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UNLIKELY INTERSECTIONS WITH E×CM CURVES IN A2

CHRISTOPHER DAW AND MARTIN ORR

Abstract. The Zilber–Pink conjecture predicts that an algebraic curve in A2
has only finitely many intersections with the special curves, unless it is contained
in a proper special subvariety. Under a large Galois orbits conjecture, we prove
the finiteness of the intersection with the special curves parametrising abelian
surfaces isogenous to the product of two elliptic curves, at least one of which
has complex multiplication. Furthermore, we show that this large Galois orbits
conjecture holds for curves satisfying a condition on their intersection with the
boundary of the Baily–Borel compactification of A2.

More generally, we show that a Hodge generic curve in an arbitrary Shimura
variety has only finitely many intersection points with the generic points of a
Hecke–facteur family, again under a large Galois orbits conjecture.

1. Introduction

Let A2 denote the moduli space of principally polarised abelian surfaces over C.
Let V ⊂ A2 be an irreducible algebraic curve. The Zilber–Pink conjecture predicts
that, if V is not contained in any proper special subvariety of A2, then it should
have only finitely many intersections with the special curves of A2 (since dimA2 =
3 > 1 + 1).

The special curves in A2 are of three types:
(1) curves parametrising abelian surfaces with quaternionic multiplication;
(2) curves parametrising abelian surfaces isogenous to the square of an elliptic

curve;
(3) curves parametrising abelian surfaces isogenous to the product of two elliptic

curves, at least one of which has complex multiplication (CM).
In this paper, we consider the special curves of type (3), which we refer to as
E× CM curves. We consider the special curves of type (1) and type (2) in a
forthcoming paper [DO].

There is a general strategy for proving conjectures of Zilber–Pink type known
as the Pila–Zannier strategy. This was expounded for arbitrary Shimura varieties
in [DR18]. The upshot of this strategy is that problems of unlikely intersections
can be resolved whenever two arithmetic ingredients can be obtained. The first,
usually referred to as a large Galois orbits conjecture, concerns the sizes of Galois
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orbits of points arising from unlikely intersections. This is well-known to be a
very difficult problem in general. The second ingredient, which is less well-known,
concerns the parametrisation of special subvarieties and has much to do with the
reduction theory of arithmetic groups.

In this article, we make progress on both these arithmetic ingredients for un-
likely intersections with E× CM curves. We prove that the large Galois orbits
conjecture for intersections between a general curve V ⊂ A2 and E×CM curves
holds whenever V is defined over Q and the closure of V in the Baily–Borel com-
pactification of A2 intersects the zero-dimensional stratum of the boundary. This
geometric condition on V can also be understood in terms of abelian schemes (see
Proposition 9.4). It should be noted that this condition is not generic. It is central
to the theorem of André on which our proof of the large Galois orbits conjecture
is based [And89, Ch. X, 4.2 (i)].

Furthermore, we solve the parametrisation problem for E×CM curves in A2
in full. Consequently, we prove that if V is a curve not contained in any proper
special subvariety of A2 then it has only finitely many intersections with E×CM
curves, provided either that V satisfies the condition on its intersection with the
boundary or that the large Galois orbits conjecture (Conjecture 1.3) holds.

1.A. Statement of main theorems. Recall that the Baily–Borel (or minimal)
compactification of A2 has a stratification A2 t A1 t A0 by Zariski locally closed
subvarieties, where A1 is the moduli space of elliptic curves, and A0 is a point (see
[FC90, Ch. IV, sec. 2]). Our main theorem is as follows.

Theorem 1.1. Let Σ denote the set of points in A2 for which the associated
principally polarised abelian surface is isogenous to a product of elliptic curves
E1 × E2 such that E2 has complex multiplication and E1 does not.
Let V be an irreducible algebraic curve in A2 which is not contained in any

proper special subvariety.
Suppose that V is defined over Q and that the Zariski closure of V in the Baily–

Borel compactification of A2 intersects the 0-dimensional stratum of the boundary
of the compactification.

Then V ∩ Σ is finite.

More generally, without the geometric assumption on V , we have the following
conditional result.

Theorem 1.2. Let Σ be as in Theorem 1.1. Let V be an irreducible algebraic
curve in A2 which is not contained in any proper special subvariety.

Assume that V satisfies Conjecture 1.3.
Then V ∩ Σ is finite.

The following large Galois orbits conjecture, referred to in the above, is similar
to a special case of [DR18, Conjecture 11.1] (which was itself inspired by [HP16,
Conjecture 8.2]) except that we use a definition of complexity adapted to E×CM
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curves in place of the more general definition used in [DR18]. For the definition of
the complexity ∆(Z), see section 3.

Conjecture 1.3. Let V and Σ be as in Theorem 1.2. Let L be a finitely generated
subfield of C over which V is defined.

There exist positive constants C1 and C2 such that, for all points s ∈ V ∩ Σ, if
we let Z denote the (unique) special curve containing s, then

# Aut(C/L) · s ≥ C1∆(Z)C2 .

The statement of Conjecture 1.3 relies on the fact that each point of Σ lies in a
unique special curve. This is true because the intersection of two distinct special
curves consists of special points and we have excluded these from Σ. In other
words, the set Σ is not equal to the union of the E×CM curves, because we have
removed the (countably many) points where the corresponding abelian surface is
isogenous to a product of two CM elliptic curves.

Removing these special points is important for Conjecture 1.3, because such a
point lies in the intersection of infinitely many E×CM curves. Therefore we cannot
expect the Galois orbit of such a point to be bounded below by the complexities
of each of the E×CM curves which contain it. Instead, the Galois orbit of such
a point is controlled by its own complexity as a special subvariety, as proved
independently by Tsimerman [Tsi12] and by Ullmo and Yafaev [UY15].

Furthermore, Pila and Tsimerman have used this bound for special points to
prove the André–Oort conjecture for A2 [PT13], that is, a non-special curve V
in A2 contains only finitely many special points. Hence, a curve V as in Theorem
1.2 has finitely many intersections with the E×CM curves if and only if it contains
only finitely many points belonging to Σ.

1.B. Alternative statements in terms of abelian schemes. It is also possible
to state Theorems 1.1 and 1.2 using the language of abelian schemes instead of
curves in A2. In these statements, if V is an algebraic curve and A → V is an
abelian scheme of relative dimension 2, we say that a point s ∈ V is an E×CM
point if the fibre As is isogenous to a product of elliptic curves E1 ×E2 where E2
has complex multiplication and E1 does not.

Our proof of Theorem 1.1 passes through the following theorem (we prove at
Proposition 9.5 that this theorem implies Theorem 1.1).

Theorem 1.4. Let V be an irreducible algebraic curve over C and let A→ V be a
principally polarised non-isotrivial abelian scheme of relative dimension 2. Suppose
that End(Aη) = Z, where η denotes a geometric generic point of V .

Suppose that V and A are defined over Q.
Suppose that there exist a curve V ′, a semiabelian scheme A′ → V ′ and an open

immersion ι : V → V ′ (all defined over Q) such that A ∼= ι∗A′ and there is some
point s0 ∈ V ′(Q) for which the fibre A′s0 is a torus.

Then V contains only finitely many E×CM points.
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Theorem 1.2 can be reformulated in a similar style to Theorem 1.4. Likewise,
Conjecture 1.3 is equivalent to the following conjecture (see Proposition 9.1). The
complexity ∆′(s) used in this conjecture is defined in Remark 3.3.
Conjecture 1.5. Let V be an irreducible algebraic curve over C and let A → V
be a principally polarised non-isotrivial abelian scheme of relative dimension 2.
Suppose that End(Aη) = Z, where η denotes a geometric generic point of V .

Let L be a finitely generated subfield of C over which V and A→ V are defined.
There exist positive constants C3 and C4 such that, for all E×CM points s ∈ V ,

# Aut(C/L) · s ≥ C3∆′(s)C4 .

1.C. Previous results. Of course, Unlikely Intersections is now a vast area of
research. This article can be viewed as a sequel to two previous works. The
first [DR18], due to Ren and the first author, established a general strategy to
attack the Zilber–Pink conjecture for general Shimura varieties, depending on
certain arithmetic conjectures. The second [Orr], due to the second author, proved
both conditional and unconditional results for unlikely intersections with Hecke
translates of a fixed special subvariety. Both of these works were inspired by the
earlier works [HP12] and [HP16] of Habegger and Pila on the Zilber–Pink conjecture
in a product of modular curves. In this article, we implement the stategy of [DR18]
for so-called E×CM curves in A2 and, more generally, for so-called Hecke–facteur
families, which are a natural generalisation of the objects studied in [Orr].

Considering special points instead of intersections with special curves, the André–
Oort conjecture for A2 was proved by Pila and Tsimerman [PT13], also using the
Pila–Zannier strategy. This strategy eventually led to their proof of the André–Oort
conjecture for Ag [PT14], [Tsi18].

The key step in proving Theorem 1.2 consists in controlling the heights of
algebraic points in definable sets which parametrise intersections with special
subvarieties. Analogous bounds for pre-special points ofAg appeared in [PT13], and
were generalised by the authors of the current paper to arbitrary Shimura varieties
[DO16]. The second author has proved bounds of a similar nature concerning
Hecke operators [Orr18]. We use both of these previous bounds in this paper.

1.D. Generalisations. We prove a generalisation of Theorem 1.2 using the no-
tion of Hecke–facteur families in a general Shimura variety, which we define in
section 2.D. These families are a natural generalisation of E×CM curves in A2.

For an example of Hecke–facteur families, fix positive integers d, e, g satisfying
d+ e = g. Consider the locus of points in Ag parametrising principally polarised
abelian varieties which are isogenous (via a polarised isogeny) to a product A1×A2,
where dim(A1) = d, dim(A2) = e and A2 has CM type. This locus is the union of
a Hecke–facteur family of special subvarieties of Ag, as described in section 2.E.
The example includes the case of E×CM curves by choosing d = e = 1. (Note
that the definition of E×CM curves does not require the isogeny to be polarised.
Lemma 2.1 shows that this does not matter in the E×CM case.)
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Another example of a Hecke–facteur family is given by the Hecke translates of
a fixed special subvariety (this is obtained by setting H2 = {1} in the definition
of Hecke–facteur family). This case of Theorem 1.6 was essentially already es-
tablished in [Orr, Theorem 3.4]. We are able to remove the dependence on [Orr,
Conjecture 3.3] thanks to Proposition 4.3.

Theorem 1.6 is conditional on a Galois orbits conjecture, Conjecture 1.7. We do
not prove any cases of Conjecture 1.7 beyond the E×CM case.
Theorem 1.6. Let (G, X+) be a Shimura datum component and let S = Γ\X+ be
an associated Shimura variety component. Let V be an irreducible algebraic curve
in S not contained in any proper special subvariety.

Let (H, X+
H,H1,H2) be a facteur datum in (G, X+) and let F be the associated

Hecke–facteur family of special subvarieties of S. Suppose that, for every subvariety
Z ∈ F, we have

dim(Z) ≤ dim(S)− 2.
Let Σ be the set of points s ∈ S for which the smallest special subvariety containing
s is a member of F.

Assume that S, F, V and Σ satisfy Conjecture 1.7.
Then V ∩ Σ is finite.

The following large Galois orbits conjecture gives a lower bound for the Galois
degree of a point s ∈ V ∩Σ with respect to the complexity of the special subvariety
of F containing s. The complexity ∆(Z) of a special subvariety in the Hecke–facteur
family F is defined in section 3, depending on the choice of a representation ρ (hence
why we need to make such a choice in the statement of the conjecture).
Conjecture 1.7. Let (G, X+), S, F, V and Σ be as in Theorem 1.6. Let L be a
finitely generated subfield of C over which S and V are defined. Let ρ : G→ GLm,Q
be a faithful representation.

There exist positive constants C5 and C6 such that, for all points s ∈ V ∩ Σ, if
we let Z denote the (unique) special subvariety in F containing s, then

# Aut(C/L) · s ≥ C5∆(Z)C6 .

1.E. Strategy. The strategy to prove Theorem 1.2 is to prove [DR18, Conjec-
ture 12.2] for the pre-images of the points in Σ (modified to use a different defini-
tion of complexity). This is achieved by proving [DR18, Conjecture 12.7] for these
points, which is deduced from a new height bound for representatives in congruence
subgroups (Proposition 5.1), and combining it with previous results of the authors
([DO16, Theorems 1.1 and 4.1] and [Orr18, Theorem 1.1]). Theorem 1.2 then
follows by the method of [DR18, Theorem 14.2] (note that [DR18, Conjecture 10.3]
follows from [DR18, Conjecture 12.2] by [DR18, Lemma 12.5]).

Strictly speaking, we cannot directly invoke [DR18, Theorem 14.2]; rather, we
have to show that its proof applies to the points in Σ. This requires that the E×
CM curves are permuted by a Galois action, which is ensured by Lemma 4.1.
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The above arguments work for any Hecke–facteur family in a Shimura variety,
thus proving Theorem 1.6. Specialising to the E× CM case, the proof of The-
orems 1.1 and 1.4 is obtained by adapting a height bound of André for abelian
varieties with large endomorphism rings [And89, Ch. X, Theorem 1.3], combined
with the Masser–Wüstholz isogeny theorem.

1.F. Outline of paper. Section 2 contains various definitions, notation and basic
facts relating to Shimura varieties, Hecke–facteur families and Siegel fundamental
sets. Section 3 is largely devoted to comparing the two definitions of complexity
used for Conjectures 1.3 and 1.5 respectively.

