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The vortex force map (VFM) method is a promising low-cost technique for predicting

unsteady aerodynamic load from the vorticity field. Developed under potential flow assumption

and applied to high-resolution computational fluid dynamics (CFD) data, the original VFM

method needs to be further explored for viscous flows, especially at low Reynolds numbers and

with incomplete knowledge of the flow data. In this paper the VFM method is extended to

general viscous flows, with both forces contributed from vorticity in the flow field and on the

body surface considered. We find that viscosity contributes to not only the skin friction force

but also a pressure force term. We also show that the extended vortex pressure force maps for

general flow problems without the potential flow assumption lead to vanishing contributions

from the far field. The extended VFM method is applied to CFD flow fields for the starting

flow of a cylinder and an NACA0012 airfoil, and it is used to analyze the force contribution

effect of a given vortex. Moreover, acceptable accuracy of the method on truncated domains

and under coarse sampling of typical particle image velocimetry (PIV) measurement size is

demonstrated.

Nomenclature
(Nomenclature entries should have the units identified)

ℓ� = characteristic length of the body

2� = chord length of the airfoil

0 = radius of the cylinder

G, H = coordinates in body fixed frame
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g = non-dimensional time

! = lift

� = drag

�! = lift coefficient

�� = drag coefficient

% = pressure field

d = density

` = viscosity

Ω� = the volume occupied by solid body

(� = the surface of the solid body in three dimensions

;� = the surface of the solid body in two dimensions
−→=� = the normal vector pointing inward from the body surface

Ω = the control volume (occupied by fluid)

(∞ = the outer boundary of the control volume

+∞ = free stream velocity

U = angle of attack
−→
* = velocity distribution of the flow field
−→l = vorticity distribution of the flow field
−→
� = total force acting on the body

q∗
:

= the velocity potential induced by unit incident velocity of ideal flow in the : Cℎ-direction

q: = the velocity potential induced by the translational motion of Ω� at unit speed in the : Cℎ-direction
−→
Λ : = vortex force vector

Subscripts

N = normal component

A = axial component

g = ground-fixed frame

: = index of directions

Superscripts

add = added mass force term

vp = vortex pressure force term

vis-p = viscous pressure force term

vis-f = skin friction force term
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I. Introduction
Unsteady force approaches are important in revealing the mechanisms behind a range of vortex-dominated natural

flows, including flapping wings for birds [1] and insects [2], rotating wings of seeds [3] and fish locomotion [4]. Force

approaches which relate the aerodynamic/hydrodynamic forces to flow structures (e.g. vortices) are also helpful in drag

reduction [5], thrust generation [5], high lift strategies [6] and load alleviation [7] through active or passive controls in

artificial flows.

For predicting the unsteady force acting on the body in separated flows, a detailed knowledge of the entire vorticity

field is normally required and few analytical methods are available. More success has been made with analytical-

numerical coupling methods. These include unsteady thin airfoil theory corrected by additional vortices [8–10] or the

use of the unsteady Blasius equation [11] to calculate the forces. On the other hand, accurate experimental measurements

on fluid dynamic loads in separated flows are possible with the development of high-precision experimental techniques

[8]. However such direct load measurements are not always easy to execute for flow problems at low Reynolds numbers,

as the fluid dynamic loads tend to be very small and are subject to significant measurement errors [12]. Moreover, direct

load measurements can be significantly contaminated by resonance effect. Meanwhile, obtaining fluid dynamic loads

from an integration of computed surface pressures and skin friction, the normal method used in computational fluid

dynamics (CFD), has its difficulties since resolving the entire boundary layer to an adequate resolution near the solid

surface in unsteady particle image velocimetry (PIV) data is far more difficult than in CFD simulations [12]. As a result,

volumetric pressure-free methods have seen development for the purpose of taking advantage of accurate experimental

measurements of flow fields such as PIV, and extracting the force on the body in a non-intrusive way. This also helps in

providing a better insight into the specific influence of each individual flow structure on the force.

Volumetric pressure-free methods date back to Milne-Thomson [13], who expressed the total momentum of an

incompressible flow in a domain as the moment of the hydrodynamic impulse plus a boundary integral. The method

can be classified into two main categories: vortical impulse integration [14–16] and auxiliary potential-based methods

[17, 18]. Complete [18] or incomplete [19, 20] knowledge of vorticity (or velocity) distribution is required. The impulse

approaches have seen wide use in PIV data analysis [19, 21] while the auxiliary potential-based approaches have been

underutilized, despite their great potential in unsteady flows without containing the time derivatives explicitly. Li & Wu

(2018) [22] proposed a vortex force map (VFM) method by adopting Howe’s (1995) [18] force formula for the derivation

of the vortex force vectors and the construction of the VFM. The VFM is useful to identify the force contributions from

each given vortex without knowing the flow field. However, as the derivation was based on inviscid theory, only the

pressure force term caused by vorticity in the flow field was considered, while viscous effect was neglected in their work.

