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We derive and analyse an energy to model lipid raft formation on biological membranes

involving a coupling between the local mean curvature and the local composition. We

apply a perturbation method recently introduced by Fritz, Hobbs and the first author

to describe the geometry of the surface as a graph over an undeformed Helfrich energy

minimising surface. The result is a surface Cahn-Hilliard functional coupled with a small

deformation energy. We show that suitable minimisers of this energy exist and consider

a gradient flow with conserved Allen-Cahn dynamics, for which existence and uniqueness

results are proven. Finally, numerical simulations show that for the long time behaviour

raft-like structures can emerge and stabilise, and their parameter dependence is further

explored.
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1 Introduction

Biological membranes are permeable barriers which separate cells from their exterior, and

consist of various molecules such as proteins embedded within a lipid bilayer structure.

They are of particular mathematical interest since they can exhibit a variety of shape

transition behaviour such as bud-formation or vesicle fission and fusion [27]. Following

the pioneering works of Canham and Helfrich [10, 23], the established continuum model

treats the biomembrane as an infinitesimally thin deformable surface. The associated

elastic bending energy (the so called Canham-Helfrich energy), accounting for possible

surface tension is given by,

E(Γ) :=

∫
Γ

(
1

2
κ(H −Hs)

2 + σ + κGK

)
dΓ. (1.1)

Here Γ = ∂Ω is a two-dimensional hypersurface in R3 modelling the biomembrane and

is given by the boundary of an open, bounded, connected set Ω ⊂ R3. The parameters

κ > 0 and κG > 0 are bending rigidities, Hs is called the spontaneous curvature which

is a measure of stress within the membrane for the flat configuration, H is the mean

curvature, K is the Gauss curvature and σ ≥ 0 is the surface tension.

Biomembranes consisting of multiple differing lipid types can undergo phase separation,
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forming a disordered phase where the lipid molecules can diffuse more freely and an

ordered phase where the lipid molecules are more tightly packed together. A connected

field of study with large academic interest (for example see [5]) involves the nature of

membrane rafts, more commonly referred to as lipid rafts which were first introduced

in [32]. These are small (10-200nm), relatively ordered domains which are enriched with

cholesterol and sphingolipids and are understood to compartmentalise cellular processes

such as signal transduction, protein sorting and are important for other mechanisms such

as host-pathogen interactions [29].

Since the size of these rafts are beyond the diffraction limit, direct microscopic ob-

servation has not been possible. Experimental results have been limited to observations

on larger artificial membranes whose composition lack the complexity of biomembranes,

or using alternative microscopy techniques such as fluorescence microscopy which alters

the composition of the membrane. In both cases the in vivo inferences drawn are ques-

tionable and the field has remained controversial [31]. Since the dynamics and processes

governing the formation and maintenance of lipid rafts are not well understood a num-

ber of explanations have been offered. One suggestion is that raft formation is driven by

cholesterol pinning, and a model for this was recently proposed by Garcke et al. [1, 21].

In this paper we consider whether the membrane geometry is a sufficient mechanism

driving the formation of these rafts via protein interactions.

Experimental results on artificial membranes have shown there exists a correlation

between the composition of the different phases and the local membrane curvature [6,

24, 28, 30]. A potential mechanism for this behaviour is given by proteins embedded

in the membrane since they are not only able to sense whether the local environment

matches their curvature preference, but can also in large enough numbers induce that

curvature upon the membrane [9]. Here we consider whether phase dependent material

parameters offers a possible explanation for the domain formation observed. To that end

we introduce an order parameter φ, and consider the energy

E(Γ) :=

∫
Γ

(
1

2
κ(φ)(H −Hs(φ))2 + σ(φ) + κG(φ)K +

bε

2
|∇Γφ|2 +

b

ε
W (φ)

)
dΓ. (1.2)

The energy (1.2) is a modified version of (1.1) where we have included a Ginzburg-

Landau energy functional with coefficient b > 0, to incorporate the line tension between

the two phases as well as making explicit the dependence of the bending rigidities and

spontaneous curvature on the phasefield. Here W (φ) is a smooth double well potential,

with the local minimisers corresponding to the value φ takes in the respective phases,

and ε > 0 is a small parameter commensurate with the width of the interface.

An energy of this type was first proposed by Leibler [26]. In that case, the only material

property taken to be dependent on the phase field was the spontaneous curvature, which

was assumed to take the form

Hs(φ) = Λφ, (1.3)

where Λ ∈ R is the curvature coefficient.

An energy of the general form given in (1.2) was considered in [17, 18, 19] from com-

putational and formal asymptotics perspectives. The associated variational problem is

highly nonlinear and leads to a free boundary on a free boundary. Other models have
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been suggested, such as in [22, 33]. Here we utilise a recent perturbation approach for

approximately spherical biomembranes introduced in [15], in order to simplify (1.2). This

approach for flat domains using the Monge gauge approximation was considered in [16].

The result is a variational problem on a fixed spherical domain.

In order to apply the above mentioned perturbation approach we make the following

additional assumptions on (1.2): the only material parameter that depends on the phase

field is the spontaneous curvature, which we take to have the form given in (1.3); we

rescale the coefficient Λ and replace by ρΛ, and rescale b and replace by ρ2b; the volume of

Γ is fixed, as well as the integral of the phasefield. The justification for these assumptions

is as follows: a spontaneous curvature of this type corresponds to the simple assumption

that the proteins induce a curvature proportional to their area concentration; the ρ

scaling of the spontaneous curvature induces order ρ deformations of the surface, the ρ2

scaling is motivated by [25] where for a monolayer the authors calculate that the line

tension between raft and non-raft regions depends quadratically on hydrophobic height

mismatch and spontaneous curvature difference; the volume constraint corresponds to

the impermeability of the membrane, and the order parameter constraint corresponds

to a conservation of mass law on the embedded membrane proteins. After making these

assumptions we obtain the following energy from (1.2)

E(Γ) :=

∫
Γ

(
1

2
κ(H − ρΛφ)2 + σ + κGK +

ρ2bε

2
|∇Γφ|2 +

ρ2b

ε
W (φ)

)
dΓ, (1.4)

subject to a volume constraint and mean value constraint.

We remark that in the case that Γ is a closed hypersurface (without boundary), then

the Gauss-Bonnet Theorem gives that∫
Γ

K = 2πχ(Γ), (1.5)

where χ(Γ) is the Euler characteristic of Γ. So in the case the material parameter κG
is independent of the phase field, then the Gauss curvature term can be dropped from

(1.4).

The rest of the paper is set out as follows. In Section 2 we briefly cover the notation and

some preliminaries on surface calculus. In Section 3 we give the details of the perturbation

approach alluded to above and derive an energy that approximates (1.2). In Section 4

we prove that within a suitable space minimisers exist to this approximate energy. In

Section 5 we consider a gradient flow and prove existence and uniqueness results for these

equations, before finally in Section 6 we conduct some numerical experiments.

2 Notation and preliminaries

Within this section we state the basic definitions and results for a two dimensional

C2−hypersurface Γ which will be used throughout this paper. For a thorough treatment

of the material covered here we refer the reader to [14].