In section 4, we prove that a suitable Galois action permutes the E× CM
curves, as required to be able to apply the method of [DR18, Theorem 14.2].
Section 5 proves a height bound for congruence subgroups which is another essential
ingredient in the proof of Theorem 1.2. We carry out the strategy of [DR18] for
Hecke–facteur families in Sections 6 and 7. Section 6 establishes height bounds for
parameters of special subvarieties (modified versions of [DR18, Conjectures 12.2
and 12.7]) while Section 7 describes how we need to modify the proof of [DR18,
Theorem 14.2] to obtain Theorems 1.2 and 1.6.

Finally Sections 8 and 9 concern Galois orbits bounds for intersections with E×
CM curves. Section 8 generalises the height bound of [And89, Ch. X] to include
abelian surfaces. Section 9 applies this to prove Theorems 1.1 and 1.4.

Acknowledgements. The authors would like to thank Yves André, David Holmes,
David Masser and Andrei Yafaev for useful discussions during the preparation of
this manuscript. They would also like to thank the anonymous referees for helpful
suggestions. The first author is grateful to the University of Reading for financial
support. The second author thanks the EPSRC, who funded some of his work on
this paper via grant EP/M020266/1, and the University of Warwick.

2. Preliminaries

2.A. Shimura varieties. Let S denote the Deligne torus ResC/R Gm. A Shimura
datum is a pair (G, X), where G is a connected reductive Q-algebraic group andX
is a G(R)-conjugacy class in Hom(S,GR) satisfying [Del79, axioms 2.1.1.1–2.1.1.3].
These axioms imply that X is a finite disjoint union of Hermitian symmetric
domains [Del79, Corollaire 1.1.17].

Given a Shimura datum (G, X) and a compact open subgroup K ⊂ G(Af),
the resulting Shimura variety is denoted ShK(G, X). This is a quasi-projective
algebraic variety whose complex points are given by

ShK(G, X)(C) = G(Q)\X ×G(Af )/K.
We can attach to each Shimura datum a number field called the reflex field, de-
noted E(G, X). According to Deligne’s theory, ShK(G, X) has a so-called canon-
ical model over E(G, X) (see [Del79], completed in [MS82], [Mil83] and [Bor84]).
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Given a morphism of Shimura data (H, XH) → (G, X), induced from a mor-
phism f : H → G of Q-algebraic groups, and compact open subgroups KH ⊂
H(Af ) and K ⊂ G(Af ) such that f(KH) ⊂ K, we obtain a morphism of Shimura
varieties

ShKH(H, XH)→ ShK(G, X),
which is closed and defined over the compositum of the reflex fields EH := E(H, XH)
and EG := E(G, XG) [Mil05, Remark 13.8]. If f is an inclusion, then EG ⊂ EH.

Let Had denote the quotient of H by its centre, and let f : H → Had be the
natural morphism. Then we obtain a Shimura datum (Had, Xad

H ) where Xad
H is the

Had(R)-conjugacy class of morphisms containing the image of XH under composi-
tion with fR. The reflex fields are related by E(Had, Xad

H ) ⊂ EH.
A key example of a Shimura variety is Ag, the coarse moduli space of principally

polarised abelian varieties of dimension g. This Shimura variety is geometrically
irreducible and defined over Q. It is equal to ShK(G, X) where G is the general
symplectic group GSp2g, X is isomorphic to the disjoint union of two copies of
the Siegel upper half-space Hg and K = GSp2g(Ẑ).

For any algebraically closed field k and any point s ∈ Ag(k), we shall write As
for the abelian variety parametrised by s (which is defined up to k-isomorphism).

2.B. Shimura variety components. Over C, a Shimura variety usually has
many irreducible components. It will often be convenient for us to work with a
single geometrically irreducible component of a Shimura variety, which we call a
Shimura variety component.

We define a Shimura datum component to be a pair (G, X+), where (G, X)
is a Shimura datum and X+ is a connected component of X. Let G(Q)+ denote
the stabiliser of X+ in G(Q). The image of X+ in ShK(G, X) is a Shimura
variety component, which we will denote by ShK(G, X+). The complex points of
ShK(G, X+) are isomorphic (as a complex analytic space) to Γ\X+ where Γ =
K∩G(Q)+ (subgroups of G(Q)+ of this form are called congruence subgroups).

We say that (H, X+
H) is a Shimura subdatum component of (G, X+) if

(G, X+) and (H, X+
H) are Shimura datum components, H is an algebraic subgroup

of G and the inclusion H ↪→ G induces an inclusion X+
H ↪→ X+.

Let (H, X+
H) be a Shimura subdatum component of (G, X+). Let Γ ⊂ G(Q)+

be a congruence subgroup and let ΓH = Γ ∩H(Q)+. Then X+
H ↪→ X+ induces

a closed morphism ΓH\X+
H → Γ\X+ between Shimura variety components. We

call the image of X+
H → X+ a pre-special subvariety of X+ and the image of

ΓH\X+
H → Γ\X+ a special subvariety of Γ\X+.

2.C. Hecke correspondences. Let (G, X) be a Shimura datum and let K ⊂
G(Af) be a compact open subgroup. For each g ∈ G(Af), there is an algebraic
correspondence on ShK(G, X) given by the morphisms

ShK(G, X)← ShK∩gKg−1(G, X)→ Shg−1Kg∩K(G, X)→ ShK(G, X),
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where the middle arrow is induced by the map

(x, a)→ (x, ag) : X ×G(Af )→ X ×G(Af ),

and the outside arrows are the natural projections. We call such a correspondence
a Hecke correspondence and denote by Tg the induced map on algebraic cycles.

2.D. Hecke–facteur families. Let (G, X+) be a Shimura datum component and
let (H, X+

H) ⊂ (G, X+) be a Shimura subdatum component.
Suppose that H has semisimple normal subgroups H1 and H2 such that H1∩H2

is finite and Hder = H1.H2. The groups H1 and H2 are not necessarily associated
with Shimura data, but their adjoint groups give rise to Shimura datum components
(Had

1 , X
+
1 ) and (Had

2 , X
+
2 ) such that there is a natural isomorphism X+

H
∼= X+

1 ×X+
2 .

We henceforth regard this isomorphism as an identification and write X+
1 ×X+

2 =
X+

H ⊂ X+ without extra notation. (In the language of [Mil05, Definition 4.4],
(H1, X

+
1 ) and (H2, X

+
2 ) are connected Shimura data.)

We call (H, X+
H,H1,H2) as above a facteur datum in (G, X+).

Let (H, XH) denote the Shimura datum such that X+
H is a component of XH.

The decomposition X+
H
∼= X+

1 ×X+
2 extends to a decomposition of Shimura data

(Had, Xad
H ) ∼= (H1, X1) × (H2, X2). The reflex field E(Had, Xad

H ) is equal to the
compositum of E(H1, X1) and E(H2, X2). If Kad

H ⊂ Had(Af) is a compact open
subgroup equal to a product of compact open subgroups K1 ⊂ H1(Af ) and K2 ⊂
H2(Af ), then we obtain a decomposition of Shimura varieties

ShKad
H

(Had, Xad
H ) = ShK1(Had

1 , X1)× ShK2(Had
2 , X2),

which is defined over E(Had, Xad
H ).

For any pre-special point x2 ∈ X+
2 , X+

1 ×{x2} is a pre-special subvariety of X+.
We call the collection of subvarieties of this form (for a fixed facteur datum) a
facteur family of pre-special subvarieties of X+. We say that a facteur family
is trivial if it comes from a facteur datum with H2 = {1}: in this case, the facteur
family consists simply of X+

H itself. This terminology is motivated by the notion of
“non-facteur” special subvarieties from [Ull07]: a special subvariety is “non-facteur”
if and only if it does not belong to any non-trivial facteur family.

The main topic of this paper will be the family of Hecke translates of a given
facteur family. For any g ∈ G(Q)+ and any pre-special point x2 ∈ X+

2 ,

Yg,x2 = g(X+
1 × {x2})

is again a pre-special subvariety of X+. We call the collection of subvarieties Yg,x2

a Hecke–facteur family of pre-special subvarieties of X+. We call their
images Zg,x2 = π(Yg,x2), where π denotes the uniformisation map X+ → Γ\X+, a
Hecke–facteur family of special subvarieties of Γ\X+. We chose this name
because Zg,x2 is an irreducible component of the image of π(X+

1 × {x2}) (a special
subvariety in the facteur family) under the Hecke correspondence Tg−1 .
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The Mumford–Tate group MT(Yg,x2) of a very general point in Yg,x2 is equal to
g(H1.Tx2)g−1, where Tx2 is a torus in Z(H).H2 corresponding to the pre-special
point x2 ∈ X+

2 . Observe that MT(Yg,x2)der = gH1g
−1.

2.E. Example of a Hecke–facteur family. For a fundamental example of a
Hecke–facteur family, choose positive integers d, e, g such that d + e = g. Let
(G, X+) = (GSp2g,Hg) and let X+

H ⊂ X+ be a pre-special subvariety parametris-
ing principally polarised abelian varieties which are isomorphic (as polarised abelian
varieties) to a product A×B, where dim(A) = d, dim(B) = e and A, B are prin-
cipally polarised. The generic Mumford–Tate group of X+

H is
H = Gm.(Sp2d × Sp2e).

Let H1 = Sp2d ⊂ H and H2 = Sp2e ⊂ H. Then (H, X+
H,H1,H2) is a facteur

datum in (G, X+), and X+
H = X+

1 ×X+
2 , where X+

1 = Hd and X+
2 = He. The re-

sulting Hecke–facteur family consists of the special subvarieties which parametrise
principally polarised abelian varieties A of dimension g such that there exist prin-
cipally polarised abelian varieties A1 (of dimension d) and A2 (of dimension e and
of CM type) and a polarised isogeny A1 × A2 → A. (Given polarised abelian
varieties (A, λ) and (B, µ), a polarised isogeny is an isogeny f : A → B such
that f ∗µ = nλ for some n ∈ Z.)

In this paper, we are principally interested in the case g = 2, d = e = 1 of this
construction. The following lemma shows that, in this case, the special curves in
the Hecke–facteur family contain every point of A2 for which the corresponding
abelian variety is isogenous (not just polarised isogenous) to a product E1 × E2
where E2 has CM. In other words, this Hecke–facteur family consists precisely of
the E×CM curves defined in the introduction.

Lemma 2.1. Let (A, λ) be a principally polarised abelian surface for which there
exist elliptic curves E1 and E2 (not in the same isogeny class) and an isogeny
ϕ : E1 × E2 → A.

Then there exist elliptic curves E ′1 and E ′2, such that E ′i is isogenous to Ei, and
a polarised isogeny ϕ′ : E ′1 × E ′2 → (A, λ) (where E ′1, E ′2 are equipped with their
principal polarisations).

Furthermore, degϕ′ ≤ degϕ.

Proof. Let Λ = H1(A,Z), equipped with the symplectic pairing ψ induced by the
polarisation λ. The isogeny ϕ : E1 × E2 → A induces an injection of Z-modules

H1(E1,Z)⊕H1(E2,Z)→ Λ
with finite cokernel.

Let Λi = (H1(Ei,Z)⊗ZQ)∩Λ. This is the Z-Hodge structure of an elliptic curve
E ′i isogenous to Ei. The inclusion Λ1⊕Λ2 → Λ induces an isogeny ϕ′ : E ′1×E ′2 → A.

Let λ′i be the (unique) principal polarisation on E ′i and let ψ′i be the associated
symplectic form on Λi. Because rk Λi = 2, every symplectic form on Λi is an integer
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multiple of ψ′i. (This is the step in the proof which is restricted to a product of
elliptic curves.) In particular ψ|Λi = niψ

′
i for some ni ∈ Z. Because ψ and ψ′i can

both be interpreted as the imaginary part of a positive definite Hermitian form
(because they come from polarisations), we must have ni > 0.

Because E1 and E2 are non-isogenous, there is no non-zero morphism of Z-Hodge
structures Λ1 → Λ2 or Λ2 → Λ1. Therefore Λ1 and Λ2 are orthogonal with respect
to ψ. It follows that ψ = n1ψ

′
1 + n2ψ

′
2 and so ϕ′∗λ = (n1λ

′
1, n2λ

′
2).

By construction Λ1 and Λ2 are primitive submodules of Λ. Since disc(niψ′i) = n2
i ,

Lemma 2.2 implies that n1 = n2 so ϕ′∗λ is an integer multiple of (λ′1, λ′2), that is,
ϕ′ is a polarised isogeny.

Furthermore,
H1(E1,Z)⊕H1(E2,Z) ⊂ Λ1 ⊕ Λ2 ⊂ Λ.

It follows that ϕ factors through ϕ′ and so degϕ′ ≤ degϕ. �

In the proof of Lemma 2.1, we needed the following lemma. This is a symplectic
version of [Huy16, Chapter 14, Proposition 0.2], which is the analogous result for
symmetric bilinear forms.

Lemma 2.2. Let Λ be a free Z-module of finite rank with a perfect symplectic form
ψ : Λ × Λ → Z. Let Λ1,Λ2 be primitive submodules of Λ which are orthogonal to
each other and such that Λ1 ⊕ Λ2 has finite index in Λ. Then

disc(ψ|Λ1) = disc(ψ|Λ2) = [Λ : Λ1 + Λ2].

Proof. Let
Λ∨i = {v ∈ Λi ⊗Q : ψ(v,Λi) ⊂ Z}.

The map v 7→ ψ|Λi(v,−) is an isomorphism Λ∨i → Hom(Λi,Z). Consequently, there
is a unique Z-module homomorphism αi : Λ→ Λ∨i such that

ψ|Λi(v,−) = ψ|Λi(αi(v),−)

for all v ∈ Λ.
We shall show that αi induces an isomorphism Λ/(Λ1 + Λ2)→ Λ∨i /Λi for each i.

