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ON STABLE COHOMOLOGY OF CENTRAL EXTENSIONS OF

ELEMENTARY ABELIAN GROUPS

FEDOR BOGOMOLOV, CHRISTIAN BÖHNING, AND ALENA PIRUTKA

Abstract. We study when kernels of inflation maps associated to extraspecial p-
groups in stable group cohomology are generated by their degree two components.
This turns out to be true if the prime is large enough compared to the rank of
the elementary abelian quotient, but false in general.

We feel honoured to dedicate this article to our friend and colleague Miles Reid
on the occasion of his 70th birthday.

1. Introduction and statement of results

Throughout below k will be an algebraically closed field of characteristic l ≥ 0
and p will be a prime number assumed to be different from l if l is positive. Let G
be a finite p-group. One defines the stable cohomology H∗s,k(G,Z/p) = H∗s (G,Z/p)
in the following way (this does depend on k, but we suppress it from the notation
when there is no risk of confusion): for a finite-dimensional generically free linear G-
representation V , let V L ⊂ V be the open subset where G acts freely. Then the ideal
IG,unstable in the group cohomology ring H∗(G,Z/p) is defined to be, equivalently,
the kernel of the natural homomorphism

H∗(G,Z/p)→ H∗(Gal(k(V/G)),Z/p)(1)

or, more geometrically, the kernel of

H∗(G,Z/p)→ lim−→
U⊂V L/G

H∗ét(U,Z/p)(2)

where U runs over all nonempty Zariski open subsets of V L/G.

Definition 1.1. We define H∗s (G,Z/p) as

H∗s (G,Z/p) = H∗(G,Z/p)/IG,unstable.

A priori, this seems to depend on the choice of V , but really does not [Bo05,
Thm. 6.8]. We often identify H∗s (G,Z/p) with its image in H∗(Gal(k(V/G),Z/p).
H∗s (G,Z/p) is contravariant in the group G: if ϕ : G′ → G is a group homo-

morphism, V ′ and V are generically free G′ and G-representations with a dominant
intertwining map Φ: V ′ → V (meaning Φ(g′v′) = ϕ(g′)Φ(v′) for all g′ ∈ G′, v′ ∈ V ′),
and U ′ ⊂ V ′, U ⊂ V are nonempty G′, G-invariant open subsets with Φ(U ′) ⊂ U ,
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then the diagram

BG′ // BG

U ′/G′ //

OO

U/G

OO

induces a homomorphismH∗s (G,Z/p)→ H∗s (G′,Z/p) independent of all choices. For
a subgroup H = G′ of G and ϕ the inclusion, we call the induced homomorphism
H∗s (G,Z/p) → H∗s (H,Z/p) restriction, or inflation. We also sometimes say that a
class in H∗s (G′,Z/p) is induced from G when it is in the image of H∗s (G,Z/p) →
H∗s (G′,Z/p) and if this map is implied unambiguously by the context.

Definition 1.2. Put L = k(V/G). The unramified group cohomology

H∗nr(G,Z/p) ⊂ H∗s (G,Z/p)

is defined as the intersection, inside H∗(L,Z/p), of H∗s (G,Z/p) and H∗nr(L,Z/p);
here, as usual, H∗nr(L,Z/p) are those classes that are in the kernel of all residue
maps associated to divisorial valuations of L, i.e. those corresponding to a prime
divisor on some normal model of L.

In this article we study a rather special class of groups.

Definition 1.3. For a prime p, an extraspecial p-group G is a p-group such that
its center Z(G) is cyclic of order p and G/Z(G) is a nontrivial elementary abelian
group.

This differs a bit from the arguably most common definition using the Frattini
subgroup [Suz86, 4., §4, Def. 4.14], but it is equivalent to it by [Suz86, 4., §4, 4.16].

