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Many-body descriptors are widely used to represent atomic environments in the construction of
machine learned interatomic potentials and more broadly for fitting, classification and embedding
tasks on atomic structures. There is a widespread belief in the community that 3-body correlations
are likely to provide an overcomplete description of the environment of an atom. We produce several
counterexamples to this belief, with the consequence that any classifier, regression or embedding
model for atom-centred properties that uses 3 (or 4)-body features will incorrectly give identical
results for different configurations. Writing global properties (such as total energies) as a sum of
many atom-centred contributions mitigates the impact of this fundamental deficiency – explaining
the success of current “machine-learning” force fields. We anticipate the issues that will arise as the
desired accuracy increases, and suggest potential solutions.

Over the past decade tremendous progress has been
made in the use of statistical regression to sidestep com-
putationally demanding electronic structure calculations,
and obtain “machine-learning” models of materials and
molecules, that use as inputs only the chemical nature
and coordinates of the atoms [1–10]. A crucial driver
of this progress has been the introduction of representa-
tions of atomic structures: A property associated with
the i-th atom can be written as Fi = F (Xi), where
Xi = {rij}j 6=i describes the neighbour environment of
the i-th atom. To preserve symmetries of the target
property, the representation of Xi should be equivari-
ant [11, 12] (often simply invariant [1, 2, 13–15]) with
respect to translations, rotations, labelling of identical
atoms, and often also reflections. Most of the invariant
representations [1, 2, 13, 16, 17] can be seen as projections
onto different bases of many-body correlation functions
of the atom density[18]. To stress that our results ap-
ply equally to all these frameworks, we use the abstract

notation |ρ⊗νi 〉 to indicate the (ν + 1)-body correlation,
which is centered on the i-th atom [18]. For instance, the

2-body correlation |ρ⊗1i 〉 corresponds to the histogram
of interatomic distances rij – equivalent to the radial
distribution function or the 2-body symmetry functions,

G2, of Ref. [1]. The 3-body correlation |ρ⊗2i 〉 is equiva-
lent to the histogram of triangles, represented by the 3-
tuples (rij , rij′ , ωijj′ = r̂ij · r̂ij′) – and to the power spec-
trum [2], or to the 3-body symmetry functions, G3 [1].
Linear regression based on these features is equivalent to
a body-ordered expansion of the target property[7, 18–
22]. Given that computing higher-order terms is increas-
ingly costly, the representation is typically truncated at
3 or 4 body correlations.

a) b) c)

FIG. 1. (a) Two structures with the same histogram of tri-
angles; (angles: 45◦, 45◦, 90◦, 135◦, 135◦, 180◦) (b) A mani-
fold of degenerate pairs of environments: In addition to three
points A,B,B′ a fourth point C+ or C− is added leading to
two degenerate environments, X+ and X−. (c) Degeneracies
induce a transformation of feature space so that structures
that should be far apart are brought close together.

Employing non-linear functions of low-order invari-

ants, e.g. Fi = F̃(|ρ⊗2i 〉), incorporates information on
higher-order correlations, and there is a widespread belief
in the community [7, 23, 24], supported by numerical ev-
idence [13], that the 3-body correlations likely provide an
over-complete description of an atomic environment. The
completeness (injectivity) of the structure-representation
map would guarantee that any atom-centered property
can be described by F̃ , which extends to any atom-
centered decomposition of extensive properties, such as
the total energy[7]. In this Letter, we present several
counterexamples to this widely-held belief, discuss the
implications for machine learning atomistic properties,
and suggest directions towards the construction of com-
plete representations.