This will suffice to prove the lemma because disc(ψ|Λi) = [Λ∨i : Λi].
Firstly, αi : Λ→ Λ∨i is surjective because Λi is a primitive submodule of Λ and

ψ is a perfect pairing on Λ.
For every v ∈ Λ, v − α1(v) is orthogonal to Λ1. Thus v − α1(v) ∈ Λ2 ⊗Q.
If α1(v) ∈ Λ1, then v−α1(v) ∈ Λ. Since v−α1(v) ∈ Λ2⊗Q and Λ2 is a primitive

submodule of Λ, we deduce that v−α1(v) ∈ Λ2 and hence v ∈ Λ1 +Λ2. Conversely,
if v ∈ Λ1 + Λ2, then writing v = v1 + v2 with vi ∈ Λi, we get α1(v) = v1 ∈ Λ1.

Thus α1(v) ∈ Λ1 if and only if v ∈ Λ1 + Λ2. In other words, α1 induces an
injection Λ/(Λ1 + Λ2)→ Λ∨1 /Λ1. A similar argument applies to α2. �
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Table 1. Special subvarieties of A2

Description Dimension Generic endomorphism algebra

A2 3 Q
Hilbert modular surface 2 real quadratic field
Hecke translate of A1 ×A1 2 Q×Q
Shimura curve 1 indefinite quaternion algebra over Q
modular curve 1 M2(Q)
E×CM curve 1 Q×F , where F is an imaginary qua-

dratic field
simple CM point 0 quartic CM field
non-simple CM point 0 product of two distinct imaginary

quadratic fields
isotypic CM point 0 M2(F ), where F is an imaginary

quadratic field

2.F. Special subvarieties of A2. The main theorems of this paper concern spe-
cial subvarieties of A2. As a consequence of the classification of Hodge groups of
abelian surfaces in [MZ99], every special subvariety of A2 is an irreducible com-
ponent of the locus of principally polarised abelian surfaces whose endomorphism
algebras contain a fixed algebra (“a Shimura variety of PEL type”).

In Table 1, we list the classes of special subvarieties of A2, giving the dimension
of each special subvariety and the generic endomorphism algebra of the abelian
surfaces parametrised by that special subvariety.

Unlikely intersections with special points are taken care of by the André–Oort
conjecture (proved for A2 by Pila and Tsimerman [PT13]). Therefore, in order to
prove the Zilber–Pink conjecture for A2, it remains only to consider intersections
between special curves and a general curve. In this paper, we consider intersections
with the E×CM special curves. The outstanding special curves will be treated in
a forthcoming article by the same authors [DO].

2.G. Fundamental sets. Let (G, X+) be a Shimura datum component and let
(H, X+

H,H1,H2) be a facteur datum. Let (Had
1 , X

+
1 ) and (Had

2 , X
+
2 ) denote the

Shimura datum components such that X+
H
∼= X+

1 ×X+
2 . We now describe how to

choose compatible fundamental sets in X+
1 , X+

2 and X+.

Definition. A Siegel fundamental set in X+ for a congruence subgroup Γ ⊂
G(Q)+ is a fundamental set for Γ of the form C.S+.x0, where C ⊂ G(Q)+ is a
finite set, S+ = S∩G(R)+ for some Siegel set S ⊂ G(R) and x0 ∈ X+ is a point
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such that the stabiliser of x0 in G(R) right-stabilises S. We use the definitions of
Siegel sets and associated terminology from [Orr18, section 2B].

Lemma 2.3. Fix a congruence subgroup Γ ⊂ G(Q)+ and let Γ1 = Γ ∩H1(Q)+,
Γ2 = Γ ∩H2(Q)+. Let F1 ⊂ X+

1 and F2 ⊂ X+
2 be Siegel fundamental sets for the

congruence subgroups Γ1 and Γ2, respectively.
Then there exists a Siegel fundamental set F ⊂ X+ for Γ such that F1×F2 ⊂ F .

The proof of Lemma 2.3 relies on the following lemma.

Lemma 2.4. Let S1 ⊂ H1(R) and S2 ⊂ H2(R) be Siegel sets. Then S1.S2 is a
Siegel set in Hder(R).

Proof. We use the notation from [Orr18, section 2B], adding subscripts 1, 2 or Hder

as appropriate. For example, (P1,S1, K1) denotes the Siegel triple associated with
the Siegel set S1.

We begin by constructing a Siegel triple for Hder. Multiplication in H is a central
Q-isogeny H1 ×H2 → Hder, so PHder = P1.P2 is a minimal parabolic Q-subgroup
of Hder. Similarly KHder = K1.K2 is a maximal compact subgroup of Hder(R).

Let SHder = S1.S2. This is an R-torus in PHder . Since Si is Pi(R)-conjugate to
a maximal Q-split torus in Hi, we can use the central Q-isogeny to deduce that
SHder is PHder(R)-conjugate to a maximal Q-split torus in PHder . Finally SHder is
stabilised by the Cartan involution of Hder associated with KHder , because this
Cartan involution restricts to the Cartan involutions of H1 and H2 associated with
K1 and K2 respectively. Thus (PHder ,SHder , KHder) is a Siegel triple for Hder.

The unipotent radical of PHder is UHder = U1.U2. The isogeny H1 × H2 →
Hder induces central isogenies ZH1(S1) × ZH2(S2) → ZHder(SHder) and P1/U1 ×
P2/U2 → PHder/UHder , with the latter being defined overQ. Hence the maximalQ-
anisotropic subgroup of PHder/UHder is the product of the corresponding subgroups
in P1/U1 and P2/U2. Lifting to ZHder(SHder), it follows that MHder = M1.M2.

The set of simple roots of Hder (with respect to (PHder ,SHder)) is the union of
the sets of simple roots of H1 and H2. It follows that AHder,t = A1,t.A2,t.

We have Si = Ωi.Ai,t.Ki for i = 1 or 2, where Ωi is a compact subset of
Ui(R).Mi(R)+. Since M1 commutes with U2, Ω1.Ω2 is a compact subset of
UHder(R).MHder(R)+. Hence

SHder = Ω1.Ω2.A1,t.A2,t.K1.K2

is a Siegel set in Hder(R). Because H1 commutes with H2, we conclude that
SHder = S1.S2. �

Proof of Lemma 2.3. Write Fi = Ci.S
+
i .xi as in the definition of Siegel fundamen-

tal sets.
By Lemma 2.4, S1.S2 is a Siegel set in Hder(R). By [Orr18, Theorem 4.1], there

exists a Siegel set S ⊂ G(R) and a finite set C ⊂ G(Q) such that S1.S2 ⊂ C.S.
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Let C+ = C ∩G(Q)+ and S+ = S ∩G(R)+. Enlarging C and S if necessary, we
may ensure that C+.S

+ is a fundamental set for Γ in G(R)+.
Let x0 be the image of (x1, x2) under the inclusion X+

1 × X+
2 → X+. Let

Ki = StabHi(R)(xi). Examining the proof of [Orr18, Theorem 4.1], we see that the
maximal compact subgroup KG in the Siegel triple used to construct S can be
chosen to be any maximal compact subgroup of G(R) which contains K1.K2. In
particular, we can choose KG to stabilise x0.

It follows that F = C+.S
+.x0 is a fundamental set for Γ in X+ which contains

S+
1 .x1 ×S+

2 .x2. Replacing C by C1.C2.C, we get F1 ×F2 ⊂ F . �

2.H. Heights and determinants. Let k ≥ 1 be an integer. For any real num-
ber y, we define its k-height as
Hk(y) := min{max{|a0|, ..., |ak|} : ai ∈ Z, gcd{a0, ..., ak} = 1, akyk + ...+ a0 = 0},
where we use the convention that, if the set is empty, that is, y is not algebraic of
degree less than or equal to k, then Hk(y) is +∞. For y = (y1, ..., ym) ∈ Rm, we
set

Hk(y) := max{Hk(y1), ...,Hk(ym)}.
We extend this definition to Cm by identifying it with R2m, taking real and imagi-
nary parts. The 1-height of a matrix g ∈ Mn(Q) is the height of g considered as
an element of Qn2 . For any matrix g ∈ Mn(Q), we write

det∗(g) = |det(g)| · (lcm{bij : 1 ≤ i, j ≤ n})n ∈ Z,
where the entries of g written in lowest terms are aij/bij.

3. Complexities

We define a notion of complexity ∆(Z) for special subvarieties in a Hecke–facteur
family which is similar to the general definition of complexity of special subvarieties
from [DR18], but modified to be more convenient for the case of Hecke–facteur
families. We will then define a second notion of complexity ∆′(Z) (which is even
more specialised to the E×CM case) and show that ∆ and ∆′ are polynomially
bounded in terms of each other.

Let (G, X+) be a Shimura datum component, let K ⊂ G(Af) be a compact
open subgroup and let S be the Shimura variety component ShK(G, X+). Choose
a faithful representation G → GLm,Q (we shall use this representation to talk
about the height or det∗ of elements of G(Q)).

For each special point s ∈ S, one can define the following objects and quantities
associated with s (as in [DR18, Definition 10.1]):

(1) T ⊂ G is the Mumford–Tate group of s.
(2) Km

T is the maximal compact open subgroup of T(Af). (There is a unique
maximal compact open subgroup because T is a torus.)

(3) DT is the absolute value of the discriminant of the splitting field of T.
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(4) ∆(s) = max{DT, [Km
T : K ∩T(Af )]}.

The Q-torus T is defined up to conjugation by K ∩G(Q)+, and DT and ∆(s) are
independent of the choice of T in its conjugacy class.

Let (H, X+
H,H1,H2) be a facteur datum for (G, X+). For any special subvariety

Z ⊂ S in the associated Hecke–facteur family, we define the following quantities:
(1) N(Z) is the smallest positive integer N such that there exist γ ∈ G(Q)+

and x2 ∈ X+
2 with Z = Zγ,x2 and det∗(γ) = N .

(2) ∆(Z) = max{N(Z), min{∆(s) : s ∈ Z is a special point}}.
We call ∆(Z) the complexity of Z.

In the examples from section 2.E, the following lemma shows that the quantity
N(Z) can be interpreted as the smallest positive integer N such that, for every
point s ∈ Z, there exist abelian varieties A1 and A2 (of dimensions d and e,
respectively) and a polarised isogeny A1 × A2 → As of degree N .

Lemma 3.1. Let d, e and g be positive integers such that d + e = g and let
(H, X+

H,H1,H2) be the facteur datum described in section 2.E. Let Z be a special
subvariety of Ag in the Hecke–facteur family associated with (H, X+

H,H1,H2).
For each positive integer N , the following statements are equivalent:
(i) There exists γ ∈ GSp2g(Q)+ and a pre-special point x2 ∈ X+

2 such that
Z = Zγ,x2 and det∗(γ) = N (with respect to the inclusion GSp2g ↪→ GL2g).

(ii) There exists a pre-special point x2 ∈ X+
2 such that, for every point s ∈ Z, there

exists an abelian variety A1 of dimension d and a polarised isogeny A1×Ax2 →
As of degree N , where Ax2 denotes the abelian variety of dimension e naturally
associated with x2 ∈ X+

2 = He.
(iii) There exists a pre-special point x2 ∈ X+

2 , a point s ∈ Z such that Z is the
smallest special subvariety containing s, an abelian variety A1 of dimension d
and a polarised isogeny A1 × Ax2 → As of degree N .

Proof. First suppose that we are given γ and x2 as in (i). We can multiply γ by the
lowest common multiple of the denominators of its entries without changing det∗(γ),
so we may assume that γ ∈ GSp2g(Q)+ ∩M2g(Z). By the definition of Zγ,x2 , for
each point s ∈ Z, we have s = π(γ.(x1, x2)) for some point x1 ∈ X+

1 . Then the
matrix γ is the rational representation of a polarised isogeny Ax1 × Ax2 → As of
degree det(γ) = N , where Ax1 denotes the abelian variety of dimension d naturally
associated with x1 ∈ X+

1 = Hd. This yields (ii).
It is obvious that (ii) implies (iii).
Finally, suppose that (iii) holds. Let p1, p2 denote the first and second projections
Hg ×Hg → Hg and let π denote the uniformising map Hg → Ag. Let

TN = {(s1, s2) ∈ Ag ×Ag : ∃ a polarised isogeny As1 → As2 of degree N}
and let XN = (π × π)−1(TN). Let

WN =
(
(X+

1 × {x2})×Hg

)
∩XN .
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Each irreducible component of XN is of the form Xγ = {(x, γx) : x ∈ Hg} for
some γ ∈ GSp2g(Q)+ ∩M2g(Z) such that det(γ) = N . Hence, each irreducible
component of WN has the form

Wγ = {((x1, x2), γ(x1, x2)) : x1 ∈ Hd}

for some γ of the same type.
By (iii), s ∈ (π◦p2)(WN). Each irreducible component of (π◦p2)(WN) is a special

subvariety of Ag. Since Z is the smallest special subvariety containing s, we deduce
that Z ⊂ (π ◦ p2)(WN). Since Z is irreducible, it is contained in (π ◦ p2)(Wγ) for
some γ. Because Z is in the Hecke–facteur family, dim(Z) = dim(Wγ). Therefore,
Z = (π ◦ p2)(Wγ) = Zγ,x2 . �

Now suppose that (H, X+
H,H1,H2) is the facteur datum discussed in section 2.E

with g = 2 and d = e = 1, that is, the datum associated with E×CM curves. In
this case, we can relate the above definition of complexity to a simpler definition,
which is crucial for the proof of Theorem 1.4. The new definition of complexity
relies on the following lemma.