Thus each extraspecial p-group sits in an exact sequence

1 // Z // G
π // E // 1(3)

where Z ' Z/p is the center of the group G and E ' (Z/p)n is elementary abelian.
Moreover, the skew-form given by taking the commutator of lifts of elements in E

ω : E × E → Z,(4)

(x, y) 7→ [x̃, ỹ]

must be a symplectic form if G is extraspecial. Hence n = 2m and the order of G is
of the form p1+2m for some positive integer m. One can be much more precise and
prove that for each given order p1+2m there are precisely two extraspecial p-groups
of that given order, up to isomorphism [Hupp67, III, §13, 13.7 and 13.8] or [Gor07,
Chapter 5, 5.]; but we do not need this detailed structure theory. We want to study
the kernel of the “inflation map”

KG = ker (π∗ : H∗s (E,Z/p)→ H∗s (G,Z/p)) .(5)

This is a graded ideal in the graded ring H∗s (E,Z/p) (graded by cohomological
degree). It is natural to expect that this should be, in general, generated by its
degree 2 component, or, even more precisely, by the class ω ∈ Hom(Λ2E,Z/p) =
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H2
s (E,Z/p) given by the extension; cf. also formula (12) in Section (3) for the

description of the stable cohomology of abelian groups. In fact, Tezuka and Yagita
in [TezYag11] study a very similar problem in §9, p. 4492 ff., see especially the
problems they mention on p. 4494 top and bottom concerning what they cannot
yet prove. Indeed, the expectation above is false in general (this is similar to the
situation in ordinary group cohomology where conjectures that kernels of inflation
maps associated to central extensions should always be the expected ones are false
as well, see [Rus92, Prop. 9]). We show:

Theorem 1.4. Let G be an extraspecial p-group of order p1+2m as above. Then,
provided p > m, the ideal KG is generated by ω ∈ KG

2 .

Note that ω ∈ KG
2 always because it is the image, in H2

s (E,Z/p), of the class
ω̃ ∈ H2(E,Z/p) giving the central extension G, which vanishes when pulled-back to
H2(G,Z/p) (the induced central extension of G has a section).

On the other hand:

Theorem 1.5. Take k = C. If G0 is the extraspecial 2-group of order 21+6 that is
the preimage, under the natural covering map

Spin7 (k)→ SO7(k)

of the diagonal matrices diag(±1, . . . ,±1) in SO7(k), then KG0 is not generated by

its degree 2 piece KG0
2 ; here again, KG0

2 = 〈ω〉.

This does not seem to be related to the fact that p = 2 is a special prime; we
believe similar examples could very likely be given for every other prime p as well,
as will become apparent from the construction in the proof.

Remark 1.6. Theorems 1.4 and 1.5 should be seen in the following context, which
provided us with motivation for this work.

a) As pointed out in [BT11, Thm. 11], the Bloch-Kato conjecture (Voevodsky’s
theorem) implies that, letting Γ = Gal(k(V/G)) as above, and denoting

Γa = Γ/[Γ,Γ], Γc = Γ/[Γ, [Γ,Γ]],

the natural map H∗(Γa,Z/p) → H∗(Γ,Z/p) is surjective, its kernel KΓa
co-

incides with the kernel of H∗(Γa,Z/p) → H∗(Γc,Z/p), and is generated by
its degree two component KΓa

2 (note that since [Γ, [Γ,Γ]] ⊂ [Γ,Γ], there is
a natural homomorphism Γc → Γa giving H∗(Γa,Z/p) → H∗(Γc,Z/p)); this
follows not obviously from a spectral sequence argument, but in any case
directly from the Bloch-Kato conjecture since for L = k(V/G)