Figure 1a exhibits a simple example of a pair of en-
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vironments, X+ and X−, with four neighbouring atoms
of the same species positioned on a circle around the
central atom. The two structures cannot be superim-
posed by rotations and mirror symmetry, but they have
the same list of distances and angles and hence cannot
be distinguished by their 3-body correlations. To eluci-
date this example, and more generally understand the
difficulty of reconstructing an atomic environment from
a body order representations, consider the Gram matrix
Gjj′ = rij · rij′ , which contains sufficient information
to reconstruct a configuration up to an arbitrary rota-
tion or reflection. If all the distances rij , or the chem-
ical identity of the neighbors, are distinct, one can un-
equivocally assign distances and angles to a specific atom,
and reconstruct the Gram matrix from the unordered list
{(rij , rij′ , ωijj′)}. If some of the distances are the same,
however, it becomes possible to swap some entries of G,
yielding two or more degenerate environments that are
different, but have the same 3-body invariants.

As shown in Fig. 1b, one can generalize the construc-
tion to obtain a manifold of degenerate environment pairs
parameterised by 7 continuous variables. The total di-
mensionality of the configuration space of 4 neighbours
is 4 × 3 − 3 = 9. Thus, the degenerate manifold has
a dimension of 7 and a codimension of 2. When going
from the + to the − structure in the pair, the elements
of the Gram matrix between C-type and B-type points
are swapped, leading to non-equivalent structures that
have the same 3-body description. This construction
can be extended by adding further A or C-type points
(increasing the codimension of the degenerate manifold
by one) or pairs of B-type points (each pair increasing
the codimension by three). Other counterexamples can
be found, involving triplets of degenerate structures (see
SI). Tight bounds on the codimension of degenerate man-
ifolds and on the multiplicity of degenerate structures is
a key aspect in understanding the success of incomplete
environment descriptors, but is beyond the scope of the
present work. However, the example of Fig. 1b is sharp
in the sense that (i) for three or fewer neighbours the
3-body correlation suffices to reconstruct the enviroment
and (ii) for four or more neighbours one can construct
a manifold of co-dimension 2 which must contain all de-
generate environments. These results, which build on
those in Ref. [25], are detailed in the SI. It is unclear to
us whether the increase of the co-dimension when neigh-
bors are added in the example of Fig. 1b is specific to our
construction, or reflects a general result.

Following the procedure in Fig. 1b, one can produce a
pair of degenerate tetrahedral environments, that we la-
bel X+ and X−, corresponding to a CH4 molecule. Fig-
ure 2a shows a portion of the two manifolds (blue and red
surfaces, parameterised by two variables q and s) built
as a principal component projection of the power spec-
trum space (details given in the SI). Structures within
the two surfaces correspond to configurations that are
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FIG. 2. (a) PCA projection of |X+; ρ⊗2
i 〉 and |X−; ρ⊗2

i 〉 for a
continuous manifold of CH4 environments X+ and X−, pa-
rameterised by q (that moves along the degenerate set, rep-
resented by a black line) and s (that breaks the degeneracy).
(b) Energy (top) and 13C chemical shieldings (bottom) of a
CH4 molecule that follows such manifolds; the zero of the
two quantities is set to the values for the ideal geometry. (c)

PCA projection of the bispectrum |ρ⊗3
i 〉 space manifold. (d)

Correlation plot of the distances between two points k and k′

along both manifolds, computed based on the power spectrum

(d
(2)

kk′) or the bispectrum (d
(3)

kk′). (e) Construction of a pair of
environments that are mirror images but share identical chi-

ral |ρ⊗3
i 〉 features. A points lie in the xz plane, along a circle

centred on the origin. C± points lie along the y axis, sym-
metric about the origin. (f) a pair of inequivalent structures

with the same chiral |ρ⊗3
i 〉 features. B and B′ points lie on

circles centred on the origin, and shifted by the same amount
above and below the xz plane. One of the sets of points is
twisted around y by an angle ψ.

different from each other, but those along the black line
(corresponding to s = 0) have identical 2- and 3-body in-
variants, which therefore cannot distinguish X+ and X−,
and the two manifolds intersect each other. As shown
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FIG. 3. Error in the prediction of the molecular energy for
CH4 configurations along the manifold depicted in Fig. 2c
and d, using a GPR model based on a non-linear kernel
built on the C-centred SOAP power spectrum (top, RMSE:
12kcal/mol), a combination of C and H-centred power spectra
(middle, RMSE: 0.027 kcal/mol), and the C-centred bispec-
trum (bottom, RMSE: 0.011 kcal/mol).