Lemma 3.2. Let (A, λ) be a principally polarised abelian surface which is isogenous
to a product of elliptic curves E1 × E2 where E1 and E2 are not isogenous to each
other. Let N be the smallest positive integer such that there exist elliptic curves E1
and E2 and an isogeny E1 × E2 → A of degree N .

Then the pair of elliptic curves (E1, E2) such that there exists an isogeny E1 ×
E2 → A of degree N is unique up to swapping E1 and E2.

Proof. Let E1 and E2 be elliptic curves for which there exists an isogeny ϕ : E1 ×
E2 → A of degree N . Let Λ = H1(A,Z) and Λi = H1(Ei,Z). Let ψ be the
symplectic form on Λ induced by λ and let ψi be the symplectic form on Λi

induced by the unique principal polarisation of Ei.
Because degϕ is as small as possible, we must have ϕ′ = ϕ in Lemma 2.1.

Looking at the proof of Lemma 2.1, we see that there is a positive integer n such
that ψ|Λi = nψi. Then N = degϕ = n2.

As a first step, we show that ker(ϕ) ⊂ (E1 × E2)[n].
Choose a basis {x, y} for Λ1 such that ψ1(x, y) = 1. For any v ∈ Λ, we can write

v = v1 + v2 where vi ∈ Λi ⊗Q. We can calculate

ψ(v, x) = ψ(v1, x) = nψ1(v1, x).

Since ψ(v, x) ∈ Z, ψ1(v1, x) ∈ 1
n
Z. Similarly ψ1(v1, y) ∈ 1

n
Z. Now

v1 = ψ1(v1, y).x− ψ1(v1, x).y

and so v1 ∈ 1
n
Λ1.

A similar argument shows that v2 ∈ 1
n
Λ2. Thus Λ ⊂ 1

n
Λ1 + 1

n
Λ2. In other words,

n annihilates Λ/(Λ1 + Λ2) ∼= ker(ϕ).
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Suppose that there exists another pair of elliptic curves E ′1, E ′2 and an isogeny
ϕ′ : E ′1 × E ′2 → A also of degree N .

We can apply the above argument to ϕ′, deducing that ker(ϕ′) ⊂ (E ′1 × E ′2)[n].
Consequently, there exists an isogeny ψ′ : A→ E ′1×E ′2 such that ψ′ ◦ϕ′ = [n]E′1×E′2 .
We will consider the isogeny ψ′ ◦ ϕ : E1 × E2 → E ′1 × E ′2.

Label E ′1 and E ′2 so that they are isogenous to E1 and E2 in that order. Because
E1 is not isogenous to E2, we have Hom(E1, E

′
2) = Hom(E2, E

′
1) = 0. Consequently

ψ′ ◦ ϕ = (α1, α2)
for some isogenies α1 : E1 → E ′1 and α2 : E2 → E ′2.

Let G = ker(ϕ) ⊂ (E1 ×E2)[n] and let pi denote the projection (E1 ×E2)[n]→
Ei[n] for i = 1 and 2.

Observe that ϕ : E1 × E2 → A factors through (E1 × E2)/(G ∩ E2[n]) because
G∩E2[n] ⊂ G = ker(ϕ). Hence the minimality of degϕ implies that G∩E2[n] = 0.
We conclude that p1|G is injective. It follows that #p1(G) = #G = n2. Thus
p1(G) = E1[n]. Similarly p2(G) = E2[n].

If g = (g1, g2) ∈ G, then (α1(g1), α2(g2)) = ψ′ϕ(g) = 0 and so pi(G) ⊂ ker(αi).
Since deg(ϕ′) = n2 and deg[n]E′1×E′2 = n4, we have deg(ψ′) = n2. Consequently

deg(ψ′ ◦ ϕ) = n4. Meanwhile ker(ψ′ ◦ ϕ) = ker(α1) × ker(α2) so the inclusions
pi(G) ⊂ ker(αi) must be equalities.

It follows that E ′i ∼= Ei/Ei[n] ∼= Ei. �

We continue to consider the E×CM Hecke–facteur family, using the standard
representation GSp4 → GL4 to define det∗. Let Z be a special curve in this family.
By Lemma 3.1, there exists x2 ∈ X+

2 such that, for every s ∈ Z, there exists an
elliptic curve E1(s) and an isogeny E1(s)× Ex2 → As of degree N(Z), where Ex2

is the elliptic curve naturally associated with x2 ∈ X+
2 = H1. Furthermore, for

any point s ∈ Z ∩Σ, N(Z) is the smallest degree of an isogeny of As to a product
of elliptic curves. Therefore, by Lemma 3.2, E1(s) and Ex2 are the unique elliptic
curves whose product has an isogeny to As of degree N(Z). Since Ex2 has CM
while E1(s), Ex2 is uniquely associated with Z. Hence, it makes sense to define

∆′(Z) = max{N(Z), |disc(End(Ex2))|}.
Remark 3.3. If s is an E×CM point in the base of a principally polarised abelian
scheme A → V , as defined in section 1.B, then the point of A2 attached to the
fiber As lies in a unique E×CM curve Z. In this situation (as for example in the
statement of Conjecture 1.5), we write N(s) = N(Z) and ∆′(s) = ∆′(Z).

For a special curve Z in the E×CM Hecke–facteur family, our two notions of
complexity ∆(Z) and ∆′(Z) are polynomially bounded with respect to each other.
Before proving this, we shall prove two lemmas. The first is a special case of the
reverse of [Tsi12, Lemma 7.2] or [DO16, Theorem 4.1]. (We expect that the reverse
of [DO16, Theorem 4.1] should hold for all special points in an arbitrary Shimura
variety, but the proof is likely to be somewhat more complicated.)



UNLIKELY INTERSECTIONS WITH E×CM CURVES IN A2 17

Lemma 3.4. There exist absolute constants C7 and C8 such that for every special
point s ∈ A2, if there exists a polarised isogeny E1 × E2 → As where E1 and E2
are non-isogenous elliptic curves both of which have CM, then

∆(s) ≤ C7 |disc(End(As))|C8 .

Proof. Let Fi = End(Ei)⊗Q for i = 1 and 2. Let Oi denote the ring of integers
of Fi and let O = O1 × O2, Op = O ⊗ Zp and Ô = ∏

pOp. Let R = End(As),
Rp = R⊗ Zp and R̂ = ∏

pRp. Observe that R is an order in F1 × F2 so

disc(R) = disc(F1) disc(F2)[O : R]2.
We use the notation T, Km

T and DT as in the definition of ∆(s) in section 3.
Fix a basis for H1(As,Z). With respect to this basis, we get a homomorphism

of rings ι : R→ M4(Z) and an injection T→ GL4,Q.
Because the Mumford–Tate group of an abelian surface is always as large as

possible given its endomorphism ring and polarisation (see section 2.F), T is equal
to the intersection of GSp4 with the centraliser (in GL4) of ι(R). Now ι(R⊗Q) is
a commutative algebra of dimension 4, so it is its own centraliser in M4(Q). Hence

T(Q) = ι((R⊗Q)×) ∩GSp4(Q).
We deduce that T is a subtorus of ResF1/QGm×ResF2/Q Gm and hence is split over
the compositum F1F2. Consequently

DT ≤ |disc(F1F2)| ≤ |disc(F1)|2|disc(F2)|2 ≤ |disc(R)|2

(the middle inequality is well-known; see for example [Jar14, Exercise 8.10]).
Let

KT = T(Af ) ∩GSp4(Ẑ) = T(Af ) ∩ ι(R̂×).
The maximal compact subgroup of ((F1×F2)⊗Af )× is Ô×, soKm

T = T(Af )∩ι(Ô×).
Therefore

[Km
T : KT] = [T(Af ) ∩ ι(Ô×) : T(Af ) ∩ ι(R̂×)] ≤ [Ô× : R̂×].

Thus it will suffice to show that
[Ô× : R̂×] ≤ [O : R]4.

We will prove this prime by prime: for each prime p we will show that
[O×p : R×p ] ≤ [Op : Rp]4. (1)

Let Np = [Op : Rp]. If Op = Rp, then (1) is obvious. So we may assume that
Op 6= Rp and then p divides Np.

Since 1 ∈ Rp and NpOp ⊂ Rp, we have 1 +NpOp ⊂ Rp. Because p divides Np, if
x ∈ 1 +NpOp then x ∈ O×p and x−1 is also congruent to 1 mod Np. In other words
x−1 ∈ 1 +NpOp ⊂ Rp and so x ∈ R×p . This proves that 1 +NpOp ⊂ R×p . Hence

[O×p : R×p ] ≤ [O×p : 1 +NpOp].
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Finally the inclusion O×p → Op induces an injective map of sets O×p /(1 +NpOp)→
Op/NpOp and so

[O×p : 1 +NpOp] ≤ [Op : NpOp] = N4
p .

This completes the proof. �

Our second lemma is a general result on endomorphisms and isogenies of abelian
varieties. Write Z(R) for the centre of a ring R. (Note that the analogous statement
to Lemma 3.5 still holds if you replace Z(End(A)) and Z(End(B)) by End(A) and
End(B) respectively, with the same modification to the proof.)

Lemma 3.5. Let A and B be abelian varieties such that that there exists an isogeny
ϕ : A→ B of degree N , and let r = rkZ(Z(End(A))). Then

|disc(Z(End(B)))| ≤ N2r|disc(Z(End(A)))|.

Proof. Equip Z(End(A)) ⊗ Q and Z(End(B)) ⊗ Q with the symmetric bilinear
forms (x, y) 7→ tr(xy), where tr denotes the trace on the respective Q-algebras. We
denote these forms ψA and ψB. Recall that by definition, disc(Z(End(A))) is the
discriminant of the bilinear form ψA on Z(End(A)), and similarly for B.

The isogeny ϕ induces an isomorphism ι : End(A)⊗Q→ End(B)⊗Q given by
ι(α) = ϕαϕ−1. This restricts to an isomorphism Z(End(A))⊗Q→ Z(End(B))⊗Q.
Any isomorphism of Q-algebras preserves the trace, and therefore is compatible
with the bilinear forms ψA and ψB.

Because there exists an isogeny ψ : B → A such that ψ ◦ ϕ = [N ], ι maps
N ·End(A) into End(B), and hence N ·Z(End(A)) into Z(End(B)). Consequently
|disc(ψB|Z(End(B)))| ≤ |disc(ψA|N · Z(End(A)))| = N2r|disc(ψA|Z(End(A)))|.

�

Now we combine the above two lemmas to compare ∆ and ∆′.

Lemma 3.6. There exist positive constants C9, C10, C11, and C12 such that, if Z
is a special curve in the E×CM Hecke-facteur family, then

C9∆(Z)C10 ≤ ∆′(Z) ≤ C11∆(Z)C12 .

Proof. Write Z = Zγ,x2 where γ ∈ GSp4(Q)+ ∩M4(Z), x2 ∈ X+
2 and det∗(γ) =

N(Z).
Fix two CM elliptic curves E1 and E ′1 which are not isogenous to each other.

Assume that Ex2 is not isogenous to E1 (if Ex2 is isogenous to E1, then use E ′1
instead of E1 and apply the same argument).

Let x1 be a point in X+
1 corresponding to the elliptic curve E1, and let s denote

the image of γ(x1, x2) in A2. Then s is a special point contained in Z, so
∆(Z) ≤ max{N(Z),∆(s)}.

By Lemma 3.4, we have
∆(s) ≤ C7 |disc(End(As))|C8 .
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Now γ is the rational representation of a polarised isogeny E1×Ex2 → As of degree
det∗(γ) = N(Z). Noting that rkZ(End(E1 × Ex2)) = 4 and that End(E1 × Ex2)
and End(As) are commutative, Lemma 3.5 tells us that

|disc(End(As))| ≤ N(Z)8|disc(End(E1 × Ex2))|.
Since Ex2 is not isogenous to E1, End(E1 × Ex2) = End(E1)× End(Ex2) and so

|disc(End(E1 × Ex2))| = |disc(End(E1)) disc(End(Ex2))| ≤ C13∆′(Z)
where C13 = max{|disc(End(E1))|, |disc(End(E ′1))|}.

Combining the above inequalities gives
C9∆(Z)C10 ≤ ∆′(Z).

To prove the second inequality of the lemma, let s ∈ Z be a special point such
that ∆(s) is minimal. By Lemma 3.1, there exists an elliptic curve E1(s) and an
isogeny E1(s) × Ex2 → As of degree N(Z). Since both E1(s) × Ex2 and As are
principally polarised, we deduce that there exists an isogeny in the reverse direction
As → E1(s)× Ex2 , also of degree N(Z). Hence Lemma 3.5 implies that

|disc(Z(End(E1(s)× Ex2)))| ≤ N(Z)8|disc(Z(End(As)))|.
LetOs denote the maximal order in Z(End(As))⊗Q (which is either an imaginary

quadratic field or a product of two imaginary quadratic fields). Then

disc(Z(End(As))) = [Os : Z(End(As))]2 disc(Z(End(As))⊗Q).
By [Tsi12, Lemma 7.2], we have (using the notation from the definition of ∆(s))

[Os : Z(End(As))] ≤ [Km
T : GSp2g(Ẑ) ∩T(Af )]C14DC15

T ≤ ∆(s)C16 .

Combining the above inequalities, we conclude that
|disc(Z(End(E1(s)× Ex2)))| ≤ ∆(s)C17|disc(Z(End(As))⊗Q)|. (2)

We now split into two cases depending on whether E1(s) is isogenous to Ex2 or
not. If they are not isogenous, then F1(s) = End(E1(s))⊗Q and F2 = End(Ex2)⊗Q
are distinct imaginary quadratic fields and we have

Z(End(E1(s)× Ex2)) = End(E1(s))× End(Ex2)
so that

|disc(End(Ex2))| ≤ |disc(Z(End(E1(s)× Ex2)))|
while
|disc(Z(End(As))⊗Q)| = |disc(F1(s)) disc(F2)| ≤ |disc(F1(s)F2)|2 = D2

T.

