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Deringer4, a)

1)Institute of Condensed Matter and Nanosciences, Université catholique de Louvain,
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Machine learning driven interatomic potentials, including Gaussian approximation

potential (GAP) models, are emerging tools for atomistic simulations. Here, we ad-

dress the methodological question of how one can fit GAP models that accurately

predict vibrational properties in specific regions of configuration space, whilst retain-

ing flexibility and transferability to others. We use an adaptive regularization of the

GAP fit that scales with the absolute force magnitude on any given atom, thereby

exploring the Bayesian interpretation of GAP regularization as an “expected error”,

and its impact on the prediction of physical properties for a material of interest.

The approach enables excellent predictions of phonon modes (to within 0.1–0.2 THz)

for structurally diverse silicon allotropes, and it can be coupled with existing fitting

databases for high transferability across di↵erent regions of configuration space, which

we demonstrate for liquid and amorphous silicon. These findings and workflows are

expected to be useful for GAP-driven materials modeling more generally.
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I. INTRODUCTION

Vibrational properties on the atomic scale determine the thermal behavior of materi-

als. Their knowledge is therefore of central importance in many fields of physics, materials

science, and engineering. For example, a low thermal conductivity is a requirement for ther-

moelectric waste-heat recovery,1 and the ability to predict this property based on highly ac-

curate theoretical and computational methods can allow the community to discover possible

new thermoelectric materials. Indeed, thermal conductivity and other macroscopic quanti-

ties can nowadays be computed from first principles, normally based on density-functional

theory (DFT), although at a very substantial computational cost.2–7 Only very recently,

larger DFT-computed databases of harmonic vibrational properties became available,8,9 but

high-throughput predictions of more computationally expensive properties such as thermal

conductivities have not been attempted to our knowledge. So far, computational searches

for materials with low thermal conductivity have been performed based on computation-

ally cheaper models such as the quasi-harmonic Debye model, that do not require the full

ab initio computation of the thermal conductivity, or combined with global optimization

techniques, that only require a limited amount of full ab initio computations of the thermal

conductivity.10,11

In an e↵ort to sidestep the computational cost of DFT, machine learning (ML) based

interatomic potential models are increasingly widely used in materials modelling.12–15 Based

on a reference database of (typically) DFT data and a regression framework including arti-

ficial neural networks,16–19 kernel methods,20–22 or linear fitting,23–25 they enable atomistic

simulations at similar accuracy levels but at orders of magnitude lower computational cost.

The high accuracy that ML potentials can reach for phonons was demonstrated a decade

ago already,26 and early applications to amorphous phases showcased the ability to treat

large and structurally complex systems.27,28 To date, vibrational properties continue to be

a sensitive test for the quality of a candidate potential,29–32 because they give a direct and

physically meaningful measure for how reliably the interatomic forces are predicted by any

ML model. Notably, a recent benchmark study has shown that a range of di↵erent ML po-

tential fitting frameworks can lead to phonon predictions in excellent agreement with DFT

reference data.14

Beyond the prediction of harmonic phonons in crystals, ML potentials have begun to
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be used for thermal properties including anharmonic e↵ects as well. A proof-of-concept in

the Gaussian Approximation Potential (GAP) framework, for the temperature-dependent

phonon dispersion curves of Zr, was reported in 2018.33 Skutterudite CoSb3 (Ref. 34) and ele-

mental metals35 were studied using Moment Tensor Potentials (MTP) very recently, showing

excellent agreement with DFT reference values. Three independent studies dealt explicitly

with crystalline diamond-type (dia) silicon.36–38

An aspect that so far has been rarely discussed in this context is the ability of materials to

crystallize in di↵erent structures (“allotropes” for elements, “polymorphs” for compounds).

The evaluation of phonon properties of silicon with ML potentials has focused, so far, al-

most exclusively on the most abundant structure, viz. the dia allotrope.36–38 There is,

however, ample interest in others: clathrate-type structures have been extensively stud-

ied by DFT;39–41 many other possible silicon allotropes have been proposed.42–47 An open-

framework structure, oS24, was synthesized by de-intercalation from Na4Si24;48 it was later

studied specifically with respect to its thermal properties, using DFT.49 Other metastable

silicon allotropes have been observed in laser-induced transformations.50 An overview, in-

cluding possible synthesis routes, was given recently.51

In the present work, we explore how phonon properties for a diverse ensemble of crystal

structures (allotropes or polymorphs) can be described in the GAP framework. We discuss

computational protocols by which reference databases can be assembled, and potentials

fitted, to deal with a range of silicon allotropes. Our work outlines a general strategy for

generating GAP models that can be interfaced to high-throughput materials workflows.

