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Abstract

Recent advances on the identi�cation of the Berry, Levinsohn and Pakes (BLP,

1995) random coe�cient demand models focus on the structural demand functions.

Yet, this does not automatically imply the identi�cation of the distribution of the

random coe�cients. The latter is often necessary for counterfactuals where the

new values of product characteristics do not belong to the support in the factual

scenario (e.g. new prices after mergers) or the structural demand functions change

(e.g. new products are added). This paper provides novel arguments to identify

the distribution of the random coe�cients using one single variation in product

characteristics. In a leading case where the random coe�cients only include a

random coe�cient on price and individual- and product-speci�c random intercepts,

observing market outcomes at two di�erent price vectors already su�ces to identify

the distribution of the random coe�cients. In theory, these arguments greatly

weaken the usual requirements on the regressors or the moments of the random

coe�cients. In practice, these results are particularly useful when there is little (or

limited) variation in product characteristics across markets.
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1 Introduction

Since the seminal work of Berry (1994) and Berry et al. (1995) (hereafter BLP), BLP-type

models are widely used in the empirical literature of demand. These models typically

feature a utility structure with random coe�cients that represent individuals' unobserved

heterogeneity in price sensitivities and preferences of product characteristics. Oftentimes,

the primary goal in identi�cation is to recover the demand functions using market-level

data. This enables to identify important objects such as price elasticities and marginal

costs at the observed prices. However, only identifying the demand functions may not be

su�cient to simulate counterfactuals where the new values of product characteristics are

out of the support in the factual scenario, or the structural demand functions change.1

To simulate these counterfactuals, one has to further identify the distribution of the

random coe�cients from the market-level data.

This paper provides novel arguments that identify the distribution of the random

coe�cients in a mixed-logit BLP model of demand. Assuming the identi�cation of the

demand functions, the proposed strategy only requires one single variation in product

characteristics across markets. This requirement is remarkably weaker the often used

ones in the existing literature (e.g. special regressors, random coe�cients with restricted

moments). In a leading case where the random coe�cients only include a random coe�-

cient on price and individual- and product-speci�c random intercepts, observing market

outcomes at two di�erent price vectors already su�ces to identify the distribution of

the random coe�cients. This property of robust identi�cation provides an additional

argument for using BLP-type models of demand in empirical research.

The identi�cation strategy proceeds in two steps. In the �rst step, I recover the

distribution of the unobserved components in the indirect utilities from the identi�ed

demand functions. Leveraging the linear indirect utility structure, this step is to decon-

volute the demand functions that are convolutions of multinomial logit and the density

function of the unobserved components. In the second step, I aim to recover the joint

distribution of the random coe�cients in the unobserved components. Because of the

linear indirectly utility, this step is to identify the joint distribution of random slopes,

which interact with the observed product characteristics, and the random intercepts that

1One example is merger analysis with the after-merger prices not belonging to the support in the
factual case. Another example is product variety analysis where a new (or current) product is added to
(or removed from) the choice set.
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represent individuals' unobserved perceptions of product qualities. To do so, I assume

that the random slopes and the random intercepts are independently distributed. Then,

from the �rst step, I identify the product of the characteristic function of the random

slope components (i.e. the interaction between random slopes and the observed charac-

teristics) and that of the random intercepts, conditional on the observed characteristics.

By exploiting one single variation in the observed product characteristics, I can di�er-

ence out the characteristic function of the random intercepts. The identi�cation of the

characteristic function of the random slopes follows if the variation shifts product char-

acteristics towards the origin in all directions. Finally, combining this with the identi�ed

distribution of the unobserved components, I identify the distribution of the random

intercepts.

Related Literature Recent progress on the identi�cation of demand using aggregate

data primarily focuses on the structural demand functions. These progresses include

identi�cation arguments using completeness conditions (Berry and Haile, 2014), in a

simultaneous system of demand and supply (Matzkin (2008), Berry and Haile (2014,

2018)), in a triangular system (Chesher (2003), Imbens and Newey (2009), D'Haultf÷uille

and Février (2015), Torgovitsky (2015)), in perturbed utility models of demand (Allen

and Rehbeck, 2019), and in models of demand for bundles (Fox and Lazzati (2017), Wang

(2019)). However, as pointed out by Fox et al. (2012), in random coe�cient models of

demand, even if the demand functions are identi�ed, it is still necessary to recover the

full distribution of the random coe�cients to simulate counterfactuals where new values

of product characteristics may not belong to the support in the factual scenario.2 This

paper complements the existing approaches and develops novel arguments to further

identify the distribution of the random coe�cients.