Combining these with (2) completes the proof of the second inequality in this case.
If E1(s) is isogenous to Ex2 , then End(E1(s) × Ex2) ⊗ Q ∼= M2(F ) where F =

End(E1(s))⊗Q ∼= End(Ex2)⊗Q. Hence Z(End(E1(s)×Ex2)) is an order in F . If
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ι : Ex2 → E1(s)×Ex2 and β : E1(s)×Ex2 → Ex2 denote the inclusion and projection
morphisms, then α 7→ βαι is an injection Z(End(E1(s)×Ex2))→ End(Ex2). Hence

|disc(End(Ex2))| ≤ |disc(Z(End(E1(s)× Ex2)))|.
The splitting field of T is F ∼= Z(End(As)⊗Q, so

|disc(Z(End(As))⊗Q)| = DT.

Again combining these with (2) completes the proof. �

4. Galois action on Hecke–facteur special subvarieties

Let S be a Shimura variety component defined over a number field ES. Then
Gal(Q/ES) acts on the set of Q-subvarieties of S. We shall show that, after
restricting to Gal(Q/F ) for a suitable field extension F/ES, this action permutes
the special subvarieties in a given Hecke–facteur family.

The main result of this section (Proposition 4.3) shares a certain similarity with
[DR18, Conjecture 12.6]. Indeed, [DR18, Conjecture 12.6] predicts that, for any
special subvariety Z in a suitable facteur family, we can make an extension of
the base field (whose degree is very small relative to the complexity of Z) over
which all Galois conjugates of Z are members of finitely many facteur families.
Proposition 4.3 is weaker than this because it only asserts that the Galois conjugates
are members of the same Hecke–facteur family. On the other hand, Proposition 4.3
only involves an extension of the base field which is independent of Z.

Given a Shimura datum component (G, X+), let X denote the G(R)-conjugacy
class of morphisms S→ G(R) containing X+. Then (G, X) is a Shimura datum.
For any subset A of X and a ∈ G(Af), we will denote by [A, a]K the image of
A × {a} in ShK(G, X)(C), in analogy with a standard notation for points. In
particular, the geometrically irreducible components of ShK(G, X) are the subsets
of the form [X+, a]K for any a ∈ G(Af ).

We begin with a lemma on the restriction of Hecke correspondences on ShK(G, X)
to the connected component [X+, 1]K . Recall that Tg denotes the map on algebraic
cycles induced by the Hecke correspondence associated with g (see section 2.C).
Lemma 4.1. Let (G, X+) be a Shimura datum component and let K ⊂ G(Af ) be
a compact open subgroup. Let S denote the Shimura variety component [X+, 1]K ⊂
ShK(G, X).
Let Z be an irreducible complex algebraic subvariety of S and let Y be an irre-

ducible component of π−1(Z). Let g ∈ G(Q)+. Then every irreducible component
of Tg−1(Z) ∩ S can be written in the form [g′Y, 1]K for some g′ ∈ G(Q)+.
Proof. Each irreducible component of Tg−1(Z) has the form

Z ′ = [Y, kg−1]K
for some k ∈ K. If Z ′ ⊂ S, then kg−1 ∈ G(Q)+K, or in other words

kg−1k′ ∈ G(Q)+
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for some k′ ∈ K. Letting g′ = (kg−1k′)−1, we get

Z ′ = [Y, g′−1]K = [g′Y, 1]K . �

Remark 4.2. Fix a faithful representation G → GLm,Q such that the image of
K is contained in GLm(Ẑ). Since g′ = k′−1gk−1, we have |det(g′)| = |det(g)|. We
also claim that the lowest common multiples of the denominators of g′ and g are
equal. This is because g′ is obtained from g by multiplying on the left and right
by elements of K. Working prime by prime, we see that such operations cannot
increase the lowest common multiple of the denominators. Since also g = k′g′k,
these operations cannot decrease the lowest common multiple of the denominators
either. We conclude that det∗(g′) = det∗(g).

Proposition 4.3. Let (G, X+) be a Shimura datum component and let K ⊂
G(Af ) be a compact open subgroup. Let S denote the Shimura variety component
[X+, 1]K ⊂ ShK(G, X).

Let (H, X+
H,H1,H2) be a facteur datum for (G, X+) and let F denote the asso-

ciated Hecke–facteur family of special subvarieties of S.
Let ES denote the extension of EG := E(G, X) over which S is defined. Let F

denote the compositum of EH := E(H, XH) and ES.
For every special subvariety Z ∈ F, and every σ ∈ Gal(Q/F ), the Galois conju-

gate subvariety σ(Z) is again a member of the Hecke–facteur family F. In other
words, σ(Z) = Zgσ ,xσ for some gσ ∈ G(Q)+ and some pre-special point xσ ∈ X+

2 .

Proof. First, let g ∈ G(Q)+ and x2 ∈ X+
2 such that Z = Zg,x2 . Now let Zx2 :=

[X+
1 , x2]KH ⊆ ShKH(H, XH), where KH := H(Af ) ∩K, and let

ϕH : ShKH(H, XH)→ ShK(G, X)

denote the natural morphism of Shimura varieties. By definition, Zg,x2 is an
irreducible component of Tg−1(ϕH(Zx2)). Since Tg−1 is defined over EG ⊆ F and
ϕH is defined over EH ⊆ F , we see that, for any σ ∈ Gal(Q/F ), the subvariety
σ(Zg,x2) is an irreducible component of Tg−1(ϕH(σ(Zx2))).

Let Kad
H ⊂ Had(Af) denote a maximal compact open subgroup containing the

image of KH under the natural morphism q : H(Af) → Had(Af). Then Kad
H =

K1 ×K2 for maximal compact subgroups K1 ⊂ Had
1 (Af) and K2 ⊂ Had

2 (Af) and
we obtain a finite morphism of Shimura varieties

ϕad : ShKH(H, XH)→ ShKad
H

(Had, Xad
H ) = ShK1(Had

1 , X1)× ShK2(Had
2 , X2),

which is defined over EH. We conclude that, for any σ ∈ Gal(Q/F ),

ϕad(σ(Zx2)) = σ(ϕad(Zx2)) = σ([X+
1 , 1]K1)× σ([{x2}, 1]K2).

The first factor is a geometrically connected component of ShK1(Had
1 , X1) because

Gal(Q/F ) acts on the set of such components. The second factor is a special point
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of ShK2(Had
2 , X2) by [Orr19, Theorem 5.1]. Hence

ϕad(σ(Zx2)) = σ(ϕad(Zx2)) = [X+
1 , aσ]K1 × [{yσ}, bσ]K2 ,

for some pre-special point yσ ∈ X+
2 and some aσ ∈ Had

1 (Af ) and bσ ∈ Had
2 (Af ). In

other words, σ(Zx2) is an irreducible component of
(ϕad)−1([X+

1 , aσ]K1 × [{yσ}, bσ]K2),
and so σ(Zx2) is equal to [X+

1 × {xσ}, hσ]KH for some pre-special point xσ ∈ X+
2

and some element hσ ∈ H(Af ) such that q(hσ) = (aσ, bσ).
On the other hand, because ES ⊆ F , we have

ϕH(σ(Zx2)) = σ(ϕH(Zx2)) ⊆ S,

for any σ ∈ Gal(Q/F ). Hence [X+, hσ]K = S and so hσ = hσ,Qk for some
hσ,Q ∈ G(Q)+ and k ∈ K. In other words,

ϕH(σ(Zx2)) = [X+
1 × {xσ}, hσ,Q]K = [h−1

σ,Q(X+
1 × {xσ}), 1]K .

Since σ(Zg,x2) is an irreducible component of Tg−1(ϕH(σ(Zx2))), by Lemma 4.1,
σ(Zg,x2) = [g′h−1

σ,Q(X+
1 × {xσ}), 1]K

for some g′ ∈ G(Q)+. Thus, letting gσ = g′h−1
σ,Q, we can write Z = Zgσ ,xσ . �

Remark 4.4. Using Remark 4.2, it is possible to augment the proof of Proposi-
tion 4.3 to show that, given a faithful representation G→ GLm,Q, the complexities
of Z and σ(Z) differ by at most a constant multiple independent of Z. However,
the argument is more technical and also requires [Orr19, Theorem 1.3].

5. Height bound for representatives modulo congruence subgroups

We will need the following proposition on heights of certain elements in arithmetic
groups. The G = SL2 case of this proposition can be proved by the procedure
outlined in [DS05, Exercise 1.2.2]. An effective version of the proposition for G =
SOQ (where Q is an integral quadratic form) can be found at [LM16, Theorem 8].
Proposition 5.1. Let G be a semisimple Q-algebraic group and let Γ ⊂ G(Q) be
a congruence subgroup. Let ρ : G→ GLm,Q be a faithful representation. For each
positive integer n, let

Γ(n) = Γ ∩ ρ−1(ker(GLm(Z)→ GLm(Z/nZ))).
Then there exist constants C18 and C19 such that, for each positive integer n, every
class in Γ/Γ(n) has a representative in Γ whose 1-height is at most C18n

C19.
Our proof of Proposition 5.1 relies on the notion of expander families of graphs.

An expander family is an infinite family of finite graphs (in which self-loops
and multiple edges are permitted) for which there exists ε > 0 such that for every
graph G in the family,

min{#∂X/#X : X ⊂ V (G), 0 < #X ≤ #V (G)/2} ≥ ε,
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and there is a uniform upper bound for the degrees of the vertices of all graphs in
the family. Here V (G) means the set of vertices of G and ∂X denotes the set of
edges of G which have one endpoint in X and the other endpoint not in X.

The relevance of expander families comes from the following theorem.
Theorem 5.2. Let G be a semisimple Q-algebraic group. Let ρ : G→ GLm,Q be
a faithful representation and let Γ = ρ−1(GLm(Z)). For each positive integer n, let
πn : Γ→ GLm(Z/nZ) denote the composition of ρ with reduction modulo n.
Suppose that Γ is infinite (equivalently, G is of non-compact type). Let ∆ be a

finite generating set for Γ such that ∆−1 = ∆.
The Cayley graphs Cay(πn(Γ), πn(∆)) form an expander family as n ranges over

the positive integers.
Proof. Let G̃ denote the simply connected cover of G. If G̃ is simple of real rank
at least 2, then it has Kazhdan’s property (T ) [Vas68]. In general, Clozel [Clo03,
Theorem 3.1] (using a result of Burger and Sarnak [BS91]) proved that the trivial
representation is isolated in the support of the regular representation of G̃(R)
on L2(G̃(Q)\G̃(A)). Thanks to [LZ03, Proposition 4.7], this implies that Γ has
property (τ) with respect to its congruence subgroups. By [LZ89, Proposition 1.2],
this implies the theorem. �

We will now use Theorem 5.2 to prove Proposition 5.1.
Proof of Proposition 5.1. The proposition is obvious if Γ is finite. Hence we may
assume that Γ is infinite.

We begin by reducing to the case where Γ = ρ−1(GLm(Z)). Since Γ is a
congruence subgroup, there exists n0 such that

ρ−1(ker(GLm(Z)→ GLm(Z/n0Z)) = Γ(n0) ⊂ Γ.
Since Γ(n0n) ⊂ Γ(n), it suffices to prove the lemma with Γ(n0n) in place of Γ(n) (for
any n ∈ Z). Assuming that the proposition holds for ρ−1(GLm(Z)), we get a set of
representatives for ρ−1(GLm(Z))/Γ(n0n) of height bounded in terms of n. A subset
of these representatives then form a set of representatives for Γ(n0)/Γ(n0n). Since
Γ(n0) has finite index in Γ, we can choose once and for all a set of representatives
γ1, . . . , γs for Γ/Γ(n0). Then we can obtain representatives for every class in Γ/Γ(n)
by multiplying the γi by representatives for Γ(n0)/Γ(n0n).

Thus it suffices to assume that Γ = ρ−1(GLm(Z)).
According to [BHC62, Theorem 6.5], Γ is finitely generated, say by a set ∆.

Enlarging ∆, we may assume that ∆−1 = ∆. Hence we can apply Theorem 5.2 to
show that the Cayley graphs Cayn = Cay(πn(Γ), πn(∆)) form an expander family.

By [Kow, Corollary 3.1.10], the graphs in the expander family {Cayn} satisfy
diam(Cayn)� log(3 #V (Cayn)).

Since #V (Cayn) = #πn(Γ) ≤ nm
2 we deduce that

diam(Cayn) ≤ C20 log(3n)
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for some constant C20 > 0.
By the definition of the Cayley graph, any element g ∈ πn(Γ) can be written as

the product of at most diam(Cayn) elements of πn(∆). Consequently we can find
some g̃ ∈ Γ such that πn(g̃) = g and g̃ is a product of at most diam(Cayn) elements
of ∆. Because H1(xy) ≤ mH1(x)H1(y) for all matrices x and y, we deduce that

H1(g̃) ≤ mdiam(Cayn)−1 max{H1(δ) : δ ∈ ∆}diam(Cayn)

and thus
H1(g̃) ≤ C

C20 log(3n)
21 = C22 n

C23

for suitable constants. �

Remark 5.3. The semisimplicity condition is necessary in Proposition 5.1: the
proposition fails for the group G = ResF/Q Gm, where F is a real quadratic field.

6. Parameter height bounds for Hecke–facteur families

The aim of this section is to prove versions of [DR18, Conjectures 12.2 and 12.7]
for Hecke–facteur families, modified to use det∗(g) in place of deg(π(Yg,x2)) (the
same modification as we made to the definition of complexity).

