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SUMMARY
This dissertation is devoted to the study of the different 

viewooir.ts from which an open subset D of a Stein manifold M can 
be considered, as the geometric concepts of q-completeness and q- 
pseudoconvexity and the analytic ideas of vanishing of cohomology 
groups after a certain level and inextendibility of cohomology clas
ses or holomorphic functions.

The idea is to generalize to any integer q the well known e- 
quivalence between O-complateness and O-cohonological completeness 
( see theorem 2.R.1).

A step in this direction, namely that if D is q-complete then 
it is also q-cohonologically complete, was done in 1962 by Andreotti 
and Grauert, but the converse implication is still an open problem.

Using a rather indirect tool involving certain cohomology
classes called "test classes" we can manage to prove that if D is

2cohomologically q-complete and has C boundary then it is q-comple- 
te, and this is probably the most interesting result appearing in 
this thesis ( see theorem 3•3•—)•

This method however can also be applied to answer certain na
tural questions about inaxtendibility of cohomology classes, analo
gous to inextendibility of hoiomorphic functions for domains of ho-
lomorphy, and the answer turns out to be not surprising if D has C“'

and counterexamples illustrating this behaviour are discussed in 
chapter 3. section 4.

In particular we describe a particularly interesting applica
tion of the test classes that gives a lower bound on the number of 
analytic functions needed to define an analytic subvariety just tou
ching D at a point x belonging to its boundary provided the behavi
our of c>D near x 13 known (see theorem 4.2.j).

All these results canbe deduced without knowing the explicit 
expression for these cohomology classes, but such an expression in 
terms of Dolbeault cohomology and Cech cohomology is given in the 
last chapters It can be observed that the test classes are related 
to the Bochncr-Martir.oili kernel.

boundary (see theorem 4.1.8) but less intuitive in the general case
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INTRODUCTION

E. E. Levi noticed in his paper [l^lthat a domain of holomorphy
2 nwith C boundary contained in a complex space C is O-pseudoconvex

(for the definition of these concepts see chapter 2, section 2).

This observation introduced a challenging question for complex 

analists, which can be loosely stated as: is the converse true?

It was soon realised that the hypothesis on the boundary can 

be removed provided O-pseudoconvexity is replaced by O-completeness 

and that replacing In with any 3tein manifold does not create any 

serious trouble; moreover O-conpleteness makes sense even if the 

analytic domain that we are considering is not an open subset of 

a larger one and the Levi problem can be restated as:

If D is a O-complete analytic manifold (space) is D Stein ?

The question was studied by mathematicians like Oka, Lelong, 

Bremermann and others; an interesting survey of the historical de- 

velopement of this problem is contained in the introduction of C8] , 

and in the same paper Grauert gives a positive answer to the above 

question for manifolds. In 1961 Narasimhan solved again in the af

firmative the Levi problem for analytic spaces, in his article [15].

Meanwhile other powerful tools for the study of analytic spa

ces had been developed, specially cohomology theory, and a famous 

result known as Cartan's theorem B showed that a Stein space is al

ways O-cohomologically complete (see definition 2.2.3).

The situation was then very well settled because it is easy 

to prove the converse of thi3 last statement, and so if D is an ana

lytic space the following properties are equivalent:

(a) D is a Stain space (which is an analytic-function theoro-
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tic concept),

(b) D is O-complete (geometric-analytic),

(c) D is cohomologically O-complete (algebraic-analytic).

However an integer, zero, appears in the formulation of (b) 

and (c), so it is natural to ask whether the equivalence of (b) and 

(c) still holds when 0 is replaced by another integer q.

The first step in this direction is due to Andreotti and Gra- 

ue-'u (see prop. ?.l.l): namely they proved that a q-complete analy

tic space is necessarily a-cohomologically complete.

The converse implication is, as far as we know, still unsol

ved nowadays (see [19] problem IV, p. 57), the difficulty consisting 

in the fact that it is not easy to define in a suitable way the con

cept of "c-Stein, space".

In this dissertation I have been studying this problem in the

particular but intuitively and historically important case when D
2is an open subset with C boundary of a Stein manifold H, going 

back to a sort of "a-Levi problem" as originally stated.

The method used here is indirect but rather efficient and 

involves certain natural cohomology classes, called test classes, 

that have been studied already, though in a quite implicit way, by 

Andreotti and 'Jorguet in 13] by means of the Bochnec-Martinelli in

tegral formula and in a more "oohomological" way by Sastwood in [5l 

and Laufer in P U l .

The; t.e3t classes provide a powerful tool which finally enables 

us to answer in the affirmative to the problem considered! namely 

we can prove that a domain with C boundary contained in a dtein 

manifold is q-pseudoconvex if and only if it is q-cohomologically 

complete (3ee theorem /. .3.1).

I ? ... • !-
&
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This method is also useful to compare the concepts considered 

above (c-completeness, q-pseudoconvexity and q-cohomological comple

teness) with other rather classical ones like pseudoconvexity a la 

Grauert and Fritzsche (see def. 2.1.^).

Moreover we can investigate some intuitive questions about i- 

nextendibility of cohomology classes already studied by Andreotti 

and Norguet in [31 that arise naturally from the classical definition 

of domain of holomorphy and the observation that holomorphic functions 

can be considered as 0 cohomology classes (see theorem ¿r.1.8).

The general impression that arises from these results is that 

open subsets of Stein manifolds behave in a good, intuitive way ana- 

logous to domains of holomorphy if their boundary is C~, but unexpec

ted conclusions can be deduced if we drop this hypothesis: some exam

ples of this odd behaviour are shown and discussed making use of com

plements of analytic varieties (example J.1*.?.).

The methods used in this dissertation can also be applied to 

investigate the nature of germs of analytic varieties ju3t "touching" 

at a point x the closure D of an open subset D of an analytic manifold 

provided we know the "bending" of the boundary of D at x, and a lower 

bound to the geometric codimension (“minimal number of germs of ana

lytic functions necessary to define it) is given (see theorem 4.2.3)•

Finally the cohomology classes used to deduce the above results 

are explicitely described in terms of Dolbeault mu!Leray cohomology: 

this is done in chapter 5.

A s ib.«i«minI part of this dissertation will be published in a 

joint paper, co-author Michael G. Eastwood, to appear with title 

"P3fiudoconvex and Cohomologically Complete Domains".



called the projected o-envelope of holomorphy of D; some algebraic 

machinery is necessary to construct these sets and to show that they 

are well defined. '.Je start with

^ 1: The Koszul Complex of a Point.

Let R be a commutative unitary ring and consider the graded 

algebra A' 3n = { A P Rn} z • We sha11 identify, as natural,

A 1 Hn with Rn and with the R-module of column vectors of n elements 

of R. If f^,f2,...,fn belong to R, they determine an element f in 

A 1 Fn. and so they can be used to define a R-homomorphism

d - df ! A '  Rn----** A '  1,0 Siven by df(w) » f * w, V w  6 A  R"

It is immediate to check that d o d = 0, i,e, that d is a differe

ntial (of degree +l).

The resulting complex (A* Rn,dj.) i3 called the Koszul complex 

of f and R and we shall denote it by K'(f>fi) - {kP(£>R)} v g Z'

If M is any R-module we can define the Koszul complex K'(f,fi) 

by Kp(f,fi) - Kp(f,R)&HM and differential df ©  1.

Notice that Kp(f, M) - 0 for p < 0 and p > n, K°(f,M) =■ M and 

there 13 a natural identification K11̂ ,M) s  M .

As a matter of notation we indicate with F^,F2,.... Rn the

formal symbols occurring Ln K ‘(£,M), so that f » 51j-i an<*

H ' i • • ’V i r  ^



\c '£ -e- * y,*5 -'si >, -,

i: •<"(!.«) -  — >■ M is given by i(m F̂ a F,»....*Fn) = m, Vm € M. The

cohomology of K"(f,i'l) is indicated by H‘(f,,M).

Lemma 1.1.1:- If for some j 

the complex K‘(f,M) is acyclic, i.e. H^(f,M) = 0 Vp .

1,2,...,n, f^ is a unit of R

Proof:- Choose g « R  s.t. gf
tf-P'1"! ('CM

1 and define a homomorphism( f ,H )  ------>  K ^ (f ,M ) ,  Vp, as  fo l lo w s :  an element w eK^+1 (f ,M )
can b^ uniquely written a3 w = F^ a u  + v, where u sX^(f,M), 

v «Xp+1(f,Pi) and F, does not appear in u and v; define h(w) = g-u.

Then (hd+dh)(w) = hd(F^A u) + hd(v) + dh(FjA u) + dh(v) =

h'Z i#o fiFiA V u) + h& l - i  fiFiAV) + d(?-u) = ^ i FiA U  *
gfyv + d(g- u) - g f FjA u + g fj v = Fj A u + v = w, i.e. hd+dh= Iden

tity; therefore K’(f,M) is homotopy equivalent to the zero complex 

and so it is acyclic. D

Let now &> be a sheaf of commutative unitary rings on a topolo

gical space M and cKj be a sheaf of © j-modules, moreover suppose that

f^,f2 .....fn 6 r(M,Gl)i we shall denote by % ' (f ,cKj) the Koszul
complex of sheaves given by the complex of complete presheaves

(U) - K-(fjut T O U * ) )

for all open set U S M  (we remark that restriction maps clearly commu

te with dj., and so they are maps of complexes).

Throughout this dissertation, unless otherwise explicitIv 

stated M will be a n-dimensional, n ÿ 2, Stein manifold and (?,• its 

structure sheaf Q.

If x 6 M it is always possible (seeC^Satz 1 p. 91) to choose 

sections f^,f,.....fn6 r(K,0) s.t.

Jx\ '  v(f1(f 2, .............. f n) - | y « M  s . t .  f 1(y)"f2( y ) ' — “ ^ ( y ) " 0}

If these functions al30 give local coordinates of M at x, which

can always be arranged, we shall denote them by .... z^.

The Koszul complex of the point x a M (with respect to the
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functions f^,f^t....,f^) is by definition the Koszul complex of 

sheaves fc-(f,<9).

As a consequence of lemma 1.1.1 we have the following

Prooos ition 1.1.2 For every analytic sheaf C^the complex 

of sheaves %>'(f,c)"b) is acyclic on M - (i. e. V y + x the complex

of ©^-modules fC' (f ,cĴ )y is acyclic).

Proof;- Vy A x 3j = 1,2.... ,n s.t. f,(y) 1 0, i.e. the germ

(f .) & ©  is a unit. Lemma 1.1.1 says crecisely that % ‘(f,cMo)v jy y - y
is an acyclic complex of ©^-modules, n

Therefore the sequence of sheaves 

-* fc°(f ,c*s)
n d„ . d,

- *• 8r(f,crta) — -

is exact on M - lx̂  , and so it can be split into short exact sequen

ces, i.e. there exist sheaves S6s(f,crt) , s « 0,1.....n-2 on M - Jx}

s.t. the sequences

0 — — ♦ fcn"s_1(f,cK>)---- * 5 S s_1(f.ĉ ») — *- o

are exact, and ^^(f.cKs) = -¡tn(f ,c/tG) 4 oMi , 5£n_2(.I>tK5) = 

c/fc.

As a natter of notation ¿£3(f,©) and -fcP(f,Q) will be indi

cated simply with >£g(f) and this is by far the most intere

sting case.

^2: The Test Cla3se3.

As we have just 3eon, there are exact sequences of sheaves

0  -------------» f c n’3_1(f) ----*-iSg_1(f) --- *- 0

on M - x̂j , for s » 0,1.....n-2.

