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Abstract  

 

Pancreatic ductal adenocarcinoma (PDAC) is a particularly challenging cancer, with very low 

5-year survival rates. This low survival rate is linked to late stage diagnosis, associated with 

the lack of approved biomarkers. One approach that is receiving considerable attention is the 

use of volatile organic compounds (VOCs) that emanate from biological waste as biomarkers 

for disease. In this study, we used urine as our biological matrix and two VOC analysis 

platforms: gas chromatography – ion mobility spectrometry (GC-IMS) and GC time-of-flight 

mass spectrometry (GC-TOF-MS). We measured the urinary headspace of samples from 

patients with PDAC, chronic pancreatitis (CP) and healthy controls. In total, 123 samples were 

tested from these groups. Results indicate that both GC-IMS and GC-TOF-MS were able to 

discriminate PDAC from healthy controls with high confidence and an AUC (area under the 

curve) in excess of 0.85. However, both methods struggled to separate CP from PDAC, with 

the best result of AUC 0.58. This indicates that both conditions produce similar biomarkers in 

the urinary headspace. Chemical identification suggests that 2,6-dimethyl-octane, nonanal, 4-

ethyl-1,2-dimethyl-benzene and 2-pentanone play an important role in separating between 

groups. Therefore, both techniques validate this approach in identifying subjects for further 

investigation in a clinical setting.  

 

 

 

 

  



1. Introduction 

 

Cancer is currently the second leading cause of death globally, accounting for around 9.6 

million deaths (1 in 6) in 2018. This trend is likely to continue, with the latest projections 

suggesting that annual cancer-related deaths will increase to 13 million by 2030 [1]. Thus the 

burden of cancer will continue to exert tremendous physical, emotional and financial strain on 

individuals, families, communities and healthcare systems. Pancreatic cancer is the eighth 

leading cause of cancer death worldwide (around 400,000 deaths) [1]. The most frequent 

pancreatic malignant tumour is pancreatic ductal adenocarcinoma (PDAC). PDAC represents 

around 85% of all reported pancreatic cancer cases [2]. It stubbornly resists our attempts to 

successfully target with current therapies, which are reflected in patient 5-year survival rates at 

below 8% [3]. This exceptionally poor prognosis is largely due to late diagnosis. However, if 

the disease is detected when the cancer is at an early stage (< 2 cm diameter) and still confined 

to the pancreas, the survival rate can increase, potentially up to 75% [4,5]. Current pancreatic 

cancer diagnostic techniques rely on imaging (e.g. CT and MRI), endoscopy ultrasonography 

and biopsy for grading tumour histology [6]. Unfortunately, these techniques are not very 

effective at detecting tumours that are smaller than 2 cm in diameter [7].   

 

An alternative cancer diagnosis approach, currently attaining traction, is the use of volatile 

organic compounds (VOCs) that emanate from biological waste, be it breath, stool, urine or 

sweat [8,9].  The initial interest in the detection of VOCs for cancer has been driven by early 

reports on the ability of canines to identify cancer in their owners [10]. Since then, a number 

of studies have demonstrated that VOC profiles reflect metabolic changes in response to 

inflammation, necrosis, cancer development and microbiota alterations [11]. This concept has 

been taken forward through the use of a variety of analytical platforms, from high-end gas 

chromatography – mass spectrometry (GC-MS) to lower-cost/portable technologies that mimic 

the biological olfactory system (electronic noses) (reviewed in [12,13]). To this end, VOCs 

have been reported, by our and other groups, to be promising biomarkers for several cancers 

[14–17].  

 

One of the simplest biological material to access is urine. This is a far less complex matrix, 

compared to blood, and can be collected in large volumes, completely non-invasively and with 

high patient acceptability (far higher than faeces). Our group have hypothesised that 

biomarkers for PDAC exist in urine and that they have the potential to be used as an early 



detection and screening tool for patients at risk of this malignancy. To test this hypothesis, we 

previously investigated the urinary VOCs using a Lonestar FAIMS (field asymmetric ion 

mobility spectrometry) (Owlstone Medical, Cambridge, UK), which showed good 

discriminatory performance between PDAC and healthy control samples [18]. However, the 

FAIMS is unable to identify any specific biomarkers and the Lonestar unit is operated 

manually, testing one sample at a time, making its use more challenging in a clinical setting. 

Here we report on our attempts to further evaluate VOCs for the detection of PDAC, with a 

focus on identifying specific biomarkers of the disease and to evaluate a second gas analytical 

platform that is more appropriate for use in a clinical setting. 