Lemma 6.1. Let (G, X+) be a Shimura datum component and let S = Γ\X+

be an associated Shimura variety component. Fix a faithful representation ρ :
G → GLm,Q. Let (H, X+

H,H1,H2) be a facteur datum for (G, X+) and choose
fundamental sets F1 ⊂ X+

1 , F2 ⊂ X+
2 and F ⊂ X+ as in Lemma 2.3.

Then there exist constants C24 and C25 such that, if Y is a pre-special subvariety
in the Hecke–facteur family associated with (H, X+

H,H1,H2) satisfying Y ∩ F 6= ∅,
then there exist g ∈ G(Q)+ and x2 ∈ F2 satisfying Y = Yg,x2, det∗(g) = N(π(Y ))
and

H1(g) ≤ C24N(π(Y ))C25 .

Proof. By the definition of the Hecke–facteur family, we can write
Y = Yg′,x′2 = g′(X+

1 × {x′2})

for some g′ ∈ G(Q)+ and x′2 ∈ X+
2 . We may choose g′ so that det∗(g′) = N(π(Y )).

Pick a point x ∈ Y ∩ F (which we are assuming to be non-empty). Then
g′−1x ∈ X+ so by Lemma 2.3, we can choose

γ ∈ (Γ1 ∩H1(R)+).(Γ2 ∩H2(R)+) ⊂ Γ ∩H(R)+

such that γ−1g′−1x ∈ F1 ×F2 ⊂ F .
Write g = g′γ and let g−1x = (x1, x2). Here xi ∈ Fi. Because H1 commutes

with H2, we have Y = Yg,x2 .
Because x and g−1x are both in F , [Orr18, Theorem 1.1] gives a polynomial

bound for H1(g) in terms of
|det(g)| · (max{bij : 1 ≤ i, j ≤ n})n



UNLIKELY INTERSECTIONS WITH E×CM CURVES IN A2 25

where the entries of g are written in lowest terms as aij/bij (with bij > 0). Since
max{bij} ≤ lcm{bij}, this implies that H1(g) is polynomially bounded in terms of
det∗(g) = det∗(g′) = N(π(Y )). �

The following lemma is a modified special case of [DR18, Conjecture 12.7].

Proposition 6.2. Let (G, X+), S, ρ, (H, X+
H,H1,H2), F , F1 and F2 be as in

Lemma 6.1.
Then there exist constants C26 and C27 such that, if Y is a pre-special subvariety

in the Hecke–facteur family associated with (H, X+
H,H1,H2) satisfying Y ∩ F 6= ∅

and z ∈ F ∩ ΓY , then there exists γ ∈ Γ satisfying z ∈ γ.Y and
H1(γ) ≤ C26N(π(Y ))C27 .

Proof. Write Y = Yg,x2 as in Lemma 6.1.
We are given z ∈ F ∩ ΓY , so we can pick γ′ ∈ Γ such that z ∈ γ′Y . Then

g−1γ′−1z ∈ X+
1 × {x2}.

Because F1 is a fundamental set in X+
1 , we can choose γ1 ∈ Γ1 such that

γ−1
1 g−1γ′−1z ∈ F1 × {x2}.

Because we chose fundamental sets as in Lemma 2.3, F1×{x2} ⊂ F . Since also
z ∈ F , by [Orr18, Theorem 1.1] we get that H1(γ′gγ1) is polynomially bounded
in terms of det∗(γ′gγ1) = det∗(g) = N(π(Y )). Because γ′, γ1 ∈ Γ, det∗(γ′gγ1) =
det∗(g) = N(π(Y )). Thus there are constants C28 and C29 such that

H1(γ′gγ1) ≤ C28N(π(Y ))C29 . (3)
We can choose n, polynomially bounded in terms of H1(g), such that Γ ∩ g−1Γg

contains the principal congruence subgroup Γ(n) (defined with respect to ρ). Then
Γ(n) ∩ Γ1 is a principal congruence subgroup in H1(Q) (with respect to ρ|H1).
Applying Proposition 5.1 to H1, we can choose γ′1 ∈ Γ1 such that H1(γ′1) ≤ C18n

C19

and γ1γ
′−1
1 ∈ Γ(n) ∩ Γ1.

To conclude, let
γ = γ′gγ1γ

′−1
1 g−1.

Because γ1γ
′−1
1 ∈ Γ(n) ⊂ g−1Γg, we have gγ1γ

′−1
1 g−1 ∈ Γ and hence γ ∈ Γ.

Since Γ1 stabilises X+
1 and acts trivially on X+

2 , we have
z ∈ γ′.Y = γ′g(X+

1 × {x2}) = γ′gγ1γ
′−1
1 (X+

1 × {x2}) = γY.

Finally, the height of γ′gγ1 is polynomially bounded in terms of N(π(Y )) by (3).
By definition, H1(γ′1) (and hence also H1(γ′−1

1 )) is polynomially bounded in terms
of n and hence in terms of H1(g). By Lemma 6.1, H1(g) (and hence also H1(g−1))
is polynomially bounded in terms of N(π(Y )). Combining these facts yields the
bound for the height of γ. �

At last we are ready to prove the following special case of [DR18, Conjecture 12.2]
(modified for our definition of complexity).
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Proposition 6.3. Let (G, X+), S, ρ, (H, X+
H,H1,H2), F , F1 and F2 be as in

Lemma 6.1.
Then there exist constants d, C30 and C31 such that, if Y is a pre-special sub-

variety in the Hecke–facteur family associated with (H, X+
H,H1,H2) satisfying

Y ∩ F 6= ∅, then there exists g ∈ G(Q)+ and a (pre-special) point x ∈ X+ such
that Y = gH1(R)+g−1x and

Hd(g, x) ≤ C30 ∆(π(Y ))C31 .

Proof. As explained in [DO16, section 1.2], there is a constant d depending only on
(G, X+) such that the pre-special point x is defined over a number field of degree
at most d. Because g ∈ G(Q)+, the height Hd(g, x) is finite for this value of d. If
(G, X+) = (GSp2g,Hg), and ρ is the inclusion GSp2g ↪→ GL2g, then the theory
of complex multiplication of abelian varieties tells us that we can take d = 2g (in
particular, in the E×CM case, we can take d = 4).

Write Y = Yg,x2 as in Lemma 6.1.
Let x′ ∈ Y denote a pre-special point such that π(x′) has minimal complexity

in π(Y ). Then we may choose γ′ ∈ Γ such that γ′x′ ∈ F . By [DO16, Theorems
1.1 and 4.1], the height Hd(γ′x′) is polynomially bounded in terms of ∆(π(x′)) ≤
∆(π(Y )).

Since γ′x′ ∈ F ∩ ΓY , by Proposition 6.2, there exists γ ∈ Γ with height polyno-
mially bounded in terms of N(π(Y )) ≤ ∆(π(Y )), such that

γ′x′ ∈ γY.
Therefore, x = γ−1γ′x′ has height polynomially bounded in terms of ∆(π(Y )).
Meanwhile x ∈ Y and so

Y = gH1(R)+g−1x.

This concludes the proof. �

7. Proof of Theorems 1.2 and 1.6

Theorem 1.2 is a special case of Theorem 1.6. The proof of Theorem 1.6 follows
the same lines as that of [DR18, Theorem 14.2]. However, Theorem 1.6 is not
directly a corollary of [DR18, Theorem 14.2] for three reasons:

(1) we have used a different definition of complexity;
(2) [DR18, Theorem 14.2] requires [DR18, Conjectures 11.1 and 12.2] to hold for

all optimal points in V , while we have proved versions of these conjectures
only for points in the E×CM Hecke–facteur family;

(3) the proof of [DR18, Theorem 14.2] uses the property that ∆(Z) = ∆(σ(Z)),
which holds for the definition of complexity used in [DR18] (see [Orr19,
Theorem 1.3]) but not for our definition.

We will, therefore, outline the modifications to the proof of [DR18, Theorem 14.2]
required in order to obtain Theorem 1.6. For the convenience of the reader, we
recall the statement of Theorem 1.6 here.
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Theorem. (Theorem 1.6) Let (G, X+) be a Shimura datum component and let
S = Γ\X+ be an associated Shimura variety component. Let V be an irreducible
algebraic curve in S not contained in any proper special subvariety.

Let (H, X+
H,H1,H2) be a facteur datum in (G, X+) and let F be the associated

Hecke–facteur family of special subvarieties of S. Suppose that, for any subvariety
Z ∈ F, we have

dim(Z) ≤ dim(S)− 2.
Let Σ be the set of points s ∈ S for which the smallest special subvariety containing
s is a member of F.

Assume that S, F, V and Σ satisfy Conjecture 1.7.
Then V ∩ Σ is finite.

Proof. Fix a faithful representation G→ GLm,Q (which we use to define heights
and complexities). Because we only consider points whose special closure is a
member of the Hecke–facteur family F, the set Ω used in the proof of [DR18,
Theorem 14.2] can be replaced by the one-element set {H1}. Let F be a fixed
fundamental set as in Lemma 2.3. The constants d, cF and δF should be replaced
by those afforded to us by Proposition 6.3 and the constants cG and δG should be
replaced by those afforded to us by Conjecture 1.7. As in [DR18], L is a finitely
generated field of definition for V . We can and do assume that L contains the
field F afforded to us by Proposition 4.3.

Consider a point P ∈ V ∩Σ, and let Z denote the smallest special subvariety of
S containing P . By hypothesis, Z is a member of F. For each σ ∈ Aut(C/L), let

zσ ∈ V ∩ π−1(σ(P )) ⊂ X+,

where V := π−1(V ) ∩ F . Let Yσ denote the smallest pre-special subvariety of X+

containing zσ. Then, by Remark 7.1, π(Yσ) = σ(Z), and so, by Proposition 4.3,
π(Yσ) belongs to F, for all σ ∈ Aut(C/L).

By Proposition 6.3 (which replaces [DR18, Conjecture 12.2]),

Yσ = gσH1(R)+g−1
σ xσ,

for gσ ∈ G(Q)+ and xσ ∈ X+ with d-height polynomially bounded in terms of
∆(π(Yσ)) = ∆(σ(Z)). By Conjecture 1.7 (which replaces [DR18, Conjecture 11.1]),
∆(σ(Z)) is bounded above by a polynomial in

A := # Aut(C/L) · σ(P ) = # Aut(C/L) · P.

Thus, the set Σ used in the proof of [DR18, Theorem 14.2] (which is not the set Σ
used above) consists of tuples (gσ, xσ, zσ) which satisfyHd(gσ, xσ) ≤ C32A

C33 . Since
#π2(Σ) = A (where π2 projects on to the last co-ordinate), this is sufficient to apply
the counting theorem [DR18, Theorem 9.1] (a variant of [HP16, Corollary 7.2]).
The rest of the proof proceeds identically to that of [DR18, Theorem 14.2]. We
just make two remarks regarding the arguments appearing on p.1879 of [DR18]:
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(1) the equality dim(Y1) = dim〈P0〉 at line 20 is true, by Remark 7.1. In fact
we need only the easier inequality dim(Y1) ≤ dim(X) − 2, which holds
because Y1 is a symmetric space for F (R)+ and so has the same dimension
as any member of F;

(2) the equality π2(F ) = G2 at line –5 is not difficult to prove, but is non-trivial.
We conclude that A is bounded, so ∆(Z) is bounded. This implies the theorem. �

Remark 7.1. The arguments of [DR18] rely on the assertion appearing in that
article (before Conjecture 11.1) that, for any σ ∈ Aut(C/ES) and any special
subvariety Z of S, the subvariety σ(Z) of S is special and ∆(σ(Z)) = ∆(Z) (for
the definition of ∆ used in [DR18]). These assertions are true, though not proved
in [DR18]. They are possibly known to the experts but, to our knowledge, the first
proofs can be found in [Orr19].
Remark 7.2. Note that we removed the need for the equality ∆(σ(Z)) = ∆(Z),
used in [DR18, Theorem 14.2], or even any comparison between complexities of
σ(Z) and Z, by comparing Hd(gσ, xσ) directly with # Aut(C/L) · σ(P ), which is
trivially equal to # Aut(C/L) · P .

8. André’s height bound

The key step in our proof of a special case of the large Galois orbits conjecture,
as required for Theorem 1.1, is a generalisation of a height bound due to André
for fibres with large endomorphism rings in an abelian scheme over a curve with a
point of purely multiplicative reduction. This height bound is stated and proved in
[And89, Ch. X] for abelian schemes of odd relative dimension g. We want to apply
it for g = 2, so we need a generalisation of the theorem. It turns out that we can
replace the condition that g is odd by the condition that the generic endomorphism
algebra of the abelian scheme is a totally real field of odd degree.

The theorem is a height bound for fibres of the abelian scheme whose endomor-
phism algebra is large in the following sense.
Definition. An abelian variety A of dimension g is exceptional if there is no
injection from End(A) to Mg(Q).
Theorem 8.1. Let V ′ be a smooth connected (not necessarily proper) curve over
a number field K. Let s0 be a closed point in V ′ and let V = V ′ \ {s0}. Let η̄ be a
geometric generic point of V . Let h denote a Weil height on V ′.

Let A→ V be an abelian scheme with purely multiplicative reduction at s0 (that
is, if A′ → V ′ is the connected Néron model of A over V ′ then the fibre A′s0 is a
torus). Let g be the relative dimension of A→ V .

Assume that:
(i) g > 1.
(ii) End(Aη̄)⊗Q is a totally real field E.
(iii) [E : Q] is odd.
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(iv) The generic Mumford–Tate group of A is Gm,Q.ResE/Q Sp2n,E, where n =
g/[E : Q].