Given a point x ∈ Γ, with unit normal ν, an open subset U of R3 containing x, and a

function u ∈ C1(U) we define the tangential gradient of u,∇Γu by

∇Γu = ∇u− (∇u · ν)ν, (2.1)
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and denote it’s components by

∇Γu = (D1u,D2u,D3u). (2.2)

We can also define the Laplace-Beltrami operator of u at x by

∆Γu(x) =

3∑
i=1

DiDiu(x). (2.3)

Denoting the tangent space of Γ at x by TxΓ, we define the Weingarten map H :

TxΓ→ TxΓ by H := ∇Γν with eigenvalues given by the principle curvatures κ1 and κ2.

The mean curvature is then given by

H := Tr(H) = κ1 + κ2, (2.4)

which differs from the normal definition by a factor of 2. The Gauss curvature is then

given by

K := det(H) = κ1κ2. (2.5)

We can consider the extended Weingarten map H : R3 → TxΓ by defining H to have

zero eigenvalue in the normal direction.

For p ∈ [1,∞) we define Lp(Γ) to be the space of functions u : Lp(Γ) → R which are

measurable with respect to the surface measure dΓ and have finite norm

‖u‖Lp(Γ) =

(∫
Γ

|u|p dΓ

) 1
p

. (2.6)

We say a function u ∈ L1(Γ) has the weak derivative vi = Diu, if for every function

φ ∈ C1(Γ) with compact support {x ∈ Γ : φ(x) 6= 0}⊂ Γ we have the relation∫
Γ

uDiφ dΓ = −
∫

Γ

φvi dΓ +

∫
Γ

uφHνi dΓ. (2.7)

We define the Hilbert spaces H1(Γ) and H2(Γ) by

H1(Γ) : =
{
f ∈ L2(Γ) : f has weak derivatives Dif ∈ L2(Γ), i ∈ {1, 2, 3}

}
, (2.8)

H2(Γ) : =
{
f ∈ H1(Γ) : f has weak derivatives DiDjf ∈ L2(Γ), i, j ∈ {1, 2, 3}

}
, (2.9)

with inner products given by

(u, v)H1(Γ) =

∫
Γ

(∇Γ · ∇Γv + uv) dΓ, (2.10)

(u, v)H2(Γ) =

∫
Γ

(∆Γu∆Γv +∇Γ · ∇Γv + uv) dΓ. (2.11)

We comment that the inner products given above are not the standard ones used, but

the induced norms are equivalent to the usual norms in the case Γ is a closed surface,

see [14].

Integration by parts is then given by

Theorem 2.1 Let Γ be a bounded C2−hypersurface (without boundary) and suppose
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u ∈ H1(Γ) and v ∈ H2(Γ). Then∫
Γ

∇Γu · ∇Γv dΓ = −
∫

Γ

u∆Γv dΓ. (2.12)

Finally, given a family of evolving hypersurfaces (Γ(t))t∈[0,T ] and velocity v : G → R3

where G = ∪t∈[0,T ](Γ(t)×{t}) we consider (x0, t0) ∈ G and denote by γ : (t0−δ, t0 +δ)→
R3 the unique solution to the initial value problem

γ′(t) = v(γ(t), t), γ(t0) = x0. (2.13)

Then for a function f : G → R we define the material time derivative by

∂•t f(x0, t0) :=
d

dt
f(γ(t), t)

∣∣∣∣
t=t0

. (2.14)

The transport theorem is then given by

Theorem 2.2 (Transport Theorem) Let Γ(t) be an evolving surface with velocity field

v. Then assuming that f is a function such that all the following quantities exist, then

d

dt

∫
Γ(t)

f dΓ(t) =

∫
Γ(t)

∂•t f + f∇Γ · v dΓ. (2.15)

3 Derivation of Model

In this section we apply the perturbation approach detailed in [15] in order to obtain an

approximate energy to (1.2). We first consider the Lagrangian

L(Γ, λ) := κW(Γ) + σA(Γ) + λ(V(Γ)− V0), (3.1)

where

W(Γ) =

∫
Γ

1

2
H2 dΓ, A(Γ) =

∫
Γ

1 dΓ, V(Γ) =

∫
Γ

1

3
IdΓ · ν dΓ. (3.2)

Here W denotes the Willmore energy, A the area functional and V the enclosed volume,

and where ν is the outward unit normal to Γ and H = ∇Γ · ν is the mean curvature.

Since the Willmore energy is scale invariant and the area is not, the volume is constrained

using a Lagrange multiplier λ and with fixed volume V0. In addition A(Γ) and V(Γ) must

satisfy the isoperimetric inequality

A3(Γ) ≥ 36πV2(Γ). (3.3)

In [15] it was shown that (3.1) has a critical point (Γ0, λ0), where Γ0 = S(0, R), the

sphere of radius R centred at the origin and λ0 = − 2σ
R . Applying a small perturbation

term ρF we expect a critical point of the perturbed Lagrangian

Lρ(Γ, φ, λ, µ) :=κW(Γ) + σA(Γ) + λ(V(Γ)− V0) + ρF(Γ, φ, µ), (3.4)

to be of the form (Γρ, φρ, λρ, µρ) where Γρ and λρ are perturbations given by

Γρ = {p+ ρ(uν0)(p) : p ∈ Γ0}, (3.5)

λρ = λ0 + ρλ1, (3.6)
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of the critical point (Γ0, λ0) for the non-perturbed Lagrangian L. Here ν0 is the unit

normal to Γ0, ρ ∈ R such that ρ � 1 and u ∈ C2(Γ,R) is the height function that

describes the deformation.

Since (Γρ, φρ, λρ, µρ) is a critical point it follows that
d
dsLρ(Γρ, φρ, λρ, µρ + sζ)

∣∣
s=0

= 0 ∀ζ ∈ R,
d
dsLρ(Γρ, φρ, λρ + sξ, µρ)

∣∣
s=0

= 0 ∀ξ ∈ R,
d
dsLρ(Γρ, φρ + sη, λρ, µρ)

∣∣
s=0

= 0 ∀η ∈ C1(Γρ),
d
dsLρ(Γ

s
ρ, φρ, λρ, µρ)

∣∣
s=0

= 0 ∀g ∈ C2(Γρ),

(3.7)

where Γsρ := {x+ sgνρ(x) : x ∈ Γρ} and νρ is the unit normal to Γρ.

We apply this perturbation method for the case that the forcing term F is given by

F(Γ, φ, µ) = κΛF1(Γ, φ) + ρF2(Γ, φ) + µ(C(Γ, φ)− α), (3.8)

where

F1(Γ, φ) := −
∫

Γ

Hφ dΓ, F2(Γ, φ) :=

∫
Γ

b

(
ε

2
|∇Γφ|2 +

1

ε
W (φ) +

κΛ2φ2

2b

)
dΓ, (3.9)

are two forcing terms obtained from (1.4) and µ is a Lagrange multiplier for the mean

value constraint functional

C(Γ, φ) := −
∫

Γ

φ dΓ = α. (3.10)

Since we are interested in doing a Taylor approximation of (3.4), we need to calculate

the first and second variations of some of the energy functionals above. We remark that

in our case when determining the second variation it is sufficient to find the first variation

of the first variation, although in general this need not be the case, see Remark 3.2 in

[15].

We first state the following results, proofs of which can be found in the appendix of

[15].