 

2. Materials and Methods 

 

2.1 Urine Samples 

 

Urine specimens utilised in this study were obtained from Barts Pancreas Tissue Bank, after 

patient consent and with ethical approval (reference number 13/SC/0593). The midstream urine 

samples were collected in 50 mL sterile containers and were kept at +40C before freezing within 

four hours. In large majority of cases the containers were filled with urine with no or little 

headspace. All samples were stored at -80°C according to standard operating procedures 

compliant with tissue bank requirements under Human Tissue Act 2004. This study included 

patients with PDAC, chronic pancreatitis (CP) and healthy controls. Chronic pancreatitis is an 

inflammation of the pancreas and is a condition that is associated with an increased risk of 

developing pancreatic cancer [19].  This diagnostic group was included in the study to evaluate 

whether urinary analysis could be used to distinguish such patients at risk from the healthy and 

PDAC groups. In total, 123 urine samples were analysed: 33 healthy, 45 CP and 45 PDAC. 

The basic demographic information for the subject cohorts is summarised in Table 1.  

 

2.2 Measurement Instrumentation 

 

The urine samples were analysed using two analytical methods: gas chromatography – ion 

mobility spectrometry (GC-IMS) and by gas chromatography time-of-flight mass spectrometry 

(GC-TOF-MS). The GC-IMS system used was a G.A.S. GC-IMS (Dortmund, Germany) and 

was fitted with a 30 m, 0.32 mm inner diameter (ID) SE-54 column (CS Chromatographie 

Service, Langerwehe, Germany). The GC-IMS is formed of a GC pre-separator, followed by a 



drift tube IMS as the detector. In use, once a sample is injected into the device, the GC 

selectively slows down molecules based on the interaction between the molecule and the GC 

columns retentive coating, as they pass through the column, and thus temporally separates them 

as they exit. These enter a drift-tube, where the molecules are ionised (in this case, using a low-

radiation tritium source). The ionised sample is then passed through a drift tube, to which a 

known electric field is applied to propel the ions along it. Against the flow of ions, a buffer gas 

is passed that collides with the ions. Large ions have many collisions and slow down, whilst 

small ions have less collisions and maintain their momentum. Therefore, the time taken for 

ions to be detected is based on their interaction with the electric field and the buffer gas [20].  

 

GC-TOF-MS works in a similar way to traditional GC-MS methods, but instead of filtering 

ions by mass, the TOF utilises ‘time of flight’ and analyses all ions present. The GC-TOF-MS 

system consists of a TRACE 1300 GC (Thermo Fisher Scientific, Loughborough, UK), 

combined with a BenchTOF-HD TOF-MS (Markes Intl., Llantrisant, UK). The GC column 

used was a 20 m, 0.18 mm ID, Rxi-624Sil MS column (Thames Restek, Saunderton, UK). This 

system also includes a high-throughput autosampler and a thermal desorption unit, ULTRA-xr 

and UNITY-xr, respectively (both from Markes Intl.). As with a GC-MS system, samples are 

injected into the GC column. Compounds within a sample can be separated due to the 

interaction of the molecules with the stationary phase of the column (as with GC-IMS). The 

separated molecules leave the column at different times, giving a retention time. The molecules 

are then ionised, and the resultant ions are detected by the mass spectrometer. In a GC-TOF-

MS system, once the sample has passed through the GC column, the separated molecules are 

ionised and enter the TOF ‘flight box’. TOF-MS works on the principle that when molecules 

are exposed to a pre-determined amount of energy, larger, heavier ions will take longer than 

smaller, lighter ions to travel a set distance. The addition of the TOF into the GC-MS method 

allows for further separation of the ions present in a sample, increasing the sensitivity of the 

method [21].  

 

2.3 GC-IMS Measurements 

 

For GC-IMS measurements, we have developed a standard method for testing urine samples, 

where we have optimised the sample temperature, method temperatures and flow rates to 

maximise information content and produce reproducible results. The urine samples were 

shipped on dry ice to the University of Warwick and were stored at -20°C. Prior to analysis, 



the samples were thawed for four hours at room temperature. 5 ml samples of urine were 

aliquoted into 20 ml glass vials and sealed with a crimp cap and septa. Once sealed, the samples 

were agitated and heated to 40°C for 10 min. For sampling, a sterile needle, attached to the 

heated sample inlet of the GC-IMS, was inserted into the sample headspace, through the septa. 

