}=\left\{B^{p}\right\}: K^{\prime}(\underline{f}, R) \longrightarrow K^{\prime}(\underline{z}, R)$, where $B^{p}=\psi_{p}^{-1} \cdot\left[A^{n-p}\right]^{*} \circ \Phi_{p}: K^{p}(\underline{f}, R) \longrightarrow K^{p}(z, R)$.
(d)

The fact that 3° is really a homomorphism of complexes follows f om the comatativity of diagnams (a), (c), (d); moreoven, since, after the natianz? identification of $K^{n}(\underline{f}, R), K^{n}(\underline{z}, R),\left[K^{C}(\underline{X}, R)\right]^{*}$ and
 and the lemna is proved.

The three lemas contained in this section collected together give the following

P-ovosition 1.4.4:- There exists a homomorphism of complexes $B: K(\underline{f}) \longrightarrow K(\underline{z})$ s.t. $B^{n}: K^{n}(\underline{f}) \longrightarrow K^{n}(\underline{z})$ is the identity.

By using standard results of homological algebea and induction on $3=0,1, \ldots . . n-2$, we can define sheaf homomorphisms B: $\mathscr{L}_{s}(\underline{f}) \longrightarrow \mathscr{L}_{s}(\underline{z})$ s.t. the following diagram with exact rows $0 \longrightarrow \mathscr{L}_{i s}(\underline{f}) \longrightarrow \operatorname{N}^{n-s-1}(\underline{f}) \longrightarrow \mathscr{L}_{s-1}(\underline{f}) \longrightarrow 0$
conmutes \forall_{3}, the middle honomorphism being described in Prop. 1.4.4 If $x \in M-D$, by taktng the long exact sequences of cohomology we obtain commutative diagran

But since $B: \Gamma(D, \theta) \longrightarrow \Gamma^{\prime}(D, \theta)$ is the identity, $\forall g \in(M, \theta)$

$$
B\left(\left.\alpha_{s}(\tilde{E}, \underline{f})\right|_{D}\right)=\left.\alpha_{s}(\tilde{g}, \underline{z})\right|_{D}
$$

and we have proved the following

$$
\text { Corollary 1.4.5:- (a) }\left.\alpha_{s}(g, \underline{f})\right|_{D}=0 \Longrightarrow \alpha_{s}(g, \underline{z})_{D}=0,
$$ (b) Whether $\alpha_{S}(s, \underline{z})_{D}$ vanishes or not depends only on D, x and g and not on the pacticular choice of local coordinates $z_{1}, z_{2}, \ldots, z_{n}$ s.t. $v\left(z_{2}, z_{2}, \ldots, z_{n}\right)=\{x\} . \square$

Now suppose $\mathrm{g}=\mathrm{l}$; this corollary allows us to simplify the notation and write $\alpha_{s}(x)$ instead of $\alpha_{s}(1, \underline{z})$ in the following definition and for the rest of the dissertation.
§5:- The Projected q- Envelope of Holomorphy.

Definition 1.5.1:- (a) The projected q-envelope of holomorphy of D is the set
$E_{q}(D)=D \cup\left\{x \in M-D\right.$ s.t. $\left.\alpha_{q}(x) I_{D} \neq 0\right\} \quad q=0,1, \ldots, n-2$.
(b) We say that D is $\underline{\alpha}$-q-comolete if $D=E_{q}(D)$.
?emark 1.5.2:- By construction $\left.\alpha_{q}(x)\right|_{D}=\left.0 \Rightarrow \alpha_{q+1}(x)\right|_{D}=0$, so we have inclusion
$D \subseteq E_{n-2}(D) \subseteq E_{n-3}(D) \subseteq \ldots \ldots \subseteq E_{1}(D) \subseteq E_{0}(D)=\pi E(D)$.
The last equality, which follows from Prop. 1.3.1, justifies the name given to $E_{q}(D)$.

Obviously D is $\alpha-q$-complete if and only if $\alpha_{q}(x)_{I_{D}}=0 \forall x \notin D$.
Unfortunately it is not clear that $\mathrm{E}_{\mathrm{q}}(\mathrm{D})$ is open, except in the case $q=0$, although this does appear to be true in all cases I have checked.
$\Xi_{0}(D)$ is $3 t e i n$, and so $H^{p}\left(E_{0}(D), \mathscr{C}\right)=0 \quad \forall 0>0 \quad \forall$ coherent
 $\forall y$ coherent, at least when $E_{q}(D)$ is open; this is not the case, as it is shown in example $\vdots .4 . ?$.

In the next chapter we shall compare $\alpha-\mathbb{- c o m p l e t e n e s s}$ with other pronerties of open subsets of Stein manifolds, includirs chomoicgical completeness and pseucoconvexity, but before we went to give a first application of the test classes.

S6:- A Digression.

These few comments written here are motivated by purely aestretics reasons and are inessential to the understandins of the rest of the dissertation, so that the reading of this section can be omitted: for this reason the style of the exposition will be less detailed.

Let I be an analytic manifold and $x \in H$. Let $z_{2}, z_{2}, \ldots, z_{n}$ be loca? coordinates of M at x, not necessarily globally defined, U be an open neighbourhood of x and $f_{1}, f_{2}, \ldots, f_{n} \in \Gamma(U, O)$ be s.t. x is an isolated point of the variety $V\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. Then there exists

Certainly it can te proved with a patient computation that det. $A \notin \stackrel{\sigma}{x}(f)$, but the following argument looks more elegant.

Since the problem is local we can 3uppose that U is a polydisc in a^{n}, thist A is defined and satisfles the equation $A \underline{z}=$ in all of U an: that $\forall\left(f_{1}, f_{2}, \ldots, f_{n}\right) \cap U=\{x\}$. Then we can construct the test cla3sos

$$
\alpha_{3}(x, z) \in H^{3+1}\left(U-\{x\}, \mathscr{L}_{3}(z)\right) \quad \text { and } \quad \alpha_{3}(x, \underline{f}) \in H^{3+1}\left(U-\{x\}, \mathscr{L}_{3}(\underline{f})\right)
$$ (efr. . ,). Morenvor the homomorphism B in Prop. 1.4 .4 has clearly

the property that $B^{0}: \mathcal{K}^{0}(\underline{f}) \longrightarrow{H^{\prime}}_{(\underline{z})}$) operates by multiplication with $\operatorname{det} A$, so

$$
\alpha_{n-2}(x, \underline{z})=\operatorname{set} A \cdot d_{n-2}(x, \underline{f})=d_{n-2}(\operatorname{det} A, \underline{f}
$$

(the last equality follows from the fact that the connecting homomorphisms are θ-linear).

Using the fact that, if U^{\prime} is any nolydisc s.t. $x \in U^{\prime} \subseteq U$, then $H^{P}\left(U^{\prime}-\{x\},()=0\right.$ for $p=1,2, \ldots, n-2$, (ofr. [10] Theorem 23), we claim that $\left.d_{n-2}(x, \underline{z})\right|_{U}-\{x\} \neq 0$. Inceed if this is not the case, a simple reasoning leads to the conclusion $\alpha_{0}\left\{x, z \|_{U}-\{x\}=0\right.$ (cfr. Prop. 2.1.3). Thus, by Prop. 1.3.1, $x \notin\rangle(U)-\{x\})$, which contraikets Ziemann =emorable singularities theorem. The claim is therefore proved, and so also $\alpha_{n-2}\left(\operatorname{det} A, f^{\prime} \|^{\prime}-\{x\}^{\neq 0}\right.$, which implies that $\left.\alpha_{0}(\operatorname{det} A, \underline{f})\right|_{U^{\prime}}-\{x\} \neq 0$, and so
 and, since this is true for any U ' as above, the conclusion follows.

CHAPT P 2: Pseudoconvexity and Completeness.

In this chapter we revise the classical concepts of completeness and pseudoconvexity and state a classical theorem comparing them with the property of $d-0-c o m p l e t e n e s s$ described in chapter 1.

1: Hartogs' Figures and Completeness.

Let Δ denote the unit polydisc in \mathbb{N}^{n} and consider the open sets
$\Delta q=\left\{z \in \Delta\right.$ s.t. $\left|z_{j}\right|<\frac{1}{2}$ for $\left.j>q\right\} \quad z_{i}=1,2, \ldots, n-1$
$\Delta_{k}=\left\{z \in \Delta\right.$ s.t. $\left.\frac{1}{2}<\left|z_{k}\right|<1\right\} \quad \quad k=1,2, \ldots, n$.
Definition 2.1.2:- For $q=1,2, \ldots ., n-1$ the is the open set
$H_{q}=\Delta^{q} \cup U_{k=1}^{q} \Delta_{k^{\prime}}$.

We give now the pictures of the 'iartogs' figures in absolute space for $n=2$ and for $n=3$.
(z) Ficture of $\mathrm{H}_{1} \subseteq \mathbb{C}^{2}$.

(b) Ficture of $H_{1} \subseteq c^{3}$.

(c) Picture of $\mathrm{H}_{2} \subseteq \mathbb{\mathbb { C }}^{3}$.

Lanma 2.1.2:- Tvery holomozhic fuction $g \in \Gamma\left(H_{q}, \theta\right)$ extends to a holomorphic function $h \in \Gamma(\Delta, \theta)$, i.e. $E_{0}\left(H_{q}\right)=\Delta, \forall q$.

Proof:- Set $3=\left\{z \in \Delta\right.$ s.t. $\left.\left|z_{1}\right|<\frac{2}{2}\right\}$ and define the holomorphic function $h_{1}<(3, \theta)$ by

$$
n_{1}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\frac{1}{2 \pi i} \int_{i t 1=\frac{3}{4}} \frac{g\left(t, z_{2}, \ldots, z_{n}\right)}{t-z_{1}} d t
$$

(h_{1} is well dafinet because $|t|=\frac{3}{4} \Rightarrow\left(t, z_{2}, \ldots, z_{n} \in \Delta_{1} \subseteq n_{q}\right)$.
The functions g and h_{1} agree on the open set $\left\{z\right.$ s.t. $\left|z_{j}\right|<\frac{i}{2}$ $\forall j=2,3, \ldots, n\} \cap B$ by Cauchy integral formula and, by the uniqueness of analytic extension, they agree on $H_{q} n$. Thereforn they can be slued together to define a holomorphic function h on $H_{?} \cup 3=\Delta$ that is the desired extension. \square

Hartogs' fifures enjoy interesting cahomological properties that can be deduced by using the open covering $\mathscr{U}_{0}=\left\{\Lambda^{q}, \Delta_{1}, \ldots, \Delta_{c}\right\}$ of H_{q}. Since all sets in $U_{\text {are domains of holomorphy and therefore }}$ so are the intersections of any number of them, U is a Leray cover of H_{q} and so, $\forall D_{0}, H^{p}\left(H_{q}, \mathscr{Y}\right)=K_{P}(\mathcal{U}, \mathscr{S})$, for any coherent analytic sheaf \mathscr{O} on H_{q}.

In particular, since \mathcal{U} only has $q+l$ elements, $H^{p}\left(H_{q}, \mathscr{S}\right)=0$, for $p>q$ and any soherent \mathscr{S}; a computation involving Laurent expansions and comparing of coefficienta carried out with abundance of particulars in [2] p .218 , shows that alac $\mathrm{H}^{\mathrm{P}}\left(\mathrm{H}_{\mathrm{q}}, \mathrm{O}\right)=0$ for $1 \leq \mathrm{p} \leq q-1$.
we can now prove the following
Pronosition 2.1.3:- $\mathrm{Qq}_{\mathrm{q}-1}\left(\mathrm{H}_{\mathrm{q}}\right)=\Delta$. vet $E_{\mathrm{q}}\left(\mathrm{H}_{\mathrm{q}}\right)=\mathrm{H}_{\mathrm{q}}$.
proof:- Take any point $x \in \mathbb{T}^{n}-H_{1}$, the sheaf $\mathscr{L}_{q}(\underline{z})$ is coherent on H_{q}, and so by the above commenta $\mathrm{H}^{\mathrm{q}+1}\left(\mathrm{H}_{\mathrm{q}}, \mathscr{L}_{\mathrm{q}}(\underline{z})\right)=0$, therefore $\left.\alpha_{q}(x)\right|_{H_{q}}=0$ and thus $E_{q}\left(H_{q}\right)=H_{q}\left(\right.$ i. $\theta . H_{q}$ is α-q-complete $)$.
$\ldots \longrightarrow H^{s}\left(\mu_{q}, R^{n-s-1}(\underline{\underline{(})})\right) \rightarrow H^{3}\left(H_{q}, \mathscr{L}_{s-1}(\underline{Z})\right) \xrightarrow{S} H^{3+1}\left(H_{q}, \mathscr{L}_{s}(\underline{z})\right)$. $f^{n-5-1}(\underline{z})$ is just the direct sum of some numbers of copies or θ, ani so, by the above coment $H^{s}\left(H_{q}, f^{7-s-1}(\underline{z})\right)=0$ for $s=1,2, \ldots, q-1$. therefore δ is injective ; then $\left.\alpha_{s}(x)\right|_{A_{q}}=0 \Longrightarrow \alpha_{3-1}\left\{\left.x\right|_{A_{q}}=0\right.$, i.e. $\Sigma_{s}\left(H_{q}\right)=E_{s-1}\left(H_{q}\right)$ for $s=1,2, \ldots, q-i$; in particular we have $E_{q-1}\left(H_{q}\right)=J_{0}\left(H_{q}\right)$. But Lemma 2.i.2 says peesisely that $E_{0}\left(H_{q}\right)=\Delta$ and the proposition is proved. \square

In the zoove proof, $E_{q-1}\left(H_{q}\right)=\Xi_{\sim}\left(H_{q}\right)$ was deduced using exclusively a cohomological property of H_{q}, nimely from $H^{P}\left(H_{q}, O\right)=0$ for $I \leqslant p<q$, so the same can be zaid for the sets if_{q} zppearing in the following

Definition 2.1.4:- (7) An open subse: H_{q} of a Stein manifold \because is aaid to be a $q+1$ - general Hartors' Equro if $H^{\mathrm{p}}\left(\mathrm{H}_{\mathrm{q}}, \theta\right)=0$ sor $p=1,2, \ldots, q$.
(b) I is said to be Hartors' a-complete if, for any seneral $q+1$

The hypothasis that M is stein is necessary to guarantee that $E\left(\mathrm{H}_{\mathrm{o}+1}\right)$ exists or that $\mathrm{E}_{\mathrm{O}}\left(\mathrm{H}_{\mathrm{q}+1}\right)$ can bes defined.
§ 2:- q-Psuxdoconvexity and q-Congleteness.
ie recall now the basic definitions of q-pseudoconvexity and q-comploteness. In this section wo oniy assume that M is an analytic manifold not necessarily itein.

