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The trophic levels of nodes in directed networks can reveal their
functional properties. Moreover, the trophic coherence of a
network, defined in terms of trophic levels, is related to
properties such as cycle structure, stability and percolation. The
standard definition of trophic levels, however, borrowed from
ecology, suffers from drawbacks such as requiring basal nodes,
which limit its applicability. Here we propose simple improved
definitions of trophic levels and coherence that can be
computed on any directed network. We demonstrate how the
method can identify node function in examples including
ecosystems, supply chain networks, gene expression and global
language networks. We also explore how trophic levels and
coherence relate to other topological properties, such as non-
normality and cycle structure, and show that our method
reveals the extent to which the edges in a directed network are
aligned in a global direction.
1. Introduction
Many complex systems have an underlying network, whose nodes
represent units of the system and whose edges indicate connections
between the units [1]. In some contexts, the connections are
symmetric, but in many they are directed, for example, indicating
flows from one unit to another or which units affect which other
units [2]. A classic example is a food web, in which the nodes
represent species and there is a directed edge from each species to
those which eat it.

In a directed network, the ecological concept of ‘trophic level’ [3]
allows one to assign a height to each node in such a way that on
average the height goes up by one along each edge. The trophic
levels can help to associate function to nodes, for example,
plant, herbivore, carnivore in a food web. The concept was
reinvented in economics [4], where it is called ‘upstreamness’,
though [5] trace it back to Leontief and the ‘output multiplier’.
It is also an ingredient in the construction of SinkRank, a measure
of contribution to systemic risk [6].
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The standard deviation of the distribution of height differences along edges gives a measure of the

extent to which the directed edges fail to line up, called the ‘trophic incoherence’ [7]. The trophic
incoherence is an indicator of network structure that has been related to stability, percolation, cycles,
normality and various other system properties [8–12].

The standard definitions of trophic level and incoherence are limited in various ways, however.
In particular, they require the network to have a basal node (a node with no incoming edges), they
give too much emphasis to basal nodes if there is more than one, they do not give a stable way
to determine levels and incoherence for a piece of a network, and they do not give a natural
notion of maximal incoherence. Furthermore, in some contexts, like production networks indicating
the flows of goods and services between firms or sectors, the reverse flow plays an equivalent role,
representing the financial payments, but the standard concept of trophic level does not treat
these symmetrically.

In this paper, we present improved1 definitions of trophic level and incoherence that overcome these
limitations. We illustrate their application in a variety of domains. We show that the new levels continue
to be a useful indicator of function in the network and that the new incoherence measure continues to be
related to stability, cycles and normality. We compare the new notions with the old for cases that have
basal nodes; and we show the robustness of our new trophic levels to truncation of a network.
Mathematical proofs are given in appendices.
i.7:201138
2. The improved notions of trophic level and incoherence
We consider directed networks (also known as directed graphs or digraphs) with set N of nodes (also
known as vertices) and set E of directed edges (also known as links or ties). We suppose that there is
at most one edge from a node m to a node n, and denote the edge by mn. There can also be an edge
from n to m. Each edge carries a weight wmn > 0. This can represent the strength of the edge, for
example the amount of flow along it or a quantification of influence of one node on another. We write
wmn = 0 if there is no edge from m to n and we assemble the wmn into a matrix W. The edge weights
could be set to 1, as is common in the literature, and the array W is then called the adjacency matrix
A of the network, but the ability to represent the strength of the edge is a useful extension. If there
were multiple edges from m to n, then we would amalgamate them into a single edge by adding the
weights. Self-edges mm (also called loops) are permitted.

For each node n, we define its in-weight and out-weight by

win
n ¼

X
m[N

wmn and wout
n ¼

X
m[N

wnm: (2:1)

Alternative terminology could be in- and out-strength, extending [13], who called the out-weight of a
node its strength. We define the (total) weight of the node n by

un ¼ win
n þ wout

n , (2:2)

and the imbalance for node n by

vn ¼ win
n � wout

n , (2:3)

the latter representing the difference between the flow into and out of the node. We make vectors u and v
from the un and vn. The (weighted) graph-Laplacian operator Λ on vectors h is defined by

(Lh)m ¼ umhm �
X
n[N

(wmn þ wnm)hn, (2:4)

or in matrix form (where superscript T denotes transpose),

L ¼ diag(u)�W �WT: (2:5)

Then our improved notion of trophic level is the solution h of the linear system of equations

Lh ¼ v, (2:6)
1Although we use the words ‘improved’ and ‘new’, it is up to the reader to assess if you agree they are improvements, and after writing
the first version we found precursors of our definitions, to be reported in §4; nevertheless, our analyses go significantly beyond them,
particularly in the quantification of trophic incoherence and its connection with other network properties.
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modulo shifts to be characterized in the next paragraph. Note that although the operator Λ is symmetric,

asymmetry of the network appears in the imbalance vector v. Comparisons with previous notions will be
made in §4.