II. METHODOLOGY

A. Gaussian Approximation Potentials

Interatomic forces, on which all of the present study is based, were obtained in the

GAP framework.20 Initially, we tested the potential model for silicon developed by Bartók

et al. (Ref. 30), which has been designed as a “general-purpose” interatomic potential

for various applications in physics and materials science, and which has been extensively

validated for physical properties of crystalline30 and amorphous52,53 silicon. We refer to this

potential as “GAP-18” in the following. In the present work, we describe two methodological
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advances over that previous study. First, we developed new fitting databases by various

strategies, with a specific view to describe vibrational properties, as detailed in the Results

and Discussion section. Second, we use an atom-wise adaptive regularization scheme to

improve the accuracy of the fit.

In brief, and using the notation of Ref. 30, the energy in GAP-18 is fitted as

E =
X

i<j

V

(2)(r
ij

) +
X

i

"

i

, (1)

where the first sum is a baseline pair potential to capture exchange repulsion at short

interatomic distances, and the second sum is given by the Gaussian process regression itself.

The atomic energy, "
i

, of a given atom, unknown from DFT but the key quantity in GAP,

is

"
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=
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s
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based on a kernel (or similarity) function, K. The latter compares the local environment of

the i-th atom in a given structure, R
i

, with all M environments in a sparse reference set, R
s

.

In GAP-18, this kernel function is given by the Smooth Overlap of Atomic Positions (SOAP)

formalism;54 we use the same SOAP parameters as in Ref. 30, to ensure comparability.

The task in fitting a GAP model is therefore to find the regression coe�cients, ↵. Assume

we have a reference database of n structures, for each of which we know DFT-computed

energies, E
j

, and forces, F
j,j

0 , with scalar components in x, y, and z direction for all j0

atoms in the j-th structure. (We also add DFT-computed virial stresses, which does not

change the approach but makes the expressions more bulky, so we only discuss the case of

energies and forces below.) We collect all entries of our DFT reference database in a single

vector, y:

y =
⇣
E1, ..., En

, F

(x)
1,1 , ..., F

(z)
n,j

0

⌘
. (3)

We then define another vector, y0, which contains the atomic energies for all N atoms in

the reference database, which we do not know from DFT:

y0 = ("1, ..., "N) . (4)

We finally define a linear di↵erential operator, L, which connects the two:

y = Ly0
. (5)
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The fitting coe�cients are then obtained from the reference data, encoded by y, according

to30,55

↵

⇤ =
⇥
K

MM

+ (LK
NM

)T⇤�1LK
NM

⇤�1
(LK

NM

)T⇤�1y (6)

with K denoting kernel matrices based on the K defined above (here, SOAP), and the size of

K
NM

being the number of total atoms, N , times the number of sparse points, M . The matrix

⇤ is discussed in the following subsection. We emphasize that in computational practice,

neither L nor K
NM

are computed individually; only the combined matrix LK
NM

is. To

give an impression of the sizes of the matrices involved, the GAP-18 database contains N =

171, 815 atomic environments in total, of which M = 9, 000 are selected as representative

points.30

The entries of y in the above equation (i.e., our DFT reference data) were obtained

using CASTEP 8.0,56 with on-the-fly pseudopotentials, the PW91 functional,57 and a basis-

set extrapolation scheme,58 and using the same convergence parameters as in GAP-18.30

All new potential versions were fitted with the same parameters as GAP-18 (including the

baseline pair potential, V (2); Eq. 1), but varied in the composition of the reference database

and the number of sparse points, M . Parameter files for all new potential versions have

been deposited in the Zenodo repository (see Data Availability statement).