Hn(Γa,Z/p) ' (ΛnL∗)/p, Hn(Γ,Z/p) ' Kn(L)/p

and the Milnor K-group Kn(L) is a quotient of L∗ ⊗Z · · · ⊗Z L
∗ by the n-

th graded piece of the ideal generated by the Steinberg relations in degree
two. Thus, whereas on the full profinite level, kernels of inflation maps are
generated in degree two, this property is not inherited by finite quotients of
the full Galois group, i.e. finite central extensions of finite abelian groups.
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b) The consequence of the Bloch-Kato conjecture in a) shows the importance
to understand central extensions of abelian groups for the computation of
stable and unramified cohomology. In [BT17] after formula 1.2 the authors
mention that for a finite central extension 0 → Z/p → Gc → Ga → 0 of
an abelian group Ga, the kernel of H∗s (Ga,Z/p)→ H∗s (Gc,Z/p) contains the
ideal generated by the kernel of H2

s (Ga,Z/p) → H2
s (Gc,Z/p); a preliminary

version had is equal to instead of contains, and the present article shows that
the containment can be strict contrary to what was expected.

Acknowledgments. For the first author the study has been funded within the
framework of the HSE University Basic Research Program and the Russian Aca-
demic Excellence Project ’5-100 and by EPSRC programme grant EP/M024830.
The third author was partially supported by NSF grant DMS-1601680, by ANR
grant ANR-15-CE40-0002-01, and by the Laboratory of Mirror Symmetry NRU
HSE, RF Government grant, ag.\no.\14.641.31.0001.

We would like to thank the anonymous referee for carefully reading the initial
manuscript and many helpful suggestions for improvements.

2. Some linear algebra

We establish some results concerning the exterior algebra of a symplectic vector
space over a field of any characteristic. Most of this is contained in [Bour08, Ch.
VIII, §13, 3., p. 203-210], but since the standing assumption in loc. cit., Ch. VIII, is
to work over a field of characteristic 0 whereas we are interested in the case of a base
field of finite characteristic, it is necessary to point out in detail which statements
go through unchanged and which ones require adaptation.

Let F be any field, and let V be a finite-dimensional F-vector space of even di-
mension n = 2m. Suppose that V is symplectic, which means endowed with a
non-degenerate alternating bilinear form Ψ. Let Sp2m(V,Ψ) = Sp2m be the cor-
responding symplectic group. From e.g. [EKM08, Prop. 1.8] it follows that V is
isometric to an orthogonal direct sum of m hyperbolic planes, in other words there
exists a symplectic basis

(e1, . . . , em, e−m, . . . , e−1)

with Ψ(ei, ej) = 0 unless i = −j when Ψ(ei, e−i) = 1. This is a statement entirely
independent of the characteristic of F, in particular, also holds in characteristic two
(the form is then at the same time alternating and symmetric). Let V ∗ be the
dual vector space to V , and (e∗i ) the basis dual to the basis (ei). We identify the
alternating form Ψ with an element Γ∗ ∈ Λ2V ∗. Then

Γ∗ = −
m∑
i=1

e∗i ∧ e∗−i.(6)
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Via the isomorphism V → V ∗ given by Ψ, the form Ψ induces a symplectic form Ψ∗

on V ∗. Identifying Ψ∗ with an element Γ in Λ2V , one finds

Γ =
m∑
i=1

ei ∧ e−i.(7)

One also denotes by X− : Λ∗V → Λ∗V the endomorphism induced by left exterior
product with Γ and by X+ : Λ∗V → Λ∗V the endomorphism given by left interior
product (contraction) with −Γ∗; more precisely,

X+(v1 ∧ · · · ∧ vr) =
∑

1≤i<j≤r
(−Ψ)(vi, vj)(−1)i+jv1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vr.

(8)

Moreover, let H : Λ∗V → Λ∗V be the endomorphism that is multiplication by (m−r)
on ΛrV for 0 ≤ r ≤ 2m. Then as in [Bour08, p. 207 and Ex. 19], it follows that

[X+, X−] = −H, [H,X+] = 2X+, [H,X−] = −2X−(9)

so the vector subspace of End(Λ∗V ) generated by X+, X−, H is a Lie subalgebra
isomorphic to sl(2,F). Moreover, for the action of sl(2,F) on Λ∗V , the subspace
ΛrV is the subspace of elements of weight m− r.