The GC-IMS sampled 2 ml of the headspace for analysis. The sampling and analysis were 

performed using the following settings: GC flow rate = 20 ml/min, drift tube flow rate = 150 

ml/min, IMS temperature = 45°C, GC temperature (fixed) = 45°C, Sample loop = 45°C and 

inlet injector = 45°C. The analysis time for each sample was 8 min. For quality control, all flow 

rates, method temperatures and RIP magnitude and location were checked for each sample, to 

be within unit tolerances. Furthermore, the output obtained from each sample was visually 

checked to ensure that they contained the expected level of information content. Finally, air 

blanks were run either side of a test batch of samples (20 samples) to ensure that there was no 

machine drift  

 

2.4 GC-TOF-MS Measurements 

 

For GC-TOF-MS analysis, urine samples were defrosted as described in section 2.3, with 10 

ml of sample aliquoted into a 20 ml glass vial, which were then sealed with a specially adapted 

septa and crimp cap. A thermal desorption (TD) sorbent tube (C2-AXXX-5149, Markes Intl., 

Llantrisant, UK) was placed through the septa and into the headspace above the urine sample. 

The vial and sorbent tube were then placed into a heater block and heated to 40oC for 1 hour. 

Once completed, the tube was removed from the top of the vial and placed into the autosampler 

for analysis. The ULTRA-xr was set to run with a stand-by split of 150°C with an overlap (this 

allows the auto-sampler to reduce the overall run time), a GC run-time of 30 min, and a 

minimum carrier pressure of 5 psi. For each sample there is a pre-purge of 1 min. The tube was 

desorbed for 10 min at 250°C, with the trap purge time set to 1 min, and the trap cooled to -

30°C. The trap was then purged for 3 min at a temperature of 300°C. The GC-TOF-MS method 

measured masses from 45 to 500 atu (atomic mass units). The transfer line and ion source are 

both heated to 250°C, with an ionisation voltage of -70.000V. The GC oven was heated to 

280°C for 25 min. Upon completion of the GC-TOF-MS run-time, peaks were identified using 

NIST list 2016. For quality control, the machine was calibrated in line with the manufacturer’s 

recommendation. The method used was developed using healthy control urine samples from a 

previous study, where parameters were optimised to maximise separation and chemical 

content. 



 

2.5 Data Analysis 

 

GC-IMS generate very high-dimensional data (typically 11 million data points per sample). 

Therefore, to aid in data analysis, pre-processing steps were applied to reduce its 

dimensionality. As the chemical information on the output is located around the central region 

of the output data, we can crop this section and discard the rest. The size of the crop area is 

chosen through visual observation of the data and the same crop values are used for all the data. 

The second step is to delete the reactant ion peak (RIP), which is output when there are no 

chemicals present. This is undertaken by selecting a line where there is no chemical information 

(though contains the RIP) and subtracting this from the rest of the data. A small threshold is 

added to this value to remove the background noise, which was selected manually as applied 

the same to all the data. These steps reduce the number of data points from around 11 million 

to 10,000, without losing any volatile information. 

 

The data was then analysed using a 10-fold cross validation, using our custom developed 

pipeline, created in ‘R’ (version 3.6.1). In this case, the data is divided into two groups, with 

90% of the data being used as a training set and 10% is used as a test set. To identify features 

(data points) that hold discriminatory information, a rank-sum test was undertaken and features 

with the lowest p-values are selected from training. These features are used for training three 

different classifiers, specifically random forest (RF), Gaussian process (GP), and sparse logistic 

regression (SLR). We have previously used these successfully in a range of medical VOC 

studies [22–24]. Using the developed model, the test samples are then classified and a 

probability for each test sample is created. This process was repeated 10 times so that all the 

samples were classified as test samples. Using the resultant probabilities, statistical parameters, 

including area under the curve (AUC), sensitivity, specificity, negative predictive value and 

positive predictive value are calculated.  

 

The GC-TOF-MS analysis was undertaken using a similar approach. In this case, each 

identified chemical was used as a feature and the abundance as the magnitude of the feature. 

This was processed in the same way as described above, but without the rank-sum test as the 

data already had low dimensionality. From this process, we are also able to identify which 

features/chemicals hold discriminatory information. 