There is an extensive literature on the identi�cation of random coe�cient models. A

widely used condition is the existence of a special regressor with large support.3 Some

recent papers relax this requirement and propose strategies that use limited support con-

dition together with restrictions on the location of the support or/and on the moments of

2See page 206 of Fox et al. (2012).
3See Lewbel (2000), Berry and Haile (2009), Fox and Gandhi (2016), Fox and Lazzati (2017), Lewbel

and Pendakur (2017), Dunker et al. (2017), Masten (2018) among others.
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the random coe�cients.4 The strategy in this paper di�ers from the existing ones in two

aspects. First, it exploits one single variation in regressors that interact with the ran-

dom coe�cients to achieve the identi�cation.5 This strategy signi�cantly alleviates the

restrictions on the support of the regressors and the moments of the random coe�cients.

Second, this strategy requires to recover in advance the structural demand functions at

least in an open set. As argued previously, this prerequisite step can be achieved via

several well-developed methods in the literature.

The closest papers in the literature are Dunker et al. (2017) and Allen and Rehbeck

(2020) whose identi�cation arguments of the distribution of the random coe�cients also

posit on that the structural demand functions are identi�ed. Dunker et al. (2017) lever-

ages the linear utility structure and employs Radon transformation to identify the dis-

tribution of the random coe�cients.6 This approach requires regressors to be continuous

and with large support, or limited support but with additional restrictions on the mo-

ments of the random coe�cients.7 In contrast, the strategy in this paper applies to both

continuous and discrete regressors and only requires a single variation in them. In a per-

turbed utility model, Allen and Rehbeck (2020) identi�es the moments of the random

slopes from the (higher-order) derivatives of the demand functions at the origin.8 The

approach of this paper and theirs both employ the condition of independence between

random slopes and random intercepts.9 However, there are two key di�erences. First,

their primary goal is to identify the moments of the random slopes. To identify the

distribution, they require further conditions that guarantee that the distribution of the

random slopes is uniquely determined by their moments.10 Di�erently, the strategy in

this paper directly identi�es the distribution of the random slopes and therefore does

4See, for example, Lewbel (2010), Fox et al. (2012), Masten (2018), Chernozhukov et al. (2019),
Gaillac and Gautier (2019) and Allen and Rehbeck (2020).

5In the setting of control function approach, D'Haultf÷ uille et al. (2020) proposes a cross condition
of the instrument, rather than relying on the exclusion restriction, to identify the distribution of the
random coe�cients in a linear random coe�cient model (see their section 4.1). Similar to the condition
in this paper, this cross condition only requires a single variation in the instrument.

6See also Hoderlein et al. (2010) and Gautier and Hoderlein (2013) for applications of Radon trans-
formation in identi�cation and estimation of random coe�cient models.

7See their Assumptions 3.1-3.3.
8This strategy is also used by Fox et al. (2012) in the constructive identi�cation arguments.
9See their Assumption 1. This condition is fairly standard in both empirical and theoretical liter-

atures. See Chernozhukov et al. (2019) and D'Haultf÷ uille et al. (2020) among others. Note that
oftentimes in empirical research, only random slopes (or random intercepts) are present, while random
intercepts (or random slopes) are degenerated, i.e. constants (see Nevo (2000, 2001), Gentzkow (2007),
Fox et al. (2012).). This case is also covered by the independence condition.

10See Assumption 7 of Fox et al. (2012) for an example of such conditions.
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not require such conditions. Second, their strategy to identify the moments requires the

support to be around the origin, while the strategy of the current paper does not posit

on the special location of the support.

Organisation. Section 2 introduces the model and necessary notations. Section 3

explains the main results of the paper. Section 4 concludes. All examples and proofs

can be found in Appendices A-D.

2 Model

Denote market by t.11 Let Jt be the set of Jt market-speci�c products in market t.