The connecting homomorphisms of the corresponding long exact



sequences of cohomology

may be composed to give maps

Now we observe that the restriction map r : f  (ii, © )  -- *i(M - ,<S) '

is an isomorphism by Riemann removable singiiLarity theorem and we

classically, the stalk at x of the sheaf of ideals generated by f; 

this is the case if g - 1, and o( (l,f) will be written simply c< (x,f).

The test classes say an important word about the envelope of 

holomorphy of a domain DSM.

If D is a domain in a Stein manifold M there exists always a 

connected Stein manifold E(D), called the envelope of holomorphy of 

D, which contains D and is characterized by the fact that every holo- 

morphic function on D extends uniquely to E(D). E(D) is not necessa

rily a subset of M because "sheeting" can occur (see [11] p.^3). but 

in general E(0) 13 a Riemann domain over M with projection

call again the map given by the composition

If g is an element of fOl, C9) we obtain test classes

Vie shall shortly see that the test classes ^ 3(g,f) are of 

particular interest when the germ g x 4^Jx (£/i where rfx(£) denotes, as

(^3: The Envelope of Holomorphy.

jr i E(D) M

(the terminology Riemann domain Ju3t means that IT is a local i3omo-



rphisra). This notation will be retained for the rest of this disser

tation, and the symbol will always indicate the projection of a 

Riemann domain. This situation can be expressed by means of diagrams 

as follows:

(a) Firstly the diagram

2(D)
(a) \  ^ commutes and

(b) If we call (9_, the structure sheaf of E(D), the map induces

a map

the diagram 

0>)

■6>s given by Jr*(g)(y) - dgf< g(jf(y)), Vy « 2(D):

r(D,©) -r(E(D).©a)

P(M, 0)

where r indicates the restriction map, commutes and 

— *r(D, 0 )  is an isomorphism.r ,r(S(D),<9E)

A good reference for all the above is [l6].

A reason for calling the cohomology classes o( g(g, f) te3t 

classes is given by the following

Pro-position 1.3.1:- Suppose xe M - D and gC C(M,©) is chosen 

in such a way that the gex-m gx^ <)x(£) i e.g. g(x) f* 0. Then

X6rf(E(D)) if and only if o(0(g,f)|a f 0 

where  ̂I D danotes the image of Q(g,f) under the restriction

r i H1(M - ------- *  Hl(D,izf0(f)).

P r o o f (efr. [5] Theorem 2.1). For i-1,2..... n set fJ'-JT*^),

10
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the square on the right hand side is commutative and so the map in

dicated with a dotted line that makes the first square commutative 

exists and is unique. By taking cohomology and using the above dia

gram (b) we obtain a commutative diagram

H1(D,^0(f)) 4— ---- H^ECD)

h\ m - }x},^0(f)).

Now if x ^ jr (3(D)), E ft-;r-1(x) ■ E(D) which is Stein and by 

Cartan's Theorem B Ji^o/^g.f) ■ 0 and so also ^Q(g,.£)( 3 = 0.

To prove the converse we first remark that, since if is a lo

cal isomorphism, it induces an isomorphism

y)(-)— VysE(D)-
In particular 3r*(g) 4 ¡^(1*)» Vyijr"1^).

If ^ q (£».£)|q “ 0 there exi3t functions h^.h^,.... h^ in r(D,(5)

s.t. £  £ ^ifl ” ^ut, 3'-nce r> r(E(D),(2,) * ) is an

isomorphism there are functions h*€ t*(E(D), © tJ, with r(h * ) » h^ > 

s.t. £  " - 1  h* f * ” JT'Xk )- Now if x«r(E(D)), 3y«E(D), JT(y) - x ,

11
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so w“ find that if*(g)€ V  (f*), contradicting, by the above remark, 

our choice of g. The proposition is therefore proved. □

If HP(D, &) = 0 for p=l,2,....n-1, then it is easy to show

that H ^ D . ^ ^ f ) )  = 0 (cfr. Prop. 3-1 -3 ) for any f defining a point 

x <S M - D, and hence we can deduce that D is Stein. This suggests 

that we could use the test classes 4 g(x,£ }| ̂  for s=0,l,... ,n-l 

to measure how far D is from being Stein.

It follows from the above proposition that whether c^(x,f ) | 2

vanishes or not is independent of choice of f and only depends on 

x and D. In the next section we shall prove that the same is true 

for c{ (x,f)|D provided ....fn form a local coordinate sys

tem of M at x.

^  4: Relationship between ■?t'(f, 6) and 'fe' (z, (9).

In what follows we shall suppose that f^,f2>....fn i-3 a ge-

neral collection of global functions s.t. V(f1(f2 ,....f ) * ^x^,

and that z^>z2.... »3n are global functions that give local coordi

nates of M at x and s.t. V(z^,z^,....zn) = ^x]. There is a rela

tionship between _f and z: it is given by the following

Lemma 1.4.1 ¡- There exists a matrix valued holomorphic func

tion A: M ----► Cn * n s.t. A z - f.

Proof:- Let iJ denote the ideal sheaf of x. and ($n * n the 

oheaf of germ3 of n u n  matrices of holomorphic functions. As usual 

we shall indicate with fjn the sheaf of column vectors with entries 

in $ . Consider the exact sequence of 3heaves

0 ----*■ Ker y ----- ► <9 n * n -------- $ n ------ ► 0

where y  (a) « A z V Ac <9° * n ( ay is 3urjectlve by dofinltion

1?.



of Z1’Z2...... zn>-
Since © n * n and $n are coherent sheaves, also Ker \j/ is co

herent, and by Cartan's Theorem B, H^(M,Kerf ) = 0.

The long exact sequence of cohomology associated to the above 

sequence of sheaves shows that the nap

sion follows. D

Lemma 1.^.2 ( corollary to Lemma l.k.l):- There exists a map 

of complexes A' : (z) ----► *fe‘(f) s.t.

above Lemmas A' is then automatically determined by the requirement

needs to check that A‘ is a map of complexes, and this is an imme

diate consequence of the fact that A z_ = f. 0

with det A; we want now a map of complexes B* s -V(f) ---► fc(z)

with suitable properties. To do this we need a purely algebraic

A's K'(z,H)-- ► K‘(f,h)

s.t. A°s K°(3,r ; — K°(_f,B) is the identity!

Then there is al30 a map of complexes

3' i K'(_f,R) ---- ► r(s,RJ

3.t• , after the natural identification of Kn(f,3) and Kn(£,s) with

^  ! t*(M.©n " n) ------- e r  C:d. u n)
is surjective. Moreover fé Ì*(M, ̂ Jn) by definition and the conclu

Prcof:- Identify, as usual -$L"(_z) and ftj'(f) with Q n and de

fine A^;-^(z) ---- * io'(f) by means of the map A mentioned in the

for A0 and by imposing it to be a map of graded algebras. One only

We remark that An : fcn(i) — - V  (f) acts by multiplication

Lemma l.h.3:- Let R be a commutative unitary ring, z, £ 6 

and suppose that there exists a map of complexes

1 3
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\

k &, Vs‘ ̂>.f ■ - s.

R, 3n: Kn(f,R) Kn(¿,R) is th--> identity.

Proof : - Let R-c/W/oe the category of à-modules ani consider 

the cont-ava-iant functor

Hon ( ,R) : R-cKoA----- » R-c/W/,

Using a classical notation, if 5 é 5 - A i  , Hon (M,R) will be

indicated by M* (the dual of ST), and if h: M ---- ► N is a homomor-

phisn of R-nodule3, h* will stand for Hom(h,R): N * ---- ► .

3y applying this functor to the conplex K'(z,R), (respectively 

K'(f,Rj) we obtain a coconplex K‘(z,R)_ ' with differential d r of 

degree -1 (resp. _K'(f,R).' with differential d* ).

By functoriality of Hon ( ,R) the diagram

[̂ Kn_p(f, r )J"*
[An-P]^

[Kn-?(£. R)]1

(*J

[Kn-p-1(f,Ha* ---^ n~?~I]*-----* [Kn-P-1(z,R)],i

commutes Vp.

Now define a R-homomorphism

£p = Kp(f,R) rx" P(f,3)]*, Vp, a3 follows: 

for all multiindexes I ,J with (l| =* p, 1 J| =n-p, set

" 0 if IwJ f Jl,2.... n}

p(p-l)/2 + sign (I.J)
(-1) otherwise

and extend it by R-linearity to all Kp(f,R). It 13 Immediate to 

check that ^ p i3 an isomorphism.

Moreover we have the following identity:

Vi ,Vj with !l| =■ p, |J| - n-p-1 and Vl-l,2.....





(d)

•<P(l.3)

d2

kP+1(3,R)

The fact that 3’ i3 really a homomorphism of complexes follows 

f-ora the commutativity of diag-ams (a), (c), (d); moreover, since, 

after the natural, identification of Xn(f,R), Kn(£,R,', fK^(f, R)]* and 

[x^(^,R)] with P, = (-iv’1'*1- 1* ! ~ id. = 1f,n, h» have 3n « id. 

and the lemma is proved. □

The three lemmas contained in this section collected together 

give the following

Proposition 1.4.¿H- There exists a homomorphism of complexes

B -: -fc'(f) ------ * -fc'(z) S.t. Bn: -fcn(f) ------ » -ft>n(z) is the

identity.n

B: % a(t)

By using standard results of homological algebra and induction

on 3=0,1.... ,n-2, we can define 3heaf homomorphisms

the following diagram with exact rows .

---- _ A n '3"i'f)---- ► 5̂ a_i(f)-----► 0
‘ 3

(s) -----► 0

a. / *~3-1 3 3

•-1/ . X ____

commutes Va, the middle homomorphism being described in Prop. 1.4.4.

If x € M-D, by taking the long exact sequences of cohomology 

we obtain a commutative diagram

r(p,<s>)— ------- *  H3+1(D ,^ a (f))
B 3

P(D,©) --------------------*• H-1+ l(ü ,^ g(ç)) •

16





3Q(D) i3 Stein, and so HP(E (D), 'S) = 0  Vp>0 V coherent 

sheave? ¿. It would be desirable to have H^(3^(D),if .) = 0 Vp?q 

Vif coherent, at least when S^(D) is open; this is not the case, 

as it is shewn in example 3 .4 .2.

In the next chapter we shall compare <A-c¡-completeness with 

other properties of open subsets of Stein manifolds, including ccho- 

molcgical completeness and pseudoconvexity, but before we want to 

give a first application of the test classes.

^6:- A Digression.

These few comments written here are motivated by purely aesthe

tics reasons and are inessential to the understanding of the rest of 

the dissertation, so that the reading of this section can be omitted; 

for this reason the style of the exposition will be less detailed.

Let M be an analytic manifold and x < M. Let z^,z^,...,z be 

local coordinates of M at x, not necessarily globally defined, U be

an open neighbourhood of x and f^.fj.....fn 4 F(U, (9) be s.t. x is •

an isolated point of the variety V ( f ^ , ..... fn). Then there exists

a germ of a n * n matrix valued holomorphic function A s.t.A = f^.

Certainly It can be proved with a patient computation that 

det. A ^ (f (f), but the following argument looks more elegant.

