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 1 

Abstract:  2 

Synthetic gene circuits allow programming in DNA the expression of a phenotype at a given 3 

environmental condition. The recent integration of memory systems with gene circuits 4 

opens the door to their adaptation to new conditions and their re-programming. This lays 5 

the foundation to emulate neuromorphic behaviour and solve complex problems similarly 6 

to artificial neural networks. Cellular products such as DNA or proteins can be used to store 7 

memory in both digital and analog formats, allowing cells to be turned into living computing 8 

devices able to record information regarding their previous states. In particular, synthetic 9 

gene circuits with memory can be engineered into living systems to allow their adaptation 10 

through reinforcement learning. The development of gene circuits able to adapt through 11 

reinforcement learning moves Sciences towards the ambitious goal: the bottom-up creation 12 

of a fully-fledged living artificial intelligence. 13 
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Introduction 1 

Living systems are able to efficiently adapt to the environment by adjusting the regulation of 2 

their encoded genes. A cell may adapt either by modifying its genome or by regulation of 3 

gene expression. Cells learn to solve problems by adapting the regulation which controls 4 

alternative decisions. Re-engineering this regulation could allow for the creation of systems 5 

able to attain expertise at a given task. In a way, this approach merges the concepts of 6 

Darwinian evolution with those of neuroscience in order to outline a synthetic circuit 7 

capable of adaptation through learning. The challenge lies in defining the aspects of cell 8 

memory and learning while satisfying the constraints imposed by the experimental 9 

implementation. Any attempt at outlining a machine learning model in biology would be 10 

hindered by the usual difficulties associated with this field: what would the optimal 11 

structure for such a system be, how can the meta parameters be defined and ultimately 12 

how can novel genetic devices capable of storing and reading memory be engineered? With 13 

this in mind, researchers have collectively aimed towards the creation of a biological 14 

artificial intelligence[1-5]. Engineered cells able to make decisions would allow for numerous 15 

applications in the fields of personalized medicine or environmental protection.  16 

 17 

Memory can be regarded as the ability of a given system to store information about its 18 

previous states[6]. In synthetic biology, memory allows for the generation of a desired 19 

output based on receiving and amplifying a specific external input in a reproducible manner. 20 

Analog memory encodes information as a gradual response, usually defined as ranging from 21 

none to complete activation, an aspect which makes it sensitive to regulation and 22 

commonly altered by noise. Digital memory on the other hand offers a more discrete 23 



 4 

implementation as the output can only be null or fully induced. This approach is less 1 

sensitive to noise but is accompanied by the limitation of producing complex adaptive 2 

landscapes that difficult optimisation[7,8]. Learning in computation systems defines the 3 

ability to modify memory in response to a set of inputs, either supervised or unsupervised. 4 

Multiple types of learning can be outlined and implemented through synthetic gene circuits. 5 

Supervised learning assumes availability of correct input-output pairs as training 6 

examples[9,10], that the algorithm tries to generalise to a larger input space. In biological 7 

systems, the association between the environmental cues and the produced change in the 8 

memory generates an altered phenotype. This association can be adjusted to generate a 9 

desired phenotype. On the other hand, unsupervised learning is achieved without the need 10 

of known targeted phenotypes and with minimal external guidance. In this case, learning is 11 

based on successive alternative phenotypes. In living organisms, such phenotypes are 12 

produced in response to multiple environmental cues to adjust the memory. Learning 13 

shares characteristics of evolution as it infers acquiring new or improved functions, while 14 

adaptation refers to carrying out the same tasks but in different conditions. Since 15 

developing new traits leads to adaption, one may infer that the mechanisms behind learning 16 

and Darwinian adaptation can share some similar characteristics[6]. Reinforcement learning 17 

differs from other types of learning as it is achieved through maximising a reward signal 18 

rather than using the relation between inputs and outputs for acquiring new functions[9]. It 19 

assumes the availability of a long-term reward function that maps the history of the system 20 

to the reward. Reinforcement learning algorithms then adapt the memory to maximise the 21 

long-term reward. This innate ability to adapt without having to change the memory 22 

through external intervention is what suggests that reinforcement learning is the most 23 

suitable option for learning with synthetic gene circuits.  24 
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In multicellular organisms, memory is recorded through changes in cellular connections[11]. 1 