If $\times 600$, the boundary of D, it 13 always possible to find 1 neighhourhood U of x and 2 fefinin function $\Phi: U \longrightarrow$?
cols C^{2} such that
$D \cap U=\{y \in U$ s.t. $\Phi(y)<\Phi(x)\}$.
(see [3] p. 202). If Φ can be chosen to be non singular at x, we say that D has C^{2} boundary at x and if this is true at all points of $J D$ we say that D ins C^{2} boundary.

Let \oint be a defining function fo - D near $x \in \partial D$, and suppose $z_{1}, z_{2}, \ldots, z_{n}$ are local coordinates of it at x : the complex hessian of Φ at x is the matrix

$$
(\partial f \Phi)(x)=\left(\frac{\partial^{2} \Phi(x)}{\partial_{z_{i}} \partial \bar{z}_{j}}\right)_{i, j=1}^{n}
$$

if $\Phi(x)$ is a Hermitian matrix and so there is a Hermitian form called again $(\mathscr{f} \Phi)(x)$ associated to $i t:(f) \Phi)(x): T_{x} H \rightarrow \mathbb{H}$ is given by

$$
\left(\psi_{j}(x)(v)=\sum_{i, j=1}^{n} \frac{\partial^{2} \Phi(x)}{\partial z_{i} \partial \bar{z}_{j}} v_{i} \bar{v}_{j}\right.
$$

$\forall_{v} \in T_{x} M$, where $v_{1}, v_{2}, \ldots, v_{n}$ are the components of v with respect to the basis $\left(\frac{\partial}{\partial z_{1}}, \frac{\partial}{\partial z_{2}}, \ldots ., \frac{\partial}{\partial z_{n}}\right)$ of the holomorphic tangent space $T \mathrm{x}$ of A at x .

It is easy to check that the hermitian form $(d) \Phi)(x)$ is an invariant under change of holomorphic coordinates (see[II] p.261), and so it: signature does not depend on the particular choice of $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$.

Now suppose that the defining function Φ is non singular at x, then it makes sense to consider the holomorphic tangent space $\Gamma_{x} \partial D$ of ∂D at the regular point x :

$$
T_{x} \partial D=\text { def. }\left\{v=\sum_{i=1}^{n} v_{i} \frac{\partial}{\partial z_{i}} \in T_{x}^{M} \text { s.t. } \sum_{1=1}^{n} \frac{\partial \Phi}{\partial z_{i}}(x) v_{1}=0\right\}
$$

(notice that $\frac{\partial{ }_{W}}{\partial z}(x ; \neq 0$ for at least one index 1 because $\$$ is non
sirgular at x).
The restriction of $(\mathscr{H} \Phi)(x)$ to $T_{x} \partial D$ is called the Levi form of Φ at x and is indicated by $(\mathscr{G} \Phi)(x)$; it is easy to check that its signature does not depend even on the choice of the non singular defining function Φ for D at x. Therefore, provided Φ is non singular at x, the number of positive, negative and zero eigenvalues of $(\mathscr{L} \Phi)(x)$ are invariants depending only on x and $D:$ they will be denoted respectively by $p(x, J), n(x, J)$ and $z(x, J)$ or with $p(x), n(x)$ and $z(x)$ when no confusion is possible.

Definition 2.2.1:- If D has C^{2} bounciary we say that D is (weakly) \quad-aseudoconvex if $n(x) \leq q \quad \forall x \in d D$. (cfr.[4]p. 200).

To gire an interpretation of these three numbers we reasil that if V is any complex linear subspace of T_{x} M the Hemitian forms on T_{x} il can be partially preorderei as follows: if A and 3 are two such forns we say that $A \geqslant B$ (resp. $A>3$) on V if, $\forall v \in V, A(v) \geqslant S(v)(r e s p . ~ \forall v \in V-\{0\}, A(v)>B(v))$.

In particular if O denotes the zero Hermitian form and $A>0$ (resp. $A<0, A \geqslant 0, A \leq 0$) on V, we say that A is positive definite (resp. negative definite, positive semidefinite, negative semidefinite) on V.

Elementary facts in linear algebra say that the interpretation of $p(x), n(x)$ and $z(x)$ is the following: We can split $T_{x} \partial D$ in throe Iinear subspaces $V_{p} \Leftrightarrow V_{n} \theta V_{z}=T_{x} \partial J$, 3.t. (Hf $\Phi(x)$ (or $(\mathscr{L} \Phi)(x)$) is positive definite on V_{p} and negative definite on γ_{n}, with dimid $V_{a} a(x), a-p, n$, and vanisioes on v_{z}.

In order to define 7 -pseudoconvexity we need a C^{2} boundary; to ret rid of this assumption we introduce the concept of q-plurisubharmonic exhaustion function.
rere D only needs to be an analytic manifold not necessarily contained in a larger one.

Definition 2.2.2:- (a) A C^{2} function $\Phi: D \longrightarrow$ is said to be an exhaustion function if, for all $c \in \#$, the sets

$$
3_{c}=\{x \in D \quad \text { s.t. } \quad \Phi(x)<c\}
$$

ane compact.
(b) Φ is sait to be a g-plurisurnarmonic function if, $\forall x \in D$, the Hessian ($\& \Phi(x)(x)$ has at least $n-q$ positive eigenvalues.
(c) We say that D is q-nomolete if there exists a q-plurisibharmonic exhaustion function $\Phi: D \longrightarrow I$.

Obvicusiy Φ is q-plurisubharmonic if and only if, $\vec{V}: i \in D$, there exists a linear subspace V of dimension $n-q$ of $T_{x} D$ s.t. the Hessian $(\% \Phi)(x$ is positive defirite on V.

For more irformations about q-conpieteness see [17].
Definition 2.2.3:- An analytic manifold D is saic to be cohomolcricallv a-comrlete if, for all coherent analytic sheaf \mathscr{S} on D and all $p>q, H^{2}(D, \mathscr{P})=0$ (see [17] p. 44;).
§3:- The Mair Classical Theorem.
we shall collect row in a theorem the well known relations between the various concepts of completeness and pseudoconvexity defined so far.

Theorem 2.3.1 If D is a domain in a Stein manifold it the following conditions are ecuivalent:
(a) D is O-complete,
(b) D is cohomolopically O-complete,
(b) $\quad H^{2}(D, O)=0$ for $p>c$,
(c) 2 is $\alpha-0-c o m i n t e$,
(d) D is Hartogs' O-complete,
(e) D is Stein (ard in this case we say that. D is a domain of holomorpiny, as if $d=\mathbb{C}^{n}$, and if D has d^{2} boundary thay are also equivalent to
(a') \bar{j} is (inearly) 0-pseudoccrvex.
Eroof:- $\quad(a) \nRightarrow(e)$ see $[1 ;]$.
$(e) \Longrightarrow(b)$ is Cartan's theorem B [II] p.243.
$(b) \Longrightarrow(e)$ is easy and is proved in [111 p. $2+6$.
$(\mathrm{b}) \Longrightarrow\left(b^{\prime}\right)$ trivially.
$\left(b^{\prime}\right) \Rightarrow\left(c\right.$; because if (b) is $t=u e$ then $\forall x \in \therefore-D, H^{2}(0, \mathscr{L}(\underline{z}))=0$ (cfe. Prop. 3.?.3).
$(c) \Rightarrow(e)$ jy proposition 1.3.1.
$(e) \Longrightarrow\left(3^{\prime}\right)$ if D has C^{2} boundary is proved in [Il] D. 264, see also proposition ".2.4.
$(d \Longleftrightarrow$ (e) is trivial because D is itself a general l-Hartogs' figure. $\left(z^{\prime}\right) \Longrightarrow(a)$ is done in case $M=\mathbb{\pi}^{n}$ in [12] p. 49, and the general case can te somehow reduced to this: this implication is grovel in detail later in proposition 3.1.2.口

The principal aim of this dissertation is to see what happens if we replice 0 by q in the above statement. The reason why this theorem appears at this stage of the dissertation, in spite of the fact that some of the tools needed to prove the implications $\left(b^{\prime}\right) \Longrightarrow\left(c ;\right.$ and $\left(a^{\prime}\right) \Longrightarrow(a)$ have not yet been doveloped, is to emphasisn the clas3ical relevance of the problem. Shese two lmplications will not be used in what follows until a precise proof is Piven, so that whe mathematical correctnoss of the dissertation is not affected.

CHAFTEZ 3:- A Ceneralisation of the Min Classical Theorem.
 Forms of q-Completeness.

Fronosition 3.1 .1 :- A q-ccmplete analytic manifoli is cohomologically q-complete.

Froof:- Apart from sone irrelevant difference of notation this is the corollary on page 250 of [2]. [

Eronosition 3.1 .2 :- If D is a domain with C^{2} boundary in a Stein manifold in and D is coseudocorvex then it is also q-complete.

Droof:- We shall divide the proof in several steps. Step 2:- As there is always an analytic embedding of A into $\mathbb{a}^{\mathbf{a}}$. for scme large N (see [17] 2.359) we can suppose at once that in is an anal;tic submanifold of π^{N}. Choose a holomorphic tubuler neighbourhood $p: V \rightarrow M$ and set $\tilde{D}=p^{-1}(D)$ (cfr.[6] proof of lemma 1 , p. 131). , ie ciaim that, nfter sinin'in'ir . if "ecessar",
(a) $\forall x \in \partial \widetilde{D}, \partial \widetilde{D}$ is C^{2} at x,
(c) If we consider \tilde{D} as an open subset of $\mathbb{T}^{\dot{0}}$ then $n(x, \tilde{D})=$

Indeed, since the problem is local we can suppose that local coordinates $z_{1}, z_{z}, \ldots, z_{N}$ have been chosen s.t., near x, $M=\left\{z_{\text {s.it }} z_{: i-n+l^{2}}^{z z_{N-n+2}}=\ldots \ldots z_{N}=0\right\}, z_{1}, z_{2}, \ldots, z_{n}$ are local coordinates of M at x and $p\left(z_{1}, z_{2}, \ldots, z_{N}\right)=\left(z_{1}, z_{2}, \ldots, z_{n}, 0, \ldots\right.$).

Let, \tilde{U} be a neighbourhood of x in \mathbb{U}^{N} so small that $z_{1}, z_{2}, \ldots, z_{\text {ir }}$ aro defined in \tilde{U} and that there exists a C^{2} defining function $\Phi: U=\tilde{U} \cap \because \longrightarrow Y$ for $D w i t h d \Phi(x) \neq 0$ and $\tilde{U} \subseteq V$. by shrinking, \tilde{U} if necessarif we gan also suppose that $\tilde{U} \leqslant p^{-1}(U)$.

Define $\tilde{\Phi}: \tilde{U} \longrightarrow \mathbb{Z}$ by $\tilde{\Phi}=\Phi n$ pi.e. $\tilde{\Phi}\left(z_{1}, z_{2}, \ldots, z_{i}\right)=$ $\oint\left(z_{1}, z_{2}, \ldots, z_{n}, 0, \ldots, 0\right)$. Then $\tilde{\Phi}$ is a defining function for \cong at x. Moreover

$$
\begin{aligned}
& T_{x} \partial \tilde{D}=\left\{v \in T_{x} \mathbb{Q}^{N} \text { set. } \sum_{i=1}^{N} \frac{\partial \widetilde{\Phi}}{\partial z_{i}}(x) v_{i}=0\right\} \\
& \left\{v \in T x^{\mathbb{N}^{i}} \text { set. } \sum_{i=1}^{n} \frac{\partial \Phi}{\partial z_{i}} G_{n}, \because_{i}=; \quad \simeq \quad, x^{2}, \cdots\right. \\
& \text { where as usual } v=\sum_{i=1}^{i} v_{i} \frac{\partial}{\partial z_{i}} \text {, and }
\end{aligned}
$$

$$
\frac{\partial^{2} \tilde{\Phi}(x)}{\partial z_{i} \partial \bar{z}_{j}}= \begin{cases}\frac{\partial^{2} \Phi(x,:)}{\partial z_{i} \partial \bar{z}_{j}} & \text { if } i, j \leqslant n \\ 0 & \text { otherwise. }\end{cases}
$$

This proves the claim.