Then there exist constants C34 and C35 such that, for every point s ∈ V (Q), if
As is exceptional then

h(s) ≤ C34 [K(s) : K]C35 .

Remark 8.2. Theorem 8.1 can be found at [And89, Ch. X, Theorem 1.3] with
conditions (ii)–(iv) replaced by: g is odd and Aη̄ is simple. These conditions,
together with the multiplicative reduction condition, imply (ii)–(iv): (ii) is [And89,
Ch. X, Lemma 2.2]; (iii) holds because the degree of a totally real field acting
on a simple abelian variety A must divide dim(A) [Mum74, Ch. IV, §20, p. 191,
Corollary]; (iv) is [And89, Ch. X, 3.3 Sublemma]. On the other hand, when g is
even, simplicity of Aη̄ is not sufficient to imply conditions (ii)–(iv). When g = 2,
condition (iv) is automatic because of the classification in section 2.F. However,
when g = 4, condition (iv) is famously not automatic, as first observed by Mumford.
Remark 8.3. Theorem 8.1 is certainly not as general as possible. In particular,
condition (iii) can be relaxed. For example, Masser has recently obtained a similar
theorem for abelian schemes whose generic fibre is a principally polarised, simple
abelian surface with real multiplication [Mas].
Remark 8.4. Observe that, if the abelian scheme A→ V is principally polarised
and the image of the associated map V → Ag is Hodge generic, then End(Aη̄) = Z
and conditions (ii)–(iv) are satisfied.
Remark 8.5. For g = 2, abelian surfaces of E×CM type are exceptional with
respect toQ: their endomorphism algebra isQ×F , F1×F2 or M2(F ) where F, F1, F2
are imaginary quadratic fields. Each of these algebras contains a commutative
subalgebra of dimension at least 3 over Q, so they do not embed into M2(Q).
Abelian surfaces whose endomorphism algebra is a non-split quaternion algebra
over Q are also exceptional. However abelian surfaces isogenous to the square of a
non-CM elliptic curve are not exceptional (their endomorphism algebra is M2(Q)).
Remark 8.6. We can replace the “multiplicative reduction” condition in Theo-
rem 8.1 by the condition: there exists a semiabelian scheme A′ → V ′ such that
A′|V
∼= A and As0 is a torus. This is because [BLR90, Ch. 7, Prop. 3] tells us that,

if A′ is a semiabelian scheme whose generic fibre is an abelian variety, then A′ is
its own connected Néron model.

Before explaining how to modify the proof of [And89, Ch. X, Theorem 1.3]
to obtain Theorem 8.1, we prove the properties of endomorphism algebras of
exceptional abelian varieties which we will use.
Lemma 8.7. Let D be a quaternion algebra over a totally real field E. (We allow
D to be split.) Let † be a positive involution of the Q-algebra D. Then there exists
α ∈ D× such that α† = −α and E(α) is a CM field.
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Proof. First suppose that D is non-split over E.
A positive involution must act trivially on the totally real field E, so † is E-

linear. Since it is an involution, it is diagonalisable with eigenvalues ±1. A positive
involution always acts non-trivially on a quaternion algebra, so we deduce that

{α ∈ D : α† = −α}
is a non-zero E-linear subspace of D.

Choose any non-zero element α of this subspace. The subalgebra E(α) ⊂ D is a
field because D is a division algebra. Because α† = −α, † restricts to a non-trivial
involution of the field E(α). This restriction remains a positive involution, and it
is well-known that any field with a non-trivial positive involution is a CM field.

Now consider the case where D is split. We may choose an isomorphism D →
M2(E) under which † becomes either (a) matrix transposition or (b) the involution
A 7→ (detA)A−1. In either case, α =

(
0 1
−1 0

)
satisfies α† = −α. Since α2 = −1, the

algebra E(α) ⊂ D is an extension of the totally real field E obtained by adjoining
a square root of a totally negative element of E. Thus E(α) is a CM field. �

Lemma 8.8. Let A be an abelian variety of dimension g. Let Ê be a maximal
commutative subalgebra of End(A)⊗Q. If A is exceptional, then Ê is not a field
of odd degree over Q.

Proof. Assume for contradiction that Ê is a field of odd degree. Since End(A)⊗Q
contains a maximal commutative subalgebra which is a field, End(A) ⊗ Q must
be a simple algebra so it is isomorphic to Mr(D) for some division algebra D and
positive integer r.

We split into cases depending on the type of D in the Albert classification.
If D has type I (a totally real field), then [Ê : Q] = r[D : Q]. But [Ê : Q]

divides g. Hence, Mr(D) injects into Mg(Q), contradicting the exceptionality of A.
If D has type II or III (a quaternion algebra) or type IV (a division algebra

whose centre is a CM field), then any maximal commutative subalgebra of Mr(D)
has even degree over Q, contradicting our hypothesis. �

Lemma 8.9. Let E be a totally real field of odd degree. Let A be a polarised
abelian variety of dimension g, equipped with an embedding E → End(A) ⊗ Q
whose image is stabilised by the Rosati involution. If A is exceptional and the
degree of a maximal commutative subalgebra of End(A)⊗Q is 2[E : Q], then there
exists a maximal commutative subalgebra of End(A) ⊗ Q which contains E, is a
CM field, and is stabilised by the Rosati involution.

Proof. First we show that A is isotypic. Suppose not. Then End(A) ⊗ Q is not
simple, so its maximal commutative subalgebras are never fields. Since A has a
maximal commutative subalgebra of degree 2 over E, it must have E × E as a
maximal commutative subalgebra. Therefore, A is isogenous to a product A1×A2,
where End(A1) ⊗ Q and End(A2) ⊗ Q both have E as a maximal commutative
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subalgebra. By Lemma 8.8, A1 and A2 are not exceptional. In other words,
End(A1) ⊗ Q injects into Mg1(Q) and End(A2) ⊗ Q injects into Mg2(Q), where
gi = dim(Ai). Since End(A) ⊗ Q ∼= (End(A1) ⊗ Q) × (End(A2) ⊗ Q), we deduce
that End(A)⊗Q injects into Mg1+g2(Q). This contradicts the exceptionality of A.

Thus A is isotypic. Let Z denote the centraliser of E in End(A) ⊗ Q. Since
E is commutative, E ⊂ Z and so by the double centraliser theorem, E is the
centre of Z. Any maximal commutative subalgebra of End(A)⊗Q containing E is
also a maximal commutative subalgebra of Z; since such a maximal commutative
subalgebra has degree 2 over E, we deduce that Z is a quaternion algebra over E
(perhaps a split quaternion algebra).

Let † denote the Rosati involution on End(A)⊗Q. Since † stabilises E, it also
stabilises its centraliser Z. Applying Lemma 8.7, we get α ∈ Z× such that α† = −α
and E(α) is a CM field. Now [E(α) : Q] = 2[E : Q] is a maximal commutative
subalgebra of End(A) ⊗ Q. Furthermore the fact that α† = −α implies that †
stabilises E(α). Thus E(α) is the desired maximal commutative subalgebra. �

We now describe the modifications to the proof of [And89, Ch. X, Theorem 1.3]
required to obtain the more general Theorem 8.1.

Proof of Theorem 8.1. As mentioned above, conditions (ii) and (iv) in Theorem 8.1
are precisely the conclusions of [And89, Ch. X, Lemma 2.2 and Sublemma 3.3].
Other than in these lemmas, the only place where [And89] uses the oddness of g is
in Construction 2.4.1, so this is the only part of the proof which we need to modify.

First we recall some of the notation from [And89, Ch. X]. Let s be a point in
V (Q) such that As is exceptional. Let E = End(Aη̄) ⊗ Q (we are assuming that
this is a totally real field of odd degree) and let Ê denote a maximal commutative
subalgebra of End(As)⊗Q which contains E. Let n = g/[E : Q].

Let f : A → V denote the structure map of our abelian scheme. Let F be the
Galois closure of E and let F̂ be the compositum of the Galois closures of the
simple factors of Ê. Then the local system of F -vector spaces R1f

an
C,∗(F ) splits as a

direct sum ⊕
σ : E→CWσ, where E acts on Wσ via σ. For each σ, Wσ has F -rank 2n.

Similarly H1(As(C), F̂ ) splits as a direct sum ⊕
σ̂ : Ê→C Ŵσ̂. These splittings are

compatible in the sense that

(Wσ)s ⊗F F̂ =
⊕
σ̂|σ

Ŵσ̂.

Replacing K by a finite extension and V by a Zariski open subset of an étale
cover, we may assume that F ⊂ K, End(Aη) = End(Aη̄) (where η denotes the
generic point of V as a K-variety) and the OV -module H1

DR(A/V ) is free. Let K̂
denote the compositum K(s)F̂ .
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Similarly to the above, we get splittings

H0(V,H1
DR(A/V ))⊗O(V ) K(V ) =

⊕
σ : E→K(V )

W σ
DR,

H1
DR(As/K̂) =

⊕
σ̂ : Ê→K̂

Ŵ σ̂
DR.

Choose a polarisation of the abelian scheme A→ V . Thanks to the isomorphism

R2f an
C,∗(Q(1)) ∼= Hom

(∧2
R1f

an
C,∗(Z),Q(1)

)
,

this polarisation gives rise to a symplectic form 2πi〈, 〉Q on R1f
an
C,∗(Q) with values

in Q(1). Because E is totally real, this form (after extension of scalars to F ) is a
sum of symplectic forms on the components Wσ which we denote by

2πi〈, 〉σ : Wσ ×Wσ → F (1).

Let ∆ be the image of a holomorphic embedding of the unit disc in V ′(C)
mapping 0 to s0, let ∆∗ = ∆ \ {s0} and let U be a simply connected dense open
subset of ∆∗. Note that we can cover V (C) by finitely many such sets U , so we
may assume that our exceptional point s is in U .

Let W 1
σ denote the maximal constant subsystem of Wσ|∆∗ . As a consequence of

the multiplicative reduction condition at s0, W 1
σ is totally isotropic with respect

to 〈, 〉σ and has F -rank n [And89, Ch. X, Lemma 2.3].
Choose bases γτ,1, . . . , γτ,n for W 1

τ and ωσ,1, . . . , ωσ,2n for W σ
DR. The “locally

invariant periods” of A/V are the meromorphic functions on ∆∗ defined by

t 7→
∫
γτ,j(t)

ωσ,i(t)

(for σ : E → K(V ), τ : E → C, 1 ≤ i ≤ 2n, 1 ≤ j ≤ n). These are the G-functions
which lie at the heart of the proof of Theorem 8.1.

We now define symplectic forms 〈, 〉σDR : W σ
DR×W σ

DR → K̂ which are dual to the
forms 2πi〈, 〉σ in a sense which we will make precise below.

Let ξ denote the class in H2
DR(Aη/K(V )) induced by our chosen polarisation

of A. Since dimK(V ) H
2g
DR(Aη/K(V )) = 1 and ξg 6= 0, the following formula defines

a symplectic form 〈, 〉DR on H1
DR(Aη/K(V )) with values in K(V ):

α ∪ β ∪ ξg−1 = 1
g
〈α, β〉DR ξg ∈ H2g

DR(Aη/K(V )).

LetM(U) denote the field of meromorphic functions on U . Write R1f∗(Q(1))⊗Q
M(U) as short hand for H0(U,R1f

an
C,∗(Q(1)))⊗QM(U). The local system Wσ|U is

trivial because U is simply connected, so the pairing (γ, ω) 7→
∫
γ ω (in each fibre

of A|U → U) induces an isomorphism

R1f∗(Q(1))⊗QM(U)→ (H1
DR(Aη/K(V ))⊗K(V )M(U))∨. (4)
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Under this isomorphism, the symplectic form 2πi〈, 〉Q ∈
∧2(R1f∗(Q(1))⊗QM(U))∨

corresponds to ξ ∈ H2
DR(Aη/K(V )) = ∧2H1

DR(Aη/K(V )). A calculation shows
that, if e1, . . . , e2g is a symplectic basis for R1f

an
C,∗(Q(1))|U with respect to 2πi〈, 〉Q

and e∨1 , . . . , e∨2g is the corresponding dual basis for H1
DR(Aη/K(V )) ⊗K(V )M(U),

then e∨1 , . . . , e∨2g is a symplectic basis with respect to 〈, 〉DR.
Since 2πi〈, 〉Q is the orthogonal sum of symplectic forms on Wσ and the iso-

morphism (4) is compatible with the actions of E, we deduce that 〈, 〉DR is the
orthogonal sum of symplectic forms

〈, 〉σDR : W σ
DR ×W σ

DR → K̂.

The notational set-up is complete. We now explain the modifications of [And89,
Ch. X, Construction 2.4.1] needed to obtain non-trivial global relations between the
values of the locally invariant periods at a point s ∈ V (Q) where As is exceptional.

The initial remarks of [And89, Ch. X, Construction 2.4.1] show that Ê 6= E. The
argument in [And89] relies on g being odd, but we can replace this by Lemma 8.8.

If [Ê : E] ≥ 3, then we are in Case 1 of [And89, Ch. X, Construction 2.4.1]: for
each σ : E → C there are at least three τ̂ : Ê → C extending σ. Hence at least
one of these τ̂ must satisfy dimF̂ (Ŵτ̂ ) < 1

2 dimF ((Wσ)s). The proof for Case 1 in
[And89] does not use the oddness of g, so it works without change.

If [Ê : E] = 2, then we may choose Ê according to Lemma 8.9. For σ : E → C,
let σ̂1 and σ̂2 denote the two homomorphisms Ê → C extending σ. An element of
Aut(C) which exchanges σ̂1 and σ̂2 will exchange Ŵσ̂1 and Ŵσ̂2 so

dimF̂ (Ŵσ̂1) = dimF̂ (Ŵσ̂2) = 1
2 dimF ((Wσ)s).