The engineering of learning with synthetic gene circuits aims to find ways to emulate this 2 

mechanism at singular cell level, usually employing newly engineered gene circuits or 3 

natural ones exploited to fulfil a new role[3]At the base of any system capable of learning 4 

there is an internal memory and a regulatory mechanism through which the memory of its 5 

states can be changed. The way learning is achieved is strongly related to the type of 6 

memory the system carries. Thus, digital-type memories are only able to record information 7 

regarding their ON and OFF states and have been considered the most viable for a number 8 

of successful applications[12,13]. On the other hand, devices with analog memory are able to 9 

store information in relation to the strength of the signal applied, allowing for intermediate 10 

states to be recorded. Throughout the history of computer science, the trend has been to 11 

switch from analog systems to digital to solve the problem of intrinsic noise of analog 12 

information. However, in living systems, analog mechanisms already provide adaptable 13 

systems able to give robust outputs in spite of noise.  14 

 15 

The following sections will present some of the most recent developments in the 16 

engineering of memory systems with synthetic gene circuits. These include the in vivo 17 

development of digital memory devices, the transition to more tuneable analog systems as 18 

well as the breakthrough innovations towards creating a biological memory 19 

reprogrammable through reinforcement learning, the focus of this paper. Moreover, we will 20 

analyse the concept of hybrid systems able to implement both digital and analog 21 

characteristics[8]. Thus, the aim of this mini-review article is to analyse the current state of 22 

the art as well as propose novel approaches for reinforcement learning with synthetic gene 23 

circuits.  24 
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 1 

Digital memory 2 

DNA encodes the memory necessary for evolution. DNA can be used as a means of writing 3 

and reading digital information in vivo, owing to the intrinsic storage capability of the 4 

genetic code[4,14-16]. Moreover, with the recent advances and cost reduction of DNA 5 

synthesis[17], researchers have developed approaches of how one can encode data into 6 

living cells and then retrieve it without damaging the engineered cells. A suitable example of 7 

how this is achieved is the use of a gene circuit that is constitutively inactive unless 8 

recombinases are used to flip the promoter sequence in the right orientation, thus 9 

switching on transcription[18-24]. Placing the activation of a gene under the control of an 10 

external input offers significant control to writing into the cellular memory. Through this 11 

type of synthetic learning, cells become able of conducting biological, noise-free binary 12 

computation, as well as passing the newly recorded information to future generations by 13 

means of permanent genome modifications. Moreover, multiple elements with these 14 

characteristics could be linked in circuits and networks, enabling more advanced 15 

computation with predictable outcomes.  16 

A more advanced way of achieving in vivo binary computation is the use of a systems that 17 

cause site-directed mutations[17,25,26]. This offers increased accuracy as the mutations would 18 

only occur at the desired site. In this case, learning is manifested as a prescribed change in 19 

the DNA sequence, with the cell recording the memory of previous exposure to the 20 

mutagenesis system. Thus, the engineered cells carry memory able to be written and read in 21 

a predictable manner similar to electronic storage devices. Memory systems that do not rely 22 

on mutating the DNA is similar to a Lamarckian evolution[17]. This implementation enables 23 
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the analysis of the genome in different conditions, both as a function of time as well as 1 

signal strength[12]. More recent work used nucleotide-level resolution in order to transform 2 

cell genomes into digital memory devices[14].  3 

 4 

Analog memory 5 

Gene circuits could be engineered to exploit the analog features of molecules[8,27]. Analog 6 

behaviour started to be employed in the most recent innovation such as the CAMERA 7 

system[28]. The aim was to create a reliable genetic device meant to record the history of 8 

cellular events. The CAMERA system supported writing and erasing analog cellular memory 9 

via a controllable signal. The information was encoded as the ratio between two co-10 

transformed plasmids and learning was achieved using antibiotic selection by introducing 11 

genes encoding for antibiotic resistance. A variation of the same mechanism involved the 12 

cleavage of one plasmid using Cas9 nuclease in order to change the plasmid ratio and thus 13 

the memory. The memory becomes accessible through sequencing, enabling the analysis of 14 

the mutations to infer the time profile of the variations in the environment. In another 15 

implementation, researchers engineered cells able to respond to both chemical inputs as 16 

well as light[29]. The changes induced by stimuli in the genomic DNA are permanent and can 17 

be re-traced to produce the timescale of their occurrence. A compelling proposal would be 18 

the use of hybrid systems able to conduct analog-digital computation[8]. This would imply 19 

the integration of an analog memory storage with digital computation through synthetic 20 

gene circuits. The analog aspect would allow to weigh two alternative digital gene circuits 21 

according to learning and adapt in order to decide towards the preferential option. 22 

 23 

 24 
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Adaptable Regulatory Systems 1 

