
The Library
Enhancing climate resilience of vertical seawall with retrofitting - A physical modelling study
Tools
Dong, Shudi, Abolfathi, Soroush, Salauddin, Md , Tan, Z. H. and Pearson, Jonathan M. (2020) Enhancing climate resilience of vertical seawall with retrofitting - A physical modelling study. Applied Ocean Research, 103 . 102331. doi:10.1016/j.apor.2020.102331 ISSN 0141-1187.
|
PDF
WRAP-Enhancing-climate-resilience-vertical-seawall-retrofitting-physical-modelling-Abolfathi-2020.pdf - Accepted Version - Requires a PDF viewer. Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0. Download (2051Kb) | Preview |
Official URL: https://doi.org/10.1016/j.apor.2020.102331
Abstract
Coastal defence structures are playing a vital role in protecting coastal communities from extreme climatic conditions and flooding. With climate change and sea-level rise in the next decades, the freeboard of existing coastal defences is likely to be reduced and the probability of wave overtopping for these coastal defences will increase. The wave overtopping from coastal defences increases the probability of coastal inundation and flooding, imposing threat to the communities which are living in low-lying coastal areas. Retrofitting of existing seawalls offers the potential to enhance coastal resilience by allowing them to adapt and respond to changing climatic conditions. This study investigates a range of possible physical configurations and optimum retrofit geometry to maximize the protection of existing seawalls from wave overtopping. A comprehensive physical modelling study of four retrofit prototypes, including recurve wall, model vegetation, reef breakwater and diffraction pillars, was conducted to examine their performance in mitigating wave overtopping, when placed in front of a vertical seawall. All the tests were conducted on 1:20 smooth beach slope. Each test case consisted of approximately 1000 pseudo-random waves based on the JONSWAP spectrum. The physical modelling experiments were designed to include both impulsive and non-impulsive wave conditions. This study provides new predictive relations and decision support tool needed to evaluate overtopping risks from existing seawalls with retrofits under various hydrodynamic conditions. The analysis of experimental measurements demonstrates that wave overtopping from retrofitting structures can be predicted with similar relations for vertical seawalls, and by using a reduction factor which varies with geometric shapes. Statistical measures and sensitivity analysis show that recurve walls have the best performance in reduction of wave overtopping volume followed by model vegetation and reef breakwater. The measurements show the insignificance of diffraction pillars, at least for the selected configurations investigated, in mitigating wave overtopping.
Item Type: | Journal Article | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | G Geography. Anthropology. Recreation > GC Oceanography G Geography. Anthropology. Recreation > GE Environmental Sciences T Technology > TA Engineering (General). Civil engineering (General) T Technology > TC Hydraulic engineering. Ocean engineering T Technology > TD Environmental technology. Sanitary engineering |
|||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > Engineering | |||||||||||||||
Library of Congress Subject Headings (LCSH): | Shore protection, Sea-walls , Coastal engineering, Ocean waves , Coast changes -- Prevention | |||||||||||||||
Journal or Publication Title: | Applied Ocean Research | |||||||||||||||
Publisher: | Elsevier | |||||||||||||||
ISSN: | 0141-1187 | |||||||||||||||
Official Date: | October 2020 | |||||||||||||||
Dates: |
|
|||||||||||||||
Volume: | 103 | |||||||||||||||
Article Number: | 102331 | |||||||||||||||
DOI: | 10.1016/j.apor.2020.102331 | |||||||||||||||
Status: | Peer Reviewed | |||||||||||||||
Publication Status: | Published | |||||||||||||||
Access rights to Published version: | Restricted or Subscription Access | |||||||||||||||
Date of first compliant deposit: | 25 August 2020 | |||||||||||||||
Date of first compliant Open Access: | 17 August 2021 | |||||||||||||||
Grant number: | – fellowship scheme 16 (). Financial support from l and | |||||||||||||||
RIOXX Funder/Project Grant: |
|
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year