W ′(Γ0)[uν0] = 0, W ′′(Γ0)[uν0, uν0] =

∫
Γ0

(
(∆Γ0

u)2 − 2

R2
|∇Γ0

u|2
)

dΓ0,

(3.11)

V ′(Γ0)[uν0] =

∫
Γ0

u dΓ0, V ′′(Γ0)[uν0, uν0] =

∫
Γ0

H0u
2 dΓ0, (3.12)

A′(Γ0)[uν0] =

∫
Γ0

H0u dΓ0, A′′(Γ0)[uν0, uν0] =

∫
Γ0

(
|∇Γ0u|2 +

2u2

R2

)
dΓ0, (3.13)

where we have denoted the mean curvature on Γ0 and Γρ by H0 and Hρ respectively.

Similarly we will denote the extended Weingarten map on Γ0 and Γρ by H0 and Hρ. For

ease of notation we will also write τ0 = τρ|ρ=0 and τ1 = ∂•ρτρ
∣∣
ρ=0

where τ is a placeholder

for φ and µ.

It will be sufficient for our purposes to additionally only calculate the first variation of
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F(Γ, φ, µ),

F ′(Γ0, φ0, µ0)[uν, φ1, µ1] =F ′1(Γ0, φ0)[uν, φ1] + F2(Γ0, φ0)

+ µ1 (C(Γ0, φ0)− α) + µ0C′(Γ0, φ0)[uν, φ1],
(3.14)

which amounts to calculating the first variation of F1(Γ, φ) and C(Γ, φ). By applying

Theorem 2.2 and using that ∂•ρHρ = −∆Γρu − |Hρ|2u (see Corollary A.1 in [15]) we

obtain

d

dρ
F1(Γρ, φρ)

∣∣∣∣
ρ=0

= −
∫

Γρ

∂•ρ(Hρφρ) +Hρφρ∇Γρ · (uνρ) dΓρ

∣∣∣∣∣
ρ=0

=

∫
Γ0

φ0∆Γ0u+ φ0|H0|2u−H0φ1 −H2
0φ0u dΓ0,

(3.15)

and hence using that |H0|2 = 2
R2 and H0 = 2

R gives that,

F ′1(Γ0, φ0)[uν0, φ1] =

∫
Γ0

φ0

(
∆Γ0

u− 2u

R2

)
− 2φ1

R
dΓ0. (3.16)

Similarly we obtain

C′(Γ0, φ0)[uν0, φ1] = −
∫

Γ0

φ1 + φ0∇Γ · (uν0) dΓ0 −
d
dρ

∫
Γρ

1 dΓρ

∣∣∣
ρ=0∫

Γ0
1 dΓ0

−
∫

Γ0

φ0 dΓ0

= −
∫

Γ0

(
φ1 +

2φ0u

R

)
dΓ0 −

2

R

(
−
∫

Γ0

u dΓ0

)(
−
∫

Γ0

φ0 dΓ0

)
.

(3.17)

We can determine µ0 explicitly since from (3.7) we have that

d

ds
ρF(Γρ, φρ + sη, µρ) = 0, (3.18)

and therefore

F1(Γ0, η) + µ0C(Γ0, η) = 0, (3.19)

from which we obtain that µ0 = 2|Γ0|
R . It therefore follows that

F ′(Γ0, φ0, µ0)[uν, φ1, µ1] =

∫
Γ0

[
φ0∆Γ0u+

2φ0u

R2
+
bε

2
|∇Γ0φ0|2 +

b

ε
W (φ0) +

κΛ2φ2
0

2

]
dΓ0,

where above we have also used the linearised Lagrange multiplier constraints∫
Γ0

u dΓ0 = 0 −
∫

Γ0

φ0 dΓ0 = α (3.20)

which are obtained from (3.7).

We can now prove the following result.

Theorem 3.1 With the assumptions given above it follows that

Lρ(Γρ, φρ, λρ, µρ) = C1 + ρC2 + ρ2E(φ0, u) +O(ρ3), (3.21)
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where

E(φ0, u) :=

∫
Γ0

κ

2
(∆Γ0

u)2 +
1

2

(
σ − 2κ

R2

)
|∇Γ0

u|2 − σu2

R2

+ κΛφ0∆Γ0
u+

2κΛuφ0

R2
+
bε

2
|∇Γ0

φ0|2 +
b

ε
W (φ0) +

κΛ2φ2
0

2
dΓ0

(3.22)

for C1 and C2 constant.

Proof We wish to apply Taylor’s Theorem so that we can obtain a good approxima-

tion to the perturbed Lagrangian Lρ(Γρ, φρ, λρ, µρ). Performing a second order Taylor

expansion in ρ we obtain that

Lρ(Γρ, φρ, λρ, µρ) =L0(Γ0, φ0, λ0, µ0) + ρ
d

dρ
Lρ(Γρ, φρ, λρ, µρ)

∣∣∣∣
ρ=0

+
ρ2

2

d2

dρ2
Lρ(Γρ, φρ, λρ, µρ)

∣∣∣∣
ρ=0

+O(ρ3).

(3.23)

We first observe that L0(Γ0, φ0, λ0, µ0) = κW(Γ0) +σA(Γ0). For the second term we use

that (Γ0, λ0) is a critical point of L and obtain that

d

dρ
Lρ(Γρ, φρ, λρ, µρ)

∣∣∣∣
ρ=0

= κΛF1(Γ0, φ0) = −2κΛ

R

∫
Γ0

φ0 dΓ0 = −8κΛπRα. (3.24)

We therefore see that the second order term is the lowest order term which depends on

any of the variables. It remains to determine the form of this second order term. To do

this we write

d2

dρ2
Lρ(Γρ, φρ, λρ, µρ)

∣∣∣∣
ρ=0

=κW ′′(Γ0)[uν0, uν0] + σA′′(Γ0)[uν0, uν0] + λ0V ′′(Γ0)[uν0, uν0]

+ 2λ1V ′(Γ0)[uν0] + 2F ′(Γ0, φ0, µ0)[uν0, φ1, µ1]

=2E(φ0, u),

(3.25)

as required, where above we have used that λ0 = − 2σ
R and

∫
Γ0
u dΓ0 = 0.

We note that formally taking R → ∞ in (3.22) we obtain the approximation given in

[26] and more recently considered in [20] for a flat domain. It is this energy which we will

study in the remainder of the paper. For ease of notation from now on we will denote Γ0

by Γ and φ0 by φ.

4 Energy minimisers

We will restrict ourselves to considering the energy E(·, ·) : K → R given in (3.22) for a

W : R→ R that satisfies the following properties:

(1) W (·) ∈ C1(R,R),

(2) There exists c0 ∈ R+ such that (W ′(r)−W ′(s))(r − s) ≥ −c0|r − s|2 ∀r, s ∈ R,

(3) There exists c1, c2 ∈ R+ such that c1r
4 − c2 ≤W (r), ∀r ∈ R,



Phase separation for spherical biomembranes 9

(4) There exists c3, c4 ∈ R+ such that W ′(r) ≤ c3W (r) + c4,

(5) There exists c5 ∈ R+ such that W ′(r)r ≥ −c5r2,

and for K given by

K :=

{
(φ, u) ∈ H1(Γ)×H2(Γ) : −

∫
Γ

φ dΓ = α and u ∈ span{1, ν1, ν2, ν3}⊥
}
. (4.1)

where the νi are the components of the normal ν of Γ= S(0, R) and orthogonality is

understood in the H2(Γ) sense; although in this case it’s equivalent to orthogonality in

the L2(Γ) sense. We motivate this choice of K as follows. The regularity required means

a subspace of H1(Γ) ×H2(Γ) is the natural choice to make.
∫

Γ
u dΓ = 0 is a linearised

volume constraint which corresponds to membrane impermeability, −
∫

Γ
φ dΓ = α is a

linearised conservation of mass constraint on the membrane particles and
∫

Γ
uνi dΓ =

0 for i ∈ {1, 2, 3} are linearised translation invariance constraints on the membrane.