Since the problem i3 local we can suppose that U is a polydisc 

in En, that A 13 defined and satisfies the equation A z ■ f in all of

U and that V^.f,,.... fn) n U * {x} • Then we can construct the test

classes

Ha+^(U - $x\,i£3(z)) and fll3(x,f) € H3+1<U - fx] , SS3(f)) 

(cfr. .,»« )). Moreover the homomorphism B'ln Prop. 1.4.4 has clearly

1 •



the property that B^: "Ç(j0(f) 

tion with det A, so

■Çô ẑ ) operates by multiplica-

n_2(x»̂ .) ” det A,lin.2(x,i' = ^ n-2^det A ’̂ '

(the last equality follows from the fact that the connecting homo- 

morphisms are ©-linear).

Using the fact that, if U' is any polydisc s.t. x 6 U'£ U, 

then H?(U’ - ,6>) = 0 for p-1,2,... ,n-2, (cfr.tlOl Theorem 23),

we claim that <( n i 0. Indeed if thi3 is not the

case, a simple reasoning leads to the conclusion o(0CX»5.)| { x } = ® 

(cfr. Prop. 2.1.3). Thus, by Prop. 1.3.1, ''(u' * M  ) > which con

tradicts liemann removable singularities theorem. The claim is the

refore proved, and so also o( n_£(det A,f)| y, _ 0, which implies

that eiQ(det A,f) { 0, and so

det A ¿ (In dp : ---- ♦P(U\-fcn) ) -  P (O' , $  (f) ),

and, since thi3 is true for any U' as above, the conclusion follows.



CHAPT'-?! 2: Pseudcconvexity and Completeness.

In this chapter we revise the classical concepts of complete

ness and pseudoconvexity and state a classical theorem comparing 

them with the property of ̂ -q-completeness described in chanter 1.

1: Hartogs' Figures and Completeness.

Let A  denote the unit polydisc in and consider the open

sets

A°- = \z * A  s.t. \z.\ c | for <i=i.,2....n-1

A :< = A  s.t. k=l,,2.....n.

Definition 2.1.1:- For q=l,2.....n-1 the £■■Hartogs' figure

is the open set

Ha A  q c C N i A  k.

We give now the pictures of the ¡iartogs' figures in absolute 

space for n * 2 and for n =3.

(a) Picture of c <L"~.
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Lemma 2.1.2:- "^ery holomorphic fuction gfe ̂ (H^, 0 ) extends 
to a holomorphic function h6 r(4.0). i.e. E0(H ) - A  . Vq.

Proof:- Set 3 = 6 A  s • t. |Zj|<^jand define the holomorphic

function h^ri2, ©  ) by

‘1l(z1*z2’' ‘ ’ zn^ = 2iri
g ( t f 2 « , . . . . ( Z^

dt
At

( h. is well defined because |t| = ~ =£. (t,z0....,Zn'16 A  q£ H ).
The functions g and h^ agree on the open set ẑ s.t. [z^-g

i 3=2,3....n) n B by Cauchy integral formula and, by the unique

ness of analytic extension, they agree on H^n 3. Therefore they can 

be glued together to define a holomorohic function h on H o 3 = Aq

that is the desired extension. □

Hartogs1 figures enjoy interesting cahomological properties

that can be deduced by using the open covering <U = { A q.,a1.... a 0"\

of Hq . Since all sets in are domains of holomorphy and therefore 

so are the intersectior.3 of any number of them, u  is a Leray cover 

of and so , Vp, HP(H ,^) = H ^ U , ^ ) ,  for any coherent analytic 

sheaf on H^.

In particular, since *U> only has q+1 elements, HP(H^,$) = 0, 

for p>q and any coherent ki; a computation involving Laurent expan

sions and comparing of coefficients carried out with abundance of 
particulars in [2] p.218, shows that al30 Hp (H^,(9) ■ 0 for l<P£q-l.

tie can now prove the following

Procosition 2.1.3:- E , (H ) = A. , yet E (H N » H .----------- q-i q q' q ' q

Proof:- Take any point x« En - , the sheaf is coherent

on H^, and so by the above comments ) - 0, therefore

eiq(x)|;j * 0 and thus E^(H^) ” (l.e. is e<-q-complete ).



On the other hand, consider the exact cohomology sequence

....------ H“(Hq.-in'8-1te)>—  ± ~ H S+\ H q, % s(z))

_^n-s-l^ j,J3t tyle ¿^rect 3um of some numbers of copies of 

and so, by the above comment Hs(H^,^n 3 ±(z)) = 0 for 3*1,2,.. ,q-l, 

therefore <5 is injective : then °l g(x) j ._j = 0 =4 . c( (x )| ,_j = 0,

i.e. 5 (H ) = E ,(H ) for s=l,2,. .. ,a-l: in particular we haves' a 3-1' q
S , (H ) « "_(H ). But Lemma 2.1.2 says rrecisely that 2n(H ) = A  q-1' q O' q O q
and the proposition is proved. D

In the above oroof, E . (H ) = S_(H ) was deduced using exclu- q-1' q O' q
sively a cohomological property of H , namely from H* (H , ©  ) * 0 for 

l < o < a ,  so the same can be 3aid for the sets H appearing in the' q
following

Definition 2.1.4:- (a) An open subset of a Stein manifold M i 

aaid to be a q+1- general Harbors1 figure if HP(H^,©) « 0 for 

P“1.2.... q.

(b) D i3 said to be Hartogs’ n-complete if, for any general q+1 

-Hartogs’ figure H,^,C3, al3 o x(E(H^+^)) » 30(H^+1) £ D.

The hypothesis that M is Stein is necessary to guarantee that

2(H ) exists or that En(H , ) can be defined.' a+1 0 q+1

b 2:- q-P3 eudoconvexity and q-Completeness.

,»e recall now the basic definitions of q-pseudoconvexity and 

q-corapletenes3 . In thi3 section wo only assume that M Is an analytic 

manifold not necessarily Stein.

If x <«)D, the boundary of D, it i3 always possible to find 

1 neighbourhood U of x and a defining function U --- ► 2 of



class C s u c h  that

D n U = | y 6 U  s.t. §(y)<<$(x)J .

(see [33 p. 202). If $  can be chosen to be non singular at x, we 

say that D has CZ boundary at x and if this is true at all points
2

of we say that D has C boundary.

Let £ be a defining function for D near xi ¿0, and suppose

z^.z?....,zn are local

of |> at x i3 the matrix

t . are local coordinates of H at x: the conolex Hessian n

n

¿ Z i ^ .  1̂ l.j-:

(%$)(x) is a Hermitian matrix and so there is a Hernitian 

form called again (*i&§)(x) associated to it: (4k$)(x): iy-1— 1 

is given by

(4t $)(x) (v) = I 1 ( > 1
$ (*>

V .  V  . 1 J

V v € TxM , where v^.v^... ,vn are ttle coraPonents of v respect

to the basis ( —  , .... . ) of the holomorphic tangent space
<>zl ^z2 " Zn

T M of M at x.

It is easy to check that the Hermitian form (*i(>$)(x) is an 

invariant under change of holomorphic coordinates (see[ll] p.26l), 

and so its signature does not depend on the particular choice of

< V Z2.....zn^'
Now suppose that the defining function $  i3 non singular at x, 

then it makes sense to consider the holomorphic tangent space Tx iD 

of at the regular point x:

Tx * 3 ’ def. i V ’ r  U  Vi '6 TxM Z  i-1 |i 1ix) Vi ’ °J •

(notice that “ ^x) f. 0 for at least one index i because $ is non

2h
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singular at x).

The restriction of ( & § ) (  x) to T.^D is called the Levi form 

of $ at x and ls indicated by (52 $  )(*) : it is easy to check that 
its signature does not depend even on the choice of the non singu

lar defining function $ for D at x. Therefore, provided 5 is non 
singular at x, the number of positive, negative and zero eigenvalues 

of ( £ $ )  (x) are invariants depending only on x and D: they will be 

denoted respectively by p(x,2), n(x,D) and z(x,D) or with p(x), n(x) 

and z(x) when no confusion is possible.
p

Hefinition 2.2.1s- If D has C boundary we say that D is (wea

kly) o-pseudoconvex if n(x)£q VxeiD. (cfr.^lp. 209).

To give an interpretation of these three numbers we recall 

that if V is any complex linear subspace of T^H the Hermitian forms 

on T M can be partially preordered as follows:

if A and 3 are two such forms we say that A ^ B  (re3p. A >3) on V 

if, VveV, A (v) > 3 (v) (resp. V v  t'/ - jp} , A (v) > B (v) ).

In particular if 0 denotes the zero Hermitian form and A > 0 

(resp. A<0, A^O, A 5 0) on V, we say that A is positive definite 

(resp. negative definite, positive semidefinite, negative semidefini- 

te) on V.

Elementary facts in linear algebra say that the interpretation 

of p(x), n(x) and z(x) is the following:

Vie can split T 2>Q in three linear sub3paces V 0 V $ V « T e>D, y x r p n z x
3.t. $)(x) (or (S£ $ )(x) ) is positive definite on V and nega

tive definite on V , with dim- V « a(x) , a-p,n,z, and vanishes on V n u* ci z
2In order to define q-pseudoconvexity we need a C~ boundary; 

to get rid of this assumption we introduce the concept of q-pluri- 

subharmonic exhaustion function.

25

M • I & :?]



Here D only needs to be an analytic manifold not necessarily 

contained in a larger one.

Definition 2.2.2:- (a) A function ^  : D -----* 2 is

said to be an exhaustion function if, for all c <2, the- sets

= [ x i D  s.t. (x) < c|

a-e compact.

(b) $  is said to be a o-nlurisusnarnonlc function if, Vx iO, 

the Hessian (^&§)(x) has at least n-q positive eigenvalues.( c )  ,Ve 3ay that D is q-comolete if there exists a q-plurisub-
harmonic exhaustion function ^ : D ----- ► 2 .

Obviously $ is q-plurisubharmonic if and only if, VxfeD, there 

exists a linear subspace V of dimension n-q of T^D s.t. the Hessian 

(4(j$)(x' is positive definite on V.

For more informations about q-conpieteness see £l?3.

Definition 2.2.3:- An analytic manifold D i3 said to be 

cohomologicallv q-complete if, for all coherent analytic sheaf 

^  on D and all p>a, H^(D,V? ) “ 0 (see [17] p. ^3).

&3:- The Main Classical Theorem.

ne shall collect now in a theor-en the well known relations 

between the various concepts of completeness and pseudcconvexity 

defined so far.

Theorem 2.3.1 If D is a domain in a Stein manifold M the 

following conditions are equivalent:

(a) D is O-complete,

(b) D is cohomologically O-complete,

26

' l «I.
• &

A ■t* r ■ 4 /n



(b* ) Hp(D,0) =■ 0 for p>C,
(o) 2 is e(-O-conplete,
(d) 2 is Hartogs' O-conpIete,
(e) D is Stein (and in this case we say that 2 is a domain

of holomorphy, as if M » (En), 
oand if D has C boundary they are also equivalent to 

(a*) 2 is (weakly) O-pseudoccr.vex.

Proof:- (a) 4:.. > (e) see [ip^.

(e)e=^(b) is Cartan'3 theorem £ dii 0.2*0 •

(b)=^(e) is easy and is proved in (ill ?• 2*4-6.

(t) ==̂ (b' ) trivially.
(V )=^ (c) because if (b) is true then V’x £ M - 2, H^(2, $  (¿)) » 0 

(cfr. Prop. 3.1.3 )•

(c) (e) by proposition 1.3.1*
2

(e)=^'(a' ) if D has C boundary is proved in [ll] p. 26*4, see also 

proposition '’.2.4 .

