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Abstract

Clinical Practice Guidelines (CPGs) supply evidence-based recommendations
to healthcare professionals (HCPs) for the care of patients. Their use in clinical
practice has many benefits for patients, HCPs and treating medical centres, such
as enhancing the quality of care, and reducing unwanted care variations. However,
there are many challenges limiting their implementations. Initially, CPGs predom-
inantly consider a specific disease, and only few of them refer to multimorbidity
(i.e. the presence of two or more health conditions in an individual) and they are
not able to adapt to dynamic changes in patient health conditions. The manual
management of guideline recommendations are also challenging since recommenda-
tions may adversely interact with each other due to their competing targets and/or
they can be duplicated when multiple of them are concurrently applied to a multi-
morbid patient. These may result in undesired outcomes such as severe disability,
increased hospitalisation costs and many others. Formalisation of CPGs into a Com-
puter Interpretable Guideline (CIG) format, allows the guidelines to be interpreted
and processed by computer applications, such as Clinical Decision Support Systems
(CDSS). This enables provision of automated support to manage the limitations of
guidelines.

This thesis introduces a new approach for the problem of combining multiple
concurrently implemented CIGs and their interrelations to manage multimorbidity
care. MuCIGREF (Multiple Computer-Interpretable Guideline Representation and
Execution Framework), is proposed whose specific objectives are to present (1) a
novel multiple CIG representation language, MuCRL, where a generic ontol-
ogy is developed to represent knowledge elements of CPGs and their interrelations,
and to create the multimorbidity related associations between them. A systematic
literature review is conducted to discover CPG representation requirements and gaps
in multimorbidity care management. The ontology is built based on the synthesis
of well-known ontology building lifecycle methodologies. Afterwards, the ontology
is transformed to a metamodel to support the CIG execution phase; and (2) a novel
real-time multiple CIG execution engine, MuCEE, where CIG models are
dynamically combined to generate consistent and personalised care plans for mul-
timorbid patients. MuCEE involves three modules as (i) CIG acquisition module,
transfers CIGs to the personal care plan based on the patient’s health conditions
and to supply CIG version control; (ii) parallel CIG execution module, combines

Xvi



concurrently implemented multiple CIGs by performing concurrency management,
time-based synchronisation (e.g., multi-activity merging), modification, and time-
based optimisation of clinical activities; and (iii) CIG wverification module, checks
missing information, and inconsistencies to support CIG execution phases. Rule-
based execution algorithms are presented for each module. Afterwards, a set of
verification and validation analyses are performed involving real-world multimorbid-
ity cases studies and comparative analyses with existing works. The results show
that the proposed framework can combine multiple CIGs and dynamically merge,
optimise and modify multiple clinical activities of them involving patient data.

This framework can be used to support HCPs in a CDSS setting to gener-
ate unified and personalised care recommendations for multimorbid patients while
merging multiple guideline actions and eliminating care duplications to maintain
their safety and supplying optimised health resource management, which may im-
prove operational and cost efficiency in real world-cases, as well.

xvii



Chapter 1

Introduction

1.1 Research Motivation

Clinical practice guidelines (CPGs) [I] document evidence-based care instructions
for clinicians, ranging from diagnosis to long-term management. The use of them, in
clinical practice, supplies many benefits such as supporting clinical decision-making,
improving quality of care, guiding health resource use, reducing healthcare costs and
unwanted variations [2, Bl [4, 5]. CPGs mainly concentrate to a particular health
condition (e.g., diabetes, hypertension, chronic heart failure) [6]. The Guidelines
International Network (GIN), the Institute for Clinical Systems Improvement (ICSI)
and the UK National Institute for Health and Care Excellence (NICE) are examples
of sources of such guidelines.

Since early 2000s, many types of guideline-driven computerised platforms,
also known as clinical decision support systems (CDSSs), have been developed to
manage CPGs and support clinicians in the delivery of care [7,[8]. To manage CPGs,
they initially need to be authored to a computer-interpretable guideline (CIG) [9, [10]
format, which enables their representation and execution by computers, and can
provide automated connections between clinical knowledge, patient data, and other
applicable guidelines for supplying error-free and consistent care recommendations,
in order to maintain patient safety. This can be achieved, by formalising the concepts
included in CPGs and their interrelations, through the use of unambiguous and
computer interpretable representation.

The existing CIG formalisms (also called CIG languages), such as Arden Syn-
tax [II], Asbru [12], EON [I3]|, GLARE [14], GLIF3 [I5], PROforma [16] or SAGE
[17], adopt different approaches that supply computer interpretable representations.

These include, ontologies [18] for knowledge acquisition, clinical task management



and decision-making activities, along with their execution engines and tools, such as
GLEE, Arezzo or DeGeL, that can run the CIGs on computers (see [19]).

The prevalence of multimorbidity [20] (i.e. patients with multiple diseases)
increases with age. More than 95% of multimorbid patients have an age of 65 years
and over [2I]. Of them, 60% have at least two health conditions [22], and 58%
generate 78% of all GP patient visits [23, 24]. Multimorbid conditions affect each
other, and are closely associated with mortality, severe disability, care variations,
increased health resource use and costs [25]. The management of multimorbid pa-
tients is complex, because the number of risk factors increases with the number of
clinical conditions [26, 27]. To handle these patients, care plans need to be cus-
tomised for each individual, considering their needs and conditions (e.g., allergies,
syndromes, signs) incorporating a number of multidisciplinary stakeholders, such as
nurses, doctors, therapists and clinical technicians [28]. Furthermore, patients have
varied care requirements, including aspects such as allergies, drug intolerances and
personal preferences.

For the treatment of a multimorbid patient, in most cases, more than two
CPGs need to be concurrently implemented, alongside with the use of associated clin-
ical knowledge and patient data, during the patient consultation. Thus, generating
personal care plans for each multimorbid patient, through the reconciliation knowl-
edge elements encapsulated in multiple guidelines related with patient disorders,
while managing their conflicting recommendations and inconsistencies and tailoring
them based on the patient-specific data, is crucial to maintain patients’ safety. Nev-
ertheless, multimorbid patient management requires integrated efforts of primary,
secondary, acute and community-based care systems with human service systems
like diagnosis, treatment, and long-term management for enhancing outcomes (e.g.,

quality of care, patient satisfaction and clinical efficiency) [29].

1.2 Research Challenges

Evaluating, individually, a patient health status and developing a personal care plan,
as a result, is not a trivial task. This raises two main challenges, which have not
yet been sufficiently addressed [30) 31], in providing integrated care approach to

multimorbid patients:

e Currently available clinical practice guidelines have several restric-
tions in their application in practice, while they supply mainly single-

disease centred care recommendations, involve general care state-



ments and do not cover the context of managing patients with mul-

timorbid conditions.

Besides their benefits, CPGs have limitations for developing personalised therapy
plans, especially for multimorbid patients [32] [33]. This is due to (i) CPGs being
often in the form of text/schemas, which cause difficulties in the interpretation of
guideline contents, by healthcare professionals (HCPs), during patient—carer encoun-
ters, and subsequently their implementations in care [34, B5]; and (ii) few existing
CPGs refer to multimorbidity. Instead, they consider conditions in isolation [32].
However, in multimorbidity care, many CPGs need to be followed in parallel [36]
and, there is little guidance on CPGs regarding how to merge strategies and recom-
mendations to cope with multimorbid conditions, and the complex needs of patients
with such conditions [37]. Thus, following multiple guidelines, which have been orig-
inally developed in isolation, may result in conflicting or inconsistent advice for care
actions, since they do not sufficiently support dynamic changes in patient health
conditions, when being translated to care plans without personalised adjustments.
In addition, evaluating patient data, as well as the vast number of clinical
knowledge elements, manually, is a process susceptible to medical errors [38] [39].
When handling a patient with multimorbidity, HCPs may prefer a personalised ver-
sion of a guideline [40]. The chosen guideline version, and the associated person-
alised version, have to be mutually consistent; this is important, in order to evaluate

whether the guideline is being properly applied by HCPs [41].

e There exists complexity in handling and merging actions of multiple,
concurrently implemented, single-disease CPGs and their interrela-
tions, in order to generate personalised care plans for a multimorbid

patient.

The automatic management of CPGs is complex, due to the several reasons. For
instance, the issue of polypharmacy [42] (i.e. the use of multiple medications by an
individual) has become one of the main concerns in caring for elder patients, who are
fragile and have multiple health conditions [43]. CPGs do not adequately address
the polypharmacy issues, which can be induced by multimorbid conditions [32].
Some of the main consequences of polypharmacy-related issues are inappropriate
medication prescribing, poor adherence to care and adverse drug events (ADEs)
[44] (i.e. an injury arising from medical intervention related to a drug) [45]. These
are significant contributors of increased health risk, hospitalisation and subsequent

increased health resource use and costs [40, 47]. For instance, ADEs constitute more



than 6% of unplanned patient hospital attendances and are responsible for 4% of
hospital bed occupancy in the UK [48]. ADEs are mainly arising from inadequate
drug management but can be preventable [49].

Therapeutic actions can be applied at a single time event or spread over
time. Correct timing of guideline actions plays a significant role upon achieving safe
therapy implementation [50]. Thus, carers need to perform proper time management
and correct chronological ordering of clinical activities (e.g., laboratory tests, or drug
recommendations), accordingly. Since the complexity of managing care plans grows
with the number of patients’ health conditions [5I], HCPs need to sequence all treat-
ment steps, arrange parallel processes, and consider time constraints such as start,
end and duration of treatments/signs/symptoms, and frequency of interventions to
be appropriate [52]. When a healthcare professional is inexperienced with multimor-
bidity management or needs to manage complicated care plans, there is an obvious
need for support in handling these issues, which should be included in the guidelines.

There exists a further difficulty in integrating CPGs within the care personal-
isation process for multimorbid patients. To personalise care for each patient, HCPs
need to interpret clinical guidelines and patient’s input, individually. However, this
is not straightforward in the case of multi-morbidity, as this involves multiple guide-
line interactions and integration of numerous clinical knowledge elements (e.g., lab
tests). These bring about the need of arranging concurrency and synchronisation
relations between clinical activities, merging of clinical activities to eliminate care
duplications (e.g., inefficient use of resources) or the need of making adjustments
on clinical activities, and their interrelations (e.g., to avoid conflicts such as adverse

drug interactions).

1.3 Research Aim and Objectives

The aim of this thesis is to devise a way to represent and reconcile multiple CPGs in
a computer environment. To achieve this, the thesis presents a Multiple Computer-
Interpretable Guideline Representation and Execution Framework (MuCIGREF) for
the representation and real-time execution of multiple clinical guidelines and their
associated knowledge elements, in order to generate personal care plans for multi-

morbid patients. The specific objectives of the research are:

e To develop a CIG Representation Language that involves required
semantics to represent knowledge constructs of existing CPGs and
their interrelations, and to create the multimorbidity related associ-

ations between them.



When a knowledge representation model is designed just for representing a
specific CPG, then this may be prone to errors, when different CPGs (in case of mul-
timorbidity) need to be represented, simultaneously. Bringing together and merging
different CPGs may result in semantic heterogeneity [53] (i.e. differentiations in the
level of concept coverage, details, and objectives of the intended users), which can be
induced by using different terminologies to represent the same or similar domains,
and lack of semantic interoperability across different healthcare organisations.

Existing research (e.g., [64], 55]) is mainly single disease centred and/or pro-
vided substantially detailed knowledge models which are mainly based on ontologies
that are not easily adaptable, generalisable or re-usable to manage multi-activities
recommended by different CPGs. Some of the published work provided general mod-
els for multimorbid disease management, yet they did not supply enough instances
that can reflect real-life applications (e.g., [36, 56]) and/or face difficulties in merging
more than two, concurrently applied clinical actions together [30], offered by multiple
CIGs.

To resolve the semantic heterogeneity issue, this thesis initially presents a
generic ontology to provide a standardised form for representing all CPGs and their
associated knowledge constructs that can be easily adaptable and reusable in many
clinical domains (e.g., obesity, hypertension, chronic heart failure). This ontology
also supports performing required mappings between instances of formalised CPGs,
namely CIGs, which are developed for each disease using the same vocabulary (on-
tology entities), in order to create the multimorbidity relations between them. More-
over, merging multiple CIGs and their actions may cause many complexities in care,
such as adverse interactions (e.g., drug-drug, drug-disease and drug-patient interac-
tions), which may threaten patient safety, or inefficient health resource use due to the
care duplications, which may result in increased healthcare costs [31]. The ontology
also needs to involve the required knowledge elements to handle such complexities.

Thus, there is a significant need for the development of a CIG representation
language, which is built on a generic, and expressive (i.e. able to model real-world
cases) ontology. Such ontology should represent knowledge constructs of all CPGs
and their interrelations. It should support establishing required mappings between
CPGs, in order to create multimorbid relations, such as merging of multiple clini-
cal actions, which need advanced management of synchronisation and concurrency
relations. Finally, such ontology should support users to make care modifications
and optimisations, in order to handle multimorbidity related care complexities and
lastly, support users to generalise, adapt and share the ontology over different health

organisations, with the aim of enhancing semantic interoperability.



e To develop an execution engine for performing real-time acquisi-
tion, parallel execution and verification of multiple, concurrently
employed CIGs, in order to generate a unified personal care plan for

a multimorbid patient.

The execution engine should execute CIGs and their interactions to meet an intended
objective (e.g., recommendation generation, etc.). The identified major requirements
of an execution engine are to handle multiple CIGs, involve processing concurrently
employed CIGs and creating automated mappings (e.g., finding similar or common
care elements) between them, handling complexities induced by CIG interactions,
and verifying CIG executions and, as a result, generating consolidated care recom-
mendations.

Existing published research has major limitations in real-time executions of
more than two concurrently implemented CIGs and performing multi-merging of
their CIG actions [9, 30], which requires managing concurrency and synchronisation
relations of multiple actions, while handling associated knowledge interactions (e.g.,
drug, disease, time, etc.). In addition, verification of CIGs, in the instantiation phase,
is crucial to initialise care, with a consistent plan, as well as in execution phase, where
the care plan is dynamically updated and needs to be verified to maintain patient-
safety. Thus, a novel, real-time execution engine is needed for handling all these

issues.

1.4 Summary of the Research Methodology

The research methodology, used within this thesis, has two stages. The first stage is
about CIG language development (see Section and the second stage is about the
real-time CIG execution engine development (see Section which are as follows:

Multiple CPG Representation Language (MuCRL). This stage is about the
development of a novel, generic, and domain independent ontology to represent
knowledge elements of all CPGs and their interrelations to manage multimorbid-
ity care.

Initially, an extensive systematic literature review [31I] is performed, where
related knowledge representation approaches, namely CIG Languages (see Section
, and then organisational workflow patterns [57] required to construct a care
flow, existing ontology libraries (e.g., BioPortal [58]), clinical standards (e.g., [59])
and terminologies (see Section and many CPGs from different sources (e.g.,



NICE) are analysed. Complexities in multimorbidity care (see Section and gaps
in managing multimorbid patients are discovered and discussed (see Section .

The method covers the principles of, largely existing, ontology building life-
cycle methodologies [60} [61] to develop the knowledge representation structure. The
ontology design stage (see Section involves the definition of purpose and scope of
the ontology, while includes the knowledge acquisition and specification of ontology
requirements. The ontology development stage (see Section focuses on the defini-
tion of the required concepts, properties and relations for representing and managing
guidelines and their interrelationships. The ontology implementation stage involves
encoding (see Section, where the ontology is encoded in Web Ontology Language
(OWL) [62], 63] format from the World Wide Web Consortium (W3C). Afterwards,
transformation from OWL ontology to the Ecore metamodel of EMF (Eclipse Mod-
eling Framework) [64] which provides a modelling and code generation architecture
in Eclipse, is performed (see Section [3.7). This supports the development of the
MuCIGREF’s CIG execution engine to dynamically handle multiple CIGs. Subse-
quently, different CPGs are instantiated using MuCRL, in order to generate CIGs
(models). Finally, the evaluation stage looks at verification and validation of the
MuCRL (see Section [6.3).

Real-time Multiple CIG Execution Engine (MuCEE). This stage is about the
development of a novel execution engine (see Section for real-time management
of multiple CIGs and their interrelations. Initially, challenges in dynamic manage-
ment of comorbid and/or multimorbid patients and supplying guideline-driven care
(see Section and their management approaches with their limitations (see Sec-
tions are discovered. Accordingly, MuCEE is built, which involves three modules
with different objectives as: (i) CIG model acquisition; (ii) parallel CIG execution;
and (iii) CIG verification.

MuCEE uses CIG models, which are the instantiations of the EMF meta-
model, and developed for each CPG to represent their knowledge constructs and
their interrelations. Once CIG models are created, then they are acquired based
on patients’ diseases and satisfaction of a set of conditions through CIG acquisition
module (see Section [£.3.1]), based on the Epsilon Object Language (EOL)[65]. EOL
is an imperative programming language to create, query and modify EMF models.
Then, the acquired CIG models are unified under the personal care plan (model).
In this thesis, managing multimorbidity care is defined as a multiple CIG com-
bination problem and we supply a novel solution approach for this problem, where

personal care plan (model) is used by the parallel CIG execution module (see Section



4.3.2)). This module is designed to handle multiple concurrently implemented CIGs
and therefore to generate personal care recommendations step-by-step based using
a specialised execution algorithm. Afterwards, CIG verification module (see Section
is introduced. This module discovers inconsistencies, errors and missing val-
ues in guideline model and resulting personal care plan; and generates messages for
users to amend them to maintain consistent care recommendations. The Epsilon
Validation Language (EVL) [65] is built on EOL, as a variant of Object Constraint
Language (OCL) [66] is used to build this module. Algorithms of CIG acquisition,
parallel execution and verification are presented in Section [£.4]

For testing, a set of CPGs is selected from NICE and multiple CPG combi-
nations are made based on the suggestions of the H2020 C3-cloud project (www.cS3-
cloud.eu) [67, [68] (as these have been validated by a clinical reference group), the
suggestions of the research papers and patient scenarios available in these works (see
Section . Implementations on multimorbidity case studies in generating per-
sonal care plans are presented in Section [5.3.5] Lastly, CIG execution verification

and validation results are presented in Section

1.5 Thesis Contributions

The contributions of this thesis can be summarised as follows:

1. Multiple CIG Representation Language — The development of a novel generic,

and expressive CIG language, which involves required semantics to:

(a) Represent knowledge constructs of all CPGs and their interrelations where
knowledge is categorised under four distinct groups, whose elements are

extendable and designed to manage multimorbidity care;

(b) Represent required mappings (i.e. directed alignments) between knowl-

edge constructs of multiple CIGs to create multimorbidity relations;

2. Real-time Multiple CIG Execution Engine — The development of a new real-

time CIG execution mechanism to:

(a) Manage multiple CIGs (models) under a unified personal care plan;

(b) Support merging and concurrency relation management of synchronously
implemented multiple activities recommended by multiple CIGs;

(¢) Support inconsistency, missing value and error management both on pre-
and real-time CIG execution phases. A new CIG verification approach is

proposed for this purpose involving error messages to support users.



To summarise, this thesis identifies the limitations of the existing CIG rep-
resentation languages and their execution tools within the context of multimorbid-
ity care. Accordingly, the research devises and provides a novel framework, which
involves a multiple CIG representation language that is built upon a generic and
expressive ontology and a multiple CIG execution engine to perform real-time ex-
ecution, where the model is developed using this ontology, is at the core of this
system. As far to contributions to the current literature, this thesis achieved a set
of publications. These involve (i) systematic literature reviews [31], [69] on the chal-
lenges of multimorbidity care management, and CIG-driven CDSS applications to
handle multimorbidity care involving gap analysis; and on the development of (ii)

CIG representation language [70] and (iii) multiple CIG execution engine [71].

1.6 Thesis Outline

A brief overview, on the thesis chapters, is described below:

e Chapter 2 presents an extensive systematic literature review involving key
concepts and background information for the entire thesis. This involves (i)
knowledge engineering primitives and concepts; (ii) knowledge modelling and
management languages; (iii) components of CIG-driven CDSSs; (iv) challenges
and barriers in multimorbidity care; and lastly (v) existing approaches for

managing multimorbidity care;

e Chapter 3 presents the MuCIGREF’s multiple CIG representation language,
MuCRL, which is designed to represent knowledge constructs of CPGs and
their interrelations required to manage a multimorbid patient care pathway.
Then, an ontology-driven CIG language building methodology, which has de-
sign, development, implementation and evaluation stages, is introduced. Lastly,
design-time implementations of a CIG is also presented in this chapter. This
chapter also presents the transformation process, which is based on creating
mappings from OWL ontology to EMF model. These mappings are required
to develop CIGs (models) in the Eclipse environment which supports code gen-

eration and therefore supply more functionality in real-time CIG executions;

e Chapter 4 presents the MuCIGREF’s multiple CIG execution engine, MuCEE,
for the real-time management of multiple concurrently implemented comput-
erised guidelines. This engine has three modules, including: (i) CIG model
acquisition, (ii) parallel CIG execution, and (iii) CIG verification. These mod-

ules are developed based on the CIG execution requirements as well as gaps in



managing multimorbidity care. The CIG execution methodology and specifi-

cations of execution algorithms are presented in this chapter;

Chapter 5 presents the implementations of MuCEE in real-life multimorbidity
case studies. These implementation results demonstrate how challenges that
are caused by the combination of multiple concurrently implemented CIGs can
be handled, and a personalised care plan can be generated for a multimorbid

patient based on combined CIGs;

Chapter 6 presents the evaluation results of MuCIGREF. Evaluation involves
verification and validation analysis, for both MuCRL and MuCEE. Firstly, the
evaluation of MuCRL involves ontology evaluation (e.g., correctness, consis-
tency, etc.) guideline representation with different patient scenarios to evaluate
its expressiveness, and comparison with well-known CIG languages to main-
tain CPG representation requirements are satisfied for validation. Secondly,
the evaluation of MuCEE involves the evaluation of CIG verification module’s
results as part of the CIG verification. The evaluation of CIG acquisition mod-
ule follows this. Then, evaluation of parallel CIG execution module in personal
care plan generation is evaluated. Lastly, MuCEE is compared with existing

CIG execution engines for the validation purpose;

Chapter 7 provides the main conclusions of the research. It discusses the

results, main contributions, limitations and future research directions.
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Chapter 2

Literature Review

2.1 Introduction

Ontologies [18] supply a shared and common meaning on a domain of interest, which
can be used to link users and technologies. Ontologies play significant role upon
knowledge representation, sharing and reuse. Knowledge is an interpretation of a
domain of interest by satisfying a set of properties as a declarative statement. Thus,
a knowledge base involves a set of these statements, where one can make inferences
from them. While problem solving approaches are used to define the reasoning
(e.g., inferring conclusions from the knowledge) mechanism, ontologies are used to
represent the domain knowledge of a knowledge-based system.

This chapter reviews the core concepts of the thesis. Initially, knowledge en-
gineering primitives and concepts are reviewed involving knowledge representation
and management approaches. Since the objectives of this thesis are to develop a
framework to represent and execute multiple CIGs to manage multimorbidity care,
the major components of CIG-driven CDSSs are then reviewed. These involve ex-
isting CIG representation languages, their execution engines and tools; CIG integra-
tion with workflow control patterns, clinical information systems and terminologies;
and lastly, CIG verification and validation approaches. The review then discusses
challenges in multimorbidity care, which involve shortcomings of CPGs to treat mul-
timorbidity, adverse interactions affecting care, and the issue of care personalisation.
Subsequently, existing approaches to manage multimorbidity care in terms of guide-
line merging, adverse interaction handling and personalised care plan generation
aspects are reviewed, and their limitations are addressed.

Some of the elements discussed in Sections [2.4—[2.6] are the parts of our previ-

ously published systematic literature review; see Bilici et al. [31] for the publication.
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2.2 Knowledge Engineering: Primitives and Concepts

Knowledge engineering is an area of Artificial Intelligence that uses knowledge to
represent a specific process, system and/or its environment. This section presents
knowledge primitives, their relations with ontologies and how knowledge can be
used to construct machine-readable models for automated knowledge representation,

reasoning, and validation purposes.

2.2.1 Models, Meta-models and Modelling

A model is a collection of statements, which can be defined as the simplification of an
application domain (system), and a metamodel is a model of language that defines
the model structure [72]. For the purposes of this thesis, modelling is defined as the

process of developing a machine-readable model of a system and/or its processes.

2.2.2 Ontology as Knowledge Models

Ontologies are models of knowledge, which can be defined as formal descriptions of
concepts and their relationships in a domain, such that knowledge can be represented
in a computerised system.

There are different types of ontologies [I8, [73]: (i) generic (also called top
level) ontologies, which have top-level concepts (e.g., OpenGALEN [74]) and pro-
vide basic notions, such as objects, relations, properties, and processes used to define
varied domains (e.g., obesity, diabetes, hypertension); (ii) domain ontologies, which
represent a particular domain that involves concepts and vocabulary of a domain
such as stroke, or hypertension guidelines; ; (iii) local ontologies, which are the parts
of domain ontologies, and supply definitions of terms for a specific application in a
specific domain; and, lastly, (iv) task ontologies, which involve knowledge to accom-
plish a task (e.g., diagnosis). The difference between domain and task ontologies is
that domain ontologies describe the knowledge with which a task is implemented.
Generic ontologies are useful for knowledge reuse, integration and sharing, due to
their domain independence nature. Domain independence enables users to place
concepts more accurately [75] and to handle semantic heterogeneity and/or incon-
sistency problems [76], which can be caused by the different definitions made for the
same or similar domain.

To develop ontologies, an ontology building lifecycle methodology should be
adopted. The prominent ones are METHONTOLOGY [60], Noy [61], TOVE [71],
On-To-Knowledge [78], CommonKADS [79], and NeON [80]. The sequences of the

12



ontology building steps of these methodologies includes: (i) determination of pur-
pose and scope of the ontology; (ii) considering reusing of existing ontologies; (iii)
enumerating important terms in the ontology; (iv) defining required concepts and
their topological orders; (v) defining properties and restrictions of concepts; (vi) cre-
ating instances; (vii) implementing the ontology; and (viii) evaluating the ontology.
The following section presents how ontologies can be encoded and embedded in a

computerised environment, within the context of knowledge management.

2.3 Knowledge Modelling and Management Systems

Modelling languages represent specific aspects of the system, which has different ex-
pressiveness on statements of a model. Ecore [64], semantic web technologies, such
as Web Ontology Language (OWL) [62], or the Unified Modelling Language (UML)
[81] are some of the modelling languages that can be used in software developments
and also in knowledge engineering. In this section, the widely used modelling lan-
guages and frameworks (relevant to this thesis) for knowledge management (e.g.,

representation, reasoning, and validation) are reviewed.

2.3.1 Unified Modelling Language

The Unified Modelling Language (UML) [81] is a modelling language that uses graph-
ical notations and a metamodeling approach for developing, visualising, and docu-
menting knowledge constructs of a system. UML involves three model element clas-
sifications, including classifiers (i.e. represent a collection of objects), events (i.e.
possible occurrences of actions) and behaviours (i.e. possible executions of actions).

UML involves a set of structural diagrams such as class, deployment, object,
component, deployment, or object diagrams; and behaviour diagrams such as activ-
ity, sequence, state, communication, interaction, or use-case diagrams. Among these
diagrams, class diagrams have been widely used as a modelling approach, where
the object types (classes) are depicted with boxes involving name, attribute and
operation type information.These objects can have different relation types [82] as
generalisation (or namely inheritance) (i.e. representing a subclass has the defini-
tion of its super class), association (i.e. representing relations between instances)
or aggregation (i.e. representing object composition), which are represented with
arrows and lines that link objects. In the context of this thesis, activity diagrams
are used with the objective of defining algorithms (see Section and guideline
care flow (see Section [5.3.5)) with the symbols presented in Figure

13



Symbol Name

o Shows the starting node

@ Shows the end node

] Represents an action / process
<> Represents decisions

— Represents control flow

Figure 2.1: Basic symbols and names of an activity diagram

2.3.2 Semantic Web Technologies

Semantic Web (i.e. web of linked data) [84] driven languages which are based on
ontologies, mainly use the extensible Markup Language (XML) [85] to make an
ontology as computer-interpretable [86]. These involve the Resource Description
Framework (RDF) [87] and RDF Schema (RDF(S)) [88], OWL version 1 [62], and
its latest version OWL2 [63], 89], and the DAML + OIL [90].

Description Logic (DL) [91] is a knowledge representation language, which
involves concepts, roles, instances and their relationships. In a DL knowledge base,
an ontology is defined as the combination of TBox (also called terminology box) and
Abox (also called assertional box). TBox formally defines classes and their relations
(e.g., isA). For example, the relationship "patient is a human” is formalised in DL, by
considering Patient and Human as two different concepts and a statement in TBox is
represented as Patient = Human. ABox involves assertions about instances using the
ontology terms. In ABox, for example, the assertion of "Mary is a patient" is Mary :
Patient. Roles can be used as binary predicates to represent a relationship between
instances in DL. For example, hasCarer (Robert, Mary) represents the knowledge of
"Robert is the carer of Mary".

OWL is a language to define ontology entities, such as classes, properties,
instances and their relations and is based on DLs. Figure [2.2] presents OWL entities
and their relations [83] using UML class diagram.

OWL has three sub-categories, i.e. OWL-Lite, OWL-DL and OWL-full, and
it is built on RDF and DAML + OIL. The formal definition (controlled vocabulary)
of the OWL ontology, can be defined as follows:

Definition 2.3.1. Ontology is defined as © : = (C, R, Z, V, A) where C =
{c1,c2,...,cn} is the set of classes (concepts) in the ontology that defines the do-
main. R = {ry,re,...,r,} represents the set of semantic relations (also called roles

or properties) between classes including object and data relationships, where r; €
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Figure 2.2: OWL ontology entities in UML class diagram representation [83]

R denotes a binary relation (e.g., isA, partOf) between classes. V is the set of data
values. Z is the set of named and anonymous individuals (instances) of classes and
properties that represents elements or instances of an ontology. A represents the set
of axioms defining dependencies (logical assertions) between elements of C, R and
7.

Classes can have descendants and need to be organised into a superclass-
subclass hierarchy. ¢; T c¢; represents the class ¢; as a subclass of ¢;j, which is
also known as taxonomy, where ¢;, ¢; € C. Properties can have varied facets that
define or limit the knowledge, such as the value type (e.g., string, boolean, number,
etc.), cardinality (e.g., allowed number of values), domain and range of properties.
Value information for properties and their facets need to be supplied for named
individuals. To illustrate for the context of this research; z : ¢;, e.g., refers to
patient x that is an instance of class Patient ¢;, where ¢; € C. “x: patientAge 40
xsd: integer”, denotes the age of patient x where patientAge is the data property
representing the age whose data value is 40 and data type is integer. There are
several types of ontological relations, such as equivalence (=), subsumption (C),
disjointness (L), union (L), membership (€), and overlapping (7). To illustrate, C
= {¢} U ... U {cy} represents the topologically ordered classes; or ¢; M ¢; T L
represents the disjoint (mismatched) classes. Ontology entities can be identified by
an IRI (Internationalised Resource Identifier).

In the work of Munir and Anjum [86], RDF(S), OWL1 and OWL2 were
extensively compared, in terms of their knowledge representation concepts to write
ontology-driven relational database queries. Authors deduced that OWL2 includes

more vocabulary, (e.g., properties and cardinality restrictions) and has a stronger
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syntax and computer-interpretability, compared to RDF(S).

To use ontologies, for knowledge inference from a knowledge base through
query writing, an expressive ontology language, involving a reasoning support, should
be selected. Reasoning can be performed to infer conclusions from a set of actions,
namely assertions that are encoded in a model. Reasoning in DL (e.g., with its
reasoners such as HermiT [092], FaCT++ [93]) can be classified as [94]: (i) TBox
reasoning, which involves satisfiability checking and subsumption checking; (ii) ABox
reasoning, which involves consistency checking, instance checking, instance retrieval
checking and property filling checking, and (iii) query answering (e.g., SPARQL [95]).

In this thesis, knowledge representation is performed using OWL2 in Protégé
(see Section , and FaCT++ and HermiT reasoners are used as part of ontology
evaluations (see Section .

2.3.3 Ecore

The Eclipse Modelling Framework (EMF) [64] is a modelling environment, which
supports model-driven software development by enabling users to describe models
and supplying them execution-time support for the models. In EMF, models are
represented in the XML metadata interchange (XMI) format. EMF has its own
metamodel, called Ecore, based on textual syntax called Emfatic [96], which is used
to define models and support customisation of Java code generation. EMF models
involve a containment hierarchy of model elements (EObject), where objects can be
defined as a set of operations over instance variables (i.e. a set of attributes, namely,
primitive data values).

EMF involves Ecore metamodels (see Figure to define the abstract syn-
tax of a modelling language. The main components of Ecore are; EClass rep-
resenting classes and includes EStructuralFeature (which is a ETypedElement),
such as EAttribute or EReference; EAttribute representing attributes of classes;
EDataType representing the type of attributes (e.g., string, java.lang.Float); EEnum
representing enumerations of class instances; EReference representing the type of
relations between classes; and EPackage representing the metamodel structure.

EMF is used to generate guideline models and then support their real-time

executions (see Section [3.7)).

2.3.4 Object Constraint Language

The Object Constraint Language (OCL) [66] is based on first-order logic and, widely

used, declarative language to write constraints for model querying and validation.
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Figure 2.3: Ecore metamodel

A constraint, is defined by Warmer and Kleppe [97], as a restriction on at least one
value of an object-oriented model or system.

OCL supports the following constraints: Invariants (associated with a clas-
sifier), which are used to define necessary conditions that must be satisfied in all the
instances of the class or type, and must be true; Pre- and Post- conditions (associ-
ated with operations), which are used to define restrictions, and must be true before
or after the current state of an operation; and guard which must be true before a
state transition is invoked.

OCL uses expressions to denote an instance, condition, parameter value or
define a value for an attribute or an operation. These expressions are interpreted in
the context of an instance, namely, Self, which represents an object on which the
operation is invoked. Other expressions include, Collect, which represents collection
of statements; In, represents a function; allInstances, which represents a type
operation that invokes instances of a type; Context, which represents type and
operation expressions.

OCL has several benefits for users such as improving the model precision, pre-
senting information on classes and their properties, supporting unambiguous commu-
nication between users and handling the limitations of UML by defining invariants

on classes, and types in the class models [98]. In this thesis, variants of OCL are
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used for real-time CIG execution and verification which are Epsilon Object Language
(EOL) and Epsilon Validation Language (EVL), respectively.

2.3.5 Epsilon Object Language

Epsilon [99] is an Eclipse Modelling project which provides tools and domain-specific
languages for a set of model management tasks such as validation, transformation,
comparison, migration and refactoring. All these task-specific languages build upon
model-oriented language called the Epsilon Object Language (EOL) [65] 100].

EOL supports imperative programming for automated management of tasks
which are objects of types defined in metamodels. These involve (i) many opera-
tion types such as primitive types (e.g., min, toUpperCase) that can be called on
instances; collection types that are used to represent (non) unique or (un) ordered
collections (e.g., add, includes, clone); first-order logic operations (e.g., select,
collect, reject, exists, forAll) to return items of types that satisfy the condi-
tion(s); native types, such as an implementation property for generating new objects;
and model element types (e.g., all, allInstances) to classify elements of (multi-
ple) models; (ii) expressions such as literal values (e.g., integer); property navigations

where ‘¢ .’

syntax is used to invoke a property of an object, ¢ ; ’ syntax is used for
sequencing and ¢ { } 7 syntax for grouping statements; arithmetic operators (e.g.,
+, —) and comparison operators (e.g., <>, <=); logical operators (e.g., and, or,
not, implies); and enumerations of literals; and (iii) a set of statements (e.g., If,
Switch).

EOL can be used to create new models, update, read, delete or query models
which built on top of OCL, but can also handle OCL’s model management limita-
tions, such as not supporting statement sequencing, handling only one model at a

time, and inability to modify models [I0I]. EOL is used for real-time CIG execution
engine (see Section [4.3)).

2.3.6 Epsilon Validation Language

The Epsilon Validation Language (EVL) [65] 102} 103] is a model validation language,
which is built on EOL, and can be used to define and evaluate validation constraints
on models of metamodels.

The syntax of EVL is presented in Figure[2.4] and its associated concepts are
presented as follows [65, 102, 103]:

Context is used to define the instance types that involved invariants will be

checked (e.g., class Patient); Self denotes the context’s instance (e.g., Patient0001:
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Import (from EOL) Operation (frem EOL)

o.F

operations
o.F
- Module GuardedElement
4D ExpressionOrStatementBlock (from EOL)
guard
cantexts
0.F check message do title
Context Invariant
: o.r
name : String name : String
type : String invariants 0=
of TypeOnly : Boolean Fix
post pre fixes
CritiqueLeveal
StatementBlock (from EOL)
LOWY : int
Constraint Critique MEDIUM : int
HIGH : int
lewvel

Figure 2.4: EVL syntax [103]

Mary); Invariant which is defined as an abstract class, is used to represent necessary
conditions and can be used to describe message (as an ExpressionOrStatementBlock);
Guard is used to restrict the applicability of invariants; Fix is used to resolve the de-
tected inconsistency (e.g., renaming of a class); Constraint which is a subclass
of Invariant, is used to detect critical errors which violate model restrictions;
Critique is used to detect non-critical issues, which do not lead to violation of
model (yet these issues need to be handled to improve the model quality); and
Pre- and Post- conditions (blocks), which need to be executed before or after the
invariant evaluations.