Mathematically, these translation invariances arise since {ν1, ν2, ν3} lie in the nullspace

of E(φ, ·). We observe that {1, νi} are the spherical harmonics of degree zero and one.

We first address the question of existence.

Proposition 4.1 There exists (φ∗, u∗) ∈ K such that

E(φ∗, u∗) = inf
(φ,u)∈K

E(φ, u).

Proof We have that H1(Γ) ×H2(Γ) is a Hilbert space so it is reflexive and since K is

a sequentially weakly closed subset of H1(Γ)×H2(Γ) then existence of a minimiser will

follow from the Direct method (See Theorem 9.3-1 in [11]) provided E(·, ·) : K → R is

coercive and sequentially weakly lower semicontinuous.

We note the Poincaré type inequality for a sphere Γ of radius R is given by∫
Γ

u2 dΓ ≤ R2

6

∫
Γ

|∇Γu|2 dΓ ≤ R4

36

∫
Γ

(∆Γu)2 dΓ, (4.2)

which holds for all u ∈ span{1, ν1, ν2, ν3}⊥ (see [15]). Using this, Young’s inequality and

property (3) of W (·) it follows that there exists C1, C2 and C3 ∈ R+ such that,

E(φ, u) ≥ C1‖u‖2H2(Γ) + C2‖φ‖2H1(Γ) − C3. (4.3)

Hence E(·, ·) : K → R is coercive.

To prove that E(·, ·) : K → R is sequentially weakly lower semi continuous we first note

that the quadratic terms in u form a bounded, symmetric and positive definite bilinear

form and hence are weakly lower semi-continuous. A similar argument can be applied

for the |∇Γφ|2 term. The remaining terms are also weakly lower semi-continuous by an

application of a Rellich-Kondrachov type compactness embedding theorem [2]. This then

completes the proof.
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4.1 Euler-Lagrange equations

Knowing that minimisers of (3.22) exist, we want to say something about their structure.

Therefore we compute the Euler equations associated with the energy functional E(·, ·)
over the space K, and secondly over the full space H1(Γ) × H2(Γ), by introducing the

constraints as Lagrange multipliers. By applying Euler’s Theorem (See Theorem 7.1-5 in

[11]) it follows that a critical point (and hence a minimiser (φ∗, u∗) of Proposition 4.1)

is a solution of the following problem:

Problem 4.2 Find (φ, u) ∈ K such that∫
Γ

b

ε
W ′(φ)w + bε∇Γφ · ∇Γw + κΛw∆Γu+

2κΛuw

R2
+ κΛ2φw dΓ = 0, (4.4)∫

Γ

κ∆Γu∆Γv +

(
σ − 2κ

R2

)
∇Γu · ∇Γv −

2σ

R2
uv + κΛφ∆Γv +

2κΛφv

R2
dΓ = 0, (4.5)

for all w ∈ W :=
{
η ∈ H1(Γ) :

∫
Γ
η dΓ = 0

}
and for all v ∈ V := {η ∈ H2(Γ) : η ∈

span{1, ν1, ν2, ν3}⊥}.

By defining

ϕ0 :=

∫
Γ

u dΓ, ϕi :=

∫
Γ

νiu dΓ, ϕ4 :=

∫
Γ

(φ− α) dΓ,

for i ∈ {1, 2, 3} and observing that their Fréchet derivatives exist and are continuous,

linear and bijective it follows from the Euler-Lagrange Theorem (Theorem 7.15-1 in [11])

that if (φ, u) is a solution of Problem 4.2 then there exists λ ∈ R5 such that (φ, u, λ) is

a solution of the problem given below.

Problem 4.3 Find (φ, u, λ) ∈ K×R5 such that for all w ∈ H2(Γ) and for all v ∈ H2(Γ),∫
Γ

(
b

ε
W ′(φ)w + bε∇Γφ · ∇Γw +

2κΛuw

R2
+ κΛ∆Γuw + κΛ2φw + λ0w

)
dΓ = 0, (4.6)∫

Γ

(
κ∆Γu∆Γv +

(
σ − 2κ

R2

)
∇Γu · ∇Γv −

2σ

R2
uv+

κΛφ∆Γv +
2κΛφv

R2
+

3∑
i=1

λivνi + λ4v

)
dΓ = 0.

(4.7)

By testing with appropriate functions we can determine the values of the Lagrange

multipliers λi for i ∈ {0, 1, 2, 3, 4}. Testing equation (4.6) with 1 it follows that the

Lagrange multiplier λ0 is given by

λ0 = −κΛ2α− b

ε
−
∫

Γ

W ′(φ) dΓ.

Testing equation (4.7) with νi, and using the fact that −∆Γνi = 2
R2 νi and

∫
Γ
νiνj dΓ =

4πR2

3 δij it follows that

λi = 0 for i = 1, 2, 3.
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Finally testing equation (4.7) it follows that

λ4 = −2κΛα

R2
.

The PDEs corresponding with (4.6) and (4.7) are then given by

b

ε
W ′(φ)− bε∆Γφ+ κΛ∆Γu+

2κΛu

R2
+ κΛ2φ+ λ0 =0, (4.8)

κ∆2
Γu−

(
σ − 2κ

R2

)
∆Γu−

2σu

R2
+ Λκ∆Γφ+

2Λκφ

R2
+ λ4 =0. (4.9)

4.2 Reduced Order Derivation

The Euler-Lagrange equations given in (4.8) and (4.9) can be simplified to a system of

two second order equations. We rewrite (4.9) as follows(
∆Γ +

2

R2

)(σ
κ
−∆Γ

)
u = Λ

(
∆Γ +

2

R2

)
(φ− α), (4.10)

and note that if (
∆Γ +

2

R2

)
z = 0, (4.11)

then z is an eigenfunction of −∆Γ with eigenvalue 2
R2 and hence z ∈ span{ν1, ν2, ν3}.

Therefore it follows from (4.10) that there exists some β ∈ span{ν1, ν2, ν3} such that(σ
κ
−∆Γ

)
u = Λ(φ− α) + β. (4.12)

Now writing V = span{1, ν1, ν2, ν3}⊥ it follows from a simple calculation that since

u ∈ V then
(
σ
κ −∆Γ

)
u ∈ V also. Denoting the projection onto V by P and applying this

projection to (4.12) results in (σ
κ
−∆Γ

)
u = ΛPφ. (4.13)

This motivates introducing an operator G : V → V where given η ∈ V, G(η) denotes the

unique solution v ∈ V of the elliptic equation(σ
κ
−∆Γ

)
v = Λη. (4.14)

From this and (4.13) it follows that

u = G(Pφ). (4.15)

Therefore we can rewrite (4.8) as

b

ε

(
W ′(φ)−−

∫
Γ

W ′(φ) dΓ

)
− bε∆Γφ+ κΛ

(
∆Γ +

2

R2

)
G(Pφ) + κΛ2(φ− α) = 0,

(4.16)

or equivalently

b

ε

(
W ′(φ)−−

∫
Γ

W ′(φ) dΓ

)
− bε∆Γφ+ κΛG

((
∆Γ +

2

R2

)
(φ− α)

)
+ κΛ2(φ− α) = 0.