in Fig. 2b, however, both atom-centred properties such
as the 13C NMR chemical shift, and extensive proper-
ties such as molecular energy, are very different as they
cannot be described fully by 3-body correlations around
the central atom. Higher body-order features can dif-
ferentiate between X+ and X−. As shown in Fig. 2c,
the feature-space degeneracy is lifted by the 4-body cor-

relation (bispectrum), |ρ⊗3i 〉, which corresponds to the
unordered list of tetrahedra formed by the central atom
and three of its neighbors. The presence of a degener-
acy can be revealed by comparing environment distances
d(2), d(3) computed, respectively, from power spectrum

coordinates |ρ⊗2i 〉 and bispectrum coordinates |ρ⊗3i 〉. One
then observes that pairs of environments that are close
in d(2) remain well separated by d(3) (Fig. 2d). However,
the bispectrum is not complete either. While it does dif-
ferentiate between the tetrahedral CH4 environments in
Fig. 2a, one can build pairs of inequivalent environments
that have the same 4-body correlations. The environ-
ments in Fig. 2e are chiral (mirror) images of each other,
but the bispectrum does not distinguish them because
the tetrahedra it is composed of are not chiral. [26] Fig. 2f
extends this construction to a pair of environments that
have the same 4-body correlations (ν = 3) and are not
chiral images of each other.

A Gaussian process regression model based on a non-
linear kernel built on the SOAP power spectrum (equiv-

alent to the 3-body correlation, |ρ⊗2i 〉, see SI) results in

a)

b)

c)

FIG. 4. (a) Four configurations distinguishable by the set
of their atom-centered 2-body histograms. Only three differ-
ent site energies occur in these configurations, hence fitting
four total energies leads to overdetermined regression. (b)
Correlation plot of powerspectrum and bispectrum distances
between C environments in a database of random CH4 con-
figurations. (c) Learning curves for the atomization energy of
random CH4 configurations.

large errors, not just along the s = 0 line of degener-
acy, but also for structures that are not exactly indistin-
guishable according to the power spectrum (top panels
in Fig. 3). This underscores the fact that the existence
of manifolds of degenerate structures introduces a distor-
tion of the feature space (Fig. 1c), and hinders the abil-
ity to perform regression regardless of whether strictly
degenerate pairs are included in the training. Because
they are ultimately based on the same unordered sets
of triangles, Behler-Parrinello “atom-centered symmetry
functions”[1], the FCHL descriptors of von Lilienfeld and
coworkers[27], the MBTR descriptor of Rupp [28], and
the smooth version of the DeepMD framework [29] will
also suffer from the same problem. The fact that a large
manifold of CH4 environments is un-learnable using 2-
and 3-body features is a shortcoming that fundamentally
limits the reliability of machine-learned models of atom-
centred properties based on these descriptors.

When learning the decomposition of a global property,
such as the total energy, one can hope to lift the degener-
acy by using features centred on other atoms in the struc-
ture. For the construction in Fig. 1b, there is always at
least one atom outside the bisecting A plane that breaks
the indistinguishability of X+ and X−. Indeed, a model
that combines C and H-centred non-linear kernels can
approximate the molecular energy to excellent accuracy,
also along the degenerate manifold (see Fig. 3, middle
panels). In general, however, such a mechanism does not
guarantee that efficient models can be constructed based
on incomplete atom-centred features. For the sake of
simplicity, we demonstrate this for the case of 2-body de-

scriptors |ρ⊗1i 〉. It is well-known that the list of distances
from the centre of an environment, or even the list of
distances in a structure [25], are not complete represen-
tations. It has, however, been speculated [23] that simul-
taneous knowledge of all atom-centred lists of distances
in a structure would provide a complete representation
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of the configuration, and that one could use this repre-
sentation to predict arbitrary potentials using an addi-