Customised error messages for users to fix the detected inconsistencies; and
checking constraints, between multiple models, to handle incompleteness and contra-
diction if they occur are supported in EVL [102]. Thus, EVL handles the limitations
of OCL’s model validation features, such as supplying limited support for users in
error correction (e.g., message generation to indicate unsatisfied invariants), no sup-
port for warning on non—critical issues, and inconsistency fixing. The execution
mechanism of EVL is based on top-down depth-first search scheme. For further in-
formation on its execution semantics and comparison between OCL and EVL, please
see Kolovos et al. [65, [103]. EVL is used in CIG verification module of this thesis
(see Section [4.3.1)).
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This section reviewed knowledge representation and management tools and
platforms. The following section discusses the components of CIG-driven CDSSs, in
managing care of patients and how they can be used to handle the complexities of

multimorbidity care management.

2.4 Computer-interpretable Guideline-driven CDSSs

Decision support systems unify large amount of knowledge in one platform, to help
users in their decision-making processes. There are various types of decision support
systems (e.g., document, communication, or knowledge oriented) that differ based
on their capabilities and scope. For example, knowledge-based systems are one of
the widely used systems in clinical settings to provide clinical decision support, see
for example, [104] and [105].

In the clinical context, the general purpose of clinical decision support sys-
tems (CDSSs) [32] is “providing clinicians or patients with computer-generated clin-
ical knowledge and patient related information, intelligently filtered or presented at
appropriate times, to enhance patient care”. They are designed to help HCPs for a va-
riety of clinical issues such as data access, disease diagnosis and prognosis, treatment,
monitoring and prevention where CIGs are the core of these systems. Thus, HCPs
can create care plans that are planned with a set of activities to handle patient’s
health condition in a time frame, and therefore, supply related care recommendations
to patients.

Based on the requirements for automatic application of CPGs to support
HCPs in their clinical actions, many formalisms and supporting tools have been
developed to make guidelines computer-interpretable where ontologies have been
used for CIG modelling, while coping with their complexities and associated clinical
knowledge constructs. The following sections review the components of CDSSs which
involve CIG representation approaches and associated execution engines and tools;
their integrations with workflow-control patterns, clinical information systems and

terminologies; and lastly, CIG verification and validation approaches, respectively.

2.4.1 CIG Representation Languages and Execution Approaches

Formalisation can be defined as the process of translating knowledge constructs,
which can be available in textual form, tables or diagrams, into a machine-readable
format. Guideline formalisation entails that knowledge, involved in CPGs, include
elements that are well structured (such as concepts and care recommendations), and

decision criteria that are explicitly described [106]. CIG formalisms (also called CIG
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languages) are a collection of knowledge elements (i.e. different types of concepts
and relations), which are instantiated when the formalism is used to acquire a CIG
based on the given values (i.e. attributes). Ontologies can be used as a standard
form to represent these knowledge elements (e.g., guideline recommendations, and
care workflow constructs required to establish the care pathway), in order to en-
able the development of computerised techniques to discover, and coordinate many
types of interactions between them and to facilitate knowledge sharing and dissem-
ination across professionals and institutions. CIG languages are used to represent

the declarative knowledge of clinical care pathways, which can be defined as follows:

Definition 2.4.1. (Care Pathway) Care pathway represents a care plan(s) in-
volving a set of clinical tasks (e.g., decision-making, medication recommendation,
diagnosis, etc.) which are required to be performed in a defined period of time to

meet, the health needs of a patient.

There are different types of formalisms and some of the well-known approaches to
represent and structure information. These include: (i) guideline document mod-
els (e.g., the Guideline Elements Model (GEM) [107]; (ii) frame-based models (e.g.,
GASTON [108]); (iii) rule-based models, which consider algorithms to establish in-
formation flows in guidelines (e.g., the Arden Syntax [111, 109, T10] and task-network
models (TNMs) [9], which represent guidelines as graphical networks of tasks (usu-
ally defined as hierarchical graphs), in which nodes denote the actions to be executed
and arcs denote the discerned relationships between them. In particular, TNM-based
approaches may involve several task models like plan, action and decision. Plan de-
notes the collection of tasks that aims to achieve a certain objective. Action denotes
the collection of tasks (such as medication prescription, or tests) that need to be
performed during the execution of a guideline. Decision denotes the rules associated
with conditions that are shaped with the patient’s health states. A significant por-
tion of formalisms use TNMs and include patients’ states, execution states, eligibility
criteria, classification schemes, goals, decisions and actions [I11I]. Asbru [12], EON
[13], GLARE [14], GLIF3 [15], PROforma [16], SAGE [17], and GUIDE [112] are
TNM based formalisms. Each formalism has its own CIG execution approach. CIG

execution can be defined as follows:

Definition 2.4.2. (CIG Execution) Inferencing from CPG instantiations that are
encoded in the chosen formalism by the users (HCPs) with patient data using an
execution mechanism (e.g., engine or tool). This mechanism shows users appropriate

patient-specific care plans.
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There are different types of CIG execution approaches, including graph traversing
(e.g., [15, 108, 113]), and rule-based methods (e.g., [114]), where a rule refers to a
query or encoded knowledge that can be used to make inferences from the knowledge
base (semantically defined data). Inferences can be recommendations to supply care
or to find the care point, conflicting care action or any care element to make a
decision. Further below, in this section, CIG execution engines and tools, which are
used to supply decision support, acquisition of guidelines (i.e. any activity during
which a CDSS-driven execution engine will load or fetch a CIG from the knowledge
base), verification, or making inferences from the knowledge base, are also reviewed

along with the selected guideline formalisms.

Arden Syntax

Arden Syntax I}, 109, 110] was initially introduced by a group at the Arden Home-
stead in Harriman and then its development continued by the Arden Syntax Special
Interest Group of the Clinical Decision Support Technical Committee of Health Level
7 (HL7). This formalism was developed as a rule-based language and uses medical
logic modules (MLMs) (i.e. data, event, logic and action slots) maintained by HL7
[59], which is based on XML [85], for clinical knowledge representation and execution.

MLM has three categories: the maintenance category, to represent slots in-
volving information like date, author, version; the library category, to represent slots
regarding textual description of the logic; and the knowledge category, to represent
executable statements required to supply decision support. The Arden Syntax IDE
is the development and test environment of MLM. One of its applications has been
the prediction of metastatic events in patients with melanoma [115].

However, MLMs have limited capability in identifying the complicated inter-
acting recommendations of guidelines and coping with the representation of temporal

constraints, such as repetitions, starting and end time of clinical actions.

GLARE

GLARE |14, 116, 117, 118] was developed by the collaboration of Dipartimento di
Informatica, Universita del Piemonte Orientale “Amedeo Avogadro” Alessandria and
Azienda Ospedalieta S. Giovanni Battista in Turin [119].

GLARE uses two types of actions [I4] [120]: (i) atomic actions, such as work
actions, which represent actions that must be executed (e.g., pharmacological ac-
tions); decision actions, which represent actions involving a set of conditional op-

tions, such as diagnostic or therapeutic decisions; query actions, which represent
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actions requesting input from users; and conclusions, which represent actions re-
garding the decision output), and (ii) composite actions, which represent control
relations as sequence, controlled, alternative and repetition, used to create action
execution orders.

GLARE represents a wide set of temporal constraints, treatment repetitions
and periodicities in CIGs [14]. In the work of [121], ontology model of GLARE was
extended to handle temporal interactions between actions and their effects occurring
in time. GLARE’s acquisition tool supplies a graphical interface, the ability to
search guidelines and automatic consistency checking of temporal constraints. Its
execution engine can execute acquired CPGs involving patient data and store the
execution status of actions. XML [85] for data interchange, and the International
Classification of Diseases version 9 (ICD-9) [122], as a clinical terminology, are used
in this formalism [118]. Bottrighi and Terenziani [118] introduced a recent extension
of GLARE, called META-GLARE, to acquire, represent and execute CIGs based on
meta-programming. Execution of CIGs has been achieved using the execution of the
graphs, which represents a network of guideline tasks, composing the network along
with the execution algorithm. The execution states are [123]: (i) go_on, to represent
continuation of the execution process; (ii) repeat, to represent the reputation of the
execution; (iii) suspend, to represent suspension of the execution; (iv) abort, to
represent termination of the execution; (v) goto, to represent restarting execution
from the designated node; and (vi) fail, to represent execution failure and termination
of the execution.

Parallel and concurrent execution of the tasks are also supported. The ma-
jor limitations of GLARE are the lack of model-driven verification approaches and
considering patients with co- or multi-morbid diseases, which requires coordination

of diverse knowledge sources [118].

PROforma

PROforma [16, 124, 125], 126] was developed by the Advanced Computation Lab-
oratory of Cancer Research, UK as a first-order logic formalism to represent and
execute medical knowledge in guidelines, as a set of tasks such as decision, action,
enquiry and plan.

Decisions represent tasks involving a set of options to the decision problem
such as treatment options, and logical statements, which associated with satisfac-
tion of each options; actions represent procedures, which need to be performed in
an external source (e.g., HCP); and enquiries represent input requested from an ex-

ternal source, such as questions to patients. These are atomic tasks whereas plans
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are collections of tasks, denoting the objective of the treatment. Each guideline task
emanated from a root task, namely, a common task. Thus, a root task involves
many guidelines that are represented as plans (i.e. task sets). A clinical task is
linked with an objective, defined in the red representation language (RsL), which is
a time-oriented, control-flow representation language. Then, RsL is translated into
a language based on predicate logic, called logic of Rel (Lger). A plan can describe
logical and temporal constraints, which are defined as time durations between tasks,
repetitions and cycles as well. Each task may involve preconditions that must be sat-
isfied for the enactment of the task, and trigger conditions for initiating a task, abort
and termination conditions to end tasks. PROforma’s arguments, which represent
decisions, are based on rules.

Its execution platforms are Arezzo (commercial platform) and Tallis (experi-
mental development platform) [16], 126] that involve a composer to support creation,
editing and graphical visualisation of CIGs; a tester to debug the implementation
and a performer, namely, enactment engine to execute guidelines, prompt user and
to access patient data through the integration of local data base (e.g., electronic
health records (EHRs)). Tallis also involves a publishing suit to make implementa-
tions online. The execution states of this formalism are [I6]: (i) dormant if task has
not been initialised; (ii) in progress if task has been under execution; (iii) completed
if task execution has been done; and (iv) discarded if task has been cancelled.

PROforma has been used in many healthcare projects. For instance, the
CAPSULE application to support HCPs in prescribing medications and the CREDO
project [126] for the care of patient at risk or with breast cancer. The PROforma
representation was used in Health Care Services (HeCaSe2) [511[127], which suggested
an agent-based healthcare system for modelling CPGs and their interactions between
agents (e.g., nurse, cardiologist, physician).

The major limitations of PROforma are the lack of constraint support (e.g.,
when one action is activated, then the other activities cannot be activated until its
completion) [124]; lack of duplication and syntactical error handlings; and inade-
quate expression language, due to the fact that it does not supply expression func-
tions for simple or multi-merging [128], which are required to handle concurrently

implemented guidelines and their multiple actions.

Asbru

Asbru [12), 129] was developed by the Vienna University of Technology and the
Stanford Medical Informatics Department. It is a task-specific, time-oriented and

intention-based language. This formalism was developed to represent CPGs and
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their inter-relationships as a group of skeletal plans (i.e. possible steps in a CPG) in
XML [85], involving knowledge roles, such as preferences, intentions, conditions and
effects.

Like PROforma [16], [124], a plan is used in this formalism to represent a set
of knowledge elements which are intensions to represent patient states and actions of
HCPs. A set of conditions are also considered. These include, filter-preconditions to
represent condition that must be satisfied, setup conditions to represent the applica-
bility of a plan and suspend/abort conditions to represent suspension and abortion
conditions regarding execution of a plan. The execution of a plan is represented with
effects, which involve argument-dependency (i.e. effects between functional relations
between arguments of plan and parameters), and plan-effect (i.e. expected effect on
interrelationships of plans). In Asbru, the following execution states are considered
[129]: (i) activated; (ii) completed; (iii) aborted; and (iv) suspended.

Asbru’s execution platform is DeGeL [130]. It supports design and run-time
actions in CIG-driven care. It involves a meta-ontology that has a documentation to
define knowledge roles for all guideline ontologies, and a specification meta ontology
to define a new ontology to include the DeGeL. knowledge base. DeGeL involves
tools that communicate with clinical databases for abstraction and clinical termi-
nologies, including the Standard Nomenclature of Medicine (SNOMED) [131], the
International Classification of Diseases version 9 (ICD-9) [122], the Logical Obser-
vation Identifiers, Names and Codes (LOINC) [I32], and the Current Procedural
Terminology (CPT) to retrieve diagnosis, observation, procedure and lab test codes.
DeGeL has several modules to perform the activities such as search, extract, visu-
alise and browse guideline sources/documents; view guideline indices and classify
guideline documents; view, edit, search within documents; guideline retrieval, test-
ing and execution via XML databases; supporting group management; and system
administration. The Spock [133] 134] is a hybrid run-time execution system for
Hybrid-Asbru, and can be used to extract information from the selected guidelines
that are supplied by the DeGeL library; communicating with clinical databases and
querying; extracting information from vocabulary servers; and evaluating Hybrid-
Asbru guideline content using the Spock Engine. Asbru has been used in many
projects (e.g., [135 [136]). For instance, OncoCure DSS project [135] is one of that
helps oncologists in their various phases of decision-making for the treatment of
breast cancer patients.

The major limitations of the Asbru formalism is its language complexity
and its execution engine, Spock, does not support generation of user messages and

alternative care options, while there is no evidence about the execution of multiple
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concurrently implemented CIGs.

GLIF

GLIF [15] 137] was developed by the InterMed Collaboratory and its latest version
is GLIF3. This formalism has a layered mechanism, which involves the clinical
definition of the concepts using codes based on clinical terminologies; the structure
of the patient data elements; and an interface to link the guideline encoding with
clinical information and knowledge sources (e.g., EHRs) [138].

GLIF uses the object-oriented programming paradigm for guideline mod-
elling. In this formalism, the Guideline class represents a guideline and related
attributes. The Algorithm class represents guideline recommendations as a set of
steps, namely, the Guideline Steps class, which involves following sub-classes [137]:
(i) the Action Step, represents recommended actions/tasks; (ii) the Decision Step,
represents recommended decisions; (iii) the Branch Step, represents parallel action-
s/tasks; (iv) the Patient State Step, represents patient health state and eligibility
for the guideline; and lastly, (v) the Synchronisation Step, represents synchroni-
sation of parallel branches. GLIF includes temporal constraints on guideline steps
(e.g., actions and decisions) and patient data elements. The support language of
GLIF is RDF [139] and the medical data model is the HL7 Reference information
Model (RIM) [59]. Unlike Arden Syntax, GLIF can manage complex guidelines with
many care steps [140].

The execution engine GLEE [I5] was designed to execute CPGs that encoded
in GLIF3 formalism. GLEE involves a set of layers, including a representation model
that involves advices for specific clinical tasks, and supplies an execution environment
for GLIF3, where CIG actions are traversed and executed with patient data. GLEE
was used to implement guidelines and to assist conceptual modelling, encoding and
validation of them. GLEE involves four execution states [I5]: (i) prepared; (ii)
started; (iii) stopped; and (iv) finished. While the active state is associated with
prepared and started states, the inactive state is associated with finished and stopped
states.

In Peleg et al. [141], web-based interactive clinical algorithms were developed,
based on this formalism for the sequencing of tasks to evaluate patient with thyroid
nodules. The major limitations of this formalism is its authoring tool, which is tied
to the Protégé tool [142] and lack of mechanism for combining multiple concurrently
implemented CIGs [137].
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EON

EON [13] was developed by the Stanford Medical Informatics Department as a
component-based modelling approach that involves a set of models. These include,
a patient-data model, where patient data classes and attributes are defined; a med-
ical specialty model, where abstract entities are modelled; and a guideline model,
which is Dharma and represents knowledge constructs of guidelines as criteria, ab-
stractions, guideline algorithms (a collection of scenarios that represent a patient’s
state), decisions, and recommended activities. EON uses temporal properties to
perform scheduling of guideline activities, and handles duration constraints about
them.

HL7 RIM [59] is also used in EON. Protégé-2000 is the authoring tool of
this formalism. Padda is its execution system to produce recommendations using
computerised guidelines and patient data, Tzolkin is its temporal data mediator to
handle temporal relationships and WOZ is its explanation server that communicate
with other tools. The execution states of the EON are [I43]: (i) active; (ii) aborted;
(iii) suspended; and (iv) completed. EON was used in the ATHENA project to
manage hypertension.

The major limitations of this formalism are the coupling to the Protégé tool
[142], for guideline implementations like GLIF, and the lack of expressions for man-

aging concurrently implemented CIGs.

SAGE

SAGE [17, 144] was developed by SAGE project consortium as the evaluation of
GLIF3 and EON formalisms. SAGE uses activity graphs that represent the rela-
tionships among several clinical and computational actions, and decision maps that
represent a set of alerts and reminders. SAGE involves a guideline model, an author-
ing tool and an execution platform. The guideline ontology is represented in RDF
[139]. SNOMED-CT [131] and LOINC [132] are adapted, in this formalism, for their
use as terminologies. Like GLIF3, SAGE als uses HL7 RIM [59].

Protégé [142] is the authoring tool of this formalism and its testing tool is
SAGE Desktop [145] that can test one CIG implementation at a time. Since SAGE
supplies guideline-specific implementations, this cause a barrier to have a sharable
representation. In addition, there is no evidence that multiple concurrently imple-
mented guidelines can be handled and their activities merged with this formalism.
SAGE has not been used in practice, and has some prototype applications for im-

munisation, diabetes and community-based pneumonia [146].
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2.4.2 CIG Integrations with Workflow Patterns, Clinical Systems

and Terminologies

This section reviews the necessary integrations of CIGs with workflow control pat-

terns, clinical information systems and standards.

Workflow-Control Patterns

Workflow is a business process involving a collection of business activities, which
need to be performed to achieve a business aim and a collection of conditions, which
determine the sequence of these activities [147]. Likewise, a CIG formalism is a
computerised version of a clinical care process involving a set of clinical activities
and conditions to achieve a specific clinical aim [30]. The workflow control patterns

[57] considered in CIG languages are as follows:
e Sequencing. Ordering activities with sequence numbers;

e Splitting. Splitting of activities based on a set of conditions (e.g., precondi-

tions) and wait execution until these are satisfied;

e Synchronisation. Synchronisation (join) of parallel activities when all the
sub-activities are completed. Otherwise, wait the completion of them or per-
form exclusive wait where the completion of the sub-activity will end all the

sub-activities in the exclusive wait group;

e Conditional Routing. The enablement of activity control is passed to the
following activity based on the results of condition expression (e.g., OR/XOR)

of a preceding activity;

e Parallel Activity. Activities can also never be synchronised and may continue

their respective paths in parallel;

e Merging. Multiple activities are merged into a single activity without forcing

synchronisation of these activities;

e Triggers, pre- and post-conditions. Conditions involve a set of criteria that
need to be satisfied to initialise or end an activity. These can be represented
with Boolean expressions such as AND, OR, XOR or TRUE, FALSE. While
trigger conditions represent event-based execution, post-conditions represent

intentionality;

e Iteration. Activities can be repetitive and causes cycles until exit condition

is triggered;
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e Cancellation. An activity can be cancelled or removed even if the execution

of this activity is started;

e Termination. An activity can be terminated if (i) there are no remaining
work elements — activity is completed; or (ii) the remaining clinical process of

the activity is cancelled as it reaches a designated state.

The limitations of the existing works (see, [30]) are mainly identified in supporting
advanced workflow patterns like advanced merging, and synchronisation (which as
discussed in Section [3.5.5] demonstrates how, in this area, this thesis fills the gaps of

the existing literature).

Clinical Information Systems and Terminologies

To embed CIGs into a clinical practice, they need to be integrated with the care
flow where patient-specific information, HCPs (e.g., doctors, nurses, lab technicians,
etc.) and clinical actions (e.g., decisions, plans, examinations) are managed.

CIGs supply recommendations through combining CIG concepts with patient
data and CIG execution engines can support automatic dynamic patient data han-
dling [148]. Different care institutions can use different terminologies to define the
same knowledge element of a guideline. This causes challenges in CIG sharing and
maintaining semantic interoperability and standard clinical concept expressions. The
major problem of CIG sharing is the use of different codes that a guideline denotes to
patient information [I149)]. Clinical standards are important elements of CIG sharing
and maintaining standardisation in clinical practice. For instance, clinical termi-
nology standards like ICD-9 [122], SNOMED-CT [I31] and LOINC [I32], as well
as concepts and attributes defined by HL7-RIM [59], play a significant role on CIG
sharing, by bringing standardisation in the representation of guideline knowledge
and related patient data.

In the literature, many studies [148] [I50] proposed mapping ontologies and
tools to perform temporal abstractions, integrating CIGs with the clinical termi-
nologies (e.g., SNOMED-CT) and EHRs. A query translation approach based on
mappings has been widely used for this purpose [138]. However, the major limitation
of the existing works is presenting an ontology that can map knowledge elements of
concurrently implemented, multiple CIGs, and their associations, with the clinical
information systems and terminologies.

In the following section, the CIG verification and validation approaches are
reviewed, which are necessary in order to maintain error-free and appropriate CIG

implementations.
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2.4.3 CIG Verification and Validation

Due to the high volume of the knowledge elements and their interactions involved
in guidelines, CIG implementations are prone to errors. These may cause unwanted
outcomes regarding care management and patient safety. For this reason, CIG veri-
fication and validation analysis is an integral part of the CIG-driven CDSSs. Preece
[151] defines the verification as a process to check whether the software system sat-
isfies the requirements defined by the users, and the validation as a process to check
whether the software system satisfies the users’ actual requirements.

In this context, verification process aims to supply consistent and error-free
CIG specification, ensuring that CIG involves the required properties (e.g., medical
practice, guideline goal, patient-specific clinical condition, time, patient groups) to
satisfy the intended use and meaning, ensuring consistent guideline implementations
[10, 152] 153]. Consistency checking as part of the verification process is required for
acquiring consistent knowledge from guidelines, when they include new concepts and
relations or exclude, or modify existing ones. This can be performed, for instance,
to check names, the new term, relation or value defined by the HCP such as not
allowing cycles in the model or for meeting design requirements such as ensuring
that decisions have alternative options [120], or to check conflicting recommendations
of guidelines. For instance, Karadimas et al. [I1] used the CUP parsing tool to
verify CIG actions represented in Arden Syntax formalism by checking each newly
entered rules whether they cause conflicts. On the other hand, validation process
can be performed by confirming the correctness of the ontology, in terms of the
defined concepts and their properties in representing the domain. Domain experts
can review the ontology [154] and evaluate the ontology correctness manually or by
inferring knowledge (e.g., specific care recommendations) from knowledge base with
patient data, using CIG execution engines, or by comparison with existing works.

There are many CIG verification techniques such as model checking [153]
155], [156], theorem proving [152, 157, [158], knowledge-based verification [50} [159]
and hybrid approaches [27].

The model checking verification approach can be used to verify specifications
of a given system. Specifications can be defined as temporal or tree logic formulas
or algorithms that traverse the model expressed by the system and check whether
the specification is satisfied or not [I60]. For instance, Giordano et al. [I56] pro-
posed a model checking method, where GLARE encoded guidelines were translated
to the Promela agent-based language of the SPIN model checker [161], and the lin-
ear time temporal logic formulas were used to check the properties (e.g., path, and

executable guideline actions). A similar approach was adopted by Pérez and Porres
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[153]. Authors proposed a model checking approach for CIG verification against
semantic errors and inconsistencies in guideline definitions, and a model-driven de-
velopment approach to automatically process manually created CIG specifications
against specific verification requirements (e.g., correctness, structural) as well as to
verify temporal-logic statements.

Theorem proving is a verification approach that can be used to perform rea-
soning on logically represented knowledge, which requires a syntax, a collection of
axioms and knowledge inference rules. Hommersom et al. [I52] formalised guidelines
using Asbru and proposed an interactive theorem proving approach, which was im-
plemented using the KIV theorem prover [162] for verification (e.g., checking model
consistency, and treatment order, success and its optimality). In their later work
[158], the authors proposed an automated reasoning approach to check the quality
of guidelines by applying a meta-level quality check (i.e. formalising general require-
ments that a CPG should satisfy and then discover feasibility of them) over the type
2 diabetes guideline.

The knowledge-based verification approach can be used to check logical anoma-
lies (e.g., syntax errors, redundant, conflicting or missing elements) in a knowledge
base [163]. For instance, Duftschmid and Miksch [I59] proposed a knowledge-based
CIG verification method, where guidelines were formalised using the Asbru for-
malism. The proposed verification algorithm automatically checks anomalies (i.e.
specification violations) such as unsatisfiable conditions occurring during execution,
conditions with redundant parameter values, or incompatible conditions that may
exist in ClGs.

Clinical actions defined in CIGs have to be performed according to a set
of temporal constraints [50, 164]. These constraints can be qualitative constraints
(e.g., simultaneously, after, or before) or quantitative constraints (e.g., days, delays,
or durations such as ‘3 consecutive days’, and clinical task T; starts ‘1 hour’ after
clinical task Tg) between clinical actions, periodic/repeated actions or the temporal
constraints which can be the part of the relations between these actions [27]. To
avoid the occurrence of any duplications and/or conflicts in care steps, temporal
statements need to be checked for their validity when implementing guidelines [52,
165]. Temporal constraints are particularly important to apply correct prognosis
[166], and multiple medication administrations in a certain time window. Anselma
et al. [I2I] presented an instance on how temporal knowledge about the medication
Anticoagulant has an impact upon the medication action of Warfarin administration.
In the later work of Duftschmid et al. [50], authors proposed a verification approach

which is based on calculating the minimal network of temporal constraints on the
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execution of CIG activities. Temporal scheduling constraints which are quantitative,
and their implications from the contol-flow and hierarchical structuring of guideline
actions are qualitative, were mapped to a Simple Temporal Problem (STP) [167].
Therefore, constraint propagation was implemented to find out inconsistencies and
supply the minimal constraints between guideline actions. The limitations of this
work involve inability to check unordered sequential activities of guidelines, and
dealing with non-binary constraints.

Lastly, a hybrid CIG verification approach which was proposed by Anselma
et al. [27] involves: (i) a constraint-based temporal reasoning method, STP frame-
work, to check whether temporal constraints (which can be defined as twice a day,
periodically, or after 2 days) in a CIG are consistent; (ii) model checking approach,
where CIGs were modelled in Promela, and a SPIN model checker [161] was used, to
check clinical properties of a CIG through formalising them as linear time temporal
logic formulas. This was also used by Giordano et al. [I56], for determining the best
actions to be executed on the patient based on his/her current health conditions and
symptoms as well as specific actions to be necessary for this patient; and (iii) prob-
abilistic modelling, where the causal probabilistic decision time logic was proposed,
to check probabilistic properties of a CIG for identifying best treatment options for
a patient at hand.

In the literature, a few interactive guideline verification approaches were pro-
posed which were mainly on temporal verification (e.g., |27, 50, [168]). However,
there is a significant need for further verification tools to support dynamic execution
of CIG languages [158]. This thesis addresses this gap (see Section by intro-
ducing a CIG verification module which verifies multiple CIGs that are concurrently
implemented; dynamically support users with customised messages to resolve the de-
tected inconsistencies and/or errors; and involve mechanisms to perform automatic
updates on CIGs which helps reducing allocation of users’ time.

The following section reviews the major challenges and barriers in multimor-
bidity care. Multimorbidity forms the basis of the challenge of the objectives of the

work of this thesis.

2.5 Challenges in Multimorbidity Care

Co-existence of multiple health conditions in an individual is steadily increasing,
and aging is one of the main factors of the occurrence of these conditions [22] 23,
24]. The combinations of genetic functions, lifestyle choices, environmental issues,

multiple drug usage, complications of past diseases and aging, generate patients

32



with various combinations of multimorbidity. This creates several challenges and
barriers to implement care for patients with multimorbid needs. In this section,
the most prominent ones are reviewed. These involve shortcomings of CPGs to
treat multimorbidity; and conflicting actions affecting care and personal care plan
generation. In Section [2.6] we review proposed approaches, used to handle such

challenges.

2.5.1 Shortcomings of CPGs to Treat Multimorbidity

CPGs can offer substantial benefits for the healthcare system and patients, such
as helping to reduce health costs, improving consistency and quality of care |2, 4].
However, they are not sufficient for developing personalised therapy plans, especially
for multimorbid patients [32, [33]. For the treatment of a patient with multiple
diseases, more than two CPGs need to be implemented along with associated clinical
knowledge and patient data during the patient consultation. Evaluating the patient
health status individually and developing a patient-tailored care plan as a result, is
not a trivial task due to several reasons.

CPGs are often in the form of texts/schemas that cause difficulties to HCPs
in the interpretation of the guideline contents during patient-HCP encounters, and
subsequently their implementation in care [34] [35]. This also causes dissemination
and maintenance difficulties (e.g., updates and versioning) across healthcare organ-
isations [40), 41]. When handling a patient with multimorbidity, HCPs may prefer a
personalised version of a guideline [40]. CIGs facilitate this treatment personalisa-
tion process, as there can be instances of a CPG tailored to the specific information
of a patient (e.g., preferences, allergies, drug intolerance and social needs), which
due to their computer executable nature can also be adapted to dynamic changes of
the patient’s status. Versioning of guidelines plays a significant role for managing
them, as defined by Grandi et al. [40] with several dimensions such as valid time (i.e.
the time of a guideline belongs to the state-of -the art) and transaction time (i.e. the
time the guideline is applied in a computerised platform). The chosen guideline ver-
sion, and its personalised version, have to be mutually temporally consistent. This is
important to evaluate whether the guideline is being properly applied by HCPs [41].
Evaluating patient data, as well as the vast number of clinical knowledge elements
manually, is a process susceptible to medical errors 38, [39].

In multimorbidity care, many CPGs need to be followed in parallel [36].
However, CPGs are mostly designed for the treatment of a single disease, and there is
little guidance on a CPG regarding how to merge strategies and recommendations to

cope with multimorbid conditions, and the needs of these complex patients [37]. The
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simultaneous combination of multiple guidelines is also prone to adverse interactions.
We review approaches for guideline merging are reviewed in Section and the

subsequent sections.

2.5.2 Adverse Interactions Affecting Care

Treatments of multimorbid conditions involve both pharmacological (e.g., drugs) and
non-pharmacological (e.g., patient-education, surgery, rehabilitation, psychotherapy,
etc.) activities. Pharmacological activities offered by each guideline are susceptible
to adverse interactions with recommendations offered by other guidelines in varied
forms such as drug—drug interactions, drug—disease interactions and drug—patient
interactions that can reduce the efficacy of the care or affect the life expectancy of
a patient [169]. The two main classifications of interactions are single-action inter-
actions and multi-action interactions. A single action interaction appears as two
guidelines having different recommendations for the same therapy. For instance,
drug—dose variation may occur where two guidelines recommend different dose lev-
els for the same drug. Multi-action interactions appear when medications, recom-
mended by different guidelines interact with each other. Drug—drug, drug—disease,
drug—patient, as well as drug—food interactions, can be considered as multi-action
interactions, See the GuideLine INteraction Detection Architecture (GLINDA) [170]
project, for further information on guideline interactions. Some of the widely occur-
ring conflicts in guideline implementations are described in the paragraphs, below.

Drug—drug interactions occur in the case of two (or more) drugs, which (in the
case of multimorbidity) may be recommended by two different guidelines. There are
two main groups of drug-drug interactions [I7I]: (a) pharmacodynamic interactions
that may occur when two drugs are taken together, and their concurrent usage causes
serious health outcomes, and (b) pharmacokinetic interactions that may occur when
one drug affects the other drug’s efficacy. Adverse drug reactions [39)] are, in general,
linked with pharmacokinetic drug interactions [I72]. Overdose of medication, if
it results from multiple guideline medication recommendations, can cause serious
adverse reactions with other drugs, as well as with the physiology of the patient.
Drug—disease interactions occur when the intake of a drug interacts with a disease.
For instance, a patient with asthma should not use non-selective beta-blocking drugs
[I73]. Drug—patient interactions occur if a patient has allergies or intolerances for
(a) prescribed drug(s), and intake(s) of this drug(s) may have an adverse effect upon
the patient.

To illustrate the above, let us consider a patient with the following chronic

diseases: diabetes mellitus and hypertension. These two diseases involve different
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sets of clinical information (e.g., drugs to be taken, or side effects) and associated care
flows. In the study of Kovalov and Bowles [37], guideline interactions of these diseases
are considered. Here, the medication Nadolol offered for the care of hypertension
conflicts with diabetes, as it causes a major drug—disease conflict; the medication
Sitagliptin conflicts with a patient characteristic that causes a moderate level of
patient allergy; and the use of Metformin and Acarbose medications cause a minor
drug—drug conflict. Consequently, conflicting activities need to be detected and
resolved before any treatment provision, in order to maintain safe care. Interactions
can exist between drugs and foods that occur when drugs interact with foods or
beverages (such as coffee, alcohol, orange juice, grapefruit juice, etc.), that annul
or worsen the effect of drugs on the body. Lastly, CPGs mostly supply information
about specific time elements such as the consecutive implementation of two certain
drugs. These can temporally interact in time (i.e. two drugs interact with each other
if they are administered within a specific time window).

Therapies can be given at one time or spread over time. Correct timing of
guideline actions plays a significant role upon achieving safe therapy implementa-
tion [50]. Thus, HCPs need to perform proper time management and chronological
ordering of clinical activities (e.g., laboratory tests, or drug recommendations). Pi-
ovesan and Terenziani [165] supply the following instance on the potential temporal
sequence related interactions in guidelines. Calcium carbonate intake leads to alka-
linisation of the urine, interacting with the nalidixic acid absorption. Thus, nalidixic
acid should be given after calcium carbonate intake to avoid any conflicts. Arranging
drug administration sequences can make both of them beneficial for the patient, and
thus perhaps not causing any health risk, please see Anselma et al. [121] for further
information on temporal interactions between guidelines. Approaches on how to

handle adverse interactions are reviewed in Section [2.6.2

2.5.3 Issue of Care Personalisation

Maintaining patient adherence to recommended interventions is a crucial factor in
decreasing the risk of hospitalisation and in improving patient outcomes [174] [175].
Patient adherence, as defined by Christensen [176], is “the extent to which a person’s
actions or behaviour coincides with advice or instruction from a health care provider
intended to prevent, monitor, or ameliorate a disorder”.

However, CPGs face integration difficulties in a care personalisation process,
since they alone, are not best suited for showing adaptation to shared decision-
making between patient and HCP, patient preferences or requests while providing

a care plan. To customise care for each patient, HCPs need to interpret clinical
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guidelines and patient’s input individually. However, this is not straightforward
in the case of multi-morbidity, which involves multiple guideline interactions and

integration of numerous clinical knowledge elements. These approaches are reviewed

in Section 2.6.3]

2.6 Multimorbidity Care Management Approaches

This section reviews the approaches used in the management of multimorbid patients
through CIG-based decision support technologies. Initially, we review methods that
use CIGs to create a combined care plan. This follows with reviewing the methods
to deal with the issue of polypharmacy and management of adverse interactions
in guideline actions and associated knowledge elements and generating personalised

care plans.

2.6.1 Guideline Combination Approaches

Over the past decades, many methodologies have been developed to cope with the
unification (combination) and execution of multiple CIGs |28, 136, 114}, 177, 178, (179,
180, [18T], 182} [188, 189, 190, [191].

To generate a unified care plan for a multimorbid patient, guidelines need
to be merged. Computerised CPG merging is referred in the literature as being
performed in in two levels: manual and electronic. In the manual merging level, (i)
domain experts first provide the required merging points between CPGs, and then
these guidelines are merged manually based on this information and then comput-
erised using the selected guideline formalism; or (ii) guidelines are formalised first,
then they can be merged in a software system based on the domain experts’ rec-
ommendations (e.g., [I83]) which is a semi-automatic process. In the full electronic
guideline merging level, guidelines are merged automatically based on the execution
logic of the system.

The Semantic Web based formalism is one of the broadly applied approaches
that merge CPGs, by initially formalising them as CIGs. Semantic Web technologies,
such as the OWL [89], are characterised by formal semantics that have been used to
represent clinical knowledge in CPGs.