(4.17)
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Using (4.15) we can define a new energy Ẽ given by

Ẽ(φ) := E(φ,G(φ)). (4.18)

So using (4.13) we obtain that

Ẽ(φ) =

∫
Γ

−κΛ

2
Pφ

(
∆Γ +

2

R2

)
u+ κΛφ

(
∆Γ +

2

R2

)
u+

bε

2
|∇Γφ|2 +

b

ε
W (φ) +

κΛ2φ2

2
dΓ.

(4.19)

which simplifies using (4.15) to

Ẽ(φ) =

∫
Γ

κΛ

2
Pφ

(
∆Γ +

2

R2

)
G(Pφ) +

bε

2
|∇Γφ|2 +

b

ε
W (φ) +

κΛ2φ2

2
dΓ. (4.20)

We note that if (φ∗, u∗) is a minimiser of E then u∗ = G(Pφ∗) since it is also a critical

point and must satisfy (4.10). Let us further suppose that φ̃∗ is a minimiser of Ẽ then it

follows that

E(φ∗, u∗) ≤ E(φ̃∗,G(Pφ̃∗)) = Ẽ(φ̃∗) ≤ Ẽ(φ∗) = E(φ∗,G(Pφ∗)) = E(φ∗, u∗), (4.21)

and hence all the inequalities in (4.21) are equalities so φ∗ is a minimiser of Ẽ and

(φ̃∗,G(Pφ̃∗)) is a minimiser of E . Therefore we find that finding minimisers of Ẽ is equiv-

alent to finding minimisers of E .

5 Gradient Flow

We observe that the first variation of E(·, ·) is given by

E ′(φ, u)[w, v] =

∫
Γ

b

ε
W ′(φ)w + bε∇Γφ · ∇Γw +

(
σ − 2κ

R2

)
∇Γu · ∇Γv + κ∆Γu∆Γv

− 2σuv

R2
+ κΛw∆Γu+ κΛφ∆Γv −

2κΛuw

R2
− 2κΛφv

R2
+ κΛ2φw dΓ.

We consider the equations

−α1(φt, w)L2(Γ) =

∫
Γ

b

ε
W ′(φ)w + bε∇Γφ · ∇Γw

+ κΛw∆Γu+
2κΛuw

R2
+ κΛ2φw dΓ,

(5.1)

−α2(ut, v)L2(Γ) =

∫
Γ

(
σ − 2κ

R2

)
∇Γu · ∇Γv + κ∆Γu∆Γv

− 2σuv

R2
+ κΛφ∆Γv +

2κΛφv

R2
dΓ,

(5.2)

for all v ∈ V and for all w ∈ W , which can be seen to give rise to a gradient flow of

E(φ, u) in W × V since

d

dt
E(φ, u) = −α1‖φt||2L2(Γ) − α2‖ut‖2L2(Γ) ≤ 0. (5.3)
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By applying the Euler-Lagrange theorem, and introducing Lagrange multipliers λi for

i ∈ {0, 1, 2, 3, 4} this implies that for all w ∈ H1(Γ) and for all v ∈ H2(Γ),

−α1(φt, w)L2(Γ) =

∫
Γ

b

ε
W ′(φ)w + bε∇Γφ · ∇Γw

+ κΛw∆Γu+
2κΛuw

R2
+ κΛ2φw + λ0w dΓ,

(5.4)

−α2(ut, v)L2(Γ) =

∫
Γ

(
σ − 2κ

R2

)
∇Γu · ∇Γv + κ∆Γu∆Γv

− 2σuv

R2
+ κΛφ∆Γv +

2κΛφv

R2
+

3∑
i=1

λivνi + λ4v dΓ,

(5.5)

where λi for i ∈ {0, 1, 2, 3} are Lagrange multipliers. Testing equation (5.4) with 1 and

equation (5.5) with 1, ν1, ν2 and ν3 as in subsection 4.1, we observe that the Lagrange

multipliers λi for i ∈ {0, 1, 2, 3, 4} are again given by

λ0 = −κΛ2α− b

ε
−
∫

Γ

W ′(φ) dΓ, λ1 = λ2 = λ3 = 0, λ4 = −2κΛα

R2
. (5.6)

Hence, a gradient flow of E(·, ·) in W × V is given by


α1φt + b

εW
′(φ)− bε∆Γφ+ κΛ∆Γu+ 2κΛu

R2 + κΛ2φ+ λ0 = 0 Γ× (0, T ),

α2ut −
(
σ − 2κ

R2

)
∆Γu+ κ∆2

Γu− 2σu
R2 + κΛ∆Γφ+ 2κΛφ

R2 + λ4 = 0 Γ× (0, T ),

φ(·, 0) = φ0(·) Γ× {t = 0},
u(·, 0) = u0(·) Γ× {t = 0}.

(5.7)

5.1 Existence

Before turning to consider numerical simulations of (5.7), we first address questions

related to well-posedness. We will prove the following result.

Theorem 5.1 Suppose (φ0, u0) ∈ K, then there exists a unique (φ, u) ∈ K such that

φ ∈ L∞(0, T ;H1(Γ))∩L2(0, T ;H2(Γ)) ∩ C([0, T ];L2(Γ)),

u ∈ L∞(0, T ;H2(Γ))∩L2(0, T ;H4(Γ)) ∩ C([0, T ];L2(Γ)),

φ′ ∈ L2(0, T ;L2(Γ)),

u′ ∈ L2(0, T ;L2(Γ)),

u0 = u(0),

φ0 = φ(0),



14 C. M. Elliott and L. Hatcher

and satisfying

−
∫ T

0

α1 〈φ′, η〉 dt =

∫ T

0

[∫
Γ

b

ε

(
W ′(φ)−−

∫
Γ

W ′(φ) dΓ

)
η + bε∇Γφ · ∇Γη

−κΛ∇Γu · ∇Γη +
2κΛuη

R2
+ κΛ2(φ− α)η dΓ

]
dt,

(5.8)

−
∫ T

0

α2 〈u′, ξ〉 dt =

∫ T

0

[∫
Γ

κ∆Γu∆Γξ +

(
σ − 2κ

R2

)
∇Γu · ∇Γξ

−2σuξ

R2
+

2κΛ(φ− α)ξ

R2
− κΛ∇Γφ · ∇Γξ dΓ

]
dt,

(5.9)

for all η ∈ L2(0, T ;H1(Γ)) and for all ξ ∈ L2(0, T ;H2(Γ)).