Step 2:- So, if we suppose that D is $q-p s e u d o c o n v e x$ we have that, $\forall x$ in $\because, \partial \tilde{D}$ is C^{2} at x and $n(x, \tilde{D}) \leqslant q$.

Consider the function $P: \mathbb{C}^{N} \longrightarrow \neq$ given by

$$
\rho(y)=\left\{\begin{aligned}
\operatorname{dist}(y, \partial \tilde{D}) & \text { if } y \in \widetilde{\widetilde{D}} \\
-\operatorname{dist}(y, \partial \widetilde{D}) & \text { if } y \in \mathbb{T}^{W}-\widetilde{D}
\end{aligned}\right.
$$

Where dist denotes the Euclidean distance. Since $\forall x \in \partial \tilde{D}, \partial \tilde{D}$ is C^{2} at x, we can conclude that there exists a neighbourhood \tilde{U} of $\partial \tilde{D}$ in \mathbb{T}^{N} on which ρ is C^{2} isee appendix on pane 61).

By shrinking \tilde{U}^{\prime} if necessary, we can also suppose that $\forall y$ in \tilde{U}^{\prime} there exists exactly one point $c(y) \in \partial \tilde{D} n \tilde{U}$ which is the closest point to y under the Euclidean distance, that $d p(c(y)) \neq 0$ and that $n(c(y), \tilde{D}) \leqslant q$.

Let $\varphi: \tilde{U} \cap \tilde{D} \longrightarrow \mathbb{D} \longrightarrow$ be function $\varphi=\log p ;$ we cain that the Hessian $(\mathscr{G} \varphi)(y)$ has at most q positive eigenvalues $\forall y$.

Indeed suppose that this is false, 1.e. there exists a point \because in $\tilde{U} \cap \tilde{J}$ s.t. ($\mathcal{H} \varphi$) (y) has (at least) $q+1$ positive eigenvalues; accoming to the remarix on pare 25 , there exist linear coordinates
$\left(t_{1}, t_{2}, \ldots, t_{N}\right)$ of $\mathbb{T}^{!}$s.t. the Hermition form given by the matrix

$$
\left(c_{j k}\right)_{j, k=1}^{a+1}=\left(\frac{\partial^{2} \varphi(y)}{\partial t_{j} \partial \bar{t}_{k}}\right)_{j, k=1}^{q+1}
$$

is positive definite on the linear subspace V of $T_{y} V^{N}=\mathbb{T}^{N}$ sranned by ($\frac{\partial}{\partial t_{1}}, \frac{\partial}{\partial t_{2}}, \cdots \cdot \frac{\partial}{\partial t_{q+1}}$).

By Tavior's theorem we have
$\varphi\left(y+\sum \frac{q+1}{j=1} t_{j} \frac{\partial}{\partial t_{j}}\right)=\log _{j} p\left(y+\sum_{j=1}^{q+1} t_{j} \frac{\partial}{\partial t_{j}} j=10.5 p(y)+\right.$ Qe $\left.\left(\sum_{i=1}^{a+1} a_{i} t_{i}+\sum_{j, k=1}^{a+1} b_{i k} t_{j} t_{k}\right)+\sum_{j, k=1}^{i+1} c_{j k} t_{j}^{t_{k}}+O(i t)^{2}\right)$, where $a_{i}=\frac{1}{2} \frac{\partial \varphi}{\partial t_{i}}(r)$ and $b_{g k}=\frac{\partial^{2} \varphi(v)}{\partial t} \quad a=0$ constants, and $O\left(|t|^{2}\right)$ has th- p-operty that $\lim _{t \rightarrow 0} \frac{| |+1^{2} \mid}{|t|^{2}}=0$ and so 3.lso $\lim _{t \rightarrow 0} \frac{0 i \mid t 1^{2}}{\sum_{j, k}^{a+1} c_{j k} j_{j=k}^{F}}=0$.

In onder to simpify notation omit the limits of the sumands and write $A(t)=y+\sum t_{j} \frac{\partial}{\partial t_{j}}, B(t)=a x=\left(\sum a_{i} t_{i}+\sum b_{j k} t_{j} t_{k}\right)$.

Then the above equality can be written as
$p(A(t))-p\left(\because|B(t)|=\left\{\exp \left(\sum_{j k}{ }_{j} \bar{j}_{j k}+O\left(|t|^{2}\right)-1\right\} p(y)|B(t)|=\right.\right.$ $\left\{\sum C_{j k} t_{j} \bar{t}_{k}+O^{\prime}\left(|t|^{2}\right)\right\} p(y:|B(t)|$, where the last equality is obtained by expanding in Taylor series the function exp and $0^{\prime}\left(|t|^{2}\right)$ has the sme properties as $O\left(1+1^{2}\right)$. Then ons nas

$$
1 \pm m_{t \rightarrow 0} \frac{P(A(t))-P(y) \mid 3(t)}{\sum_{j k} t_{j} \vec{t}_{k}}=P(y)
$$

so re can choo:3e $\varepsilon>0$ small enourh s.t. $\forall t,|t|<\varepsilon$, one has
(a) $A(t) \in \tilde{\Sigma} \cap \tilde{U}$ and
(b) $p(A(t))=p(y) \left\lvert\, 3(t)>\frac{P(V)}{2} \cdot \sum c_{j k} t_{j}^{\tau_{k}}\right.$.

Set $u=c(y)-y$ and lefine an analytic function T on the
open ball ${ }^{3} \varepsilon=\left\{t \in \mathbb{U}^{\text {²+1}}\right.$ s.t. $\left.|t|<\varepsilon\right\}$:
$T: B_{2} \longrightarrow G^{N}$ is given by $I(t)=A(t)+u g(t)$.
We can also suppose that ε is so small that $T(t) \in \tilde{U}$ if
$t \in B_{\varepsilon}$. Then it is easy to check, and a picture shows how, that if
$t \in z_{8}$ one has
(c) $\rho(T(t)) \geqslant \rho(A(t))-|u||3(t)| \geqslant \frac{|u|}{2} \sum c_{j k} t_{j} \bar{E}_{k} \geqslant 0$,

This in particular proves that $T(t) \in \tilde{D}$ for $\exists 11 t \in \mathcal{Z}_{\varepsilon}-\{ \}$ ant, since $\rho(T(0))=\rho i c(y)=0,0$ is a minimum for the function PoI : $B_{\varepsilon} \longrightarrow P$, and so, ta'ting partial derivatives, $\frac{\partial p_{0} R(c)}{\partial^{t} j}=0$ for all $j=1,2, \ldots, q+1$.
Using the chain rule and the fast that I is analytic we have:
(d) $\sum_{h=1}^{N} \frac{\partial p}{\partial r_{h}}(c(y)) \frac{\partial T_{h}}{\partial t_{j}}(0)=0$ for $j=1,2, \ldots, i+1$.

In other words the vectors $\frac{\partial r}{\partial t_{j}}(0), j=1,2, \ldots, q+1$, are in $T_{c}(y) \partial \tilde{L}$.
Moreover, $\forall t$ in \mathbb{T}^{q+1}, we have
(e) $\sum_{j, k=1}^{q+1} \frac{\partial^{2} p_{0} T(0)}{\partial t_{j} \partial \bar{t}_{k}} t_{j=k}^{\mp} \geqslant \frac{|\cdot|}{4} \sum_{j, k=1}^{q+1} c_{j k} t_{j} \bar{t}_{k}$.

To prove this we first observe that it is clearly enough to check it for small $|t|$.

Brom the above inequality (c), using Taylur series, we deduce

$$
\sum e\left(\sum d_{j k} t_{j} t_{k}\right)+\sum \frac{\partial^{2} p \circ T(0)}{\partial t_{j} \partial \bar{t}_{k}} t_{j k} \bar{t}_{k}+0^{\prime \prime}\left(|t|^{2}\right) \geqslant \frac{|u|}{2} \sum a_{j k} t_{j} \bar{t}_{k}
$$

for all $t \in Z_{E}$, whare $\lambda_{j k}=\frac{\partial^{2} p \cdot r(0)}{\partial t_{j} \partial t_{k}}$ are constants and $0^{\prime \prime}\left(|t|^{2}\right)$ ha: the same properties as $O\left(|t|^{2}\right)$.

$$
\begin{aligned}
& \text { Then, aftor roiucine } \varepsilon \text { if necessary, we have, } \forall t \in \exists_{k} \text {, } \\
& \operatorname{Me}\left(\sum f_{j k} t_{j} t_{k}\right)+\sum \frac{\partial^{2} p-T(0)}{\partial t_{j} \partial \bar{t}_{k}} t_{j} \bar{t}_{k} \geqslant \frac{\mu i}{4} \sum a_{j:}=_{j} \bar{t}_{k} \text {. }
\end{aligned}
$$

Le $\pm i_{j}^{\prime}=e^{i \theta} t_{j}$ for $0 \leq \theta \leqslant 2 \pi$; writing t in the above inequality and observing that the second and third term are unchanged under the substitution $t \rightarrow t^{\prime}$, we deduce, \forall_{θ},
$\operatorname{de}\left(e^{i 2 \theta} \sum d_{j k} t_{j} t_{k}\right)+\sum \frac{{ }^{2} p \cdot T(0)}{\partial t_{j} \partial \bar{t}_{k}} t_{j} \bar{t}_{k} \geqslant \frac{1 u l}{4} \sum C_{j k} \bar{t}_{j}^{t_{k}}$, and by choosing θ so that the first term is negative wa prove the inequality (e).

Using again the chain rule and the fact that T is analytic we have that the Hemitian form

$$
\left(\sum_{h, m=1}^{N} \frac{\partial^{2} p(c(v))}{\partial z_{n} \partial \bar{z}_{m}} \cdot \frac{\partial T_{h}}{\partial t_{j}}(0) \cdot\left(\frac{\bar{F}_{m}}{\partial \tau_{k}}(0)\right)_{j, k=1}^{q+1}\right.
$$

is positive definite.
It follons easily that the Hermitian form $\left(\frac{\partial^{2} p(\rho(y))}{\partial z_{n} \partial \bar{z}_{m}}\right)_{n, m=1}^{: n}$ is positive definite on the Iinear subspace V of $T_{c}(y) \partial \widetilde{D}$ spanned by the vectors $\frac{\partial T}{\partial^{t}}(0), j=1,2, \ldots ., q+1$; in particular it follows automatically that these vectors are Iinearly independent, so that $\operatorname{dim}_{G} V=q+1$; but since $-\rho$ is a defining function for \tilde{J} at $c(y)$, we have that $n(c(y), \tilde{D}) \geqslant q+1$ and this contradicts our hypothesis, so that the claim is proved.

Step $3:-B y$ restricting φ to $\tilde{U}^{\prime} \cap D$ we find a C^{2} function, called again $\varphi: N=\tilde{U} \cap D \longrightarrow$ s.t.
(a) $\lim _{\mathrm{y} \rightarrow \mathrm{D} \rightarrow \mathrm{D}} \varphi(\ddot{z})=-\infty$,
(b) (ff φ) (y) has at most q positive eigenvalues $\forall y$ in N.

Let F be a closed subset of A s.t. $D-N \subseteq \operatorname{lnt} F \subseteq F S D$, and let $0 \leqslant \Psi \leq 1$ be a C^{2} bump function 3.t. $\Psi=0$ on $F, \Psi=1$ in a nelghtourhood of $M-D$, and suppose that r is chosen so that $\varphi(y) \leqslant 0$ for y $\$ F$.

Ey considering the function $\varphi^{\prime}=\varphi \cdot \Psi$, we have that
(a) $1 \mathrm{im} \mathrm{m}_{j} \rightarrow \partial \varphi^{\prime}(y)=-\infty$,
(b) ($\left(f \varphi^{\prime}\right)(y)$ has at most q positive eigenvalues $\forall C D-F$,
(c) $\varphi^{\prime} \leqslant^{0}$.

Sor we use the fact that M is Stein and so 0 -nomplete (see theorem 2. ${ }^{7}$.1) i.e. there exists a 0-plurisubharmonic exhaustion function $\lambda: \lambda \longrightarrow \pm$.
$\forall n \in Z$, the set $K_{n}=\{y \in M$ s.t. $\lambda(y) \leq n\}$ is compact, therefors so is $F \cap K_{n}$ and there exist constants $C_{n} s . t$.
$c_{n}(\& \lambda)(y)-\left(\& \varphi^{\prime}\right)(y)>0 \quad \forall y \in F n K_{n}$.
Now choose a C^{2} function $f: \mathbb{Z} \longrightarrow$ with the properties
(a) $f^{\prime}>\therefore, f^{\prime \prime}>0$ always,
(b) $f^{\prime}(r)>C_{I(r)+1}$, r, where $E(r)$ denotes the interzal part of r.
(c) $I^{\prime}\left(r^{\prime}\right)>c_{0} \quad \forall r$, and consider the C^{2} function

$$
X=f \cdot \lambda-\Psi^{\prime}: D \longrightarrow E
$$

First we notice that, $\forall c \in \mathcal{X}, B_{c}=\{y \in D$ s.t. $X(\because) \leq c\}$ is contained, by the property (c) of φ^{\prime} in $\{y \in D$ s.t. $f, \lambda(y) \leq c\}$ which is compact by the assumptions on f and λ. Ho reover B_{c} is closed in D ani, since $\lim _{y} \rightarrow \partial D \varphi^{\prime}(y)=-\infty$, it is also closed in i. Thus B_{c} is compact and X is an exhaustion function.