For instance, Abidi et al. [I79] proposed an OWL-based CDSS to represent
multiple guidelines and generated a unified knowledge model for handling comor-
bid patients. In the study of Jafarpour and Abidi [I80], multiple guidelines were
merged using the merge criteria (i.e. a set of workflow, medical and institutional

constraints) which was used to discover merging points between CPGs. To do so, a
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merging representation ontology was developed to detect these merge points. OWL-
driven execution engine and SWRL [I84] rules were used to achieve guideline merg-
ing according to the merge criteria. The major common limitations of these works
were representing and merging more than two tasks of concurrently implemented
guidelines. In their later work [I81], the authors extended their guideline execution
approach. Initially, they used OWL1 DL-based [I85] execution engine to repre-
sent clinical task transitions between executional states and rules for managing the
clinical task satisfaction criterion. Afterwards, OWL2 DL-based execution engine
was used that provide more functionalities (e.g., cardinality restrictions and data
type expressivity) than OWL1 DL. Here, OWL2 DL supports automatic compar-
isons of patient values with predefined values. Lastly, an OWL2 DL + SWRL-based
guideline execution engine was used that also supports mathematical calculations
and iterative clinical actions. Authors emphasized that combined guideline execu-
tion approaches supply more executional performance for reasoning on complicated
guideline workflow patterns like iterative clinical actions than OWL1 DL. Lack of
representation and execution of temporal constraints in guidelines were the main
limitations of this work. In their recent work [I82], authors extended their CIG
combination (integration) approach by proposing semantics with the CIG-IntO on-
tology in OWL2 format using FOL rules in order to handle temporal constraints,
resolve conflicts (e.g., adverse drug interactions) and maintain operational efficiency
(e.g., elimination of redundant clinical tasks). Afterwards, ontology was executed
with the CIG Integration Engine which was based on Apache Jena [I86] reasoner.
Lack of automatic detection of real-time multiple guideline merging points which
were performed by HCPs for the selected guidelines, inability to merge more than
two clinical tasks at a time and lack of mechanism (e.g., DrugBank) for performing
automatic detection of the type of conflicts and their conflict degrees (see, [187])
were the limitations of this work.

There are also other approaches for merging guidelines, as the one proposed by
Riano and Collado [28| that adopted a divide and conquer approach (i.e. divides the
problem into sub-problems until it can be solved) to merge many treatment plans of
multiple guidelines considering the severity of the patient disease. Here, three main
knowledge elements were considered: decision elements, which are related to the
acuteness of a patient condition; action blocks denoting a set of actions such as tests
to discover the severity of a condition; and table blocks, denoting the treatment
matrices involving treatment, patient symptom and the recommended treatment.
However, concurrency relations of multiple CIG actions and how to handle parallel

tasks were not discussed.
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Logic-based methods (e.g., Wilk et al. [36], (188, 189] and Michalowski et al.
[190, [191]), which are formal approaches to representing and reasoning the knowledge
involved in CPGs, are also widely used in the literature for combining care plans of
multiple guidelines. Since merged guidelines may involve duplicated clinical actions
(e.g., laboratory tests, examinations, medications) and possible contradictory or in-
consistent actions, these should be discovered and eliminated before initialising any
care to ensure patient safety. In the subsequent sections, these issues and associated

works are reviewed.

2.6.2 Adverse Interaction Handling

Adverse interactions (conflicts) occur in presence of mutually inconsistent declarative
sentences, and therefore, the system may lead to produce invalid outputs [192]. Ad-
verse interactions can be induced by contradicting targets of the guideline actions, the
effects of CIG actions, the medication conflicts offered by different guidelines or inap-
propriate timing of medical processes [I116]. Zamborlini et al. [I93] also demonstrated
that interactions may not only occur in CIG actions which were mainly considered as
drug—drug interactions in the existing works [I88],[I89], but also in CIG-independent
interactions. Authors classified interactions as internal interactions (e.g., repetition
interaction because of the same action, contradiction interaction) and external in-
teractions (e.g., incompatible drugs and alternative drug interactions).

Discovery and resolution of adverse interaction are imperative to generate
reliable and safe combined therapies. Studies have demonstrated that CIG-driven
computerised systems facilitate the elimination of medication administration errors
and ADEs, by recommending safe drug dose levels, arranging drug frequencies and
associated durations of medications. For instance, Koutkias et al. [T}, 194] proposed
a CIG driven clinical decision support model based on GASTON [108], to help
identification of drug safety risks and produce alerts and recommendations for HCPs
to prevent ADEs.

Besides the use of logic-based models (e.g., [36, 188, [189, 190} 191]) for rep-
resenting and merging knowledge elements of guidelines, such models have also been
used for discovering adverse interactions caused by the synchronous implementation
of multiple guidelines. For instance, Wilk et al. [36] proposed a constraint logic
programming (CLP [195])-based model to represent guidelines and mitigate conflict-
ing clinical actions which may occur between pairs of concurrently applied CPGs
in order to provide guidance to HCPs for revising therapies in managing multimor-
bid patients. In this work, guidelines were represented as actionable graphs that

are directed acyclic graphs used for representing guidelines and involve incomplete
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information. Yet, there were several assumptions made regarding the model (e.g.,
temporal constructs of CPGs were not considered) and mitigation algorithm (e.g.,
only binary variables were used). In their latter work [I91], assumptions related to
the mitigation algorithm that can handle cycles and numerical measurements were
relaxed, while reconciling guidelines. The issues of temporal and related precedence
relationships between guideline actions were addressed in Michalowski et al. [190].
To handle them, authors extended CLP to first-order logic (FOL) theories for de-
veloping a generalised mitigation framework. The major shortcomings of this work
were the need to automate the maintenance of the precedence relationships between
guideline actions, and the lack of parallel tasks and temporal characteristics. In the
recent work of Wilk et al. [I89], authors addressed limitations of their previous works
[36, (188, 191] such as handling parallel tasks of multiple guidelines while generating
a reconciled treatment. Besides parallel clinical tasks, temporal actions like time
offset (i.e. lag between care steps) and duration in care steps were also considered.
The major limitations of this study were the lack of complex decision nodes (i.e.
more than two options) that represent real-world cases, with many decision options
and handling more than two concurrently implemented actions of multiple CIGs.
While some works (e.g., Wilk et al. [36] 188, 189] and Michalowski et al.
[191]) use actionable graphs or pharmaceutical graphs [37], some [196] 197, [198]
prefer other methods, such as the Petri Nets-based models, to represent guidelines.
For instance, Tan [I98] presented the situation calculus ontology of the Petri Nets
framework to generate combined therapy plans without adverse interactions. The
major limitations of this work were the manual mitigation of two guidelines and
not being able to adapt to execution-time modifications. Furthermore, there was no
evidence on the applicability and efficiency of their method, when more than two

guidelines are concurrently implemented.

2.6.3 Personalised Care Plan Generation

Several CIG-based CDSSs have emerged to personalise guideline knowledge to supply
patient-tailored recommendations, considering patients’ multiple health conditions,
clinical history and preferences [199].

Isern et al. [51] suggested an agent-based K4Care platform, which supplies
personalised homecare services for patients with multiple conditions. To personalise
care, each patient’s health conditions and their social context were considered. A
state-decision-action (SDA)-based [200, 201] formalism was adopted, which repre-
sented CPGs as diagrams with a set of variables to determine the health condition

of a patient; to choose a clinical or administrative task among a set clinical or man-
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agement options, to represent the clinical or administrative tasks. As the part of
the K4Care project, Riafo et al. [I77] proposed methodologies for personalisation
of patients’ conditions (e.g., clinical and social information about the patient), and
intervention plans to discover clinical and social inconsistencies in the patient data.
Authors represented CIGs as SDA diagrams and presented a visualisation tool to
edit and unify the diagrams of all intervention plans recommended for a multimorbid
patient. The major limitation of these two works can be identified on the genera-
tion of patient-specific intervention plans, where the combination of therapy plans,
and personalisation processes were manually performed. This may also limit the
generation of alternative interventions when the number of diseases grows. In their
later works [28| [114], therapy plans were combined, considering the patient’s health
conditions and adverse drug interactions. However, interactions can occur in many
different levels of CIG actions (see, for example, Piovesan et al. [202]).

In many studies, the shared-decision making process was considered as an in-
tegral part of a CDSS, where guideline-driven advice can be addressed when needed
and alternative care recommendations can be obtained involving patient’s prefer-
ences and personal context (e.g., wedding, holidays, etc.). For instance, Peleg et al.
[203] introduced two types of patient preferences, as local and global preferences. Lo-
cal preferences denoted the personalisation of a certain CIG action, such as arranging
the blood glucose measurement alert after a specific mealtime, whereas global prefer-
ences denoted choosing a CIG branch among alternatives such as preferring Warfarin
medication instead of Asprin. In this work, guidelines were represented using Asbru
and a graphical framework, called, GESHER [204]. Lack of clinical implementation,
parallel paths and methodologies for detection of interactions occurred between mul-
tiple CIGs and resolution of them were the major limitations of this work. In their
recent work [I130], the authors extended their approach by proposing methods for
acquiring and specifying information of parallel paths in care workflows based on
CIG recommendations and making CIGs patient-centred, by customising them with
patient’s personal preferences and psychosocial context. However, this work falls
short in conflict handling, creating multi-versions of CIGs [40], 4], and including
extensive personalisation processes (see Riano et al. [I77]) for patients with varied

multimorbid conditions.

2.7 Summary

This chapter begins with core concepts of knowledge engineering - which supplies

information about ontology and knowledge modelling with associated knowledge
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management platforms. These constitute the basis of this thesis where ontologies are
used for knowledge representation, and subsequently in the development of a model-
driven software. Then, review is continued with the presentation of the components
of CIG-driven CDSSs. These involve existing CIG languages which are used to
formalise CPGs and associated knowledge constructs, and their execution engines
to generate automatic care recommendations for the patients. Following this, the
roles of CIG integrations with workflow patterns, clinical information systems and
terminologies for creating a care pathway for a patient are reviewed. Lastly, CIG
verification and validation approaches are reviewed to demonstrate how CIGs can
be tested and their applicability in clinical practice can be measured.

This thesis focuses on developing a new CIG language and its associated exe-
cution engine, which can be used as a CIG-driven CDSS for patient management. For
this reason, related existing works are reviewed. Afterwards, the specific challenges
and barriers in multimorbidity care are reviewed. These include the limitations of
CPGs to handle multimorbidity care, namely the adverse interactions affecting care
and integration difficulties of CPGs in care personalisation process, which may re-
sult in limited or impaired patient adherence to care. Lastly, existing approaches for
managing multimorbidity care, with their limitations are reviewed. This review has
been conducted as this thesis targets the development of a novel CIG language and
its execution mechanism to handle multimorbid patients. Accordingly, this part of
the review involves methods for guideline merging (combination), dealing with ad-
verse interactions and personal care plan generation. The core concepts of managing
multimorbidity care through using CIG-based CDSSs are: (i) unification of multiple
guidelines; (ii) handling of contradictory and inconsistent activities within guidelines
and of their associated knowledge elements; and (iii) generating patient-tailored care
plans. This chapter concludes that the adoption of CIG-driven CDSSs can enhance
the benefits of CPGs for HCPs who can use standard reference to improve the qual-
ity of care and support their decision-making processes, if such CIGs are adequately

formalised and executed.
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Chapter 3

Representation of Multiple CIGs

and Their Interrelations

3.1 Introduction

Clinical Practice Guidelines (CPGs) are unstructured, mostly free text, clinical state-
ments that supply evidence-based recommendations from diagnosis to long-term
management [I]. Use of CPGs is seen as substantially beneficial [2] 34], yet they
fall short in two aspects, necessary for managing multimorbidity: (i) they do not
sufficiently support dynamic changes in patient health conditions, when being trans-
lated to care plans, without personalised adjustments [136] 190]; and (ii) they do
not provide the means to reconcile potential conflicts, when applied in parallel to
other guidelines necessary for multimorbid patients [20]. Formalisation of CPGs, as
Computer-interpretable Guidelines (CIGs) [10], enables their execution by comput-
ers, integrating with patient data, and guidelines, into a patient-centred care plan.
This requires capturing (in a CIG format) information such as clinical actions, deci-
sions and a set of conditions and/or constraints (e.g., temporal or executional) that
must be satisfied.

In the existing literature, various guideline modelling approaches (e.g., rule-
based, document-based) based on ontologies have been proposed to represent knowl-
edge constructs of guidelines and execute them with their associated execution en-
gines and tools for supplying decision support to HCPs (see Section . However,
there is still an obvious need for the decision support-based application of multiple
CPGs which raises two main challenges: (1) combining multiple concurrently im-
plemented clinical activities; and (2) methods to manage (e.g., merge, modify or
optimise) these activities and their interactions (see Section [2.5). These challenges
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have not yet been sufficiently addressed [30, 1] (also see Section [2.6).

The methodology introduced in this chapter is about the development of a
domain-independent (e.g., applicable to health conditions ranging from chronic heart
failure to cancer) language, namely, MuCIGREF’s Multiple CIG Representation
Language (MuCRL), which is built upon the generic ontology (see Bilici et al. [70]
for the related publication). This thesis intends to fill the gaps in representing and
managing multiple concurrently implemented CPGs and their interrelations, which
are crucial to create a personalised care plan for a multimorbid patient to maintain
patient safety and their adherences to care (see Section . The major aims of
MuCRL are to:

e supply generic and expressive vocabulary for CIG applications, where differ-
ent diseases (e.g., obesity, chronic heart failure) with different scopes (e.g.,

treatment, prevention, management) can be represented;

e supply mapping semantics to establish multimorbidity relations between mul-
tiple CIGs;

e supply an extendable formalism, enabling users to introduce new concepts and

properties if needed;

e support care complexity handling elements such as care duplications, conflicts

and inefficient health resource uses.

In the following sections, CPG representation requirements, the method of CIG

representation language development and related results are presented, respectively.

3.2 CIG Representation Requirements

The common CPG representation requirements [19, 118, [127] of existing guideline
formalisms [11} 12, 13, 14} 15} 16, 17, 109, 110, 116, 117, 118, 124] 125] 126, [129] 137,
144] are discovered to ensure that MuCRL has adequate knowledge representation
power.

These are supporting; (i) the main workflow control patterns (e.g., iterations,
activity synchronisation and sequencing) required to create a network of guideline
activities; (ii) common collection of guideline activities such as action, decision,
and conditions to be satisfied; (iii) guideline activity nesting - activities can have
smaller units of activity which can be made into sub-activities nested underneath

that parent activity; (iv) guideline representation, acquisition and execution; (v)
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storing the guideline execution status (e.g., active, in progress, pending, completed);
(vi) data definitions; and (vii) description of clinical actions.
Following section presents MuCRL’s development methodology where CPG

representation requirements are considered in this stage.

3.3 MuCIGREF’s Multiple CIG Representation Language
(MuCRL) Building Method

MuCRL provides three main aspects, which are to supply; (i) a knowledge represen-
tation structure for multimorbidity, whose role is to represent knowledge elements
of all CPGs and their interrelations; (ii) a knowledge reconciliation, which involves
required semantics to perform alignments, mapping and merging in/between knowl-
edge elements of multiple CIGs; and (iii) a knowledge management, which involves
required semantics to manage multiple CIGs such as handling concurrency and syn-
chronisation relations, care modifications and optimisation issues.

The method is based on best practice principles of largely used ontology
building life-cycle methodologies, which are METHONTOLOGY [60] - supplies a
well-structured and comprehensive methodology for step-by-step ontology building
from scratch and Noy and McGuinness [6I] - covers the fundamentals of ontology
design and development stages with clear definitions. Thus, the resulting method
involves four main stages including seven steps, as shown in Figure 3.1l Each stage

of the ontology development lifecycle is documented.
e Step 1: Specification of the purpose, scope & ontology requirements

In this step, the ontology specification involving the domain, scope, purpose and
requirements of the ontology, is determined. The purpose of the ontology involves
the intended users and end-users, the scope (that involves a set of terms to be repre-
sented), its characteristics and granularity of a domain to be represented. This can
be determined by a set of competency questions [205]. These competency questions,
and associated answers are discussed in the design stage part of the result section
(see Section . Requirement analysis is also performed to clarify the knowledge

to be represented and the (competency) questions to be answered.
e Step 2: Knowledge acquisition

Knowledge acquisition, which is part of the ontology design stage, is performed
simultaneously with the ontology specification requirement step, resulting in iden-

tification of the ontology classes, and their associated knowledge artefacts. While
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Figure 3.1: Stages of the ontology development lifecycle

designing the MuCRL, a set of design criteria [206] (e.g., clarity, completeness, etc.)
is also considered, with the aim of knowledge sharing and maintaining interoperation

among software systems.
e Step 3: Considering integrating existing ontologies

Existing ontologies and clinical information systems are reviewed for concepts, al-
ready defined and widely accepted in practice. The review included: (i) terminology
classifications, such as the UMLS (Unified Medical Language System) [207] which
involves, for example, the UMLS Semantic Network [208|, which represents semantic
concepts and their relationship and the SPECIALIST Lexicon — a lexical resource
for biomedical words; (ii) Metathesaurus schemata involving clinical vocabularies
(e.g., SNOMED-CT [131], LOINC [132], ICD-10 [209], and RxNorm [210]), where
clinical terms and associated codes are defined; and (iii) existing ontology libraries
(e.g., BioPortal [211], The Open Biological and Biomedical Ontology Foundry [212]).
Moreover, existing literature (see Section representing and managing guideline

actions and approaches for handling multiple formalised guidelines, in order to man-
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age care pathway of a multimorbid patient, are also examined; and lastly, several
web sites such as DrugBank [213] and Drugs.com [214] to support representation of
drug interactions, and the workflow control patterns [215] to support representation

of control-flow and hierarchical structuring of guideline activities are also examined.
e Step 4: Conceptualisation

The ontology involves classes, their properties, constraints on properties, and in-
stances to represent the intended knowledge in the domain. Initially, the glossary
of terms is created where terms are enumerated and grouped to create the ontology.
Then, classes and the class topology are defined. To develop MuCRL’s classes, the
middle-out approach is adopted that combines top-down approach (i.e. enabling one
to control the details of the ontology) and bottom-up approaches (i.e. supporting to
develop high level of details); and supplies balance between them [216]. Then, the
properties of classes, relations, axioms and restrictions (facets) on them, are defined.
Every term is checked for relevance, duplication, appropriate level of granularity and

semantic alignment with the intended objectives of the thesis.
e Step 5: Ontology encoding

The objective of this step is to implement the developed ontology using a software
system or tool. Firstly, guidelines are formalised based on MuCRL using the Pro-
tégé editor [142], which supports OWL2 [63], a widely-used Semantic Web ontology
language. Afterwards, OWL2 metamodel is mapped to Ecore metamodel of EMF
[64] (see Section . This mapping is performed to support the reusability and
sharing of the ontology, which means users can import and export the entire or part
of the ontology among different software platforms as well as to support the dynamic

execution and verification using the power of imperative programming.
e Step 6: Instantiation

Instantiation refers to defining knowledge elements of guidelines and/or their inter-
relations in a class. In this thesis, instantiation is manually performed. Each health
condition is associated with a particular guideline which has its own CIG which
represents guideline knowledge constructs and its associations to construct the care
pathway of a patient. If multimorbidity exists, instances of CIGs, which represent
different diseases, need to be aligned (i.e. creating semantic relations and corre-
spondences between knowledge elements of guidelines through finding similarities

between them) and mapped [217] (i.e. finding directed alignments-semantic overlaps
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between similar elements in different CPGs and their associations). Ontology map-
ping [217] can be defined as finding equivalences and semantic similarities between
knowledge constructs.

Multiple CIGs and their associated clinical actions may need to be merged
one or multiple times in a care pathway, in order to obtain consolidated guideline
recommendations (e.g., aligning with the intended care objective, eliminating care

duplications and conflicting advices). CIG merging can be defined as follows:

Definition 3.3.1. (CIG Merging) Merging is the ability of a clinical decision
support enabled system to be able to execute CIGs in parallel for creating automated
mappings and adjustments between them when needed based on a patient’s health

context.

To perform CIG merging, required semantics need to be supplied. In the
context of this thesis, this can be achieved by matching and mapping many guideline
instances over classes, properties and instances which are supported by the multi-
activity management (MAN) ontology group (see Section [3.5.4).

e Step 7: Ontology evaluation

In this stage, a set of ontology verification and validation analyses is performed.
These analyses are required to check whether the developed ontology coherent and
free from inconsistencies and working correctly for its intended purpose. While ver-
ification is about checking the system application (e.g., syntactic errors, missing
information, logical consistency), validation checks the correctness of the developed
ontology (e.g., clinical validity), see Section [2.4.3] Ontology reasoners [92 93] are
used to identify inconsistency and incoherency occurring while developing the on-
tology. Ontology evaluation metrics [218 219], 220] 221) 222] are used to assess the
semantic quality of the ontology. Ontology requirements specification and end user
requirements also need to be met, as part of the ontology validation. The ontology
is also tested with different guidelines and patient scenarios to evaluate its repre-
sentational efficacy. Thus, the evaluation step enables users to compare the goal
and completeness of several meta-ontologies, their shareability and reusability with
the proposed ontology; and determine whether or not it is useful and applicable to
its intended purpose (i.e. representing knowledge elements of guidelines and their
interrelations and required semantics to manage them) [60]. The evaluation phase
is discussed extensively in Section [6.3] The following sections discuss the results of

the ontology development stages.
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3.4 MuCRL Design Results

As part of the CIG language design phase, the ontology specification requirements
involve the following information: (i) the purpose of the ontology (determined by
a set of competency questions and answers see Table , is to develop multiple
computerised guideline representation language to represent knowledge constructs
of guidelines and their interrelations to manage multimorbid patients in a CDSS
setting; (ii) the intended users of the ontology can be knowledge engineers, HCPs,
health organisations, researchers, and academicians. When a CDSS that has been
modelled using the language, then knowledge engineers and HCPs can work together
to create the instances of the given ontology. Accordingly, the end-users can be
HCPs, who supply care, based on the given recommendations, and patients who
receive care; and (iii) the conceptualisation and implementation details (which are

discussed extensively in the following sections).

Table 3.1: Competency questions and their answers

Competency Questions

Answers

“Why a new ontology is needed to
represent and manage knowledge
elements of guidelines and their
interactions?”

MuCRL will be used as a reference model and a
tool for representing and managing multiple con-
currently implemented guidelines and their interre-
lations. Consequently, combined and consistent per-
sonal care plan for a multimorbid patient can be gen-
erated which is still an open area in the published
literature.

“How to represent different
guidelines with different scope
and granularities through a for-
mal and clear representation?”

CIGs (formalised guidelines) use the semantics de-
fined in MuCRL (i.e. involves four groups). Accord-
ingly, Guideline Service Deployment and Healthcare
Service groups are introduced for representing guide-
line specific information and knowledge constructs
required for establishing a patient care pathway, re-
spectively. Patient Care Personalisation group is in-
troduced for representing patient-specific informa-
tion. Multi-Activity Management group is intro-
duced for multi-activity coordination, care modifi-
cation and optimisation issues.

“How formalised knowledge ele-
ments of guideline and their in-
terrelations can be managed in a
personal care plan?”

In the context of this thesis, multimorbid patients
can be managed by supplying a personal care plan for
each patient based on their health needs. Once the
health needs of a multimorbid patient is determined,
CIGs are transferred to the personal care plan where
dynamic updates (e.g., modification, merging, etc.)
on their actions will be performed over this plan.

The knowledge used for the development of MuCRL are determined with the

following steps:
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e Performing a systematic literature review [31] where gaps are identified in
terms of the expressive power of current approaches in CIG applications, with

respect to multi- or co-morbidity care;

e International guidelines, such as the GIN, the ICSI, the National Institutes of
Health are analysed, but mainly publicly available NICE guidelines in the UK

are used, where these exist in the form of texts, figures and tables;

e The time ontology from W3C, namely, OWL-Time [223] and HL7 RIM v3 [59]
which are meta-ontologies from BioPortal [211], have influenced the identifica-
tion of temporal constraints and related timing information. HL7 RIM v3 has
also influenced the activity execution states. In addition, SNOMED-CT [I31]
has influenced the patients’ observable entities and the instances of the defined
concepts, mainly the Guideline Service Deployment group of the ontology. The
SNOMED-CT codes are used as clinical IDs in the instantiation phase of the
ontology with the aim of knowledge standardisation. The Drug-Drug Interac-
tions Ontology [224] also supported the design of the concepts related with the

representation of adverse interactions;

e Official web sites as DrugBank [2I3] (www.drugbank.ca) and Drugs.com [214]
(www.drugs.com) representing drug information and adverse drug interactions
such as drug-disease, and drug-disease interactions are used for obtaining med-
ication details (e.g., active ingredient) and their conflict degree (e.g., minor,

moderate, severe) with other medications;

e Guideline design patterns [225] and workflow control patterns [30, 57] and
its official website as Workflow Pattern [215] (www.workflowpatterns.com) (see
Section [2.4.2)) are used to develop the care workflow of a patient;

e Existing well-known CIG languages (see Sections f such as PROforma,
GLARE, GLIF3, SAGE, EON, Asbru, and Arden Syntax involving case studies
in representing and managing guidelines are analysed to check whether common

elements exist for reuse or missing element exists to contribute to the literature.

The objective of this thesis is to fill the gap of representing and managing con-
currently implemented multiple guidelines by supplying a comprehensive ontology
which can be used for modelling multiple CIGs, to perform their concurrent execu-
tions and verifications. Especially, multi-activity management ontology group and
their associations are the major contributions of this thesis (see Section . The

following section presents the ontology development results.

49



3.5 MuCRL Development Results

This section presents the ontology conceptualisation results. MuCRL consists of four
conceptual ontology, ©, groups, representing distinct facets of care. These conceptual

groups are as follows:

e GSD: Guideline Service Deployment
e PCP: Patient Care Personalisation
e HES: HEalthcare Service

e MAN: Multi-Activity maNagement

Development started with the definitions of guideline and HCP metadata.
Thus, GSD ontology group is initially introduced. Afterwards, required elements
(e.g., temporal constraints, clinical activities and their associations such as exam-
inations, procedures, etc.) for establishing patients’ care pathway are developed.
HES ontology group is introduced for this purpose. The development continued
with multi activity management elements required for managing multiple concur-
rently implemented care pathways, involving elements required to handle conflicts
and/or optimise care. Thus, the MAN ontology group is introduced. Lastly, the
development of metadata for representing patient-specific information is performed.
The PCP ontology group is introduced accordingly.

While developing the MuCRL ontology, the class taxonomy in the form of
class-subsumption (subClassOf) relation (e.g., isA), is created. Afterwards, the prop-
erties of classes, axioms and restrictions (facets) on them, are defined. In the follow-
ing sections, all the classes belonging to all ontology groups and associated properties
are presented. In Figure all the classes (C) of the ontology are presented. The
lists of object and data properties of MuCRL are also presented in Appendix [A]
In the text, selected axioms and facets (e.g., exactly, some, min, max) can only be
shown due to the space limitation. However, the full lists of classes, and their prop-
erties (R), the instances (Z), the axioms (A) and associated restrictions are available
in the ontology file presented in Section

To illustrate, a portion of data and object properties with associated domain
and range information is presented in Table Class names, in the ontology,
are defined with a sans serif font (e.g., Decision), object and data property names
are defined with lower italic case letters (e.g., hasIncomingTransition), quotation
marks are used to represent the data property values (e.g., "2"), < --- > is used to
represent class instances (e.g., <CIGDBDA1> which denotes the first instance of the
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Guideline ServiceDeployment TemporalConstraint

v Carer v Delay
ClinicalGuidance Duration
ClinicalPracticeGuideline Periodicity
PatientAdmission TemporalDistance
PatientGroup TemporalLimit
PointOfCare TemporalUnit
SpecialtyArea ClinicalActivity

HealthCareService v DataQuery
v CareElement Decision
v Examination EndOfCare
OtherCareElement ExaminationAction
PharmaceuticalCareElement OtherAction
Procedure PatientEncounter
CareWorkflowConstruct PharmaceuticalAction
v ActivityExecution Status ProceduralAction
v ActivityConcurrency Status ClinicalFinding
ActivityLifecycleStatus Disorder
Activity Synchronisation Status v CauseOfDisorder
ActivityTime Status v Adverselnteraction
Activity Transition AdverselnteractionType
v TransitionAssigned OtherCauseOfDisorder
TransitionCondition DisorderDetail
TransitionConditionAssigned DisorderType
TransitionConditionList Result
TransitienConditionType MultiActivityManagement
TransitionLabel v ConcurrencyConstraint
OperationType ModificationConstraint
v ComparisonOperation TimeBasedOptimisationConstraint
RestrictionOperation TimeBased SynchronisationConstraint
Parameter PatientCarePersonalisation
TemporalConstraint v Patient
continued. PatientDetail
PatientEncounterDetail
PatientHealth State

PatientHealth StateChange

Figure 3.2: Class hierarchy of MuCRL ontology

Decision class of diabetes guideline and <PECAPP0001..>> represents an instance of
a combined personal care plan (PECAP) of a patient whose patient ID is P0001).
Instances can be knowledge elements of individual guidelines and their in-
terrelations defined in a class or they can be members of enumerated classes such
as the PatientAdmission whose instances are inpatient, and outpatient. In MuCRL,
a meta-ontology is shaped as a graph, where nodes represent instances of classes,
and edges represent the relationships between them. Ontology involves a set of data
types as string, integer, float, double, long, and data properties define the relation-

ship between an instance and data values such as the definition data property whose
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data type is string and its data value is a statement defining the instance. In the

following sections, four ontology groups of MuCRL are presented.

Table 3.2: Excerpt of data and object properties of MuCRL with associated domain
and range values

Property Type Domain Range
examinationName Data Examination xsd:string
modificationTime Data ModificationConstraint xsd:dateTime
reuseCareElementOf  Object TimeBasedOptimisationConst. Clinical Activity
hasTemporalDistance Object TimeBasedSynchronisationConst. TemporalDistance
hasConcurrency Object  Clinical Activity ConcurrencyConst.

3.5.1 Patient Care Personalisation

The Patient Care Personalisation (PCP) group is introduced with the PatientCarePer-
sonalisation, represents information about the patient. PCP has five sub-classes, and
these are used to represent patient-specific information such as demographics, health
state and patient encounter details. PCP is required for patient care personalisation.

To illustrate, the following example is presented:

Example 3.5.1. Patient whose patient ID is <P0001> diagnosed as hypertension
(HTN) six months ago. Today, he presented to the hospital with high blood pressure
again with the signs of chronic heart failure (CHF). His health condition is recorded

as moderate. Then, patient details were updated.

Patient Patient Care
Encounter Personalisation
.

instanceOf hasPatientEncounter .

isA
<P0O001PE1=
instanceOf
isA

hasPatientDetail
<P0001= \

i isA
hasPatientEncounterDetail Pﬂtle!ﬂ
Detail

isA

Patient Health State
Change

instanceOf

hasHealth State
ChangeStatus
<P0001PD1=
Encounter

hasCurrentHealth State
Clinical
Finding
hasPointOfCare Detail

. Patient
Point of instanceOf Admission
Care
<P0001PED1= )
instanceOf
instanceOf
hospital outpatient

Figure 3.3: Illustration of PCP ontology group

instanceOf

moderate

instanceOf

Patient

hasPatientAdmissionType



Figure [3.3]illustrates how PCP ontology can be used for representing patient-

specific information based on Example [3.5.1

Patient-Specific Information

Initially, the Patient is introduced to represent the initial registration details (e.g.,
patient forename, age, birth date, ID, gender, etc.) - patients (e.g., <P0001>) are the
instances of this class. The hasPatientEncounter object property links the instance
of the Patient with the instances of the PatientEncounter (e.g., <P0001PE1>) where
patient encounter details (PatientEncounterDetail ,e.g., <POO01PED1>) are defined.
The hasPatientDetail object property links the instances of the Patient with the
instances of the PatientDetail (e.g., <P0001PD1>) where more information about
the patient can be defined such as weight, occupation, country of residence, lifestyle
information, last update on patient details and many others.

Patient health state must be recorded, because care may need to be managed
based on this information. Accordingly, the PatientHealthState is introduced which
represents current health condition of the patient as an enumerated class. The
instances of this class involve good, moderate, severe and unknownSeverity. Since the
patient health state is dynamic, any health change on the patient must be recorded.
Thus, the PatientHealthStateChange can be used to represent the changes in patient
health state as an enumerated class. The instances of this class involve decreasing,

improving, increasing, stable, worsening and otherChangesInHealthState.

Patient Care Encounter Information

Representation of patient encounter information which can be with a medical centre
or any care point (e.g., home, hospital) is important because this supports recording
patients’ visits to medical centres or other care points.

The PatientEncounterDetail represents the details of the patient encounter.
Thus, the hasPatientAdmissionType object property links the instance of this class
with exactly one instance of the PatientAdmission class where patient admission type
(e.g., inpatient, outpatient) is defined. The hasPointOfCare object property also
links the instance of the PatientEncounterDetail with instances of the PointOfCare to
define the place of care (e.g., hospital, general practice, home). Lastly, the admis-
stonDate data property represents the date of admission to the medical centre or

start of care in any other care points.
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3.5.2 Guideline Service Deployment

The Guideline Service Deployment (GSD) group which, is introduced with the Guide-
lineServiceDeployment, represents individual CPGs and associated care information
in a structured way. The following sub-sections presents the sub-classes, object and
data properties of GSD, see Figure [3.4]

Guideline Service
Deployment
isA

/ A Patient
Admission

isA isA w

Specialty instanceOf
Area
Patient instanceor | outpatient
Group hae -
hasPatientGroup T Carer ——
instanceOf ¥ [— ]
instanceOf
<Carer0001>

isA

-
instanceOf Care isA
hospital

instanceOf

management hasClinicalGuidance

Clinical
Practice
Guideline

ClinicalGui
— instanceOf
Clinical
Finding
<CIGCHF>

Clinical
Guidance

has Associated

Figure 3.4: Illustration of GSD ontology group

Care Information

GSD can be used to represent care information regarding carer (also called as HCP)
details who supply care, involving his/her clinical specialty as well as patient admis-
sion details to the primary and/or secondary care. Accordingly, the Carer represents
information about the responsible HCP of a care step involving carers’ phone num-
ber, forename, surname, ID and email. The main aim of this class is to create a
repository for HCPs, which are then assigned as a performer to a related clinical
activity(s). Each clinical activity must have minimum one carer.

The hasSpecialty object property links the instances of the Carer with the in-
stances of the SpecialtyArea to represent the clinical specialty relating to the disease
in question as an enumerated class. To illustrate, cardiology, diabetologyAndEn-
docrinology, and dentistry are some of the instances of this enumerated class. Based
on the Example the carer (e.g., <Carer0001>) of the considered patient is
cardiologist and his area of specialty is cardiology.

Care points where patients receive care are also represented. To do so, the
PointOfCare is introduced to represent care points as an enumerated class with the

following instances: home, hospital, generalPractice, otherCarePoint. To supply
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care for a patient, his/her type of admission to the medical centre or any other care
point must be recorded. Thus, the PatientAdmission, represents the type of patient
admission as an enumerated class. The instances of this class involve inpatient (i.e.
patient who is admitted by a medical centre and stays overnight for the treatment)
and outpatient (i.e. patient who receives a treatment by a medical centre without
overnight stay).

As a result, information regarding who will perform the care and where it is
performed need to be represented through using the above-mentioned classes before

supplying any care to a patient.

Clinical Practice Guidelines and Their Associations

Clinical practice guidelines are used to support HCPs in their clinical decision-
making phases and supplying care recommendations to a patient based on his/her
health condition(s). Thus, the guideline information must be represented while
developing a care pathway for a patient. Thus, the ClinicalPracticeGuideline is in-
troduced which represents the metadata of guidelines. FEach clinical guideline is
associated with a type of clinical guidance and a target patient group. The hasClin-
icalGuidance object property links the instances of this class with the instances of
the ClinicalGuidance to define related clinical guidance information of guidelines as
an enumerated class. Some of its instances are assessment, diagnosis, prevention,
treatment, and management. The hasPatientGroup object property links instances
of the ClinicalPracticeGuideline with the instances of PatientGroup to define the pa-
tient group where the type of patient group is defined as an enumerated class. The
instances involve adult, child, elderly and infant. For example, an instance of the
ClinicalPracticeGuideline can be <CIGCHF> which represents Chronic Heart Failure
(CHF) in adults: management guideline [226].

3.5.3 Health Care Service

Healthcare Service (HES) group, which is introduced with the HealthCareService,
represents the common guideline knowledge and its associations, and workflow con-
trol mechanisms [57] required for their implementations. The following sub-sections

present the sub-classes, object and data properties of HES.

Clinical Activities and Their Associations

The ClinicalActivity denotes a set of clinical activities that will be performed in a

patient care pathway.
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This class has a set of sub-classes (see Figure , which are as follows:
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Figure 3.5: Illustration of clinical activity class relations of HES ontology group

e The PatientEncounter represents the entry point of care where initial patient-
HCP encounter is realised. HCP defines the initial clinical findings. The
hasPatientEncounterDetail object property links the instances of the Patien-
tEncounter class with the PatientEncounterDetail to define patient-specific in-
formation such as patient admission type and admission date, and hasClini-
calFinding object property links the PatientEncounter with the ClinicalFinding
to define patient-specific consultation notes such as clinical findings about the
disorder of the patient, current health state and associated CPG with the dis-

ease if the disorder is diagnosed;

e The Decision represents minimum two care options based on a set of conditions.
For instance, "existence of fluid overload?" has two conditional options as
yes/no, but some decisions can involve alternative conditional options where

more than two conditions may involve;
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e The DataQuery represents data query actions such as whether or not the lab test
ready or patient information (e.g., existing drug use). The hasQueryParameter
object property links the instances of the DataQuery with the instances of the
Parameter to define the query parameters. For example, "is the medication x

in use?" or "lab test result is ready?";

e The PharmaceuticalAction represents pharmaceutical recommendation actions.
Each pharmaceutical action must have one pharmaceutical care element (Pharm
aceuticalCareElement) where the details of the medication are defined (e.g., ac-
tive ingredient of medication, its dose level, side effects, etc.). For example,
Diuretic therapy is a pharmaceutical action and its pharmaceutical recommen-
dation is the Diuretic product. The carer prescribes this medication to Patient

<P0001> once a day for 3 months;

e The ExaminationAction represents examination actions such as lab test requests,
or blood pressure measurement. Each examination action must have one ex-
amination care element (Examination) to define the details of the examination
(e.g., blood pressure measurement). The hasResult object property links in-
stances of the ExaminationAction with instances of the Result to represent the

values of the requested examination results;

e The ProceduralAction represents procedural actions in a care pathway such as
diagnostic procedure, laboratory procedure (e.g., analysis of lab results), or

follow-up;

e The OtherAction represents clinical actions and associated details that cannot
be expressed with the other clinical activities. This class is designed to capture

knowledge which was not covered by other classes of the clinical activities;

e The EndOfCare represents the end of care/conclusion.