5.1.1 Galerkin problem

We prove Theorem 5.1 using a Galerkin method. Using that there exist smooth eigen-

functions {zj} of the Laplace-Beltrami operator −∆Γ which form an orthonormal basis

of H1(Γ) and are orthogonal in L2(Γ), we define V m as

V m := span {z1, z2, ..., zm} ,

and set Pm : L2(Γ)→ V m to be the Galerkin projection given by

(Pmv − v, um) = 0 ∀v ∈ L2(Γ), um ∈ V m.

Pm then satisfies the following strong convergence results,

Pmv →v in L2(Γ) ∀v ∈ L2(Γ), (5.10)

Pmv →v in H1(Γ) ∀v ∈ H1(Γ), (5.11)

Pmv →v in H2(Γ) ∀v ∈ H2(Γ). (5.12)

Therefore, the Galerkin system we are considering is given by

−α1 〈φ′m, ηm〉 =

∫
Γ

b

ε

(
W ′(φm)−−

∫
Γ

W ′(φm)

)
ηm + bε∇Γφm · ∇Γηm

− κΛ∇Γum · ∇Γηm +
2κΛumηm

R2
+ κΛ2(φm − α)ηm dΓ,

(5.13)

−α2 〈u′m, ξm〉 =

∫
Γ

κ∆Γum∆Γξm +

(
σ − 2κ

R2

)
∇Γum · ∇Γξm

− 2σumξm
R2

+
2κΛ(φm − α)ξm

R2
− κΛ∇Γφm · ∇Γξm dΓ,

(5.14)

for all ηm, ξm ∈ V m.

This system can then be written as an initial value problem for a system of ordinary

differential equations with locally Lipschitz right hand sides, for which there exists a

unique solution at least locally in time.

We observe that

〈φ′m, ηm〉 = (φ′m, ηm) and 〈u′m, µm〉 = (u′m, µm).

Testing (5.13) and (5.14) with ηm = 1 and ξm = 1, ν1, ν2, ν3, and applying standard
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ODE results it follows that if (φm(0), um(0)) ∈ K then the solution (φm(t), um(t)) ∈ K
for t ∈ [0, T ], where T comes from the local existence result used above.

5.1.2 Energy estimates

In order to pass to the limit, and prove existence of the full system we derive some a

priori estimates by considering the discrete energy E(φm, um).

Theorem 5.2 Suppose (φm, um) ∈ K satisfy equations (5.13) – (5.14) then there exists

a constant C independent of m such that

‖φm‖L∞(0,T ;H1(Γ)) ≤ C, (5.15)

‖um‖L∞(0,T ;H2(Γ)) ≤ C, (5.16)

‖φ′m‖L2(0,T ;L2(Γ)) ≤ C, (5.17)

‖u′m‖L2(0,T ;L2(Γ)) ≤ C, (5.18)

Proof By differentiating the energy functional E(·, ·) with respect to t we obtain,

d

dt
E(φm, um) = −α1‖φ′m‖2L2(Γ) − α2‖u′m‖2L2(Γ). (5.19)

Integrating and using the coercivity of E(·, ·) proven in Proposition 4.1 it follows that for

all t ∈ (0, T ),

‖um‖2H2(Γ) + ‖φm‖2H1(Γ) +

∫ t

0

‖φ′m‖2L2(Γ) dt +

∫ t

0

‖u′m‖2L2(Γ) dt ≤ C, (5.20)

where in the above line we have used that E(φm(0), um(0)) ≤ C where C is some constant

independent of m. From which it follows that for all t ∈ (0, T ),

sup
t∈(0,T )

‖um‖2H2(Γ) + sup
t∈(0,T )

‖φm‖2H1(Γ) +

∫ t

0

‖φ′m‖2L2(Γ) dt +

∫ t

0

‖u′m‖2L2(Γ) dt ≤ C

(5.21)

which give the required energy bounds.

5.1.3 Existence theorem proof

Applying the energy estimates proven in Theorem 5.2 and considering subsequences as

necessary, there exist φ∗ and u∗ in the indicated spaces such that the following conver-

gence results hold in the weak sense,

φ′m ⇀ (φ∗)
′

in L2(0, T ;L2(Γ)), u′m ⇀ (u∗)
′

in L2(0, T ;L2(Γ)), (5.22)

φm ⇀ φ∗ in L2(0, T ;H1(Γ)), um ⇀ u∗ in L2(0, T ;H2(Γ)), (5.23)

and applying standard compactness results (Aubin-Lions Lemma (see Theorem II.5.16

of [8]) and Kondrachov’s Theorem (see Theorem 2.34 of [2])) the following convergence
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results hold in the strong sense,

φm → φ∗ in C([0, T ];L2(Γ)), um → u∗ in C([0, T ];L2(Γ)), (5.24)

φm → φ∗ in L2(0, T ;Lp(Γ)), (5.25)

where p ≥ 1. Furthermore since φm(0)→ φ∗(0) and um(0)→ u∗ in L2(Γ) it holds that

φ∗(0) = φ0, u∗(0) = u0. (5.26)

Taking η ∈ L2(0, T ;H1(Γ)), and ξ ∈ L2(0, T ;H2(Γ)) we have that

−
∫ T

0

α1 〈φ′m,Pmη〉 dt

=

∫ T

0

[∫
Γ

b

ε

(
W ′(φm)−−

∫
Γ

W ′(φm) dΓ

)
Pmη + bε∇Γφm · ∇ΓPmη

−κΛ∇Γum · ∇ΓPmη +
2κΛumPmη

R2
+ κΛ2(φm − α)Pmη dΓ

]
dt,

(5.27)

and

−
∫ T

0

α2 〈u′m,Pmξ〉 dt

=

∫ T

0

[∫
Γ

κ∆Γum∆ΓPmξ +

(
σ − 2κ

R2

)
∇Γum · ∇ΓPmξ

−2σumPmξ
R2

+
2κΛ(φm − α)Pmξ

R2
− κΛ∇Γφm · ∇ΓPmξ dΓ

]
dt.

(5.28)

Using the convergence results (5.10)-(5.12) and (5.22)-(5.25) we can pass to the limit

to obtain

−
∫ T

0

α1 〈(φ∗)′, η〉 dt =

∫ T

0

[∫
Γ

b

ε

(
W ′(φ∗)−−

∫
Γ

W ′(φ∗) dΓ

)
η + bε∇Γφ

∗ · ∇Γη

−κΛ∇Γu
∗ · ∇Γη +

2κΛu∗η

R2
+ κΛ2(φ∗ − α)η dΓ

]
dt,

(5.29)

−
∫ T

0

α2 〈(u∗)′, ξ〉 dt =

∫ T

0

[∫
Γ

κ∆Γu
∗∆Γξ +

(
σ − 2κ

R2

)
∇Γu

∗ · ∇Γξ

−2σu∗ξ

R2
+

2κΛ(φ∗ − α)ξ

R2
− κΛ∇Γφ

∗ · ∇Γξ dΓ

]
dt,

(5.30)

∀η ∈ L2(0, T ;H1(Γ)), and ∀ξ ∈ L2(0, T ;H2(Γ)). Finally using elliptic regularity we

obtain that φ ∈ L2(0, T ;H2(Γ)) and u ∈ L2(0, T ;H4(Γ)). This completes the proof of

existence for Theorem 5.1.