(dX  (e) is trivial because D is itself a general 1-Hartogs’ figure 

(a' )=£■ (a) is done in case M = ffin in [l2l p. 4-9, and the general 

case can be somehow reduced to this: this implication is provei in 

detail later in proposition 3-1-2. D

The principal aim of this dissertation is to see what happens 

if we replace 0 by q in the above statement. The reason why this 

theorem appears at this stage of the dissertation, in spite of the 

fact that 3ome of the tools needed to prove the implications 
(b')=3’(c) and (a')= ^  (a) have not yet been developed, is to em

phasise the classical relevance of the problem. These two implica

tions will not be used in what follows until a precise proof i3 
given, so that the mathematical correctness of the dissertation is 

not affected.

•* V  » I
- ■ . »:
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CHAFTE3 3:- A Generalisation of the Main Classical Theorem.

6 l:- relationships between q-Pseudoconvexity and Various 

Forms of a-Completeness.

Pro-position 3.1.1 A q-ccmplete analytic manifold is cohomo- 

logically q-complete.

Proof:- Apart from sone irrelevant difference of notation 

this is the corollary on page 250 of [2]. D
2

Proposition 3.1.2 If D is a domain with C boundary in a 

Stein manifold M and D is c-pseudocor.vex then it is also q-complete.

Proof:- We shall divide the proof in several steps.
'I

Step 1:- As there is always an analytic embedding of M into E* ,

for some large N (see [lo'] p.3 5 9 ) we can suppose at once that M is
rjan analytic submanifold of £" . Choose a holomorphic tubular neigh

bourhood p : V ---► M and set D = p ^(D) (cfr.[o] proof of lemma

1 , p. 131). We claim that, niter sbrir.birg • if --ecessnrv,

(a) V xfi ¿"3 is C^ at x,

(b) If we consider D as an open subset of E-i then n(x,D) =

n( p(x),il), fnr nil x e D.i.

Indeed, since the problem i3 local we can suppose that local 

coordinates ., z_...... . have been chosen s.t.,noar x,
1 C.

M * {z a-t- z.’i-n+rzN-n+2=...."zn " ° 1  • Z1 ’ Z2 ......zn are local
coordinates of M at x and -¡¡(zyZ^.....zN) * (z^.z.,,...,zn,0 ,..,0 ).

Let U be a neighbourhood of x in I1' so small that z ,z^,..,z^
2are defined in U and that there exi3t3 a C defining function

: U - U n M --- *• 1 for D with d $ (x) i 0 and U 47.

By shrinking U if necessary we can al30 suppose that U £p ^(U).

i • ,rlf i
&
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Define $ : U  --- *- 2 by $  = $ o p i . e .  ^(z^z.,..... z;j) =

J (z^.Zj,...izn>0. • • •, 0). Then 6 is a defining function for tat 

x. Moreover

t ,, „N j. r-n £ > $ / . .[ v € t x i  s . t .  z  i=1 - i  = t i -

where as usual v = Y. */_i v<
i

¿V
¿T$ (x) i.j £ n

otherwise.

Thi3 nroves the claim.

Step 2:- So, if we suppose that D is q-pseudoconvex we have that, 

Vx in ¿2, ¿D is C2 at x and n(x,D)<q.

Consider the function p  : C
r Jî .4./., *!N

p(y)

1 given by

dist(y, 3 d ) if y 6  D 
-dist(y, 5 D) if yfcEJ - D ,

Where dist denotes the Euclidean distance. Since Vx «3D,5d is C 

at x , we can conclude that there exists a neighbourhood U' of e>D 
N 2 /in £ on which p is C ^see appendix on page 61).

By shrinking U’ if necessary, we can also suppose that Vy in 

U’ there exi3t3 exactly one point c(y) e 3DnU' which is the closest 
point to y under the Euclidean distance, that dp(c(y)) t 0 and that 

n(c(y),D)^ q .

let : U' n D ----► B be the function v£= logp : we claim

that the Hessian »f) (y) ha3 at most q positive eigenvalues Vy.

Indeed suppose that this i3 false, i.e. there exi3 t3 a point 

y in U'n 0 3 .t. (<^y)(y) has (at least) q+1 positive eigenvalues: 

according to the remark on page 2 5 .there exist linear coordinates



^ l ’̂ 2....of E1' s.t. the Hernitlan form given by the matrix

a+ 1jk 1 j,k=l[ r >a- ( l z<£(y) \ q +1

i>t .^t. / j.k-iJ K

is positive definite on the linear subspace V of T. = <E‘* spanned

vv (iL A  A  )
Y ....* V i  ‘

By Taylor's theorem we have

*<y + E  j-i "j it? = l0? P (y + £  j3 "j |t,} ' l0« P (y) +J J

»• <n:i *ih * n r «  v i> >  * xss* v* * ««•*>.
where a <)<£ V $ f v '.■=# —  (y) and b , - *v*n—  i - ¿ v  jk at,a*k

has th~ property that lim^ o ?.

are constants, and 0 (|t|~)

M  2)----- - » 0 and 30 also

lim oi It l2) itr
t — h► 0 «r-q+ 1 r . r

J.k Cjk 'j'k
= o .

In order to simplify notation omit the limit.3 of the summands 

and write A(t) » y + 1 1j pr , 3(t) ’ exr( £  + £"bjk tjtk).

Then the above equality can be written as 

p  (A(t)) - p(y)|3(t)| - {exp( 21Cjk tjtfc + 0(|t]2))- l}p(y)l3(t)|

+ 0'(|t|2)} p (y) | B(t)|, where the last equality is
2

obtained by expanding in Taylor series the function exp and 0'(|t| )
2the same properties as 0(|t| ). Then one has Urn - P ( y ; l B ( t ) l  ,  p (  ) ,

‘- " Z u k V - ,

so we can choose € > 0 small enough 3 .t. V t ,  |t|< £ , one ha3

(a) A(t)fiDnU' and

(b) p (A(t)) - p(y)|3(t;|>^d • Z  Cjk tj”k.

Set u ■ c(y) - y and define an analytic function T on the



open ball 3t = \t 6 it14'1 s.t. \tl < :
_NT: 3. is given by T(t) = A(t) + u fl(t).

/SX
We can also suppose that £ is so snail that T(t) & U’ if 

t 6 , Then it is easy to check, and a picture shows how, that if

t & B£ one has

(c) p (T(t)) >  p(A(t)) - lul|3(t)l >, I " jk tjtk >0,

This in particular proves that T(t) 6 D for all t 6 3^ - i-i 

and, since p(T(0)) - o(c(y)' =0, 0 is a nininum for the function 

p o T  : ---- * 1, and so, taking partial derivatives,

^P»T(C' = 0 for all o=l,2 ,...,q+l.

Using the chain rule and the fact that I is analytic we have:

!bp
zh

In other words the vectors ^ 7—  (0), j=l,2,...,q+l , are in

W  Tti i k {c{y)) S (0) =0for j = 1 ’ 2 ....q+1-
Moreover, Vt in 2, we have

/ n -r-o+l i2P«T(0) . T ^ lul v q +l e * T(e) Ij.k-i v NT Vk > Ttj,w CjkVk-d t ^ t k

To prove this we first observe that it is clearly enough to 

check it for snail itl .

Tron the above inequality (c), using Taylor series, we deduce 

H e ( Z  djk tjtk) + £ & P °T^  tj \  + Cjk tj \ ’J «1 1j d t^

i'p% T(0)for all t 6 3 , where d,,fc. J* atj
are constants and 0 "([t|~;

has the sane properties as 0 (|t| ).

Then, after reducing £ if necessary, we have, V t «3^ ,

M f  i ,  t . t j  + I  h2p° TL°- t . t  >  J g i  Z o,.  t . t ,
' u jk j V  it it, J k 4 J* J k
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j

it» tj for 0 < 9i2jf ; writing t' in the above inequality

and observing that the second and third term are unchanged under the 

substitution t — * t', we deduce , Vs,

M  *i2e I d *  t.tk) + l i ^ 2 l t  tk > I f  £ c , k t.tk ,J.W J .< at . 5 t. J * JK J k
J K

and by choosing 9 so that the first tern is negative we prove the 

inequality (e).

Using again the chain rule and the fact that T is analytic we 

have that the Hermitian form

f T  N| h,ra=

q+1

=1 H^"n 1 h*-
is positive definite.

/ <) 'pf c (y) ) \It follows easily that the Hermitian form I •
\ ¿5 s. ^ z / h,m=lm

is positive definite on the linear subspace V of .¿D spanned by 
c) Tthe vectors —r—  (0) , j=l,2,.... ,q+l ; in particular it follows au-
^ J

tomatically that these vectors are linearly independent, so that 

dinijj, V » q+1 s but since -p is a defining function for D at c(y), 

we have that n(c(y),D) ^ q+1 and this contradicts our hypothesis, 

so that the claim i3 proved.
*■' 2Step 1:- By restricting if to O' n D we find a C function, called 

again tp : W = U' n D ---- ► 2 3.t.

(a) lir ' SD <f (y) - OO ,

(b) (<&<f) (y) has at most q positive eigenvalues Vy in rf.

Let F be a closed subset of M 3.t. D - W £ int F c F s D  , 

and let o+ ^¿lbe a C bump function s.t. "} ■ 0 on F, ^  ^

in a neighbourhood of M - D , and suppose that F is chosen so that 

‘f (/) $ 0 for y $ F.

By considering the function ^ ^  , we hive that

12
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(a) lim.  ^ tg’ (y) ” - OO .

(b) (4t«f) (y) has at most q positive eigenvalues Vy<3 - F,

(c) <£'$0.

Now we use the fact that M is Stein and so O-conplete (see 

theorem 2.?.l)l.e. there exists a O-plurisubhamonic exhaustion 

function y  : M ---- ► 1.

V r. 6 3, the set | y fe M s.t. X(y) < n̂  is compact,
therefore so is F n K  and there exist constants C s.t, n n

cn C&XKy) - ($<£')(y) > o  Vy 6 FoKn .
How choose a C. function f : 2 ---► 2 with the rroperties

(a) f'> C, f” > 0 always,

(h) f' (r) > CT£r +̂1 , r, where 3(r) denotes the inteirral 

part of r.

(c) f'(r) > Cq V t , and consider the C~ function 

H  = f . X - y  : D ----•» 3 .

First we notice that, Vcti, 3^ = |y 6.D s.t. % (y) * c^ 

is contained, by the property (c) of cj' in £y feD s.t. f « X (y)i cj 

which is conpact by the assumptions on f and X . Moreover 3 is

closed in D and, since limy -¿>3 <f' (y) oo , it is also clo

sed in M. Thus Bc is conpact and X  is an exhaustion function.

For all y 6 3 we have

C#K)(y) - f "(X (y ) )• A(y) + f  (JL(y)). (%  X )(y) - (4ft *•)(/).
(c)X \ I y n
~ ( y ) ,y r ‘(y)yi, j=1 i3 a senipositive Hernitian 

form. If y 6 3 - F then there exists a linear subspace V of T.3, of
j

dimension n-q where )(y) is positive senidet’inite. Therefore

(d8(^)(y) i-3 positive definite on 7.

3?

r. r {•J'
1 ^  . 1
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If y * ?  then either yfiK^n F in which case

C*X)(y) > f(X(y)) (&X)(y) - (1&<£')(y) >

C0 (4&A)(y) - (4&<f')(y)> 0 ,
or y e(K , • 8 )(l F for some integer nsC, in which case J v n+1 ny 5 ?

f'(X(y)) > Cn+1 and so

(<&*)(y) > Cn+1 (*X)(y) - (&¥')(y) ? 0.