B. Regularization

The key aspect of Eq. 6, in the context of the present work, is now the diagonal matrix

⇤, which contains the expected errors for all entries of y:

⇤ =

0

BBBBBBBBBBB@
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. . .
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E
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In previous GAP fits, these expected errors have been set based on physical intuition and

for separate parts of a given database (for example, assigning a smaller �

E

to crystalline

configurations and a larger �
E

to amorphous ones).30,59 Instead, we now use a protocol for

5



fitting phonon properties based on simple supercell displacements and an adjusted regular-

ization (expected error) in the fit; a similar idea has been used very recently in Ref. 36, but

not yet explored in detail. We here set the atom-wise regularization for force components

in F
i

= (F (x)
i

, F

(y)
i

, F

(z)
i

) according to

�

(i)
F

=

8
><

>:

f ⇥ |F
i

| , if |F
i

| > Fmin;

f ⇥ Fmin, else.
(8)

Initially, we chose f = 0.1 and Fmin = 0.01 eV Å�1. This value already leads to a lower

bound of �F = 0.001 eV Å�1, compared with �F = 0.1 eV Å�1 for crystalline configurations

in GAP-18.30 We later vary f over a wide range of even smaller values.

C. Vibrational properties

Phonon and thermal property computations were carried out using phonopy60 and

phono3py6 with the finite displacement method. The size of the atomic displacements

were 0.01 Å (phonopy) and 0.03 Å (phono3py), as per the standard setting. The thermal

conductivity was calculated with the relaxation time approximation as implemented in

phono3py.

To compute second-order and third-order force constants for optimized structures with

the help of GAP potentials, a script was built that uses pymatgen 2019.12.22,61 Atomic Sim-

ulation Environment (ASE) 3.19.0,62 phonopy 2.4.2, phono3py 1.18.2 and quippy (including

the GAP code, development version of 10 Jan 2020). The built-in geometry optimization

of ASE was first used to optimize the crystal structures (including cell size) with the help

of the GAP potentials. The forces on each atom were smaller than 10�5 eV/Å. Phonon

band structures were calculated along high-symmetry lines in reciprocal space; the latter

were identified as described in Ref. 63 and as implemented in pymatgen. 51 points were

calculated between each high-symmetry point. The supercells for the phonopy calculations

were created based on the primitive cells and in such a way that each lattice parameter was

larger than 15 Å. To compare the DFT benchmark calculations of the harmonic phonons

to GAP potentials, an RMS value was defined that compares all bands along each point in

reciprocal space at which the bands were calculated.
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FIG. 1. The current state-of-the-art in predicting phonons with the GAP methodology, illustrated

using the general-purpose GAP-18 model for silicon.30 (a) Phonon dispersion curves for the dia-

type structure, computed with DFT (left) and GAP-18 (right), showing excellent agreement. (b)

Same for clathrate-I-type silicon. The general features of the phonon dispersion are reproduced

as well, but there are several discrepancies in detail (highlighted in red), which are discussed in

the text. (c) A survey of all ambient-pressure stable structures from the Materials Project (using

the “mp” identifier) up to a reasonable size, and the root-mean-square error for their respective

GAP-18 predicted phonon dispersions. Lines connecting data points are guides to the eye.
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FIG. 2. (a) Strategies for building reference databases, shown by a simplified schematic. We extract

crystal structures from the Materials Project database, with filtering as described in the text. We

then create supercells based on these structures in which we either displace atoms individually, or

all of them randomly, and compute DFT energies and forces for these supercells. Additionally,

we investigate the e↵ect of including the pre-existing GAP-18 database.30 We then build various

combinations of databases to which candidate GAP models are fitted. (b) Results for various

database building schemes sketched above, shown as phonon-error “learning curves” for three

representative Si allotropes. An asterisk (⇤) indicates a structure that is erroneously predicted as

dynamically unstable. The reference values for GAP-18 are shown by dotted horizontal lines.

The supercells for the phono3py computations were based on the conventional cells and

they were also built such that each lattice parameter was > 15 Å. The thermal conductivity

for diamond was calculated for the conventional cell and with an 11⇥11⇥11 q-point grid.

The complete code is available via Github (https://github.com/JaGeo/Phonons_GAPs_

silicon) and archived on zenodo.org (https://doi.org/10.5281/zenodo.3924470).
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III. RESULTS AND DISCUSSION

A. State of the art

We begin by discussing the performance of GAP-18,30 a general-purpose ML potential.