In the following Proposition and its proof, we make the conventions that for
integers i < 0, ΛiV := 0 and for binomial coefficients and positive integers n,(
n
i

)
:= 0.

Proposition 2.1. Put Er = (ΛrV ) ∩ kerX+, the “primitive elements” in ΛrV . If
p = char F > dimV/2 = m or char F = 0, then

a) for r ≤ m− 1, the restriction of X− to ΛrV is injective;
b) for r ≥ m − 1, the restriction of X− to ΛrV induces a surjection from ΛrV

onto Λr+2V ;
c) for r ≤ m,

ΛrV = Er ⊕X−(Λr−2V ).

Moreover, Er coincides with the submodule Fr ⊂ ΛrV defined as the span of all
“completely reducible” r-vectors v1∧· · ·∧vr such that 〈v1, . . . , vr〉 is a totally isotropic
subspace of V . Here completely reducible means simply a pure wedge product of the
above form v1 ∧ · · · ∧ vr.

Proof. The proof is based on the following observations.

(I) Let E be any sl(2,F)-module, and let ε be a primitive element, by which we
mean, as usual, X+(ε) = 0 and ε is an eigenvector for some λ ∈ F for H.
Then, as long as ν is an integer such that 1 ≤ ν < p it does make sense to
define

εν =
(−1)ν

ν
Xν
−ε, ε0 = ε, ε−1 = 0.
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Then a straightforward computation with the commutation relations (9), done
in [Bour08, Chapter VIII, §1, 2., Prop. 1], shows that

Hεν = (λ− 2ν̄)εν

X−εν = −(ν̄ + 1)εν+1(10)

X+εν = (λ− ν̄ + 1)εν−1

as long as all indices of the occurring ε’s are < p. Here we put a bar on
an integer to indicate that we consider it as an element of F via the natural
homomorphism Z→ F, which for us will however be usually not injective.

(II) If we define Fr as in the statement of the Proposition, then obviously Fr ⊂ Er
and

dimFr =

(
2m

r

)
−
(

2m

r − 2

)
, 0 ≤ r ≤ m.(11)

This is proven in [Bruyn09, Thm. 1.1] under no assumptions on p = char F.

For the module E = Λ∗V we can thus display the action of the operators H,X+, X−
schematically in the familiar way:

Λ0V

H

YY

X−
,,
Λ2V

H

YY
X+

ll . . . Λ2m−2V

H

YY

X−
,,
Λ2mV

H

YY
X+

mm

weight: m m− 2 . . . −(m− 2) −m

and

V

H

YY

X−
,,
Λ3V

H

YY
X+

jj . . . Λ2m−3V

H

YY

X− --
Λ2m−1V

H

YY
X+

mm

weight: m− 1 m− 3 . . . −(m− 3) −(m− 1)

Now we start to use the assumption that p = char F > m.
If we start with a primitive element ε = ε0 in one of the Fr, 0 ≤ r ≤ m, of

weight λ = m− r in {0̄, . . . , m̄}, then the εν as in item (I) above are all defined for
ν = 0, . . . ,m. Moreover, if µ is the largest integer such that εµ 6= 0, then µ ≤ m < p
and µ can only possibly be equal to m if we start with ε0 in F0; excluding the latter
case for a moment, we can use the third of formulas (10) to get

0 = X+(εµ+1) = (λ− µ̄)εµ

where now all indices are still < p, and one can only have that λ− µ̄ = 0 in F if µ
is the unique lift of λ in {0, . . . ,m}. If µ = m and ε0 ∈ F0, the third of formulas
(10) still shows that all of ε0, ε1, . . . , εm must be nonzero (since applying X+ to any
of them the appropriate number of times returns a nonzero multiple of ε0 under the
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standing assumptions), so putting all this together we can say that starting from a
primitive ε0 ∈ Fr, 0 ≤ r ≤ m, with weight λ = m− r we get a chain of nonzero
vectors