In the field of electronic computation, memristors are devices able to store memory related 2 

to their previous states[30]. The unique characteristic to maintain their resistance in absence 3 

of electrical charge allows for the interpretation of memristors as equivalents of 4 

synapses[31]. This property makes memristive systems viable candidates for biological 5 

computers. One way to achieve this would be using the functional aspects of memristors in 6 

order to link synthetic neuron-like components. Although not precise proxies of real 7 

neurons, these novel devices could still be linked via synthetic synapses to form artificial 8 

neural networks. Thus, a signal fired by a presynaptic neuron could be passed through a 9 

memristor which would then trigger an action potential in the postsynaptic neuron. The 10 

variable resistance of the memristor would serve as the synaptic weight which could be 11 

modified in order to use the system for learning. However, given the usual dynamic voltage 12 

range of memristors (0.2-2V) which are significantly above the biological voltage thresholds 13 

of approx. 100mV[31], there is a need to engineer a biological equivalent that would offer 14 

more realistic dynamics when emulating cognitive networks. This is currently the case with 15 

other implementations of machine learning, which have the challenge of an increasing 16 

demand of processing power. 17 

Regardless of the application, the behaviour of memristive devices depends on their 18 

previous history. In biochemistry, the recent work of several groups has led to the 19 

construction of molecular memristors able to mimic cognitive functions[32-34]. One example 20 

of this is the diffusive memristor functioned using Silver nanoparticles. With this, it was 21 

possible to build a synthetic neuron which presented the characteristic integrate-and-fire 22 

dynamics. Through coupling multiple of these neurons, a fully functional memristive 23 
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artificial neural network could be built. However, this achievement was still hindered by the 1 

functional discrepancies between memristors and real synapses, but it could be employed in 2 

experiments of encoding information in the relative synaptic strengths. Other 3 

implementations involved using oxide-based memristors to emulate the  dynamics 4 

which govern biological synapses[35]. This biology-driven approach, in addition to the 5 

previously described memory-storing capacities of memristors in electronics strengthens 6 

the potential of such devices to be used in biological computing. 7 

 8 

One first step towards a biological memristive device involved the creation of bioinspired 9 

bio-voltage memristors[31]. This system exploited the active protein nanowires of Geobacter 10 

sulfurreducens which have previously been proven to catalyse Silver ion reductions[36]. This 11 

property enabled the creation of biochemical memristors, with the flux of Silver ions serving 12 

as the signalling flow of artificial synapses. Following this, a successful implementation 13 

included the analysis of the electrical properties of fungi belonging to Pleurotus spp.[37], a 14 

significant step taken towards building a biological memory-storing device. In a previous 15 

study[38], it was shown that fungi are able to record the action of exogenous stimuli as 16 

fluctuations in the electrical signalling between distinct members of the same population, in 17 

a similar fashion to how information is passed from sensory neurons to the central nervous 18 

system and then motor neurons. This analogy enabled the outline of a model of a fungal 19 

automaton able to implement logical functions. With these findings, the gap between 20 

organic and inorganic computation decreases, possibly paving the way towards a hybrid of 21 

the two.  22 

 23 

 24 
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 1 

Regulatory Systems Capable of Reinforcement Learning 2 

The implementation of molecular reinforcement learning would become possible via the 3 

creation of a genetic memristor. Using such a genetic device would enable researchers to 4 

modulate its transcription rate by means of a promoter with tuneable strength which would 5 

function as the equivalent of a potentiometer. The advantage of a genetic memristor would 6 

be the tuning of gene regulation according to its history which would offer the cells 7 

unsupervised adaptation based on the output. We call memregulon (as a contraction of 8 

memory regulon) a genetic memristor, which operates through reinforcement learning and 9 

a population-based memory. Two types of experimental memregulons implementations are 10 

illustrated in Figure 1A,C and Figure 1B,D. The first set-up is illustrated in Figure 1A, where 11 

two types of cells (A and B) are mixed in a co-culture. The memory of the resulting 12 

population is given as the A:B ratio. Cells A carry a genetic memristor built as an operon 13 

(regulon) with transcription rate switchable through a regulator (R). Cells B derive from cells 14 

A through mutations (either a knockout or knockdown of their functions) in the reporter 15 

gene X and the learning gene L. The product of gene X can be a reporter, an enzyme or a 16 

regulator of a downstream gene circuit. The product of gene L is a protein able to 17 

manipulate the A:B ratio by either altering the number of cells or by transmuting A into B or 18 

vice versa (Figure 1C). Several mutagenesis systems already exist that could be employed to 19 

achieve this [14,39,40]. In the absence of regulator R, both A and B cells will show similar mean 20 

growth rates, offering stability to the co-culture memory. Thus, changing the memory 21 