tive model based on non-linear functions of
∣∣∣ρ⊗1i 〉. Both

conjectures are false. We present a counter-example to
the first conjecture in the SI. The counterexample to the
second statement, cf. Figure 4a, is far more concerning
though: even if, in a training set, all configurations can be
uniquely identified by the collection of the atom-centered
2-body histograms, it does not follow that a total energy
represented in terms of these histograms can be learned.
The breakdown of the purely 2-body models in these lim-
iting cases has practical implications, as they translate
into instability and data inefficiency in real-life scenar-
ios – which is the ultimate reason why models based on
purely radial information have been superseded by those
incorporating 3-body features.

Proving the existence of similar counterexamples for

the learning of global properties using |ρ⊗2i 〉 is more chal-
lenging. It is possible, however, to numerically demon-
strate how a model based on 3-body features suffers from
a degradation of learning efficiency, provided that one
pushes it to sufficiently high accuracy. Figure 4b,c show
results for a data set of about 3 million CH4 configura-
tions obtained by randomly distributing the atoms and
discarding structures with too close contacts (details in
the SI). The distance-distance correlations (panel b) show
that there are configurations that approach the degener-
ate manifolds, but there are no fully-degenerate pairs.
We then built an additive model that includes contri-
butions from both the C and the H atoms, converging

the discretization of
∣∣∣ρ⊗2i 〉 and using a neural network to

ensure maximal flexibility in the feature-property map-
ping. The learning curves (Fig. 4c) exhibit clear signs of
saturation – usually considered indicative of lack of in-
formation in the features or model [30–32] – suggesting
that even though each pair of environments (and there-
fore structures) in the data set can be distinguished based

on
∣∣∣ρ⊗2i 〉, the presence of near-degeneracies affects the

stability and efficiency of the regression.

Using the higher-body order features to differentiate
between X+ and X− does indeed lead to a more effi-
cient model (Fig. 3, bottom panel), that predicts the en-
ergy along the degenerate manifold with an error that
is roughly a third of that obtained by a multi-center,
power-spectrum-based model. Substantial improvements
are also seen for the random CH4 configurations. A

NN based on |ρ⊗3i 〉 reduces the full-train-set error by
40%, down to ≈ 0.5 kcal/mol. Similar to what was

observed for
∣∣∣ρ⊗2i 〉-based models that combine multiple

cutoff distances [32], there is a data/complexity trade-
off. For small training set sizes a simpler powerspec-
trum model can outperform one based on the bispec-
trum, and linear regression outperforms a deep neural
network. The best balance between data efficiency, com-

putational cost and ultimate accuracy might involve a
combination of different kinds of features, as demon-
strated by the hybrid model in Fig. 4. Approaches such
as the moment tensor potentials [22], permutationally
invariant polynomials[33, 34] and the atomic cluster ex-
pansion [20] allow, if necessary, to further resolve degen-
eracies by including arbitrary body-orders of correlation.
We show in the SI that similar considerations apply also
to a database of bulk silicon structures [35]. The cutoff
distance, however, complicates the picture, because the
number of neighbors included in the environments influ-
ences the proximity of structures to the degenerate man-
ifold, and because the model accuracy is also affected by
the truncation of long-range interactions [36]. Descrip-
tors such as eigenspectra of matrices constructed from
the atomic configuration (distance matrix, Laplacian, or-
bital overlap, etc.)[37, 38] also contain information on
high body order correlations, and as such are not ex-
pected to be degenerate for the present examples. Their
completeness properties are not understood at present.