For all y $6 D$ we have
$(H f X)(y)=x^{\prime \prime}(\lambda(y)) \cdot A(y)+f^{\prime}(\lambda(y)) \cdot(f d)(y)-\left(d f \varphi^{\prime}\right)(y)$. where $A(y)=\left(\frac{\partial \lambda}{\partial_{i}}\left(y, \cdot \frac{\partial \lambda}{\partial z}(y)\right)_{i, j=1}^{n} \quad\right.$ is a semipositive hermitian
 dimension $n-\left(\right.$ whern $-\left(\mathscr{H} \varphi^{\prime}\right)(\dot{y})$ is positive semidetinite. Therefore $(f) 8)(y)$ is po3itive definite on $\%$

If $y \in \mathcal{Z}$ then either $y \in K_{0} \cap F$ in rhich case
$\left(f b x,(y) \geqslant f^{\prime}(\lambda(y))(f) \lambda\right)\left(y,-\left(d \varphi^{\prime}\right)(y) \geqslant\right.$
$c_{0}(\operatorname{df} \lambda)\left(y:-\operatorname{cof}_{f} f^{\prime}\right)(y)>0$, or $y \in\left(K_{n+1}-K_{n} \cap \bar{f}\right.$ for some interser $n \geqslant C$, in which case
$f^{\prime}(\lambda(y))>\overbrace{n+1}$ and so
$(\mathscr{A})\left(y^{\prime}>c_{n+1}(\& \lambda)(y)-\left(\& \varphi^{\prime}\right)(y)>0\right.$.
Therefore X is also q-ז゙iurisubharmoric and we can finally say that the proposition is proved. \square

Pronosition 3.1.3:- If $H^{P}(D, \theta)=0$ for $p>4$, ther for 311 $x \in M-D, H^{s}\left(D \mathscr{H}_{s-2}(\underline{Z})\right)=0$ for $s>0$.

Proof:- Since $\mathscr{L}_{n-2}(\underline{Z})=0$ the conclusion is vacuous unless $q \leqslant n-2$, and so assume that this is the case and, in particular that $H^{n-1}(D, O)=0$.

The long exact cohomology sequence associated to

$$
0 \rightarrow \mathcal{L}_{s}(\underline{z}) \longrightarrow R^{n-s-1}(\underline{z}) \longrightarrow \mathscr{L}_{s-1}(\underline{z}) \longrightarrow 0
$$

together with the hypothesis shows that

$$
H^{s}\left(D, \mathscr{L}_{S-1}(z)\right) \simeq H^{s+1}\left(D, \mathscr{L}_{s}(z)\right) \text { for } s>q
$$

$$
\text { Thi:s } H^{s}\left(D, \mathscr{L}_{z-2}(\underline{z})\right) \sim i^{n-1}\left(D, \mathscr{L}_{n-2}(\underline{z})\right)=H^{n-1}(D, \theta)=0 . \square
$$

ProDosition 3.1.4:- If $H^{p}(D, \theta)=0$ for $p>q$, then D is $\alpha-q-c o m p l e t e$.
pronf:- Sy the atove prop. $\forall x \in M-D, H^{q+1}\left(D, \mathscr{L}_{q}(\underline{z})\right)=0$ and so $d_{q}(x)_{D}=0$. 3y remark $1.5 .2 \quad D$ is $\alpha-q$-complete.a

Pronosition 3.1.5:- If D is α-q-complete it is also Hartogis' q-complete.
neonf:- Dy what romarket sust before def. 2.1 .4 we know that,

24

So if $\mathrm{H}_{\mathrm{C}+1} \mathrm{C}$ ग,
$\left.\boldsymbol{\pi}\left(\mathbb{E}_{\left(H_{q+1}\right.}\right)\right)=\Xi_{0}\left(H_{q+1}\right)=\Sigma_{q}\left(H_{q+1}\right) \leq \Xi_{q}(D)=D$, where the last equality is by assumption. Therefore D is Hartogs' a -complete. \square

To proceed further we need a result due to Andretti a a 1 Grauert: ye drop again the hypothesis that it is stein.

Pronosition 3.1.6:- Let a on a complex manifold, u an open subset of M, x a point in the boundary of D, y a neightourinod of x and $\varphi: U \longrightarrow E$ a C^{2} defining function for ∂ in $U s . t$. the complex Hessian ($H(\varphi)(y)$ has at least $k \geqslant 2$ negative eigenvalues for all y in U. Then there exist arbitrarily anal open nairnbourhoods Q of x with
(a) $\mathbb{P}^{P}(J \cap c, \theta)=0$ for $1 \leqslant \rho \ll=1$ and
(b) The restriction rap $\Gamma\left(6, \theta \longrightarrow \boldsymbol{P}^{\prime}(J \cap \%, \theta\right.$ su=jnctivs.

Frons: See [2] , Proposition 12, E. 222 .ם
To uso this result we come back innedizeeiy to tho case when a is Z te in.

Feonosition 2.1.7:- If \mathcal{D} is a dominion dion c^{2} boundary in a
 do convex.

where $A(x)=\left(\frac{\partial \Psi}{\partial z_{i}}(x) \frac{\partial \Psi}{\partial z_{i}}(x)_{i, j=1}^{n} \quad\right.$ is a positive snnitefinite Hermitian form vanishinf on $T_{x} \partial J$ and positive definite on the comnlex line spanned by the yector $v=\left(\frac{\partial \Psi}{\partial z_{1}}(x), \frac{\partial \Psi}{\partial y_{2}}\left(x ; \ldots, \frac{\partial \Psi}{\partial z_{n}}(x)\right.\right.$

In particular choose f fiven oy $f(t)=-e^{-n t}$ whove 13 a constant in 2 s.t. $c>0$ and

$$
\frac{\sum_{i, j=1}^{n} \frac{\partial^{2} \Psi(x)}{\partial z_{i} \partial \bar{z}_{j}} \frac{\partial \Psi}{\partial z_{i}}(x) \frac{\partial \Psi}{\partial z}(x)}{\sum_{i, j=1}^{n}\left(\frac{\partial \Psi}{\partial z_{i}}(x)\right)^{2}\left(\frac{\partial \Psi}{\partial z_{j}}(x)\right)^{2}}=\frac{(g \notin \Psi)(x,(v)}{A(x)(v)} .
$$

Then $f \circ \boldsymbol{\Psi}=-e^{-c \boldsymbol{\Psi}}$ is a definins Function for u in U.
Let V_{n} be a linear sutspace of $T_{k} D$, with dim $V_{n}=n(x)$ (sece remark on page 25), where ($4 f(x)$ is nerative definite and let V be the inear subspace of $T_{x}:$ spanned by V_{n} and v.

Tren V has dimension $n(x)+1$ and if $w=u+\lambda$, for some $u \in V_{n}$ and some $\lambda \in \mathbb{I}$, is a nor zero vector in I then
$\left(\mathscr{f} \circ \dot{f}(x)(x)=\left(\mathscr{H}-e^{-r \boldsymbol{q}}\right)(x)(w)=\right.$
$-n^{2} e^{-\pi \Psi^{\prime}(x)} \cdot \dot{n}(x)(w)+=e^{-r} \Psi^{\prime}(x, \mathscr{H} \Psi(x)(x)=$
$00^{-c} \Psi(x)\{-c A(x)(\omega)+(\operatorname{Cg} \Psi)(x)(\omega)\}=$
$c 0^{-c} \Psi(x)\left\{-c|\lambda|^{2} \cdot A(x)(x)-(H \&)\left(x,(x)+|\lambda|^{2}(\mathscr{H} \Psi)(x)(x)\right\}\right.$.
diow either $\lambda=0$ and if f, in whior gase we are icet with

jo if D in not q-pseudoconvex, i.e. there exists at least one Doint $v \in d J$ with $n(x) \neq q+1$, we can find a defining function whose Hessian has at least $q^{+2} n$ native eigenvaluns in a neighbounhood of x. So we can apply proposition 3.1 .6 with $k=\{+2: 12$ is 35 in the poposition, $D \cap Q$ is a $q+1$ penenal Hartoga' figure by (3) with $\pi(2(D \cap Q) \not \subset D$ by (b) and so D is not Hartogs' complete and the proposition is proved. \square

In the above proposition A neejs to be Stein because otherwise the definition of Hartogs' completeness does not make sense (see nemarik aftec def.2.2.4), but since the problen is local the above prosf apalies actualy t the following more general statement:
lat D be in osen subset with ρ^{3} boundiay of an analytic manifold X; if $\forall x \in d D$ thone exists a Stein neighboranood U of x s.t. UnD is Hartogs' q-complete (the definition makes sense now), then D is q-psaudoconvex.
§2:- Inexteniibility of Cohonolosy Classes.

In this section we discuss inextendibility questions analogous to those used br the classical definition of donains of holomorphy. Arain M does not need to be Stein, so in what follows D is 2n open subset of an analytic manifold M.

Following Andreotti and Norguet ([1$]$, p. 299), we introduce, for any point $x \in d D$ and any analytic sheaf $\mathscr{\mathscr { O }}$ on \because the θ_{x}-modules

$$
\begin{aligned}
& H^{\mathrm{I}}(D, x, \mathscr{\mathscr { L }}) \quad \xrightarrow{\lim } \mathrm{H}^{\mathrm{P}}(0 \cap \cup, \mathscr{\mathcal { S }}), \\
& H_{+}^{n}(D \cup\{x\}, \mathscr{S})=\xrightarrow{\text { Iin }} \quad \mathbb{H}^{p}(D \cup \cup, \mathscr{C}) \text { and } \\
& \mathrm{H}_{\mathrm{x}}^{\mathrm{P}}(\boldsymbol{y}) \quad \xrightarrow{11 \mathrm{~m}} \mathrm{H}^{2}(\mathrm{U}, \boldsymbol{y} \therefore
\end{aligned}
$$

where the direct limits are taken over all open neighbournonds of x. Notice that

$$
H_{x}^{P}(y)= \begin{cases}y P & \text { if } F=0 \\ 0 & \text { otherwise }\end{cases}
$$

There are zest=iction maps:

$$
\mu: H^{2}(0, \mathscr{Y}) \longrightarrow H^{2}(0, x, \mathscr{y})
$$

$$
p: H_{+}^{p}(D \cup\{\times\}, \mathscr{S}) \longrightarrow H^{p}(D, \mathscr{Y}) \text { and }
$$

$$
\lambda: H_{X}^{P}(y) \longrightarrow H^{P}(D, x, y)
$$

Ey taking the direct linit of the usual hayer-Vietoris segrence we obtain an exact sequence
$\ldots \rightarrow H_{-}^{P}(D \cup\{x\}, y) \longrightarrow H^{2}(D, y) \hat{0} H_{x}^{P}(y) \xrightarrow{\mu-\lambda} H^{2}(D, x, y) \longrightarrow$
$\rightarrow \mathrm{H}_{+}^{\mathrm{p}+1}(\mathrm{D} \cup\{x\}, \varphi) \longrightarrow \ldots$.
called again the : Nayer-Vietoris sequence.
Definition 3.2.1:- A cohomolory class $\xi \in \operatorname{Hen}^{\mathrm{D}}(\mathrm{D}, \mathcal{S})$ is said to be extendible through x if $\} \in i m p$.

From the Mayer-Vietoris sequence it follows imnetiately that, if $p>0, \xi$ is extendible if and only if $\mu(\xi)=0$.

Desinition 3.2.2: we sily that ∂ is a g-domin of hol:morinv if, for all $x \in \partial D$, there exists $p \leqslant q$ and a cohomology class ξ in $H^{P}(ग, Q)$ which does not extend throurh x (cfr. [1] p. 138).

For $q=0$ this is just the classical definition of domain of holomorphy, but for $q>0$ there are many domains that are not $q-10-$ mains of holonorphy for any q: we provile an easy

Examnla 3.2.3:- Let $\bar{\Delta}$ bn the closed unit polydiac and set $\partial=a^{n}-\bar{\Delta}$. Choose $x \rightarrow(1,0, \ldots, 0 ;$ if U is a neimhosurhood of $x 3.7212$ enough, U n J is a domiln of nol omornhy, and thereiore, $\forall \gg 0$, $A^{p}(0, x, 0)=0$ and it follows irom the remark aftor def. f. 2.1 that
every cohomolory class in $H^{P}(D, \theta)$ extends through x; moreover every holomominic function on D extends throurn x by Hartogs' thzorom, and $30 D$ is not a quamain of holomorphy for any a_{i}. Tinis D doss not have C^{2} boundary, but the corners can clearly be smoothed without sestroving the example.

Eronosition 3.2.4:- If D is an open subset with σ^{2} boundzry of an analytic manifold A and D is a q-lomain of holomorphy then D is q-pseudoconvex (cfa. Frop. W.1.4 and 4.?.5).

Eroof:- The same argument used to prove prop. .1 .7 with infinitesimal modifications shors that, for all $x \in d D$, the man
$\lambda: H_{N}(\theta) \longrightarrow H^{P}(D, x, \theta)$ is suriective for $p \leqslant n(x)-1$, (cfr. also [3], thëoreme 1 . 2. 20°), and so if, for some point $x \in \partial J, n(x) \geqslant q+1$, using the H yer-Vietoris sequence, we deduce easily that
$\rho: H^{2}(D \cup\{x\}, \theta) \longrightarrow H^{2}(D, \theta)$ is surjective for $p \leqslant \square$, ani so D is not a quionain of holomorphy.
§3:- The Main Theorem.