Without loss of generality, suppose that Jt = J, i.e. there is no variation in the choice

set across markets. Denote the outside option by 0. Individuals in market t can either

choose a product j ∈ J or the outside option 0. Let xtj ∈ RK denote the vector of

observed characteristics of product j in market t. Since the main results of the paper do

not necessitate the notational distinction between ptj and xtj , I use xtj to refer to the

vector of all observed characteristics of j that also include the price. As in typical BLP

models of demand (see Berry and Haile (2014)), I assume the linear index structure in

the indirect utilities of products. For individual i in market t, the indirect utility from

choosing product j is:

Uitj = xtjβi + ηij + ξtj + εitj

= x
(1)
tj β

(1) + x
(2)
tj β

(2)
i + ηij + ξtj + εitj

= [x
(1)
tj β

(1) + ηj + ξtj ] + [x
(2)
tj β

(2)
i + ∆ηij ] + εitj

= δtj + µitj + εitj ,

where δtj = x
(1)
tj β

(1) + ηj + ξtj is market t- and product j-speci�c mean utility, µitj =

x
(2)
tj β

(2)
i +∆ηij is an individual i-speci�c utility deviation from δtj , and εitj is an idiosyn-

cratic error term. The vector x
(1)
tj consists of product characteristics that enters Uitj with

deterministic coe�cient(s) β(1), i.e. individuals have homogeneous taste on x
(1)
tj , while

the vector x
(2)
tj enters Uitj with potentially individual-speci�c coe�cients β

(2)
i , i.e. indi-

11The de�nition of market depends on the empirical application. In the case of cross sectional data,
one could de�ne markets as di�erent geographic areas; in the case of panel data, they can be de�ned as
di�erent periods. In many cases, market can be de�ned as a combination of both.
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viduals have heterogeneous tastes on x
(2)
tj . The term ηij captures individual i's perception

of the quality of product j, with ηj capturing average quality of product j and ∆ηij in-

dividual deviation from ηj . Any market-invariant characteristics of product j is then

encapsulated in ηj . The term ξtj is market-product speci�c demand shock of product j,

observed to both �rms and individuals but not observed to the econometrician.

For individual i in market t, the indirect utility from choosing the outside option 0

is normalized to

Uit0 = εit0.

Denote by θi = (β
(2)
i ,∆ηi) the random coe�cients for individual i, where ∆ηi = (∆ηi1, ...,∆ηiJ).

Suppose that θi is distributed according to F . Then, the individual i-speci�c utility de-

viation µitj can be written as µitj = µj(x
(2)
tj ; θi). Finally, assume that εit0 and εitj , j ∈ J,

are i.i.d. Gumbel. We obtain the market share function of product j in market t:

sj(δt;X
(2)
t , F ) =

∫
exp{δtj + µj(x

(2)
tj ; θi)}

1 +
∑

j′∈J exp{δtj′ + µj′(x
(2)
tj′ ; θi)}

dF (θi), (1)

where δt = (δtj)j∈J, X
(2)
t = (x

(2)
tj )j∈J ∈ RK2×J .

In the literature of BLP models of demand, the primary goal of identi�cation is often

sj(δt;X
(2)
t , F ), for j ∈ J, as a function of (δt, X

(2)
t ), rather than the distribution F .

Obviously, if F is identi�ed, then the market share functions are identi�ed. However,

the reverse may not true in general. In the rest of this paper, assuming the identi�cation

of the market share functions, I provide additional conditions under which F is identi�ed.

3 Identi�cation of the Distribution F

To ease the exposition, I drop the notation t. Denote the support of X(2) = (x
(2)
j )j∈J by

X ⊂ RK2×J , where K2 is the dimension of β
(2)
i . To start the discussion, I assume that

the market share functions are identi�ed at least in an open set.

Assumption 1. For any X(2) ∈ X and any j ∈ J, sj(δ;X
(2), F ) is identi�ed in D 3 δ,

where D is an open set in RJ .

Remark 1. Assumption 1 can be implied by a price-setting game with J supply-side

variables. Take cost shifters c = (cj)j∈J for example. Because the price vector p (a row
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vector of X(2)) is the outcome of the price-setting game, it is typically a function of (δ, c).

Then, for a given p, the pricing equation de�nes a relationship between c and δ. Under

suitable regularity conditions, this relationship allows to generate variations of δ in an

open subset of D, as required in Assumption 1.

The identi�cation of the market share functions in Assumption 1 can be achieved via

several well-developed approaches. In general, without further assumptions, it does not

imply the identi�cation of F . However, it is already su�cient for the identi�cation of

the distribution of µi = (µij)j∈J conditional on X(2) ∈ X, as stated in the following

theorem:

Theorem 1. Suppose that Assumption 1 holds. Then, for any X(2) ∈ X, the distribution

of µi|X(2) is identi�ed.

Proof. See Appendix A.