Equations (2.6) always have a solution (see appendix A.1) but it is non-unique, because one can add
an arbitrary constant in each connected component of the network. A connected component (more correctly
called ‘weakly connected component’) of a network is a maximal subset S, N such that it is possible to
get from any m∈ S to any n∈ S by a path of edges ignoring their directions. Thus to solve Λh = v, one can
replace the equation for one node mS in each connected component S by an equation hmS ¼ cS for
arbitrary constants cS, for example 0. Then there is a unique solution for h, which can be found by
any linear algebra package. Afterwards one can add an arbitrary constant to the levels in each
component S if desired, for example to make the lowest one be 0 or to make the average level (with
respect to the weights un, for example) in S be 0.

Our improved notion of trophic incoherence is

F0 ¼
P

mn wmn(hn � hm � 1)2P
mn wmn

, (2:7)

using the levels h determined above; it is independent of the choice of shifts on connected components. This
has the nice features that F0 = 0 if and only if all the level differences zmn = hn− hm are 1, F0 = 1 if and only if all
the level differences are 0, and otherwise F0 is strictly between 0 and 1 (see appendixA.2 for a proof).We saya
network is maximally coherent if it has F0 = 0, maximally incoherent if it has F0 = 1. We define the trophic
coherence to be 1− F0. In appendix A.3 we prove the trophic coherence can be expressed alternatively as
the weighted mean difference �z in trophic levels between nodes along the edges of the network.

The motivation for our new definitions is to seek levels hn, n∈N, that minimize the trophic confusion

F(h) ¼
P

mn wmn(hn � hm � 1)2P
mn wmn

, (2:8)

where the target level difference for each edge mn is set to 1. A vector h of levels minimizes F if and only if
Λh = v (see appendix A.2). The resulting minimum value of F is the incoherence F0.

The coherence 1− F0 represents the extent to which levels can be assigned to make the level difference
along each edge be the target difference of 1. So we can alternatively call 1− F0 the ‘directionality’ or
‘directedness’ of the network, hence the title of our paper.

For an electrical interpretation of (2.6), see appendix A.4.
3. Illustrations
To illustrate the new notions of trophic level and incoherence, we begin with the classic context of food
webs. Here the nodes represent species and there is a directed edge from a species to each species that
eats it. Figure 1 shows the Ythan estuary food web [14] with height in the layout corresponding to
our new notion of trophic level. The networks are spread out in the horizontal dimension by a force-
based algorithm (details and refinements will be presented in a future publication). The network is
fairly strongly layered; this is borne out by a small value of trophic incoherence F0 = 0.08.

We move now to an example from economics where the ‘upstreamness’/‘downstreamness’ of firms,
sectors and economies in production chains is of wide relevance and interest [5,15,16]. Figure 2 shows the
inter-industrial flows of goods and services in the USA and Saudi economies in 2015 (data taken from
OECD IO tables). Here the nodes represent economic sectors and weighted edges represent the dollar
value of supply→ purchase transactions between them (the full IO table had 35 sectors, but nodes
with lower weight (2.2) were removed to allow presentation of a labelled network). This is an
interesting application because there are no basal nodes (indeed the networks are completely
connected, as is usual for IO relations, with every sector both supplying and buying from every other
sector), so the old notions of trophic level and incoherence cannot be applied.