We quantify how well it can predict the phonon dispersion relations for diamond-type (dia)

silicon, which is abundantly represented in its reference database (489 pristine and 404 de-

fective bulk cells, some containing > 200 atoms per cell, plus various surface configurations;

Ref. 30)—but also for other allotropes which GAP-18 has not “seen”. We compute all ref-

erence phonon band structures at the same level of DFT, enabling direct benchmarking.

In the present work, we consider only structures at ambient pressure, but we mention that

high-pressure silicon allotropes have been successfully studied with ML potentials before.64,65

For dia-Si (Fig. 1a), GAP-18 predicts phonons with practically quantitative accuracy,

as previously shown in Ref. 30. This is consistent with the results reported in Ref. 36,

where a more specialized GAP model was fitted to snapshots from DFT-based molecular

dynamics (MD) simulations of pristine and defective dia-Si. At this level of quality, the

computed phonon band structures from both methods are practically indistinguishable to

the naked eye. To quantify this agreement, we determined the root-mean-square (RMS)

error of phonon eigenvalues across the Brillouin zone, which amounted to 0.15 THz.

The situation is di↵erent for the clathrate-I-type structure which is not included in the

GAP-18 reference database (Fig. 1b). Here, using the potential out-of-the-box still leads

to a dynamically stable structure (i.e., without any imaginary eigenvalues, which would

conventionally be plotted as negative frequencies), and it does recover the general features.

There are, however, notable quantitative di↵erences, and some of them are highlighted in

Fig. 1b by red circles. The highest-energy phonon mode at the zone center, �, is under-

predicted by GAP by 0.8 THz (6%) whereas the lowest predicted band at the X point

deviates by 0.3 THz (12%) from the DFT reference data. Especially the latter relative error

is much larger (more than twice as large) than relative errors typically arising from DFT

computations in comparison to experimental measurements: The mean relative error from

DFT to experiment calculated from 53 materials was –3.6% in a recent high-throughput

study.8 Errors arising from ML potentials should therefore be in a similar range or smaller.

The red circle at the R point further highlights that the phonon frequencies calculated by
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GAP-18 are smaller than the ones calculated by DFT. The RMS error is 1.11 THz, almost

ten times that obtained for dia-Si.

To obtain a more comprehensive picture, we test the root-mean-square (RMS) error of

phonon eigenvalues for a wide range of reasonably sized and dynamically stable structures

from the Materials Project database61 (Fig. 1c). Out of 13 allotropes considered, all except

one are correctly predicted to be dynamically stable. The exception is mp-1072544, a hypo-

thetical structure.42 The phonon prediction error for most allotropes is about 0.5–1.0 THz,

with clathrate-I being one of the more poorly described examples. This is still a remarkable

quality for structures which have not been included in the GAP-18 reference database, such

as clathrate-I or oS24.48 But the error is clearly too large for quantitative studies or for

a fully reliable assessment of dynamic stability, which one might wish to carry out when

computationally screening large amounts of hypothetical structures.

B. Approaches for building fitting databases

We now perform a comprehensive study of how reference databases can be designed for fit-

ting phonon-accurate GAPs if no prior such database exists. Figure 2a provides an overview.

We extract structures from the Materials Project database and filter them according to a

maximum system size and the criterion that the structure has not significantly changed af-

ter the initial structural optimization with CASTEP. This structural change was determined

by the StructureMatcher routine implemented in pymatgen, using slighly tighter tolerances

for matching structures (ltol = 0.1, stol=0.1 and angle tol=3) instead of the default

parameters.61 We then create supercell models with atomic displacements and generate DFT

reference data for those, using two di↵erent strategies. A common approach uses randomly

displaced cells, creating several copies with lattice parameters scaled by a few percent, and

atomic positions randomized with a standard deviation of 0.01 Å, for example (green in Fig.

2a). We also test a di↵erent approach (magenta): create supercells of the optimized crystal

structures with (only) individual displacements and atom-wise regularization, as discussed

in Sec. II. We finally fit candidate GAPs to the resulting databases, always using the same

descriptors as in GAP-18, and evaluate their phonon errors by the same RMS measure as

in Fig. 1.