These activities have common data and object properties which are as follows:

definition. Each clinical activity must have an appropriate definition such as "Med-
ication recommendation is made to manage high blood pressure level of the patient".
The definition data property is a common property that each element of the ontology

has a definition.

activity transitions. Each clinical activity needs a transition (namely, an arc) to

follow the next clinical activity. Thus, the hasIncomingTransition object property to
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represent incoming activity transitions and the hasOutgoing Transition object prop-
erty to represent outgoing activity transitions are used. These object properties link
the instances of the clinical activities with instances of the TransitionAssigned to rep-
resent the transition information (e.g., transition label, source and target activities)

between clinical activities.

carer. Fach clinical activity must have minimum one HCP who performs the clinical

activity.

time. Each activity must have two associated time statuses (TimeStatus)( e.g., ac-
tual /expected start or end time), and related activity start and end time information
which can be defined as the activityStartTime and the activityEndTime data prop-

erties.

temporal constraints. Each clinical activity is associated with a set of temporal
constraints such as delay, periodicity, and duration. These are extensively defined

under the TemporalConstraint.

identification codes. Identification codes of the clinical activities and interrelations
are defined for each clinical activity. To do so, the clinicallD data property, which
represents the codes of clinical terminology standards (e.g., SNOMED-CT, ICD, or
LOINC), is used to improve semantic interoperability and maintaining consistency
in the instantiation phase. This is crucial for eliminating care duplications, which
can be possible by detecting identical care recommendations with their clinical IDs.
For instance, the data value "717854002" represents the Aspirin therapy associated
with a pharmaceutical action. The sources of codes can also be defined using the
sourceOfClinicalID data property as "SNOMED-CT (STC)" or other sources.

execution status. Each clinical activity has exactly one activity lifecycle status,
e.g., done, pending, etc., at a time. hasActivityLifecycleStatus object property links
each clinical activity with the ActivityLifecycleStatus.

multi-activity management. When multiple clinical activities are concurrently
implemented, they may cause care conflicts or duplications. Thus, clinical activities
may need to be modified by the HCP to avoid them. Accordingly, activities may
need to be synchronised for merging at the following common clinical activity or may

need to be optimised to avoid care duplications. Accordingly, the following object
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properties of clinical activities are presented to handle these issues. These properties
are linked with the MultiActivityManagegement ontology group which is extensively
discussed in Section [3.5.4¢

e needsSynchronisation object property links the instances of clinical activities
with the instances of TimeBasedSynchronisationConstraint to handle synchroni-

sation needed clinical activities to avoid care duplications;

e needsOptimisation object property links the instances of clinical activities with
the instances of the TimeBasedOptimisationConstraint to perform required care
optimisations such as reusing a clinical activity instead of performing a new

one if it is performed in a reasonable time period;

e needsModification object property links the instances of clinical activities with
instances of the ModificationConstraint to perform required care modifications
to replace existing care element (e.g., drug) of a clinical activity with its safe
alternative or modify its time element (e.g., starting time) to avoid potential

conflicts and /or duplications;

e hasConcurrency object property links the instances of clinical activities with
the instances of the ConcurrencyConstraint to define concurrency relations be-

tween clinical activity pairs.

conditions. Each clinical activity is associated with a set of conditions (e.g., ac-
tivating, precondition, outcome or end) which must be satisfied to follow the next
clinical activity. The hasAssignedCondition object property links the instances of
clinical activities with the instances of the TransitionConditionAssigned to represent

related transition condition details and associated restrictions.

Care Elements of Clinical Activities

The CareElement represents care elements of examination, pharmaceutical, procedu-
ral and other actions. These involve; (i) the PharmaceuticalCareElement represents
details of the pharmaceutical actions and related information such as pharmaceuti-
cal element name, its definition, active ingredient, dose, application dose, and cost
information. The type of drug therapy can also be defined with the firstLine Therapy
(i.e. initial treatment given for a disease) whose value can be "true" or "false" or
other type of therapies (e.g., secondary) can be defined with the otherTypeOfTher-
apy data property whose data type is string. The possibleSideEffect data property
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can also be used to state the possible side effects of a medication; (ii) the Examina-
tion represents examination details such as examination name (e.g., CT-scan, blood
pressure measurement, etc.), examination definition and associated cost information;
(iii) the Procedure represents the details of the procedural actions (e.g., diagnostic,
follow-up, etc.); and lastly (iv) the OtherCareElement represents care elements which
cannot be expressed with the aforementioned care elements. For instance, this class
can be used to represent the instances of non-pharmaceutical care recommendation

elements (e.g., lifestyle or diet advices).

Clinical Findings and Associations

The ClinicalFinding is introduced to represent patient-specific consultation notes (e.g.,
the current health state, health state changes). The hasDisorderDetail object prop-
erty links the instances of this class with the instances of the DisorderDetail to define
the disorder details (e.g., diagnosis of cancer). The hasCurrentHealthState and the
hasHealthState ChangeStatus object properties link the ClinicalFinding with the Pa-
tientHealthState and the PatientHealthStateChange to define current health state of
the patient and changes in his/her health condition, respectively. Lastly, the hasAs-
sociatedClinical Guideline object property links the instances of the ClinicalFinding
with the instances of the ClinicalPracticeGuideline where guideline (e.g., author, ver-
sion, name of the guideline, etc.) and clinical guidance (e.g., management , diagnosis,

etc.) information are defined.

Disorders and Their Causations

The Disorder represents patient disorder information based on the findings on his/her
health condition(s) involving disorder types (e.g., disease, sign, symptom, allergic
condition, injury, pathologic function and other disorder types) and (potential) dis-

order causes. This class has three sub-classes as:

e The DisorderDetail represents information related with the possible and/or ex-
isting disorders. The hasDisorderType object property links the instances of
this class with the instances of the DisorderType enumerated class (e.g., sign,

allergicCondition, symptom).

e The CauseOfDisorder represents definitions of causes of disorders involving Ad-
verselnteraction, AdverselnteractionType and OtherCauseOfDisorder classes. The
cause of disorder, induced by adverse interactions can be defined, as follows:

18A CauseOfDisorder object property links the instances of the DisorderDetail to
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instances of the Adverselnteraction. The Adverselnteraction defines the cause of
disorder if it is induced by adverse interactions of care actions or patient allergy.
The AdverselnteractionType enumerated class represents the type of adverse in-
teractions as an enumerated class whose instances are timing, drugDisease,
drugDrug, drugFood, drugPatient, and otherInteraction. The other causes of
disorder can be defined as follows: the hasOtherCause object property links
the instances of the DisorderDetail to the instances of the OtherCauseOfDisorder
to define the causes of disorder which are different from adverse interactions

where the details of the cause of disorder are defined.

e The DisorderType represents the type of disorders. Some of the instances of
this class involve allergicCondition, disease, adverselnteraction, sign, symptom,
and otherDisorder. Disorder can have some causes, which can be associated

with adverse interactions (also called conflicts) or some other causes.

Handling Results of Clinical Activities

The Result represents the results (e.g., blood pressure level) of a clinical activity,
such as results of examinations, measurements and/or any other clinical observa-
tions. The hasResultParameter object property links this class to the instances
of the Parameter class to define result parameters (e.g., a systolic blood pressure
measurement) and associated values (i.e. results). The booleanResult (data type:
boolean), the qualitativeResult (data type: string) and the quantitiativeResult (data
type: string) are data properties of this class to represent result types. To illustrate,
a value of the quantitiativeResult can be "systolic blood pressure result" and its as-
sociated value (e.g., "120.0") that needs to be defined under the Parameter using the

parameterNumeric Value data property whose data type is float.

Care Workflow Constructs

The CareWorkflowConstruct represents the elements required to construct a care

workflow. This involves the representation of;
e Parameters

The Parameter represents the data query, or result parameters (e.g., lab test results).
The data properties of this class involve the parameterName and the parameter-
Definition to define parameters (e.g., blood pressure level). The parameterNumer-
icValue, the parameterOrdinal Value, and the parameterTextValue represent the pa-

rameter value based on its parameter type. For instance, "140.0" can be a value
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of the parameterNumeric Value data property. The scale TypeNumeric data property
represents a boolean parameter type as "true" if the parameter value is numeric,
otherwise, "false". Lastly, unit data property represents the unit of the parameter

as string such as "mmHg".
e Temporal Constraints

The TemporalConstraint represents a set, of temporal constraints involving exact time,
and interval time periods [min, max| [50, 121] in float data type regarding the ap-
plication of a clinical activity. Accordingly, (i) the Duration represents the duration
of a clinical activity (e.g., 3 months); (ii) the Periodicity represents the periodicity of
an activity with its associated frequency (cycle) (e.g., every day 2 times); (iii) the
TemporalLimit represents allowed time limit -deadline- of performing an activity. In
this class, exact, minimum and maximum temporal limits as well as deadline of a
clinical activity as a dateTime data type (e.g., "20181005T12:00:00") can be defined;
(iv) the TemporalDistance represents time required to reach a time point which can
be required to synchronise multiple clinical activities or reuse the result of a clinical
activity; and (v) the TemporalWindow represents the allowed time limit that a clin-
ical activity’s care element can be reused by other clinical activities or to use the
associated information for clinical decision-making. The hasTemporalUnit object
property links instances of the aforementioned temporal constraints with (vi) the
TemporalUnit which represents the time units as an enumerated class. The instances

of this class involve day, hour, minute, month, second, week and year.
e Activity Transitions and Operations

The Activity Transition represents a set of transition types, transition labels (i.e. name
of the transition) and transition conditions that need to be satisfied in order to
activate the transitions between clinical activities. There are six sub-classes of this
class (see Figure [3.6), as discussed below.

The TransitionAssigned represents the assigned transitions between guideline
activities involving a transition label. This class is required to sequence clinical ac-
tivities. The hasSourceActivity and the hasTargetActivity object properties link the
TransitionAssigned with the ClinicalActivity to represent source and target activi-
ties of transitions, respectively. The hasTransitionLabel object property links the
TransitionAssigned with the TransitionLabel enumerated class to assign a label.

The OperationType represents a set of operations for transition condition han-
dling under three classes as (i) the ComparisonOperation, represents a set of compar-
ison operations as an enumerated class (e.g., differentFrom, equalTo, greaterOrE-

qualThan, lessThan, notEqualTo, etc.); and (ii) the RestrictionOperation, represents
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a set of restriction operations as an enumerated class. The instances of this class
involve all, any, maximum and minimum. This class is designed to define restrictions
on conditions of transitions.

The TransitionCondition represents required conditions which need to be sat-
isfied to initialise a clinical activity. The data properties qualititative Value (e.g.,
"140.0", data type: float) and quantitativeValue (e.g., "true", data type: string)
represents the value of the condition parameter, which represented with condition-
Parameter (e.g., "the presence of depression", data type: string) data property
and unit data property represents the unit of the condition parameter value (e.g.,
"mmHg", data type: string). The hasComparisonOperation object property links
the TransitionCondition with the ComparisonOperation to define associated compari-
son operation (e.g., equalTo) for condition parameter. This can be interpreted as,
e.g., "the presence of depression" equalTo "true".

The TransitionConditionAssigned represents conditions which must be satis-
fied to perform the transitions between clinical activities. This class involves a list of
transition conditions. Conditions are represented as a list because the transition of a
clinical activity can be associated with multiple conditions. For this reason, the has-

ConditionList object property is introduced to link the TransitionConditionAssigned
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with the TransitionConditionList for associating these list of conditions. Condition
list can involve one condition or multiple conditions. Yet, all the conditions at
the same list must have same condition type. Thus, the hasConditionType object
property links the TransitionConditionAssigned with the TransitionConditionType enu-
merated class to represent the type of transition condition. As defined above, a
clinical activity can be associated with one condition or multiple conditions, and all
of these conditions or some of them must be satisfied for the activation of the tran-
sition. For this reason, restrictions on conditions must be defined. Accordingly, the
hasRestriction object property to links the TransitionConditionAssigned with the Re-
strictionOperation to define restrictions (e.g., minimum, all, etc.) on condition lists.
The hasRestriction object property and the restriction Value data property are used
in a similar way with the TransitionConditionAssigned. The restriction Value data
property represents the number of condition lists (e.g., "4") that must be satisfied.
To illustrate, minimum 2 out of 4 transition condition list or all of them must be
satisfied.

The TransitionConditionList represents a bag of conditions which needs to be
satisfied to initialise the transition. Each instance of the class involves one or more
conditions from the TransitionCondition. Thus, hasCondition object property links
the TransitionConditionList to get these conditions. The numberOfCondition data
property represents the number of conditions (e.g., "1" or "6") whose data type is
integer. The isConditionMet data property represents the status of assigned transi-
tion conditions with boolean data type. The value of this property can be "true", if
conditions are satisfied. Otherwise, "false" that refers to required conditions for the
transition are not satisfied.

The TransitionCondition Type represents the type of transition conditions which
need to be satisfied as an enumerated class. The instance of this class involves ac-
tivatingCondition, preCondition, outcomeCondition and endCondition. The defini-
tions of these condition types are: (i) activatingCondition is a required condition to
activate a clinical activity which associated with conditional options of decision ac-
tivities. For instance, "(blood pressure level > 12.0) AND (diabetes exists = yes)" if
these two activating conditions of a decision activity are satisfied, then, say, a phar-
maceutical action can be recommended; (ii) preCondition is a condition associated
with data query activities. For instance, queryParameter = "lab test result ready?"
can be queried. If the (conditionParameter = "lab test result ready") AND (qualita-
tive Value = "false") ; then the precondition of the transition is not satisfied, and the
next activity cannot be initialised; (iii) outcomeCondition is a condition to represent

patient health outcomes, or the progression of the disease, such as (conditionParam-
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eter = "tumor size") AND (qualitative Value = "increased"); (iv) endCondition is a
condition represents end condition of a clinical activity. For instance, if (condition-
Parameter = "side effects occurred") AND (qualitative Value = "yes"), then stop
recommendation of the given drug.

The TransitionLabel represents the label of the transition which connects clin-
ical activities to each other as an enumerated class. The instances of this class

involve:

— StartingActivity represents the label of a transition associated with the starting

activity;
— FollowingActivity represents the label of a transition to follow the next activity;

— AlternativeActivity represents the label of a transition associated with alter-

native clinical activities that can be preferred by a HCP;

— ConditionalOption represents the label of a transition from a decision activity
to the next clinical activities if they satisfy required conditions. Each decision

must have two conditional options;

— AlternativeConditionalOption represents the label of a transition from a deci-
sion activity to the next clinical activities. The difference between this type
from the previous transition label is that AlternativeConditionalOption repre-
sents alternative conditional care options which can be taken into account by

HCPs (i.e. n-to-m mappings);

— Split represents the label of a transition regarding divergence from a single

activity to multiple activities (i.e. 1-to-n mappings);

— isMerged At represents the label of a transition that are merged at the subse-

quent clinical activity (i.e. n-to-1 mapping).
e Activity Execution Status

The ActivityExecutionStatus represents a set of activity execution states (also called
status) under four group as follows.

The ActivityLifecycleStatus represents the instances of activity lifecycle sta-
tuses as an enumerated class. The instances of this class involve (i) active — rep-
resents up-to-date clinical activities and they are ready for execution; (ii) passive —
represents clinical activities which are no longer in use; (iii) started — represents ex-

ecution of clinical activities that are in progress; (iv) cancelled — represents aborted
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clinical activities and execution of these activities are terminated; (v) pending —
represents clinical activities that waits information to continue their executions; and
(vi) done — represents completion of the clinical activity execution. Figure shows

the activity execution statuses and their transitions.
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Figure 3.7: Activity execution statuses and their transitions

The ActivityConcurrencyStatus is an enumerated class which represents the
instances of concurrency statuses of multiple clinical activities that are implemented
in parallel. The instances of this class involve: (i) concurrencyStarted — represents
clinical activities that have concurrent executions; (ii) concurrencyCompleted — rep-
resents the concurrency relations of activities as completed — if concurrent execution
of the activities completed; and (iii) concurrencyDiscarded — represents cancellation
of concurrent execution of activities. This class is used as part of managing con-
currency relations of clinical activities of multiple concurrently implemented CIGs
to avoid care conflicts. In Figure the activity concurrency statuses and their
transitions are presented.

The ActivitySynchronisationStatus is an enumerated class that represents in-
stances of synchronisation statuses of multiple clinical activities at the designated
care point. When activities reach this point, then they can be either merged or use
results of each other and follow their respective care paths. The instances of this
class involve: (i) toBeSynchronised — represents synchronisation required activities
that need to reach a synchronisation point to merge or use results of other clinical
activity, and this state represents the activity has not reached the synchronisation
point yet; (ii) synchronisationPointReached — represents activities which reached to

the synchronisation care point; and (iii) synchronisationDiscarded — represents activ-
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ities whose synchronisations are cancelled. This class is designed as part of handling
multiple clinical activities to avoid care duplications. In Figure the activity

synchronisation statuses and their transitions are presented.
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Figure 3.9: Activity synchronisation statuses and their transitions

The Activity TimeStatus represents time status of a clinical activity as an enu-
merated class. The instances of this class involve (i) actualStartTime; (ii) actual-
EndTime; (iii) expectedStartTime; and (iv) expectedEndTime. This class supports
activity sequencing by providing actual and estimated temporal knowledge. To han-
dle temporal uncertainty, a similar approach with Duftschmid et al. [50] is adopted.
Time intervals as [min, max| are defined in temporal constraints (TemporalConstraints).
Activity start/end time of clinical activities are represented as actual if they are per-
formed. Otherwise, expected (estimated) start and end time of clinical activities can

be supplied to support activity sequencing.

3.5.4 Multi-Activity Management

The Multi-Activity maNagement (MAN) group is introduced with the MultiActiv-
ityManagement ontology group (see Figure [3.10|), which has four sub-classes, and

designed to: (i) facilitate concurrent implementation of the same or (multiple) dif-
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ferent guideline activities; (ii) combine activities of parallel guidelines that may in-
volve delays and need synchronisation; (iii) handle reconciliation of activities (e.g.,
a recommendation to avoid a detected drug-drug interaction); and (iv) optimise the

time and resource use. In the following sections, these are extensively presented.
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Figure 3.10: Illustration of MAN ontology group and their interrelations

Managing Multiple Clinical Activity Concurrency Relations

Clinical activities can be executed in order, concurrently (in parallel), unordered or
periodically. Multiple activities can be merged at the chosen (synchronisation) care
point. Figure (1-5) presents a number of concurrency relations that result from
parallel execution of guidelines.

The ConcurrencyConstraint defines the concurrently implemented two or more
activities of (multiple) CPGs that can be merged, when they reach their synchroni-
sation point (i.e. specific time point -deadline- defined for a set of clinical activities)
or follow their respective care paths. However, by means of illustration in Figure
[3-11] the relations between only two activities are shown, since the number of order-

ing relations exponentially increases when the number of activities increases. Here,
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Figure 3.11: Types of temporal relations [227] between guideline activities

t; = e; — s; and t; = e; — s; denote time intervals of implementing the activity ¢
and activity j, respectively, where ¢,j = 1,2,..., N. (s;, €;) and (s, €;) denote the
start and end time of these activities. Concurrency constraint can be defined with

the following axioms:

ConcurrencyConstraint T MultiActivityManagement r
=1 hasActivityConcurrencyStatus.ActivityConcurrency- I
Status {concurrencyStarted,
concurrencyCompleted, concurrencyDiscarded}
=1 concurrencyStartTime.dateTime m

=1 concurrencyEndTime.dateTime r

Concurrency constraints need to be used when concurrency between clinical activities

are detected, where time information regarding the concurrency like the concurren-
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cyStartTime and the concurrencyEndTime data properties can be defined; and based
on the realisation of the concurrency, associated concurrency status can be defined
and updated using the hasActivityConcurrencyStatus object property which links
the instances of this class with exactly one instance of the ActivityConcurrenyStatus
to define the concurrency status (e.g., concurrencyStarted, concurrencyCompleted
and concurrecyDiscarded). To illustrate concurrency management, the following

example is provided, as follows:

Example 3.5.2. A multimorbid patient whose patient ID is <P0001> has initially
diagnosed with Diabetes (DB). Afterwards, he diagnosed with Hypertension (HTN),
and Chronic Heart Failure (CHF), respectively.

Based on Example |3.5.2 a patient has both HI'N and DB diseases. Thus,
some of their clinical actions such as pharmaceutical actions have concurrency rela-

tions which need to be recorded (see Figure [3.12)).
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Figure 3.12: Example of concurrency constraint of MAN ontology group

For example, <PECAPP0001CC1> represents the instance of the Concur-
rencyConstraint added to the personal care plan to manage concurrency relations
between pharmaceutical actions of DB guideline <CIGDBPH1> and HTN guide-
line <CIGHTNPH1> where the hasConcurrency object property links these actions
(e.g., initiating Metformin for DB and ACEi for HTN). Under <PECAPP0001CC1>,
concurrencyStartTime (e.g., "20190612100000") and concurrencyEndTime can be

recorded as well as activity concurrency status such as concurrencyStarted.
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Time-based Synchronisation of Multiple Clinical Activities

The TimeBasedSynchronisationConstraint defines the required expressions to synchro-
nise multiple guideline activities that can have different ordering relations and/or
processing times. A time-based synchronisation constraint can be defined with the

following axioms:

TimeBasedSynchronisation MultiActivityManagement r

C
Constraint <1 hasTemporalDistance.TemporalDistance M
=1 hasActivitySynchronisationStatus.
ActivitySynchronisationStatus {synchronisation-

Discarded, synchronisationPointReached,

toBeSynchronised }
=1 withinTemporalLimit.boolean r
=1 hasTemporalLimit. TemporalLimit n
=1 syncLastUpdate.dateTime r

This class can be used to represent activities that wait other activities in a given
time period for merging or follow their own paths. Temporal distances can be defined
to represent clinical activities that have (exact or approximate) time to reach the
synchronisation care point where the hasTemporalDistance object property links
maximum one instance of this class to with the instances of the TemporalDistance.

Temporal limits can be defined to set a deadline for a clinical activity to
synchronise where the hasTemporalLimit object property links the instances of this
class with exactly one instance of the TemporalLimit. If temporal limits are vio-
lated, then synchronisation of activities will be discarded. This specification can be
made through the withinTemporalLimit data property where its realisation can be
stated with the following data values "true" or "false". Accordingly, activity syn-
chronisation status needs to be updated (e.g., synchronisationDiscarded) where the
hasActivitySynchronisationStatus object property links the instances of the Time-
BasedSynchronisationConstraint with exactly one instance of the ActivitySynchronisa-
tionStatus for this purpose. The syncLastUpdate data property represents the last
time of recording the temporal information regarding the synchronisation of the
selected activity.

To illustrate this constraint (see, Figure , the following example is pre-
sented. Let <PECAPP0001TBS1> "Synchronisation of CHF in diuretic prescrip-
tion" and <PECAPP0001TBS2> "Synchronisation of HTN in diuretic prescription"

are the instances of the TimeBasedSynchronisationConstraint, respectively. The CHF
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pharmaceutical action <CIGCHFPH1> "Initiate diuretic" and the HTN pharma-
ceutical action <CIGHTNPH2> "Add diuretic" are linked with the needsSynchro-
nisation object property to these instances to perform synchronisation on a time
point.

Under the time-based synchronisation constraint, activity synchronisation
status of each activity is recorded, which has link with the hasActivitySynchroni-
sationStatus object property to the ActivitySynchronisationStatus to assign one in-
stance (e.g., toBeSynchronised, synchronisationDiscarded or synchronisationCom-
pleted) from this class based on the status of synchronisation. Once activities are
synchronised on a time point, then they can be merged in their subsequent ac-
tions or follow their own care paths. To do so, synchronisation status of these
activities must be synchronisationPointReached. In the given example, the activ-
ity synchronisation status of <CIGCHFPH1> is toBeSynchronised which represents
synchronisation in progress, and the synchronisation status of <CIGHTNPH2> is
synchronisationPointReached which represents this activity ready for merging when
the <CIGCHFPH1> reaches its time point. Thus, more than two activities can be
synchronised and merged with the defined semantics.

Synchronisation of activities is subject to temporal limits (i.e. maximum

waiting time such as 3 hours to initiate the subsequent activity) of each activ-
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ity. <PECAPP0001TL1> and <PECAPPO0001TL2> represent the instances of the
TemporalLimit where temporal limits of each activity are defined. Each activity has
also associated temporal distances which represent remaining time to reach a time
point. Thus, <PECAPP0001TD1> and <PECAPP0001TD2> are the instances of

the TemporalDistance where temporal distances of each activity are defined.

Time-based Optimisation of Clinical Activities and/or Their Care Ele-

ments

While maintaining patient-safety, it is imperative to supply efficient care and use
health resources accordingly. This is called “care optimisation”, in this context.
Thus, the TimeBasedOptimisationConstraint can be used to manage identical or simi-
lar clinical activities and their related care elements (e.g., lab test result), offered by
different guidelines, to avoid unnecessary care repetitions. These can be retrieved
using clinical IDs, time information, associated life cycle statuses and type of clin-
ical activity. Time-based optimisation constraint can be defined with the following

axioms:

TimeBasedOptimisationConstraint C  MultiActivityManagement M
>1  (((reuseResult.Result) Mn
<1 (reuseResultOf.ClinicalActivity)) U
<1 ((reuseCareElement.CareElement) n
<1 (reuseCareElementOf.ClinicalActivity)) N
<1 canBeReusedFor.TemporalWindow r
=1 needMoreAction.boolean M
<1 withinTemporalWindow.boolean M

The TimeBasedOptimisationConstraint is designed to eliminate care duplications and
related unwanted outcomes. For instance, to avoid care repetitions, results of clinical
activities can be reused, if they are performed in a reasonable time window (e.g.,
valid time period of a test for reuse, 1 week) [50]. Thus, the reuseCareElement object
property links the instances of the TimeBasedOptimisationConstraint with maximum
one instance of the CareElement, in order to define the care element which can be
reused. Similarly, the reuseCareElementOf object property links the instances of the
TimeBasedOptimisationConstraint with maximum one instance of the ClinicalActivity
to define the clinical activity whose care element is reused. If more action is needed,
then the needMoreAction data property must be defined with "true" or "false" data
values based on the need of more action. The withinTemporal Window data property

can be used to define whether or not reusing of a care element within the given
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acceptable time window (TemporalWindow) whose data values are "true" or "false".
This class aims to resolve internal interactions (e.g., repetitions because of the same
action) [I87]. When the reuse period is completed due to the reused activity ending
for treating a disorder, new actions related with the clinical activity such as duration,
periodicity and frequency, can be added. This is achieved with the needMoreAction

data property with its value set as "true".
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Figure 3.14: Example of time-based optimisation constraint of MAN ontology group

To illustrate this constraint (e.g., <PECAPP0001TOC1>) (see Figure
lets consider the examination action of a CHF guideline <CIGCHFEA4> "Blood
test request” which was also recommended before by the HTN guideline <CIGHT-
NEA4>. Because the lab result of blood test (<CIGHTNRS4>) is still within its
acceptable time window (<CIGHTNTW3>) of reuse, then this result can be reused
by <CIGCHFEA4>. Reuse is not only performed on lab results but also on medi-

cations.

Modification of Clinical Activities

The concurrent implementation of multiple CPGs, along with patient data, may lead
to conflicts in care. These can be between drug-drug, drug-disease, or drug-patient
(e.g., allergic condition) which are crucial to be avoided in order to maintain patient
safety. To handle such conflicts, the ModificationConstraint is introduced to modify

(i.e. replace or update) clinical activities and their associated care elements such
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as replacing a pharmaceutical recommendation that may reduce the efficacy of the
other medication in use. A modification constraint can be defined with the following

axioms:

ModificationConstraint = MultiActivityManagement r

<1 descriptionOfModification.string r

<1 ((hasCareElementModification.CareElement) u
(hasCareElementReplacementWith.CareElement))

=1 modificationTime.dateTime r

With this class, the definitions of care element or clinical activity modifications
which represent the reasons why the modification is performed can be defined. The
descriptionOfModification data property is presented for this purpose.

Care elements such as drug recommendations, examinations or diet recom-
mendations can be replaced or modified. Thus, the hasCareElementReplacemen-
tWith object property is introduced to link the instances of the ModificationCon-
straint with maximum one instance of the CareElement to represent the new care
element which will be used instead of the existing one. Likewise, the hasCareFEle-
mentModification object property is introduced to link the instances of the Modifi-
cationConstraint with the maximum one instance of the CareElement to update (e.g.,
drug dose level) the modification needed care element. Lastly, modification time
must be stated through using the modificationTime data property.

To illustrate this constraint (see Figure, lets consider the pharmaceutical
action of a CKD guideline <CIGCKDPH3> "Initiate Warfarin" which has a con-
flicting recommendation with a medication recommended by the DB guideline. For
this reason, this needs to be replaced with its safe alternative. Thus, pharmaceutical
action <CIGCKDPH3> is linked with the object property needsModification with
the instance <PECAPP0002MC1> of ModificationConstraint for performing a med-
ication replacement. <PECAPPO0002PCE2> is the instance of the pharmaceutical
care element which represents information of the new medication (e.g., Rivaroxaban)
defined for the <CIGCKDPH3>.

In Section further information on the above-mentioned examples and

their implementations in a personal care plan are presented.

3.5.5 Care Workflow Patterns

This section aims to show how MuCRL ontology can support workflow control pat-

terns proposed in the existing works [9} 30}, 57].
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Sequencing

Like many TNM-based formalisms (see Section , guideline activities need to
be hierarchically ordered and the type of connections between them should be well
defined. The execution of a guideline starts by triggering the first clinical activity
that may have a set of sub activities, and then continues with the subsequent clinical
activities.

In Figure [3.16] the illustration of an activity sequencing is shown. The tran-
sitions between clinical activities are performed through the instances of the Transi-
tionAssigned.

<CIGDBPH1> and <CIGDBEAT1> represent the instances of pharmaceuti-
cal action (PharmaceuticalAction) and examination action (ExaminationAction) of a
diabetes guideline, respectively. <CIGDBTA1> represents the instance of the Tran-
sitionAssigned which creates connection between clinical activities. The hasTransi-
tionLabel object property links this instance with an instance of the TransitionLabel.
In this example, transition label is FollowingActivity. This means when pharma-
ceutical action is completed, then examination action can be started if there is no
limiting condition.

The source activity of <CIGDBTA3> is <CIGDBPHI1> and its target activ-
ity is <CIGDBEA1>. <CIGDBTA3> is the outgoing transition of <CIGDBPH1>
and the incoming transition of the <CIGDBEA1>. Thus, pharmaceutical action

follows examination action when it is completed if a limiting condition does not
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Figure 3.16: Example of an activity sequencing

exist.

Parallel Routing (Splitting)

Parallel routing represents the divergence of a clinical activity into multiple con-
currently implemented activities. The hasTransitionLabel object property links the

instances of the TransitionAssigned with the Split instance of the TransitionLabel.

Synchronisation

Synchronisation of multiple activities into one activity can be possible when all the
sub-activities are completed. Otherwise, they need to wait the completion of their
sub-activities or perform an exclusive wait where the completion of a sub-activity,
which will end all the sub-activities in the exclusive wait group. In this thesis, the
TimeBasedSynchronisationConstraint is introduced to support the synchronisation of
multiple activities. The needsSynchronisation object property links the instances of
clinical activities (ClinicalActivity) with the instances of the TimeBasedSynchronisation
to handle the synchronisation, see Section [3.5.4] For instance, if the synchronisation
of the selected activity is not within the predefined temporal limit (TemporalLimit)
in reaching the synchronisation care point, the synchronisation of this activity will
be discarded and the value of the withinTemporalLimit data property must be set

as "false".
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Conditional Routing

Conditional routing (also called multi-choice) pattern represents activation of an
activity that associated with multiple care options. One or more of these options
can be selected based on the satisfaction of given conditions related with them.

This pattern is like a parallel split pattern, but it does not force activation
of all activities (e.g., n out of m activities can be activated). The hasAssigned-
Condition object property links the instances of clinical activities with instances of
the TransitionConditionAssigned to define the condition details. hasConditionalOp-
tion is a transition label and instance of the TransitionLabel. This instance is used
to represent outgoing transitions of a decision activity (Decision) that has minimum
two conditional options. Based on the satisfaction of required conditions, care op-
tions can be selected, and therefore, care process can be continued. For example,
<CIGDBDC5> "ACE inhibitors tolerated?" decision activity of a diabetes guide-
line can have two conditional options. If the result of a decision is "no", then
continue with the pharmaceutical action <CIGDBPH3> "Initiate an angiotensin
[I-receptor antagonist for the ACE inhibitor". Otherwise, follow the pharmaceutical
activity <CIGDBPH4> "Start insulin based treatment", see Figure [3.17] Condi-
tional options do not necessarily have binary options. There is no restriction on the
conditional option representations.

The instances of the TransitionConditionAssigned represent the required con-
dition sets and their related condition satisfaction statuses. Restriction operation
(e.g., min, all, any) denotes the restriction value of the number of required condi-
tion groups to be satisfied (e.g., all or minimum 2 conditions). These groups can
have different condition combinations (e.g., and, or, xor) but share the same con-
dition type (e.g., activatingCondition, precondition) when they defined under the
same instance. If conditions are satisfied, then the subsequent activity(s) can be
activated (i.e. If-then-else). This is represented with the isConditionMet data prop-
erty whose value is "true". <CIGDBTCAG6> and <CIGDBTCAT7> represent the
instances of the TransitionConditionAssigned. This is associated with the instances
<CIGDBPH3> and <CIGDNPH4> of the PharmaceuticalAction. To activate the
<CIGDBPH3>, the transition condition <CIGDBTC6> which is in the transition
condition list <CIGDBTCL6> must be satisfied. In this example, only one condi-
tion (conditionParameter= "tolerated") is defined and its values as "true" or "false"
will activate the related pharmaceutical action. The comparison operation (e.g.,
all, minimum) is defined for each assigned condition instance. However, multiple

conditions can also be defined under a single transition condition list.
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Figure 3.17: Example of conditional routing

Merging

Merging of clinical activities can be categorised as simple merging (see Section [2.4.2))

and advanced merging as defined in existing works [9] 30, [57].

e Simple Merge. In simple merging, CIG activities are merged into a single activity
without forcing the synchronisation of them. The main components of this type of
merging are the number of guideline instances (e.g., pharmaceutical action, decision,
etc.) which must be defined under one of the sub-classes of the ClinicalActivity and
their associated transitions (TransitionAssigned) as illustrated above. The transition
label (TransitionLabel) is the isMergedAt. Here, the associated transition conditions
(TransitionConditionAssigned) on each activity need to be satisfied. However, these
are shown in subsequent steps extensively. Simple merging is supported by existing
CIG formalisms but advanced merging patterns are the main limitations found in the
existing literature [30} 57].

e Multi-merge. This pattern represents merging of concurrently implemented multi-

ple activities into a single activity. In this context, to handle this, activities that are
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going to be concurrently implemented and have common subsequent clinical activities,
are initially discovered using a set of similarity elements such as time period, clinical
IDs, type of clinical activities (e.g., pharmaceutical action) and activity execution sta-
tus (e.g., active, done). If common activities are found, then they can be concurrently
executed if they satisfy the required conditions. Handling and recording concurrency
relations between clinical activities are crucial to avoid care conflicts and duplica-
tions. Hence, concurrency constraints (ConcurrencyConstraint) need to be created to
represent concurrency relations between two activities. Once concurrency relations
are managed, then these activities can be merged in the subsequent common clini-
cal activity at the end of the care process, see Section[3.5.4] for the associated example.

e Synchronising Merge. This pattern involves three subtypes of merging as fol-
lows: (i) structured synchronising merge, represents merging of multiple activities
into a single activity; but all the incoming activities must be activated to merge at
the following activity. Activities must wait the completion of the activities to be
merged together. The following patterns are like structured synchronising merge, but
they have differences as in the (ii) local synchronising merge where the decision of
synchronisation of the number of activities depends on the local information (e.g.,
some activities can be cancelled or may exceed their synchronisation time limits, then
these activities’ synchronisations are defined as discarded. This is a real-time activ-
ity implementation information); and in the (iii) general synchronising merge, where
merging can be realised when the incoming activities have been activated or these
activities will be activated in the future when required. A time-based synchronisa-
tion approach is adopted to handle synchronisation relations of multiple activities
(TimeBasedSynchronisationConstraint). Synchronising merge is achieved by combining

the synchronisation and conditional routing patterns.

Iteration

Iteration pattern handles repetitive and cyclic activities until an exit condition (see
TransitionConditionAssigned) is triggered. Clinical activities (ClinicalActivity) such as
pharmaceutical actions involve periodicity (e.g., every day) and frequency (e.g., 2
times) information (Periodicity). However, the executions of clinical activities are

performed in a directed way and do not allow cycles.