5.1.4 Uniqueness Theory

To complete the proof of Theorem 5.1 it remains to prove uniqueness. Let (φi, ui), i = 1, 2
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be two solution pairs. Set θφ = φ1 − φ2 and θu = u1 − u2. By subtracting the equations,

testing with η = θφ and ξ = θu and using that

d

dt
‖θφ‖2L2(Γ) = 2

〈(
θφ
)′
, θφ
〉
,

d

dt
‖θu‖2L2(Γ) = 2

〈
(θu)

′
, θu
〉
, (5.31)

for a.e. 0 ≤ t ≤ T we obtain

−α1

2

d

dt
‖θφ‖2L2(Γ) =

∫
Γ

b

ε

(
W ′(φ1)−W ′(φ2)

)
θφ dΓ + bε‖∇Γθ

φ‖2L2(Γ)

+ κΛ2‖θφ‖2L2(Γ) +

∫
Γ

2Λκθuθφ

R2
− Λκ∇Γθ

φ · ∇Γθ
u dΓ,

(5.32)

−α2

2

d

dt
‖θu‖2L2(Γ) =κ‖∆Γθ

u‖2L2(Γ) +

(
σ − 2κ

R2

)
‖∇Γθ

u‖2L2(Γ)

− 2σ

R2
‖θu‖2L2(Γ) +

∫
Γ

2Λκθuθφ

R2
− Λκ∇Γθ

φ · ∇Γθ
u dΓ.

(5.33)

Using the Poincaré type inequality (4.2), structural property (2) of W (·) and Young’s

inequality we obtain,

d

dt

(
‖θu‖2L2(Γ) + ‖θφ‖2L2(Γ)

)
+ c1‖θu‖2H2(Γ) + c2‖θφ‖2L2(Γ) ≤ C

(
‖θu‖2L2(Γ) + ‖θφ‖2L2(Γ)

)
,

(5.34)

where c1, c2 and C are strictly positive constants. Uniqueness then follows by Gronwall’s

inequality.

5.2 Gradient Flow for the reduced energy

Returning to consider the reduced energy (4.20), we can likewise obtain the gradient flow

equation

α1φt +
b

ε

(
W ′(φ)−−

∫
Γ

W ′(φ) dΓ

)
− bε∆Γφ+ κΛ

(
∆Γ +

2

R2

)
G(Pφ) + κΛ2(φ− α) = 0,

(5.35)

satisfying

d

dt
Ẽ(φ) = −α1‖φt||2L2(Γ) ≤ 0. (5.36)

However, by defining u = G(Pφ) as in (4.15) then we obtain the system of equations

α1φt +
b

ε

(
W ′(φ)−−

∫
Γ

W ′(φ) dΓ

)
− bε∆Γφ+ κΛ

(
∆Γ +

2

R2

)
u+ κΛ2(φ− α) = 0,

−∆Γu+
σ

κ
u = ΛPφ

(5.37)
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which coincides with (5.7) in the case α2 = 0. In this instance we can again apply a

Galerkin approximation and obtain the a priori bounds

‖φm‖L∞(0,T ;H1(Γ)) ≤ C, (5.38)

‖um‖L∞(0,T ;H2(Γ)) ≤ C, (5.39)

‖φ′m‖L2(0,T ;L2(Γ)) ≤ C. (5.40)

From these estimates existence and uniqueness can be shown analogously to Theorem

5.1. The case α2 = 0 can be physically understood as instantaneous relaxation of the

surface energy.

6 Numerical Simulations

In this section we present some numerical results for the longtime behaviour of the system

of PDEs given by (5.37). We consider α1 = 1 and suppose the double well potential is

given by

W (r) =
1

4
(r2 − 1)2. (6.1)

This choice of W (·) satisfies the structural assumptions given earlier.

6.1 Numerical Scheme

We implement an iterative method as follows. Given a solution
(
φ(n), u(n)

)
at the previous

time step we consider a sequence {φk, uk, λk}∞k=1 where (φk, uk) is a solution to∫
Γ

φk − φ(n)

τ
η +

b

ε
W ′′

(
φ(n)

)(
φk − φ(n)

)
η +

b

ε
W ′
(
φ(n)

)
η

+ bε∇Γφk · ∇Γη − κΛ∇Γuk · ∇Γη +
2κΛ

R2
ukη − λkη + Λ2κ(φk − α)η dΓ = 0,

(6.2)

∫
Γ

σ

κ
ukχ+∇Γuk · ∇Γχ− Λ(φk − α)χ dΓ = 0, (6.3)

where in the above, a linearisation has been used for W ′. The mean value constraint

on the height function is directly enforced by (6.3) provided σ 6= 0. The mean value

constraint on φ is imposed by the secant method, (following [7]), using the sequence

{λk}k≥1 which is constructed as follows

λk+1 = λk +
(λk − λk−1)

(
α−

∫
Γ
φk
)(∫

Γ
φk −

∫
Γ
φk−1

) .

with λ1 = − bε and λ2 = b
ε . We stop the iteration when |λk+1 − λk| < tol and set

φ(n+1) = φk+1 and u(n+1) = Puk+1. We note that it is not necessary to consider Puk in

order to obtain φk since
(
∆Γ + 2

R2

)
Puk =

(
∆Γ + 2

R2

)
uk.

DUNE software was used to implement a surface finite element method. Specifically

we used a PYTHON module (c.f. [13]) which implemented a GMRES method with ILU

preconditioning to solve the system of linear equations (6.2)-(6.3). For the secant iteration
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Figure 1. An example of how the adaptive grid method given in (6.4) resolves the inter-

face for the case ε = 0.02.

we set tol = 10−8 and for the GMRES iteration we set the residual tolerance and absolute

tolerance both to 10−10. For the case σ = 0 we additionally used a nullspace method

from PETSc [12, 4, 3].

Unless stated otherwise, we used a base grid containing 1026 vertices, and at each time

step applied an adaptive grid method on each element K if the condition

‖∇φ‖L∞(K) >
µε

|K|
, (6.4)

is satisfied, where µ = 0.05. For most of our simulations we will use ε = 0.02 which

typically leads to a grid consisting of around 30,000 vertices. Figure 1 illustrates an

example of such a grid around an interface.

We also used an adaptive time stepping strategy initially using a uniform time step

while phase separation occurred and then using an adaptive time step (within bounds)

that is inversely proportional to

max
x∈Γh

∣∣∣φ(m)
h (x)− φ(m−1)

h (x)
∣∣∣

τ (m)
, (6.5)

which should be interpreted as the normal velocity of the interface.

To graphically represent the numerical solutions, we deform the surface as described

by (3.5). Here, for visualisation purposes we exaggerate the size of the deformation uh
by setting ρ = 1 whereas in reality it should be significantly smaller. The colouring of

the resulting surface is given by φh with red indicating +1 regions and blue −1 regions.

6.2 Stabilisation of multiple domains

We first explore whether there exists stable steady state solutions composed of multiple

lipid rafts (+1 phase domains), a property observed in biological membranes. We choose

κ = 1, R = 1, b = 1, ε = 0.02 and σ = 10, and use a uniform time step of τ = 10−2.

We choose initial conditions with an increasing number of lipid rafts and investigate the

impact of varying the spontaneous curvature Λ, which acts as the coupling parameter
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(a) N=1 (b) N=2 (c) N=3 (d) N=4

Figure 2. Stabilised steady states solutions of N domains for Λ = 2.