The randomized structures, as used in previous GAPs (e.g., Ref. 59), provide an accept-
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able but not a truly reliable result for the prediction of phonons (Fig. 2b, top row). We

study the evolution of the error as a function of the number of sparse points, M , used in

the fit. The outcome of this procedure varies notably from structure to structure; the pre-

diction quality is better than GAP-18 for clathrate-I, about on par for the open-framework

oS24 allotrope, but worse than GAP-18 for diamond-type silicon. This is indicative of the

fact that a similar (and rather small) number of 10 distorted supercells is used to represent

each structure, with a view to keep the computational workload tractable even for more

complex chemical systems. The number of dia-like atomic environments in our databases is

therefore much smaller than in that of GAP-18. Interestingly, the dia “learning curve” does

not converge with M as expected, instead leading to a false-positive prediction of dynamic

instability (“⇤” in Fig. 2b).

An alternative strategy is to create individual displacements (only), in separate supercells,

akin to the way that one would build supercells for phonon computations. Displacements are

generated along all symmetry-inequivalent directions, which leads to only one supercell for

several structures including dia (Fd3̄m), but many supercells for other structures, depending

on space-group symmetry. In this case (magenta in Fig. 2), the phonon accuracy is generally

better than with randomized distortions only, and it plateaus after about 3,000 representative

atoms—this is clearly expected because the total number of relevant force-component entries

in y (Eq. 3) is relatively small, mostly relating to the displaced atom in a supercell and

those atoms in its local environment. There are, again, pronounced di↵erences for the three

allotropes, with clathrate-I again being most accurately described among those characterized

in Fig. 2b.

We also test combined models, which include both Materials Project derived databases

(and only those), indicated in Fig. 2b by mixed magenta/green symbols. This appears to

even out the performance for the three di↵erent allotropes, increasing the phonon error for

clathrate-I-type silicon, albeit not above 0.2 THz. The learning curves for the combined

databases converge more slowly with M than those for only individual displacements.

Having assessed the qualitative and individual performance of the method for selected

structures, we now re-visit the full range of relevant silicon allotropes, with results for RMS

phonon errors collected in Fig. 3. To make the comparison easier, we always choose M =

9000, as in GAP-18.

Mirroring now more broadly what was already observed in Fig. 2b, the prediction quality
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FIG. 3. Predicting phonon frequencies “from scratch” based on Materials Project entries. RMS

phonon band structure errors are given for all relevant MP entries as in Fig. 1c, but now using

new potentials, fitted to reference databases created as outlined in Fig. 2a. All potentials use

M = 9000 sparse points. Top: Results from the fit with only individual supercells. Two structures

are erroneously predicted to be dynamically unstable (⇤). Bottom: Same for a potential fitted to

randomly distorted structures only (green) and to a combined database (green/magenta).

is overall quite scattered if only invididual supercells are used to construct the reference

database (top panel). For most of the silicon allotropes, the approach leads to a prediction

error of better than 0.5 THz; clathrate-I turns out to be the best described of all of them.

When randomized distortions are used, on the other hand, the distribution of prediction

errors is more uniform (green points in the bottom panel in Fig. 3). Two of the 13 structures

are erroneously predicted to be dynamically unstable with both approaches—one of them

being dia-Si in the case of using only randomized distortions, as noted above.

Adding individual supercells to the randomized distortions, i.e. combining both strate-

gies outlined at the top of Fig. 2a, appears to improve the results throughout. This is

an important general finding: our individual-supercell strategy (magenta) can, and appar-

12



ently should, be combined with other ways of sampling configuration space when developing

GAP fitting databases. We emphasize that this protocol can be fully automated, requiring

only a choice of the magnitude of the displacements and of the number of supercells to

be created per structure; it is therefore expected to be easily coupled to existing and new

high-throughput databases of crystal structures. An open research question, beyond the

scope of the present work, is how these automated potentials can accommodate previously

unseen structures which are not drawn from the Materials Project or another database, but

are discovered, for example, during a GAP-driven random search.66

C. Optimized regularization

In this section, we analyze in more detail the e↵ect of the atom-wise regularization on the

GAP prediction of phonon band structures. This corresponds to the idea of making the fit

“looser” (more flexible) or “tighter” (more accurate in the required regions of configuration

space, but therefore less flexible), controlled by the single factor f which we use to scale all

atom-wise force regularization parameters according to the absolute force on that atom (Eq.