ε0

X−
++ ε1

X+

kk . . . εm−r−1

X−
,,
εm−r

X+

mm

weight : m− r m− r − 2 . . . −(m− r − 2) −(m− r)

where according to the formulas in (10) and since p > m, the X+ and X− map each
of the ε’s to a nonzero multiple of the subsequent one “up or down the ladder” as
indicated in the previous diagram. In particular, X+ and X− induce isomorphisms
between the vector subspaces indicated in the following diagram:

Fr

X−..
X−(Fr)

X+

jj . . . Xm−r−1
− (Fr)

X− --
Xm−r
− (Fr)

X+

nn

for 0 ≤ r ≤ m. In addition, the sum of Fr, X−(Fr−2), X2
−(Fr−4), . . . inside ΛrV

(for any 0 ≤ r ≤ 2m, noting Fs = 0 for s > m) is direct: this can be seen by
repeatedly applying X+ and using the third formula of (10). Then a dimension
count using item (II) at the beginning of the proof yields

ΛrV = Fr ⊕X−(Fr−2)⊕X2
−(Fr−4)⊕ · · · = Fr ⊕X−(Λr−2V )

for any r, which proves Er = Fr, c) in the statement of the Proposition as well as
a) and b). �

We will need one further piece of information concerning Er = Fr, 0 ≤ r ≤ m
later.

Theorem 2.2. Let F be a field of characteristic p. The Sp(2m,F)-module Er = Fr,
1 ≤ r ≤ m is irreducible if

p > m− r

2
+ 1.

More precisely, it is irreducible if and only if p does not divide∏
0≤j≤r,j≡r (mod 2)

(
m− r+j

2 + 1

(r − j)/2

)
.

Proof. This is [PS83, p. 1313, Thm. 2]. �

3. Proofs of main results

We start by recalling that for an abelian p-group A

H∗s (A,Z/p) ' Λ∗A∨ = Λ∗H1(A,Z/p) = Λ∗Hom(A,Z/p).(12)
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See e.g. [Bo05], Example after Remark 6.10. We now turn to extraspecial groups
G sitting in an exact sequence (3), and retain the notation from Section 1.

Definition 3.1. A subgroup A ⊂ E is called totally isotropic if it is a totally
isotropic subspace of the Fp-vector space E, i.e. the symplectic form ω vanishes
identically on A.

Totally isotropic subgroups A can be characterised as the ones such that there
exists an abelian subgroup Ã ⊂ G of the same p-rank as A mapping onto A via π,
where π is the natural surjection π : G→ E (take for Ã the subgroup generated by
the lifts to G of a minimal set of generators for A).

Proof of Theorem 1.4. For a totally isotropic subgroup A of E, consider the diagram

H∗s (E,Z/p)

rEA
��

π∗
// H∗s (G,Z/p)

rG
Ã��

H∗s (A,Z/p) π∗
// H∗s (Ã,Z/p)

(13)

where the vertical arrows are the restriction maps. From the description of the stable
cohomology of abelian groups, one gets that the lower horizontal arrow is injective,
and in fact an isomorphism. In other words, a class α ∈ Hr

s (E,Z/p) that is nontrivial
on a totally isotropic subgroup is not in the kernel of π∗. Applying Proposition 2.1
to the symplectic vector space V = H1(E,Z/p) = E∗, we see that in order to prove
the Theorem it suffices to show that every nonzero class α ∈ Er, 0 ≤ r ≤ m, is
nontrivial on some totally isotropic subgroup. Since totally isotropic subgroups are
invariant under the action of Sp2m(Fp), the classes in Er that are trivial on all totally
isotropic subgroups form a Sp2m(Fp) submodule; as Er is irreducible by Theorem
2.2, this submodule is either reduced to zero or everything. Hence it suffices to prove
that some class α ∈ Er, for every 0 ≤ r ≤ m, is nontrivial on some totally isotropic
subgroup. But this is clear: in the notation introduced at the beginning of Section
2, if we take the totally isotropic subgroup A = 〈e∗1, . . . , e∗r〉, then α = e1 ∧ · · · ∧ er
is nontrivial on it. �

For the proof of Theorem 1.5 we need a few more auxiliary results. Assume k = C
now. As in the statement of that Theorem, consider the preimage G0 ⊂ Spin7(k) of
the diagonal matrices with entries ±1 in SO7(k).