Figure 3. Energy dependence of steady state solutions of N lipid raft domains on spon-

taneous curvature, Λ. The graph on the right is a zoomed in version of the graph on the

left on an area of interest.

(a) φh(·, t = 0) (b) φh(·, t = 60) (c) φh(·, t = 80) (d) φh(·, t = 200)

Figure 4. Unstable state with transitions from 1 domain towards 4 domains. Here for

visualisation purposes we don’t apply the deformation u.

between the phasefield and the deformation. In each case the initial conditions are chosen

such that α = −0.5.

In Figure 2 we depict stabilised steady state solutions consisting of N lipid raft domains

for Λ = 2. Taking the solutions displayed in Figure 2 as initial conditions, we determine

for which range of Λ they continue to be steady state solutions. In Figure 3 we plot

the energy (3.22) against spontaneous curvature Λ for the corresponding steady state

solutions. The Λ values considered were 0, 0.2, 0.4, 0.6.... This was not possible in all

cases. For each Λ value where no corresponding energy E has been plotted in Figure 3

indicates that a state consisting of N lipid raft domains was not a steady state solution.

For example the case N = 1 and Λ = 2.8 is illustrated in Figure 4.
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(a) ε = 0.04 (b) ε = 0.02 (c) ε = 0.01 (d) ε = 0.005

Figure 5. Almost stationary discrete solutions for varying the width of the interface, ε.

6.3 Width of interface, ε

Since we approximated the line tension by the Ginzburg-Landau energy functional, we

wish to check that in the limit ε → 0 we see a tightening on the width of the diffuse

interface. This is confirmed in Figure 5 where the initial condition was chosen to have

icosahedral rotational symmetry, and parameter values κ = 1, R = 1, b = 1,Λ = 5 and

σ = 1 were used. These simulations were run until they reached an almost stationary

state, that is until changes in the solution over large time steps were insignificant.

6.4 Long time behaviour

Starting with an initial condition of the form φ(·, t = 0) = α+R where R is a given small

mean zero random perturbation, we investigate the long time behaviour for varying the

different parameters from which a number of interesting geometric features arise.

To start with we set R = 1 and ε = 0.02 and consider the parameters Λ = 5, b = 1,

α = −0.5, σ = 1 and κ = 1 as a base case, and vary each parameter in turn. Figure 6 gives

a series of snapshots of how the solution varies in time towards an almost stationary state

solution, in this case consisting of 12 lipid rafts. By taking different random perturbations

R it is possible to obtain almost stationary solutions with differing numbers of lipid rafts.

Therefore, we can’t conclude this is a global minimiser, but is indicative of general trends

that can be observed for varying certain parameters, e.g. the number of lipid rafts.

6.4.1 Spontaneous curvature, Λ

In the case Λ = 0, then there is no coupling so u = 0 for all time, and φ evolves according

to a conserved Allen-Cahn equation. We observe that as |Λ| increases so do the number

of lipid rafts, see Figure 7. This is not surprising since to minimise the energy E , larger

Λ corresponds to increased curvature. As expected the energy E coincides for positive

and negative values of Λ since switching the sign of Λ amounts to switching the sign of

u, which leaves E unchanged. Further details are given in Table 1.

6.4.2 Line tension, b

Similarly, we would expect that increasing the line tension b would decrease the length of

the interface, and hence decrease the number of lipid rafts. This agrees with the observed

behaviours illustrated in Figure 8. Further details are given in Table 2. We comment
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(a) φh(·, t = 0) (b) φh(·, t = 0.4) (c) φh(·, t = 0.5)

(d) φh(·, t ≈ 3.565) (e) φh(·, t ≈ 115.565) (f) φh(·, t ≈ 515.565)

Figure 6. The time evolution for initial condition φ(·, t = 0) = −0.5+R with parameters

given by Λ = 5, b = 1, σ = 1 and κ = 1.

(a) Λ = 0

(b) Λ = −0.5 (c) Λ = −5 (d) Λ = −10

(e) Λ = 0.5 (f) Λ = 5 (g) Λ = 10

Figure 7. Almost stationary discrete solutions for varying the coupling coefficient Λ.

that in Figure 8 (d) the dumbbell shape is due to the scaling used in the graphical

representation. If a smaller scaling ρ for the height function had been used then the

solution would look more like Figure 7 (e).

6.4.3 Mean value of φ

Figure 9 shows the effect of varying the mean value of φ, with both stripe and circular

raft behaviour observed, as well as no phase separation. Further details are given in Table

3. Although Figure 9 (a) is almost stationary, its non-symmetric nature is suggestive that

this is not a local minimiser.
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Table 1

Figure 7 Λ # of lipid rafts Eh

(a) 0 1 5.1910
(b) -0.5 1 6.3583
(c) -5 12 66.9928
(d) -10 26 204.9876
(e) 0.5 1 6.3583
(f) 5 12 66.9928
(g) 10 26 204.9876

(a) b = 0.2 (b) b = 1 (c) b = 2.5 (d) b = 50

Figure 8. Almost stationary discrete solutions for varying the line tension term b.

Table 2

Figure 8 b # of lipid rafts Eh

(a) 0.2 26 49.9075
(b) 1 12 66.9928
(c) 2.5 6 88.0572
(d) 50 1 376.0834

6.4.4 Surface tension, σ

Figure 10 shows the effect of varying the surface tension σ, with increasing σ correspond-

ing to increasing numbers of lipid rafts. Further details are given in Table 4. Since in

the case σ = 0, there is not a unique solution to (6.3), we used a nullspace method from

PETSc to enforce that
∫
u = 0.

6.4.5 Bending rigidity, κ

Figure 11 illustrates the effect of varying the bending rigidity κ. We observe that increas-

ing κ leads to an increase in the number of lipid rafts. Further details are given in Table

5.
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(a) α = 0 (b) α = −0.25 (c) α = −0.5 (d) α = −0.75

Figure 9. Almost stationary discrete solutions for varying α - the mean value of the order

parameter φ.

Table 3

Figure 9 α # of lipid rafts Eh

(a) 0 - 35.5574
(b) -0.25 12 44.2027
(c) -0.5 12 66.9928
(d) -0.75 - 118.0643

(a) σ = 0 (b) σ = 1 (c) σ = 10

Figure 10. Almost stationary discrete solutions for varying σ - the surface tension.

Table 4

Figure 10 σ # of lipid rafts Eh

(a) 0 8 64.0906
(b) 1 12 66.9928
(c) 10 23 79.1846

Table 5

Figure 11 κ # of lipid rafts Eh

(a) 0.05 1 16.9889
(b) 0.1 6 37.4941
(c) 1 12 66.9928
(d) 10 30 440.1609
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(a) κ = 0.05 (b) κ = 0.1 (c) κ = 1 (d) κ = 10

Figure 11. Almost stationary discrete solutions for varying the bending rigidity κ.

7 Outlook

The relationship of the diffuse interface approach considered here and a sharp interface

problem via asymptotics will be considered in a work in preparation by the authors.

Another interesting direction to consider would be a phase-dependent bending rigidity for

the Gauss curvature within this perturbation approach, and the exploration of whether

this could be sufficient to produce raft like regions as well.
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