Cancellation

Cancellation pattern deals with cancelling activities, cases or multiple instance activ-
ities. In the design-time, activities can be removed from the care plan. For instance,
activities can be defined as passive (ActivityLifecycleStatus). This represents the se-

lected activity is not available or not appropriate for the execution. In the execution-
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time, the instance of the ActivityLifeCycleStatus, which is cancelled, represents the
cancellation of the clinical activity even if its execution has been started. Cancel-
lation decision can be made in any point of the care activities. Multiple instances
of the activities can also be cancelled. For instance, the ActivityConcurrencyStatus
represents the concurrency status of the concurrently implemented activities as an
enumerated class. Its instance concurrencyDiscarded represents the cancellation of
the concurrency relations of the activity with the other concurrently implemented
activities due to the cancellation of itself or the other concurrently implemented ac-
tivity(s). Likewise, the ActivitySynchronisationStatus represents the synchronisation
status of the clinical activities as an enumerated class. Its instance synchronisa-
tionDiscarded represents the cancellation of the synchronisation of the activity due
to the similar reasons of the concurrency relations or the clinical activity is not being

able to reach the synchronisation point within a predetermined time period.

Termination

Termination pattern handles conclusions of the activities by categorising them as im-
plicit and explicit terminations. Implicit termination can be realised if no remaining
activity exists and all of them are successfully completed. When the last clinical ac-
tivity is completed (e.g., done), then its subsequent activity can be represented with
the instance of the EndOfCare to conclude the care pathway. Each care plan must
have one conclusion. However, there can be many conclusions in the care plan that
represents the end of a group of care steps. Explicit termination can be realised even
if there are any remaining activities in the clinical activity group. This type of ter-
mination is represented with endCondition (TransitionConditionType) type involving
the associated transition condition (TransitionConditionAssigned) information. The
termination condition of a clinical activity can be defined as (conditionParameter
= "the health status of a patient is optimised", qualitative Value = "true" (outcome
condition)) AND (conditionParameter = "the hypertension prevention is needed "

= "false " (end condition)).

Trigger

A trigger pattern is required to activate an activity based on the inputs received
from other activities or sources (e.g., HCPs’ inputs). Data query activities can be
achieved if and only if knowledge base involves values of the queried data. This can be
associated with the completion of an examination activity (ExaminationAction) (e.g.,

blood glucose measurement) or input from external environment (e.g., patient). For
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instance, the result of a lab test (e.g., cholesterol level) should be ready for a HCP
who will decide the subsequent care activity according to this result (Result). To
successfully complete data query, queried data should be ready, which is associated
with the satisfaction of pre-condition (TransitionConditionType) (e.g., parameterName
= "is lab test ready?", parameterTextValue = "true") .

Decision activities (Decision) involve a set of conditions which are associated
with a set of conditional care options (see Section. These conditions which are
namely activating conditions (TransitionConditionType) must be satisfied to initialise
the subsequent clinical activity. If a clinical activity is reached to a certain state
(e.g., conditionParameter = "patient has a cancer", qualitative Value = "true"), the
outcome condition (TransitionConditionType) must be defined. This condition also

triggers the activation of the subsequent clinical activity.

3.6 Design-time CIG Implementation Results

This section presents how the ontology encoding (i.e. developing machine-readable
guideline models based on the syntax of a CIG language) is performed, involving
technologies such as ontology editors and tools. While design-time tools supporting
CIG modelling activities, real-time tools support the dynamic application of them.
Here, design-time CIG implementation is presented.

To encode the MuCRL ontology, Protégé 5.2.0 ontology editor [142] that
supports OWL2 format [63] is used since this thesis aims to support sharing of on-
tology and reuse by other users. Protégé is a widely used environment, and easily
understandable by users with diverse backgrounds and does not need advance pro-
gramming skills. Ontologies in Protégé are represented as a hierarchy of classes
and each class is represented with a collection of properties (e.g., data and object),
instances and their relations.

In Figure[3.18] the portion of concepts, object and data properties and defined
instances of MuCRL ontology from the Protégé ontology editor is presented. Fig-
ure shows the pharmaceutical recommendation implementation from a Type-II
diabetes in adults: management guideline [228] in Protégé.

Here, <CIGDBPHI1> represents the first instance of the PharmaceuticalAc-
tion of a diabetes guideline. The definition of this action is "Initiate Metformin".
Its activity lifecycle status is started, therefore, the actualStartTime of this activity
is recorded. Its expectedEndTime (most likely) is also stated for care management.
Each clinical activity has minimum one HCP (Carer) (e.g., <Carer0001>). Clinical

activities can also be associated with clinical standards for standardisation. In this

82



» O GuidelineServiceDeployment
¥ O HealthCareService
¥ CarcElement
) Examination
O OtherCareElement
© PharmaceuticalCareElement
O Procedure
¥ O CareWorkflowConstruct
¥ ActivityExecutionStatus
O ActivityConcurrencyStatus
© ActivityLifecycleStatus
O Acti

v = gwiitopObjectProperty
¥ = GSDObjectProperty
= hasClinicalGuidance
= hasClinicalSpecialty
== hasPatientGroup
== hasSpecialty
¥ = HESObjectProperty
¥ ActivityManagementObjectProperty
== hasConcurrency
== needsModification
= needsOptimisation

) Activity TimeStatus
¥ @ ActivityTransition
© TromsitionAssigned
O TransitionCondition
O TransitionConditionAssigned
) TransitionConditionList
O TronsitionConditionType
) TransitionLabel
» O OperationType
O Parameter
¥ O TemporalConstraint
¥ O ClinicalActivity
O DataQuery
© Decision
© EndOfCare
) ExaminationAction
©) OtherAction
) PatientEncounter
© PharmaceuticalAction
) ProceduralAction
) ClinicalFinding
¥ O Disorder
» 0 CouseOlDisorder

v mm Activity TransitionObjectProperty
== hasIncoming Transition
== hasOutgoing Transition
== hasSourceActivity
= hasTargetActivity
== hasTransitionLabel
¥ == ClinicalActivity ObjectProperty
== hasAssignedCondition
= hasCarer
= hasClinicalFinding
== hasExamination
== hasOtherCareElement
== hasPatientEncounterDetail

¥ mmowl:topDataProperty
= clinicallD
= definition
» = GSDDataProperty
v mmHESDataProperty
¥ CareflementDataProperty
== activelngredient
= applicationDose
== costUnit
= costValue
- dose
= examinationDefinition
= examinationName

* =

& AlternativeConditionalOption
& anatomicalAbnormality

& any

& assessment

& audiology

& cancelled

# cardioloay

& cellorMolecularDysfunction
@ child

4 concurrencyCompleted

& concurrencyDiscarded

ncyStarted
= firstLine Therapy : :n"c""! Option
== otherCar * D
== otherCareElementName @ day
== otherTypeOfTherapy & decreasing
== pharmaElementDefinition & dentistry

= pharmaklementName
= possibleSidek ffect
= procedureDefinition
== procedureName
= clinicalFinding Definition
» mmDisorderDataProperty

™ hasProcedure
== hasQueryParameter
== hasResult
» == ClinicalFindingObjectProperty
== DisorderObjectProperty
™ hasResultParameter

hecked

» == ParameterDataProperty

» == ResultDataProperty

» == TemporalConstraintDataProperty

¥ TransitionConditionDataProperty
== conditionParameter
misConditionMet

» == TemporalC: perty
¥ == TransitionConditionObjectProperty
== hasComparisonOperation

ofCondition
== numberOfConditionList
= qualitativeValue

O DisorderDetail == hasCondition = quantitativeValue & equalTo
) DisorderType == hasConditionList = restrictionValue & evaluation
O Result == hasConditionType - unit & expectedEndTime
¥ O MultiActivityManagement == hasRestriction ¥ mmMANDataProperty & expectedStartTime
) ConcurrencyConstraint ¥ == MANObjectProperty = concurrencyEndTime & FollowingActivi
© ModificationConstraint = canBeReusedFor = concurrencyStartTime gActivity
= hasCareEl = descriptionOfModification ® gastroenterology
er = hasC vith Time & generalPractice
¥ O PatientCarePersonalisation = reuseCareElement = needMoreAction ® good
O patient == reuseCareElementof = syncLastUpdate 4 greaterOrEqualThan
© PatientDetail . reuseResult = withinTemporalLimit 4 greaterThan
O PatientEncounterDetail ™ reuseResultOf == withinTemporalWindow & home
=] Paiienmea E!nstnle . v == pCPObjectProperty v m=pCPDataProperty 4 hospital

# dermotology

# diabetslogyAndEndocrinology
& diagnosis

& dieteticsandNutrition
& differentFrom

& disease

& done

& drugbisease

@ drugbrug

& drugFood

& drugPatient

& elderly

4 endcondition

& endocrinology

Figure 3.18: A screen shot of MuCRL from the Protégé editor

example, SNOMED-CT is used as the sourceOfClinicallD and related clinicallD
of this action is "1097191000000106". Each pharmaceutical action has one phar-
maceutical care element to state medication details (e.g., active ingredient, dose).
<CIGDPPHE1> and <CIGDPPCE1> represents the instance of the Pharmaceuti-
calCareElement of this pharmaceutical action. Duration and periodicity information
are also represented with the <CIGDBDU1> and <CIGDBPD1> instances, respec-

tively.

Each clinical activity in a guideline is connected through transition defini-
tions. For example, <CIGDBTAT7> and <CIGDBTAS8> are the instances of the

TransitionAssigned and represent incoming (source activity) and outgoing (target ac-

tivity) transitions, respectively. Clinical activities can have a set of conditions which
must be satisfied for their activation. <CIGDBTCAG6> is an instance of the Tran-

sitionConditionAssigned. The condition(s) associated with this instance is satisfied,

therefore, pharmaceutical action can be started.

The following section presents transformation from OWL ontology to EMF

Ecore metamodel to support real-time execution of CIGs.
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Figure 3.19: A screen shot of a pharmaceutical action implementation in the Protégé
editor

3.7 Towards Dynamic Multiple CIG Execution

Ontologies have been widely used in software development applications [72] such as
MobiGuide [136], which was developed as a CDSS to manage patients with chronic
health conditions. OWL [63] is one of the widely used ontology language to represent
the knowledge constructs of the domain of interest.

Eclipse Modelling Framework (EMF) [64] is a well-known model management
platform to generate metamodels and Java code with its metamodel, Ecore and its
representation language Emfatic [96]. MuCRL is a CIG language, designed for the
representation of knowledge constructs of CPGs and their associations. MuCRL is
initially implemented using OWL2 ontology in Protégé and then transformed to an
EMF Ecore metamodel in Eclipse. In this section, the need of this transformation

and how this can be performed are presented.

3.7.1 Transformation from OWL Ontology to EMF Models

Ontologies support the development of a domain model by supplying concepts, rela-
tions and constraints with which can be used for modelling the domain. Thus, the
domain model can be created through creating the ontology instances. In the previ-
ous section, MuCRL is introduced with a generic ontology-driven guideline represen-

tation structure. This implementation is performed using the Protégé environment
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which supports the OWL2 format.

This section discusses the transformation from OWL ontology to EMF Ecore
metamodel (see Section and, subsequently, to an EMF model. To execute
knowledge represented with OWL2, Semantic Web Rule Language (SWRL) [184]
which is a rule language for ontology-driven models and has built-in plugin in the
Protégé has been widely used in the existing literature (e.g., [180, 181 [182]). How-
ever, SWRL has several limitations in practice. For instance, SWRL cannot handle
complex rules (which is needed to handle concurrently implemented multiple actions
recommended by multiple guidelines), or modify existing knowledge in an ontology
(e.g., not able to change an instance value) or generate new instances [229, 230]. For
this reason, this transformation is required for the development of the real-time CIG
execution engine to define, modify and manage classes in dynamic behaviour [231].

The transformation from ontology to a domain model is a straightforward
process. To achieve this, the EMF of Eclipse (i.e. its syntax is Emfatic [96]), is
used. This is then transformed into Ecore metamodel and subsequently into an
EMF model. EMF is selected because it supplies the framework to use models effec-
tively based on customisable codes, and therefore, supply flexibility to users in model
management [81) 231]. EMF has direct communications with Epsilon Object Lan-
guage (EOL) [10I] which is an imperative programming language (see Section [2.3.5)).
This enables users to generate, query and update EMF models (i.e.instantiations of
Ecore metamodel) automatically; and Epsilon Validation Language (EVL) [65] to
validate models through customised user messages as well which is a variant of Object
Constraint Language (OCL) [66] (see Section [2.3.6)).

The methodology of the transformation from OWL ontology to EMF models
is as follows. Initially, the consistency and completeness of the OWL ontology are
checked by using the ontology reasoners (e.g., HermiT [92] and FaCT++ [93] which
are discussed in Section . Afterwards, the OWL ontology entities (e.g., classes,
instances, object and data properties) are analysed, and mapped with the elements
of EMF Ecore metamodel (based on Emfatic) such as EClasses, EAttributes, and
EDataTypes. Subsequently, mappings of object properties to topological relation-
ships to EReferences are performed. FEnumerated classes in the OWL ontology
can be mapped with EEnumerations (see Table . Lastly, EMF models are then
created by instantiating the Ecore metamodel. Each class instance is a specific as-
signment of values to the attributes of ¢; € C. These instances are called as object
instances. These object instances can be linked from one to another through links,
namely, references (association instances).

The following data types are used in knowledge model. These are represented
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Table 3.3: Comparison between OWL ontology and Ecore metamodel elements

OWL ontology Ecore metamodel

Class EClass

Object property EReference
Data property EAttribute
Data types EDataType
Enumerations EEnumerations

as EDataType in EMF. These involve Long, Integer, Java.Lang.DateTime (i.e. this
is defined in Protégé as dateTime), String, Boolean, and Float. Instead of using
the DateTime, the data type Long is used in EMF for the executional issues (e.g.,
"20181205123000").

After the Ecore metamodel is transformed into TBox (e.g., isA relation) of
the OWL ontology, the ABox of the ontology which involves the instances of the
Ecore model is created. For example, TBox may involve the Patient class and their
associated properties. The ABox may involve the instances and properties of this
class (e.g., PO001 represents the instance of the patientID data property).

Inheritance (extends) can exist between classes, representing that the in-
herited class possesses all the attributes of its parent class, and its instances are
instances of the predecessor class as well. After the transformation (i.e. performing
direct mappings) from the ontology to its Emfatic version, the Ecore metamodel is
created. The Ecore model can also be serialised in XMI which is a standard of the
Object Management Group to exchange metadata information through XML [85].

Following section presents the definitions and development of CIG models
using the EMF Ecore metamodel. These are then used in the generation of personal

care plans for multimorbid patients.

3.7.2 CIG Models to Generate Personal Care Plans

Instantiations of the EMF Ecore metamodel are defined as EMF models. Thus, CIG
models and Personal Care Plans (PECAP) are EMF models.

CIG model (instance model) is a disease-specific (e.g., diabetes, obesity, atrial
fibrillation, etc.) model, yet each of them uses the same vocabulary. In other words,

the differences between CIG models are the data used in their instantiation phase.
CIG model can be defined as:

Definition 3.7.1. (CIG Model) A CIG model is an instantiation of the metamodel
with guideline-specific information and its interrelations required to establish a care

pathway of a patient.
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The personal care plan can be defined as:

Definition 3.7.2. (Personal Care Plan) Personal care plan (PECAP) is a unified
model which is an instantiation of the metamodel, involves a set of individual CIG
models, where each of them represents a specific disease; multi-activity management
constructs to handle parallel guidelines; patient information and HCP details who

performs the care.

The terms CIGs and CIG models are used interchangeably in the following
sections of the thesis. The use of CIG models and personal care plans are illustrated

extensively in Section [5.3

3.8 Summary

This chapter initially introduces the design, development and design-time imple-
mentation stages of MuCIGREF’s multiple CIG Representation Language, namely,
MuCRL. MuCRL is designed to support; (i) knowledge representation encapsulated
in CPGs as hierarchical skeletal plans; (ii) creation of mappings between individ-
ual CIGs with patient-specific information, health resource information (e.g., drug
information) and HCP information (e.g., carer ID, contact details and care activ-
ity); (iii) creation of mappings between CIGs to establish multimorbidity related
associations between them towards developing a unified personal care plan; and
(iv) managing concurrently implemented CIG actions (e.g., merging, modification,
optimisation, time-based synchronisation) to supply consolidated care recommenda-
tions. The evaluation results and contributions of MuCRL are discussed extensively
in Section [6.3] and Section respectively.

Afterwards, the transformation process of MuCRL’s knowledge representa-
tion, which is in OWL ontology, to EMF models for real-time CIG executions is
presented. The objective of the transformation is to support real-time knowledge
execution where EMF is used instead of the Protégé editor in the following sections.
Mapping process between these two systems are manually performed. Yet, there
are several frameworks, perform these mappings and support transformations be-
tween systems automatically [232]. However, this is not the scope of this thesis. As
a result, ontology transformation into the EMF model is needed for the real-time
CIG execution engine where execution is performed based on a set of algorithms to
combine multiple CIG models while handling their complexities and make automatic

updates over the personal care plan of a patient.
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Chapter 4

Real-Time Multimorbidity Care

Management

4.1 Introduction

This chapter introduces MuCIGREF’s Real-time Multiple CIG Execution Engine,
MuCEE, which is a novel software application built for combining multiple concur-
rently implemented CIGs (models) to generate personal care plans for a multimorbid
patient. MuCEFE’s execution process of each guideline adheres to the semantics of
MuCIGREF’s multiple CIG representation language (MuCRL). MuCEE has three
modules, which are specialised on (i) multiple CIG acquisition; (ii) parallel CIG
execution, and (iii) CIG verification.

Initially, MuCEE’s CIG model acquisition module is introduced to acquire
multiple CIG models (i.e. instantiation of formalised CPGs related with patient
health disorders) at any time point of care from the knowledge base. These are then
unified under a single model, called, Personal Care Plan (PECAP) where updates
on clinical activities are performed to supply consistent and personalised care rec-
ommendations for a multimorbid patient. However, when multiple guidelines are
concurrently applied for the patient, this becomes a challenge due to the need of
managing a set of constraints relating with; for instance, arranging concurrency and
synchronisation relations between clinical activities, recommended by the same or
different guidelines, in order to avoid care conflicts (e.g., adverse drug interactions),
or the need of multi-merging [9, 30] of clinical activities to eliminate care duplica-
tions (e.g., inefficient use of resources). MuCEE’s parallel CIG execution module is
designed to handle these complexities.

Lastly, MuCEFE’s CIG verification module is introduced to perform auto-
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mated verification analysis to detect any missing information, inconsistencies and
errors which may lead to inappropriate care flow. Moreover, verification analysis
is supported with customised user messages explaining how to fix these anomalies.

The major capabilities of MuCEE can be summarised as follows:

e Acquiring multiple CIGs based on the patient health conditions, ensuring that

CIG elements are up to date;

e Combining and managing multiple CIGs on a generated personal care plan

with the aim of treatment personalisation;

e Performing verification to discover inconsistencies, errors or missing values
in CIGs and in personal care plans where multiple CIGs are combined, and

support users to handle such issues.

In the following section, the CIG execution requirements are summarised.
Afterwards, MuCEE’s building method and then its algorithm specification are pre-
sented, respectively. MuCEE implementations on multimorbidity exemplar case

studies and their verification and validation analysis are addressed in Sections
and respectively.

4.2 CIG Execution Requirements

In this section, a synthesis of existing works [15] 19 113 118 127, 130, 133} 134,
149|, [181], 23], 236] which address CIG execution engines (see Section [2.4.1)), is per-
formed. Accordingly, the major requirements of CIG execution systems are identified

as follows:

1. The system must have required functionalities for data pooling, loading and

storing the guidelines in a knowledge base (repository);
2. The system must supply a formal language for CPG encoding;

3. The system should retrieve and handle several CIGs relating to the patient

health conditions from a knowledge base;

4. The system can execute the workflow control patterns (see Section [2.4.2)) in-

volving the patient data;

5. The system must involve execution states (e.g., started, cancelled, done, etc.)

associated with the progress of care;
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6. The system should handle different types of conditions such as preconditions,

post conditions and trigger conditions (see [237]) to manage the patient care;

7. The user can infer information (e.g., following clinical activities, patient med-

ication use, lab results, etc.) through querying from a knowledge base;

8. Each implementations of CIG activities (e.g., HCP decisions, prescriptions and
other clinical actions) must be stored at the knowledge base, in order to record

the care steps;

Further to the above, the following execution requirements to manage multimorbidity

care are identified, and added to the aforementioned list:

9. The system should discover any mapping relations between multiple CIGs, in

order to establish required multimorbidity associations;

10. The system should combine concurrently implemented multiple CIGs and their
associated actions, due to the increasing number of patients’ multimorbid con-

ditions; and supply interactive support for users;

Based on these execution requirements, MuCEE was designed. The following

section presents its execution methodology.

4.3 MuCIGREF’s Real-time Multiple CIG Execution En-
gine (MuCEE) Building Method

This section discusses the development method of the MuCEE. Initially, an exten-
sive literature review is performed, where existing CIG execution engines, and their
scopes are analysed. Then, CIG execution requirements and gaps of the existing
literature in handling multimorbidity care are discovered (see Section . Accord-
ingly, the MuCEE’s architecture is shaped.

To dynamically execute CIGs, MuCRL is implemented using EMF in Eclipse
(see Section [3.7.1)). Afterwards, CIG models are created using instances of guidelines
and their interrelations. Lastly, the personal care plan, where multiple CIG models
are unified, is created. To unify these models under this plan, multiple CIG model
acquisition module, is introduced to transfer guideline activities to personal care plan
(model) based on patient health condition. Then, care steps are step by step executed
over this model. To achieve this, the parallel CIG execution module is introduced.

There CIG models for multimorbidity scenarios are concurrently executed. Lastly,
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the CIG verification module is introduced to check implementation inconsistencies,
missing information and errors. Algorithms of the related modules are presented
in Section [£:4] The implementation of the algorithms is presented in Section [5.3]
while verification and validation results are presented in Section [6.4.3| as part of the
evaluation process.

To handle multimorbidity care, mappings between multiple CIGs must be
created. Thus, knowledge mapping is performed between guideline instances and
their associations using their associated classes, their instance labels (names), and
clinical IDs. Finding common care elements (e.g., lab tests, drugs, etc.) between
multiple CIGs are needed to eliminate care duplications; and to unify their actions
when needed. Peleg et al. [I38] presented a mapping approach to map CIGs to
EHRs based on query writing, and comparing a set of mapping approaches, based
on their mapping capabilities. Similarly, in this thesis, query writing is adopted
for creating mapping relations. To illustrate, a clinical ID of a clinical activity (e.g.,
pharmaceutical action) can be automatically queried and other clinical activities that
have same clinical IDs can be inferred (see Section . Accordingly, common (i.e.
identical /similar) activities can be detected, and their associated information can
be obtained which can be used for activity merging. This mapping discovery is
embedded into the execution mechanism. Following sections present the MuCEE’s

execution approach in detail.

4.3.1 Multiple CIG Model Acquisition Module

Patients can have many health conditions with different combinations. Thus, CIGs
can be executed for the same patient and different patients as well. For each patient,
MuCEE, firstly, acquires all the CIG models (i.e. the instantiations of Ecore meta-
model) related with patient health conditions from the knowledge base. The Ecore
metamodel is used to build CIG models, namely, CIGs.

In this thesis, the problem of combined care plan generation from multiple
concurrently implemented multiple CIGs is considered. The main components of this
problem are a set of variables and conditions (requirements, constraints or restric-
tions) between them. Solving this problem can be possible if designated restrictions
of each variables are satisfied. The categorisation of these conditions is discussed
in the following section in detail. Conditions must be satisfied to activate a care
step of a guideline. Thus, condition satisfaction over CIG models is performed to
acquire guideline activities to the personal care plan of the patient. Only up to date
(i.e. recommendations currently used in practice) activities whose activity lifecycle

status are active (i.e. ready for execution), can be transferred to the personal care
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plan. For this reason, the given execution restriction which is activity lifecycle sta-
tus must be satisfied. This also supports version control of the CIG models. The
algorithm is presented in Section [£.4] where specifications of CIG model acquisitions
are discussed.

Epsilon Object Language (EOL) [65] is used for the algorithm implementa-

tion. The following section further presents the parallel CIG execution module.

4.3.2 Parallel CIG Execution Module

As defined in the previous section, this execution module focuses on the problem of
combination of concurrently implemented multiple CIGs to generate a unified care
plan. To handle this problem, rule-based execution approach is used which has IF
... THEN structure. While IF represents conditions (constraints and restrictions),
THEN represents actions or conclusions. When the condition item of a rule is sat-
isfied, the rule is triggered and the action item is executed to find a solution (e.g.,
care recommendation).

Parallel CIG execution module of MuCEE uses the personal care plan which
involves individual CIG models (i.e. acquired using CIG acquisition module), to
perform dynamic execution of knowledge over this model. Execution is performed by
developing a specialised execution algorithm which searches the potential solutions
(recommendations) in a set of variables under a set of conditions (i.e. constraints,
restrictions). To discover these execution restrictions which need to be satisfied for
finding valid solutions (i.e. consistent recommendations) in CIG execution phases,
existing literature [50, 120} 156} 159, 238, 239] and a set of existing guidelines (e.g.,
www.nice.co.uk) are reviewed.

The main focus of this thesis is to solve the problem of combining multiple
concurrently implemented CIGs under a personal care plan of a patient which can

be formally defined as follows:

Definition 4.3.1. (Multiple CIG Combination Problem (MCCP)) Let P be
the personal care plan (PECAP) of a patient which involves a set of CIG models
(domain), II, where IT = {my,ma,...,m,}. Each A = {a1,aq,...,a,} be the finite
set of variables (i.e. guideline activities) with an associated set of CIG models.
IT = {II(cv), - .., I(av,) }, where II(a;) represents each variable «; that ranges over
the domain, and a set of conditions Q = {p1,¥2,...,¢n} over the variables. A
condition ¢;(€ Q) on the variables a1, ag, ..., ay, is a subset of II(ay) X - -+ x (ay,),

which represents the set of possible values of variables over the domain.

The model-level state conditions which can be defined as constraints, need
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to be satisfied by the execution system at real-time. These are associated with each

CIG model variables as follows:

Activity Transition Constraints. 7C is the set of transition conditions (Transition
Condition) where tc;j, represents transition condition ¢ and its condition type j of ac-
tivity o (€ A), i =1,...,n, and j = {activatingCondition, preCondition, outcome-
Condition, endCondition}. The assigned transition conditions (TransitionCondition

Assigned) for an «j must be satisfied to follow the next clinical activity; and (ii) 7.4

is the set of assigned transitions of guideline activities.

Activity State Constraints. AE = {ALS, ACS, AN'S, AT S} is the set of activity

execution status. These involve:

— ALS is the set of activities’ lifecycle statuses (ActivityLifecycleStatus) where ls;,
represents activity lifecycle status i of activity ax (€ A), i = {active, cancelled,
done, passive, pending, started}. Each «j must have one activity lifecycle sta-
tus at a time, and oy must satisfy the execution condition to perform activity

state transitions;

— ACS is the set of activities’ concurrency statuses (ActivityConcurrencyStatus)
where lc;;, represents activity concurrency status i of activity ax (€ A), i =
{concurrencyCompleted, concurrencyDiscarded, concurrencyStarted}. When
the concurrency relation is defined, then its associated status must be satisfied
to perform concurrency status transitions. This is required for multiple activity

concurrency management;

— ANS is the set of activities’ synchronisation statuses where In;, represents
activity synchronisation status (ActivitySynchronisationStatus) 7 of activity oy
(€ A), i = {toBeSynchronised, synchronisationPointReached, synchronisation
Discarded}. When the synchronisation relation is defined, then its associated

status must be satisfied to perform synchronisation status transitions;

— ATS is the set of activities’ time statuses (Activity TimeStatus) where It rep-
resents activity time status ¢ of activity ai (€ A), ¢ = {actualStartTime,
actualEndTime, expectedStartTime, expectedEndTime}. Activity start and
end time are dependent on the values of the defined temporal constraints (e.g.,

duration, periodicity).

Multi-activity Management Constraints. Multi-activity management (MAN)

(see Section [3.5.4)) constraints involve (i) concurrency constraint; (i) time-based
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optimisation constraint; (iii) time-based synchronisation constraint; and lastly, (iv)
modification constraint. MAN constraint set enables users to adapt to changes in the
model, and can be used to manage multiple activities recommended by concurrently
implemented multiple CIG models under a combined care plan, P. These involve
handling of concurrency, and synchronisation relations for multi-activity merging,

modification and reusing of care options.

Temporal Constraints. These constraints stand for the temporal constraints be-
tween guideline activities. For example, temporal limit of synchronisation of activity
ar (€ A) (e.g., examination action) with activities aq, ..., ay should not be exe-

cuted maximum three days before the expected start time of cgq.

To solve the problem of multiple CIG combination, constraints on variables
are explored on a bounded number of possible solutions, and labels are propagated
through recorded constraints. Variable label inference approaches [233], which can
be defined as searching of possible values of the variables that are refined via the
propagated constraints, have also been widely used in the literature (e.g., [234]).
Label propagation starts with searching a collection of variables in the knowledge
base, with labels and relationships between them that corresponds to the labels
of the classes in the query and their relationships. For label inferencing, a query
(answering) language (e.g., Structured Query Language) needs to be adopted to
perform refinement on constraints. Here, this is performed using the EOL [65].

In this thesis, querying (e.g., specific time periods, patient information, lab
results), is also integrated into the execution mechanism to reduce (filter) variables
for the conditions and, therefore, the amount of potential solutions. This step is
performed incrementally. When the conditions are satisfied and solutions (recom-
mendations) are found, then users can discover new solutions from the knowledge

base and/or perform queries, given the set of discovered solutions. Queries can be:

— “What are the possible times (time period) at which activity ¢ may exist?”
— “What are the started or completed clinical activities in the personal care plan”?

— “Is the requested lab test result (e.g., HDL cholesterol level) ready?”

In the light of the CIG execution engine requirements, and limitations in execution of
concurrently implemented CIGs, MuCEE’s parallel CIG execution module is shaped.
The major functionalities of parallel CIG execution module as discussed, in further

detail, are as follows:
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e [dentifying clinical activities to be initialised considering all the CIG models

related with patient health disorders;

e Dynamically adding, removing, or replacing clinical activities and/or their as-

sociated care elements;

e Managing concurrency relations between multiple clinical activities to avoid
harmful care advices, caused by recommendation duplications (e.g., drug over-

dose);

e Managing merging of concurrently implemented multiple clinical activities (>

2) through using time-based synchronisation;

e Performing time-based care optimisation to avoid unnecessary resource (e.g.,
carer time, lab test) utilisation and potential care duplications which may lead

to extra cost for a treating medical centre.

The EOL is also used in this execution module. Following section presents the CIG

verification module.

4.3.3 CIG Verification Module

In the existing literature (see Section , verification of CIGs have attracted a
great attention of the researchers such that there are many different methodologies
that have been proposed for this purpose. In this thesis, verification is performed in
the entire care process, in order to maintain consistent and error-free care plans.
As part of the verification process, a new CIG verification method which
supplies dynamic user support and model update, is proposed. Accordingly, a set
of CIG verification constraints is developed, which comply with the requirements
of CIG executions in terms of correctness and consistency. Instantiations of CPGs
to generate CIG models are also checked to identify whether missing values exist
or to maintain syntactic consistency. These constraints are applied using Epsilon
Validation Language (EVL) [65], which is a variant of Object Constraint Language
(OCL) [66], checks dependencies between the constraints, specify inconsistencies and
help users on how to repair them. EVL has its own syntax (see Section, is used
for CIG verification rule implementations. EVL’s execution mechanism uses a top-
down depth-first scheme, please see Kolovos et al. [65] [103] for further information.
The major advantages of using EVL, compared to OCL, are to support gen-
eration of user feedback and warnings, inconsistency fixing, evaluating constraints in

multiple models (not bind to a single model) at a time and supply greater flexibility
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in context definition [65]. The CIG verification is discussed in the following section
as part of the MuCEE execution steps, and its application on real-life case studies
are presented in Section

4.4 Algorithm Specifications of MuCEE

This section presents the algorithm specifications of MuCEE, see Table[d.1] After the
patient-HCP encounter, initially a (blank) personal care plan (PECAP) is created
where all the care steps related with patient’s care management displayed. Then,
execution follows with applications of several sub-components (sub-algorithms).

The sub-algorithms involve the CIG model acquisition algorithm, which is
part of the acquisition module of the MuCEE; multi- activity merging, time-based
care optimisation, modification, and concurrency management algorithms which are
part of the parallel CIG execution module of the MuCEE. Dynamic CIG verification
is applied pre- and real-time CIG execution phases in the entire care process.

The algorithms presented in this section are presented using UML activ-
ity diagrams [81], please see Section for the notation used in the algorithm
specifications with their definitions. Following sections discuss MuCEE’s algorithm

specifications.

Care Initialisation

Step 1. Initially, a personal care plan, P of a patient is created when a patient-HCP
encounter is realised. Dynamic CIG executions, using patient data, are subsequently
performed on this plan, after the relevant CIG models, II, where IT = {my, m, ..., m,}
are acquired (see Section 5.4.2) from the knowledge base. Then, instantiations of
MuCRL’s ontology groups are created on P. Initially, a PatientCarePersonalisation
is created to record patient information. Afterwards, a GuidelineServiceDeployment
is created to record HCP information. Following this, a HealthCareService is created
to record patient-HCP encounter, where the health condition information such as
signs, symptoms and diseases of a patient and care management constructs. Lastly,
a MultiActivityManagement is created to manage multiple activities recommended by

multiple CIG models when the related CIG models are acquired.

Multiple CIG Acquisition

Step 2. This phase begins with the retrieval of CIG models, relating to patient
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Table 4.1: The MuCEE’s execution algorithm

1 Initialisation: Create a personal care plan P, PECAP, for a patient which is updated
in each execution step;

2 Begin acquiring instantiated CIG models 71, mo, ... T, of MuCRL which involve
a set of activities aq, ao, ..., a, from the repository, related with patient health
conditions based on the “CIG acquisition algorithm”,

— If each activity ax (€ A) is up to date (i.e. Isy (€ ALS), i={active}), then
transfer oy, of m; (€ II) to plan P;
— Otherwise, quit.

3 Select oy (€ A) (whose sy, (€ ALS), i={active}) from m; (€ II) in P;

4 Check,
— If the associated conditions (constraints and restrictions) ¢1, ..., @, on ai (€ A)
are satisfied, then follow the next step;
— Otherwise, wait for the satisfaction of conditions over ay, (€ A);

5 Check,
— If concurrencies exist between «y, (€ A) and activities oy, aa, . .., ay, that exist
in P, then follow the “Concurrency management algorithm”,
— Otherwise, follow the next step.

6 Check,
~If ag (€ A) and a1, a9, ..., a, have commonalities in their subsequent activities,
then follow the “Multi-activity merging algorithm” for multi-activity merging;
— Otherwise, follow the next step.

7 Check,
—1If ay, (€ A) is recommended before (whose Is;, (€ ALS), i={started, completed}),
then follow the “Time-based care optimisation algorithm” for considering activity
reusing by «ay (€ A);
— Otherwise, follow the next step;

8 Check,
—If ag, (€ A) needs modification, then follow the “Modification algorithm™;
— Otherwise, follow the next step.

9 Update the lsy (€ ALS) of a (€ A) upon its completion, and query its target activities
and associated conditions @1, o, ..., @, on ai to follow the next care step;

10 Check,
— If inconsistencies and /or missing information exist in P, then generate user
messages regarding how to fix them;
— Otherwise, wait till next execution and follow the next step;
11 Check,
— If a new health condition needs to be managed, then Return Step 2,
— Otherwise, Return Step 3 until there is no remaining activity exists and quit.

health conditions from the repository, by the HCP(s) (see Figure [4.1]).

Afterwards, CIG models need to be acquired based on the satisfaction of the
activity lifecycle requirements, ALS, which is the element of activity execution sta-
tus, AE, that has been used in existing execution engines (see Section in a
similar way to represent the current status of an activity. In the acquisition phase, if

CIG models’ activities where A = {ag, ag,...,a,} represents the activity set, to be
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b

Select CIG models m;,.., m, Check activity lifecycle
based on patient health status, Is;q, ..., [s;;,, where
conditions i = {active, passive}

Transfer CIG models
m;,.., T, 10 personal care [active]

plan, [passive]

Figure 4.1: CIG model acquisition algorithm

acquired are up to date, then their activity lifecycle statuses, ls;, (€ ALS) where i
represents activity lifecycle status of a,, (€ A) should be stated as active. Otherwise,
these should be passive which means they are absolute or not able to be implemented

and must not take place at the personal care plan.

Parallel CIG Execution

Step 3. Activity oy (€ A) (whose s, (€ ALS), i={active}) is selected from m;
(€ II) in the patient’s personal care plan, P, based on the care flow and then follow

the next step;

Step 4. To fire the clinical activity oy (€ A) (e.g., medication recommendation)
for a patient, its associated (constraints and restrictions) ¢1,...,p, on o (€ A)
must be satisfied. For example, patients’ BP levels should be below the predefined
limits (e.g., 140/80 mmHg) to prescribe an ACE inhibitor. Thus, the the BP level

threshold condition needs to be satisfied for this care recommendation action.

Step 5. Concurrency management of multiple activities is required to detect and
eliminate care duplications, which can be the sources of adverse interactions (e.g.,
drug-drug interactions, which cause drug overdose or affects efficacy of each other)
(see Section . Figure presents the concurrency management algorithm. The
algorithm allows the users(s) to manage concurrently implemented multiple activities
that can be recommended by multiple different CIGs.