Therefore $  is also q-plurisubharmor.ic and we can finally 

say that the proposition is proved. O

Proposition 3.1.3:- If K^(0, G) - C for p>q, then for all 

x é M - D, r.S(D,t£3_, (z) ) = 0 for s>q.

Proof:- Since £̂> „(s') = 0  the conclusion is vacuous un- ----- n-2 — /
less qi n-2, and so assume that this is the case and, in particular 

that Hn'1(D,£)) = 0 .
The long exact cohomology sequence associated to

o — *-£s(z) — * c

together with the hypothesis shows that

HS(D,^s_1(^) ) —  HS+1(D, ¡é a(z)) for s*q.

Thus H3(D. SSs.1( s ) ) ^ H n“1( D . ^ n.2(z)) = Hn-1(D, Q  ) = 0.0

Proposition 3-1-^:- If H^(0, (9) 3 0 for p>q, then 2 is 

-q-complete.

P^oof:- By the above prop.k V x « M  - D , H^+^ ( D , = 0 

and so o| ^(x)|^ = 0 . 3y remark 1.5-2 D is o( -q-complete. □

Proposition 3.1.5:- If D is c( -q-complete it is also Hartogs* 

q-complete.

Proof:- By what remarked just before def. 2.1.^ we know that,

for any general q+l - Hartogs' figure H , 3-(H .. ) “ E (H ).qri « q q+1

>1+

<?*• '
. . i -  . . • *  >: &



So if H CO, q+l~

= S0(V l } = *̂q(Hq +1} * £q(°) ■ D*

where the last equality is by assumption. Therefore D is iiartogs* 

<3-complete. □

To proceed further we need a result due to Andreotti and 

Grauert: we drop again the hypothesis that M is Stein.

Proposition 3.1.6:- Let M be a complex manifold, D an open 

subset of M , x a point in the boundary of D, U a neighbourhood

of x and .̂-U 3 a C defining function for D in U s.t. the

complex Hessian (4&Cf)(y) has at least k^2 negative eigenvalues 

for all y in U. Then there exist arbitrarily small open neighbour

hoods Q of x with

(a) Hp(DftQ,©) = 0 for l<p<k-l and

(b) The restriction map I* (Q> ©  ) ----- * f*(D n C,., Q  )

surjective.

Proof.- See [2] , proposition 12 , p. 222 . □

To use this result we come back immediately to the case when 

M is Stein.

2Proposition 3.1.7:- If D is a domain with O' boundary in -a 

Stein manifold M and D is Kartogs’ q-conplete then it is also q-pseu- 

doconvex.

Proof:- Let x be any point in the boundary of 3, U an open

neighbourhood of and tj):U 

in V with d1J>(x) / 0.
r r f . j —

1 a defining function for i)

2
5 is any C function then

fCJ'x,; .A(x, - f

fT T * * <**•”-
■Tf-

'»■r* f t y i iMi j a n yun*“{
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where A(x) 1t>v. v a *  \n- I ---- x) ---(x)f is a positive semidefinite
\y-i i>zj /i.j-i

Hernitian form vanishing on TxiD and positive definite on the conn-

lex line spanned by the vector v » ( r“ (x). r ~ ( x).... >T"t H x ')d-T a z2 o"n
/ \ — f't,In particular choose f given by f(t; = -<? ' where c is a

constant in 2 s.t. c > 0  and 
* 2 

nr  . 5 1 w i x (»)
1 , J ' 1 S s l d l j i_l C«I)(Xi(»j

c >
7 »  /i>Me 2 f ¿v.

A(x)(v)

Then fo^ = -e is a defining function for D in U.

Let V be a linear sutsnace of T D, with dim, V = n(x) (see

renark on page 25 ), where (•ftip )(xj i3 negative definite and let
V be the linear subsoace of T M spanned by V and v.x * n

Then V has dimension n(x}+l and if w = u + X v  .for none 

u < Vn and some Afil, is a non zero vector in V then

(<3£ f.'J» ,(x)(w) = ( ^ - e - r^;(x)(w) =

-c2 e-e ^ x>. A(x)(w) + c e-r-yfy-' ( < f c Y ,( x ) ( w ,  - c e _ c ^ z ' j - c  A(x;(w) + (<i^'5')(x)(w)| =C - c |A|2 .A ( x ) ( v ,  -  ( < $ ^ ) ( x ; (u) + |A|2 (<3g Tj>; (x) (•/,}.
How either X = o and u t 0, in which case we are left with 

the second su.omand that is negative, or X< C and by our choice of 

e wr. frr;t erain a negative result. So we have proved that we can 

choose a defining function for 0 in U whose conplex Hessian at x 

has n(xy 11 negative eigenvalues) by continuity, after pechaos 

ur.rin>inr. IJ «>• find that (4t-o •,(’/) has nix,* 1 negative eirer.-

v i I ues ' or a !) / ( N.

n#' i
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So if 9 in not q-pseudoconvex, i.e. there exists at least one 

ooint '&bj with n(x) j q+1 , we can find a defining function whose 

Hessian has at least q+2 negative eigenvalues in a neighbourhood 

of x . So we can apply proposition ".1.6 with k=q+2 : if Q is as 

in the p-opositian, DhQ is a q+1 general Kartog3 ' figure by (a) 

with Jf (3(0 a Q)) :£ 0 by (b) and so D is not Hactogs1 c-complete 

and the proposition is proved.D

In the above proposition M needs to be Stein because otherwi

se the definition of Hartogs' completeness does not make sense (see 

remark a+'ter def.2 .1 .̂ ), but since the problem is local the above 

■proof applies actually to the following more general statement:
olet D be an'oren subset with C~ boundary of an analytic mani

fold M; if 1^x3 i)D there exists a Stain neighbourhood U of x s.t. 

U n D  is Hartogs' q-complete (the definition make3 sense now), then 

D is q-pseudoconvex.

y2:- Inextendibility of Cohomology Classes.

In this section we discuss inextendibility questions analogous 

to those u3ed in the classical definition of domains of holomorphy.

Again M does not need to be Stein , so in what follows D is 

an open subset of an analytic manifold M.

Following Andreotti and iforguet ([3] ,p. 199), we introduce, 

for any point x ¿¿3 and any analytic 3heaf on M, the ® x-module3

Hr(D,x,^) - lim Hp(DnU,£f).

Hp(Dw{x),y’) » lim Hp( D y C, ) and

Hp (tf) - lim Hp( U ,$),

***’• t n ^ j 7 f f t T



where the direct linit3 are taken over all open neighbourhoods of x. 

Notice that

Jfx if P * 0
0 otherwise

There are restriction mans:

yu: Hp(D,ÿ) -----► Hp(D,x.tf),

p : HP(D U }xl , y  ) ---V HP(D,tf ) and

X: Hp(^) ----- *■ HP(D,x,g).

3y taking the direct limit of the usual Mayer-Vietoris sequen

ce we obtain an exact sequence

HP(D,©} which does not extend through x (cfr. [l] p. 138).

For q = 0 this is just the classical definition of domain of 

holomorphy, but for q > 0  there are many domains that are not q-do- 

mains of holomorphy for any q; we provide an easy

Fxamnle 3.2.3:- Let ZT bo the closed unit polydisc and 3et

3  zn - 2T • Choo3e x - (1,0....,0) ; if 0 is a neighbourhood

of x small enough, U a D is a domain of holomorphy, and therefore, ^ p > 

Hp(D,x,©) - 0 and it follows from the remark after def. j.2.1 that

called again the Mayer-Vietoris sequence.

Definition 3.2.1:- A cohomology class ^ e H p(D,^) is 3aid to 

be extendible through

From the Mayer-Vietoris sequence it follows immediately that,

Definition 3-2.2: We say that D is a q-domain of hoiomorrhy 

if, for all xfi J)D, there exists p$q and a cohomology class ^  in



every cohomology class in Hp(D,0) extends through xj moreover every 

holomcrpnic function on D extends through x by Hartogs' theorem, and 

so Û is not a q-dcmain of holonorphy for any q. This D does not have 

C boundary, but the corners can clearly be smoothed without destro

ying the example.
2Proposition 3.2.4:- If Û is an open subset with C boundary 

of an analytic manifold M and D is a q-domain of holonorphy then 

0 is q-pseudoconvex (cfr. Prop, 4.1.4 and 4.1.5;.

Proof:- The same argument used to prove prop. 3.1.7 with infi

nitesimal modifications shows that, for all x<ào, the map

A :  H?(<9) » H^(D,x,©) is surjective for p$n(x)-l,

(cfr. also [3], théorème 1 , p. 20"5 ), and so if, for some point 

x « bO, n(x) £ q+1 , using the Hayer-Vietoris sequence, we deduce 

easily that

p: h’(Du M  , (9) ----*■ H?(D, ©) is surjective for p^q,

and so 0 is not a q-domain of holomorphy.n

^3:- The Main Theorem.

In this section we collect together the results of this chap

ter to prove the following

Theorem 3.3.1:- Let D be a domain in a Stein manifold M, and 

consider the following statements:

(a) D is q-completo,

(a') D is o-pseuioconvex ( if D ha3 C“ boundary),

(b) D is q-cohomologically complete,

(b') H?(0,©) - 0 for p>q,

***•***• t ■ ■ . ‘*T< ->* f t r  . * 4



(c) D is c(-q-conplete,

(d) D is Hartogs' q-complete,

(8) D is a q-domain of holomorphy.

Then (a i-— >■ (b)=^ (V ) = *  (c)=>(d)

(a), (a' ), (b), (b'), (o) and (d) are

low from (e).

Proof:- (a)=^(b) by prop. 3• 1 • 1 ;

(b) ==^'(b') trivially;

(b' ;=^(o) by prop. 3 .1 .U;

(c) ^ ^  (d) by prop. 3 . 1  • i.

If D has boundary than

(i)=> (a* ) by prop. 3-1.7:

(a.')=^ (a.) by prop. 3.1.2, 1 e

v^:- Counterexamples.

Now we discuss some counterexamples to the missing implica-
2tions in the above theorem when jj does not have C boundary, preci

sely we shall prove that the implications (c, ~ >* (b‘) and (e)=^b' ) 

a"e not true in general. The most interesting examples of 3uch do

mains are complements of analytic subvarieties for which we have 

good tools to compute cohomology (see flOj).

Pro nos ition 3 • ̂  - 3.: — Let V be an analytic -subvariety of a Stein 

manifold M, and suppose V =* U  V . is a reduced decomposition of V 

in irreducible components. Moreover assume that for all and any 

Steir. subset U of M, HP(U - V̂ , 0) -> 0 unless p - 0 or p « d .- 1,

where d, is the codimension of V. (this hypothesis is not artificialJ J
3ir\re it is satisfied, for instance, if all V are geometric comrla-



te intersections, see flO] , theorem 23 ). 

Let D * M - V , then

V J-' H ‘ d.^q+l Vj -

Proof:- If x é Vj and dj ^ q+1 then Ĥ (>! - 7 É) ; = to? p > q,

by hypothesis, and so, by prop?. 3.1.3, Hq+i(M - V.,Jb (¿)) = Oj in

0. This moves

u

particular «I (x)|.. y = C and so also °̂ a(x )| j 

that S (D) £ M - U  ,, 7. .qw  d .$q+i J

To show the reverse inclusion surpose x a V, - , ty V . ,* r— J
J

for some k with d,__ > q+1 . Choose a Stein neighbourhood 0 of x so

small that U n  V» “ t- Then H-(U - 7^,(9) “ 0 -or 1 $p<q*l
J

and repeating exactly the same method as in proof of prop. 2.1.3 

we may conclude that Eq(U - V^) = 2q (U - V^;.