 



3. Results  

 

A typical output plot from the GC-IMS and GC-TOF-MS are shown in Figure 1 and Figure 2, 

respectively. For the GC-IMS, the background is blue, with the RIP line being red (which is 

always present). The chemicals are seen as white/red areas. The colour represents the intensity 

of the chemical. Three different analyses were undertaken comparing PDAC, healthy and CP 

groups. GC-IMS analysis indicated that there were differences between the three groups. The 

three classifiers resulted in very similar data, with the best results shown in Table 2 and the 

complete data in supplementary table TS1. The PDAC ROC curves are shown in Figure 3. The 

results indicate that GC-IMS (sensitivity 84%, specificity 94%, p-value >0.0001) can separate 

PDAC from healthy controls. However, the separation between PDAC and CP group is not as 

pronounced (sensitivity 51%, specificity 73%, p-value 0.11), indicating that the same 

biomarkers are involved in both conditions. 

 

We undertook the same analytical methods for the data analysed by GC-TOF-MS. In this case, 

the statistical results are shown in Table 3, with the PDAC ROC curves in Figure 4. Here, we 

were also able to separate PDAC from healthy controls (sensitivity 72%, specificity 96%, p-

value >0.0001). However, when comparing CP to PDAC (sensitivity 38%, specificity 88%, p-

value 0.28), our results did not show a significant difference.  

 

From the analysis, we were able to identify chemicals that held discriminatory properties. 15 

chemicals for each comparison were identified. From this list, a rank-sum test of each 

chemical/features was undertaken and the top three chemicals for each comparison are listed 

in Table 4, with the complete set in supplementary information TS3. As shown, we have 

identified common chemicals from each of the analyses, with 2,6-dimethyl-octane, 2-

pentanone, nonanal and 4-ethyl-1,2-dimethyl-benzene being most frequent.  

 

4. Discussion  

 

In a recent review paper, Bax et al. [11] evaluated and compared cancer biomarker trends in 

urine as a new diagnostic pathway. Five studies [25–29] investigating urinary pancreatic cancer 

biomarkers were included in the review. The employed technologies were nuclear magnetic 

resonance (NMR) spectroscopy and gel electrophoresis liquid chromatography-tandem mass 

spectrometry (GeLC-MS/MS). To the best of our knowledge, this was the first urinary study 



to utilise GC-IMS and GC-TOF-MS technologies to investigate PDAC, CP and healthy 

controls. Both the GC-IMS and GC-TOF-MS were able to separate PDAC from healthy 

controls with good sensitivity and specificity, with the GC-IMS outperforming the GC-TOF-

MS. Only the GC-IMS was able to accurately separate CP from controls, whilst the GC-TOF-

MS showed inferior results. Comparing PDAC with CP for both methods, the AUCs were 

around 0.6, showing a modest diagnostic performance. This limited ability to separate these 

two groups, could well have impacted the overall diagnostic performance of PDAC vs all other 

samples, with both methods having an AUC of around 0.7. In statistical results, these variations 

are likely to be associated with the choice of column between the two analytical platforms and 

the sample capture process. The sorbent tubes used for the GC-TOF-MS analysis capture 

analytes from C3 (though more likely C4) and upwards, whilst the GC-IMS is analysing all the 

chemicals through direct headspace injection. This is a limitation of the experimental method, 

where the absorbent tube and trap on the TD unit cannot go below C3 (with C referring to the 

number of carbon atoms). Another difference between the platforms is that the GC-IMS 

molecular detection depends on the proton affinity of the molecule.  However, the overall 

statistical performance was similar. Some of the discriminatory VOCs, identified in this study, 

have been suggested as potential biomarkers in breath or stool for other disease. For example, 

2-pentanone has been found to be associated with several diseases, such as non-alcoholic fatty 

liver disease [30], inflammatory bowel disease (ulcerative colitis and Crohn’s disease) [31,32] 

and lung cancer [33]. Nonanal is a saturated fatty aldehyde formally arising from reduction of 

the carboxy group of nonanoic acid. It has been observed as a discriminatory VOC for other 

cancers, such as ovarian and lung cancer [34,35]. This indicates that some of these compounds 

might be more generic markers of inflammation or illness. As stated above, a limitation of this 

study is that the analytical approaches we have used here may have missed other potential 

biomarkers. For example, biomarkers under C3 could be critical. Only undertaking additional 

experiments with direct headspace injection into a GC-MS or similar technique will allow us 

to identify if such biomarkers exist. Though GC-IMS will measure these chemicals, 

identification is more limited, and it will not detect those molecules with low proton affinity. 