Moreover, the VFMs in their works cannot reflect the fact that only near-body vorticity is more significant in its effects

on the force experienced by the body. In inviscid flow, far-away vorticity (for example, a starting vortex) has a great

impact on the force through circulation remaining on the body, sometimes represented by image vorticity within the
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body, while for real viscous flows the vorticity at infinity reflects its effect through vorticity in the boundary layer. Thus,

it will be preferable, on an intuitive and practical basis, to have a force method only involving near-body vorticity.

To overcome the above drawbacks, this work extends the VFM method of Li & Wu (2018) [22] to more general

cases, where the vortex force now consists of four parts: the added mass term; the vortex pressure force caused by free

vorticity in the flow field; the viscous pressure force and the skin friction force caused by vorticity in the boundary layer

close to the body surface. This work also presents updated vortex pressure force maps based on the vortex pressure

force factors derived from viscous governing equations, whose influence from vortices in the flow now vanish as the

distance to the body approaches infinity. These maps help us identify the force contribution role of each given vortex

more precisely than the ones presented previously. To demonstrate the application of this method, we will apply it to

impulsively started flows around a cylinder and a NACA0012 airfoil, with validation against CFD. It is intended that

this serves as an analysis of the errors of this method itself before its application to PIV data, thus the accuracy of this

approach on small domains and under coarse sampling will also be analyzed using fully converged CFD data.

In Sec. II, the extension of the original VFM approach to more general cases is presented. The way to design vortex

pressure force maps and to apply the force approach to calculate total force are also presented.

In Sec. III, vortex pressure force map analyses for a cylinder and a NACA0012 airfoil are demonstrated.

Section IV is devoted to the application of the vortex force approach to unsteady flows around a cylinder and

NACA0012 airfoil. The force results given by the extended VFM method are validated against those directly evaluated

by CFD. The analysis of different force components is given. The effect of calculation domain and sampling density on

the accuracy of the force approach are studied.

Concluding remarks are given in Sec. V.

II. Derivation of the extended VFM method
Consider viscous flows of constant density d and viscosity ` around a solid body of volumeΩ�, bounded by a closed

surface (�. In the two-dimensional case, the bounding surface (� reduces to a closed curve ;�. The control volume is

Ω bounded by (∞ at infinity. The velocity of the flow field is −→* = (D, E) in the body-fixed frame and −→*6 = (D6, E6) in

the ground-fixed frame. The velocity of the body motion is −−→*� (C). For a special case when the body is moving at a

constant velocity,*� (C) = −+∞, i.e., in the body-fixed frame, the free stream velocity +∞ is incident on the body axis at

an angle of U as shown in Fig. 1. The vorticity of the flow field is −→l . The force acting on the body is −→� , which can be

decomposed into a component �# normal to the axis and an axial component ��, or a lift component ! and a drag

component �, as shown in Fig. 1. In the case considered above, the flow in the ground-fixed frame is assumed to be

governed by the incompressible momentum equation in the Lamb-Gromyko form
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Fig. 1 A rigid body Ω�, bounded by (�, in translational outer flows with a control volume Ω bounded by (∞
at infinity.

∇
(
% + 1

2
d*2

6

)
+ d−→l × −→*6 = −d

m
−→
*6

mC
− `∇ × −→l (1)

and the incompressible continuity equation

∇ · −→*6 = 0. (2)

With −→*6 =
−→
* + −−→*�, we could rewrite the equations (1) and (2) in the body-fixed frame as

∇
(
% + 1

2
d*2

)
+ d−→l × −→* = −d m

−→
*

mC
− d m

−−→
*�

mC
− `∇ × −→l (3)

and

∇ · −→* = 0. (4)

In order to express the force as a function of the vorticity in the flow field and on the body surface, we introduce

a set of hypothetical potentials q: , as suggested by Howe (1995). Each corresponds to the velocity potential for

hypothetical fluid motion induced by the translational motion of Ω� at unit speed in the negative : Cℎ-direction. They

satisfy the Laplace equation ∇2q: = 0, and vanish at infinity. Note that these hypothetical potentials are not the classic

potential flow solution to aerofoils, as no Kutta condition is to be enforced anywhere. According to the definition of the

hypothetical potential, we have

− ∇q: · −→=� =
−→
: · −→=� = =�,: (5)

on the body surface, where −→=� is the normal vector pointing inward from the body surface and
−→
: is the unit vector in

: Cℎ-direction.
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The original VFM method expressed the force as �: = d
∬
Ω
∇q∗

:
• −→*lI3Ω [22], where q∗

:
is the hypothetical

potential defined as the velocity potential induced by unit incident velocity of ideal flow in the : Cℎ-direction, −→* is the

local velocity and lI = mE
mG
− mD
mH

is the vorticity defined in two dimensional flow with coordinates (G, H). In this original

force formula for the VFM method, the vorticity far from the body does affect the force through the non-zero vortex

force factor ∇q∗
:
at infinity, and the added mass force and the viscous effect were excluded. Although an additional

force term was added to make the force contribution of vortex far from the body to be zero, this physical fact wasn’t

reflected in the VFMs which were designed according to the vortex force factors ∇q∗
:
. To overcome the aforementioned

shortcomings, an extended VFM method will be derived in this section.