In this section we collect together the resuits of this chapter to prove the following

Theoren 3.3.1:- Let D be a tomain in a Stein manifold M, and consider the following statements:
(a) Dis q-complete,
(a') D 13 -rseubsonvex (if D has C^{2} boundary),
(b) D i's q-cohomologically complete,
(b') $H^{2}(D, \theta)=0$ for $p>q$,

(c) $\quad \mathrm{D}$ is α-q-complete,

(d) D is Hartors' 4 -compiete,
(c) D is a q-dcmain of holono piny.

Then $(a) \Longrightarrow(b) \Longrightarrow\left(b^{\prime}\right) \Longrightarrow(c) \Longrightarrow(d)$ and, if D has C^{2} boun-
 10\% from (3).

No: wo discuss some counterexamples to the missing implications in the above theorem when D dous not have C^{2} boundary, precisely we shall prove that the implications $(c) \Longrightarrow\left(b^{\prime}\right)$ and $(e) \Longrightarrow\left(b^{\prime}\right)$ ars not true in general. The most interesting examples of such domains are comploments of analytic subvarietiez for which we have good tools to comuta cohonology (see [c]).

Pronosition 3.4.1:- Let V be an analytic subvariety of a stein manifold in, ant suppose $V=U V_{j}$ is a reduced decomposition of V in irreducible componenti. Moreover assume that, for all V_{j} and ary
 where d_{z} is the codimonsion of V_{j} (this hynothesis is not arti:lcial siare it is antisfind, for instance, is all v_{j} are gcometric comrle-

$$
\begin{aligned}
& \text { Eroof:- (} \quad \Rightarrow \text { (b) by prop. 3.1.1; } \\
& \text { (a) } \Longrightarrow \text { (b') triviaily; } \\
& \left(b^{\prime}\right) \Rightarrow \text { (c) by prop. 3.1.4; } \\
& (c) \Longrightarrow \text { (d) by prop. 3.1.5. } \\
& \text { If } D \text { has } C^{2} \text { ooundary then } \\
& (1) \Longrightarrow\left(a^{\circ}\right) \text { by prop. 3.1.7; } \\
& \oint_{4}:- \text { Counterexamples. }
\end{aligned}
$$

te intersections, see $[10]$, theorem 23 ;
Int $D=\therefore-Y$, then
$د_{q}(J)=\because-\bigcup_{j} \leqslant q+i \quad \gamma_{j}$

 that $E_{q}(D) \subseteq N-U_{j}^{j} q^{j} I_{j}$

To show the reverse inclusion suppose $\quad \therefore \in V_{i}-\bigcup_{i} \leq q+1 V_{i}$, for some k with $A_{z}>0+7$. Choose a Stein neighbourhood U of x so
 and repeating exactly the same method as in proof of prop. 2.1.3 we maj conclude that $E_{q}\left(U-V_{k}\right)=E_{C}\left(U-V_{k}{ }^{\prime} \cdot\right.$

However $\Xi_{C}\left(U-V_{k}\right)=\pi E\left(U-V_{K}\right)=U$ by the Riemann removable singularities theorem since $d_{k} \geqslant 2$ so, as $D \supseteq U-V_{k}$,

$$
x \in U=E_{0}\left(U-V_{k}\right)=E_{q}\left(U-V_{i} i \leq \Xi_{q}(U)\right.
$$

and the proposition is proved. \square

$$
\text { Exannte 3.4.2:- Let } a=\mathbb{T}^{4}, V=v_{1} \cup v_{2}, D=M-V \text {, where }
$$

$$
v_{1}=\left\{z \in \mathbb{U}^{4} \text { s.t. } z_{1}=z_{2}=0\right\} \text { and }
$$

$$
V_{2}=\left\{z \in \mathbb{C}^{4} \quad \text { sit. } z_{3}=z_{4}=0\right\} \text { are two planes. }
$$

Then it is easy to see, with a simple application of the layerVietoris sequence of $N-V_{1}$ and $A-V_{2}$, that $H^{2}(J, \theta) \neq 0$ (see [17] Pp. $44-447$). By prop. "4.1 however, we see that $E_{2}(J)=D$, so J is α-i-complete (and thus inators' l-complete too). Also, since y nay be defined by three analytic functions $\left(z_{1} z_{3}, z_{2} z_{4}, z_{2} z_{3}+z_{1} z_{4}\right)$, it follows (see [17], Prop. 2.6, p. 4 , 5) that D is 2-complete.

Thus D is $\alpha-1-c o m p l e t r$ but nothing better than $2-c o m p l e t e$
ard cohomolozically 2-complete. In the notation of theorem 3.3.1 (c) $\boldsymbol{H}^{\boldsymbol{f}}\left(b^{\prime}\right)$.

This example also provites a nerative answer to the following two natural questions:
(1) is it true that a g-conain of holomomphy is cohomolorically c-complete?
(2) is it tiue that if ∂ is a q-iomain 0 E holomorohy then, for $\exists 11 x \in \partial \partial$ and \forall GaH $(D, \theta ; \xi$ is extencible througn x i. or?

Here (2) is a question weaker than (1) ani both have a positive answer if $q=0\left(\right.$ see theorem 2.3.1) or $i: D$ has C^{2} boundiry (sae theorem 3.3.2\%.
:Owever re clam that the donain D constructed above is a 1 domain of holomery but there exists an element of $\mathrm{H}^{2}(\mathrm{O}, \theta$ wnich does not extend through the orisin.

To see that D is a I-domain of holomorphy fix any x in V and cons:der the following commatave diagram with exact cows:

How, since $\Xi_{1}(D)=D$ and $E_{0}(D)=C^{4}$ oy the EXenann removoble singularities theorem (or by prop. 3.1.4), we have that $\left.\alpha_{0}(x)\right|_{D} \neq 0$ yet $d_{1}(x)_{D}=0$. But $\alpha_{1}(x)_{V}=\delta\left(\alpha_{0}(x)_{\left.\right|_{D}}\right)$ and so there exists an element $\left\{\in H^{1}\left(D,{f_{0}^{2}(z)}_{2}\right.\right.$ isuch that $\Phi(\xi)=\alpha_{0}(x) I J$.

If Δ is any polydisc neifhbourhood of x, exactly the same armanont can be moposted with Δ instead of \mathbb{C}^{4}. Therefore: $\mu\left(\alpha_{2}(x)_{J^{\prime}}\right)=0, \mu\left(\alpha_{j}\left(\left.x\right|_{j}\right) \neq 0\right.$ and $30 \mu(\xi) \neq 0$.

By the comark just ifter det. 3.2 .1 and ilentifytng fo with θ°, we have that no oi the components of $\{$ loes not extend throurh
x, therefore ∂ is a l-somain s holomorphy. At this stige we can aiready say that the answer to cuestion (I) is in general no, on, with the notation of theorem 3.3.1, (ej $\Rightarrow \boldsymbol{y}^{\prime}$ () .

However we can proceei further to answer question (2).
First we observe that an easy application of the Arrer-vietoris sequence shows that
$H^{2}(D, O) \underset{\Psi}{\psi} H^{3}\left(T^{4}-\{0\}, \theta\right)$.
Consider now the commutative diagram

where x is the origin.
By proz. $3.4 .1 E_{2}\left(\pi^{4}-\{0\}\right)=\pi^{4}$, so tinat $\alpha_{2}(x) \in H^{3}\left(a^{4}-\{0\}, 0\right)=$ $H^{3}\left(\varepsilon^{4}-\{0\}, \mathscr{H}_{2}(z) ;\right.$ is not zero. If Δ is any polydisc neighoournood of the origin we can replace \mathbb{J}^{4} with Δ in the above argument and we obtain the same conclusions. therefore $\mu\left(\alpha_{2}(x)\right) \neq 0$ and so also $\mu_{0} \Psi^{-1}\left(\alpha_{2}(x)\right) \neq 0$. As before, $\mathcal{Y}^{-1}\left(\alpha_{2}(x)\right)$ turns out to be an element of $H^{2}(D, O)$ which does not extend through the crigin, and the answer to question (2) is again no.

Chater 4:- Th Inextnadibility Index.
we shall now discus: fu-ther the concept of inextendibility of cohamology classes.
$\oint_{1:-~ T h e ~ I n s x t e n d i b i l i t y ~ I n d e x . ~}^{\text {I }}$

In this section afain we menoly suppose that D is an open subsot of an analytic manifold X .
tet \mathscr{I} be any analytic shoaf on $N, x \in D$ and suppose that,
 tive; then we can introduce the following

Sefinition 4.1.1:- The inextendibility index of \mathscr{Y} at x is the non negative integer
$x(x, \mathscr{Y})=\min \left\{\right.$ p s.t. $\lambda: H_{K}^{p}(\mathscr{y}) \longrightarrow H^{p}(D, x, \mathscr{Y})$ is not surjective $\}$.

The hypothosis needed to define $\mathrm{x}(\mathrm{x}, \mathscr{Y})$ is not always satisfied even for a coherent sheaf \mathcal{Y}, for instance if $D=\mathbb{C}^{n}-\{x\}$, and \mathcal{Z} is the structure sheaf of the subrariety $\{x\}$ of \mathbb{W}^{11}, then $\forall P \geqslant 0$, $H^{p}(0, x, \mathscr{Y})=0$, so λ is always surjective and $k(x, \mathscr{y})$ sunnot be dofined: honevar if \mathscr{G} is locally free near $x, k(x, \mathscr{Y})$ is al ways well defined. Indood, since the problen is loenl, we can suppose that M is a polydise $\Delta \boldsymbol{\theta} x$ in \mathbb{Q}^{n} and that \mathscr{Y} is the stcucture sheaf θ. In these hypotheses the test class $d_{U}(x) \in \mathbb{H}^{1}\left(\Delta-\{x\}, \mathscr{L}_{0}(\underline{g})\right)$ can be defined and we havo the following

$$
\text { Lemma 4.1.2:- If } \rho=\mu\left(\left.\alpha_{0}(x)\right|_{D \cap \Delta}\right) \in H^{1}\left(D \cap \Delta, x, \mathscr{L}_{0}(\underline{z})\right)
$$

then $\lambda: H_{x}^{0}(\theta) \longrightarrow H^{0}(D, x, \theta)$ is not su=jective.

Eroof:- Let U be an open neirhbourhood of x so small that $U \leq \Delta$ and $d_{0}(x)_{I_{\cap U} U}=0$. Then there exist holomornhic functions $h_{i}, h_{2}, \ldots, h_{n}$ in $\Gamma(U \cap D, \theta)$ s.t. $\sum_{i=1}^{n} z_{i} h_{i}=l$ and so 31 so $\mu \sum_{i=1}^{n} z_{i} n_{i}=1$. It follows that for at least one index i $\mu\left(h_{i}\right) \nmid$ in λ, because othorwise we get a contradiction evaluating both sides of the above equality at x.a
3. (a local version of) prop.3.1.3 the hypothases of the above leman are in particulan zatisriad if $f(\nu, x, \theta)=0$ for $p \geqslant 1$, and so, recalling that $H_{x}^{p}(\theta)=0$ for $p \geqslant 2$, if $\lambda: H_{x}^{P}(\theta) \longrightarrow H^{P}(D, x, \theta)$ is sur, ective for $p \geqslant i$, then $n=c e s s a r i l y ~ k(x, \theta)=0$.
if for a point $x \in \partial J$ and for an anaintic sheaf 'O conerent in a neifhbourhood of $x, k(x, 9)$ is well defined, there exists a reiationship between $k(x, 8)$ and $k(x, \theta)$, which we shall denote simply by $k(x)$; to raice this precise we recall that if \mathscr{Y} is conerent in a neighbourhood U of x there exists a free resolution of \mathscr{Y} in U, after possibly shrinicing U, of the type

$$
0 \rightarrow \theta^{2} d \rightarrow \theta^{p_{d-1}} \rightarrow \ldots \rightarrow \theta^{20} \longrightarrow y \longrightarrow 0
$$

for some $d \leqslant n$ (Hilbert syzvgy theorem, see[il] p. 74).
The smallest d for which such a resolution exists is indicated by $d_{x}(\mathscr{Y})$ and called the homolorical corimension of \mathcal{C}_{x} (see[2] , 197).
pwonosition 4.1. $3:-$ If $k(x, \varphi)$ is well defined then
$k(x, \mathscr{y}) \geqslant k(x)-d_{x}(\mathscr{)})$
Pronf:- Since the problen is loenl we can suppose that in is a polydise $\Delta \subseteq y^{n}$ and that Δ has been chosen 30 small that there is a free resolution

$$
0 \rightarrow \theta^{p_{1}} \rightarrow \theta^{p} \mathrm{~d}_{-1} \rightarrow \ldots \ldots \rightarrow \theta^{p_{3}} \xrightarrow{\Psi} \varphi \rightarrow 0
$$

of \mathscr{Y} in Δ with $1=d_{x}(\mathscr{S}$. Also we зuppose that $k(x) \geqslant d+1$, other-
wise the problem is trivial.
The hypotheses are
(a) $\lambda: H_{x}^{0}(\theta) \longrightarrow H^{0}(0, x, \theta)$ is surjective
(b) $\quad \pi^{3}(D, x, \theta)=0$ for $1 \leq s \leq k(x)-1$.
and we want to prove that
$\left(\exists^{\prime}\right) \lambda: H_{x}^{O}(\mathscr{\varphi}) \longrightarrow H^{\circ}(\supset, x, \varphi)$ is surjective and
(b) $H^{3}(D, x, y)=0$ for $1 \leqslant s \leqslant k(x)-1_{-x}(8)-1$.