Remark 2. If K2 = 0, i.e. β
(2)
i is degenerated and therefore µi = ∆ηi, then Theorem 1

already implies the identi�cation of F .

Remark 3. In a more general demand model, Berry and Haile (2014) proves the identi-

�cation of the distribution of µi.
12 Their arguments rely on a condition that the support

of µi is included in that of the price vector. Di�erently, Theorem 1 only requires that δ

vary in an open set and does not impose any restriction on the support of µi.

We now continue to identify F . We start with a leading case K2 = 1, i.e. β
(2)
i is a scaler.

3.1 Leading case: K2 = 1

The next Assumption provides a set of su�cient conditions:

Assumption 2.

� (Single Variation) There exist X(2), Y (2) ∈ X, such that for some j ∈ J, |x(2)j | 6=

|y(2)j |.

� (Independence) β
(2)
i and ∆ηi are independent.

12See their section 4.2 on page 1764.
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Remarkably weaker than usual support conditions in the literature, the variation con-

dition in Assumption 2 only requires one single variation in X(2). In particular, it is

implied by any continuous X, or non-singleton discrete X ⊂ RJ+ (e.g. two di�erent price

vectors). This condition is motivated by the practical issue that product characteristics

may not always change much (or in a limited way) across markets. For this single vari-

ation, we require that for some j ∈ J, |x(2)j | 6= |y
(2)
j |, i.e. for some j ∈ J the variation

shifts characteristics towards the origin.

The independence condition in Assumption 2 is often used in the theoretical literature

and also a popular speci�cation in empirical research. In general, it is not necessary

when the variation in X(2) is rich enough.13 However, as shown in Appendix B, without

this condition, F may not be identi�ed only using the single variation condition in

Assumption 2.

Theorem 2. Suppose that K2 = 1 and Assumptions 1-2 hold. Then, F is identi�ed.

Proof. See Appendix C.

3.2 General case: K2 > 1

For more general cases K2 > 1, i.e. β
(2)
i is multi-dimensional, the identi�cation of F can

be achieved under a similar assumption to Assumption 2:

Assumption 3.

� (Single Variation) There exists X(2), Y (2) ∈ X and M ∈ RJ×J , such that X(2)

and Y (2) are of full-column rank, Y (2) = MX(2), and the absolute values of the

eigenvalues of M are strictly smaller than 1.

� (Independence) β
(2)
i and ∆ηi are independent.

The independence condition is the same as that in Assumption 2. The single variation

condition in Assumption 3 is also along the lines of in Assumption 2 and only requires

one variation in the product characteristics matrix. However, the requirement in the case

of K2 > 1 is stronger than that in the case of K2 = 1: X(2) is �closer� to the origin than

Y (2) in all directions de�ned by the eigenvectors of M . As in the leading case, the single

13See the identi�cation analysis of Ichimura and Thompson (1998) and Gautier and Kitamura (2013)
for arguments that do not require this independence condition.
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variation condition in Assumption 3 is weaker than the support conditions often used in

the literature. For example, if the local support condition, i.e X is an open neighborhood

ofX(2), holds, then there exists 0 < λ < 1, such that we can de�ne Y (2) = λIJ×JX
(2) and

Y (2) ∈ X. Finally, the full-column rank requirement on X(2) ∈ RJ×K2 (or equivalently

the full-row rank requirement on X(2)T) guarantees that any vector v ∈ RK2 can be

expressed by a linear combination of the column vectors of X(2)T.

Theorem 3. Suppose that K2 > 1, and Assumptions 1 and 3 hold. Then, F is identi�ed.

See Appendix D for the proof.

4 Conclusion

In this paper, assuming the identi�cation of demand functions, I propose a novel strat-

egy to identify the distribution of the random coe�cients in a mixed-logit BLP model of

demand. The strategy only requires one single variation in the observed product charac-

teristics that interact with the random coe�cients. Compared to the existing literature,

this approach does not rely on the existence of a special regressor with large support.

This feature is particularly convenient in applications where the value of product char-

acteristics does not vary much (or in a limited way) across markets. Moreover, this

strategy does not impose restrictions on the moments of the random coe�cients and

allow for any distribution, as long as the random slopes and the random intercepts are

independently distributed.

Appendix

A Proof of Theorem 1

Denote the distribution function of µi = (µj(x
(2)
j ; θi))j∈J conditional onX

(2) byGµ|X(2)(·).