Thus we are in either Case 2 or Case 3 of [And89, Ch. X, Construction 2.4.1].
Case 2 occurs when Ŵσ̂2 ∩

(
(W 1

σ )s ⊗F F̂
)
6= 0. Again the proof in [And89] does

not use the oddness of g, so no change is required.
Finally we consider Case 3, where Ŵσ̂2 ∩

(
(W 1

σ )s ⊗F F̂
)

= 0. In the setting
of [And89], the oddness of g implies that Ê is a CM field. In our more general
setting, it might not be true that every choice of maximal commutative subalgebra
Ê ⊂ End(As) ⊗ Q containing E is a CM field, but Lemma 8.9 ensures that it is
possible to choose an Ê which is a CM field.

The fact that Ê is a CM field stabilised by the Rosati involution is crucial for the
construction of period relations. Indeed, the Rosati involution restricts to complex
conjugation on Ê and so Ŵσ̂2 is isotropic with respect to 〈, 〉σ. This ensures that
we can choose a basis γσ,n+1, . . . , γσ,2n for Ŵσ̂2 which, when combined with the
previously chosen basis γσ,1(s), . . . , γσ,n(s) for (W 1

σ )s, forms a symplectic basis for
(Wσ)s ⊗F F̂ . Similarly, the fact that Ê is a CM field stabilised by the Rosati
involution implies that we can choose a symplectic basis ω̂σ,1, . . . , ω̂σ,2n for W σ

DR in
such a way that ω̂σ,1(s), . . . , ω̂σ,n(s) ∈ Ŵ σ̂1

DR and ω̂σ,n+1(s), . . . , ω̂σ,2n(s) ∈ Ŵ σ̂2
DR.
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Because these bases for (Wσ)s ⊗F F̂ and W σ
DR are symplectic, the resulting

period matrix satisfies the Riemann relations [And89, Ch. X, (2.3.1)–(2.3.3)]. The
remainder of [And89, Ch. X, Construction 2.4.1, Case 3], using these relations to
obtain a quadratic relation between locally invariant periods at s, does not use the
oddness of g so we can reuse it without change. �

9. Galois orbits

In this section we prove special cases of our Galois orbits conjecture and deduce
Theorems 1.1 and 1.4. The proof of Theorem 1.4 combines Theorem 8.1 with the
Masser–Wüstholz isogeny theorem and a refinement of the Brauer–Siegel theorem.
To deduce Theorem 1.1 from Theorem 1.4, we use a toroidal compactification of
Ag to construct a semiabelian scheme to which we can apply Theorem 1.4. We also
show that the two formulations of the Galois orbits conjecture, Conjectures 1.3
and 1.5 are equivalent.

Given an abelian surface scheme A→ V , recall that we defined N(s) and ∆′(s)
for E×CM points s ∈ V in Remark 3.3.

Proposition 9.1. Conjectures 1.3 and 1.5 are equivalent.

Proof. Firstly let A→ V be an abelian scheme as in Conjecture 1.5, defined over a
finitely generated field L ⊂ C. This abelian scheme induces a morphism of varieties
q : V → A2, also defined over L. Since A → V is not isotrivial, the image q(V )
is still a curve. Since End(Aη) = Z, q(V ) is not contained in any proper special
subvariety of A2 (see section 2.F). A point s ∈ V is an E×CM point if and only if
q(s) ∈ Σ. Hence we can apply Conjecture 1.3 to the Zariski closure of q(V ) in A2,
obtaining a bound

# Aut(C/L) · q(s) ≥ C36∆(Z)C37

for all E×CM points s ∈ V , where Z is the unique E×CM curve containing q(s).
Using Lemma 3.6 and the fact that # Aut(C/L) ·s ≥ # Aut(C/L) ·q(s), we deduce
that Conjecture 1.3 holds.

Conversely, let V ⊂ A2 be an algebraic curve as in Conjecture 1.3, defined over a
finitely generated field L ⊂ C. Let Ṽ be an irreducible component of the preimage
of V in A2,3. This is defined over a finite extension L̃ of L. The universal abelian
scheme over A2,3 restricts to an abelian scheme Ã→ Ṽ . Since V is not contained
in any special subvariety of A2, End(Ãη) = Z. If s ∈ V ∩ Σ, then we can find an
E×CM point s̃ ∈ Ṽ such that q(s̃) = s. Thanks to Conjecture 1.5, this satisfies

# Aut(C/L̃) · s̃ ≥ C38∆′(s̃)C39 .

Because q is a finite morphism,
# Aut(C/L) · s ≥ C40 # Aut(C/L̃) · s̃.

We can therefore use Lemma 3.6 to complete the proof of Conjecture 1.5. �
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As a first step towards the proof of Conjecture 1.5 under the conditions of
Theorem 1.4, we prove a Galois bound relative to N(s). We then combine this
with a lower bound for class numbers of imaginary quadratic fields.

Proposition 9.2. Let V be an irreducible algebraic curve over Q and let A→ V
be a principally polarised non-isotrivial abelian scheme of relative dimension 2.
Suppose that End(Aη) = Z, where η denotes a geometric generic point of V .

Suppose also that there exist a curve V ′, a semiabelian scheme A′ → V ′ and an
open immersion ι : V → V ′ (all defined over Q) such that A ∼= ι∗A′ and there is
some point s0 ∈ V ′(Q) for which the fibre A′s0 is a torus.

Let L be a number field over which V and A→ V are defined.
Then there exist positive constants C41 and C42 such that, for every E× CM

point s ∈ V ,
[L(s) : L] ≥ C41N(s)C42 .

Proof. After a finite extension of L, we may assume that V ′, A′ → V ′, ι : V → V ′

and s0 are all defined over L.
Because End(Aη) = Z and dim(Aη) = 2, the Mumford–Tate group of Aη is

GSp4,Q (see section 2.F). Thus A→ V satisfies the conditions of Theorem 8.1, as
modified in Remark 8.6.

Let s be an E×CM point in V . The image of s under the map V → A2 induced
by A→ V is in the intersection between the image of V and a special curve. Since
the image of V is a curve defined over a number field, we deduce that s ∈ V (Q).

Now End(As)⊗Q contains Q×F where F is an imaginary quadratic field. This
is a commutative Q-algebra of degree 3, so cannot inject into M2(Q). Hence As is
an exceptional abelian surface in the sense of Theorem 8.1.

Therefore by Theorem 8.1, h(s) is polynomially bounded in terms of [L(s) : L],
where h denotes a Weil height on V ′. Let hF denote the stable Faltings height. As
proved in [Fal83, p. 356],

|hF (As)− h(s)| = O(log h(s)).
We conclude that hF (As) is polynomially bounded in terms of [L(s) : L].

By Lemma 3.1, there exist elliptic curves E1 and E2 and a polarised isogeny
E1 × E2 → As of degree N(s), and N(s) is the minimum degree of any polarised
isogeny E1×E2 → As. Thanks to Lemma 2.1, N(s) is the minimum degree of any
isogeny E1 × E2 → As (polarised or not). By Lemma 3.2, E1 and E2 are the only
pair of elliptic curves whose product possesses an isogeny to As of degree N(s).
Therefore, for every σ ∈ Aut(C/L(s)), Eσ

1
∼= E1 and Eσ

2
∼= E2 (E2 has CM and

E1 does not, so σ cannot swap them). Since elliptic curves are defined over their
fields of moduli, we conclude that E1 and E2 are both defined over L(s).

Therefore by the Masser–Wüstholz isogeny theorem [MW93], there exists an
isogeny E1 × E2 → As of degree at most

C43 max(hF (As), [L(s) : L])C44 .
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We conclude that N(s) also satisfies this bound. Combining this with the fact that
hF (As) is polynomially bounded in terms of [L(s) : L] completes the proof. �

Proposition 9.3. Let A → V be an abelian scheme satisfying the conditions of
Proposition 9.2 (including the multiplicative reduction condition).

Then Conjecture 1.5 holds for A→ V .

Proof. Let L be a number field over which V and A→ V are defined. Let s ∈ V
be an E×CM point. By Lemma 3.1, there exist elliptic curves E1 and E2 and an
isogeny E1 × E2 → As of degree N(s), where E2 has CM and E1 does not. Then

∆′(s) = max{N(s), |disc(End(E2))|}.
According to the argument from the proof of Proposition 9.2, E1 and E2 are
defined over L(s). Therefore by [Len87, Proposition (1.8)] (refining the Brauer–
Siegel theorem), |disc(End(E2))| is polynomially bounded in terms of [L(s) : L].
Meanwhile Proposition 9.2 tells us that N(s) is polynomially bounded in terms of
[L(s) : L]. �

Proof of Theorem 1.4. Let A→ V be an abelian scheme satisfying the conditions
of Theorem 1.4. This abelian scheme induces a morphism of varieties q : V → A2,
also defined over L. This morphism has finite fibres because V is a curve and A→ V
is non-isotrivial. Since End(Aη) = Z, the image of V in A2 is not contained in a
proper special subvariety (see section 2.F).

Hence Theorem 1.2 applies to the Zariski closure of the image of V in A2.
Combining this with Proposition 9.3, we deduce that the image of V has finite
intersection with Σ. We conclude because a point in V is an E×CM point if and
only if its image lies in Σ. �

If V is a curve satisfying the condition of Theorem 1.1 involving the Baily–Borel
compactification, the following proposition allows us to construct an abelian scheme
over a finite cover of V which satisfies the multiplicative reduction condition of
Proposition 9.3, enabling us to deduce Theorem 1.1 from Proposition 9.3.

Proposition 9.4. Let V ⊂ Ag be an irreducible algebraic curve such that the
Zariski closure of V in the Baily–Borel compactification of Ag intersects the zero-
dimensional stratum of the compactification. Then there exists a smooth projective
curve Ṽ ′, an open subset Ṽ ⊂ Ṽ ′, a point s0 ∈ Ṽ ′ \ Ṽ , a finite surjective morphism
q : Ṽ → V and a semiabelian scheme A′ → Ṽ ′ such that A′|Ṽ is an abelian scheme,
the map to the coarse moduli space associated with A′|Ṽ → Ṽ is the composition
Ṽ

q−→ V ↪→ Ag, and the fibre A′s0 is a torus.

Proof. Let A∗g be the Baily–Borel compactification of Ag. Let V ∗ be the closure of
V in A∗g. Recall that A∗g has a stratification

A∗g = Ag t Ag−1 t · · · t A1 t A0.
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By hypothesis, V ∗ intersects the stratum A0. This stratum is just a closed point,
which we shall call s∗.

Let Ag,3 denote the moduli space of principally polarised abelian varieties with
full symplectic level-3 structure. Let Ag and Ag,3 denote toroidal compactifications
of Ag and Ag,3 respectively, as defined in [FC90, Ch. IV, secs. 5 and 6]. We
construct these toroidal compactifications with respect to some projective smooth
admissible cone decomposition for Zg (see [FC90, Ch. V, Definition 5.1] and re-
mark (c) following that definition). Then Ag is a proper algebraic stack [FC90,
Ch. IV, Theorem 5.7] and Ag,3 is a projective algebraic variety [FC90, Ch. V,
sec. 5]. Note that [FC90] constructs Ag as a stack over Z and Ag,3 as a scheme
over Z[ζ3, 1/3], but we require them only over Q and Q(ζ3) respectively.

We have the following commutative diagram of morphisms of stacks over Q(ζ3):

Ag,3 //

��

Ag,3
p

��

Ag // Ag
π
// A∗g

The composition π ◦ p : Ag,3 → A∗g is a morphism of stacks between varieties, and
consequently it is a morphism of varieties.

Let V3 be an irreducible component of the preimage of V in Ag,3 which surjects
onto V . Let V3 be the Zariski closure of V3 in Ag,3. This is a projective variety
and hence π ◦ p(V3) is a closed subset of A∗g. Furthermore, π ◦ p restricts to the
natural map Ag,3 → Ag and hence π ◦ p(V3) = V . Therefore s∗ ∈ π ◦ p(V3). Hence
we can choose a closed point s3 ∈ V3 such that π ◦ p(s3) = s∗.

By [FC90, Ch. IV, Theorem 5.7 (3)], there is a semiabelian scheme G over
the stack Ag which extends the universal abelian scheme over Ag (considered as
an algebraic stack). We can pull this back to a semiabelian scheme G3 → Ag,3.
Define a stratification on Ag by the dimensions of the abelian part of the fibres
of G. According to [FC90, Ch. V, Theorem 2.3 (5)], π is compatible with the
stratifications of Ag and A∗g. It follows that G3,s3 is a torus.

To finish the proof, let Ṽ ′ be the normalisation of V3, let Ṽ be the preimage of V3
in Ṽ ′, let s0 be a preimage of s3 in Ṽ ′ and let A′ be the pullback of G3 to Ṽ ′. �

Proposition 9.5. Let V ⊂ A2 be an algebraic curve satisfying the conditions of
Theorem 1.1. Then Conjecture 1.3 holds for V .
Proof. Let L be a number field over which V is defined. We can construct Ṽ ′,
q : Ṽ → V , s0 ∈ Ṽ ′ and A′ as in Proposition 9.4. We can find a finite extension
L̃/L such that Ṽ ′, q : Ṽ → V , s0 and A′ → Ṽ ′ are all defined over L̃. The abelian
scheme A′|Ṽ → Ṽ and the point s0 ∈ Ṽ ′(Q) satisfy the conditions of Proposition 9.3.
We can therefore complete the proof using Propositions 9.1 and 9.3. �

Combining Theorem 1.2 and Proposition 9.5 proves Theorem 1.1.
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