Unlike the Ythan food web, we see that these IO networks are rather incoherent, meaning their
trophic incoherences are not small (F0 = 0.63 and F0 = 0.46, respectively). Nevertheless, the new levels
reveal an overall direction between sectors of flow in intermediate production: some sectors are key
suppliers of intermediate inputs (for the USA, financial, real estate and other business service sectors;
for Saudi Arabia, energy extraction and finance) while other sectors are key users of inputs from other
sectors (e.g. healthcare and construction). Some sectors, however, are both users and suppliers of
products (e.g. wholesale, transport and storage).
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Figure 1. Ythan estuary food web with height corresponding to our new trophic levels which reveal a strongly layered structure. Edges
represent prey→ predator relations and edgeweights are all taken to be 1 as the data do not specify the relative importances of relationships.
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Figure 2. Network of inter-industrial flows of goods and services in the USA (a) and Saudi (b) economies in 2015. Nodes represent a subset
of economic sectors (accounting for largest share of inter-industry flows as captured byweight (2.2)) andweighted edges represent the dollar
value of supply→ purchase transactions between them. Edge widths reflect the value of flows, and node size reflects node weight (2.2).
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trophic levels of different sectors in IO nets for 57 economies
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Figure 3. These boxplots present the distribution of the new trophic levels for each of 35 different economic sectors (ISIC Rev. 4) as
obtained from the national 2015 input–output (IO) networks of 57 different economies (including OECD, and G20 economies).
Sectors are sorted by their median trophic level (across all 57 IO networks). Red crosses indicate outliers.
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Figure 3 provides a more systematic and detailed analysis, presenting box-plots of the level of
different sectors (using full 35 sector IO tables) for 57 countries (2015 data). Levels for each economy
have been normalized to make the mean level 0 (weighted by un). While the size of different sectors
varies across economies, there is considerable consistency of sector levels, which reveal the
architecture of value chains in the production process: we see an overall direction of flow from energy
extraction and finance sectors; through other primary materials; then manufacturing industries;
followed by sectors that supply final demand more directly, such as food makers, entertainment and
services; ending with education, public administration and defence sectors (that are overwhelmingly
users more than suppliers of intermediate inputs).

There may be links to explore between sector levels and their role in economic performance—it is
interesting to note, for example, that construction—which is known to lead the wider business cycle
in many economies [17,18]—appears as a key user of inputs from other industries (implying strong
backward-linkages). Meanwhile variation in the level of some sectors across different economies
may also reveal interesting differences in production structure (e.g. finance occupies the same
minimum position as energy extraction in China, but comes higher in the value chain for many
other economies).

In biology, regulatory networks are sets of macromolecules that interact to control the level of
expression of various genes in a given genome [Nature subjects: Regulatory networks]. Studies on
regulatory networks have identified the existence of directed structures and have linked node-levels to
node-properties, function [19–21] and the importance of regulators [22]. Assigning levels in networks
with cycles, however, has presented a methodological challenge for this literature, which our
improved levels overcome. Figure 4 shows an example transcription regulatory network (the yeast
Saccharomyces cerevisiae [20]) plotted first with a force-directed method (left), then according to the
new levels (right). The new levels reveal a striking layered structure. There are basal (red),
intermediate (yellow) and top (blue) nodes, but intermediate nodes do not form a distinct layer and
the relevance of variation in their levels might be explored.

https://www.nature.com/subjects/regulatory-networks
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Figure 4. These two charts plot the same yeast transcription regulatory network (linking transcription factors and target genes) first
with a standard force directed layout (left); then with node heights corresponding to new trophic levels h to reveal the network’s
flow-based hierarchy. Red nodes represent transcription factors, blue nodes denote regulated genes, and those with both functions
are coloured in yellow.
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Levels derived from influence networks will also be useful in social network settings (hierarchy
and stratification are important concepts in sociology) and have been studied in e.g. online social
networks [23,24].

Figure 5 shows the trophic analysis of a network of book translations [25] based on a collection
of more than 2.2 million book translations compiled by UNESCO’s Index Translationum project [26].
Edge weights correspond to the number of books translated between source and target languages.
While it is unlikely that individual books flow along paths in this network (given books are
presumably translated from their original source language) its structure may be important in the flow
of knowledge and ideas [25].

The role of eigenvector centrality in the influence of different languages within this network was
studied in [25]. Our trophic analysis reveals that this network is strongly directional (F0 = 0.51),
implying knowledge and ideas are not exchanged equally but flow in particular directions. It also
reveals interesting information on the role of different languages within this directional flow: at the
bottom appear languages that are only source languages—unsurprisingly these include many ‘dead
languages’ (Ancient Greek, Middle French and English, Sanskrit, etc.). At the top appear languages
from which nobody translates (these include minority and other languages that are small by number
of speakers such as Faroese, Sami and Mongolian). In the middle, we find languages that are both
target and source languages. The role of English is striking: while translated into and out of, English
is more important as a source language (it has a lower trophic level than any other major language)
and there are large flows from English into French, German, Spanish and Japanese. In this dataset
only English is translated into Chinese which is in turn only a source language for minority languages
in China (such as Hani and Zhuang). Russian is rather isolated in the global language network but
forms an interesting community of bi-directional links with languages in its region.
4. Comparison with previous notions
The established concept of trophic level [3] requires the network to have at least one basal node, i.e. a
node with no incoming edges. Then the height xb (to use Levine’s symbol) was set to a common
value of 0 for all basal nodes b, though nowadays it is more common to set it to 1. The heights xn of
the other nodes in connected components with basal nodes were determined by solving