The algorithm begins with the selection of the clinical activity oy (€ A) from
the CIG model 7; (€ II) that exists in the personal plan, P. Then, the activity life-

cycle status of this activity is checked. If it is started, then it checks its activity time
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Select activity a;, (€ A) of
the CIG model m; (€ IT)

— |se »
ese @ Record activity

o concurrency status
[activityExist = true] Y

from P lcix where i =
‘rencyStarted
) Check activity {concuneniy e }/
Check activity lifecycle I|;§§yc(lz :tig')s’
status, Isj; (€ ALS) m

[concurrencyExist =

[started] true]

[started] else
Add
ConcurrencyConstraint
to P for managing
concurrency relations for
each clinical activity pairs

L

Check
whether concurrency

interrupted
else —l

Record Ic;;, where

Query time period to find
parallel activities ay, ..., @,
ofay (€ A)inmy_m,

[interrupted = true]

i = {concurrency i = {concurrency
Discarded} Completed}

® ®

Figure 4.2: Concurrency management algorithm

t Record Ic;; where

status and any associated time information. The algorithm uses this information to
detect concurrency relations in/between clinical activities of CIG models. If concur-
rency exists, then it allows adding concurrency constraints (ConcurrencyConstraint)
to define concurrency relations for each clinical activity pairs. Afterwards, it facil-
itates the recording of concurrency start and end time. The recording of activity
concurrency status (e.g., concurrencyStarted) of the concurrently implemented ac-
tivities is utilised to state the status of their concurrency. Following this step, the
algorithm allows the user to update the personal care plan and follow the next care

step.

Step 6. Multi-activity merging is required for handling (i) care duplications which
may cause conflicts if the same drug is recommended, say twice, within an overlap-
ping period of time; this may cause drug overdose and may reduce the efficacy of
other drugs, something that can result in a life threatening impact for the patient;
and (ii) unnecessary health resource uses, and therefore, added health costs. For
instance, requesting again the same lab test, within a short period of time for man-
aging different diseases, may cause the existence of extra test results, and therefore,
needs extra HCP time for the analysis. This has major implications of additional

resource utilisation and delays at medical centres. Figure [£.3] describes the multiple
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clinical activity merging algorithm.

?

Check the same/similar
activity with a; (€ A)
using clinical IDs and/or
associated labels in P

Check if there are any
limiting transition
conditions
teige (€ TC)

@-— else

[activityExist = true]

Check activity time status,
Ity (€ ATS)

Get activity time

Wait until
condition
satisfaction

[exist]

else

l

Add Time-Based
Synchronisation Constraint

| to P for managing synchronisation

relations between multiple activities
[

Record temporal distance and
temporal limit of each activity to be
merged

I

Check whether subsequent activity of )
@ (E A) has commonalities with
activities a,.., @, whose Is;; (€

ALS) where i = {active, started}

Record activity synchronisation
status inyq, .., Ing, of @y, ..., ay,
where i = {toBeSynchronised}

[

information whether in an
acceptable time period (ie.
temporal limit)

completion

j=1..,n Y, {

[active] & [started]

Record Iny, . ., iy
where i =

Wait for the synchronisation ]

Check each activity to be
synchronised whether they are in
their temporal limit to reach synch

point
|
[withinTemporalLimit=false] AND
[symcn00n1pleled=fa\se]

[acceptableTime
= true]

else

®

[withinTemporalLimit=true] AND
[synchCompleted=true]

[withinTemporalLimit=true] AND
[synchCompleted=rfalse]

{synchronisation
PointReached}

‘ Merge clinical activities on the

Record Inyy, .., In;, where i =
common clinical activity {synchrenisationDiscarded}

® ®

Figure 4.3: Merging algorithm to unify multiple clinical activities

This algorithm is used to handle more than two concurrently implemented
clinical activities recommended by the same or different CIGs (models) 71,9, ..., m,
by discovering common activities to be merged using the clinicallD of the subsequent
activity(es) (if they exist) and/or their class names for potential merging of clinical
activities and then synchronise them under a set of constraints.

If a common activity exists, then the activity time status of this activity
should be recorded, stating the expected or actual time information or a given time
period that the subsequent activity must be performed. If the potential subsequent
activity where multiple clinical activities are to be merged, is within the acceptable
time period for each clinical activity, then the algorithm checks the activity life cycle
status for such activities, as well as the associated transition conditions which may
limit the transition (e.g., isConditionMet = "false"). If there is no limiting condition
but activities need to be synchronised, then the algorithm creates a synchronisation
constraint (TimeBasedSynchronisationConstraint) to record the synchronisation status

for merging such activities.

Each activity must have its own synchronisation constraint. If the activity
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is reached to the synchronisation point, within an acceptable time period (where
activities are associated with a temporal distance to reach the synchronisation time
point), then the activity synchronisation status for each activity should be stated. If
a synchronisation point is reached within the temporal limit (i.e. the exact or time
interval of the deadline), then this activity is associated with the synchronisation-
PointReached literal. When synchronisations of multiple activities are completed,
their transitions to the subsequent (to be merged) activity, as well as their associ-
ated transition labels (e.g., isMergedAt), are created and added to the personal care
plan. If activities could not reach to the synchronisation point within the temporal
limit, then synchronisation of activities will be discarded (synchronisationDiscarded).
These activities are then followed through their respective care paths, as stated in
their associated CIG models.

Step 7. This step targets to eliminate care duplications using the time-based care
optimisation algorithm, see Figure [{.4] Handling of care duplications is also ad-
dressed in multiple clinical activity merging approach, but the major difference of
the optimisation approach is in reusing existing activities if they are same or similar
with the clinical activity to be recommended and their activity synchronisations are
not forced. Reuse can be for the result of a clinical activity such as an examination
result, or for the reuse of its care element such as drug information to avoid medi-
cation duplications. The reuse time period (i.e. temporal window) of the result of a
clinical action should be within the acceptable time range (i.e. withinTemporalWin-
dow = "true"). If the reuse is performed for a care element, the temporal window

of the reuse must be stated as well.

Step 8. Care modification is required for resolving (potential) or detected con-
flicts which can be prompted by a set of adverse interactions such as drug-drug,
drug-patient, drug-disease and other interactions (e.g., timing) and may result in an
undesired patient outcome if they are not handled; or updating a clinical activity
such as duration or periodicity. Figure [£.5 describes the care modification algorithm
which can be used to perform the care modification activities. Modification is per-
formed when the modification needed activity is known (i.e. the specification of

conflict degree is not performed).
Step 9. Activity lifecycle status of activity ay (€ A) is updated and its following

activity considering its outgoing transitions (TransitionAssigned) and associated con-

ditions and restrictions (TransitionConditionAssigned) ¢1, 2, ..., @, are queried.

101



Query the same activities
‘ ay,..ap With ag (€ A) using —"<>else->©
i

clinical IDs in P " ,
[withinTemporalWindow=true]
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©(_ Ese‘<> activities Y,
]
[done] (
¥ Select the care element of
Check temporal window of ay,.., @, to be reused by a;,
a; (€ A) in P whether it is within
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Figure 4.5: Modification algorithm

Dynamic CIG Verification

Step 10. Dynamic CIG verification is applied in the entire care process to assess de-
pendencies between constraints and generate customised error messages for users to
repair inconsistencies in the model. Thus, inconsistencies, missing information or er-
rors can be detected and fixed. To do so, a set of constraints with related customised
error messages are developed. These involve: syntactic inconsistency and missing

information checking such as each knowledge instance of a class in the model, which
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must have a label, to maintain syntactic consistency; and execution logic inconsis-
tency and missing information checking such as whether the defined care workflow
has no cycle, each CIG model that represents a health condition defined under the
personal care plan, which must have minimum one source and target activities; each
guideline entry, must have one starting and minimum one conclusion activity; and

each decision activity, must have minimum two conditional options and many others.
End Of Care

Step 11. This step checks whether there is a remaining activity exists in P and

wait user input to conclude the care plan.

Section [5.2] presents the implementations of MuCEE based on the defined execution

steps on multimorbidity case studies; and Section discusses its evaluation results.

4.5 Summary

This chapter presents MuCEE — the real-time multiple CIG execution engine of
MuCIGREF. This engine is designed to resolve the multiple CIG combination prob-
lem (MCCP) which requires to dynamically and concurrently handle multiple CIGs
(models) involving a set of complexities (e.g., constraints) to generate personal care
recommendations for a multimorbid patient. MuCEE involves three modules that are
associated with a novel comprehensive execution algorithm. Modules are designed
to meet execution requirements of CIGs. As a contribution, this thesis included
more executional requirements into this list based on the needs of multimorbidity
care management. These requirements are meeting; concurrency and synchronisa-
tion relation management needs between multiple clinical activities recommended
by concurrently implemented CIGs; optimisation and modification needs of clinical
activities to maintain patient safety and supply more flexibility to users over the
guideline; and customised and interactive user support needs for error, inconsistency
and missing information handling which helps to save time and improve the care
model. In the following section, the implementations of MuCEE in real-world cases

are presented. Its evaluation results are discussed in Section [6.4
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Chapter 5

MuCIGREF Implementation:
Multimorbidity Case Studies

5.1 Introduction

Combination of demographics, diseases, lab results, medication use, genetics, health
conditions and care preferences generates a heterogeneous patient population. To
make a personalise care recommendation for a patient, a HCP needs to consolidate
all these elements. Figure [5.1| presents an overview of how MuCIGREF can be used
by HCPs in generating a personal care plan for a multimorbid patient where multiple

CPGs are concurrently executed.

/  PATIENTS

' ' ' i i ..4.-Disease A | |

N g m—

N
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Figure 5.1: An overview of personal care plan generation with MuCIGREF
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This chapter presents the implementations of MuCIGREF’s guideline repre-
sentation language, MuCRL, in representing multiple CPGs and their interrelations,
and MuCIGREF’s real-time execution engine, MuCEE, on multimorbidity case stud-
ies to test the applicability of the framework in managing multimorbidity care.

Initially, MuCIGREF’s implementation method is presented, involving how
guidelines are selected and their combinations representing patient with multiple
health conditions are made. Afterwards, multimorbidity case studies are considered.
Here, implementation is initiated by creating a personal care plan. This follows
the acquisition of CIG models, which are the instantiation of Ecore metamodel (i.e.
the implementation of MuCRL) based on the patient health conditions. Lastly,
real-time executions of multiple, concurrently applied CIG models are dynamically
implemented over the personal care plan. A set of patient scenarios are considered
and different challenges of multimorbidity care such as merging of CPGs, and their
actions and creation of a personal care plan whose care recommendations must work
in an integrity with patient data, are addressed. To deal with these challenges, (i)
concurrency management of guideline activities to capture and record overlapping
clinical activities; (ii) merging more than two concurrently implemented guideline ac-
tivities recommended by multiple CPGs to avoid duplications; (iii) guideline activity
modification to support patient safety (e.g., medication replacement); (iv) optimisa-
tion of guideline activities and their interrelations to optimise health resource uses
and improve care efficiency; and lastly (v) interactive CIG verification on individual
CIGs and on personal care plan where multiple CIGs are combined. These have not
been adequately addressed in the existing literature yet [31].

Implementation results demonstrate that MuCIGREF substantially satisfies
the afore-mentioned multimorbidity care management challenges and execution re-
quirements (see Section [4.2).

5.2 MuCIGREF Implementation Method

MuCIGREF’s implementation method covers how guidelines and their combinations

are selected and subsequently implementation specifications are supplied.

5.2.1 Guideline Selections and Their Combinations

Initially, several guidelines are selected from NICE (www.nice.org.uk) based on the
suggestions of the existing literature for the testing the framework. Each guideline
has its own clinical guidance as assessment, counselling, diagnosis, evaluation, man-

agement or prevention; and patient group as infant, child, adult, or elderly. The
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considered guidelines for the implementations are as follows:

— Diabetes (DB) — Chronic Heart Failure (CHF)
— Chronic Kidney Disease (CKD) — Atrial Fibrillation (AF)
— Hypertension (HTN) — Depression (DP)

Guideline combinations to represent multimorbidity care are made mainly based
the guidelines addressed in the H2020 C3-cloud Project (www.c3-cloud.eu) [67, [68],
where guidelines are checked by a clinical reference group; case studies and/or sug-
gestions of the existing literature |28, [36, 114} [189] 242], and NICE recommendations
(i.e. references of related CPGs are supplied in each case study). The combinations

involve:
e Diabetes — Hypertension
e Diabetes — Hypertension — Chronic Heart Failure
e Diabetes — Hypertension — Chronic Kidney Disease — Atrial Fibrillation

In each case study, CPG names, and their sources are provided.

5.2.2 Implementation Specifications

Implementation begins with creation of EMF models (instantiation of Ecore meta-
model) which are called CIG models. These models represent instances of a spe-
cific guideline such as diabetes, depression, obesity and their associations such as
transition conditions and temporal constraints (e.g., duration, periodicity). In this
thesis, guideline instances are manually created. Afterwards, CIG executions us-
ing MuCEE, the real-time CIG execution engine are performed on multimorbidity
case studies based on the algorithms provided in Section Thereafter, MuCEE
performs execution, using EOL for different patient scenarios with different combi-
nations of multimorbid conditions. Lastly, EVL is used for real-time verification of

CIGs and their associations.

5.3 Multimorbidity Care Management: Case Studies

This section discusses care initialisation process, multiple CIG model acquisitions,
activity sequencing, and knowledge mapping discovery. Afterwards, combining mul-
tiple CIGs by addressing four challenges as concurrency management, multi-activity

merging, care modification and optimisation with the case studies is discussed.
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5.3.1 Creating A Personal Care Plan

To initialise care, a personal care plan (PECAP), P needs to be created where
dynamic CIG executions, using patient data, are subsequently performed on this
plan, after the relevant CIG models are acquired. Figure [5.2) presents an example
of creating a personal care plan for a patient whose 1D is P0001. Afterwards, the
PatientCarePersonalisation is created to record patient data, and the GuidelineSer-
viceDeployment is created to record guideline information and HCP data (Carer).
Following this, the HealthCareService is created to record patient-HCP encounter
(PatientEncounter), where the health condition information such as signs, symptoms
and diseases of a patient. Lastly, the MultiActivityManagement is created to man-
age multiple activities recommended by multiple CIG models when the related CIG

models are acquired. The latter is discussed in the following section.

1 wvar emfTool = new Native("org.eclipse.epsilon.emc.emf.tools.EmfTool™);
2 wvar ecoreUtil = emfTool.ecoreUutil;

4 wvar mucigref = new PersonalCarePlan!MuCIGREF;
5 mucigref.label ="PECAPFE8EL";
7

var patientCarePersonalisation =

8 new PersonalCarePlan!PatientCarePersonalisation;
9 patientCarePersonalisation.label ="PECAPPBE@LPCP";
18 mucigref.pcp.add(patientCarePersonalisation);

12 wvar multiActivityManagement =

13 new PersonalCarePlan!MultiActivityManagement;
14 multiActivityManagement.label ="PECAPPGBELMAN";
15 mucigref.man.add (multiActivityManagement);

17 wvar healthCareService =

18 new PersonalCarePlan!HealthCareService;
19 healthCareService.label ="PECAPPE2ELHES";
28 mucigref.hes.add(healthCareService);

var guidelineServiceDeployment =

new PersonalCarePlan!GuidelineServiceDeployment;
24 guidelineServiceDeployment.label ="PECAPP@RBLGSD";
25 mucigref.gsd.add(guidelineServiceDeployment);

[2] *PersonalCarePlan.modsl &3

~ 2] platform:/resource/MuCIGREF/PersonalCarePlan.model
w 4 Mu CIGREF PECAPPOOO1
4 Patient Care Personalisation PECAPPODOTPCP
% Guideline Service Deployment PECAPPODDTGED
<= Health Care Service PECAPPOODTHES
<4 Multi Activity Management PECAPPOD0TMAN

Figure 5.2: Example of creating a personal care plan
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5.3.2 Acquisition of CIG Models

Each CPG is designed as a CIG model based on its scope (e.g., management, diag-
nosis, recognition, prevention, etc.) and patient group (e.g., child, adult, etc.). CIG

models of CPGs can be stored in the repository as shown in Figure 5.3

~ & MuCIGREF
=| .project
& CIGAF.model
[l CIGALD.model
2l CIGCH.model
2] CIGCHF.model
[2] CIGCKD.maodel
& CIGCN.madel
[l CIGCP.model
2l CIGDB.model
{2 CIGDP.model
[ C1GDU.model
[ CIGED.model
2l CIGEND.model
2l CIGFIB.model

[Pl Fal I o N QST PN |

Figure 5.3: A list of CIG models in the repository

Each CIG model has a label starting with <CIG...> and followed with the
abbreviation of the guidelines such as diabetes (DB) and hypertension (HTN). Under
the CIG model, each class has an instance that associated with a unique label. To
illustrate, Figure [5.4] presents a portion of depression in adults: recognition and
management guideline [240] that is acquired from the repository (database). It is
then transferred to personal care plan of a patient based on the supplied patient
information. Then, HCP(s) of patient manage his/her care on this care plan. Each
CIG model must involve an instance of a CPG (ClinicalPracticeGuideline) defined
under the GuidelineServiceDeployment and the instances of the HealthCareService.

In CIG models, the class names are used as abbreviations such as pharma-
ceutical action as PH, examination action EA or decision DC along with the imple-
mentation sequence number for the instance labelling. For example, <CIGDPPH1>
represents the first instance of a pharmaceutical action of a depression management
guideline.

For a CIG model acquisition, activity life cycle statuses, of each activity must
be checked whether they are eligible for transferring to the personal care plan (see
Section CIG acquisition algorithm). In CIG models, the activity lifecycle status
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of clinical activities must be either active (i.e. these activities are eligible (ready)
for execution) or passive (i.e. activities are not currently eligible for execution or
absolute) when they stored in the repository. When a HCP and patient encounter
and the patient is diagnosed with a disease(s), then activities of the selected CIG
model can be acquired (transferred) if and only if activities have active instances
to the personal care plan, see Figure [5.5] Clinical activities are part of the HES
(HealthCareService).

1 wvar CIGModelHES = new PersonalCarePlan!HealthCareService;
CIGModelHES. label ="CIGModelHES";
mucigref.hes.add(CIGMedelHES);

5 for (a in CIGMedel!ClinicalActivity.all){
if(a.hasActivitylifecycleStatus.name == "active" ){

8 var PersonalCarePlanClinicalActivity = ecoreUtil.copy(a);
CIGModelHES. isaHes.add(PersonalCarePlanClinicalActivity);

else{
System.out.println("Existing clinical activities are not eligible or available for the existing care™);

}

Figure 5.5: Example code of CIG model acquisition

Initially, one CIG model can be acquired based on the patient health condition
(disease) and added to the personal care plan. However, a patient may have more
diseases in time, and therefore, more CIG models need to be acquired and added to

the personal care plan. These are shown in the following section.

5.3.3 Clinical Activity Sequencing in a Personal Care Plan

When the related CIG models are selected based on the patients’ health conditions,
clinical activities and their hierarchical orders need to be determined. Figure
presents the portion of activity sequencing view of depression in adults: recognition
and management guideline [240]) to supply more insights into readers on how activity
sequencing can be performed. However, this is initial activity sequences as presented
CIGDP model - conditions are gradually satisfied based on the execution and activity
sequences can change accordingly. <CIGDP > represents the label of the depression
guideline. <CIGDPDC1> represents the first decision activity of this guideline
which has two care options as <CIGDPPH1> and <CIGDPPH2> that represent
two pharmaceutical actions of a depression guideline. These two pharmaceutical
actions are associated with an activating condition (s) (e.g., "adequate response to
medication?").

This can be performed by checking dependencies and constraints between
activities (namely classes or vertices) for recommending the ones involving patient

data. Clinical activity sequencing can be performed as described below:
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2 Console = Properties @ Eror Log £ Problems

Epsilon

Source activity:(IGDPPAL

Source clasi:ProceduralAction
Target activity:CIGDPDC1

Target class:Deciszion

Transition type: FollowingActivity
Source activity:CIGDPDCL

Source class:Decision

Target activity:CIGDPPHL

Target class:PharmaceuticalAction
Transition type:ConditionalOption
Source activity:CIGDPDCL

Source class:Decision

Target activity:CIGDPPHZ

Target ¢lassi:PharmaceuticalAction
Transition type: ConditionalOption
Spurce activity:CIGDPPHL

Source class:PharmaceuticalAction
Target activity:CIGDPPAZ

Target class:ProceduralAction
Transition type: Followinglctivity

Figure 5.6: Excerpt of depression guideline activity sequence

The clinical activity sequencing begins with finding outgoing transitions (Tran
sitionAssigned) of the initial clinical activity (ClinicalActivity) recommended by a
CIG in the personal care plan. Afterwards, whether any associated limiting con-
dition (TransitionConditionAssigned) or activity status (ActivityLifecycleStatus) (e.g.,
started) exist, these need to be checked in order to realise transitions between ac-
tivities. If there is no limiting condition, such as a precondition (e.g., the lab test
result must be ready before the decision activity), then the algorithm checks the
type of transition (TransitionLabel) which can be one of the following instances: Fol-
lowingActivity, isMergedAt, Split, ConditionalOption, AlternativeActivity, or Alter-
nativeConditionalOption. Lastly, the algorithm allows the choices of one option and
permits following the care steps until the end of care.

The sequence of clinical activities of an acquired CIG model can be automat-
ically listed, if they are satisfied required transition conditions. Figure [5.7] presents

the excerpt of transition condition satisfaction codes.

for (n in CIGDP!TransitionConditiomdssigned.all){
if{a.hasTransitionConditionAssigned. label.contains (n.label) and
A.lzConditionMet==trus and a.hasTrantitionConditiondssigned. label.siza() »= 1 ){

Figure 5.7: Example code of discovering activities that satisfy transition conditions
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5.3.4 Mapping Discovery in a Personal Care Plan

Mapping discovery is the knowledge mapping strategy of this thesis which helps users
to detect semantic relationships between model entities such as classes, instances,
attributes and relations. This is required to create required links between multiple
concurrently implemented CIGs to manage multimorbidity. To achieve this, similar-
ities or commonalities between ontology entities such as clinical IDs, concept names,
and constraints (e.g., activity lifecycle status, condition realisation statements as
Boolean variables as "true" or "false") are used to restrict the solution space, rec-
ommendation set. EOL is used to develop query functions based on first-order logic
(FOL) OCL operations such as select, selectOne, collect, exits, etc. (see [65])
to perform mapping discovery through queries.

In Figure the excerpt of mapping discovery between activities in personal
care plan (i.e. all the clinical activities of guidelines related with patient diseases)
using first-order queries is shown where clinical ID and label of a clinical activity
(e.g., <CIGHTNPH1>) are automatically used to restrict the solution set.

var I;
2 for (a in PerscnalCareflan!ClinicalActivity.allInstances.select{n|n.label="Clinicalactivity™)}{
] a.eliniealID.println “clinical ID:");
= a.clinicallD;
¥

for(k in PersonalCarePlan!Clinicalactivity.all.selectOne(n|n.clinicallD=z}){
k.EClass.name.println("class name:");
k.label.println{“activity label:"});

Figure 5.8: Example of mapping discovery in a personal care plan

When activities are found, required mappings between them will be realised.
These can be used for activity merging, or activity reuse. The Figure [5.8] just shows
a simple illustration of how queries work in MuCEE to establish required mappings
between multiple concurrently implemented clinical activities.

Following section presents how multiple concurrently implemented CIG mod-
els can be managed and personal care plan for a multimorbid patient can be gener-

ated by demonstrating challenges on various patient scenarios.

5.3.5 Combining Multiple Concurrently Implemented Guidelines

This section presents a multimorbid patient case study which involves four examples
addressing the challenges in combining synchronously implemented multiple CIGs,
which are required for managing multimorbidity care, and how MuCEE handles

these challenges.
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Example 5.3.1. (Diabetes — Hypertension — Chronic Heart Failure) A pa-
tient initially got diabetes care. Afterwards, she presented to the hospital where she
diagnosed with hypertension. Today, she presented to the hospital with high blood

pressure again with the signs of chronic heart failure.

In this case study (see Table , combined personal care plan of a multimorbid
patient involves DB, HTN and CHF guidelines that are implemented in parallel.
The scope of this case study is to show how concurrency relations of clinical actions
recommended by same/different guidelines can be managed and their multiple com-
mon actions are merged and careflow can be optimised using MuCEE based on the
algorithm presented in Section

To simplify the illustration of multiple CIG management, activity manage-
ment examples are shown after the associated guidelines have been acquired from
the repository based on the patient health condition, and transferred to the personal
care plan based on the recommendations of each guideline as shown in Figure [5.9
(please see CIG acquisition algorithm in Section . Then, all the aforementioned
multimorbidity care management actions are going to be performed on this combined

care plan.

& workspace - MuCIGREF/PersonalCarePl
File Edit MNavigate Search Project E

- @ vitv O Qi

= Navigator &2

=
= | =

O | v & MuCIGREF

4 = .project (3] *PersonalCarePlan.model 3

(= il CIGAF.model

@ & CIGALD.model v & platform:/resource/MuCIGREF/PersonalCarePlan.model
] &l CIGCH.model v 4 Mu CIGREF PECAPPO0D1

4 Patient Care Personalisation PECAPP0O0OTPCP
EJI (IGCNn-woZIeI 4 Guideline Service Deployment PECAPP0001GSD

& CIGCP.model 4 Health Care Service PECAPPOOOTHES
......... "ay 4 Health Care Service CIGCHFHES

S E:G$ZZZ'I ......................... < Health Care Service CIGHTNHES
ir) CIGED.ﬁodel P Mt % < Health Care Service CIGDBHES
+

&) CIGEND.model Multi Activity Management PECAPPOOOTMAN
{1 CIGFIB.model
6] HUN.model
& CIGMI.model
& CIGOA model
&l CIGOB.model
&) CIGOS.model

51 G0 madel

Figure 5.9: Acquisition of multiple CIGs from the repository
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Table 5.1: Case Study: Diabetes — Hypertension — Chronic Heart Failure

Patient scenario | DB (primary disease); HT'N (secondary disease); CHF (ter-
tiary disease) | HbAlc level > 53 mmol/mol; Fluid over-
load exists; Microvascular and/or cardiovascular compli-
cation = "yes"; BP level > 140/80mmHg; eGFR > 45
ml/min/1.73m2.

CPG sources DB: Type-II diabetes in adults: management — C3-cloud [67]
(Chapter 5.2 , pp. 21-42) and NICE [228]; HTN: Hyperten-
sion in adults: diagnosis and management — NICE [241];
CHEF: Chronic heart failure in adults: management — C3-
cloud [67] (Chapter 5.3, pp. 42-47) and NICE [226]

Care information | DB: Metformin, Education; HTN: ACEi, Diuretic; CHF":
ACEi, Diuretic, Education

Merged care DB + HTN + CHF: Metformin, ACEi, Diuretic

Clinical ID ACEi product: 41549009 (STC); ACEi therapy: 410682003
(STC); Metformin product: 109081006 (STC); Metformin
therapy:  1097191000000106 (STC); Diuretic product:
30492008 (STC); Diuretic therapy: 722048006 (STC)
Abbreviations DB: Diabetes; HTN: Hypertension; CHF: Chronic Heart
Failure; eGFR: Estimated Glomerular Filtration Rate;
HbAlc: Hemoglobin Alc; BP: Blood pressure; ACEi:
Angiotensin-converting enzyme inhibitor; STC: SNOMED-
CT code

Concurrency management

Initially, the multimorbid patient’s type-1I diabetes is managed as the primary dis-
ease. Since the most recent measurement of HbAlc result was higher than 58 mmol /-
mol, HP prescribed Metformin (clinicallD "109081006" (STC)) and started the drug
therapy (clinicallD "1097191000000106" (STC)). The secondary disease of patient
is hypertension. Based on the measured BP levels of the patient, HCP prescribed
ACEi (clinicallD "41549009" (STC)) medication and, therefore, started the drug
therapy (clinicallD "410682003" (STC)) for managing high blood pressure level of
the patient. Because initially DB and HTN guidelines are implemented in parallel,
their pharmaceutical actions — Metformin and ACEi drug therapies- have concur-
rency relations. Capturing these relations in/between CIG models are important
because they support avoiding drug overdose, or conflicting drug interactions (e.g.,
[114]).

In the current patient scenario, the concurrency management is performed
as follows: the secondary disease management activity is initialised, considering the

activity lifecycle status (ActivityLifecycleStatus) of the existing clinical activity and
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concurrency relations between already started clinical activities whose activity life
cycle statuses are started. If there are existing clinical activities which have started
statuses, then check their time periods and time statuses (ActivityTimeStatus) and
their associated class names (e.g., PharmaceuticalAction).

Concurrency constraints (ConcurrencyConstraint) are needed to record con-
currency relations between multiple clinical activity pairs. These can be used to
detect when and which pairs are performed together. If clinical activities are going
to be performed within the same time period, then they are recorded through cre-
ating concurrency constraints. These constraints are mainly designed for recording
concurrencies between pharmaceutical actions whose concurrencies may cause un-
wanted patient outcome, or other actions (e.g., education, diet recommendations),
and examination actions whose concurrencies may cause unnecessary health resource
use. However, further clinical actions can also be recorded if users wish.

Figure shows the portion of HTN and DB guideline combinations to
illustrate multiple activity concurrency management. Initially, the user must de-
tect whether any concurrency relation exists between the existing drug treatment(s)
before initialising a new treatment, see the Concurrency management algorithm
in Section execution step #4). In this case study, the pharmaceutical ac-
tion (PharmaceuticalAction) of DB, <CIGDBPH1> "Initiate Metformin" (clinicallD
"1097191000000106" (STC)) to manage blood glucose levels of the patient. The
activity lifecycle status (ActivityLifecycleStatus) of this activity is initially active and
then transformed to started. Then a new drug treatment is initialised, which is
the pharmaceutical action of HTN, <CIGHTNPH1> "Initiate ACEi" (clinicallD
"410682003" (STC)) is activated to manage high blood pressure levels if the patient
whose activity lifecycle status is started. Activity time statuses of this action are
the actualStartTime and expectedEndTime and related the activityStartTime and
activityEndTime data values are also recorded based on the duration of this action.
Thus, a concurrency constraint is added to the personal care plan, in order to record
concurrency relations between these two pharmaceutical actions.

Figure illustrates the concurrency between two clinical activities and
their associated concurrency constraint. The instantiation of the ConcurrencyCon-
straint to define the concurrency relations between DB and HTN is added to the
personal care plan with the following instance label <PECAPP0001CC1>. The
hasConcurrency object property defined under the afore-mentioned pharmaceutical
actions links them to this concurrency instance. Hence, two different CPGs are
mapped through this constraint. Here, data values of concurrencyStartTime and

concurrencyEndTime data properties are filled in. When the activity concurrency
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HbA1c < 53 mmol/mol?

<«- [yes].

[no]

Initiate Metformin
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Concurrency
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?

‘ BP level < 140/80 mmHg?

- lyes] >

[no]

Initiate Angiotensin-

converting enzyme inhibitor

(ACEi)

relation

<4 Pharmaceutical Action CIGDBPH1

(a) Excerpt of Hypertension and Diabetes guidelines

4 Pharmaceutical Action CIGHTNPH1

Has Activity Lifecycle Status

Has Carer

Has Concurrency

Has Delay

Has Duration

Has Incoming Transition

Has Outgoing Transition

Has Periodicity

Has Pharmaceutical Care Element
Has Temporal Limit

Has Time Status

Has Transition Condition Assigned

'S started

% Carer Carer!

% Concurrency Constraint PECAPPO001CC1

* Duration CIGDBDU1

¢ Transition Assigned CIGDETAT

% Transition Assigned CIGDBTAS

4 Periodicity CIGDBPR1

% Pharmaceutical Care Element CIGDBPCE1
U2 actualStartTime, expectedEndTime

4 Transition Condition Assigned CIGDBTCA3

Has Carer

Has Concurrency

Has Delay

Has Duration

Has Incoming Transition

Has Outgoing Transition

Has Periodicity

Has Pharmaceutical Care Element
Has Temporal Limit

Has Time Status

Has Transition Condition Assigned

Action Start Time 1% 20190412100000 Action Start Time 2 20190509151000
Clinical ID '= 1097191000000106 Clinical ID '= 410682003
Comment 'Z Managing blood glucose levels of the patient Comment 'Z Managing high blood pressure level of the patient,
Definition 'Z Initiate Metformin Definition "= Initiate ACEi
Has Activity Lifecycle Status U= started

< Carer Carer2

% Concurrency Constraint PECAPPO001CC1

# Duration CIGHTNDU1

# Transition Assigned CIGHTNTA4

# Transition Assigned CIGHTNTAS

4 Periodicity CIGHTNPR1

# Pharmaceutical Care Element CIGHTNPCE1

U% actualStartTime, expectedEndTime
4 Transition Condition Assigned CIGHTNTCA1

= true
*= CIGHTNPH1

/

Is Patient Allergy Checked
Label

= true
'S CIGDBPH1

N\

Property
Comment
Concurrency End Time
Concurrency Start Time

Is Patient Allergy Checked
Label

< Concurrency Constraint PECAPPO001CC1

Value

0190509151000

Definition = Concurrency between DB and HTN actions
Has Activity Concurency Status = concurrencyStarted
Label = PECAPPODO1CCI

(b) Concurrency constraint between two clinical activities

Figure 5.10: Illustration of activity concurrency management

status is transformed from concurrencyStarted status to the concurrencyCompleted

status, then concurrency relations between these two drug therapies can be ended.
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Multi-activity merging

In this plan, two CIG actions, which are pharmaceutical actions of CHF and HTN,
demonstrate similarities, therefore, they need to be merged to eliminate potential
care duplications that may result in drug overdose. To do so, the prior actions of
the considered actions should be completed and then they need to be synchronised
for merging. We refer readers to Section [3.5.5] for information about multi-merging
and the Merging algorithm presented in Section execution step #6).

Figure shows the HTN, DB and CHF guideline care steps to illustrate
where and how merging can be performed. DB is the primary disease, in this ex-
ample. The decision <CIGDBDC5> "eGFR > 45 ml/min/1.73m2?" based on the
patient value in DB is given. Accordingly, care is continued with the pharmaceu-
tical action <CIGDBPH1> "Continue metformin" (clinicallD "1097191000000106"
(STC)), after the conditional option [eGFR > 45 ml/min/1.73m2 = "yes"] is satis-
fied. The patient is still using this drug for the care of her diabetes. The activity
lifecycle status (ActivityLifecycleStatus) of this action is started since patient is still
in this care step and follows its her own care path.

The secondary disease of the patient is HI'N. Pharmaceutical action <CIGHT-
NPH1> "Initiate ACEi" (clinicalID "410682003" (STC)) is initiated to manage the
patient’s hypertension. One month later, patient visits the hospital again, blood
pressure levels are measured, and the decision action <CIGHTNDC4> "BP level
< 140/807" is given to determine the next care step. Based on the satisfaction of
conditional option [BP level < 140/80 mmHg = "no"|, the pharmaceutical action
<CIGHTNPH2> "Add diuretic" (clinicallD "722048006" (STC)) should be recom-
mended to balance BP levels of the patient. Because patient shows evidence of
heart failure (tertiary disease), the pharmaceutical action <CIGCHFPH1> "Initi-
ate diuretic" (clinicallD "722048006" (STC) is recommended whose activity lifecycle
status (ActivityLifecycleStatus) is active. However, CHF care of the patient has com-
mon actions (which are detected based on the clinical IDs) within the given time
period considering time statuses (see ActivityTimeStatus) with the pharmaceutical
action <CIGHTNPH2> of the HTN guideline, whose activity lifecycle statuses are
active, as well. When similar drugs are recommended by different guidelines within
the overlapping time periods, adverse disease — disease interactions may occur. These
need to be handled to avoid drug overdoses. In order to do this, time-based syn-
chronisation of care activities needs to be performed. This synchronisation can be
realised after the following common activity detection and creating synchronisation

constraint through involving, see Figure
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Diabetes Hypertension Chronic Heart Failure

¢ ¢

eGFR > 45 BP level < 140/80 mmHg? Fluid overload?
ml/min/1.73m2?
«—-- [nO] - - [yes] —
[yes] [(no]

: On Diuretic?
Continue Add Diuretic [ ]
Metformin
<> [yes] -»
[no]
Common L

clinical action [ Initiate Diuretic ]

(a) Excerpt of Hypertension, Diabetes and Chronic Heart Failure guidelines

4 Time Based Synchronisation Constraint PECAPPO00TTBS1 4 Time Based Synchronisation Constraint PECAPPO00TTBS2
Property Value Property Value
Comment = Comment x
Definition '= Synchronisation of CHF in diuretic prescription Definition = Synchronisation of HTN in diuretic prescription
Has Activity Sync Status "= toBeSynchronised Has Activity Sync Status "% toBeSynchronised
Has Temporal Distance ~ # Temporal Distance CIGCHFTD1 Has Temporal Distance % Temporal Distance CIGHTNTD]
Has Temporal Limit @ Temporal Limit CIGCHFTL Has Temporal Limit ¢ Temporal Limit CIGHTNTL1
Label = PECAPPOOO1TES! Label = PECAPPOOOITBS?
Sync Last Update = Sync Last Update 3
Within Temporal Limit = true Within Temporal Limit = true
4 Temporal Distance CIGHTNTD1 4 Temporal Distance CIGCHFTD1
Property Value Property Value
Comment = Comment =
Definition = Temporal distance to reach HTN pharma action Definition ‘% Temporal distance to reach CHF pharma action
Has Temporal Unit = hour Has Temporal Unit = hour
Label = CIGHTNTD1 Label = CIGCHFTD1
Max Temporal Distance  '= Max Temporal Distance 'S
Min Temporal Distance 'S Min Temporal Distance  '=
Temporal Distance =30 Temporal Distance =10

(b) Time-based synchronisation constraints and associated temporal distances of synchro-
nisation needed two clinical activities

Figure 5.11: Illustration of activity synchronisation for multi-merging

e synchronisation time limits (TemporalLimit), which represent min and max
waiting time or deadline of a clinical activity to wait other clinical activities

before proceeding with the next activity;

e temporal distances (TemporalDistance), which represent remaining time to reach

the synchronisation time point;

e synchronisation statuses (ActivitySynhronisationStatus), which represent syn-
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chronisation realisations (e.g., synhronisationPointReached); and involve syn-

chronisation last update information.