Then, we obtain that for any j ∈ J,

sj(δ;Gµ|X(2)) = sj(δ;X
(2), F )

=

∫
exp{δj + µij}

1 +
∑

j′∈J exp{δj′ + µij′}
dGµ|X(2)(µi)
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is identi�ed for all δ ∈ D. Suppose that there exist G′
µ|X(2)(·) such that sj(δ;Gµ|X(2)) =

sj(δ;G
′
µ|X(2)) for any δ ∈ D. In what follows, we prove Gµ|X(2) = G′

µ|X(2) in three steps.

Step 1.

Lemma 1. Suppose that Assumption 1 holds. Then, for any X(2) ∈ X and j ∈ J,

sj(δ;Gµ|X(2)) = sj(δ;G
′
µ|X(2)) for δ ∈ RJ .

Remark 4. When the price coe�cient is homogeneous across individuals, the utility

structure of model (1) satis�es Assumption 5 in section 4.2 of Berry and Haile (2014).

Consequently, keeping other product characteristics �xed, any price change can be equiv-

alently expressed via the change in δ. Then, the change in consumer welfare due to

price change is already identi�ed as long as the corresponding path of δ is included in D.

Lemma 1 enhances their result in mixed-logit models of demand and already allows to

identify consumer welfare change due to any price change (and therefore any path of δ in

RJ), without identifying F . This is due to the real-analytic property of demand system

(1) with respect to δt.
14

Proof. According to Theorem 2 (Real Analytic Property) of Iaria and Wang (2019),

sj(δ;Gµ|X(2)) and sj(δ;G
′
µ|X(2)) are both real analytic with respect to δ in RJ . Then,

sj(δ;Gµ|X(2))− sj(δ;G′µ|X(2)) is also real analytic with respect to δ in RJ . According to

Assumption 1, sj(δ;Gµ|X(2)) − sj(δ;G′µ|X(2)) = 0 in open set D. Then, sj(δ;Gµ|X(2)) −

sj(δ;G
′
µ|X(2)) = 0 for any δ ∈ RJ .

Because of Lemma 1, we obtain that for any δ ∈ RJ ,
∂Js0(δ;Gµ|X(2) )∏J

j=1 ∂δj
=

∂Js0(δ;G′
µ|X(2)

)∏J
j=1 ∂δj

.

14Some papers in the literature have also employed this property in the identi�cation and estimation
of mixed-logit models of demand. See Fox et al. (2012), il Kim (2014), Iaria and Wang (2019), Wang
(2019).
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Equivalently,

∂Js0(δ;Gµ|X(2))∏J
j=1 ∂δj

−
∂Js0(δ;G′

µ|X(2))∏J
j=1 ∂δj

= (−1)JJ !

∫
1

1 +
∑
j′∈J exp{δj′ + µij′}

J∏
j=1

exp{δj + µij}
1 +

∑
j′∈J exp{δj′ + µij′}

d(Gµ|X(2) −G′µ|X(2))(µi)

= (−1)JJ !

∫
1

1 +
∑
j′∈J exp{λj′}

J∏
j=1

exp{λj}
1 +

∑
j′∈J exp{λj′}

d(Gµ|X(2) −G′µ|X(2))(λi − δ)

= (−1)JJ !

∫
φ(λi)d(Gµ|X(2) −G′µ|X(2))(λi − δ)

= 0,

(A.1)

where φ(λ) = 1

1+
∑
j′∈J e

λ
j′

∏J
j=1

eλj

1+
∑
j′∈J e

λ
j′
.

Step 2.

Lemma 2. φ ∈ L1(RJ).

Proof. First, by transforming λ to exp{λ}, we obtain:

∫
φ(λ)dλ =

∫
RJ+

(
1

1 +
∑
j′∈J yj′

)J+1

dy

=
∑

I=⊗Jj=1Ij ,Ij∈{[0,1),[1,+∞)}

∫
I

(
1

1 +
∑
j′∈J yj′

)J+1

dy.

Because there are 2J possible I's, it then su�ces to prove that for any I,

∫
I

(
1

1 +
∑
j′∈J yj′

)J+1

dy <∞.

Denote the number of j's such that Ij = [1,+∞) by k. When k = 0,
∫
I
(1+

∑
j′∈J yj′)

−(J+1)dy <

1. When k > 0, without loss of generality, suppose that Ij = [1,+∞) for 1 ≤ j ≤ k, and

11



Ij = [0, 1) for k + 1 ≤ j ≤ J . Then,

∫
I

(
1

1 +
∑
j′∈J yj′

)J+1

dy ≤
∫ +∞

1

...