xn ¼ 1þ
P

m xmwmn

win
n

, (4:1)

for all non-basal n, where each sum is over the nodes m having edges to n. Levine normalized the weights
wmn coming into each node n so that win

n ¼ 1, which makes no change to (4.1). In matrix form, the
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equation for the heights (with the convention xn = 1 for basal nodes) can be written as

Lx ¼ ~v, (4:2)

where

~vn ¼ win
n if non-zero, else 1, (4:3)

and

(Lx)n ¼ ~vnxn �
X
m

xmwmn: (4:4)

The same concept was introduced in economics by Antràs et al. [4], but fixing top nodes (those with no
outgoing edges) to a common height. It is equivalent to Levine’s after reversing all the edges.

Then [7] defined the trophic incoherence of the network to be the standard deviation of the height
differences zmn = xn− xm over edges. They took edge weights all 1, but a natural generalization is to
weight the height differences by the edge weights. The edge-weighted mean difference of Levine’s
heights is precisely 1 [3], so Johnson et al.’s [7] definition of trophic incoherence q becomes

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mn wmn(xn � xm � 1)2P
mn wmn

s
: (4:5)

Indeed, Levine defined ‘trophic specialization’ of a node m as

s2
m ¼

P
n wmn(xn � xm � 1)2P

n wmn
: (4:6)

So q2 is the average of s2
m weighted by wout

m .
Our equation for trophic heights can be seen as a symmetrized version of Levine’s, without the fix for

basal nodes. Thus, our definition does not need any basal nodes and does not force them all to the same
level if there is more than one basal node.

Our definition of trophic incoherence is the same as q2 but using our new heights instead of Levine’s.
It represents, in roughly the sameway, the failure of the height differences to all be 1. A distinction to bear
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in mind, however, is that for our new levels, the edge-weighted mean height-difference

�z ¼
P

mn wmn(hn � hm)P
mn wmn

, (4:7)

is not necessarily 1. In fact, we prove in appendix A.3 that �z ¼ 1� F0. So F0 is not in general the (edge-
weighted) variance of the height differences. To obtain the variance σ2 of the height differences, one has
to subtract (�z� 1)2 from F0. Thus there is a case for considering alternative measures of incoherence to F0,
such as the ratio h ¼ s=�z, which evaluates to

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F0

1� F0

s
, (4:8)

and is the appropriate replacement for q. In the other direction, the analogue of F0 is q2/(1 + q2).
While we acknowledge there may be some applications where fixing all basal (or top) nodes to the

same level may be most appropriate, we believe that in many cases it will be more natural to allow
the height of basal nodes to be determined according to their integration into the overall flow
hierarchy of the network. If we take, for example, figure 6 as representing a simple stylized sequential
production process where intermediate inputs are transformed over six stages, it seems to us that this
process is better described by levels according to our notion—which returns integer levels identifying
the discrete stages of the process and which stage each node belongs to—than it is by standard levels.
It seems natural to consider node 10 to be more upstream than node 1 or 2 (although they are all
‘basal’), and this may be important in the context of e.g. sector specific shocks.

Of course the flow hierarchy of most real processes will be a more complex web of intermediate flows.
Figure 7 shows some comparisons of trophic levels determined by the two methods for two different
empirical supply networks. In these networks, the nodes represent firms and each directed edge
represents a significant supplier→ buyer relationship.2 We see that the requirement of the standard
approach to put all basal nodes at a common level makes what we consider to be an artificial
distortion of the levels—especially in the left-hand case.

As an alternative comparison, in figure 8 we plot (for the same two supply networks as figure 7) the
old levels against the new levels.