A. Normal and axial force formula for the extended VFM method

Considering a translational moving of the body with a velocity −−→*� (C), through a rigorous derivation (see Appendix

A) of the force formula directly from the viscous governing equations (1) and (2), with the introduction of the hypothetical

potentials described in equation (5), we get the expression for the body force in two dimensions,



�: = �
(033)
:

+ � (E ?)
:
+ � (E8B−?)

:
+ � (E8B− 5 )

:

�
(033)
:

=
∮
;�
q:

3
−−→
*�
3C
• −→= 3;

�
(E ?)
:

= d
∬
Ω

−→
Λ : •

−→
*lI3Ω

�
(E8B−?)
:

= `
∮
;�
lI3q:

�
(E8B− 5 )
:

= `
∮
;�
lI
−→
: • −→3;

 �
(2>AA42C8>=)
:

(6)

Note that this method can be easily extended for complex body motions (e.g.pitching airfoils) by rewriting equations

(1) and (2) in the corresponding non-inertial body-fixed frame, and defining the velocity at any point of the body surface

as −−→*� (C) + −−→l� (C) × (−→G − −→G0), where −−→l� (C) is the angular velocity of the body.

The integral in vortex pressure force term of Equation (6) is defined within the whole fluid region Ω, and the viscous

pressure and skin-friction terms along the body surface ;�. The vortex pressure force factor is expressed as

−→
Λ : =

(
mq:

mH
,−mq:

mG

)
. (7)

Here q: is the hypothetical potential defined in the beginning of this section. Equation (6) can be used to calculate the

normal force �# and the axial force �� by choosing the : Cℎ-direction as the normal (#) and axial (�) direction, and

the corresponding vortex pressure force factors
−→
Λ# and

−→
Λ � are given in expression (7). The potentials q# and q� are
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different from the definition in Li & Wu 2018 [22], which can be obtained by solving the new Laplace models below.



m2q#
mG2 + m

2q#
mH2 = 0

mq#
mH

= 1, mq#
mG

= 0 (G, H) → ;�

mq#
mH

= 0, mq#
mG

= 0 (G, H) → ∞

(8)



m2q�
mG2 + m

2q�
mH2 = 0

mq�
mH

= 0, mq�
mG

= 1 (G, H) → ;�

mq�
mH

= 0, mq�
mG

= 0 (G, H) → ∞

(9)

Note that, the second term �
(E ?)
:

in expression (6) is all that was considered in the previous paper. But here ∇q: = 0

at infinity, thus the requirement that only near-body vortices have important effects on the vortex-induced body-force is

automatically satisfied. This is in accordance with the fact that only near-body vortices are more likely to cause pressure

variation while vortices far away from the body have negligible effects on force.

The inclusion of added mass force � (033)
:

here allows us to deal with flows concerning more general body motions

in addition to impulsively started flows. The inclusion of viscous terms � (E8B−?)
:

and � (E8B− 5 )
:

faciliates its capability

for low Reynolds number viscous flows. Through this force decomposition, we find that viscosity contributes to not only

the well known skin friction force � (E8B− 5 )
:

, but also the pressure force � (E8B−?)
:

, through the vorticity diffusion on the

body surface. Or we can think of it as a correction from displacement effect of the body surface caused by viscous

boundary layer. More details will be discussed in later sections.

Another point to note is that unsteady effects are included in the force formula despite C not appearing explicitly,

as −→l and −→* are both time-dependent, which means that the temporal resolution of flow field data does not affect the

accuracy of our method.

B. Lift and drag formulas for the extended VFM method

For a specific angle-of-attack (AoA) of U, the lift and drag can be proved to have exactly the same form as expression

(6), with the : Cℎ-direction replaced by the lift (!) and the drag (�) direction, respectively. The vortex force factors for

lift and drag can be calculated by 
−→
Λ! =

−→
Λ# cosU − −→Λ � sinU

−→
Λ� =

−→
Λ# sinU + −→Λ � cosU

, (10)

and the hypothetical potential can be obtained in a similar way.
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q! = q# cosU − q� sinU

q� = q# sinU + q� cosU
(11)

C. The vortex pressure force maps and calculation of total force

Expression (6) with : Cℎ-direction chosen as the lift ((!)) and drag ((�)) direction, gives the lift and drag as a

function of the vorticity field, in which the free vorticity in the flow field contributes to the pressure force and the

vorticity in the boundary layer close to the body surface contributes to both pressure force and skin-friction force. As

will be discussed later, the dominant force component is vortex pressure force, and the vortex pressure force contains the

vortex pressure force factors defined in (10), similar to the vortex force factors in Li & Wu (2018) [22], which are a

function of position but independent of the flow field and only dependent on the body shape and the angle of attack.