Lemma 3.2. G0 is an extraspecial 2-group sitting in an exact sequence

0→ Z/2→ G0 → (Z/2)6 → 0.

Proof. The existence of such an exact sequence is clear. The point is to verify that
Z/2 is the entire center of G0, and this is done in [Ad96, Chapter 4, Lemma on p.
22]; for this it is important that 7 coming from Spin7(k) is odd: the center of the
analogously defined groups for the even Spin-groups is larger (the claim that all of
them are extraspecial in [Bak02, 5.5, p. 154] is erroneous). �
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Lemma 3.3. Generically free linear Spin7(k)-quotients V/Spin7(k) and generically
free linear G0-quotients W/G0 are stably birationally equivalent. Here V resp. W are
any generically free (finite-dimensional, complex) linear representations of Spin7(k)
resp. G0.

Proof. This is proven in [Bo87, §3 ff.], but we include the easy argument for the sake
of completeness and give a few more details. Consider the standard representation
k7 of SO7(k); via the natural covering map it is a Spin7(k)-representation. Inside
k7⊕· · ·⊕k7 (seven times), consider the subvariety R of tuples of vectors (v1, . . . , v7)
that are mutually orthogonal. This is invariant under the group action, and has
the structure of a tower of equivariant vector bundles over any of the summands
k7. Let P = ke1 × · · · × ke7 ⊂ R be the Cartesian product of the lines through
the standard basis vectors e1, . . . , e7. Then P is a (Spin7(k), G0)-section of the
action and [CTS07, Theorem 3.1] applies; in particular, given any generically free
linear Spin7(k)-representation V , then (a) (V ⊕ R)/Spin7(k) is stably equivalent
to V/Spin7(k) since R has the structure of a tower of equivariant vector bundles
and one can apply the “no-name lemma” [CTS07, Thm. 3.6]; (b) in V ⊕ R the
subvariety V ×P is a (Spin7(k), G0)-section, whence (V ⊕R)/Spin7(k) is birational
to (V × P )/G0. This concludes the proof. �

Theorem 3.4. Generically free linear Spin7(k)-quotients are stably rational; in
particular, combining this with Lemma 3.3, G0 has trivial unramified cohomology
(with finite torsion coefficients).

Proof. The fact that generically free Spin7 C-quotients are stably rational is proven
in [Kor00] (despite the title only referring to Spin10), see also [CTS07, §4.5]. The
fact that unramified cohomology of stably rational varieties is trivial is proven, for
example, in [CT95, Prop. 4.1.4]. �

Proposition 3.5. Let G be a finite group. Suppose that α ∈ H∗s (G,Z/p) is a class
whose restriction, for any g ∈ G, to H∗s (Z(g),Z/p) is induced from H∗s (Z(g)/〈g〉,Z/p);
here Z(g) is the centraliser of g in G. Then α is unramified.

Proof. This follows from the way residue maps in Galois cohomology are defined,
see [GMS, Chapter II, 7.] for the following: for K = k(V )G, V a generically
free G-representation, and v a geometric discrete valuation of K, one considers the
completion Kv, and the decomposition group Decw where w is an extension of v to
the separable closure Ks. Then Gal(Kv) ' Decw ⊂ Gal(K), and there is a split
exact sequence

1→ I → Gal(Kv)→ Gal(κv)→ 1(14)

where κv is the residue field of v and I ' Ẑ is the topologically cyclic inertia
subgroup. For a finite constant Gal(K)-module C of order not divisible by char(k),
there is an exact sequence