However E_(U - 7, ) = Tf E(U - V. ) = U by the Riemann removable 

singularities theorem since d^ÿ 2; so, as 3 2 U - V^,

x a  U = S0(U - Vk) = 2q(U - Vk) ç Sq(U) 

and the rrorosition is proved. □

Examr1e 3.6.2:- Let M - Œ , V = V 0 V,

V1 = ^z é E T 3 ,. t. z^ * z^ = ü] and

V2 ’ | z i. s, t . zj = \  areare two planes.

Then it is easy to see, with a simple application of the Hayer- 

Vietcris sequence of M - Vq and M - V7, that H^(3, 0) f- 0 (see fl?3 

pp. 7 ). By prop. 1.4.1 however, we see that Eq(D) = D, so 3

i3 —1 ̂ complete (and thus Hartogs' 1-complete too). Also, since 

V may be defined by three analytic functions ( z ^ ,  Z2Z<|. Z2 Z3 + zqz4.) > 

it follows (see [173 , Prop. 2.6 , p. 6 3 5) that D is 2-complete.

Thus D is o(-l-co,nplote but nothing better than 2-compiete

■*". 1 ï
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and cohomologically 2-complete. In the notation of theorem 3-3.1 

(c;=7^ ( b ’ ).

This example also provides a negative answer to the following 

two natural questions:

(1) is it true that a q-domain of holonorphy i3 cohomologically 

q-complete?

(2) is it true that if D is a q-domain of holonorphy then, 

for all xaiD and VJ«K-(3.0 .* T ,- 3 extendible through x if • ,r?

Here (2) is a question weaker than (l) and both have a positive 

answer if a - 3 (see theorem 2 .3 .1 ) or if 3 has G boundary ( see 

theorem 3 .3 .1 ).

However we claim that the domain D constructed above is a 1- 

domain of holomcrphy but there exists an element of H~(D,0 )  which 

does not extend through the origin.

To see that D is a 1-domain of holomorphy fix any x i.n V 

and consider the following commutative diagram with exact rows:

---- H !(3,ft2(£ »  — H’-(D,S50 (z)) — i — H2 (O.J?1 (j))

, K , k , . k.
' H-(D,x , (z) ) H2 (D,x , &  (a)).

Now, since 2,(0) » D and E^(3) = G by the Riemann removableX O
singularities theorem (or by prop. we have that i* 0

yet o( (x)|fl - 0. But 5 (°(c(x)| Q) and so there exists

an element ^ «.^(D, ̂ 2(z)) such that o^X)l 3 1

If A is any polydisc neighbourhood of x, exactly the same 
argument can be repeated with A  instead of (E '. Therefore:

U( d 1 (x),3) - 0 , y*(o(0 (x)jD) / 0 and so ^t(^) t 0.

By the remark just after def. 3.2.1 and identifying %" with 

(£k , we have that one of the components of ^ doe3 not extend through

• V -H i* \ W. • ■ r ^ T i t



x, therefore D is a 1-domain of holomorphy. At this stage we can 

already say thit the answer to question (l) is in general no, or, 

with the notation of theorem 3.3-1 • (e )=7^(b' ).

However we can proceed further to answer question (2).

First we observe that an easy application of the Hayer-Vieto- 

ris sequence shows that

H2(D,0) ^  H3^  -

Consider now the commutative diagram

ifto.«)— 2 -—  hV  - h i . © )

V  . . P*
H2(D,x ,0) ------ V H3 (<E4 - }c\,x,0)

where x is the origin.

By prop. 3.4.1 SgCC1* - [c\) = so that c(2 (x) 6 

H-^C^ ~[o],iS2(z)) is not zero. If A  is any polydisc neighbourhood 
of the origin we can replace I with A  in the above argument and 

we obtain the same conclusions, therefore ^i(ol2 (x)) t 0 and so 

also yt.ijf1 (c( 2(x)) #= 0 . As before, Tjr*1( c( ,(x)) turns out to 

be an element of H2 (D,<$) which does not extend through the origin, 

and the answer to question (2 ) is again no.

3



CHAPTER 4:- Th* Inextondibility Index.

tie shall now discuss further the concept of inextondibility 

of cohomology classes.

^1:- The Inextendibility Index.

In this section again we merely suppose that D is an open sub

set of an analytic manifold M.

let ^  be any analytic sheaf on M , x«dD and suppose that, 

for son'’ p £ 0 , the map XsiC(SS) ---- ► H?(D,x,tf ) is not surjec
tive; then we can introduce the following

Definition 4.1.1:- The inextendibilitv index of 3  at x is 

the non negative integer

H^O.x,^) - 0 , so X i3 always surjective and k(x,^ ) cannot, be

well defined. Indeed, since the problem is local, we can suppose

k( x, ̂  ) = m:

The hypothesis needed to define k(x,S8 ) i3 not always satisfied 

even for a coherent shoaf «5 , for instance if D =* dn - , and g

i3 the structure sheaf of the subvariety jx} of £n, then Vo^O,

even for a coherent shoaf

defined; however if ÿ  is locally free near x, k(x,^) i3 always

can be defined and we have the following



Proof : - Let U be an open neighbourhood of x so small that

U S  A and = 0 . Then there exist holomorchic functions

h,,h_,....h in ÎVUoD.S'i s.t. T  ? , z.h. =■ 1 and so also
1 2 n i=l l l

„ 7 ” , z.h. = 1. It follows that for at least one index i M •—  i=l i i
in A , because otherwise we get a contradiction evaluating 

both sides of the above eouality at x.n

3v (a local version of) prop.3-1*3 the hypotheses of the above 

lemma are in particular satisfied if H*(D,x,©) = 0 for p^l, and so,

recalling that H^((9) = 0 for p£l, if X: H^((9) ----* H?(D,x,0/

is sur.'.ective for p £ 1, then necessarily k(x,©) = 0 .

If for a point x<e SO and for an analytic sheaf a coherent in 

a neighbourhood of x, k(x,g) is well defined, there exists a rela

tionship between k(x,^) and k(x,©), which we shall denote simply 

by k(x): to make this precise we recall that if if is coherent in a 

neighbourhood U cf x there exists a free resolution of in U, af

ter possibly shrinking U, of the type

0 _ ^  e ’ d - ( 9 V U . . .. —  ©? 0 — ------„ 0

for some d $ n  (Hilbert syzygy theorem, see[11] p. 74).

The smallest d for which such a resolution exists is indicated 

by t(ff) and called the homological codinension of (see [2] o. 197).

Proposition 4.1.3:- If k(x,^) i3 well defined then

5<(x,^ ) ? ’<t(x) " )•

Proof:- Since the problem i3 local we can suppose that M i3 a 

polydisc A S En and that A  has been chosen so 3mall that there i3 

a free resolution

o _  ..... —  ® ? 3 JUif — *. o

of i f  in A with i » d (JJ). Also we 3 uppo3e that k(x) ^ d+1, othor-

4 5



wise the problem is trivial.

The hypotheses are

(a) X = H°((9 ) ---- ► H°(D,x,©) is surjective

(b) HS(D,X,6>; = 0 for li3 ik (x )- l ,

and we want to prove that

(a') ------ 1 H^(D,x, ) is surjective and

(V) H3(D,x,$) = 0 for l£sik(x) - d;c(^) - 1.

In order to do this we split the above exact sequence into 

short exact sequences

0 --- © ‘s_1---------------- -----------*• 0 ,
3  S — i

for s=l, 2 .... ,d, where ^  = 0  ' and = 'S .

We have a long exact sequence of (local) cohomology

.. ..--- r H- (D,x, (9 ° _1) -- *■ Hp(D,x, ) ---

--- »• Hp+1 (D,x,ftj --- » Ĥ >+1 (D1x 1 (9'3"1) ---*•....O
from which we deduce, using the hypothesis (b),that

H?(D,x ,^js_1) —  Hp+1 (D,x,-fe_) for 1 *p$k(x)-2 and in

particular for l ^ P S d - 1 ; so that

H?(D,x,^) - Hp(D,x,^0) ^  HP+d(D,x,-^d) - Hp 4d (D, x, © ?d) .

But for p£'<(x) - 4 - 1 , Hp+d(I),x, Q  d ) = 0 by (b) ani there

fore (b1) is proved.

Similarly we have

H1 (D,x,'fc, ) Hd(D,x,%d) ’ KJ(D,x, 0  d) - 0 since d i k(x) -1 . 

Therefore, by considering the commutative diagram with exact

column



wise the problem is trivial.

The hypotheses are

(a) -----► H°(D,x,©) is surjective

(b) HS(D,X,6 >) = 0  for lis5k(x)-l ,

and we want to prove that

(a') ) ------ '+ H°(D,x,^) is surjective and

(o') H3 (D,x ,^) = 0 for 1 ¿s ¿k(x) - dx(^) - 1 .

In order to do this we split the above exact sequence into 

short exact sequences

for s=l, 2 ..... d, where = O  d and ^  .

We have a long exact sequence of (local) cohomology

------- r H* (D,x, 0  °-1) ---» Hp(D,x, fe,_1) ----

--- »• HP+1 ( U ,x.%J --- * Hp+1 (D,x, 0  ‘S"1) --- ♦ ....O
from which we deduce, using the hypothesis (b),that

H?(j,x,‘̂ J,_1 ) —  Hp+1 (D,x,-fe_) for 1 ¿p ¿k(x)-2 and in

particular for l^pjjd-ls so that

HP(D,x,tf) - Hp(D,x,^0 ) ^  H ^ U x , - ^ )  = Hp 4d(D,x, © Pd) .

But for p£'c(x) - d - 1 , Hp+,i(D,x, ( 9  d) = 0 by (b) an l there

fore (b1) is proved.

Similarly we have

Kl(D,x,'fc, ) -&■ H'i(Dfx , % 1) - Hd(D,x,0Pil) - 0 since d i k(x) -1. 

Therefore, by considering the commutative diagram with exact

column

••• Ik



H1 (D,x,%  ) - 0

and the hypothesis (a) we see that also condition (b') is true.O

The first three lines of the proof of prop. 3-2.4 establish 

a relationship between k(x) and the behaviour of 0 near x, namely 

they prove the following

Using the Mayer-Vietoris sequence we deduce easily that

p : H^(Dvix},©) ---* H P(D,©) is surjective for p^k(x)-l,

and so we have the following

Frorosition 4.1.5:- If D is a q-domain of holomorphy then, 

for all xfedD, k(x)^q. □

Prop. 3.2.4 follows from these two propositions.

It is natural to ask if n(x) is always equal to k(x)[ we shall 

provide an example to show that this is not always the case.

It is clear that we must try an example with degenerate boun

dary (i.e. z(x) f 0) otherwise n(y) * n(x), Vy^Ufld, where U is a 

small enough dtein neighbourhood of x, and so U n D is n(x)-compl.e- 

te (see [l/lProp. 2.4, p. 4 >4) and then H°(3,x, 0 ) = 0 for s>n(x), 
which implies k(x)in(x).

tie also need 3ome more material.
Per"init-ion 4.1.6:- An open subset D S 2n 13 called a tuba if 

the-o exists an open subset ®>(D) is 2n, called the base of D ,

s . t. y< J Pe y w  ( D).



If B is an open subset of in wo indicate with ^ ( 3 )  the tube 

in Gn with base 3. The convex hull of 3 is the smallest convex 

set containing B, and is denoted by ch(B).