8). We now perform GAP fits to versions of the “magenta” part of the database (Fig. 2a) in

which we vary f over several orders of magnitude, and inspect its e↵ect on the performance

for dia, oS24, and clathrate-I-type silicon. We also test whether the additional inclusion of

randomized distortions in the reference database would still improve the fit (as suggested

by Fig. 3). We remind the reader that we had so far used f = 0.1 throughout, and we now

tighten the regularization, down to f = 0.0001. These results are collected in Fig. 4.

For dia silicon, the phonon prediction error initially improves substantially when lowering

f , viz. from about 0.4 to about 0.2 THz. However, for f = 0.0001, the error increases again,

indicating a too low “expected error” for the input data. The quality of the fit can be even

further improved, to better than 0.1 THz, if randomized distortions are added to the fitting

database (note that we do not use atom-wise regularization for those configurations, instead

employing the GAP-18 default of �
F

= 0.1 eV Å�1, to retain higher flexibility for those

more disordered configurations). For oS24, a qualitatively similar trend is observed in Fig.

4, although here the e↵ect of too small f is more drastic: the resulting potential led to

a di↵erent structure during the relaxation that must be performed prior to evaluating the

phonons, and therefore no RMS error for the latter can be obtained. This example more

13
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FIG. 4. Optimization of the regularization parameter f , as defined in Eq. 8. We performed series

of fits, either with only the individually distorted Materials Project based supercells (magenta) or

with the random displacements added (magenta / green). RMS errors for computed vibrational

eigenvalues are given as before. The optimal value among those we tested, f = 0.001, is indicated

by arrows. For oS24, the combined fit at f = 0.0001 leads to a change in structure during

optimization, as a result of overfitting, and therefore no RMS error for the phonon band structure

can be obtained. This indicates the reasonable limit within which f should be chosen.

generally emphasizes the need for a (reasonably large) regularization of the GAP fit to arrive

at stable results in practice. For clathrate-I-type silicon, the data shown in Fig. 4 similarly

suggest the existence of an optimal f , and here we observe an overall increase in phonon

error when randomized configurations are added to the individually displaced supercells—

a consequence of the “equalization” between di↵erent structures that had already been

observed in the previous subsection. Taken together, these results suggest a choice of f

between 0.01 and 0.001, but not smaller.
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We note that ongoing work in the community aims to optimize GAP fits with regard

to the basis functions and hyperparameters for the structural descriptor.67–69 The present

study complements these e↵orts by probing the question how the regression task itself might

be further optimized.

D. Transferability: Extending GAP-18

We now take our newly created reference databases, constructed from individual distor-

tions with adaptive regularization (magenta in Fig. 2a) and randomized supercells (green in

Fig. 2a), respectively, and combine them with the existing database to which the GAP-18

model had previously been fitted30 (blue in Fig. 2a). We thereby aim to answer another

more general question about GAPs—namely, how can existing potentials be extended? And

how will these potentials retain their previously validated properties, viz. for GAP-18, the

all-round accurate description of dia, liquid, and amorphous silicon?

Our combined fits use a total of M = 12000 sparse points, of which 9000 are drawn from

the previous database, with distribution among di↵erent configuration types (liquid, amor-

phous, etc.) as in GAP-18,30 and 3000 are drawn from a combined set of individually and

randomly displaced supercells (Fig. 5a). We combine both new databases because Fig. 3 had

indicated that doing this may lead to a more robust behaviour than using the individually

displaced cells on their own. Based on our analysis of the regularization parameter (Fig. 4),

we generate two candidate potentials with f = 0.01 or f = 0.001, respectively.

Figure 5b shows that both potentials (with added supercells, “+SCs”) reach a predic-

tion quality within at least the 0.1–0.2 THz range, with even better performance for some

structures. There is a further minor improvement when moving from f = 0.01 to f = 0.001,

exemplified by an improved description of the dia structure with smaller f , in line with what

the tests in Fig. 4 have shown. But both potentials would clearly seem useful for practical

purposes when judged on the quality of their phonon predictions alone.
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relevant structures – shown as in Fig. 3, but now comparing GAP-18 and extended potentials that

are based on it. In both of these, the individually displaced and randomized supercells (“SCs”)

have been added to the fit, with atom-wise regularization according to f = 0.01 and f = 0.001 (cf.