In addition, due to difficulty in obtaining these samples, we were not able to undertake 

extensive optimisation of the sampling conditions for this specific disease and we relied on a 

method we had previously developed for the analysis of urine samples in general. Therefore, 

better diagnostic performance could be achieved in the future if more urine samples could be 

collected. Furthermore, the total number of samples was only 123. In the follow up study, we 



will be analysing more samples, which will enable us to divide the samples into a separate test 

and training set. This will give us a fully verified result.  

 

5. Conclusion 

 

In this paper we investigated the use of urinary headspace volatiles to identify patients suffering 

from PDAC. Urinary headspace was analysed by GC-IMS and GC-TOF-MS, with both 

showing potential in separating PDAC from healthy controls. However, both GC-IMS and GC-

TOF-MS showed only small differences between PDAC and CP, indicating that there is 

commonality between the VOCs produced by both conditions. This is supported by the high 

sensitivity of CP vs healthy controls. Chemical identification suggests that 2,6-dimethyl-

octane, nonanal, 4-ethyl-1,2-dimethyl-benzene and 2-pentanone play an important role in 

separating the data into disease groups or controls. Further work is needed to validate these 

biomarkers in a larger study. However, we believe this approach might hold a potential as a 

completely non-invasive detection tool for pancreatic cancer. 
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Table 1: Demographics of sample groups and cancer stage 

Group Gender (Male:Female) Av. age (range) years Number of subjects (Stage S x Number) 

PDAC 22M:23F 64.1 +/- 10.7 (29-77) 45 (SI x 1; SII x 21; SIII x 20; SIV x 3) 

CP 28M:17F 52.9 +/- 12.2 (21-78) 45 (not applicable) 

Healthy 15:M:18F 49.9 +/- 7.8 (30-66) 33 (not applicable) 

 

  



Table 2: Statistical analysis of GC-IMS data (best results) 

Statistical 

parameter 

PDAC vs All PDAC vs CP PDAC vs Healthy CP vs Healthy 

Best classifier SLR GP SLR GP 

AUC 0.69 (0.58 – 0.79) 0.58 (0.45 – 0.71) 0.88 (0.79 – 0.97) 0.86 (0.77 – 0.95) 

Sensitivity 0.72 (0.56 – 0.85) 0.51 (0.35 – 0.67) 0.84 (0.69 – 0.73) 0.80 (0.64 – 0.91) 

Specificity 0.60 (0.57 – 0.71) 0.73 (0.56 – 0.85) 0.94 (0.79 – 0.99) 0.91 (0.75 – 0.98)  

PPV 0.52 0.67  0.95 0.91 

NPV 0.78 0.58 0.81 0.78 

p-value 4.39 x 10-4 0.11 1.18 x 10-8 9.79 x 10-9 

 

  



Table 3: Statistical analysis of GC-TOF-MS data (best results) 

Statistical 

parameter 

PDAC vs All PDAC vs CP PDAC vs Healthy CP vs Healthy 

Best classifier SLR RF SLR RF 

AUC 0.75 (0.63 – 0.87) 0.55 (0.37 – 0.73) 0.86 (0.75 – 0.97) 0.67 (0.50 – 0.83) 

Sensitivity 0.52 (0.37 – 0.67) 0.38 (0.18 – 0.62) 0.72 (0.51 – 0.88) 0.38 (0.18 – 0.62) 

Specificity 0.96 (0.79 – 1) 0.88 (0.68 – 0.97) 0.96 (0.79 – 1) 0.96 (0.80 – 1.00) 

PPV 0.96 0.73 0.95 0.89 

NPV 0.51 0.62 0.77 0.65 

p-value 3.11 x 10-4 0.28 1.81 x 10-6 2.75 x 10-2 

 

  



Table 4: Chemicals used to separate sample groups. 

PDAC vs CP PDAC vs Healthy CP vs Healthy 

2-pentanone 2,6-dimethyl-octane 2-pentanone 

Nonanal Nonanal Benzene, 1-ethenyl-2-methyl- 

4-ethyl-1,2-dimethyl-Benzene 4-ethyl-1,2-dimethyl-Benzene 4-ethyl-1,2-dimethyl-Benzene 

 

 

  



List of Figures: 

Figure 1: GC-IMS output of a PDAC urine sample (in colour) 

Figure 2: Typical GC-TOF-MS output of a PDAC urine sample, with example chemicals 

labelled. 

Figure 3: ROC for (a) PDAC vs Healthy and (b) PDAC vs CP using GC-IMS 

Figure 4: ROC for (a) PDAC vs Healthy and (b) PDAC vs CP using GC-TOF-MS 

 

 

 