Thus the vortex pressure force maps can be made in a similar way to help analyze the behaviour of fluid forces with

relation to the vortex pattern in the flow field, and to identify favorable direction and critical regions for positive and

negative force production by a given vortex. The force formula (6) here can also be used to obtain total force if the

properties of vortices (velocity and circulation) in the flow field and on the body surface are obtained by some analytical,

numerical or experimental methods.

a) vortex pressure force map analysis

Similar to the previous work of Li & Wu (2018)[22], here the vortex force map in the two-dimensional plane (G, H)

contains force lines that are locally parallel to the vortex force vector (
−→
Λ# for normal force and

−→
Λ � for axial force with

−→
Λ# and

−→
Λ � given by (7) with : Cℎ-direction chosen as the normal (#) and axial (�) direction, −→Λ! for lift force and

−→
Λ� for drag force with

−→
Λ! ,
−→
Λ� given by (10)). Vortex force lines, independent of specific flow conditions, can then be

obtained through a streamline procedure, with the velocity replaced by the vortex force factors. As a quick reminder,

the auxiliary potentials defined in this work are different from those in in Li & Wu (2018) [22], which leads to the

difference in VFMs.

Any individual vortex has a force contribution, which can be easily identified according to its circulation (sign and

magnitude), position and direction (the angle between the vortex force line and streamline at the position of the vortex).

Thus a vortex force map analysis can be used to identify direction and critical regions for positive and negative force

production of a given vortex as in Li & Wu (2018) [22].

b) Calculation of total force

The vortex force factors can be precomputed for a rigid body, the force can then be directly obtained from the vortex

force formulas once −→* and lI are computed or measured. This can be done as follows.

Given the geometry of the airfoil, we solve (8)-(9) to get q# and q�, then put these q# and q� into (7) to get the
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vortex force factors
−→
Λ# and

−→
Λ �. These factors only depend on the geometry (shape of the body) and are independent

of other flow conditions including angle of attack and Reynolds number. The flow vorticity lI and velocity −→* may be

obtained by conventional methods (discrete vortex simulation, computational fluid dynamics simulation, experimental

measurement).

The force factors
−→
Λ! and

−→
Λ! can be obtained by substituting

−→
Λ# and

−→
Λ � into (10), and the hypothetical potentials

q! and q� can be obtained by substituting q# and q� into (11). Then the three force terms of expression (6) with the

: Cℎ-direction replaced by the lift (!) and the drag (�) direction, can be used to obtain the vortex pressure force, the

viscous pressure force, and the skin-friction force, respectively.

For cylinders or simple airfoils (e.g., flat plate and Joukowsky airfoil), equations (8) and (9) have analytical solutions.

For more general shapes, q# and q� can easily be computed numerically. Their use will be demonstrated in the next

section.

III. vortex pressure force map analysis for cylinder and general airfoils
In this section, a cylinder and a NACA0012 airfoil are used to demonstrate the construction of vortex pressure force

maps and how it is used to identify the force contribution role of each given vortex according to its position, strength

and local velocity. Here we only consider lift and drag force maps, which depend on angle of attack.

A. vortex pressure lift/drag maps for a cylinder

For a circular cylinder of radius 0, the analytical solutions q# and q� for Laplace equations (8) and (9) can be

easily constructed by superposition, the results are

q# =
02H

G2 + H2 , q� =
02G

G2 + H2 . (12)

Inserting (12) for into (7) gives the vortex pressure force factors for lift

−−→
Λ# =

( (
G2 − H2) 02(
G2 + H2)2 ,

2GH02(
G2 + H2)2

)
(13)

and drag

−→
Λ� =

(
− 2GH02(
G2 + H2)2 ,

(
G2 − H2) 02(
G2 + H2)2

)
. (14)

As mentioned above, for a cylinder with U = 0>, we have

q! = q# , q� = q�,
−→
Λ! =

−−→
Λ# ,
−−→
Λ� =

−→
Λ�. (15)
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Fig. 2 vortex pressure froce maps for lift (a) and for drag (b) of a cylinder.

With the vortex pressure force factor given by (15), we can draw the vortex pressure lift/drag maps as shown in

figure 2(a-b) where the lines with arrows are vortex pressure force lines locally parallel to the vector
−→
Λ! and

−−→
Λ� , and

the lines without arrows are contours of magnitude of
−→
Λ! and

−−→
Λ� .

Figure 2(a) is the vortex pressure lift map for a cylinder with 0 = 0.1. As in Li & Wu (2018) [22], each arrowed

force line defines the most favourable direction for a counterclockwise vortex (having positive strength) to give a positive

lift or most unfavourable direction for a clockwise vortex (having negative strength) to give a negative lift. We can

see that the vortex pressure lift map is symmetrical about the H = 0 axis. This explains that a pair of counter rotating

vortices moving symmetrically downstream of a cylinder contribute zero lift.