We know (see [l2l p. !H  ) that if D is a tube then E(D) = 

<fc(ch(6 (J)), and if we have an open neighbourhood U of the origin 

in ffin of the type U = |z s.t. He z 6 3, |lm z|¿ Í, for some open 

neighbourhood 3 of 0 é £ n and some £ > 0^ , then E(U) = ^ z s.t.

Re z fech(3), |In z|<i}.

We are now ~cady to produce the following

Exanclo k . 1 . 7 L e t  --- * 3 be defined by

^(yyy?) = (He Mp) - pe y2
and set D = ^y s.t. C£(y) <£ 0 J. An easy computation shows that 

n(y) = a(y) - 0 , p(y) = 1 for He y ^  0, 

n(y) = 1 , z(y) = p(y) = 0 for He y, <0  and 

n(y) = p(y) = 0 , z(y) = 1 for He = 0.
2

D is a tube and the above remarks show that 3(D) = G , and 

that, for all open neighbourhoods V of the origin, 0S£(D<i.i)i i.e.

that X: H°(0) --- *’H°(D,x,©) is surjective for x = the origin.

This means that k ( o ) ^ l > C  = n(0).

How suppose again that M i3 Steins the following question has 

clearly a positive answer if q=0: Is it true that in the last non 

vanishing cohomology group H^(D, (9) there exists a cohomology class 

which does not extend through at leist one point of 5 D?

We can give a positive answer and even something slightly bet
p

ter if D has C'~ boundary.

Theorem b-.l.S:- Let D be a domain in a Jtein manifold M s.t. 

HP(D, ©) ’ 0 for pyq , but H<1(D,©) t 0 ¡ suppose that for some



point x 6 j>D,'<(x) ̂  q (this is always the case if D has C boundary 

by theorem ’’.3 . 1  and prop, d.l.^) ; then

dim,, jU.(Hq (D,S) mod( \(i£(d) A U  (Hq(d, ©  ))) - CP .

Proof:-To simplify the notation write G = yu.(H' (D,6 ' .

notice that G = 0 if q^l.

Suppose that dimr ^ ( H ‘(D, ©) mod C = k < ep . Then also 

din, ( Ja. (H°(D,< 5 ) mod G )" ■ k !l = a < «» , for il =(,_^_1) .

Take global sections z-^z,.... . zn as done at the end of page

7, ar.d set f̂  - f, ~ z j for ,...,n.

Vie can consider the test classes <k f) 5 HS+ (D,«§3(f)),
for j=0 ,l.... n.

The hypothesis together with prop. 3<l-3 3ay that Hq ^(D, i£^(.f)) 
vanishes and considering the exact sequence

n-q-1, _n \ _Hq(D, % n"J- (f) Hq(0 ,

we deduce that there exist elements .... in (Hq(D,©))

Ha(D,-fcn"q"1 (f)) s.t.

(a) Y(ntj) = d q_l{h i,r)\a .
A

,/e claim that the vectors " def mod g J "=Q

are linearly independent: this would contradict our choice of m.

So let ..........c be complex numbers s.t.
0 1 n

(b) E.H> cj / (<vl.5) a 0 -
Wo shall treat separately the cases q = 0 and q>0.

Case (l) 5- q = 0. In this case N » n and equation (b) means

23 ! - 0  " X(h 1 (h2 .... hn) for some 1*1 ,..,n.

if «1- - (g,1./J ’,.., . ) we have

«i



(0 Z jo = ^ hi> for i=1’2....n-
Equation (a) means

Z " ? -> 3i s ^1 = zij f°r 3=0,1,
n+ 1 1
L S 0 + . ,ra.

(actually there might be some minus sign appearing in front of th=

g. 's depending on the choice of the identification of (D, (9 )nJ
with r(3,"fcn” (f)) but this is clearly irrelevant).

From this and (c) we obtain

( i ziJ:d  ̂ O -** > = z j

^  r o1!
r

( - \ , ST n
c; } + Z  i- 2

n+i \ (
(V
nl' + r ; . 2 z. >(h.

j-o cj + ^ i =2 zi ^ (sj1}] =

So we have the equality

( i )  ^ Z % 0 c ,  2 ^ )  -  z1!!1+1 X(hx ) + Z  ” »2 ^ M ^ ) .

By the uniqueness of analytic continuation we obtain that the 

equality

rm j m+ 1 , , -c- n ,
j-o cj 3l = zl hl + 2 . i = 2  zL hi

where h^ is a representative of lu , V  i, holds in a neighbourhood

of Xi deriving both sides j times with respect to z, and evaluating

at x we have c. = 0  and the claim is proved.

Case (2)!- q>C. In this case (b) neans 

Z y - o  .) = 0 which implies that

I  j-o <*ij’l'lD > “ °*
If q^2, k(x)^q implies that H°(D,x,©) =* 0 for s - 1 , 2 ,.. ,q-lt 

and us ing the exact sequence

C * H3 (3,x,fcn“8"1 (f)) --- ♦ Hs,(Olx,i?3 _1 (r)) ---r H3 ,1 (D,x,i?a(f))

*1



we obtain that

(•) T j - 0  “ °’

and if c=l, (e) is the last inequality appearing above.

Fron (e) it follows that there exist elements 

in r (D, 0  ; s.t.

Z1
71+1

gl + T  :1 4- i -2 Z . g, = ( r to  c j
z ^ )

(see the above renai’k in brackets), but, since P(D,x, © ) - x ( < 9 :V
because k(x) > 0, we can find h, ,h2 ,..... in ©  s.t.

X X(n,) = rr
'Ji

\ f i , and '.•¡3 obta  in a.^ain the equalit y (d) from which the conclus ion

fo1lows in the sane way. thus provin g the clai: and with it the

theorem. Q

The Analytic Touching iiumber.

;is introduce another invariant motivated by the following

F-ooositicn 4.2.1:- Suppose that D is an open subset of an 

analytic manifold K and that D has C2 boundary at x* ¿0. Then there 

exist an omen neighbourhood U of x and s analytic functions 

in r < U . 8 ) .  foe s = n(x) + z(x) r i (= n - p(x)) s.t., writing

7 - \ y « u  s.t. g1(y) - e2(y) -■= — 3 s ( y ) = >

we hav- 7 A 3 = { x j ,  i.e. V * vac ho.: 3 at x.

P^0 0f:_ .'no [¡1 , Prop. 6, p. 209-Q

DiV'inition 4.2.2:- without assumptions on the boundary, the 

analytic touching number- a(x) of D at x is the least s for which we 

ran find s germs of analytic functions g,,g.,,. . . in <?x which 

.lofinc a subvariety V touching 3 -at x as in the above proposition.



Prop. 4.2.1 shows that a(x) ^  n(x) + z(x) +1. A lower bound 

is provided by the following

Theorem 4.2.':- a(x) ^  k(x) + 1.

Proof:- Suppose that .... g3 are as in definition 4.2.2

and that is a representative for in a small Stein neighbour

hood U of x, H i, s.t. D a V = fxj and so Deli £ U - V.

Then, by [l?l, theoren 23, p. 154, it follows that, for any 

Stein open set U' with xfiU'SU,

H?(U’ - V,©) = 0 for p > s t and so K?(U - V,x, © )  = 0, p^s.

Prom prop. 2.1.3 we have that H°(U - Y,x, (z.) ) = 0 and in 

particular d g.pWfjj.y) = 0 : t>y further restricting also

d i (x )|ij) = 0 and 4ence there exists an integer p 6 & - 1 s.t.

y!\o( (x)j D) t 0 a n d (o( p(x) 13) = 0 for some p ^ l  or else

^(x)| q ) = 0? in this second case lemma 4.1.2 says that 

k(x) = 0 = s-l and the theorem is proved, and if p y 1 we can

conside~ the exact sequence

_______ •* Hp(D,x, itn'p_1 (z)) H ^ D . x . ^ ^ i z ) )  --- ► Hp+1 (D,x,

from which we deduce that there exists an element in HP(D,x ,£))M =

, II - (n_J.1). s.t. $  («X) ^ ( < < p - i W |  j) >°-

It follows that X: 0 => Hp(©) --- * Hp(D,x,© ) i3 not surjective

and so k ( x ) < n * s  - 1 and the theorem i3 proved.

(notice that in this proof,when restricting, DflU has been indicated 

simply b.y D to use a simpler notation). D

If D has C~ boundary at x, the inequalities proved in the last 

two sections can be summarized as

n(x) $ k(x) ¿a(x) - l$n(x) + z(x).

■ V .«
& J



The following particular case of the above theorem is parti-

cularly intuitive.

let 3 = £ z eC 2 s.t. |ls|~ = z, s, + Z-Z.,4 1 \ be the closed 1 
1 1 1 1 2 2 ~* J 1

9 —
unit ball in T“ , let x e B; does there exist a germ of a curve G 

s.t. C S3 and C ft 3 = {:<} ? (see picture in absolute space)

lz2l

C P

If such a germ exists

k l
------------------------->

it is of ccdimension 1 and so can be

described by a single germ of analytic function, i.e. if we take 

D = - 3, a(x) = 1, but an easy computation shows that n(x) = 1.

So the existence of this germ of curve would contradict the theorem.

loosely speaking this shows that one should not trust pictures 

when thinking in several complex variables.

‘ * , •" ••♦il

- , ™ — n — . 1'./
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CHAPT3H 5:- Dolbeau',t and Leray Representatives for the 

Test C’.asses.

,'e 3hall give now an explicit form to the test classes

4 s (s .i :«h3+1(m - \ A ' % S(D ) .

6 l:- The Double Kossul Complex.

Let (3 ‘ ) be any complex of P(M - \x\ , (9) -modules s.t., ¥?. 
H-n(3 ',S') = H?(M - jx\,(9}: the most relevant cases are the follo

wing:

(a) 33 = C^(^,(9) , wh°re "W: is a Leray covering of M - [x] ,

e.g. ^  = JM - V(f. )> - Cech cohomology differential.

(b) 3^ = V (M - wi>s r '5 is the sheaf of germs

of differential forms of type (0 ,q) and S' = S is  the Dolbaau't dif

ferential.

(c) 3q = (M - Jx^ , Q / ) where 01’ is any analytic acyclic 

resolution of ®  on M - {xj and is induced from the differential

of a -  .

We can construct the Koszul complex K " ^ K'(f,3a‘) and, 

since S' is a homomorphism of P(M - Jxj ,©)-modules the diagrams

k P,T

‘s'

/P.<1 _

J _ w  KP fi.a+1 

¿’

J__* k.p+i.ri

commute, so we can consider the double anticommutative complex 

(K‘ ' j 1 ,$) where i  •« (-l) 11 and it's total complex (T‘, A 

where Tr * O  K‘v ' uni A d + S .v  p+p-r

Hi



Definition 5.1.1:- The 3 -double Xoszul complex , s (¡i, is the 

double complex K' ' given by3
i' x?,q if p n-s- 2xp.q
 ̂ 0 otherwise

and differential inducei fr:;a that of (X‘‘; d , A ).

The correspondins total complex is denoted by (T(, A,).* * ¿3 a

The cohomology of (Tl, A„) does not depend on the particularo S
choic 9 Of 3 “because there

1?°° .
p,q hP ^ ( t ;)

(see m  , Chanter IX ) a:

"vert ically » shows that

ml
“p.q

= Hq(M - Id

where *,Ptf)

Lemma 5. 1 .2 :- Hp(r

Proof As we have

T(m - H . a q) . « ith Ct

-,nd

of M - {:c\ .