Eq. 8), respectively. All structures are correctly predicted to be dynamically stable with both of

the modified potentials.
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TABLE I. Thermal conductivity, , for dia-Si as obtained from GAP-18 and extended versions of

it, compared to DFT and experimental references at di↵erent temperatures.

 (W m�1 K�1)

Method 300 K 600 K 900 K

Expt. (Ref. 70) 142.2 69.2 33.7

DFT (PBE, Ref. 49) 137.4

DFT (PW91, this work) 126.4 57.1 37.4

GAP-18 110.1 50.4 33.1

GAP-18+SCs (f = 0.01) 110.2 50.5 33.1

GAP-18+SCs (f = 0.001) 53.7 26.5 17.7

To test transferability of the newly created potentials, we compared the calculated ther-

mal conductivity for dia with DFT references and experimental data. We emphasize that

by “transferability” we mean that across structures, not across chemical compositions: our

claims are strictly related to silicon. The thermal conductivity is a property which is reason-

ably well described by GAP-18 and the question is therefore whether our modifications lead

to a detriment in that performance. To calculate accurate thermal conductivity, third-order

force constants have to be calculated. Here, this is done with the help of a finite displace-

ment method where a pair of atoms within the supercell has to be displaced. Such cells

are not part of our reference data, and therefore the potential needs to “pick up” the corre-

sponding (anharmonic) physics from other cells in the database, such as MD snapshots. The

previous GAP-18 model contains plenty of the latter, and therefore it arrives at acceptable

values for the thermal conductivity in comparison to our DFT reference values (less than

15% deviation at each temperature, Tab. I). We mention in passing the good performance

of independent, more specialized GAP and neural-network potential models for predicting

.36–38

GAP-18+SCs (f = 0.01) shows the same results as the original GAP-18 within any

reasonable accuracy, whereas f = 0.001 leads to an entirely unreliable prediction of . This

is now a crucial point, because it indicates that the latter fit is too “tight” on the newly added

structures (which correspond to harmonic phonons only), and therefore leads to overfitting

behavior which manifests in poor prediction of forces in other regions of configuration space.
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It also emphasizes that the prediction quality for  is determined by the GAP-18 dataset.

Follow-up work on optimized databases with regard to predicting thermal conductivity and

related properties is currently being planned.

We finally address the question whether the new potentials can also be used in the

initial design space of GAP-18, for example, for disordered phases. GAP-18 has enabled

accurate atomistic studies of liquid and amorphous silicon52,53 and we therefore investigate

whether the extended versions are still applicable to the same problems. We designed a

test that critically assesses the energy and force accuracy during GAP-driven melt–quench

simulations. We do this by running an example trajectory that is representative of “real-

world” applications, collecting an ensemble of structures, and benchmarking energies and

forces along the trajectory against DFT data.

The starting point (Fig. 6a) is a 512-atom supercell of diamond-type silicon in which

12 atoms are randomly removed, leading to defects including a vacancy cluster. We run

a GAP-MD simulation over several hundreds of thousands of steps, in the NPT ensemble

as implemented in LAMMPS,71 similar to Ref. 52. At every 10 ps, we take a structural

snapshot and compute its energies and forces using CASTEP56 at the PW91 level,57 using

the same settings as those used for generating the GAP fitting data.

The energy error (Fig. 6b) is instructive to watch for the various new GAPs. It traces

the GAP-18 result almost perfectly for f = 0.01, but fluctuates much more strongly with

f = 0.001, already indicating that this model might not completely recover the behavior of

the initial potential on which it is based. However, the absolute energy error is superficially

not bad, and this has an important message for the benchmarking of GAPs: the average

energy error itself might not provide su�cient information as to whether or not a given

candidate potential is physically meaningful. Indeed, the averaged energy error appears to

be best for f = 0.001 in the final part of the liquid trajectory, viz. 8 meV per atom compared

to 12 for both other potentials (Table II). A strikingly di↵erent result, however, is seen in

the force components (Fig. 6c), where f = 0.01 recovers the behavior of GAP-18 whereas

f = 0.001 leads to more than triple the error.
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FIG. 6. Assessing the transferability of extended potentials by using a systematic benchmark

for disordered structures. (a) Overview of the protocol: a defective diamond-type structure (500

atoms) is thermalized in constant-pressure molecular-dynamics simulations driven by GAP-18,

heated to 1,800 K and cooled again (at 1013 K s�1) to form a quenched amorphous state, similar to