Figure 2(b) is the vortex pressure drag map for a cylinder with 0 = 0.1. A counterclockwise vortex provides positive

drag (thrust), while a clockwise vortex provides negative drag, when it moves along or at an acute angle to the vortex

pressure drag lines. The sign of the drag changes if the moving direction is reversed. We can see that the vortex pressure

drag map is symmetrical about G = 0 axis, and anti-symmetrical about the H = 0 axis, which means that a pair of counter

rotating vortices moving symmetrically downstream of a cylinder contribute twice the drag caused by one single vortex.

B. vortex pressure lift/drag maps for a NACA0012 airfoil

For the NACA0012 airfoil, the Laplace equations (8) and (9) are solved numerically to give q# and q�. We have

used here the heat transfer option in the commercial code CFX as a solver of the present Laplace equation, which

procedure has been validated in Li & Wu (2018) [22]. The grid used here are in accordance with that used in obtaining

the flow field by computational fluid dynamics, which will be demonstrated in the next section. The vortex pressure

force factors for normal (
−−→
Λ# ) and for axial force (

−→
Λ�) are then computed by (7). With angle of attack given, put these

−−→
Λ# and

−→
Λ� into (10), we have the vortex pressure lift and drag factors

−→
Λ! and

−−→
Λ� .

Figure 3 shows the vortex pressure force maps for both lift and drag of the NACA0012 airfoil at angles of attack 20>,
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45> and 60>. They are plotted according to the method described in section 2.3. In Figure 3, the lines with arrows

are vortex pressure force lines locally parallel to the vector
−→
Λ! and

−−→
Λ� , and the lines without arrows are contours of

magnitude of
−→
Λ! and

−−→
Λ� .

We mention that the appearance of the vortex pressure force maps here is quite different from that in Li & Wu (2018)

[22], although constructed in a similar way. This is because of the difference in the definition of the vortex force factors.

In viscous flows, the circulation about the body associated with the starting vortex at infinity is not represented as an

image vortex inside the body, but as the vorticity in the boundary layer. Thus the fact that vorticity far-away from the

body has negligible effect on force should be reflected in the VFMs. As we can see from Figures 2 and 3, the magnitude

of vortex pressure force factors
���−→Λ! ��� and ���−−→Λ� ��� decrease with the distance from the body surface and vanish at infinity.

Thus, the present vortex force maps are able to describe the force contribution role of vorticity in the flow field more

precisely than the previous ones.

Figure 3(a,c,e) are for lift. An leading edge vortex (LEV) (trailing edge vortex (TEV)) provides positive (negative)

lift if it moves so as to have a component of motion opposed to the vortex pressure lift lines, and vice versa.

Figure 3(b,d,f) are for drag. An LEV (TEV) provides drag (thrust) if it moves so as to have a component of motion

opposed to the vortex pressure lift lines, and vice versa.

In both maps we can see that, the force lines diverge from the trailing edge and gather together at the leading edge,

and the angle of attack seems to have a rotating and deforming effect on force lines.

IV. Lift and drag prediction for viscous flows around an impulsively started cylinder and
NACA0012 airfoil using VFM

In this section, the extended VFM method is applied to an impulsively started flow around a cylinder and the

NACA0012 airfoil. Here, the total force will be given by (6) with the : Cℎ-direction chosen as the lift (!) and the drag

(�) direction, and with the velocity and vorticity field provided by computational fluid dynamics. The force formula (6),

used without the first term ( added mass) yields an accurate force prediction for the impulsively started case considered

here, as m
−→
*
mC

���
(�
= ∞ at the initial instant, and m

−→
*
mC

���
(�
= 0 at any other time. Here all the flow field is assumed to be

laminar. The lift and drag predictions from VFM will be compared with those obtained from integrating the body

surface pressure and skin-friction given by CFD code. The contribution of different force components, contributed from

free vorticity in the flow field or from the body surface vorticity, will be discussed. The purpose of this exercise is to not

only just study the validity of the extended VFM method, but also to explore its potential application in load estimation

for experiments such as Particle Image Velocimetry (PIV). Thus, the influence of the size of a truncated computational

domain and the resolution on the accuracy of this approach will also be investigated.
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Fig. 3 vortex pressure force maps for lift and for drag of NACA0012 airfoil: (a),(c),(e) are for lift at U = 20>,
45> and 60>; (b),(d),(e) are for drag at U = 20>, 45> and 60>, respectively.
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A. Force approach and CFD method

As discussed in section 2.3, the vortex force approach (6) can be used to calculate the total force acting on the

body, with the vortex force factors precomputed by analytical or numerical methods, and the velocity and vorticity field

given by simulations such as vortex panel method, computational fluid dynamics simulation, or from experimental

measurement. Here the results of the force prediction will be compared to the lift and drag obtained from the integration

of the body surface pressure and skin friction in CFD. We present the force predictions in the form of non-dimensional

coefficients. The lift coefficient and drag coefficient are defined as

�! =
!