Prop. 1.1.2 says that the sequence of sheaves

o — v^°(f,aq) — *fcl(f.aq ) — *.....— * & n(f . a q ) — * o

is exact on M' for all q, and so it can be split into short exact 

sequences

o — > ^ 3 (f.aq) — * V 3- \ l  a q ) — * ^ 3 .Ta . a q ) —  o

for s-0 , 1 .... n-2 , where *£a_ ,(£. C l1 ) ’ Ob' ) “ C l1 and
^ ( i , a q) - & na . a q ) -  a q P . ¿).

The hypothesis on CL* says that HP(H' , ^(f, & q)) 3 0 forali q, 
all p * l  and all t ; it follows, us In/; a computation rather standard

f w . «

& /*•



in this disse-tation (e.g. see proof of prop. 3.1.3), that

H1 ( M \ ‘£ 3 _l(f,(Z’)) Hn'3 (M',^n_2 (f,aq)) = Hn*S(M*,d/) = u,

for all 3 =0 , 1 .... n - 2  and all q.

Therefore the sequence

o — ►  re » -. i f 3d .  a q ) ;■— * r ( .T . fcr‘-3_1( f . a q)) — > a o  ;• — * o
is exact Vs.q. It follows that the long sequence

o — * r(M-,-fe°(f,aq)) —  r(K'.^l( f . a o )  r,i H \ f c 1<f,aq ;; —  o

is =xaet. fo- all q: in other words the double complex rC'‘ has exact 

rows. The result is now easily deduced from the spectral sequence 

theory or, more simply, with a straightforward diagram chase. U

The cohomology of T' is deeply related to that of (f) as 

shown in the following

Theorem 5.1.3:- There are isomorphisms

•qi s: Hn-1(r;) ------* HS+1(M’ ,i£3(D) for 3-l,0....n-j

s.t. the diagrams

H‘n"1 (T;) — — — * H3 +1 (:i',if,(f))

&

3+1' " ” -3+1'
commute, whe-e p is Induced by the natural restriction 

„r ^  ,.n-s-2, r-n+s+2: T; - r  o  Kp= Ts A3 H #

Moreover

(a) iJ/_ , : H n_1 ( T ^  ) ----

i-3 iri v n n > ’ M n - l . o '

f o r  .ill 0 0  - 0  , ( T * , l w  p + q - n - 1  < p,q v -l h 3 >t-A-i^ ’ 1 °}



T:Zn_1'(T.‘ ) ---- • Hn-1 (T^ ) is the projection of cohomology.

Proof:- for ali r 5 we have a commutat

exact rows

0 ___ * ,,n-s-2 r-n+sr-2 „r ?  r
______ » ,T,X

s 3 *1
A h A .

r
r ___ „ K.n-s-2 r-n+s + : r+1

3 +1

and so we can consider the exact sequence of complexes 

,,n-s-2 ,• -n+s+ 2 <s __  ■ *
^Ts’ ̂ 5' (T*+l - A , +1 0 ,

and, tv taking cohomology,the exact sequence

(b ) .... — * Hr_n^ +2(.-i,, i r'-'s‘2 (f):s

-£-*> Hr(T- .) ---- *■ Hr"n+S+3 (K’, % n"S"2(f)) ---

The result will be deduced by setting r=n-l and choosing s in 

an appropriate way. First, for s^-S, we have an exact sequence 

(b_2) Hn_1 (T:,) — - Hr*"1 (Ti1 ) —  h°(h ',-fcn(f) ; — * Hn( r 2)

where ^ is the connecting homomorphism; by lemma 5 .1 . 2  h" (T^) 

and Hn(T‘0) vanish, so that ^  . is an isomorphism: moreover an easy 

checking shows that ^  satisfies the above equality (a).

Now suppose n 3 otherwise the theorem is proved. We shall use

the fact that HP(M’.6) = 0 for p-1,2.... n- 2  (see[lO], theorem 23)

and so HP(M\ -fef'(D) = 0 for p=l,2.... n-2 and all t.

It is clear that the first square in the following diagram 

with exact rows

(b_x) h°(m - , — * » " ' h r  p  Hn-\r0) — > o

id.
T r ♦

■P* \ & X



confutes, so that the isomorphism indicated with dotted line 
exists and makes all the diagram commutative.

Now define by induction for s=l,2,..,n-3 by imposing com
mutativity to the following diagram

<Vi> o — ^►Hn - 1 ( T ; _ 1

r - 1

Hn_1 (T‘)i t ; -*• 0

i r * ( M ' ,(f); h^ V  , ^ 3 (f))

The theorem is now Droved. □

&2:- Explicit Form for the Test Classes.

Let g*r(M,0) —  r(M*,0 ) —  r(H' , ̂ n(f)) , see p. 9 . Setting 
jj_(g,f) = '5' ~1( d  a(g,f)) for s=C,l,...,n-3 , the above theorem says 
that ’ h  , and so it is not a big abuse of language to

write P  n-2 = f (^n-3)* wh're h  iS a Sh0rte" notatlon for £.(«.!>• 
Now we can find explicitly elements **7 in Zn ^(f^) s.t.

= £s in the two more relevant cases indicated with (a) and
(b) at the beginning of this chapter.

-1
According to theorem 5.1*3> Y-l (1(g)) is represented by an 

element = © p+q„n_1 ̂  p>q 6 s.t. ¿(«I n_lf0) = UeJ.
i.e. A  _2( fi'y.i)) = (0,0,....0.1(g)). Therefore <>J_1 can be com
puted by diagram chasing and, again from theorem 5.1.3 we have 
"l) =p(«{_l) and for s-1,2....n-2, h|? - p ^ . p )  3° that if
m  « 9 , hi we obtain that 01 = 0 O') .
rr\-l p+q-~-n-l lp,q ' 3 pto-n-1 'p,q

p < n-3-2

■ r o w , $  a diagram chase shows thatIf 3*



by

i(i, J,l) -? ( ^ f) T
___________1 o

n , fJ, ) q+1<=l k k

where the symbol ' means that the sum is to be taken over increasing

multiindices only and the coefficients ^ J,Q) are given

u) « s o^j.s r  I ?,q L ~

(-D sign

where the sun is over increasing multiindices J s.t. (jJ- q and indi- 

ces i so that \i)«JuI = {l,2....n] , and the terra 3 is as follows:

p.q

1 if q= 0 mod ^
(-l)p+1 if q= 1 mod 4
-1 if q= 2 mod 4
(-l)p if q= 3 nod U .

Ue observe that, apart from a coefficient + 1, the class 
6 r(-'!’, is the Bochner-i'Iartinelli kernel and that

this class is used in [3] by means of the corresponding integral 
fo-nulu.

If 3‘ - * ( Û», <9 ) as in case (a) at the beginning of this
chanter then

(a) " l p,q 3 ̂ "ll|’p
and in order to express the coefficients <0 r £ Cl1(*Ui,©)

®|it,q+1 r(UK.©),where UK > U ^ a U;< a • ’ -nUkq + l if K“(kl* k 2 ' * ’ ,kq ’
we write

|j| -q
then Lt ls easy to see that



by

where the symbol ' means that the sum is to be taken over increasing

multi indices only and the coefficients cO- fi are given

Ü). i
(-l)3lgn(i,J’1) f, ( à f)j

=» 5 q ; p . q  • t <rn f ?  'i 'i+1 
' ¿-k=*i V k  ;

where the sum is over increasing multiindices J s.t. (jJ= q and indi-

cos i so that \i}uJu I =| * Pt*l

f 1 if q= 0 nod b

(-d ?+1 if q= 1 mod b
S  -a Jp . q if q= 2 mod 4

i if q= 3 mod b .

We observe that, apart from a coefficient + 1, the class

<Y) é. F C'1 * > ,n-^) is the 3ochner-Martinelli kernel and that

this class is used in [3] by means of the corresponding integral 

formula.

If 3‘- C ‘ (<U>,0 ) as in case (a) at the beginning of this 

charter then

(a) <Y) - !... f7' l n,q U| -p I I

and in order to express the coefficients <0 ̂  6 G (*U>,0) 

®lK,,q+l r(UK>©  ),«hero UR - U^* ■ ••flUkq+1 if X’ik!'k2* * *•'
we write

V I ),

k « . « )  - ® " . i  b(i,j) •

thon it is eisy to see th.nt





Appendix:- A Differential Topological Remark on the Distance

Function.

In the proof of proposition 3.1.2 I claimed that the follo

wing statement is true:

Let :< point in a open set U c 2*' and let :U

he a function of class C? with p > 2. Set D = | y « U  s.t. <f(y)<{j(x)}
. ^

moreover supnose that dc?(x) * 0 . Then the function p :U ---- ► 3

defined bv (list indicates the Euclidean distance)

' dist(z, $ D) if ze -
p (z 3
* - 1 ist(3, b D) if for all zfiU

is again cf class C? in a r.eigbourhood of x, and also dp (x) / 0.

Ho-.r.ander ( [l2j , p. 50) says that this is a consequence of the 

implicit function theorem, hut the details seen to be rather myste

rious. i "of. Javi.l Lpstoi.n suggested that the result can he proved 

as follows:

The^e is r.o loss of generality in assuming that c£{x) - 0 

and that i^(y) fn for all y & U. An easy application of the 

Inverse Function Theorem (in.F.T.) shows that

F - d(jf | y * U  s.t. tf(.y) - OJ » ¿D.

Define the function V: F-
dcf(v)

*■ 2“' by V(.y) * ------- - , ^y « U;

V(y) €
U<f(y)l

, the unit sphere of centre 0 in l‘ and V(y) is

a unitary vector orthogonal to F and pointing outside D (thl3 is
| y -f weasi’y seen by checking that 11m. n — —-- t— >0).

Consider the d - f u n c t i o n  ap:FxK V  given bv

\p(y, t>- y *■ t v>(y), for ai! y < and t « 1. aj' can be decomposed as 

fo 1 1 ow" :

61





¥

1 «1 _ , „N-l
? XB ---- ► X ( J X 1) -?-v F x r - ± - * r ,

«((/,t) - (y.( V(y),t);
p ( y . (u,t)) - (y, t*u),
t ( y . v) = y + v | Yy  6 F

u 6 i‘ ” and

Th-? chain m l e  than shows that

d ty{-r, t V v  ,f) = v + V(y)-t' + t d y(y) (v ),x • y y y

fo- all t 62, V  , e 7. F ana t' « T+3 = 3: in particular

d^(x.O)(v ,f ) = v.{ + V(x) t' for all vv £T.(? and f  ¿ 3  and, 

Ginco \7 (x ^ ? 7, v and V(x) are linearly independent so that 

dtp(vfV> injective and hence an isomorphism. From the In.F.T. it 

follows that we can find a neighbourhood U' of 1^(x,0 ) = x in 2 , 

a neighbourhood U' of x in F and £> 0 s.t.

Tj : U' x ( - £ , £ ) ----- * U'

is a Cp _ 1 diffeomorphisn. let us call the inverse of dp.

X  can be written as X ~  ( c ,w) where c:U'--- ► F and

<T :!• 5 are functions

Frcn the definition of ^  it follows Immediately that c and 

enjoy the following properties:

(a) 0-= - p,

(bl c(s) * F is the closest point to z in F, for all zfiU',

(o') (z - c(z), v (.y> = 0 • '"'here < , > denotes the Fuclidean

inne product, for all z 6 U' and all vc (;,) 6  ‘c(2)

(d) tr(z) = ^z - c(z), V>(c(z)) > for all :iU'.

shall prove that C  Is actually a Cp function with dO*(x) t 0, 

this is enough to show that p has the sane property by (a).

From (1), usin/t the chain rule one obtains:
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