∫ +∞

1︸ ︷︷ ︸
k

(
1∑k

j′=1 yj′

)J+1

dy1...dyk

≤
∫ +∞

1

...

∫ +∞

1︸ ︷︷ ︸
k

 1

k
∏k
j′=1 y

1
k

j′

J+1

dy1...dyk

=
1

kJ+1

(∫ ∞
1

y−
J+1
k dy

)k
=

1

kJ+1−k

(
1

J + 1− k

)k
.

The transition from the �rst to the second line is obtained by using
∑k
j′=1 yj′ ≥ k(

∏k
j′=1 yj′)

1/k.

Because of Lemma 2, φ ∈ L1(RJ) and hence its Fourier transformation is well de�ned. More-

over, note that the right-hand side of (A.1) is a convolution of φ and dGµ|X(2) − dG′µ|X(2) .
15

Consequently,

F(φ)(v)[ψG
µ|X(2)

(v)− ψG′
µ|X(2)

(v)] = 0 (A.2)

for any v ∈ RJ , where F(.) denotes Fourier transformation and ψG is the characteristic function

of distribution G.

Step 3.

Lemma 3. The set {v ∈ RJ : F(φ)(v) = 0} is of zero Lebesgue measure.

Combining (A.2) and Lemma 3, we obtain that ψG
µ|X(2)

= ψG′
µ|X(2)

almost everywhere. Because

characteristic functions are continuous, then we obtain ψG
µ|X(2)

= ψG′
µ|X(2)

every where and

hence Gµ|X(2) = G′
µ|X(2) . In the remaining part, we prove Lemma 3.

Proof. Note that it su�ces to prove that the real (or the imaginary) part of F(φ) is real analytic

and not constantly zero. As long as this result is proved, according to Mityagin (2015), the

zero set of the non-constant real (imaginary) part of F(φ) is of zero Lebesgue measure. As a

consequence, the zero set of F(φ) is also of zero Lebesgue measure.

We �rst prove the real and imaginary parts of F(φ) are real analytic. It su�ces to evaluate∣∣∣∣∂LF(φ)(y)∏J
j=1 ∂y

lj
j

∣∣∣∣, where ∑J
j=1 lj = L. Note that:

∂LF(φ)(y)∏J
j=1 ∂y

lj
j

= F(

J∏
j=1

(−iλljj )φ)(y),

15Here dGµ|X(2) − dG′
µ|X(2) is de�ned as a distribution.
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where i is the imaginary unit. We now show that for any y ∈ RJ ,∣∣∣∣∣∣F(

J∏
j=1

(−iλljj )φ)(y)

∣∣∣∣∣∣ ≤ 2JJL
J∏
j=1

lj !

First, ∣∣∣∣∣∣F(

J∏
j=1

(−iλljj )φ)(y)

∣∣∣∣∣∣ ≤
∫ J∏

j=1

|λj |ljφ(λ)dλ

=

∫
RJ+

∏J
j=1 | ln yj |lj

(1 +
∑J
j=1 yj)

J+1
dy

=
∑

I=⊗Jj=1Ij ,Ij∈{[0,1),[1,+∞)}

∫
I

∏J
j=1 | ln yj |lj

(1 +
∑J
j=1 yj)

J+1
dy.

Similar to the proof of Lemma 2, we evaluate
∫
I

∏J
j=1 | ln yj |

lj

(1+
∑J
j=1 yj)

J+1 dy for each I. Denote the number

of j's such that Ij = [1,+∞) by k. When k = 0,

∫
I

∏J
j=1 | ln yj |lj

(1 +
∑J
j=1 yj)

J+1
dy ≤

J∏
j=1

∫ 1

0

| ln yj |ljdyj

=

J∏
j=1

∫ +∞

0

λ
lj
j e
−λjdλj

=

J∏
j=1

lj !

When k > 0, without loss of generality, suppose that Ij = [1,+∞) for 1 ≤ j ≤ k, and Ij = [0, 1)

for k + 1 ≤ j ≤ J . Then,

∫
I

∏J
j=1 | ln yj |lj

(1 +
∑J
j=1 yj)

J+1
dy ≤

∫ +∞

1

∏k
j=1 | ln yj |lj

(1 +
∑k
j=1 yj)

J+1
dy1...dyk

J∏
j=k+1

∫ 1

0

| ln yj |ljdyj

≤ 1

kJ+1

∫ +∞

1

k∏
j=1

(ln yj)
ljy
− J+1

k
j dy1...dyk

J∏
j=k+1

lj !