1
2 d+

2
∞ℓ�

, �� =
�

1
2 d+

2
∞ℓ�

(16)

where ℓ� is the characteristic length of the body, chosen to be the diameter (ℓ� = 20) for a cylinder and the chord length

(ℓ� = 2�) for a general airfoil. The non-dimensional time is written as g = C+∞/ℓ�.

In the CFD simulation used in this work, the Navier–Stokes equations in unsteady laminar flow are solved numerically

using the same method as used by Li & Wu (2018) [22]. We have used the commercial code Fluent with the options of a

second-order upwind SIMPLE (semi-implicit method for pressure-linked equations) pressure–velocity coupling method.

The computational domain is 36 diameters in the horizontal direction and 21 diameters in the vertical direction for a

cylinder, and 31 chord lengths in the horizontal direction and 20 chord lengths in the vertical direction for a NACA0012

airfoil. Different mesh sizes are chosen for different Reynolds numbers. For a cylinder, four Reynolds numbers 200,

500, 1000 and 146 are considered. Correspondingly, meshes with 55375, 64190, 80197 and 268814 grid points in total,

and with 314, 419, 628 and 2673 grids on the body surface are used. For a NACA0012 airfoil, three different meshes

are used for 6 different Reynolds numbers. A mesh with 115072 grid points in total and with 102 grids on the surface is

used in the CFD simulation of Re = 50, 100 and 200. A mesh with 127494 grid points in total and with 184 grids on the

surface is used for Re = 500 and 1000. A mesh with 174910 grid points in total and with 550 grids on the surface is

used for Re = 146. The mesh size normal to the wall and in the boundary layer is refined to a minimum of 30 layers.

Grid-converged check has been carried out here. The flow is impulsively started at a constant from an initially uniform

flow. The flow is unsteady and the present VFM method is capable of describing the vortex force at any instant, even

when some early shed vortices have moved very far-away from the body.

As a validation for the CFD method used here, numerical results for time-averaged lift and drag for NACA 0012

airfoils at different Reynolds numbers are compared with those from experiments in Fig. 4. We can see that the CFD

results at Re = 144 compare well with experimental data both from Zhou et al. (2011) [23] for Re = 1.0544 and from

Ohtake et al. (2007) [24] for Re = 1.044. The CFD results at Re = 146 also agree well with experimental data from

Critzos et al. (1955) [25] for Re = 1.846.
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Fig. 4 Comparison of time-averaged lift (a) and drag (b) for a NACA 0012 airfoil at angle of attacks from 0>
to 90> obtained from experiments and numerical simulations.

B. Vortex lift and drag for viscous flows around a cylinder

First, we apply the present VFM method to the cylinder flow at different Reynolds numbers 200, 500, and 146.

Figure 5 shows good agreement between VFM theory and CFD force results for both lift and drag coefficients. The

viscous correction terms for lift and drag are also shown in Fig. 5. It can be seen that the viscous correction for lift

oscillates about a zero average value and the oscillation amplitude decreases as the Reynolds number increases. The

viscous correction for drag decreases from an initial value to a relative stable value, as the vorticity on the body surface

decreases from an initial transient. For '4 = 146, the viscous correction terms for both lift and drag are negligible.

The vortex flow pattern (shown as streamlines in Fig. 5(d)), together with vortex pressure force map (shown in

section 3.1), can reveal the physical mechanisms behind the variation of lift and drag. We can see that the lift oscillates

around 0 and the oscillation amplitude increase with time and reaches a stable value due to the growth and alternative

shedding of a pair of vortices. The initial rise of pressure drag coefficient is due to the rapid increase of |lI | on the lee

side and its movement along the drag increasing direction. Then the drag drops as the concentrated region of vorticity

on the lee side disperses far away from the body, where the magnitude of vortex pressure drag factor is low. After a

slight rise, it reaches a periodic oscillation around an average value due to the alternate shedding of the vorticity.

Figure 6(a-b) show the different components of force coefficients for cylinder from the VFM method at Re = 200, as

well as the total force coefficients from CFD. Figure 6(a) is for lift and Fig. 6(b) is for drag. We can see from these

figures that the vortex pressure force is the dominant force, which is responsible for the force oscillation behavior.

Moreover, viscous pressure force and skin friction force coincide for the cylinder flow case considered here. Actually

this coincidence is not unexpected. If we substitute equations (12) and (15) into equation (6), we could get the result for

a circular cylinder that

! (E8B−?) = ! (E8B− 5 ) , � (E8B−?) = � (E8B− 5 ) . (17)
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C. Vortex lift and drag for viscous flows around a NACA0012 airfoil

Applying the extended VFM method to NACA0012 airfoil, we also find good comparison between theory and CFD

for U = 60> at different Reynolds numbers (Re = 50, 500, and 146), as shown in Fig. 7 (a,c,e) for lift and in Fig. 7

(b,d,f) for drag. The small discrepancy between the CFD and VFM methods comes from the numerical errors both in

solving Navier-Stokes equations and in evaluating the integrals in equation (6).