Ref. 52. From this trajectory, we take structural snapshots every 10 ps (10,000 simulation steps),

and evaluate their energies and forces with DFT. (b) Prediction error for the per-atom energy from

various GAP models, given as absolute error versus DFT. (c) Same but now for the forces, with

errors given as RMS over all Cartesian force components in a given structure.
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TABLE II. Numerical errors for the melt–quench test, as illustrated in Fig. 6a, as a concise quality

measure for the di↵erent potentials. Errors are averaged over the last five snapshots for each

respective part of the trajectory.

Defective dia Liquid Amorphous

(300 K) (1,800 K) (300 K)

Energy error (meV / atom)

GAP-18 0.5 12.2 4.3

+SCs (f = 0.01) 0.6 11.5 4.2

+SCs (f = 0.001) 0.6 8.4 2.6

Force component error (eV /

˚

A)

GAP-18 0.07 0.19 0.15

+SCs (f = 0.01) 0.07 0.21 0.14

+SCs (f = 0.001) 0.11 0.65 0.29

This di↵erence between the potentials not only manifests in di↵erent numerical errors,

but it qualitatively a↵ects whether they are in any way useful in practice. We repeated the

diagnostic MD simulation as sketched in Fig. 6a, but now using either of the extended poten-

tial models and otherwise similar settings. The results of this experiment are summarized in

Fig. 7. The f = 0.01 model led to a correct description both of the liquid and the quenched

amorphous structures, indicated by radial distrubtion functions which are practically super-

imposable with results for the GAP-18 simulation (Fig. 7b). In stark contrast, the potential

fitted with f = 0.001 led to an abrupt dissociation of the structure during heating—resulting

in a strongly under-coordinated structure, indicated by blue coloring, with only one cluster

of atoms, shown on the right-hand side of Fig. 7a. This structure persisted during the entire

simulation, with only minimal atomic motion even at 1,800 K. This exercise underlines the

need for careful testing and validation of ML potentials in computational practice.

In summary, our extended potential with f = 0.01 does not lead to any notable loss

in quality for disordered silicon (Table II) whilst improving the description of phonons by

almost an order of magnitude (Fig. 5).
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IV. CONCLUSIONS

The ability to compute accurate vibrational and thermal properties with ML potentials

is an important result for two reasons. First, it has provided a useful testing ground for the

way that reference databases for such potentials can be constructed with minimal computa-

tional e↵ort—the main focus here being on the ability to treat various crystal structures at

the same time. This may lead to a better understanding of the role and physical meaning

of the “expected error” built into the GAP fit. Second, it is a step forward towards auto-

mated computational materials science, enabling the possibility of high-throughput vibra-

tional property prediction especially when coupled to e�cient workflows.72–74 It is expected

that the approach outlined in the present work can be readily applied to other SOAP-GAP

models, and in fact extended to other fitting frameworks—essentially to any material which

is amenable to an accurate ML potential fit. It is noted that these frameworks typically

rely on the use of local structural descriptors, and that ionic compounds with long-range

Coulomb interactions might require additional methodological work.75,76

While most computational work for silicon to date has focused on the diamond-type

allotrope, future searches for other structures and thereby synthesis targets are expected

to be productive. The theory-guided discovery and, ultimately, experimental realization

of new materials has now been achieved in many cases77 and it might be accelerated by

ML-driven phonon computations as presented here. For the specific example of group-14

elements, we mention the successful synthesis of clathrate-II-type germanium78 and also the

wealth of intercalated clathrate compounds,79 which may now be addressed with similar

computational methodology.
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C. P. Grey, S. R. Elliott, and G. Csányi, J. Phys. Chem. Lett. 9, 2879 (2018).
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