Overall, the results we have shown indicate that de-
spite the remarkable success of ML models that describe
atomic structures in terms of n-body correlations fea-
tures, there is still work to do to understand fully how
the configuration space of a set of atoms is mapped
onto symmetry-adapted representations. The problem
is to construct a representation which is (i) complete;
(ii) smooth with smooth inverse; (iii) and invariant un-
der isometries and permutations. An obvious, but inef-
fective, solution is to use the union of all n-point corre-
lations [20, 22]. Pragmatically, one can proceed as we
do here for the CH4 dataset, increasing the correlation
order until all configurations in a given training set are
distinguishable, possibly reducing the cost of computing
high-order features using a sparsification procedure along
the lines of [39, 40]. It is, however, desirable to know a
priori which features are required to guarantee (i–iii).
For example, we may ask whether there is a fixed finite
n̄ such that all higher-order n-points correlations can be
recovered from the n̄-point correlation. There are at least
two perspectives from which to pursue questions of this
kind: signal processing and invariant theory.

In the signal processing literature it has long been
known that the power spectrum is insufficient to recon-
struct most signals, while the bi-spectrum uniquely iden-
tifies translation-invariant and compact signals [41–43].
On the other hand, Ref. [41] provides a range of ele-
mentary examples establishing that no correlation order
suffices to reconstruct all periodic signals. Nevertheless,
stable bispectrum inversion has been shown to work well
in practice due to the fact the most signals can be recon-
structed from it; see e.g. [44, 45] and references therein.
These results have a striking parallel to our own observa-
tions regarding the reconstruction of an atomic environ-
ment and in particular suggest that in theory no n̄-point
correlation may suffice to reconstruct the environment.
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Still, since atomic environments can be thought of as
a very restrictive class of signals, the invariant theory
perspective may shed additional light on our questions.
The perspective of Boutin and Kemper [25] appears to be
particularly useful, establishing conditions under which
a points cloud can be reconstructed from the histogram
of distances. The problem we tackle here is closely re-
lated: degeneracy of two centred environments with re-
spect to n-body correlations implies degeneracy of the
point clouds consisting of the neighbors with respect to
n − 1 body correlations. For example, Fig. 1a, implies
that the length-histogram of the neighbours lying on the
circle are degenerate (indeed, this is the example given in
Fig. 4 in Ref.[25] and in Fig 2 of [23]). Similarly, Fig 2f,
shows environments that are degenerate with respect to
the 4-body correlation (tetrahedron histograms) are also
degenerate with respect to the 3-body correlations (tri-
angle histograms) of the entire structure. A similar ap-
proach may therefore help determine tight bounds on the
codimension of the degenerate manifold although, as far
as we are aware, there are no rigorous results in this di-
rection.

The problem of formulating a complete feature map is
of fundamental importance – particularly when consider-
ing the use for generative models that require inverting
the relation between a representation and the underlying
structure – and has practical implications, particularly
when one wants to achieve high accuracy with the mini-
mum amount of data. The presence of many neighbors or
of different species (that provide distinct “labels” to as-
sociate groups of distances and angles to specific atoms),
and the possibility of using representations centred on
nearby atoms to lift the degeneracy of environments re-
duces the detrimental effects of the lack of uniqueness of
the power spectrum when learning extensive properties
such as the energy. We show, however, that the learn-
ing rate of this kind of models reduces dramatically in
the high accuracy regime, revealing the limitations of a
description based on 3-body features. Diagnostic tools
such as the joint distance histogram that we introduce
here can help identify problematic parts of datasets, give
more confidence in the reliability of simple-to-compute
low-order invariants, and guide the choice of a small num-
ber of higher-order features to improve the accuracy and
efficiency of models.
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mode, G. Csányi, and M. Ceriotti, Sci. Adv. 3, e1701816
(2017).

[32] M. J. Willatt, F. Musil, and M. Ceriotti, Phys. Chem.
Chem. Phys. 20, 29661 (2018).

[33] B. J. Braams and J. M. Bowman, International Reviews
in Physical Chemistry 28, 577 (2009).

[34] C. van der Oord, G. Dusson, G. Csányi, and C. Ortner,
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