Figure 8(a-b) show the comparisons of total force coefficient between theory and CFD results at Re = 50, as well as

the three force components. Figure 8(a) is for lift and Fig. 8(b) is for drag. We can see that when the Reynolds number

is low (Re = 50) the vortex pressure force and viscous pressure force are the dominant force and have the same order of

magnitude, while the skin friction force is much lower than either. The overall vortex pressure force and the total force

are similar, which means that the force oscillation behavior is contributed primarily from the vortex pressure force. The

total force curve against non-dimensional time can be divided into four repeatable stages, and the physical mechanism

can be explained by the evaluation of vortex flow patterns in the same way as Li & Wu (2016) [10].

D. Influence of computational domain and sampling density

In order to explore the applicability of the proposed extended VFM method for load estimation in experiments such

as PIV, the influence of the size of the computational domain and the sampling density (i.e. resolution) on the accuracy

of this approach will be studied in this subsection.

1. The force contribution of the distributed vorticity in the flow field

By normalizing the vortex pressure force term in equation (6), we have the total vortex pressure lift and drag

coefficients as well as their spatial distribution as follows
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Fig. 7 Comparison between theory and CFD for time-dependent lift coefficients for NACA0012 airfoil at
'4 = 50, 100, 200, 500, 1000 and 146.
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The lift and drag distribution (3� (E ?)
!
/3Ω and 3� (E ?)

�
/3Ω) due to vortices in each grid cell in the cylinder case at

Re = 1000 and at a typical instant (g = 40) are shown in Figures 9(a) and (b), and the vorticity distribution is shown in

Fig. 9 (c). The lift and drag distribution (3� (E ?)
!
/3Ω and 3� (E ?)

�
/3Ω) for the NACA0012 airfoil at U = 60> and for

Re = 146 at a typical instant (g = 6) are shown in Figures 10 (a) and (b), and the vorticity distribution is shown in Figure

10 (c).

Fig. 9 Vortex pressure lift (a) and drag (b), as well as the vorticity (c) distribution around a cylinder at instant
g = 40 for '4 = 1000.

In figures 9 and 10, a red color indicates a positive force contribution, while a blue color indicates a negative one. A

green color indicates a positive vorticity, while a yellow color indicates a negative one. The theoretical force coefficients

are obtained by summing the force coefficients of vortices inside all grid cells in the calculation domain. We can see

that each concentrated vortex contain a positive force contribution part and a negative force contribution part. It is

shown that the near-body vortices contribute more to the body force than the far away vortices, which is consistent with

the Biot-Savart law and allows us to calculate the body forces by using the vorticity in a small area containing the body.

2. Force calculation from truncated domain and coarse mesh

Here different domains �1, �2, and �3 are chosen for the integration of the body force, where �1 represents the

whole simulation domain for CFD; �2 is an area with a length of 113 and a width of 103 for a cylinder and with a length

of 62� and a width of 62� for a NACA0012 airfoil; �3 represents a truncated domain with a length of 53 and a width of

18



Fig. 10 Vortex pressure lift (a) and drag (b), as well as the vorticity (c) distribution around a cylinder at instant
g = 6 for '4 = 146.

53 for a cylinder and with a length of 32� and a width of 32� for a NACA0012 airfoil. Note that the viscous pressure

force and friction force are dependent on the vorticity at the body surface, which have no relationship with the domain

we choose. For the smallest domain �3, the converged flow data (velocity (D, E)) from CFD results computed on one

resolved grid are interpolated to two different coarse meshes, The first one (labelled as ’Coarse1’ in Figures 11 and 12))

has 230 × 230 approximately uniform structural grids in total, and the second one (labelled as ’Coarse2’ in Figures 11

and 12) has 116 × 116 mesh grids. Note that the full resolution is roughly 628 × 115 mesh grids for the cylinder case

and 550 × 245 mesh grids for the NACA0012 case. Note that most of the full grid cells are distributed in the boundary

layer, while the coarse meshes have nearly uniform distribution which is similar to typical PIV-measurement data.

Figure 11 shows the comparison of lift and drag of a cylinder at Re = 1000 calculated by CFD and by VFM method

on different domains and different coarse-sampled mesh. Figure 12 is the results for a NACA0012 airfoil at Re = 146.