=
1

kJ+1

J∏
j=k+1

lj !

k∏
j=1

∫ +∞

0

λ
lj
j e
− J+1−k

k λjdλj

=
1

kJ+1

(
k

J + 1− k

)L J∏
j=1

lj !

≤ JL
J∏
j=1

lj !.

The transition from the �rst to the second line is obtained by using
∑k
j=1 yj ≥ k(

∏k
j=1 yj)

1/k.

13



Then, summing over 2J integrals, we obtain:

∣∣∣∣∣∂LF(φ)(y)∏J
j=1 ∂y

lj
j

∣∣∣∣∣ ≤ 2JJL
J∏
j=1

lj !.

Denote the real part of F(φ)(y) by Re[F(φ)](y). Then, for any y ∈ RJ ,

∣∣∣∣∣∂LRe[F(φ)](y)∏J
j=1 ∂y

lj
j

∣∣∣∣∣ ≤ 2JJL
J∏
j=1

lj !.

Note that for y such that |y − y0| < J−2, the Taylor expansion of Re[F(φ)](y) around y = y0

can be controlled by∣∣∣∣∣∣∣
∞∑
L=0

1

L!

 J∑
j=1

(yj − y0j)
∂

∂yj

LRe[F(φ)](y0)

∣∣∣∣∣∣∣ ≤
∞∑
L=0

1

L!
dL

∑
∑
lj=L

L!∏J
j=1 lj !

∣∣∣∣∣∂LRe[F(φ)](y)∏J
j=1 ∂y

lj
j

∣∣∣∣∣
≤ 2J

∞∑
L=0

(dJ2)L

≤ 2J
∞∑
L=0

1

2L
.

The transition from the �rst to the second line uses
∑∑J

j=1 lj=L

1 ≤ JL. As a result, the Taylor

expansion of Re[F(φ)](y) converges for |y − y0| < J−2. Finally, for |y − y0| < 0.5J−2,∣∣∣∣∣∣∣Re[F(φ)](y)−
R∑
L=0

1

L!

 J∑
j=1

(yj − y0j)
∂

∂yj

LRe[F(φ)](y0)

∣∣∣∣∣∣∣
≤
[

1

2J2

]R+1 ∑
∑
lj=R+1

1∏J
j=1 lj !

sup
|y−y0|< 1

2J2

∣∣∣∣∣∂LRe[F(φ)](y)∏J
j=1 ∂y

lj
j

∣∣∣∣∣
≤ 2J

[
1

2J2

]R+1

J2(R+1)

→ 0.

Consequently, Re[F(φ)] is equal to its Taylor expansion and therefore real analytic. Similarly,

we can prove that the imaginary part of F(φ) is also real analytic. Moreover, because φ is not

zero functional, then F(φ) is not zero functional. As a result, either the real or the imaginary

part of F(φ) is not constantly zero. The proof is completed.
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B Non-Identi�cation of F without the Independence Con-

dition

In this Appendix, we provide an example where F is not identi�ed when X only has two points

and β
(2)
i and ∆ηi are not independent.

Suppose that J = 1, i.e. there is only one inside product, and (β
(2)
i ,∆ηi) follows a centered

normal distribution with a covariance matrix Ω. We know that Ω has 3 unknowns: the variance

of β
(2)
i , the variance of ∆ηi, and their correlation r 6= 0. Suppose that the support X only has

two points: X = {x, y} and that the distribution of µi = x(2)β
(2)
i + ∆ηi is identi�ed conditional

on x(2) = x, y. Then, µi conditional on x(2) follows a centered normal distribution with the

variance being (x(2), 1)Ω(x(2), 1)T. We can identify (x, 1)Ω(x, 1)T and (y, 1)Ω(y, 1)T. Without

further assumptions, we obtain 2 equations with 3 unknowns. Then, Ω cannot be uniquely

determined and therefore the distribution of (β
(2)
i ,∆ηi) is not identi�ed.