In order to do this we split the above exact sequence into short exact sequences
$0 \longrightarrow \theta^{2} \longrightarrow \theta^{2} \longrightarrow f_{S-1} \longrightarrow 0$,
for $s=1,2, \ldots, d$, where $f_{d}=\theta^{2}$ and $f_{0}=8$
We have a long exact sequence of (local) cohomology
$\ldots \longrightarrow H^{2}\left(D, x, \theta^{p-1}\right) \longrightarrow H^{p}\left(D, x, K_{3-1} ; \quad \longrightarrow\right.$
$\longrightarrow H^{p^{+1}}\left(D, x, f_{G}\right) \longrightarrow H^{2+1}\left(D, x, \theta^{P_{3}-1}\right) \longrightarrow$
from which we deduce, using the hroothesis (b), that

$$
H^{P}\left(D, x, \mathcal{H}_{S-1}\right) \simeq H^{P+1}\left(D, x, \mathcal{H}_{3}\right) \text { for } 1 \leq 0 \leq k(x)-2 \text { and in }
$$

particular for $1 \leq p \leqq d-1$; so that
$H^{p}(D, x, \mathscr{J})=H^{p}\left(D, x, G_{0}\right) \simeq H^{p+1}\left(D, x, G_{-}\right)=H^{p+d}\left(D, x, \theta^{p}\right)$.
zut for $p \leqslant s(x)-d-1, H^{p+1}\left(D, x, \theta^{p}\right)=0$ by (b) an: there-
fore (b^{\prime}) is proved.
Simllarly we have
$H^{2}\left(D, x, R_{i} ; \sim H^{d}\left(D, x, R_{d}\right)=H^{d}\left(D, x, \theta^{D_{d}}\right)=0\right.$ since $d \leq x(x)-i$.
Therofore, by consideriner the commutative diastam with exact colunn
wise the problem is trivial.
The hypotheses are
(a) $\lambda: i_{x}^{0}(\theta) \longrightarrow H^{\circ}(D, x, \theta)$ is surjective
(b) $H^{s}(D, x, \theta)=0$ for $1 \leq s \leq x(x)-1$.
and we want to prove that
$(2) \lambda: H_{x}^{0}(\varphi) \longrightarrow H^{0}(J, x, \varphi)$ is surjective and
(b') $:^{3}(D, x, \mathscr{O})=0$ for $1 \leq s \leq x(x)-1_{x}(8)-1$.
In order to to this we split the above exact sequence into short exact sequences
$0 \longrightarrow \hat{R}_{S} \longrightarrow \theta^{-1} \longrightarrow \mathrm{R}_{S-1} \longrightarrow 0$,
for $s=1,2, \ldots .$, , where $\frac{1}{1}_{d}=\theta^{i}$ and $f_{0}=9$
ile nave a long exact sequence of (local) cohomolojy
$\ldots \longrightarrow H^{-}\left(D, x, \theta^{-3-1}\right) \longrightarrow H^{P}\left(D, x, K_{3-1}\right) \longrightarrow$
$\longrightarrow H^{n+1}\left(D, x, f_{3}\right) \longrightarrow H^{2^{+1}}\left(D, x, \theta^{D_{3-1}}\right) \longrightarrow$
from which we deduce, using the hyothesis (b), that
$H^{D}\left(D, x, K_{3-1}\right) \simeq H^{P+1}\left(D, x, K_{3}\right)$ for $140 \leq K(x)-2$ and in
particular for $1 \leq p \leq i-1$; so that
$H^{P}(0, x, y)=H^{P}\left(D, x, \mathscr{R}_{0}\right) \simeq H^{p+1}\left(D, x, \mathscr{C}_{d}\right)=H^{p+d}\left(D, x, \theta^{p}\right)$.
Eut for $p \leqslant r(x)-1-1, H^{p+1}\left(D, x, \theta^{p}\right)=0$ by (b) an thereforn (b^{\prime}) is proved.

Similurly we have
$H^{2}\left(D, x, f_{i} ; \sim H^{d}\left(D, x, f_{d}\right)=H^{d}\left(D, x, \theta^{n}\right)=0\right.$ since $d \leq \therefore(x)-i$.
Therofore, by considerini, the commative dianm with exact column

and the hypothesis (a) we see that also condition (b') is true. a
The first three Iines of the proof of prop. 3.2.4 estzhlish arelntionship betaen $\mathrm{x}(\mathrm{x})$ and the behaviour of D near x, namely they prove the following

Provosition 4.1.4:- If D has C^{2} boundary at $x, n(x) \leqslant k(x)$. \square

Using the Hover-Vietoris sequence we jeduce easily that
$p: H^{2}(D \cup\{x\}, \theta) \longrightarrow H^{2}(D, \theta ;$ is surjective for $p \leqslant x(x)-1$, and so we have the following

Fronosition 4.1.5:- If D is a q-iomain of holonorphy then, for $a \geq 1 x \in d D, k(x) \leqslant q . \square$

Fron. 3.2.4 follows from these two propositions.
It is natural to ask if $n(x)$ is alwa:s equal to $k(x)$; we shall noovide an example to show that this is not always the case.

It is clear that we must try an example with depenerate boundary (i.e. $z(x) \neq 0$) otherwise $n(y)=n(x), \forall y A_{D}$, where U is a small enourh ztoin neiphbourhood of x, and $30 \cup \cap D$ is n (x)-complete (see [1, 1prop. 2.4, p. 42) and then $h^{3}(0, x, \theta)=0$ for $s>n(x)$, which implies $k(x) \leq n(x)$.
, he also need 30me more material.
Darinitinn t.l.6:- An open subset D $S \mathbb{L}^{n}$ is callela tube if theme exists an onen subset $\beta(J) \leq 2^{n}$, callod the bise o: J. $\therefore . t . y \in \partial \Leftrightarrow P O \quad \because \in(i)$.

If B is an open subset of $玉^{n}$ wo indicate with $\boldsymbol{G}(3)$ the tubs in \mathbb{C}^{n} with base 3 . The convex hull of $B \subseteq \mathbb{Z}^{n}$ is the smallost convex set containing, E, and is denoted by ch(B).
we nnow (see [12] p. il) that if D is a tube then $\Omega(D)=$ $G(\operatorname{ch}(B(2))$, and if we have an open neignbourhood U of the orizin in \mathbb{C}^{n} of the type $U=\{z$ s.t. Eez \mathcal{U}, \mid In $z \mid<\mathcal{E}$, for some open neighbourhood \bar{S} of $O \in \mathbb{P}^{n}$ and some $\left.\varepsilon>0\right\}$, then $E(U)=\{z$ s.t. Re $z \in \operatorname{ch}(3),|I-z|<\varepsilon\}$.

We are no: rady to produce the following
Exancio $4.1 .7:-$ Let $\varphi: \pi^{2} \longrightarrow 3$ be defined by
$\varphi\left(y_{2}, y_{2}\right)=\left(\operatorname{Re} y_{2}\right)^{3}-\operatorname{se} v_{2}$
and set $D=\{y$ s.t. $\varphi(y)<0\}$. An easy computation shows that. $n(\because)=a(\because)=0, n(y)=1$ for Re $y_{1}>0$, $\mathrm{n}(\eta)=1, \mathrm{z}(y)=\mathrm{p}(\mathrm{y})=\mathrm{C}$ for $\operatorname{Re} y_{1}<0$ and $n(y)=p(y)=0, z(y)=1$ for Re $y_{2}=0$.
D is a tube and the above remaris show that $\mathrm{E}(\mathrm{D})=\mathbb{G}^{2}$, and that, for all open neighbourhood: $\because \mathrm{n}$ of the origin, $0 \in \Xi(\mathrm{D} \| \mathrm{i})$. i.e. that $\lambda: H_{X}^{\circ}(\theta) \rightarrow H^{\circ}(D, x, \theta)$ is surjective for $x=$ the origin. This means that $k(0) \geqslant 1>0=n(0)$.

Now suppose again that A is Stein; the following question has clearly a positive answer if $q=0$: Is it true trat in the last non vanishing cohomolcgy group $H^{?}(D, \theta)$ there exists a cohomology class which does not extend throuph it least one point of ∂D ?
we can rive a nositive answer and even sonething sli, hhtly better if'D hus C^{2} boumdary.
 $H^{?}(D, \theta)=0$ for $p>q$, uut $H^{q}(\nu, \theta) / 0$: suppose that fo: some
point $x \in \partial D, \forall(x) \geqslant q$ (this is always the case if D has C^{2} boundary by thoorem ?.3.1 and prop. 4.1.4) : then
$\operatorname{dim}_{\mathbb{I}} \quad \mu\left(H^{q}(\nu, \theta) \bmod \left(\lambda\left(H_{x}^{q}(\theta) \cap \mu\left(H^{q}(\nu, \theta)\right)\right)=\infty \quad\right.\right.$.
Pmon: - To simplify the rotation arite $G=\lambda\left(\hat{F}_{x}^{q}(\theta) \cap \mu\left(H^{2}(D, E \|)\right.\right.$. notice that $G=0$ if $q \geqslant 1$.

Surpose that $d i m_{\mathrm{m}} \mu\left(\mathrm{H}^{1}(D, \theta)\right.$ mod $C=\mathrm{k}<\infty$. Then also

Take global sections $z_{1}, z_{2}, \ldots, z_{n}$ as done at the end of page
7, ard set $f_{1}=z_{1}^{n+1}, f_{j}=z_{j}$ fon $j=2, \ldots, \ldots$.
De can consiter the test classes $\left.\alpha_{S}\left(\alpha_{2}^{j}, \underline{i}\right)\right|_{D} \equiv H^{s+1}\left(D_{0} \mathscr{L}_{3}(\underline{B})\right)$, for $j=0,1, \ldots .$.

The hypothesis together with prop. 3.1 .3 say that $H^{q+1}\left(ग, \mathscr{L}_{1}(f)\right)$) vanishes and considerinf the exact seauence

$$
\ldots \cdots \longrightarrow H^{n}\left(0, \not \not^{n-1-1}(\underline{f})\right) \xrightarrow{\Psi} H^{q}\left(0, \mathscr{L}_{\mathrm{c}-1}(\underline{f})\right) \longrightarrow 0
$$

we deduce that there exist elements $\eta_{0}, \eta_{1}, \ldots, \eta_{n}$ in $\left(H^{q}(D, \theta)\right)^{N}=$ $H^{n}\left(D, K^{n-q-1}(E)\right)$ s.t.
(a) $\Psi\left(\eta_{S}\right)=\alpha_{\mathrm{c}_{1}-i}\left(z_{1}^{j}, \underline{f}\right)_{\mathrm{J}}$

We clain that the vectors $\left\{\mu\left(\boldsymbol{\eta}_{j}\right)=\operatorname{def} \mu\left(\eta_{j}\right) \bmod G\right\}{ }_{j=0}^{m}$ are linearly indenendent: this would contradict cur choice of m.

So let $c_{0}, c_{1}, \ldots, c_{m}$ be complex numbers s.t.
(b) $\quad \sum_{j=0}^{m} c_{j} \mu\left(\eta_{j}\right)=0$.

Wo shall treat separately the cases $q=0$ and $q>0$.
Case (1): $q=0$. In thic case is $a n$ and equation (b) means
$\sum_{j=1}^{\eta} c_{j} \mu\left(\eta_{j}\right)=\lambda\left(\tilde{h}_{1}, \tilde{h}_{2}, \ldots, \tilde{h}_{n}\right)$ for some $\tilde{n}_{1} \in \theta_{x}, i=1, \ldots, n$, i.n. ii $^{\prime} \eta_{j}=\left(i_{j}{ }^{1} \cdot m_{j}^{2}, \ldots, g_{j}^{n}\right.$, we have
(0) $\quad \sum_{j=0}^{\pi} \quad c_{j} \mu\left(s_{j}{ }^{i}\right)=\lambda\left(\tilde{h}_{i}\right)$ for $i=1,2, \ldots, n$.

Equation (a) means
$z_{i}^{m+1}{ }_{j}^{l}+\sum_{i=2}^{n} z_{i} z_{j}^{i}=z_{q}^{j}$ for $j=0, l, \ldots, m$.
(actually there might be some minus sim appearing in front oi th= $g_{j}{ }^{i}$'s depending on the choice of the identification of $\mu(J, \theta)^{n}$ with $M\left(D, R^{n-1}(f)\right.$ but this is clearly irrelevant).

Tron this and (c) se stain
$\mu\left(\sum_{j=j}^{n} c_{i} z_{1}^{j}\right)=\sum_{j=0}^{m} c_{j}\left[z_{1}^{n+1} \mu\left(g_{j}^{l}\right)+\sum_{i=2}^{n} z_{i} \mu\left(g_{j}^{i}\right)\right]=$ $z_{2}^{7+1} \cdot \sum_{j=0}^{\eta} c_{i} \mu\left(c_{j}^{2}\right)+\sum_{i=2}^{n} \sum_{j=0}^{n} c_{j} z_{i} \mu\left(z_{j}^{i}\right)=$ $z_{q}{ }^{m+1} \lambda\left(\tilde{h}_{i}\right)+\sum_{i=2}^{n} z_{i} \lambda\left(\tilde{h}_{i}\right)$.

So we have the equality
(1) $\mu\left(\sum_{i=0}^{n} c_{i} z_{i}, j\right)=z_{i}^{m+1} \lambda \tilde{\tilde{h}_{1}}+\sum_{i=2}^{n} z_{i} \lambda\left(\tilde{h}_{i}\right)$.