We can see from these figures that there are no perceptible differences between forces calculated on domain �1 and

�2, and they all agrees well with the CFD results. The forces obtained on domain �3 are slightly different from those

on �1 and �2, but they also agree well with the CFD results. Thus, if the vorticity field (or velocity field) in a small

domain �3 around the body is known, we are able to predict the force experienced on a body accurately using the VFM

method. It can be also seen from Figures 11 and 12 that in general, the coarser the mesh is, the larger the error are,

but the errors in these test cases are all in acceptable ranges. Table 1 shows the Relative Root Mean Square Error of

Prediction (RRMSEP) defined as follows
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× 100%,

where H8 refers to the �! or �� predicted by VFM method at sampling point 8, while H���,8 is the �! or �� calculated

by CFD at the same sampling point. From the data in Table 1, we could recommend that flow field data with a domain

size larger than 3ℓ� × 3ℓ� and a resolution in the order of 100 in each direction would give reasonable results for

estimated force (with an error < 20%), which could be easily achieved in PIV-measurements.
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Table 1 Relative Root Mean Square Error of Prediction

Cases �1 �2 �3 �3(�>0AB41) �3(�>0AB42)
�!,�H;8=34A (Ref. Fig. 11(a)) 1.193% 1.013% 7.569% 15.57% 18.34%
��,�H;8=34A (Ref. Fig. 11(b)) 4.863% 4.906% 8.765% 7.301% 14.70%
�!,# ���0012(Ref. Fig. 12(a)) 5.908% 6.212% 7.391% 12.08% 15.37%
��,# ���0012(Ref. Fig. 12(b)) 4.685% 5.244% 6.927% 8.402% 13.61%

V. Conclusions
In this paper, the VFM method for high Reynolds number flows reported in a previous work has been extended to

general viscous flows around translating rigid bodies at a larger range of Reynolds numbers. The force acting on the

body in a flow field has been decomposed into four components: added mass, vortex pressure, viscous pressure and skin

friction.

The vortex pressure term in the extended VFM method is the corrected form of the force expression originally

considered by Li &Wu (2018) [22]. It is contributed from vorticity in the flow field and represented as the scalar product

of the vortex pressure force factor and the local flow velocity. According to the vortex pressure force factors derived

from the viscous governing equation, an improved method to construct vortex pressure force maps was demonstrated,

which ensures contributions vanish from vortices far away from the body. The vortex pressure force factors can be easily

obtained by solving the Laplace equations. The viscous pressure and skin friction terms are corrections due to viscosity.

They are contributed by the vorticity in the boundary layer close to the body surface and inversely proportional to

Reynolds number.

The extended VFM method was applied to a circular cylinder and NACA0012 airfoil flows, and validated against

CFD results. In all cases considered we found that the dominant force was the vortex pressure force, and when Reynolds

number was large enough, the correction force terms due to viscosity could be ignored. The force oscillation behavior

can be associated with the vortex flow patterns and vortex pressure force maps in the same way as in the previous work

of Li & Wu (2018).

Additionally, we demonstrated the computation of vortex forces using coarsely sampled data on a small truncated

domain, and found that the method produce acceptable accuracy, which facilitates its application to computing body

forces from PIV data. The extension of this method to turbulent flows and its application to flow measurement (e.g.

PIV) data will be studied in the future.

Appendix A: Derivation of the Expression for Extended VFMMethod
The force acting on the body can be written as the sum of the pressure force and the skin-friction force [17]:

−→
� =

∬
(�

%−→=�3( + `
∬
(�

−→=� × −→l3( (18)

21



The second term on the RHS is already in the form of a function of vorticity. For the first term, we can use the

Lamb-Gromyko equation (3) and the condition (5) satisfied on the body surface to transform it into a function of the

vorticity field.

Integrating the scalar product of ∇q: and equation (3) over the whole control volume (i.e.
∭

Ω
∇q: • (1)3Ω), with

the help of the incompressible continuity equation (2) and through a series of algebraic transformations and applying

Green’s theorem, with −→* = 0 on the body surface and ∇q: = 0 at infinity, we have

−
∬
(�

%∇q: · −→=�3( = d

∬
(�+(∞
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m
−−→
*�

mC
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Substituting equation (5) into the left-hand term of equation (19), we have −
∬
(�
%∇q: · −→=�3( =

∬
(�
%=�,:3(.

The flow is undisturbed and irrotational at infinity, thus
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q:

m
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Therefore, equation (19) can be simplified into
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Projecting the force equation (18) into the :Cℎ-direction and substituting equation (20) into it, we arrive at the force

formula in the :Cℎ-direction in the form of a summation of four components: the added mass force � (033)
:

, the vortex

pressure force � (E ?)
:

caused by the convection of existing vortices in the flow field, the viscous pressure force � (E8B−?)
:

caused by the diffusion of vorticity contacting the body surface, and the skin-friction force � (E8B− 5 )
:
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(21)

In two-dimensional flow, we have ∇ =
(
m
mG
, m
mH
, 0

)
, −→l = (0, 0, lI), and

−→
* = (D, E, 0). The force expression (21)

can now be simplified into (6).
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