0 // H i(Gal(κv), C) // H i(Gal(Kv), C)
r // H i−1(Gal(κv),Hom(I, C)) // 0
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and r is the residue map. The residue of an element β ∈ H i(K,C) is obtained by
restricting to H i(Kv, C) and afterwards applying r. Now under the natural map

Gal(K)→ G

the topologically cyclic inertia subgroup I will map to a cyclic subgroup of G gener-
ated by some element g ∈ G, and (14) being a central extension, Gal(Kv) will map
into the centraliser Z(g) ⊂ G. Now if C = Z/p and α ∈ H∗s (G,Z/p) is a class whose
restriction to H∗s (Z(g),Z/p) is induced from H∗s (Z(g)/〈g〉,Z/p), then since there is
a commutative diagram,

Gal(κv)

��

Gal(Kv)

ψ

��

oooo � � // Gal(K)

τ
����

Z(g)/〈g〉 Z(g)oooo � � // G

and a factorisation

H i(Z(g),Z/p) //

((

H i(Gal(Kv),Z/p)

H i
s(Z(g),Z/p)

55

(the latter because Gal(Kv) sits inside Gal(k(V/(Z(g))) ⊂ Gal(K), Gal(k(V/(Z(g)))
being the preimage of Z(g) under τ), we get that the restriction of α to the decom-
position group comes from H i(Gal(κv),Z/p), hence its residue is zero. �

Proof of Theorem 1.5. Let E = (Z/2)6, V = E∗. On E we choose coordinates
x1, x2, x3, y1, y2, y3 ∈ E∗ which form a symplectic basis and so that

ω =
3∑
i=1

xi ∧ yi.

To prove the Theorem we are going to proceed in the following Steps.

Step 1. We produce a class ζ ∈ H4
s (E,Z/2) = Λ4V that is not in the ideal generated

by ω. More precisely, we will take

ζ = x2 ∧ x3 ∧ y2 ∧ y3.

Step 2. We prove that π∗(ζ) ∈ H4
s (G0,Z/2) is unramified using the criterion given in

Proposition 3.5. By Theorem 3.4, we conclude π∗(ζ) = 0 whence ζ is a class
in the kernel of π∗ not in the ideal generated by ω. Indeed, this argument
works for any class in H4

s (E,Z/2), not just the specific ζ.
Step 3. We check that the kernel of π∗ : H2

s (E,Z/2)→ H2
s (G0,Z/2) is spanned by ω.

As kindly pointed out by the referee, for Step 1 it suffices to remark that ω2 = 0,
but ω ∧ ζ 6= 0 so that ζ cannot be a multiple of ω.

Let us now prove Step 2. This uses another very nice simplification suggested
by the referee, our initial proof was more complicated. We prove that π∗(ϑ) ∈
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H4
s (G0,Z/2) is unramified for any class ϑ ∈ H4

s (E,Z/2), whence H4
s (E,Z/2) →

H4
s (G0,Z/2) is actually a zero map since G0 has trivial unramified cohomology.
For an element g in E, we denote g̃ any lift of g to G0. Denote the image of the

centraliser Z(g̃) ⊂ G0 in E by Sg. It has the following description:

Sg = 〈h ∈ E | ω(g, h) = 0〉 ,
in other words, it consists of all elements h in E whose preimages in G0 commute
with g̃. In order to show that π∗(ϑ) is unramified in the stable cohomology of G0,
it is thus sufficient, by Proposition 3.5, to show:

(∗) For any g̃ ∈ G0, the restriction of π∗(ϑ) to H∗s (Z(g̃),Z/2) is induced
from H∗s (Sg/〈g〉,Z/2) via the natural homomorphisms

Z(g̃)→ Z(g̃)/〈g̃〉 → Sg/〈g〉.
If g = 0, this is obvious since ϑ comes from H∗s (E,Z/2). Hence we will assume in the
sequel that g 6= 0. Without loss of generality, we can also assume that dim Sg ≥ 4
since otherwise ϑ restricts to zero on Sg, hence will also be zero on Z(g̃) whence (∗)
is trivially verified. Since g is nonzero and ω is nondegenerate, Sg is a hyperplane,
hence has dimension 5. Furthermore, we can assume that g = e1 is the standard
basis element whence