If one reverses all the edges, then with our new definition one obtains the reflection of the trophic
levels, up to an overall shift depending on the convention used to fix the zero of the levels.
The trophic incoherence is unchanged. For example, for a supply network, instead of the flows of
goods and services one could consider the flows of payment, which are more or less the reverses of
the flows of goods and services.

By contrast, the old notion of trophic level is usually not symmetric with respect to change of
direction of all the edges. Figure 9 shows the trophic levels of firms in our two example supply
2These networks were extracted from Bloomberg by taking all suppliers and buyers within 3 hops (a hop being an edge in either
direction) of a given firm (in this case, Lockheed Martin Corp. and the Tractor Supply Company).
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networks obtained according to the old notion, (i) when edges are directed from supplier to buyer
(showing the direction of material and service flows), and (ii) under the reverse interpretation
(showing the direction of payment flows from buyers to sellers). It is apparent that with the old
notion there is a big change in levels, the relevance of which is unclear. Unless there is a good reason
to favour basal nodes, we propose that our symmetric notion is advantageous.
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There have been some other approaches to rectifying the limitations of the original notion of
trophic level. Dominguez et al. [8] obtain a ‘basal set’ of nodes and eliminate all edges within that set.
Moutsinas et al. [27] define levels using a pseudo-inverse of L. These solutions allow application to
networks without basal nodes but they do not possess a natural notion of maximal incoherence
nor symmetry with respect to reversal of edge directions (though in some contexts one might not
want symmetry).

Trophic incoherence is related to the number of directed cycles in a network [10], and hence to
measures of acyclicity. For example, one can find the smallest number of edges to delete to obtain an
acyclic graph [28], although this method has some defects [29]. The smallest number is called the
‘agony’ of the network. Our trophic analysis provides a useful upper bound for agony, given by
the number of edges with negative height difference, and could be used as a convenient heuristic for
its exact computation. However, agony and incoherence are different concepts, since acyclic networks
can differ in incoherence [7]. Related papers are [30] on reordering a matrix to make it as triangular as
possible, and [31] quantifying directedness by the fraction of edges not in any cycle.

A precursor of our notion of trophic levels was given by [32], with the same minimization principle
(extended to arbitrary height differences as we do in §7), but they chose a different quantification of
directedness, namely the ratio of the difference in levels of the highest and lowest nodes to the
diameter of the network, which is more sensitive to extremes and in our opinion less correlated with
the other network properties we have considered. The same minimization principle was proposed
again by De Bacco et al. [33], but without a quantification of directedness. The recent papers [34,35]
derive essentially the same notions of levels and coherence as us, by decomposing flows on a network
into the sum of a potential part and a circulating part. This is a very nice approach, though it requires
specifying conductivities for each edge as well as the flow on it, instead of specifying a weight and a
target height difference for each edge. The analysis has strong connections with ours, in particular the
minimization principle to determine the potential and an electrical interpretation. The connections are
described in appendix A.14.

Next, we comment on the large literature on hierarchical methods for directed networks. Although
the term ‘hierarchy’ is often used just to describe a node as being above or below another (cf. our use
of ‘flow hierarchy’), it generally has more connotations that we are not addressing here. In particular,
in an ideal hierarchy the graph of immediate superiority relations is often assumed to have a unique
maximal node and to form a pyramid, and the question posed is how far a network deviates from
this structure. The question overlaps with the one we address, but is different. A full survey of the
literature will have to wait for a future publication, but we highlight the book [36] and the following
references. Corominas-Murtra et al. [37] propose three measures of hierarchy: treeness, feed-
forwardness and orderability. Ravasz et al. [38] consider containment hierarchy. Ruths & Ruths [39]
consider control of directed networks. Czègel & Palla [40] introduce a method to distinguish between
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a directed acyclic graph and ones with maximal directedness, something which our method also does.
Mones et al. [41] introduce a global reaching centrality measure. Maktoubian et al. [42] propose how
to take signed edge-weights into account.

There are many other concepts of importance for nodes in a network, e.g. PageRank, HITS and Katz
centrality (for a survey, see [43]). To the best of our knowledge, however, these are all very different from
trophic levels.
5. Robustness of local computation
If we determine trophic levels on a piece of a network by truncating the network at some distance from a
chosen node, measured for example by the number of edges in either direction, how robust are the
resulting levels to the truncation? This is an important question in practice, because it might be
infeasible to obtain or analyse the whole of a large network, yet it can be useful to determine relative
levels on a piece of the network.