C Proof of Theorem 2

Because of the independence between β
(2)
i and ∆ηi, it su�ces to identify the distributions of β

(2)
i

and ∆ηi. According to Assumption 2, without loss of generality, suppose that the �rst elements of

X(2) and Y (2) are di�erent and |x(2)
1 | > |y

(2)
1 |. Moreover, because of Theorem 1, the distribution

of µi|X(2) (and also µi|Y (2)) is identi�ed. In particular, the distribution of µi1 = x
(2)
1 β

(2)
i + ∆ηi1

conditional on x
(2)
1 (y

(2)
1 ) is identi�ed. Because of the independence condition in Assumption 2,

we obtain that

ψ
µ1|x(2)

1
(v) = ψβ(2)(x

(2)
1 v)ψ∆η1(v),

for any v ∈ R, where ψw(v) denotes the characteristic function of random variable w evaluated

at v. As a consequence,

ψ
µ1|x(2)

1
(v) = ψβ(2)(x

(2)
1 v)ψ∆η1(v),

ψ
µ1|y(2)1

(v) = ψβ(2)(y
(2)
1 v)ψ∆η1(v),

(C.1)

and the left-hand sides (C.1) are identi�ed. Then, the ratio r(v) = ψβ(2)(x
(2)
1 v)/ψβ(2)(y

(2)
1 v)

is identi�ed for any v ∈ R. If y
(2)
1 = 0, then ψβ(2)(y

(2)
1 v) = 1 and ψβ(2)(x

(2)
1 v) = r(v). Since

x
(2)
1 6= 0, we then identify ψβ(2)(v) for any v ∈ R. Consequently, the distribution of β(2) is

identi�ed. If y
(2)
1 6= 0, since |x(2)

1 | > |y
(2)
1 |, then x

(2)
1 6= 0. Note that for any v ∈ R,

ψβ(2)(v) = r

(
v

x
(2)
1

)
ψβ(2)

(
y

(2)
1

x
(2)
1

v

)
. (C.2)
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Then, by using ψβ(2)(0) = 1 and |y(2)
1 | < |x

(2)
1 |, we can iterate (C.2): for any integer L,

ψβ(2)(v) =

L∏
l=0

r

[y(2)
1

x
(2)
1

]l
v

x
(2)
1

ψβ(2)

[y(2)
1

x
(2)
1

]L
v

 ,

ψβ(2)(v) =

∞∏
l=0

r

[y(2)
1

x
(2)
1

]l
v

x
(2)
1

 .

Then, ψβ(2)(v) for any v ∈ R and therefore the distribution of β(2) is identi�ed. Finally, to

identify the distribution of ∆ηi, note that µi = X(2)β
(2)
i + ∆ηi. Given the independence of β

(2)
i

and ∆ηi, we obtain: for any ν ∈ RJ ,

ψµi|X(2)(ν) = ψβ(2)(X(2)Tν)ψ∆η(ν).

Because ψµi|X(2)(ν) and ψβ(2)(X(2)Tν) are identi�ed, then ψ∆η(ν) is identi�ed. Consequently,

the distribution of ∆ηi is identi�ed. The proof is completed.

D Identi�cation of F when K2 > 1

Note that the distribution of µi = X(2)β
(2)
i + ∆ηi conditional on X

(2) is identi�ed. Given the

independence of β
(2)
i and ∆ηi, we then deduce that

ψµ1|X(2)(ν) = ψβ(2)(X(2)Tν)ψ∆η(ν),

ψµ1|Y (2)(ν) = ψβ(2)(Y (2)Tν)ψ∆η(ν),

and therefore the ratio r(ν) = ψβ(2)(X(2)Tν)/ψβ(2)(Y (2)Tν) is identi�ed for any ν ∈ RJ . Because

X(2) is of full column rank, then X(2)T is of full row rank K2 and K2 ≤ J . As a consequence,

for any v ∈ RK2 , there exists some ν such that X(2)Tν = v. Then,

ψβ(2)(v) = ψβ(2)(X(2)Tν)

= r(ν)ψβ(2)(Y (2)Tν)

= r(ν)ψβ(2)(X(2)TMν)

= r(ν)r(Mν)ψβ(2)(Y (2)TMν)

=

L∏
l=0

r(M lν)ψβ(2)(Y (2)TMLν).

Because the absolute values of the eigenvalues of M is strictly smaller than 1, then |MLν| → 0

as L → ∞. Consequently, ψβ(2)(v) =
∏∞
l=0 r(M

lν) and therefore identi�ed. This implies the

identi�cation of the distribution of β
(2)
i . Finally, the identi�cation of the distribution of ∆ηi

16



follows from that of its characteristic function of ∆ηi: ψ∆η(ν) = ψµ1|X(2)(ν)/ψβ(2)(X(2)Tν).
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