Sg = 〈e1, e2, e−2, e3, e−3〉.
Then a direct computation shows

Λ4(S∗g ) = (ω |Sg ∧Λ2(S∗g ))⊕ 〈x2 ∧ y2 ∧ x3 ∧ y3〉

and the first summand is in the kernel of H4
s (Sg,Z/2) → H4

s (Z(g̃),Z/2), and the
second summand is induced from H4

s (Sg/〈g〉,Z/2).

Finally, for Step 3, note that there are generically free E- and G0-representations
VE and VG0 such that, denoting by a superscript L the loci where the actions
are free, (V L

G0
)/G0 maps dominantly to (V L

E )/E, and the induced field extension

k(VG0)G0 ⊃ k(VE)E factors as

k(VG0)G0
' // k(S)(t)

k(S)
?�

OO

k(VE)E
?�

OO

where S is a Severi-Brauer scheme over k(VE)E and t is an indeterminate: indeed,
one can take for VE any generically free E-representation, which is at the same
time a G0-representation via the homomorphism G0 → E, and for VG0 one takes
W ⊕ VE , where W is a generically free G0-representation in which the center Z/2
of G0 acts nontrivially via multiplication by scalars. Then the sought-for Severi-
Brauer scheme S is (P(W ) × V L

E )/G0 → (V L
E )/E, over which (W\{0} × V L

E )/G0
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is a k∗-principal bundle (Zariski locally trivial). Hence the tower of fields above.
By Amitsur’s theorem [GS06, 4.5.1], the kernel of Br(k(VE)E)→ Br(k(S)) is cyclic
generated by the class of S, and Br(k(S))→ Br(k(S)(t)) is injective. Since the two-
torsion in the Brauer group of the fields Λ involved here is precisely H2(Λ,Z/2),
the definition of stable cohomology given in formula (1) shows that the kernel of
π∗ : H2

s (E,Z/2)→ H2
s (G0,Z/2) is cyclic. Since it contains the nontrivial class ω, it

is generated by ω. �

Remark 3.6. As kindly pointed out by the referee, Step 3 of the above proof can
be given a simpler proof based on ideas of multilinear algebra similar to the ones
used in Theorem 1.4, which imply more generally:

Lemma 3.7. For any extraspecial p-group G the degree 2 component

KG
2 = ker

(
H2

s (E,Z/p)→ H2
s (G,Z/p)

)
is generated by ω.

Proof. It suffices to show that if η ∈ H2
s (E,Z/p) = Λ2(E∗) is such that it vanishes

on each u ∧ v ∈ Λ2E for u, v generating an isotropic subspace, then this η is a
multiple of ω. Indeed, this is true in any characteristic since the subspace of Λ2E
generated by isotropic planes u ∧ v has codimension 1 (hence it has orthogonal of
dimension 1 generated by ω): indeed, the isotropic planes

ei ∧ ej , j 6= −i
and

(ei + ei+1) ∧ (e−i − e−i−1), 1 ≤ i ≤ m− 1

generate a codimension 1 subspace. (This is also implied by [Bruyn09, Thm. 1.1]).
The assertion of this Lemma also follows from Amitsur’s Theorem in a way anal-

ogous to the method used in Step 3 of the proof of Theorem 1.5, but the proof here
is clearly much easier. �

Remark 3.8. The phenomenon, on which the proof of Theorem 1.5 is based to a
large extent, that X− as in Proposition 2.1 can fail to be surjective on some ΛrV
with r ≥ m − 1 in cases where p ≤ m, is not related to p = 2, but reoccurs for
other primes: it is only to do with the fact that (X−)p = 0 in characteristic p. We
therefore strongly suspect that examples of the type given in Theorem 1.5 where KG

2

fails to generate the ideal KG, for some extraspecial group G, exist for all primes p.
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