First we take care of the arbitrariness of the zero of trophic levels. The simplest way to do that is to
take the chosen node to be always at height zero.

Next, we refine the question because the trophic levels near the boundary of the piece of the
network may change significantly with the truncation. We ask how much the trophic levels change
on a connected subset of the network containing the chosen node, which we will call zone 1, given a
buffer zone 2 chosen so that there are no direct edges in either direction between zone 1 and the
outside, called zone 3. We choose the buffer zone so that in addition the union of zones 1 and 2 is
connected (the only way this cannot be satisfied is if zone 2 contains nodes which are not connected
to zone 1 by a path in zone 2, in which case one can just throw them out).

Figure 10 shows the outcome of a test, taking zone 1 to be the set of suppliers and buyers of General
Motors (GM) 2 hops from GM, and computing the effects on the trophic levels in zone 1 of truncation of
the network at 3, 4 and 5 hops, respectively (i.e. allowing a zone 2 buffer), compared to truncating at
7 hops. One can see that the trophic levels on zone 1 stabilize quite rapidly.

In appendix A.5, we give some theoretical analysis to support the general conclusion that the levels
on zone 1 are robust to changes on zone 3.
6. Connections to other network properties
A large part of the interest of the original notion of trophic coherence was its relation to network
properties such as the stability of equilibria of Lotka–Volterra dynamics on the network [7], the
dynamics of spreading processes [11], prevalence of cycles [10], other motifs [12], intervality [8] and
normality [9]. We show here that the new notion of trophic coherence has similar connections, even
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stronger, and it enlarges the scope of application because it does not require basal nodes. We examine

three of the properties.
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6.1. Normality
A directed network is said to be normal [44] if its weight matrix W commutes with its transpose WT,

WWT ¼ WTW: (6:1)

Note that WT represents the same weighted network but with all the edges reversed. Empirical directed
networks are often highly non-normal [45], so the use of the word ‘normal’ is somewhat unfortunate in
this context.

For the unweighted case of an adjacency matrix A, normality implies that the imbalance vector v is 0.
This is because (ATA)mn is the number of sources in common to nodes m and n, and (AAT)mn is the
number of targets in common. In particular, (ATA)nn ¼ win

n and (AAT)nn ¼ wout
n , so ATA =AAT implies

that win =wout and v = 0.
When v = 0 we say a network is balanced. In appendix A.6, we prove that a network is balanced if and

only if its trophic incoherence F0 = 1. So, from the previous paragraph, normal unweighted networks are
maximally incoherent.

Another special case of normality is symmetric networks W =WT. If W is symmetric then the
imbalance vector v = 0. So symmetry implies maximal incoherence.

The concept of normality is broader than either of these, however, and maximal incoherence is not
equivalent to normality. There are non-normal networks with v = 0 and hence maximal incoherence, e.g.

W ¼
1 1 0
0 0 1
1 0 0

2
4

3
5: (6:2)

Nevertheless, the extent to which a network is normal seems to be positively correlated with its
trophic incoherence F0. The degree of normality of a network can be quantified by

n ¼
P

j jljj2

kWk2F
, (6:3)

where kWkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mn jwmnj2
q

is called the Frobenius norm of W, and lj [ C are the eigenvalues of W
(with multiplicity). Some of the literature uses

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kWk2F �

P
j jljj2

q
as a quantifier of non-normality, but

we consider it simpler to use the normality ν (as in the real elliptic Ginibre ensemble [46]). The
normality ν of W lies in the interval [0, 1], with ν = 1 if and only if W is normal [44]. If W is
maximally coherent (F0 = 0) then all its eigenvalues are 0 (appendix A.7), so ν = 0 and it is maximally
non-normal. But one can have ν = 0 without F0 = 0, for example, the feed-forward motif (figure 11) with

W ¼
0 1 1
0 0 1
0 0 0

2
4

3
5, (6:4)

for which h = [−2/3 0 2/3]T and F0 = 1/9.
Figure 12 shows normality against trophic incoherence for some real networks. We see that normality

increases with F0, but not linearly. In appendix A.10, we present heuristic arguments in favour of a
relationship between them of the form ν≈ exp(1− 1/F0). This is consistent with a relationship between
normality and the old notion of trophic coherence [9].
6.2. Stability
Next we discuss how dynamical processes on networks are affected by their trophic coherence.