By the uniqueness of analytic continuation we obtain thar the equality
$\sum_{j=0}^{m} c_{j} z_{l}^{j}=z_{i}^{m+l} h_{l}+\sum_{i=2}^{n} z_{i} h_{i}$ where h_{i} is a representative of $\tilde{h}_{i}, \forall_{i}$, hols is in a neighbourhood of x; deriving both sides j times with respect to z_{1} and evaluating at x we nave $j!c_{j}=0$ and the claim is proved.

Case (2):- $q>0$. In this case (b) means

$$
\sum_{i=0}^{m} c_{j} \mu\left(\eta_{j}\right)=0 \text { which implies that }
$$

$\sum_{j=0}^{n} c_{j} \mu\left(\alpha_{q-1}\left(z_{1}^{j} \cdot \underline{f}^{\prime} \mid 0\right)=0\right.$.
If $\eta \geqslant 2, k(x) \geqslant q$ implies that $H^{3}(D, x, O)=0$ for $s \rightarrow 1,2, \ldots q-L$, an: using the exact sequence
$C A H^{3}\left(D, x, \mathscr{R}^{n-s-1}(f) \longrightarrow H^{3}\left(D, x, \mathscr{S}_{3-1}(\underline{I}) \longrightarrow H^{3 \cdot 1}\left(D, x, \mathscr{L}_{s}(\underline{f})\right)\right.\right.$
$+$
we obtzin that
(e) $\quad \sum_{j=0}^{\eta} c_{j} \mu\left(\alpha_{0}\left(z_{q}{ }^{j},\left.\underline{p}\right|_{D}\right)=0\right.$,
ard ir $q=1$, (e) is the $1: s$ inemuality appearinp above.
 in $\Gamma, D, \theta ;$ s.t.

$$
z_{i}^{1+1} z_{1}-\sum_{i=?}^{n} n_{i}=\mu\left(\sum_{i=0} r_{i} z_{i}^{j},\right.
$$

 banause $x(x)>0$, ie min fini $\tilde{h}_{1}, \tilde{h}_{2}, \ldots, \tilde{h}_{n}$ in θ_{x} s.t. $\lambda\left(\tilde{a}_{i}\right)=\tilde{r}_{i}$, $\forall i$, and we stain arain the sounity , om wnich the conciusion follons in tha same war, thus proving the claim ani with it se troomem.a
§ 2:- She inzlytic Touching sumber.
ie introduce another invariant notivated cy the followins

Imposition 4.2.1:- Suppose that D is an open subset, of an analytic manirold \because and trat D has C^{2} boundary at x od. Then the:e exist, an open neignbourncol U of x ani s analytic functions $E_{2}, \bar{B}_{2}, \ldots E_{s}$ in $M(U, \theta)$, fon $s=n(x)+z(x)+1(=n-p(x))$ s.t., writins

$$
\because=\left\{\eta \in \| \text { 3.t. } \quad \xi_{1}(y)=\xi_{2}(y) \quad \ldots . \xi_{s}(y)=1\right\}
$$ whiv $7 \cap \bar{J}=\{x\}$, i.o. $v+$ wohes \bar{D} at x.

 an Eint s farmi of analytir :lunctions $\tilde{F}_{\sim}, \ldots, \tilde{F}_{3}$ in θ_{x} which

Erop. 4.2.1 shows that $a(x) \leqslant n(x)+z(x)+1$. A lower bound is provided by the foilowing

Theonen 4.2.7:- $\quad 3(x) \geqslant k(x)+1$.
Iroof:- Suppose that $\tilde{\sigma}_{1}, \tilde{\delta}_{2}, \ldots, \tilde{\tilde{F}}_{\mathrm{S}}$ are as in definition 4.2.2 and that g_{i} is a representative Ior \tilde{F}_{i} in a small Stein reighoourhood u of $x, \forall i, s . t . \bar{D} \cap V=\{x\}$ and so $D n U=V-V$.

Then, by [.], theorem 23, p. 134, it follows that, for any Stein open set U^{\prime} with $x \in U^{\prime} \subseteq U$,
$\because\left(U^{\prime}-\forall, \theta\right)=0$ for $p \geqslant s$, and so $H^{p}(J-\gamma, x, \theta)=0, \underline{s}$.
 partioular $\mu\left(\left.d_{S-2}(x)\right|_{U-V}\right)=0$; by furtiner restricting also $\mu\left(\left.\alpha_{s-1}(x)\right|_{D}\right)=0$ and innce there exists an interer $p \in=1$ s.t. $\mu\left(\left.\alpha_{p-1}(x)\right|_{D}\right) \neq 0$ and $\mu\left(\left.\alpha_{D}(x)\right|_{j} ;=0\right.$ for some $p \geqslant 1$ or eise $\mu\left(\left.\alpha_{0}(x)\right|_{D}\right)=0$: in this second case lemaz 4.1 .2 says that $k(x)=0=p \leqslant s-1$ and the theorem is proved, and if $p \ngtr 1$ we can consider the exact sequence
$\left.\ldots . H^{n}\left(D, x, \mathcal{f}^{n-1}\right)^{1}(\underline{z})\right) \xrightarrow{\Phi} H^{p}\left(D, x, \mathscr{L}_{p-i}(\underline{z})\right) \rightarrow i^{p+1}\left(D, x, \mathscr{L}_{p}(\underline{z})\right)$ fron which se deduce that there exists an element η in $4^{D}(D, x, O)^{N}=$ $H^{p}\left(D, x, \kappa^{n-p-1}(\underline{z})\right), \quad N=\binom{n}{n-p-1}$, s.t. $\Phi(\eta)=\mu\left(\alpha_{p-1}(x, 1) \neq 0\right.$. It follows that $\lambda: 0=H_{x}^{P}(\theta) \rightarrow H^{D}(D, x, \theta)$ is not surjective and so $k(x) \leqslant n \leqslant s-2$ and the theorem is proved. (notice that in this proof, when rostriating, $D \cap U$ has been indicated simpl: by D to u'se a simpier notation). D

If j hats C^{2} boundary at x, the inequalities proval in the $133 t$ two soctions cin be summirized is

$$
n(x) \leqslant k(x) \leqslant n(x)-1 \leqslant n(x)+n(x)
$$

The following particular case of the above theorem is partiaxlavy intoritive.
$\operatorname{Let} \overline{3}=\left\{z \in \mathbb{E}^{2}\right.$ s.t. $\left.|z|^{2}=z_{1} \bar{z}_{1}+z_{z} \bar{z}_{z} \leq l\right\}$ be the closed unit bail in m^{2}, let $x \in \bar{B}$; does thene exist a germ of a curve C s.t. $C \varsigma \overline{3}$ and $C \cap \bar{Z}=\{x\}$? (see picture in absolute space)

If such a serm exists it is of codimension 1 and so can be descritec by a sircle serm of analytic function, i.e. if we taje $D=a^{2}-\bar{D}, \quad a(x)=1$, but an easy conputation shows that $n(x)=1$. So the existence of this germ of curve would contradict the theoren.

Zoosely sneaking this shows that one should not tmist pictures when thincing in several complex variables.

CHAPT:R 5:- Dolbeauit and Leray Representatives for the Test Ciasses.
ie shall give now an explicit form to the test classes
$\alpha_{s}\left(g, \underset{f}{s} \in H^{3+2}\left(x-\{x\}, \mathscr{L}_{s}(\underline{f})\right)\right.$.
§ l:- The Double Koszul Complex.

Let $\left(\Xi^{\prime}, \delta\right.$ ') be any complex of $\Gamma(A-\{x\}, \theta)$-modules s.t. \bar{V}, $H^{n}\left(3^{\prime}, \delta^{\prime}\right)=H^{p}\left(\therefore-\{x\}, \theta_{i}\right.$: the most relevant cases are the followine:
(a) $B^{q}=c^{q}(\mathcal{U}, \theta)$, whore U is a ieray covering of $A-\{x\}$, o.g. $U=\left\{B-v\left(f_{i}\right)\right\}_{i=1}^{n}, \delta^{\prime}=$ coch conomology dieferential.
(b) $3^{q}=\Gamma\left(1-\{x\}, \xi^{0, q}\right)$ where $\xi^{0 . q}$ is the sheaf of gerns of differential forms of type $(0, q)$ and $\delta=\bar{\partial}$ is the Jolbeaut differential.
(c) $\Xi^{q}=\left(4-\{\times\}, a^{6}\right)$ whese a° is any analytic acyclio resolution of θ on $\because-\{x\}$ and δ is indused from the differentian of a.

We can construnt the Koszul complex $K^{\circ, q}=$ def $K^{\circ}\left(\underline{\underline{E}}, \mathrm{~B}^{2}\right)$ and, since δ ' is a homonorphian of $\mu\left(M-\left\{\alpha, \theta_{j}\right.\right.$-modules the diagrams

rommute, 3v we rinn consider the louble inticommutitive complex

Definition 5.1.1:- The s-double Koszul complex , s $\epsilon 厶$, is the double complex K_{s} given by
$k_{s}^{p . q} \begin{cases}k^{p, q} & \text { if } p \leq n-3-2 \\ 0 & \text { otherwise }\end{cases}$ and ifferential irduceifroin that of ($\left.\mathrm{K}^{\prime} ; \mathrm{a}, \delta\right)$.

The corresponding total complex is denoted by (T_{s}, Δ_{5}).
The cohomology of ($I_{3}, \Delta_{\mathrm{s}}$) does not depend on the particular choice of \mathfrak{z} benause there is a spectral sequence

$$
\Phi_{p, q}^{\infty} \Longrightarrow \quad \mathrm{H}^{\mathrm{p+n}}\left(\mathrm{~T}_{\mathrm{s}}^{*}\right)
$$

(see $[i 8]$, Chaptar $I \mathrm{~K}$) and the $2^{n i}$ spectral sequence, computed "verticallr", shows that

$$
E_{p, 0}^{2}=x^{n}\left(x-\{x\}, k_{s}^{?}(f)\right),
$$

$$
\text { whore } f_{s}^{p}(\tilde{f})=k^{p}(\underline{f}) \text { if } p \leq n-s-2 \text { and } K_{3}^{P}(\underline{f})=0 \text { otherwise. }
$$

Lemm 5.1.2:- $H^{p}\left(T_{-2}\right)=H^{P}\left(T^{*}\right)=0$ for all p.
proof:- As we have just seen, we are free to choose $B^{9}=$
$\Gamma\left(a-\left\{a, Q^{q}\right)\right.$, with Q^{q} as in (c) above; also write Z instead of $: 1-\{i\}$
rop. 2.1.? says that the sequence of sheares
$0 \rightarrow k^{0}\left(E, a^{q}\right) \longrightarrow f^{\prime}\left(\pm, a^{q}\right) \longrightarrow \ldots \longrightarrow k^{n}\left(\underline{f}, a^{q}\right) \rightarrow 0$
is exact on M for all q, and so it can split into short exact sequences
$0 \longrightarrow \mathscr{L}_{3}\left(\underline{f}, a^{q}\right) \longrightarrow \hbar^{n-3-1}\left(\underline{f}, a^{q}\right) \longrightarrow \mathscr{L}_{:-1}\left(\underline{f}, a^{q}\right) \longrightarrow 0$
for: $=(1), 1, \ldots, n-2$, whare $\mathscr{L}_{n-2}\left(\underline{(}, a^{1}\right)=f^{0}\left(f, a^{\prime}\right)=a^{1}$ and

The hrothesis on a^{\cdot} sys that $H^{12}\left(a^{\prime}, \mathcal{K}^{+}\left(f, a^{q}\right)\right)=0$ for $111 \therefore$

in this dissertation (e.f. see proof of prop. (.1.3), that
 fo: all $s=0,1, \ldots, n-2$ and $111 q$.

Thorerore the sequence

is exact $\forall_{s, q}$. It follows that the lone sequence
$0 \rightarrow \Gamma\left(\because, \ell^{0}\left(\underline{f}, Q^{2}\right) \rightarrow \Gamma\left(x, R^{2}\left(\underline{f}, Q^{-} \rightarrow \ldots \rightarrow \Gamma^{\prime}, k^{n}\left(\pm, Q^{a}\right) \rightarrow 0\right.\right.\right.$
is sxact. for all q : in other words the double complex $\pi^{\prime \prime}$ has eract rows. The rasult is now easily deduced inom the spectral sequence theory on, more simply, with a st anirhtionan liactan chase.口

The cohomology of T_{3} is deepiy related to that of \mathscr{L}_{3} (I) as shown in the following

Theoren 5.1.3:- There are isomoninismb

$$
\Psi_{s}: H^{n-1}\left(T_{s}^{*}\right) \longrightarrow H^{-2}\left(X^{\prime}, \mathscr{L}_{s}\left(E^{\prime}\right) \quad \text { for } s=-1,0, \ldots, n-j\right.
$$

s.t. the diagrams

commate, where p is inducel by the natural restriction
$P: T_{s}^{r}=T_{3+1}^{r} \odot K^{n-3-3, r-n+s+2} \longrightarrow T_{s+1}^{r}$.
noreover
(i) $\Psi_{-1}^{\prime}: H^{n-1}\left(\Gamma_{-1}^{0}\right)=H^{0}\left(\because, \mathscr{L}_{-1}(\underline{q})=H^{0}\left(n^{\prime}, \mathcal{R}^{n}(\underline{e})\right)\right.$
i. stiven by $\Psi_{-1}\left(\boldsymbol{\tau}(\eta):=1\left(\eta_{n-1, u}\right)\right.$

- 1.are $\tau: z^{n-1}\left(T_{3}^{*}\right) \longrightarrow H^{n-1}\left(T_{3}^{*}\right)$ is the projection of cohomolopy.