Thus, time-based synchronisation constraints must be added to the personal
care plan to define synchronisation restrictions for clinical activities that will be
merged in their subsequent care steps. These activities can be linked with the
needsSynchronisation object property to instances of the TimeBasedSynchronisation-
Constraint. Under the time-based synchronisation constraint, the activity synchro-
nisation status must be recorded using the hasActivitySynchronisationStatus ob-
ject property that links TimeBasedSynchronisationConstraint to the ActivitySynchro-
nisationStatus. In addition, temporal distance and temporal limit values must be
recorded. User input is required for the temporal limit values. The data property
within TemporalLimit should be filled in with the data value "true" if the synchro-
nisation is valid and, clinical activity is still in its max temporal limit or "false"
if the synchronisation is violated and, if the clinical activity exceeds its synchroni-
sation time. Then, the synchronisation’s last update also needs to be recorded to
make updates on activity synchronisations. If activities successfully reach to the
synchronisation time point, then they can be merged in the subsequent clinical ac-
tivity. When the activity synchronisation is violated due to exceeding its waiting
limit, then its synchronisation with other activities must be discarded and this ac-
tivity must be activated. The other activities, which have not been started, must
reuse this activity. Yet, this case is the issue of time-based care optimisation which
addressed in the next example.

In this case, time-based synchronisation constraints <PECAPP0001TBS1>
"Synchronisation of CHF in diuretic prescription" and <PECAPP0001TBS2> "Syn-
chronisation of HTN in diuretic prescription" are added to the personal care plan.
The <CIGCHFPH1> CHF pharmaceutical action and the <CIGHTNPH2> HTN
pharmaceutical action are linked with the needsSynchronisation object property to
these instances, respectively. Under the time-based synchronisation constraint, ac-
tivity synchronisation status is recorded, using the hasActivitySynchronisationSta-
tus object property that links the TimeBasedSynchronisationConstraint to the Ac-
tivitySynhronisationStatus. Because activities reached to their synchronisation point
within the temporal limit (withinTemporalLimit = "true"), their concurrency sta-
tuses (ActivityConcurrencyStatus) are updated as toBeSynchronised — synchroni-
sationCompleted. Then, they are ready for merging. Thus, the pharmaceutical
action <CIGCHFPH1> "Initiate diuretic" (clinicallD "722048006" (STC)) becomes
a merging point where <CIGHTNPH2> pharmaceutical action of HTN is merged
at this care point whose target activity is <CIGCHFPH1> through using assigned

119



transitions (TransitionAssigned), whose label is isMerged At (TransitionLabel). In this
case study three different CIGs are executed in parallel. Two clinical actions are
merged for the considered scenario but there is no limitation on the synchronisation
and merging of more than two clinical activities which can be recommended by many

different guidelines.

Care Optimisation

The above-mentioned patient scenario can also be as follows: CHF pharmaceutical
action the <CIGCHFPH1> "Initiate diuretic" (clinicallD "722048006" (STC)) can
be started whose associated pharmaceutical care element is "Diuretic" (clinicallD
"30492008" (STC)) and its recommended use is three months, then HTN pharma-
ceutical action <CIGHTNPH2> "Add diuretic" (clinicallD "722048006" (STC)) can
be recommended after one month. Since "Diuretic therapy" recommendation is a
common clinical action for both of these guidelines, then this activity can be reused
by HTN guideline to avoid care duplications because HT'N and CHF are concurrently
implemented. Please see the Time-based optimisation algorithm in Section [4.4 which
addressed in the execution step #7.

To realise the reuse of the pharmaceutical care element, by the pharmaceuti-
cal clinical action of <CIGHTNPH2> "Add diuretic" whose activity lifecycle status
is active, HTN must be linked with the instance of TimeBasedOptimisationConstraint
using the needsOptimisation object property, see Figure where HTN action is
linked to a time-based care optimisation constraint (TimeBasedOptimisationConstraint)
for activity reuse. Accordingly, the time-based optimisation constraint <PECAPPO00
01TOC1> "Reuse pharmaceutical clinical action of CHF" is added to the patient’s
personal care plan, see Figure[5.12Db] This constraint involves the connection between
results and care elements to be reused, a time window of reusing them, and whether
more action is needed at the end of the reuse time period of the clinical activity.
The reuseCareElementOf object property links the instance <PECAPP0001TOC1>
with the instance <CIGCHFPH1> "Initiate diuretic" of CHF.

The canBeReusedFor object property links the instance <PECAPP0001TOC
1> with the instance of TemporalWindow, to define the acceptable reuse time pe-
riod (e.g., min, max, exact value) of this care element. This is because this care
element can be changed or if it is a result of a laboratory test, values may change
in a short period of time, based on the patients’ dynamic health conditions. The
needMoreAction data property must be filled in with "true" value, if more action is
needed such as more advice is needed, otherwise "false" should be used. If the care

element reuse period is still valid, then the withinTemporalWindow data property
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< Pharmaceutical Action CIGHTNPH2

Label = CIGHTNPH2
MNeeds Modification =
Needs Optimisation Time Based Optimisation Constraint PECAPPO001TOCT

(a) Excerpt of pharmaceutical action of Hypertension guideline to demonstrate
care optimisation transition

<~ Time Based Optimisation Constraint PECAPP0001TOC1

Property Value
Can Be Reused For % Temporal Window CIGCHFTW1
Comment =
Definition ¢ Reuse pharmaceutical clinical action of CHF
Label ¢ PECAPPOOOTTOCT
Meed Maore Action = false
Reuse Care Element % Pharmaceutical Care Element CIGCHFPCE1
Reuse Care Element Of % Pharmaceutical Action CIGCHFPH1
Reuse Result =
Reuse Result Of 3
Within Temporal Window = true

(b) Time-based optimisation constraint for activity reuse

Figure 5.12: Illustration of activity reuse for care optimisation

needs to be filled with "true" data value, otherwise "false" should be used. In our
example, this is stated as "true" since there are two more months left for the ter-
mination of <CIGCHFPH1> unless carer makes any changes on this action. The
following component of a multiple guideline combination, which is care modification,

is demonstrated in the following example.

Care Modification

Example 5.3.2. (Diabetes — Hypertension — Chronic Kidney Disease —
Atrial Fibrillation) A multimorbid patient has Hypertension (HTN), and Atrial
Fibrillation (AF) as long standing diseases, and Chronic Kidney Disease (CKD),
and Diabetes (DB) as newly diagnosed diseases, please see Dumbreck et al. [242] for

further information.

In this case study (Example also see Table , the combined personal
care plan of a multimorbid patient involves the DB, HTN, CKD and AF guidelines,
implemented in parallel. However, some of the actions recommended by these guide-
lines are conflicting when they are combined. To illustrate, pharmaceutical actions of
CKD combined with AF and DB cause adverse drug-drug interactions which must be

resolved to maintain patient-safety (see the Care modification algorithm in Section
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execution step #8).

Table 5.2: Case Study: Diabetes — Hypertension — Chronic Kidney Disease — Atrial
Fibrillation

Patient scenario HTN + AF: long lasting diseases; CKD + DB: newly diag-
nosed diseases | eGFR = "37ml/min/1.73m2", creatinine =
"129mol /1"

CPG sources CKD: Chronic kidney disease in adults: assessment and

management — C3-cloud [67] (chapter 5.4, pp 48-74) and
NICE [243]; DB: Type-II diabetes in adults: management
— C3-cloud [67] (Chapter 5.2 , pp. 21-42) and NICE [228];
HTN: Hypertension in adults: diagnosis and management
— NICE [241]; AF: Atrial fibrillation: management — NICE
[244]

Care information Ramipril, Spironolactone, Bisoprolol, Simvastatin, Amlodip-
ine, Furosemide, Warfarin

New drug treatment | DB: Sulfonylurea

Conflict type Drug-drug interaction

Conflict solution DB medication Sulfonylurea is adversely interacted with
Warfarin treatment in merged care. Warfarin medication
replacement with a different anticoagulant

Clinical ID Metformin product: 109081006 (STC); Metformin therapy:
1097191000000106 (STC); Sulfonylurea product: 34012005
(STC); Sulfonylurea administration: 432955007 (STC);
Warfarin product: 48603004 (STC); Warfarin therapy:
722045009 (STC); Rivaroxaban product: 442539005 (STC);
Apixaban product: 703906002 (STC)

Abbreviations HTN: Hypertension; AF: Atrial Fibrillation; CKD: Chronic
Kidney Disease; DB: Diabetes; eGFR: Estimated Glomeru-
lar Filtration Rate; STC: SNOMED-CT code; DPP-4:
Dipeptidylpeptidase-4

In Figure the DB, CKD and AF guideline steps are shown to illustrate
how conflicting care actions may occur in a patient care pathway. Figure shows
the associated clinical finding record.

The CKD decision (i.e. common action with AF guideline) <CIGCKDDC11>
"30 < eGFR < 50 ml/min/1.73m27", based on the patient value, is given. Ac-
cordingly, care continues with the pharmaceutical action <CIGCKDPH3> "Initiate
Warfarin treatment" (clinicallD "722045009" (STC)) after the satisfaction of condi-
tional option [30 < eGFR < 50 ml/min/1.73m2= "yes"|. The activity lifecycle status
(ActivityLifecycleStatus) of this action is started. DB is the last diagnosed disease in
this example. The DB decision <CIGDBDCS8> "Systematic hyperglycaemia?" is

"yes", based on the patient health status, and the patient has a contradiction on
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Diabetes Chronic Kidney Disease +
Atrial Fibrillation

° ¢

Symptomatic 30 < eGFR < 507
hyperglycaemia? (mi/min/1.73m2)

<- [na] - [mo] -s
[yes] [yes]
L
Metformin . .
‘ contraindicated? | ‘ Initiate Warfarin |
«- [ng]

Conflicting
clinical actions

Initiate DPP-4 or
Sulfonylurea or

Pioglitazone

(a) Excerpt of Diabetes, Chronic Kidney Disease and Atrial Fibrillation guidelines
to illustrate conflicting care actions

< Clinical Finding PECAPP0002CF3

Property Value
Clinical Finding Definition 'S Adverse i " between ph. eutical recommendations of CKD, ...
Comment =
Definition 'S Adverse interaction
Has Associated Clinical Guideline % Clinical Practice Guideline CIGCKD, Clinical Practice Guideline CIGAF, Cl...
Has Current Health State ‘S moderate
Has Disorder Detail # Disorder Detail PECAPPO002DD3
Has Health State Change Status '= stable
Label 'S PECAPPOD02CF3

(b) Example of clinical finding recording

< Modification Constraint PECAPPO00ZMC4

Property Value
Comment =
Definition '= Replacing Warfarin to a different anticoagulant due to the adverse drug inberac...

Description OF Moedification < Medification action between CKD and DB guideline
Has Care Element Modification i

Has Care Element Replacement With # Pharmaceutical Care Element PECAPPIO0ZPCE]
Label ‘2 PECAPPOOOZMCA
Medification Time = 20190618113000

(c¢) Modification constraint for activity modifications

Figure 5.13: Illustration of care modification
their medication Metformin (clinicallD "109081006" (STC)), as well. Accordingly,

the DB decision <CIGDBDC9> "Metformin contraindicated?" is given as "yes".

In the following care step, the guideline recommends three alternative pharmaceuti-
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cal therapy options involving the medications DDP-4, Pioglitazone or Sulfonylurea.
The HCP selects the pharmaceutical therapy <CIGDBPH3> "Initiate Sulfonylurea
treatment" (clinicallD 432955007 (STC)) whose activity lifecycle status is active.

Before starting a pharmaceutical action, the HCP must discover whether
any adverse interaction may occur with such action. In this example, Sulfonylurea
(clinicallD "34012005" (STC)) have the potential to cause conflicts (i.e. adverse
drug-drug interaction) with Warfarin (clinicallD "48603004" (STC)), which may
bring about changes due to anticoagulant and increased hypoglycaemic complications
[242]. For this reason, this conflict needs to be resolved to maintain a safe care plan.
Thus, the procedural action <PECAPP0002PA11> "Observation of pharmaceutical
interactions" must be performed and the associated clinical finding (ClinicalFinding)
details (<PECAPP0002CF3>), using the hasClinicalFinding object property, must
be recorded. Here, the hasDisorderDetail object property links this concept with
the DisorderDetail (<PECAPP0002DD3>) where disorder type (DisorderType) (e.g.,
disease, sign, symptom, adverselnteraction, otherDisorder, etc.) can be defined.
The isA CauseOfDisorder object property links this class with the Adverselnteraction,
in order to choose the type of adverse interaction (AdverselnteractionType) such as
drugDrug, drugDisease, drugPatient, drugFood, timing or otherInteraction (i.e. to
capture other interaction types if exist).

In this case, the adverse interaction type is drugDrug. Once the interac-
tion details are recorded, then the modification constraint (ModificationConstraint)
is needed to be created and added to the personal care plan, see [5.13d Accord-
ingly, the modification constraint <PECAPP0002MC4> "Modification action be-
tween CKD and DB guidelines" is added to the personal plan. The pharmaceutical
care element (PharmaceuticalCareElement) Warfarin (clinicallD "48603004" (STC))
of the pharmaceutical action <CIGCKDPH3> "Initiate Warfarin treatment" (clin-
icallD "722045009" (STC)) must be modified. Thus, the needsModification object
property links the pharmaceutical action <CIGCKDPH3> with the modification
constraint <PECAPP0002MC4> to perform required modifications. In this exam-
ple, the care element modification is performed as medication replacement. Accord-
ingly, the descriptionOfModification data property is filled with a description of this
modification as "Replacing Warfarin to a different anticoagulant due to the adverse
drug interaction with DB medication".

The hasCareElementReplacement object property links this class with the
PharmaceuticalCareElement to define the medication details such as medication name,
its associated clinical ID, application dose, method of administration (e.g., inhale,

inject, etc.), active ingredient, possible side effects of the medication and the type of
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therapy (e.g., first line, second line, etc.). Due to the adverse interaction, Warfarin
(clinicallD "48603004" (STC)) <CIGCKDPCE3> is replaced with its safe alterna-
tive option <PECAPP0002PCE1> Rivaroxaban (clinicallD "442539005" (STC))(or
Apixaban (clinicallD "703906002" (STC)). Finally, the modification Time data prop-

erty of the action is recorded.

5.4 CIG Verification with User Support

In this section, a set of consistency checking examples which are discussed under
three main groups [50], as part of CIG verification is presented. Examples are shown
on the depression in adults: recognition and management guideline [67].

The first group of consistency checking involves name and missing informa-
tion checking while CIG models are created (pre-execution time); and when HCPs
add new guideline activities or their interrelations in a patient’s personal care plan
(execution time). The CIG verification module detects these problems and supplies
warnings to HCPs to solve these issues as well as a prompt box where HCP can
directly perform his/her correction to proceed the execution. Then, CIG model
and /or personal care plan can be automatically updated without the need of finding
the related part where the error occurs. To illustrate name consistency and missing
information checking, the following EVL codes and their related user messages are

presented as follows:

Example 5.4.1. Each instance of a class in the model, must have a name (label).
Figure presents how missing labels of clinical activities can be detected and

supplies user messages regarding how to resolve them.

Example 5.4.2. Each label in the model should start with an upper case letter to
maintain syntactic consistency. Figure illustrates how this inconsistency can be

detected, and related user messages can be generated for its resolution.

The second group of consistency checking is to maintain logical consistency.
This involves checking transitions between activities and ensure that care flow follows
a forward scheme (i.e. no cycles); checking whether there is any missing activities
that must be in the personal care plan such as starting activity or conclusion; or
checking whether all activities have a target activity (if it is not a final activity) or
incoming activity (if it is not a starting activity); or knowledge elements must not
exceed the predefined limits (e.g., minimum 2); or must not be missing (e.g., each
activity associated with a concurrency constraint must have one activity concurrency

status or each pharmaceutical action must have one duration and periodicity). To
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1 context ClinicalActivity {
2 constraint MustHavelabel{
check:self.labeley™™

4 message: self.Eclass.name + " "+ self.label + "sust have a name”
5 Fix{
title:"add a label for clinical activity" +* "+ self.Eclass.name + * whose * +"clinicalID" + " = +
[ self.clinicallD
8 do{
9 zelf.label:= UserInput.prompt(“Add a label far®™+ ® " +
18 self.Eclass.name, self.label);

}
12 }
3 ¥
4 }

(a)
¥ Validation &
@ PharmaceuticalAction must have a label
« Add a label for clinical activity Pharmaceutical Action whose clinicallD 698456001
Close

& Sting value prompt X

Add a label for PharmaceuticalAction

| ¥ Validation

(b)

Figure 5.14: Examples of (missing) name checking: (a) code; and (b) user message

illustrate logical consistency checking, the following EVL codes and their related

user messages are presented as follows:

Example 5.4.3. Checking whether the care workflow has a cycle. Since clinical
activity has a forward flow, cycles are not allowed. Figure [5.16| presents code for
how clinical activity transitions that lead to a cycle, can be detected and supplies

associated user warning to resolve the problem.

Example 5.4.4. Checking number of conditional options of a decision activity. Each
decision activity must have minimum two conditional options. Figure presents
code regarding how the number of conditional options can be checked and supplies

associated user warning to resolve the problem.

Temporal consistency is maintained in this work by involving each activities’
start and end time which can be actual or expected (if exact time is not known, and

therefore, it is assigned based on the duration of a clinical activity); as well as their
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1 context Clinicalactivity]

2 critique LabelShouldStartWithUpperCase{

3 check:self. label. substring(@,1)=s5elf. label. substring(®,1). tollpperlase()
] message: “The label of clinical activity™ + " 7 +

5 self.Eclass.name + " " + felf.label+ " " + "should start with am upper case letter”
] fixg

7 title:"Rename clinical activity™ + ° " + self.Eclass.name+ ™ "+

B zelf.label + 7 te " + self.label.firstToUpperCase()

] da{
18 self.label=celf. label firstTolpperCase();

11 }
12 }
13 }
14 ]-
(a)
4 Validation &

b The label of clinical activity Schedule clGDPSC1 should start with an upper case Ieneﬁ |

= The label of clinical activity Schedule cdlGDPSC1 should start with an upper case letter
< Rename clinical activity Schedule dGDPSC1 to QGDPSC1 |

(b)

Figure 5.15: Example of name (typing) checking: (a) code; and (b) user message

1 context TransitionAssigned {
1 constraint MotInCycle {
3 check : self.hasSourceActivity <» self.hasTargetActivity
1 message : "Clinical actiwvity transition " + self.label 4+ " "+ “leads a directed cycle”
3 ¥
& }
(a)
il Validation &
@ Clinical activity transition CIGDPTA4 leads a directed cycle| |
(b)

Figure 5.16: Example of checking whether the care workflow has a cycle: (a) code;
and (b) user message

activity lifecycle statuses. If an activity has started, then their concurrent activi-
ties can be captured through the concurrency management algorithm (see Section
4.4]). Thus, this maintains elimination of potential temporal conflicts which may
arise between multiple activities. However, more comprehensive temporal checking
approaches (e.g., [27, 121]) such as STP framework applications (see Section
and tools like SPIN model checker [I61] can be used in MuCIGREF as a future work.
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1 context Decision{

2 constraint DeclizionMustHavertlLeastTwolonditionaloptions {

3 check{

4 var numberOfOptions;

5 var classlLabelj

B

7 for (n in Decision){

g numberOfOptions = n.hasOutgoingTransition.label.size();
9 clasziabel= m.label;

18 return nusber0fOptions »= 2;

11 }

12 }

13 message : "There must be at least 2 conditional opticnz of” + " "+ classLabel +
14 ", but there are " + nusber0fOptions

15 }

16 }

(a)

[ validation =
@ There must be at least 2 conditional options of CIGDPDC2, but there are 1]

(b)

Figure 5.17: Example of checking the number of conditional options of decision
activities: (a) code; and (b) user message

128



5.5 Summary

This chapter presents a set of multimorbidity case studies and demonstrates their
implementations on MuCIGREF by mainly focusing on combining multiple CIGs
to create a personal care plan (step-by-step) for a multimorbid patient and then
exemplifies how they can be handled. Combining multiple guidelines to handle
multimorbidity care requires advanced management of various knowledge sources
to maintain patient safety and consistent care recommendations. Thus, examples
of these knowledge management approaches are addressed involving concurrency
management; multi-activity merging; care optimisation; and modification.

To begin with, concurrency management is important to handle concurrently
implemented clinical actions, especially, for drug combinations. This helps users to
handle clinical action recommendations in terms of drug dose level adjustment or
to avoid potential adverse drug interactions. MuCIGREF’s concurrency constraint
(ConcurrencyConstraint) supports users in concurrency management and therefore
care planning. This enables users to capture concurrency relations between activity
pairs and record them, which may affect the initiating new treatments without caus-
ing any drug efficacy reductions, drug overdoses or any patient-safety threatening
actions.

Multi-activity merging is vital to eliminate care duplications. These du-
plications, which may end up unnecessary resource use such as HCPs time to as-
sess the records or performing same lab test repeatedly, meaning additional cost
to medical centre, or drug overdose, may lead a patient safety threatening result.
However, multi-merging is the limitation of the existing literature [30, 57]. In Mu-
CIGREF, merging is achieved by initially discovering similarities (commonalities)
between clinical actions, and then performing synchronisation of multiple activities
(TimeBasedSynchronisationConstraint). When these activities are successfully syn-
chronised and there are no restricting conditions for them to follow the next care
step, then they can be merged in the subsequent care step. Care modification en-
ables users to have control over the care plan and helps users to resolve detected
conflicts (e.g., drug-drug, drug-patient, drug-disease). Conflicts can be resolved by
replacement of drug recommendations (ModificationConstraint). In this thesis, drug
conflicts are not detected since this requires an additional tool (e.g., drugbank.ca
[213] or drugs.com [2I4]) which is out of scope of this work.

Time-based care optimisation, which is required to optimise health resource
use and avoid care duplications. Optimisation can be performed on clinical actions

which are recommended by the guideline related with primary disease has been
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started and the guideline of secondary disease can reuse these actions. Thus, care du-
plications and unnecessary health resource use (e.g., clinical time) can be eliminated.
However, this reuse can be possible if and only if required conditions are satisfied
such as whether the clinical activity to be reused still within an appropriate time pe-
riod (e.g., validity of a lab test result). Thus, the time-based optimisation constraint
(TimeBasedOptimisationConstraint) supports users in their care optimisation actions.

Following section presents verification and validation results of MuCIGREF.
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Chapter 6

Evaluation

6.1 Introduction

The process of evaluation involves performing a set of verification analyses, which
means checking whether a knowledge construct satisfies the given requirements to
meet the intended objective of the system; and validation analysis, which means
checking the applicability of the system for the intended objective [192].

In this section, MuCIGREF is evaluated based on its representation and
execution capabilities of multiple concurrently implemented guidelines and their in-
terrelations. The evaluation begins with ontologies of MuCIGREF’s multiple CIG
representation language, MuCRL, for representing guidelines and their interrelations
and then its transformation into a meta model.

Following these, the section describes the evaluation of the execution algo-
rithms of MuCIGREF’s run-time execution engine, MuCEE, which allows the com-
bination of multiple CIGs. Knowledge representation power and comprehensiveness
of MuCRL and then the outputs of MuCEE are also evaluated, based on a set of

CPGs with patient scenarios to represent real world cases.

6.2 FEvaluation Method

The developed ontology is initially encoded using Protégé which supports OWL2
format, and then OWL2 ontology is transformed into EMF Ecore metamodel format
in Eclipse. This mapping is performed to generate CIG models and perform dynamic
execution over them using EOL [65] . However, an ontology must be consistent (i.e.
free from contradictions), coherent and syntactically correct to be used for reasoning

[245]. To do so, initially, ontology reasoners [92] 93] and tools are used to identify
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inconsistency, incoherency and syntactic incorrectness in the ontology.

Enhancing semantic interoperability [246] and achieving ontology sharing are
also a focus in this thesis. For this reason, the above-mentioned two widely used
knowledge modelling platforms are utilised for knowledge representation. Further-
more, an ontology must be complete (i.e. adequate coverage of the domain), clear
(i.e. ontologically defined terms represent intended objective) and concise (i.e. free
from irrelevant terms) [245] to achieve these targets.

To evaluate the ontologically represented knowledge, a set of evaluation meth-
ods has been proposed in the literature [245] [247] that are categorised as follows:
(i) golden standard evaluation, which is used to compare the ontology with the gold
standard one. Because there is no one gold standard ontology, the MuCRL ontology
is compared with existing CIG formalisms to capture whether missing elements exists
in knowledge representation of guidelines and their interrelations and/or to support
their executions; (ii) application-based evaluation, where the ontology is used for
specific applications and its results are evaluated (see ontology evaluation metrics
[218] 219, 220], 221], 222]) for many perspectives such as expressivity, correctness,
and completeness. A set of case studies are implemented for the evaluation of the
ontology and compared to some of the existing works on the same multimorbidity
care application; (iii) data-driven (also known as corpus-based) evaluation, which is
used to evaluate the ontology by extracting information from the knowledge base.
This evaluation is performed after transformation from OWL ontology to the EMF
metamodel. Execution algorithms are used for this purpose. Thus, three knowledge
representation evaluation approaches are adopted in this thesis.

In the literature, several CIG verification methods have been proposed, such
as knowledge-based, theorem proving and model checking (see Section . In
this thesis, a variant of knowledge-based CIG verification approach is adopted. This
enables users to verify a guideline before real-time execution and if quality require-
ments are not satisfied, then they can be fixed. Users can also add new knowledge
elements in the real-time execution phase, then tool can capture inconsistencies if
this new knowledge causes. Developing automated verification techniques is still
a challenging area of research for checking the quality of clinical guidelines [I5§].
For this reason, CIG verification module is developed based on EVL in Eclipse as
a verification tool. This supports users to detect missing information and maintain
semantic and syntactic consistencies, required for care recommendations. To solve
these issues, users are supported with warnings and messages. Its application on a
CIG model is shown in Section (.41
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6.3 Evaluation of MuCIGREF’s Representation Language

In this section, the evaluation of MuCIGREF’s representation language, MuCRL, is
performed. This involves the steps of ontologically represented knowledge evaluation,
comparison with existing guideline representation languages and implementation of

MuCRL on a set of guidelines.

6.3.1 Evaluation of the Ontology through Ontology Metrics

The ontology is evaluated based on a set of ontology evaluation metrics to discover
whether MuCRL ontology achieves the required ontology correctness and quality
standards and supply more understanding on the characteristics of the ontology
to readers. Ontology can be evaluated in correctness (e.g., completeness, concise-
ness and consistency) and quality (e.g., computational efficiency (i.e. size), adapt-
ability (i.e. cohesion), and clarity aspects [220]. Thus, the considered metrics
[218, 219 220, 221], 222] are consistency, coherency, comprehension, clarity, con-
ciseness, completeness, structural complexity, cohesion, and conceptualisation.

Initially, ontology is evaluated based on both the consistency, and seman-
tic correctness dimensions. After the ontology is encoded using OWL2 format in
Protégé 5.2.0, FaCT++ [93] v.1.6.5 (i.e. tableaux-based reasoner), and HermiT
[92] v1.3.8.413 (i.e. a hyper-tableau based reasoner) OWL2 reasoners are used to
achieve domain and range checking, identify subsumption relations between classes,
checking instances of classes, retrieving instances of classes and to detect and resolve
ontology inconsistencies with OntoDebug plugin of Protégé. Thus, a logically coher-
ent and consistent ontology is obtained. The Ontology Pitfall Scanner! (OOPS!)*
(http://oops.linkeddata.es/) is also used to support identification of the common
pitfalls, occurring while developing the ontology.

Subsequently, the semantic correctness of the ontology is assessed based on
the following principles [248]: (i) each hierarchy possesses a single root; (ii) each
class has minimum one parent; (iii) description of each child is different from its
parent class; (iv) the siblings are different from each other; and (v) cycles are not
allowed in a is-A hierarchy. As a result, the resulting ontology met the semantic
correctness standard. Ontology is then checked whether free from unnecessary classes
and duplications, which means there is no similar or same attributes or concepts.
This met the conciseness criterion for the ontology.

The completeness metric measures whether the domain can be covered with
the ontology entities (e.g., classes, properties) without the need of adding new enti-

ties. These are proved by implementing the ontology on a set of CPGs and multi-
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morbidity case studies (see Section which are discussed in Section m The
MuCRL ontology complies with the intended meaning of defined terms and involves
objective definitions for the classes and relations with rdfs:label and dc:description;
this represents the clarity criterion of the ontology [205]. The ontology is also com-
pared with the existing research and application work, in order to support the com-
pleteness dimension (see Section as part of the validation process.

In Table [6.1] the size of the ontology is presented involving the number of
classes, object and data properties and instances of the enumerated classes with
the shares of its ontology groups. The proposed ontology involves are 68 classes,
70 object properties, 126 data properties, 1271 axioms and 115 defined instances

(enumerations).

Table 6.1: Summary statistics of MuCRL ontology

MuCRL Guideline Health Multi Patient
(Total) Service Care Activity Care
Deployment Service Management Personalisation

Classes 68 11.8% 72.1% 7.4% 8.8%
Object Properties 70 71% 71.4% 11.4% 10%
Data Properties 126 13.0% 56.9% 7.3% 22.8%
Instances* 115 35.7% 55.7% - 8.7%
Size 379 18.6% 62% 6% 13.5%

*Enumerations

There are 379 ontology entities are introduced in this thesis. HES constitutes
62% of these entities and has the highest share among other groups. However, its
connections between other groups imperative to represent and manage guidelines.
The numerical values for the following ontology evaluation metrics are presented in
Table [6.2] to supply information about the ontology. For the interpretation for them,
the following definitions are presented [218] 219, 220], 2211, 222]:

e Structural complexity: This metric measures the complexity of the on-
tology. The size (i.e. total number of ontology entities) and relationships
between ontology entities are components of this metric. The average number
of semantic relation is higher than 1, which shows the connectedness degree of

the ontology;

e Cohesion: This metric measures the relatedness degree of the ontology. Here,
the number of leaf classes (i.e. taxonomy density metric representing classes
which has no subclasses) and the average depth of inheritance tree (i.e. the
ratio of total path depths (number of nodes) and sum of all paths) are calcu-
lated;
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Table 6.2: MuCRL ontology evaluation metrics

Evaluation criteria Metric Value
Structural Size of the ontology 379
Complezity Average number of semantic relations 1.27

per defined class

Abstraction Average depth (path length) of the ontology 2
Cohesion Number of root classes 4
Number of leaf classes (external nodes) 55

Average depth of inheritance tree of leaf nodes  1.24

Conceptualisation Relationship Richness 0.51
Attribute Richness 1.85
Inheritance Richness 4.9

e Conceptualisation: This metric measures the semantic richness of the on-

tology. This involves:

Relationship Richness: This measures the connections (relations) be-
tween classes compared to all connections. The total number of semantic
relations assigned to classes, divided by the sum of the number of sub-
classes and the number of semantic relations. If the ratio is close to one,
this represents that most of the relations are between classes whose rela-
tions are different from class and subclass relations. In our case, the value
of this metric is 0.51;

Attribute Richness: This measures the total number of attributes,
divided by the sum of ontology classes. The higher values of this metric
representing classes have high set of information compared to its lower

values. The value of this metric is calculated as 1.85;

Inheritance Richness: This measures classes’ average number of sub-
classes. The higher values of this metric represent the details of a class.

The inheritance richness of the ontology is calculated as 4.9.

The afore-mentioned ontology evaluation metrics supply information about

the ontology for readers. Thus, they can compare MuCRL ontology with other

ontologies

(see [249]) when they would like to reuse the ontology. Following this,

the ontology is transformed into its metamodel version using EMF in Eclipse, and

that might

involve some differences in knowledge representations (e.g.,abstract class

definitions). In existing literature, several tools (e.g., [232]) have proposed to support

this translation.
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6.3.2 Evaluation of MuCIGREF’s Guideline Representation

To verify that the MuCIGREF’s representation approach is adequate for representing
and managing CPGs and their interrelations, six CPGs which have different scopes
(e.g., diagnosis, treatment, management, etc.) and different numbers of clinical
actions, based on NICE guidelines are instantiated. Among them, five CPGs are
selected for implementations and compared with the C3-Cloud’s CPG flowcharts
[67]. These guidelines are selected to combine them in order to implement real-
world multimorbid patient scenarios [68], 242] and implement existing works [36], for
comparison of this thesis’ approach to others.

In Table patient scenarios, associated with guidelines representing their
health conditions, are presented. Patient scenario implementations and information
about guideline sources are previously discussed in Section[5.3.5] under each scenario.
These implementations demonstrated that the MuCRL ontology can represent all the
considered CPGs and their interrelations (e.g., medications, lab test results) without
the need of adding new classes or relations. This result supports its adaptability (i.e.
the ability of using the ontology in different domains, for example, in diagnosis or
disease management, and its extendibility and completeness. Hitherto, this is derived
from the current CPG implementations, and therefore more CPGs need to be used

to further this result, in a future research.

Table 6.3: Patient scenarios used for testing

Clinical practice guideline Scenario 1 Scenario 2 Scenario 3 Scenario 4

Atrial fibrillation: management v
Chronic heart failure in adults: v

management

Chronic kidney disease in adults: v
assessment and management

Depression in adults: v

recognition and management

Hypertension in adults: v v v
diagnosis and management

Type-II diabetes in adults: v v v
management

6.4 Evaluation of MuCIGREF’s Execution Engine

This section discusses the evaluation of MuCIGREF’s execution engine, MuCEE.
The evaluation begins with interpreting the implementations of MuCEE’s modules

in multimorbid case studies and then compared with existing CIG execution engines
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and tools.

6.4.1 Evaluation of CIG Acquisition Module

MuCEE supports acquisition of multiple CIGs, which means transferring comput-
erised guidelines based on patient health conditions to the personal care plan. This
plan is the resultant care plan of a multimorbid patient, where all the updates are
performed on this plan. CIGs can be acquired simultaneously or when the disease
occurs. Before CIG acquisition, CIGs must involve all the required information
and they must be consistent, as well. Pre-CIG execution verification needs to be
performed before the CIG acquisition phase.

In this thesis, CIG acquisition is realised by the satisfaction of required exe-
cutional constraints. CIG actions can only be acquired if activity lifecycle status of
a clinical activity is active which denotes that a clinical activity is executable. If it
is not active, then the activity lifecycle status must be passive. This means that the
activity is not executable because it is absolute (not currently in use) or not able
to be implemented with the available health care resources (e.g., CT scanner). The
guideline acquisition approach is presented in Section and its implementation
in Section and Section where multiple computerised guidelines (e.g., dia-
betes, depression, chronic heart failure, and hypertension) are acquired (transferred)
to the personal care plan.

Thus, the multiple CIG acquisition module successfully acquired all the guide-
lines associated with patients’ health conditions for the considered multimorbid case
studies. Following section presents the parallel CIG execution module evaluation

results.