A simple dynamical model for contagion on a weighted network in discrete time is

x0n ¼
P

m xmwmn

r
, (6:5)

where xn ≥ 0 represents the amount of infection at node n at some time, x0n the amount at the subsequent
time, and r > 0 is a scaling factor. We wish to know whether the total infection kxk1 ¼

P
n xn on the
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network will grow or decay. In vector–matrix form, the solution after time t [ Zþ is

x(t) ¼ x(0)Wt

rt
: (6:6)
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The answer (see appendix A.8) is that if ρ < r then ‖x(t)‖1 → 0 as t → ∞, whereas if ρ > r and condition K
holds (xn > 0 for some node n in or leading to a ‘key’ communicating class), then ‖x(t)‖1 → ∞, where the
spectral radius ρ of W is the largest absolute value of the eigenvalues of W. Actually, because W has all
entries non-negative, it has a real positive eigenvalue of maximum modulus, so that is ρ. Indeed,
under condition K,

t�1 log kx(t)k1 ! log
r

r

� �
as t ! 1: (6:7)

We have already mentioned that a maximally coherent network has all its eigenvalues 0, so F0 = 0
implies ρ = 0. This suggests that ρ, scaled by a suitable measure of the strength of W, might correlate
positively with F0. The strength of W can be measured by any norm, for example the 2-norm ‖W‖2.
This can be defined in various ways, of which perhaps the simplest is that kWk22 is the largest
eigenvalue of WTW (which is necessarily real and non-negative and is equal to that for WWT). For
any operator-norm, ρ≤ ‖W‖. Thus ρ/‖W‖ is contained in [0, 1], like F0. An advantage of the
particular choice of the 2-norm is that ρ = ‖W‖2 if W is normal. So we define the scaled spectral radius

rs ¼
r

kWk2
: (6:8)

Then we deduce from the subsection on normality various cases with simultaneously F0 = 1 and ρs = 1.
Thus we look at how F0 correlates with the scaled spectral radius ρs in figure 13. In appendix A.11, we

give heuristic arguments in favour of a relation

rs � exp
1
2

1� 1
F0

� �� �
: (6:9)

We can also consider a simple dynamical model for contagion in continuous time,

_xn ¼
X
m

xmwmn � rxn, (6:10)

with r a recovery rate (without immunity). The solution can be written in vector-matrix form as

x(t) ¼ x(0) e(W�rI)t: (6:11)

Again one can ask whether the total infection ‖x(t)‖1 grows or decays. This is now a question of the
maximal real part of the eigenvalues of W, but because W is non-negative, the maximal real part of
eigenvalues is actually ρ. So the answer is growth for ρ > r, decay for ρ < r. So again it is interesting to
link ρ with F0 and relation (6.9) will be useful.

Some other dynamics on networks are discussed in appendix A.9.
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6.3. Cycles

Bya cycle in a directed network,wemean a closedwalk in it. Awalk is any sequence (ej)
J
j¼1 of edges such that

for 1≤ j < J the head of ej is the tail of ej+1. It is closed if the head of eJ is the tail of e1. In contrast to much of the
graph-theory literature, we allow a cycle to have repeated edges and repeated nodes, but we prefer to use
the shorter andmore familiarword ‘cycle’ than ‘closedwalk’. In particular, we allowa cycle to be a periodic
repetition of a shorter cycle. The weight wg of a cycle γ is the product of the weights along its edges.

A maximally coherent network (F0 = 0) has no cycles, because it has height difference +1 for every
edge, whereas along a cycle the net change in height has to be zero. There are acyclic graphs with
F0 > 0, however, for example the feed-forward motif (6.4).

A maximally incoherent network (F0 = 1) must have cycles. This is because it is balanced and so some
of the flow that leaves a node must eventually come back to it (see appendix A.12). In fact, we deduce
that every edge is in at least one cycle.

So these results suggest some relation between trophic incoherence F0 and a quantifier of cyclicity.
The total weight of cycles of length p is given by the trace of the pth power of W: tr Wp, because