Eroof:- for all r,s we have a nomutative iiagram with split
exact roins

and so ie can consider the exact secuence of complexes
$\left.0 \longrightarrow\left(x^{n-3-2, \cdot-n+5+2}, \delta\right) \longrightarrow\left(T_{5}, \Delta_{s}\right)-\frac{p}{3+1}, \Delta_{3+1}\right) \longrightarrow 0$,
and. by taxing cohomology, the exact sequonce
$\left(b_{3}\right) \quad \cdots \longrightarrow n^{r-n+3+2}\left(\because, k^{n-s-2}\left(\theta^{\prime}\right) \longrightarrow H^{2}\left(n_{3}\right)-\right.$
$\xrightarrow{P} H^{r}\left(n_{s+1}\right) \longrightarrow H^{n-n+s+3}\left(\because, R^{n-s-2}(\underline{f})\right) \longrightarrow$
The result will be dediced by setting $r=n-1$ and choosing s in an appropriato way. Pirct, ior $s=-2$, we have an exact sequerce $\left(\mathrm{b}_{-2}\right) \quad \quad H^{n-?}\left(\mathrm{~T}_{-2}^{0}\right) \longrightarrow H^{n-1}\left(T_{-1}\right) \xrightarrow{\Psi_{-1}} H^{0}\left(\because^{n}, H^{n}(\underline{I})\right) \longrightarrow H^{n}\left(T_{-2}^{0}\right)$ where Ψ_{-1} is the conreoting homomor-hisn; by lema $2.1 .2 \operatorname{inn}^{n-1}\left(T_{-2}\right)$ and $H^{n}\left(\mathrm{~m}_{-2}\right)$ vanish, so that. Ψ_{-1} is an isomor phism: moreover an easy checking shows that $\mathbb{\Psi}_{-1}$ satisfies the above equality (\mathfrak{z}).

Now suppose $n \geqslant$; otheririse the theoren is proved. Ne shall use the fact that $H^{p}\left(A^{\prime}, \theta\right)=0$ for $p=1,2, \ldots, n-2$ (see [10], theorem 23) and so $H^{p}\left(\because^{\prime}, f^{t}(\underline{n})\right)=0$ for $p=1,2, \ldots, n-2$ and 211 t.

It is clear that the first square in the following diagram with exact 0 wis
$\left(b_{-1}\right)$
commutes, so that the isomorphism Ψ_{0} indicated with dotied line exists and makes all the diagram commutative.

Now define Ψ_{S} by induction for $s=1,2, \ldots, n-3$ by inposing commutativity to the following diagram

The theorem is now proved.
§2:- Hxilicit Form for the Test Classes.
 $\beta_{s}(g, \underline{f})=\Psi_{s}^{-1}\left(\alpha_{s}(m, \underline{f})\right.$ for $s=C, 1, \ldots, n-3$, the above theoren sajs that $\rho\left(\beta_{s-1}\right)=\beta_{s}$, and so it is not a big abuse of language to write $\beta_{n-2}=p\left(\beta_{n-j}\right)$, whee β_{s} is a shorter notation for $\beta_{s}(x, f)$.
liow we can find explicitly elements η_{s} in $z^{n-1}\left(T_{s}\right)$ s.t. $\tau\left(\eta_{s}\right)=\beta_{s}$ in the two more relevant cases indianted with (a) and (b) At. the besinning of this chaptes.

According to theorem 5.1.3, $\Psi_{-1}^{-1}(i(G))$ is represented by an element $\eta_{-1}=\Theta_{\underline{p}+q^{-1} n-1} \eta_{p_{1}, i} \in z^{n-1}\left(T_{-1}\right)$ s.t. $d\left(\eta_{n-1,0}\right)=i(g)$, i.e. $\Delta_{-2}\left(p\left(\eta_{-1}\right)\right)=(0,0, \ldots, 0, i(\%))$. Therefore η_{-2}, can te computed by diagram chasinr, and, anain from theo em 5.1 .3 we have $\eta_{0}=\rho\left(\eta_{-1}\right)$ and sor $s=1,2, \ldots, n-2, \eta_{3}=\rho\left(\eta_{3-1}\right)$ so that if

(n) $\eta_{\mathrm{P}, q}-\sum_{1 \mid,}^{\prime} \omega_{[} F_{\mathrm{I}}$
where the srmbol ' means that the sum is to be taken over increasing
 by
where the sun is over increasing aultiindices J s.t. $|J|=q$ and indices i so that $\{i\} u J u I=\{1,2, \ldots, n\}$, and the term $s_{p, q}$ is as follows:

$$
s_{p, q}=\left\{\begin{array}{cl}
1 & \text { if } q=0 \bmod 4 \\
\left(-1 i^{p+1}\right. & \text { if } q=2 \bmod 4 \\
-1 & \text { if } q=2 \bmod 4 \\
(-1)^{p} & \text { if } q=3 \bmod 4
\end{array}\right.
$$

in ooserve that, apart from a cosfficient \pm I, the class $\eta_{0, n-1} \in \Gamma\left(Y^{*}, \epsilon^{0, n-1}\right)$ is the Bocnner-ilartineil: kermel and that this class is used in [3] by means of the corresponding integral formula.

$$
\text { If } g^{\circ}=X \cdot\left(U_{0}, \theta\right) \text { as in aase (a) בt the beginning of this }
$$

chəoter then

$$
\text { (a) } \eta_{p, q}=\sum_{|I|=p}^{\prime} \omega_{I} F_{I}
$$

and in order to axpress the coofficients ω_{I} e ${ }^{\mathbf{C}}{ }^{\prime \prime}(\mu, \theta)=$
$\boldsymbol{\theta}_{I K \mid=q+1}^{\prime} \Gamma\left(U_{K}, \theta\right)$, where $U_{K}=U_{k_{1}} \cap U_{k_{2}}^{n} \ldots n U_{k_{q+1}}$ if $k=\left(k_{1}, k_{2}, \ldots, k_{q+1}\right)$, we write

$$
\left.{ }_{C}^{G}(\mathbb{U}, \theta)=\Theta_{i=1}^{n} \theta_{\substack{(i, j) \\|J| \quad \mu!}}^{i} \mu_{(i, J)}, \theta\right) ;
$$

then it i:s onsy to soe that

Where the syricol , means that the sum is to be taken over increasing
 by
where the sum is over increasing multindices J st. \quad, $J=q$ and indcos i so that $\{i\} \cup J u I=\{1, \ldots, \ldots, n\}$, and the term $s_{p, i}$ is as follows:

$$
s_{p, q} \Rightarrow\left\{\begin{array}{cl}
? & \text { if } q=0 \bmod 4 \\
(-)^{p+1} & \text { if } q=1 \bmod 4 \\
-1 & \text { if } q=2 \bmod 4 \\
(-1)^{p} & \text { if } q=3 \bmod 4
\end{array}\right.
$$

ii observe that, anart from a conficicient \pm I, the class
$\eta_{c, n-1} \in \Gamma\left(\|^{\prime}, \mathcal{E}^{0, n-1)}\right.$ is the Jochner-itartinell: kernel and that this class is used in [i] by means of the corresponding integral formula.

$$
\left[f z^{*}=(\mathbb{U}, \theta) \text { as in case }(7)\right. \text { at the beginning of this }
$$

chaster then

$$
\text { (i) } \eta_{p, q}=\sum_{|i|-p}^{1} \omega_{I} F_{I}
$$

and in order to express the coefficients $\omega_{I} \in{ }^{v}(\boldsymbol{U}, \boldsymbol{\theta})$

$$
\oplus_{1: 1=n+1}^{\prime} \Gamma\left(u_{k}, \theta\right) \text {, where } u_{K}=u_{k_{1}} \wedge u_{k_{2}}^{n} \ldots n u_{k_{q+1}} \text { if } \kappa=\left(k_{1}, k_{2}, \ldots, k_{q+1}\right) \text {. }
$$

wo write
then it is nosy to :see this

$$
\omega_{I}=s_{p, q}{ }_{q} \rrbracket \cdot g \cdot \Sigma^{\prime} \frac{(-1)^{\operatorname{sign}(i, J, I)}}{f_{(i, J)}}
$$

wh-re the conventions for tho summands are the same as above and
$f_{(i, J)}$ stands for $f_{i} \cdot f_{j_{1}} \cdot f_{j_{2}} . \ldots . . f_{j_{2}} \quad$ if $J=\left(j_{1}, j_{2}, \ldots, j_{q}\right)$.

Apnendix:- λ Differential Topolceica! fomaris on the iistance Punction

In the proof of roposition 3.1.2 I slained that the followinc staterent is true:

 Lo-inod $: \%$ (list ininntes the Euclidean distarco)

$$
p(z)=\left\{\begin{array}{ll}
\text { distiz, } \partial) & i=z \in E \\
-\operatorname{lizi}(z, \partial j) & \text { ir }\langle 屯 \lambda
\end{array} \quad \text { for } 2 i: z \in \tilde{j}\right.
$$

is -2anin $0=1255^{2}$ in a roishourhost of x, and also ap $x ; t$
Homander $[2]$, ?. 5) sars that this is a consequence or the inplinit Suntion thomen, but tho detalls seen to be athor mysterious. inos. juvil -pstein suggested that the result can te proved $23=0120: 30:$

Fhome is ro loss of geremality in assuming that $\varphi(x)=0$ and thit $\dot{\varphi} \varphi(\because) f$ for all $y \in \tilde{U}$. An easy anplication of the Inverae Furction Theorem (In.F.T.) shows that
$F=\operatorname{ded}\{y \in U \quad$ s.t. $\varphi(y)=0\}=\partial 0$.
Define the function $V: \because \longrightarrow \operatorname{mb}^{\prime \prime} \quad V(v)=\frac{d \varphi(y)}{\| \varphi(y)}, V y \in U$; $\nu(r) \in j^{-1}$, the unit sphere or centro n in $z^{\|}$and $V(y)$ is
 unily innen by chackime that $\quad i \eta_{t \rightarrow 0} \frac{\left.\varphi_{1 \mu+t}(\gamma)\right)}{t}>0$.

 " $1110 \mathrm{w}=$

$$
\begin{aligned}
& \text { Wm Fe the conventions for the summand are the same as above and } \\
& f_{(1, j)} \text { stands for } f_{f} \cdot f_{j_{1}} f_{f_{2}} \ldots . . f_{j_{2}} \text { if } j=\left(j_{1}, j_{2}, \ldots, j_{q}\right) \text {. }
\end{aligned}
$$

where $\alpha(r, t)=(\gamma,(\mathcal{V}(y), t)), \forall \in \mathcal{V}, t \in \mathbb{B}$,

$$
\beta(r \cdot(u, t))=(y, t \cdot u), \forall \in ?, t \in z, u \in j^{t-1} \text { and }
$$

$$
\gamma(y, v)=y+v, \gamma_{j} \in \mathbb{F}, v \in I^{z} .
$$

mo chain male then show that

A $\Psi \%$ is infective and henze on is orphism. From the in. 'AtT. it
follows that we can fink a naighouriond \tilde{U}^{\prime} of $\Psi(x, 0)=x$ in $z^{\prime \prime}$,
\because nimbournoot u or x in and $\varepsilon>0$ sit.
$\Psi: U^{\prime} \times(-\varepsilon, \varepsilon) \longrightarrow \tilde{U}^{\prime}$
is a 0^{-2} Hifeomominim. Let us can X the inverse of $\mathcal{\Psi}$.
X can be written as $X=(c, \sigma)$ where $c: \tilde{U} \longrightarrow F$ and $\sigma \ddot{\sim} \underset{\sim}{\sim} \geq$ ane 0^{p-1} functions.

From the definition of $\mathcal{\Psi}$ it follows immediately that c and σ goy the following properties:
(i) $\sigma=-p$,
(b) $c(z) \in F$ is the closest point to z in F, for all $z \in \mathbb{U} \mathbb{U}^{\prime}$.
(c) $\left\langle--(z), v_{c(a)}\right\rangle=0$, where \langle,$\rangle denotes the uclidean$ inner proiket, son all z $\in \mathbb{U}^{\prime}$ init all $v_{c(a)} \in \mathbb{F}_{c(z)}{ }_{\sim}^{F}$,
(: $\boldsymbol{\sigma}(a)=\langle z-c(a), \boldsymbol{\nu}(c(a)\rangle$ or all $z \in \tilde{U}$.
\therefore :hall n rove that σ is actually a G^{p} function with $d \sigma(x) \neq 0$. this : mourn to show that P his the same p.overt by (2).

Yon (l', using the chain mile one obtains:

1 An土neotti, A. - Alaobezic Cycles ans do? onorphic Convexity. Rino Univ. Jtudies 55 (Complex Analvsis). i:7-142 (`370).

2 And neotti, A. - Gravert, H. Thóonemes de Einitude zur la Cohomolorie des Espunes Complaxes. Sill. joc. :ath. France 20, 193-257 (1962).

3 Andreotti, A. - Jorjuet, F. Voblèm de jevi nt, Conrexité Hoionomhs mour ies Clasises de Sohonjopie. Ann. Ectivia

 dyoonvoxity. מus atr. jour. 4, 203-213 (1976).

 32. 120-141 (:97\%).

7 Monter, O. - MaiGnott, K.J. - Üer dis Dastetlung Analytis-
 (9-20 (2001).