(learning) at the population level requires the presence of regulator R that will enable the 22 

expression of the L gene. In addition, the product of the gene L is switched on through an 23 

independent regulatory mechanism under the control of a suitable chemical compound ( l ). 24 



 11 

An example of gene L is an antibiotic resistance gene, in which case learning would occur at 1 

a slower rate in co-transformed cells (Figure 1B,D) as it would require the death of the cells 2 

which spontaneously lost a plasmid. The second implementation of the memregulon (Figure 3 

1B,D) combines the CAMERA analog memory system described before with gene regulation 4 

to produce non-Darwinian adaptations that change the phenotype according to the memory 5 

state (Figure 1E,F). The promoter output increases the level of gene L expression. Therefore, 6 

when gene L is activated it will lead to a greater shift in memory if the promoter is more 7 

active (Figure 1E). The activation of gene L acts as a positive/negative reinforcement of the 8 

behaviour (gene X expression by the population) if L increases/decreases the A cells (Figure 9 

1A,C) or plasmids (Figure 1B,D) ratios respectively. Figure 1E,F shows the positive 10 

reinforcement case. Leaky transcription (Figure 1E) leads to a basal learning rate which 11 

produces a continuous memory loss. In the second type of memory because learning occurs 12 

at a slower rate, this memory loss will be smaller. In absence of leakage, both types of 13 

memory show similar behaviour.  14 

 15 

Recently, in an oral presentation at the Synthetic Biology UK 2019 meeting held in Warwick 16 

on December 2019, we have shown for the first time our experimental validation of a library 17 

of 25 memregulons of the type of Figure 1B,D reprogramming a microbial consortia of E. coli 18 

to learn to play the game of tic-tac-toe. As natural multiple-copy plasmids already contain 19 

promoters with combinatorial regulations and antibiotic resistance genes, we may 20 

conjecture the existence of non-Darwinian adaptive mechanisms exploited by microbial 21 

consortia to optimize decision making to changing environments. 22 

 23 

 24 
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 1 

Perspective 2 

 Gene circuits with analog memory are allowing the development of gene circuits 3 

able to adapt to the environment, usually by supervised learning. The introduction of 4 

reinforcement learning will allow for an unsupervised adaptation of gene circuits 5 

towards complex algorithms. 6 

 Darwinian evolution of gene circuits could be recast as a reinforcement learning 7 

problem when an effective analog memory could be achieved. Current approaches 8 

involving analog memory systems usually require an in vitro memory access (e.g. 9 

sequencing), which prevents their use in gene circuits. 10 

 Future directions could involve the search for new mechanisms for analog memory 11 

that could regulate gene expression (i.e.  implementing a memregulon) that will 12 

already exist in living systems. In this way, by understanding the combinatorial 13 

regulation of their natural memregulons (understanding their “language”) we could 14 

imagine training those microbial ecosystems new tricks and even complex 15 

algorithms. 16 

 17 

 18 
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Figure caption. 4 

Figure 1 Proposal for a memregulon: A minimal distributed gene circuit able of 5 

unsupervised adaptation through reinforcement learning. (A) Co-culture memory 6 

implementation. We show a population of two type of cells: cells A carry an operon that is 7 

activated in presence of a regulator R and cells B being a copy of cells A with a knockout or 8 

knockdown of a selection gene L. At the population level, the gene L controls the A:B ratio 9 

through one of the following mechanisms: it can hinder the multiplication of either A or 10 

B, promote the multiplication of A or B or transforms A into B through a mutation or 11 

recombination of the operon with gene L. Transmuting A into B would allow for the 12 

implementation of a single-cell level memory. (B) Two-plasmid memory implementation. In 13 

this setup, memregulons are built with operons like those of the previously described cells A 14 

and B which would be co-transformed as Plasmid A and Plasmid B respectively in a single 15 

cell. (C) Representation of population memory experiment. Reinforcement learning occurs 16 

when the activity of L (in presence of l) changes the A:B ratio (which acts as an analog 17 

memory). (D) Representation of co-transformation memory. Reinforcement learning is 18 

manifested as a change in the total level of X inside the population. (E) Memory changes 19 

based on increased gene L expression. Because the activity of L increases learning, the 20 

memregulon system implements the simplest form of reinforcement learning. Leakage 21 

causes a residual learning and, therefore, memory loss. (F) The total amount of X produced 22 

by the population is tuned by changing the memory state in the presence of l.  23 
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