6.4.2 Evaluation of Parallel CIG Execution Module

In this section, the coverage of execution requirements (see Section 4.2)) of MuCEE,
is evaluated based on the implementation results of CIG executions on the multi-
morbidity case studies in Section [5.3] The application steps of real-time execution

engine are as follows:

Step 1. MuCEE supplies MuCIGREF’s CIG representation language, MuCRL, for
CPG encoding and deals with different guidelines (e.g., diabetes, chronic heart fail-
ure, obesity, etc.) with different guidance, such as management, diagnosis, or risk
assessment. Care initialisation begins with the creation of a personal care plan. In

this plan, all the updates related with patient-HCP encounter and progress of clinical
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activities are recorded (see Section [5.3.1));

Step 2. After the creation of personal care plan and recording clinical findings, then
the HCP can acquire CIG models (see Section to transfer them to the personal
care plan based on patient health conditions and satisfying required conditions (e.g.,
transferring active labelled clinical activities). MuCEE records each implementa-
tions of CIG activities at the knowledge base and supplies a history of patient care
progress. MuCEE also recommends HCPs data entry (e.g., patient health status,
life-style information) when needed, to follow the next care step based on the clini-
cal options (as part of the verification process); and, additionally, supports them to
query information from the knowledge base. Furthermore, MuCEE involves clinical
IDs (e.g., SNOMED-CT) for data standardisation. Use of clinical IDs enhances se-
mantic interoperability, since they eliminate impreciseness in the definition of clinical

actions, parameters (e.g., good or bad result), and care elements (e.g., medication);

Step 3. HCPs can select the first clinical activity to initialise care based on the
MuCEE recommendation. Clinical activities are sequenced (see Section based
on the workflow control patterns (see Section [3.5.5). However, their sequence can
change based on the care progress. For instance, an HCP can ignore some care steps

as they wish;

Step 4. Activity sequencing is performed step-by-step based on the satisfaction
of required conditions (e.g., preconditions) and constraints (e.g., execution states).
MuCEE executes care steps involving activity execution states such as started, can-
celled, done, in correspondence with the care progress, and manages different condi-
tion types (see Section . In this thesis, four condition types are considered as
precondition (e.g., lab test result must be ready before observation), activating con-
dition (e.g., decision conditions), outcome condition (e.g., starting care based on the
patient health condition such as signs of high blood pressure) and end condition (e.g.,

medication must be ended when a patients’ health condition reached a certain level);

Step 5. The patient can have more diseases in time; therefore, more CIG models
can be acquired and combined in the personal care plan, at any time point during
care (see Section . These may need to be mapped to each other for handling
multimorbidity related relations. For instance, multiple clinical actions of different
CIGs may have concurrency relations. These actions need to be mapped to record

their concurrency relations and eliminate care duplications;
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Step 6. Multiple CIGs may need to be merged, if they satisfy required conditions
(e.g., time-based synchronisation) and constraints at some point of the care cycle

(e.g., common clinical actions such as on certain medication);

Step 7. HCPs can update, modify or ignore the CIG recommendations. Care opti-
misation can be performed to eliminate unnecessary care duplications by supporting

reusing of care activities;

Step 8. HCPs can modify care actions to improve patient safety by replacing a

medication with its safe alternative.

Each step maps one or multiple CIG execution requirements, as presented in
Section which are satisfied by MuCEE. Among them, steps 3 — 8 address the
parallel CIG execution module. This thesis concluded that MuCEE has adequate

execution capabilities in managing multiple concurrently implemented CIGs.

6.4.3 Evaluation of CIG Verification Module

CIGs must involve required properties (e.g., medical practice, guideline goal, patient-
specific clinical condition, time, patient groups) to satisfy the intended objective
(e.g., diagnosis, management) and supply consistent and error-free recommendations
when they are executed [10, 152, [153].

CIG models (pre-execution) and personal care plan (real-time execution) need
to be verified to eliminate possible model errors, and missing information (e.g., label,
relation) which are necessary to supply care recommendations. For this purpose, the
EMF model validation tool [250] is initially used for automated checking models of
individual CIGs and personal care plans (where multiple CIGs are combined). This
produces warnings for incorrectness and maintaining each instance of the class has
the required values (i.e. ensures that there is no missing value), and relations (e.g.,
hasEzamination) based on the cardinality restrictions (e.g., min 1).

Secondly, EVL [102] is used for the development of verification constraints
to detect inconsistencies in models and help users how to repair them involving the
importance of the error (e.g., critique is used to designating not crucial errors). CIG
verification module of MuCEE can be used, for example, preserving directedness
between connections of nodes (classes); ensuring required workflow constructs are
correctly defined and checking whether any unvisited node is remained; ensuring

semantic consistency (e.g., labels of model entities should start with upper case let-
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ters); ensuring there is no missing information (e.g., all the clinical activities must
have source and target activities); and ensuring knowledge consistency such as each
guideline implementation must have one starting activity, each guideline implementa-
tion must have minimum one conclusion, each decision activity must have minimum
two conditional options, a pharmaceutical action must have one pharmaceutical care
element, an examination action must have one examination; or a procedural action
must have one procedure and many others.

User messages are also developed to support users in fixing the errors with
user prompt messages and enable users flexibility in developing task-specific verifica-
tion constraints, which are the major motivation of using EVL rather than using the
built-in model verification tool (e.g., SPIN [I61]) but they can be used for compar-
ison with EVL in future. In Section [5.4] real-time CIG verification implementation
on a depression guideline [67] is presented involving some example verification codes

and related user messages, showing the inconsistencies and how to resolve them.

6.5 Comparison with Existing CIG Languages and Exe-

cution Engines

In this section, MuCIGREF is compared with a set of well-known CIG languages;
and their CIG execution engines which are required to represent and simulate CPGs
with the patient data to generate care recommendations for patients.

Initially, existing well-known CIG Languages which involve Asbru, EON,
GLIF, and PROforma, are compared with MuCRL, in supporting control-flow pat-
terns [30, 57]. In Section the MuCRL’s supported control flow patterns are
presented. These are important to control knowledge elements required to create a
care pathway for a patient. In Table [6.4] the comparison of Asbru, EON, GLIF and
PROforma formalisms, in supporting control-flow patterns, as performed by Mulyar
et al. [30], with MuCRL is presented. These patterns are categorised based on their
roles in workflow systems as follows: (i) basic control flow patterns; (ii) advanced
branching and synchronisation; (iii) state-based patterns; (iv) cancellation and force
completion patterns; (v) structural patterns which involves termination and itera-
tion patterns; and (vi) trigger patterns. These patterns are initially introduced in
Russell et al. [57] and in the official web site workflowpatterns.com [215] where each
pattern involves a pattern number, related definition. They are used in pattern-
based analysis of CIGs in existing works (see [30], [128]). Section presents the
general descriptions on main elements of workflow patterns but for further infor-

mation please see [57, 215]. MuCRL is included in this comparison table presented
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by Mulyar et al. [30]. In addition, the support of some PROforma’s control-flow
patterns (e.g., simple merge and arbitrary cycle) is updated on this table based on
the work of Grando et al. [128§].

Table 6.4: Comparison of supported control-flow patterns in existing CIG Languages
[30] with MuCRL

Workflow pattern Asbru EON GLIF PROforma MuCRL

Basic control-flow

Sequence

Parallel split

Exclusive choice

Simple merge

Advanced branching & synchronisation
Multichoice

Multi-merge - - -
Local synchronising merge - - -
General synchronising merge - - - -
Structured partial (n-out-of m) join
Structured discriminator (1-out-of- m join)
State-based patterns

Deferred choice

Interleaved (parallel) routing

Milestone - - -
Critical section

Cancellation & force completions
Cancel activity

Cancel case

Cancel multiple instance activity
Complete multiple instance activity
Cancelling n-out-of-m join

++ 4+
++ 4+ +
++ 4+
+ + +
++ 4+

+

+

+

+ 0+

+ o+t

+A
+
+
+A

+ -

+
+ 4+ +

+
+

++ 4+

++ 4+ + +
++ 4+ ++

Structural patterns
Arbitrary cycles
Termination
Structured loop
Recursion

Trigger

Transient Trigger - - -
Persistent Trigger - -

+ 4+
+ 4+ +
+++
+ 4+ +

+

+
+ +

+: supported ; -1 not supported; +/-: partially supported

The major contribution of this thesis is to manage concurrently implemented
multiple CIGs and their actions which are the limitation of existing works, see Sec-
tion and Section Among control-flow patterns, representing advanced
branching and synchronisation patterns support this goal. These involve multi-
merge, general synchronising merge, and local synchronising merge patterns which
are the common patterns that are not involved in existing formalisms [30, 128] are

covered in this work (see Section [3.5.5)) with the support of multi-activity manage-
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ment ontology group.

Because of the design principles, arbitrary cycles are not supported in this
work, because cycles are not allowed in our system. Structured loop is also not sup-
ported in MuCRL. Clinical activities are performed always in forward way. Recursion
is also not supported because any action cannot invoke itself. User must start the
recommended activity from the system. Consequently, the coverage of these patterns
affects the execution capabilities of run-time execution engines. Based on this ta-
ble, MuCRL has the highest workflow control patterns coverage. Then, PRO forma,
Asbru, GLIF and EON follows this, respectively.

Secondly, existing real-time CIG execution engines are compared. This com-
parison was adopted from Isern and Moreno [19] and involved MuCEE in Table
6.5

Table 6.5: List of CIG languages and their execution engines

CIG Language | CIG Elements CIG Execution Tool
. .. . Rule-based Arezzo
PROforma Action, decision, enquiry, plan Fvent-based HeCaSed
Asbru Time-oriented skeletal plans, plan, | Event-based DeGeLs
precondition, plan type
GLIF3 Action, decision, branch Event-based & GLEE
synchronisation, patient state rule-based
Graph-like Query, work, decision, conclusion Rule-based META-GLARE
GUIDE PetriNet Rule-based NewGuide
EON Context, decision, plan, enquiry Event-based SAGE
SAGE Guideline | Action, decision, action, branch Event-based SAGE
model synchronisation, scenario
Arden Syntax Medical logic modules Rule-based Arden
Syntax IDE
MuCRL Query, activity, conditions, activity | Event-based & MuCEE
management constraints rule-based

While rule-based approaches [251] (e.g., query or encoded knowledge) have
been used for continuous systems, event-based approaches have been used to manage
nonsynchronous actions which requires a triggering action to start a CIG activity
(e.g., clinical events such as waiting result of lab tests or HCP requests; or sys-
tem events such as when a care action is completed, then the next action can be
followed if and only if there is no limiting condition over this action) [I5]19]. Accord-
ingly, execution engines that have rule-based execution mechanism involves Arezzo,
META-GLARE, NewGuide and Arden Syntax; event-based execution mechanisms
involve HeCaSe2 and SAGE; and lastly, hybrid (rule + event) execution mechanisms
involve GLEE and MuCEE.
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Existing CIG execution engines and tools meet common execution require-
ments addressed in Section Nevertheless, the major limitations of the existing
works are mainly about combined management of multiple CIGs, which involves
merging multiple CIGs and their concurrently implemented multiple clinical actions;
managing care inefficiencies (e.g., care duplications) affecting care; and then gener-
ating automatic personalised care plans involving patient context. In Section
the limitations of existing works, se per the complex requirements of multimorbidity
care management, are extensively discussed.

In the light of the foregoing, this thesis contributes on managing multimorbid-
ity care through combining multiple concurrently implemented CIGs while handing
the afore mentioned complexities. Thus, a new knowledge representation approach,
MuCRL, is developed to support multi-activity management and then mapped to
modelling environment where execution is performed over models. Table[6.6] presents
multi-activity management constraints, with their functionalities used in managing
multimorbidity care. Each MAN constraint is associated with a functionality type
as dynamic or flexible. Dynamic here refers to a functionality that enables users to
add, remove or modify actions during the solution process (e.g., care recommenda-
tion). Flexible refers to a functionality that enables users to add user preferences on

choosing alternative care options.

Table 6.6: Multi-activity management constraints supporting combination of multi-
ple CIGs

Constraints
Concurrency Time-based Modification Time-based
Constraint Synchronisation Constraint Optimisation
Constraint Constraint
Functionalities
Eliminating care v v
duplications
Merging multiple v
clinical actions
Enabling care v
modifications and
updates
Handling of v
synchronisation
relations
Constraint types
Dynamic Dynamic Dynamic, Flexible Dynamic, Flexible

V' supported
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The concurrency constraint can be used to eliminate duplications, since they
record concurrency of activity pairs until the end of their concurrency period. Like-
wise, time-based optimisation constraints can be used to reuse completed clinical
activities, if they are within an acceptable time period. This will eliminate care
duplications and therefore resolve potential conflicts. For instance, drug overdoses,
due to the duplicated same medication recommendations, can be eliminated.

The time-based optimisation constraint is defined as a dynamic constraint
when care reuse must be performed, and a flexible constraint that an optimisation
action can be performed onto, for which its violation does not affect the patient
safety.

The time-based synchronisation is a key constraint that must be added to
the personal care plan when multiple activities are merged in their common (similar)
subsequent clinical activities. Synchronisation relations of multiple clinical activities
can also be handled with this constraint. Merging of these activities are not forced
after their synchronisation. Synchronisation of clinical activities are performed in
parallel. Care modifications are required, when conflicting clinical actions occur or
patient allergy or personal context (e.g., preferences) need to be considered.

The modification constraint is defined as both a dynamic and a flexible con-
straint. It can be considered as a dynamic constraint when the care modifications,
such as drug replacement with its safe alternative or adjusting timing of a clinical
action must be performed to maintain patient safety. It can also be considered as
a flexible constraint when HCPs (user) would like to modify care steps or care op-
tions, based on their or patient preferences. Thus, this constraint supplies flexibility

to users.

6.6 Summary

MuCIGREF was evaluated for knowledge representation of CPGs and their interre-
lations and its execution engine capabilities. The evaluation order of MuCIGREF
is as follows. Initially, the evaluation of MuCRL- MuCIGREF’s CIG Representa-
tion Language was performed. This involved evaluation of MuCRL ontology using
a set of ontology evaluation metrics; comparison of MuCRL with existing CIG lan-
guages; MuCRL’s transformed metamodel version is evaluated by its instantiating
this metamodel on different patient scenarios using different CPGs to demonstrate
the coverage of the knowledge representation approach in different domains (e.g., di-
abetes, chronic heart failure). Afterwards, the evaluation of MuCEE- MuCIGREF’s

Execution Engine was performed. This involved evaluation of pre and post CIG
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execution; comparison of MuCEE with existing CIG execution engines; and evalu-
ation of MuCEE in multimorbidity case studies mainly focusing on multi-activity

management which is the major focus of this thesis.
¢ Evaluation of MuCRL

MuCRL ontology was developed using OWL2 in Protégé. For the evaluation
of this, a set of ontology reasoners and tools were used to maintain consistencies
and semantic coherency of the ontology. A set of ontology metrics was used to
show that the ontology meets required quality standards and supply intuitiveness
on the ontology aspects. Afterwards, ontology encoded in OWL2 is transformed to
EMF in Eclipse. These systems have different strengths in knowledge representation,
execution and evaluation.

Because MuCRL involves new concepts and properties for managing multi-
morbidity care, there is no gold standard ontology for the comparison. Yet, it is
compared with existing CIG languages to cover the required control flow constructs.
The results demonstrated that MuCRL covers workflow patterns required for manag-
ing multiple concurrently implemented CIGs. The major contribution of MuCRL is
on representing advanced branching and synchronisation relations of clinical actions
and their associations (e.g., care elements).

To evaluate MuCRL’s representation power, a set of CPGs were represented
with this formalism. As a result, MuCRL successfully represented all the considered
guideline knowledge constructs and their interrelations. This was deduced from the
use of CPG flowcharts of C3-cloud [67] where a group of HCPs developed the CPG

flowcharts. Thus, this thesis ensured that all the guidelines were successfully covered.
e Evaluation of MuCEE

MuCEE involves three modules as multiple CIG acquisition module, CIG
execution module and CIG verification module.

To test the CIG execution engine and acquisition module, clinical pathways
of multimorbid patients were computerised based on the flowcharts of C3-Cloud
[67] and NICE, and patient scenarios were created based on the suggestions of the
existing literature [28, 36] 114, 242] and C3-Cloud [68] as well. CIG models were
successfully acquired in accordance with the patient scenarios. In Section [6.4.2] how
MuCEE satisfies CIG execution requirements to achieve run-time multimorbidity
care management based on the algorithms proposed in Section was discussed.

Based on the review of the existing execution approaches (see Section ,
multimorbidity care management approaches and their limitations (see Section
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and the comparison of MuCEE with well-known execution engines (see Section ,
this thesis concluded that MuCEE fills the gap of execution requirements in com-
bining multiple concurrently implemented CIGs. Because the focus of this thesis
is multimorbidity care management, multi-activity management approaches are the
contributions of this thesis to the literature. To prove this, Section [5.3] exemplifies
multimorbidity management using MuCEE. The following multi-activity manage-
ment approaches that were successfully implemented in Section [5.3.5 with the given
guideline combinations which are as follows: (i) concurrency management; (ii) multi-
activity merging ; and (iii) time-based care optimisation with the Diabetes — Hyper-
tension — Chronic Heart Failure guideline combinations; and (iv) care modification
with the Diabetes — Hypertension — Chronic Kidney Disease — Atrial Fibrillation
guideline combinations. The associated execution algorithms are presented in Sec-
tion 4.4

The evaluation of CIG verification module involves checking the implemen-
tations above-mentioned guideline implementations before execution (installation
level) and execution time to ensure that naming and labelling conventions [253] are
preserved, there is no missing information, semantic incorrectness, cycles and many
others (see Section in a care plan. Verification before CIG execution is required
for CIG acquisition phase to transfer guideline instantiations and their associations
to patients’ personal care plans. Execution time CIG verification is required to en-
sure that if any instances are added to the personal care plan may not cause any
inconsistencies (e.g., missing information, missing connections, directedness viola-
tions) affecting a care flow. A set of EVL constraints were developed to detect these

inconsistencies and generate user messages regarding how to fix them interactively.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

Clinical practice guidelines are evidence-based knowledge sources that supply care
recommendations to healthcare professionals in managing mainly a specific health
condition. Traditional CPGs face difficulties in presenting a detailed consideration
of strategies and recommendations to coordinate conditions of a multimorbid patient
since they mainly single disease centred. The major challenges of using guidelines
are their inability to adapt to dynamic changes in patient health conditions as well as
their manual management of their recommendations, which may adversely interact
with each other when multiple of them concurrently implemented.

Multimorbidity management is an increasingly relevant topic of research in
the health informatics community, due to its care challenges and concerns of provid-
ing personalised therapies |26, 511, (136, 177, 203], 254, 255] for each patient, which
is the main aim of patient-centred care [0, 256]. For personalisation, diverse infor-
mation related to all a patient’s health conditions, clinical history, health records,
as well as personal context need to be consolidated. Evaluation and amendment of
many co-existing care plans, as well as coping with possible adverse interactions,
make multimorbidity care much more challenging. HCPs struggle with supplying
care to patients under such complexities, without causing any treatment conflicts or
making any inconsistent and/or unnecessary recommendations. When these com-
plexities are poorly managed, they may negatively affect the duration of care and
the healing process of a patient, which may result in several undesired outcomes.
Moreover, eliminating care interruptions of patients after their encounters with their
HCPs and sustaining their adherence to the agreed care plan are also crucial for

their outcome.
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This thesis initially introduced a multiple CIG representation language by
developing a generic ontology as a guideline formalisation method, which represents
knowledge constructs of CPGs and their interrelations and to establish multimorbid-
ity relations between multiple of them to handle their concurrent implementations.
Afterwards, ontologically represented knowledge is transformed to the EMF Ecore
metamodel for generating CIG models to achieve dynamic knowledge execution. Af-
terwards, a real-time multiple CIG execution engine is introduced to combine multi-
ple concurrently implemented CIGs to generate personal care plans for multimorbid
patients. The major challenge towards combining multiple concurrently implemented
CIGs is merging of multiple clinical actions, which need advanced activity synchroni-
sation and concurrency management and conciliation of different knowledge sources
(e.g., medication, duration of care, patient characteristics such as allergy and health
state), such that the interaction of them should not cause any conflicts which may
threat the patient safety or care redundancies which may cause unnecessary health
resource uses.

As a result, MuCIGREF can be used to support HCPs in a CDSS setting
to generate unified and personalised care recommendations for multimorbid patients
by avoiding care duplications, modification of care actions to supply safe care, and
supplying time-driven optimised health resource management by enabling reuse of
clinical elements if they are within the acceptable reuse period. This may improve
operational and cost efficiency in multimorbidity care management.

Following sections present discussion of thesis results, thesis contributions,

limitations and future works.

7.2 Meeting the Research Objectives

This section discusses the results related to the development of a new CIG language,
MuCRL, and its execution engine, MuCEE, by addressing the research challenges

and objectives raised in the introduction, respectively.

7.2.1 Discussion of Results Related to CIG Language Development

MuCRL is designed to deal with the challenges of mainly single-disease centredness of
currently available CPGs that supply general care statements to manage a patient’s
health condition(s) without considering his/her multimorbid conditions.

To date, guidelines have been represented using different CIG languages which
have different modelling approaches to develop CIGs. The common features of these

languages are to represent knowledge constructs of guidelines (e.g., activities, de-
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cisions, etc.), their associated conditions (e.g., precondition) and constraints (e.g.,
task duration, etc.), organisational workflow control patterns required to manage
clinical tasks (e.g., sequencing, synchronising, branching, etc.), and executional se-
mantics required to control and store the states of clinical tasks. However, existing
works mainly struggle with combining multiple concurrently implemented CIGs and
generate unified care recommendations, which must be safe and personalised. These
limitations are found out by performing a gap analysis through conducting a com-
prehensive systematic literature review [31]. Thus, MuCRL aimed to fill the gaps of
the existing literature and it can be used as a reference CIG representation language.

MuCRL can be used to represent knowledge constructs of CPGs and their
interrelations and to create required mappings between multiple CPGs to meet
patients’ multimorbid health needs. To achieve this, a generic ontology is devel-
oped based on the synthesis of well-known ontology building lifecycle methodolo-
gies. Subsequently, the ontologically represented knowledge is conceptualised under
four groups, as follows: (i) Guideline Service Deployment, represents guideline in-
formation (e.g., author, guideline name, etc.) and information about the HCP who
performs the care; (ii) Health Care Service, represents required clinical elements to
create a care pathway (e.g., temporal constraints, clinical actions, condition parame-
ters, etc.) and executional information; (iii) Multi-activity Management, represents
required multi-activity management constraints required for the management of con-
current presentation of multiple CIGs; and lastly, (iv) Patient Care Personalisation,
represents patient-specific information (e.g., name, weight, life-style information, ad-
mission date, etc.). These groups are linked with each other (e.g., task-network [9]),
to develop a combined care pathway for a multimorbid patient. MuCRL partially
reuses some knowledge entities from existing clinical terminologies and codes (for
standardisation and enhancing semantic interoperability), ontology portals and ex-
isting CIG languages which are addressed in Section since these elements are
common elements for almost all CIG languages.

The novelty of MuCRL is to present a set of new classes and properties
that are required to represent elements of concurrently implemented multiple CIGs
and manage their multiple activities in a CDSS setting. To illustrate, during the
care, new disorders may occur due to allergic conditions, and/or other disorders
or existing care may need to be updated. Overlapping activities may occur and
cause drug overdose, which may have life threatening impact upon the patient or
cause extra health resource use (e.g., physicians’ time, lab tests, etc.) that means
costs for the health organisation. When many guidelines, and their interrelations,

are considered, delays in care flow may occur as well. MuCRL supplies required
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semantics for enabling dynamic and flexible management of multiple CIGs through
the use of multi-activity management constraints. These constraints are designed
for performing activity concurrency management, time-based synchronisation, time-
based optimisation and modification. Thus, they support management of multiple
care recommendations (e.g., concurrently implemented or with delays) which needs
to be merged after their synchronisations to eliminate care duplications, and handling
conflicting care goals with modification.

MuCRL substantially supports the workflow control patterns presented in
[9, 30, 57] (see Section for how it supports these patterns and see Section for
comparison with existing CIG languages). MuCRL mainly contributes on advanced
synchronisation and branching patterns (e.g., multi-merging organisational workflow
control pattern, which is required to manage concurrent implementation of multiple
CIGs). A wide range of temporal constraints as duration, periodicity, temporal
distances, limits (e.g., deadlines), windows (i.e. allowed time periods to maintain
patient safety) and temporal uncertainties (e.g., expected start time) to manage CIG
actions are considered. Allen’s temporal constraints [227] and like GLARE, advanced
temporal information by supplying required semantics to handle temporally exact,
imprecise and unknown information in implementing care activities are considered.
Moreover, while in existing works decisions can have two options [36, 188 [I89], in
MuCRL, decisions (Decision) have XOR split property and can have minimum two
conditional options.

Lastly, MuCRL is tested based on a set of evaluation criteria which are pre-
sented in Section [6.3.2] These involve using ontology reasoners and ontology eval-
uation metrics, several CPG implementations and comparisons with existing CIG
languages. This thesis concluded that MuCRL supplies consistent, and coherent on-
tology. Ontology metrics are also presented for readers to supply more insights to the
ontology if they would like to reuse it. MuCRL successfully represented knowledge
elements of selected six CPGs with different clinical guidance (e.g., management,
diagnosis, prevention, etc.) and their interrelations without the need of creating new
classes and/or their properties.

MuCRL is initially implemented using the Protégé ontology development
environment which supports OWL2 [63, 89] format from the Semantic Web. To
increase flexibility in CIG management and verification, MuCRL is also implemented
in Eclipse environment. Thus, OWL ontology is transformed to EMF metamodels
[64] to generate CIG models and codes required for their management. Thus, the
same knowledge can be easily structured under two environments that have different

strengths and capabilities, such as knowledge sharing and execution. OWL2 file of
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the work is also shared which is a contribution to the literature.

7.2.2 Discussion of Results Related to Real-time CIG Execution
Engine

MuCEE is designed to deal with the complexity in handling and merging actions
of multiple, concurrently implemented, single-disease CIGs and their interrelations,
in order to generate personalised care plans for a multimorbid patient. Initially, a
systematic literature review on existing CIG execution engines is performed. These
involve discovering of CIG execution requirements and analysis of execution capa-
bilities of existing works in managing multimorbidity care (see Section . Accord-
ingly, this thesis aims to fill the gap of the existing literature, which is to combine
multiple (more than two) concurrently implemented CIGs and generate a unified
personal care plan for a multimorbid patient. The issue of combining multiple CIGs
and handling associated complexities are defined in this thesis as a Multiple CIG
Combination Problem (MCCP) and MuCEE supplies solution for this problem (see
Section {.3)).

MuCEE involves three modules with different specific objectives, which are
as follows. Firstly, the multiple CIG Acquisition module, enables users to acquire
multiple CIGs based on patients’ health conditions. This can be achieved by the sat-
isfaction of a designated model-level state conditions (e.g., activity lifecycle status)
to transfer CIG models to the personal care plan. This also supplies CIG version
control |40}, 41] since users can only transfer up-to-date clinical activities.

Secondly, the parallel CIG ezecution module, enables users to execute multi-
ple CIG models in parallel under the personal care plan, where care personalisation
is iteratively realised based on the completion of care steps and satisfaction of the
related conditions and constraints. To achieve this, a specialised MCCP solving algo-
rithm is developed. This can adopt to dynamic changes occurred in the CIG actions
and their associated interrelations. Existing literature [306] [188|, 238, 252] especially
designed for detecting inconsistencies (contradictory treatments) when reconciling
multiple CPGs through the analysis of a collection of constraints associated with a
set of knowledge interactions (e.g., drug-drug, drug-disease, etc.). The major limita-
tions of existing works include the lack of computerised adaptation of patient context
into their model and there is no evidence on how to handle more than two concur-
rently implemented clinical activities of multiple CIGs at a time [9, B0]. In this
thesis, we generate a unified personal care plan for each patient where all diseases of
the patient are reconciled. Under this plan, we are able to perform (multi) merging

of clinical actions of multiple CIGs with a specialised MCCP solving approach that
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has several sub-algorithms that allow handling different types of complexity (e.g.,
concurrency and synchronisation relations and care duplications) in managing the
multimorbidity care.

Lastly, the CIG verification module enables users on how to detect inconsis-
tencies, missing values and errors in pre- and real-time CIG execution phases for
the verification purpose. Accordingly, a novel knowledge-based verification method
based on a variant of Object Constraint Language [66] is proposed. In the existing
literature, many different CIG verification approaches (see Section have been
proposed. These are mainly on temporal verification [27), 50} [I68], however, there
is a gap in the literature in verification tools which support dynamic execution of
CIG languages [I58] and their combined CIG implementations. This thesis supplies
a new verification approach by applying verification on pre- and real-time CIG ex-
ecution (where verification is performed for all executed CIGs under the personal
care plan) involving customised user messages and interactive update mechanism on
the detected inconsistencies.

To evaluate MuCEE;, a set of verification and validation analyses is performed.
Initially, CIG acquisition module is evaluated by acquiring (transferring) these mod-
els from the knowledge base to the personal care plan ensuring that the model
requirements are met. CIG acquisitions are successfully performed. Subsequently,
parallel CIG execution module is evaluated based on a set of real-life multimor-
bidity case studies involving different guideline combinations representing different
patient scenarios. Here, the main focus is on handling challenges such as care du-
plications and conflicts while combining multiple CIGs. Thus, several examples are
given which address concurrency management, multi-activity merging, care modifi-
cation and optimisation aspects of multi-activity management required for handling
multimorbidity care. As a result, this module successfully handles these aspects in
line with the algorithms provided in Section Lastly, the CIG verification module
is used to verify pre-execution of six CIG models where each of them represent a spe-
cific disease and their execution-time verifications under the personal care plan. This
module substantially facilitates CIG verification by enabling users dynamic missing
information and inconsistency detection and supporting them with customised error
messages which supply information regarding the detected inconsistency and how it
can be solved.

MuCEE is also compared with existing CIG execution engines and tools. As
a consequence, MuCEE substantially satisfies the CIG execution requirements and
its comprehensive execution mechanism which involves three modules that designed

for supporting the execution of multiple CIGs. The majority of the CIG execution
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mechanisms bind to the Protégé environment, yet MuCEE does not bind to this
environment and supply more flexibility in handling multiple CIG management. For
the CIG model acquisition and parallel CIG execution modules, EOL is used, and
for the CIG model checking module EVL is used. These languages are direct com-
munications between each other and CIG models. As a result, the limitations of
existing literature (see Section in combining multiple CIGs are covered such as
lack of functionalities for achieving or handling multi-merging of clinical activities
[128] 1811 193], temporal constraints [I81] [I87], concurrency management [28] 203],
complex decisions which have more than two options [36], 188, 189, T91], and supply-
ing computerised patient-specific intervention plans [I77]. In the following section,

specific contributions of MuCIGREF are presented.

7.3 Contributions

MuCIGREF is presented as an approach to represent and execute multiple concur-
rently implemented CIGs for generating combined care plan in order to support
HCPs for managing multimorbid patients. Real-world multimorbidity case studies
are used, with associated CPGs and patient data, and compared with existing works
to demonstrate MuCIGREF’s applicability and contributions. MuCIGREF contri-
butions are analysed under two categories: (i) CIG representation language, and (ii)

real-time CIG execution engine, respectively.

7.3.1 Contributions of CIG Representation Language

The specific contributions of MuCRL are as follows:

Representation. MuCRL as a language introduces a generic knowledge represen-
tation approach to represent knowledge constructs of multiple CPGs and their inter-
relations, and to create multimorbidity relations between them. The gaps of existing
literature mainly on representing advanced branching and synchronisation patterns
required to manage concurrent multiple CIGs and creating mappings between them,
are filled in MuCRL. Through developing generic ontology, this thesis also aimed
to eliminate semantic heterogeneity problem (i.e. representing the same knowledge
differently) of the literature. The use of clinical terminology standards is important
for achieving semantic interoperability for knowledge sharing and reusing. Thus, ex-
isting CIGs which are built on different CIG formalisms can be easily mapped with
MuCRL through the clinical IDs. For instance, SNOMED-CT codes are used in this

thesis. Thus, clinical activities and their interrelations can be easily integrated with
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clinical standards (e.g., UMLS Semantic Network, HL.7 RIM) by mapping with their
clinical identification codes to maintain semantic interoperability while implement-

ing CIGs.

Reusability. MuCRL is implemented using OWL2- the modelling standard of the
Semantic Web and W3C; and then Emfatic to represent EMF Ecore metamodels in
Eclipse. The link of OWL file is presented in the Section [7.5] to support reusing of

this work.

In the following section, the contributions of MuCIGREF’s real-time CIG

execution engine are presented.

7.3.2 Contributions of Real-time CIG Execution Engine

MuCEE is designed to combine multiple CIGs through performing real-time execu-
tion. This engine is built on MuCRL and involves three modules as CIG acquisition,
parallel CIG execution and CIG model checking. The contributions of this engine

are as follows:

Care combination approach. Introducing a novel real-time CIG execution mech-
anism based on a set of execution algorithms (see Section |4.4]) is the major contri-
bution of this thesis. This mechanism has three specific objectives and associated

contributions, which are as follows:

e The first objective is about acquiring (transferring) multiple CIGs (see Section
4.3.3) based on satisfaction of given constraints which maintains CIGs are up-
to-date (i.e. supplies CIG version control) and can be directly adapted to the

existing personal care plan of a patient in any point of his/her care pathway;

e The second objective is about execution of parallel CIGs (see Section m
which contributes to the literature by introducing a set of specialised algorithms
to achieve (i) multiple clinical activity concurrency management; (ii) multiple
activity merging through performing time-based synchronisation of activities;
(iii) care modification to perform required updates on clinical activities and
their care elements; and (iv) time-based care optimisation to eliminate care
repetitions and maintain reusing them to eliminate unnecessary health resource

use. Their functionalities and constraint types are also addressed in Section

6.5}
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e The third objective is about CIG verification as part of the verification analysis.
A new verification approach is introduced which generates dynamic custom-
built user messages to fix the missing information, semantic and syntactic
inconsistencies. This module supports pre- and real-time CIG execution phases
and also supply customised messages that directly updates CIG models and

associated personal care plans.

Dynamic user support. Direct adaptation of CIGs to personal care plans and
supplying dynamic user supports also other contributions of the execution approach.
Thus, MuCEE can be used when simultaneous management of care flows of different
CPGs are needed.

Flexibility. MuCEE enables users to override and modify care steps and do not
force them to bind only the CIG recommendations. Thus, users can make changes

as he/she wishes.

7.4 Limitations and Future Work

This section presents the limitations of this thesis with suggested solutions to handle

these limitations in future research work.

7.4.1 CIG Language Limitations and Solutions

The limitations of MuCRL and suggestions to handle them are as discussed below:

Computerising CPG encoding. The future work will be computerising the man-
ual encoding of the guidelines and supporting this with appropriate natural language
processing techniques, such as for finding semantic likeness [257]. For instance, em-
bedding WordNet (https://wordnet.princeton.edu,/) to the system may help to group
of similar knowledge elements (e.g., [258]) and may reduce the instance creation time.
Moreover, transformation from OWL to EMF is performed manually. This process
can be automatically implemented using existing tools [232] to facilitate mapping
between two platforms and reduce the transformation time but this is out of scope
of this work.

Knowledge comprehension. Knowledge comprehension can be improved by adding
the following items to MuCRL:
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e HCP information is represented in MuCRL. Each clinical activity is associ-
ated with minimum one HCP. However, semantics regarding agent delegations
[259], involving the number of required clinicians for a specific clinical process
and their utilisations or equipment delegations and their availability, are not

addressed. Thus, these can be a future extension of this thesis;

e If there are multiple drugs available to treat a same disease, which are appro-
priate for the patient, making a drug recommendation to a HCP that has the

least acquisition cost, can be a future extension of this thesis as well.

Knowledge evaluation. More CPGs can be used for the verification of the ex-
pressivity of the ontology. Lastly, the re-usability of this work needs to be tested
by domain experts on whether it is adequately clear and understandable by them as

part of the validation process. These can be future implementations of this thesis.

7.4.2 CIG Execution Engine Limitations and Solutions

The limitations of MuCEE and suggestions to handle them are as follows:

Exception handling. To maintain patient-safety, potential medical errors or harms
must be discovered and resolved. Thus, more CIG verification constraints can be
introduced such as to detect adverse drug-patient or drug-food interactions. In ad-
dition, resource unavailability (e.g., doctor, laboratory equipment, operating room,
etc.) is not considered in automated care activity recommendations. The inclusion
of them can be a future implementation of this thesis. Existing verification tools
(e.g., SPIN ([161] model checker) can be used for performance comparison with the

proposed CIG verification module as well.

Patient involvement. For the validation of MuCEE, some patient scenarios from
real-world case studies are considered in this thesis. However, future implementation
can be involving real patients in testing the system by including their preferences
(such as therapy choices) in care-personalisation process as a result of HCP-patient
shared decision making [260]. In this thesis, patient preferences are not directly
implemented. However, HCPs can include them while generating care recommenda-

tions using modification functionality of the system.

Conflict detection. In this thesis, drug conflicts are not automatically detected,
but the modification algorithm is introduced which helps users to add a modifica-

tion constraint to the personal care plan for performing resolution (e.g., replacement
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with a safe medication alternative) on the detected conflicts. To achieve this, the
official websites such as drugbank.ca [213] or drugs.com [214] where different types
of interactions such as drug-drug, drug-disease, drug-food with their different con-
flict degrees (e.g., moderate, severe, etc.) can be checked, and then embedded to
the CIG execution system to automatically discover clinical actions that will pos-

sibly adversely interact. Future work will be improving the conflict discovery process.

System Requirements. The development of user-friendly interfaces to handle
personal care plans, maintain interactions and communications between HCPs while
coordinating a multimorbid patient care is the limitation of this thesis. Thus, a
future interface implementation may enable HCPs to receive recommendations and
inputs from other HCPs. Moreover, MuCEE is not integrated with EMRs. Patient
data is manually supplied but it mimics the real-world implementation because real-
world case studies are used (see Section . Likewise, clinical terminologies are
used like SNOMED-CT codes in guideline implementations where appropriate, but
they are not automatically applied. Thus, this integration can be computerised in a

future implementation.
Execution evaluation. Reusability and interoperability in combining multiple

CIGs can be further tested using more case studies involving domain experts’ views

which are future works of this thesis.

7.5 Data and Material Sharing

MuCRL knowledge representation which is implemented in OWL2 format in Protégé
can be accessed via Web Protégé, please see Ozyigit [261].
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Appendix A

Supplementary Material

Figure and Figure presents lists of object and data properties per ontology
group of MuCRL, respectively.
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Figure A.1: List of object properties per ontology group of MuCRL
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Figure A.2: List of data properties per ontology group of MuCRL
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