(Wp)mn ¼Pj wn0n1 . . .wnp�1np and the trace of a matrix is the sum of its diagonal entries. Note that this
counts each cyclic permutation of a cycle as a different cycle. One might expect it to behave
asymptotically exponentially as p → ∞, but for example if k points in a circle are each connected to
just their clockwise neighbour by an edge of weight x, then tr Wp ¼ kxp when p is a multiple of k, 0
otherwise. The tidy way to study the sequence tr Wp is to form the zeta function

z(z) ¼ exp
X1
p¼1

zp

p
tr Wp, (6:12)

for complex z close enough to 0 (some authors define ζ(z) to be the reciprocal of this). Then a notion of
the cyclicity of W is the reciprocal of the radius of convergence of the power series. This is just
lim sup p!1 (tr Wp)1=p. Using log det ¼ tr log, the zeta function can equivalently be written as
det (I � zW)�1. The reciprocal of its radius of convergence is the spectral radius ρ. So actually, the
appropriate measure of cyclicity is ρ relative to some measure of the size of W. We take again ‖W‖2
for the latter. Thus, cyclicity ρ/‖W‖2 = ρs is related to F0 exactly as is the stability of our simple
contagion processes. In particular it is 1 for any normal network.

In appendix A.13, we relate ζ to the prime cycles, those which are not repetitions of a shorter cycle,
and furthermore to the elementary cycles, those which do not repeat a node.
7. Extension to arbitrary target height differences
So far, we have taken all the target height differences equal, but there are contexts in which this might not
be appropriate. Instead of trying to fit the height differences along each edge to 1, it might be preferable
to fit them to more general target height differences τmn. For example, if two nodes m, n are subunits of a
single company with m supplying n it might be reasonable to assign a value τmn less than 1. Or if there is
a feed-forward motif that one does not want to contribute to circularity, then one could assign target
height difference 1=2 to the edges for the indirect route and 1 to the direct edge.

The extension of our method to this setting is straightforward. Minimize

F(h) ¼
P

mn wmn(hn � hm � tmn)
2P

mn wmnt2mn
,

over h. This is equivalent to solving Λh = v with now vn ¼Pm (wmntmn � wnmtnm). If we set F0 to be the
minimizing value of F and zmn = (hn− hm)/τmn and weight the zmn by wmnt

2
mn, then we obtain all the same

properties as before: 0≤ F0≤ 1, �z ¼ 1� F0, etc.
One context in which it is natural to use the data to set the target height differences is quantitative

pairwise comparison, for example, use of goal differences in a football league to infer relative
strengths of teams. Then it is natural to make each game carry equal weight and the outcome of our
extended method is trophic levels representing the relative strengths of the teams [47].



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201138
16
8. Discussion

In many domains of science, one is faced with a directed network and wishes to determine (i) to what
extent the edges line up in an overall direction, and (ii) the relative position of individual nodes
within any directional flow on the network.

The old concept of ‘trophic level’ from ecology, and itsmore recent analogue ‘upstreamness’ in economics,
provided an answer to the question of the relative positions of individual nodes; however, these previous
notions required (respectively) basal or top nodes; they give too much emphasis to basal/top nodes if there
ismore thanone; andtheydonotgivea stableway todetermine levelsand incoherence forapieceofanetwork.

The notion of ‘trophic coherence’ introduced in [7], based on the old notion of trophic levels,
provides a way to quantify the extent to which edges align in an overall direction and was shown to
be connected with network properties such as cycles and spectral radius, but it lacks a natural notion
of maximal incoherence.

In this paper, we have introduced improved notions of trophic level and trophic coherence, which do
not require basal or top nodes; are as easy to compute as the old notions; and are connected in the same
way with network properties such as normality, cycles and spectral radius. Furthermore, they remove the
problem of bias from basal nodes, make incoherence have a natural range from perfect coherence to
maximal incoherence, and make it possible to compute them locally in a network without having to
compute them for the whole network.

We expect this to be a valuable tool in domains from ecology, gene expression, neuroscience and
biochemistry to economics, finance, social science and humanities.
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Appendix A

A.1. Solutions of Λh = v
The graph Laplacian Λ is not invertible: for any constant vector h, Λh = 0. Indeed for any h that is constant
on connected components of the network, Λh = 0, and the kernel of Λ is precisely this set of h. Similarly,
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for any h, the components of Λh on each connected component of the network add up to zero, and this

property characterizes the range of Λ. Now the imbalance vector v has the special property that the sum
of its components over any connected component of the network is zero. Thus it follows that Λh = v
always has a solution h, and the general solution is given by adding any vector that is constant on
each connected component.
publishing.org/journal/rsos
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A.2. Range for trophic incoherence F0
Here we prove that 0≤ F0≤ 1 with F0 = 0 iff all height differences zmn = 1 and F0 = 1 iff all height
differences are 0.

First, we explain that the trophic heights h solving Λh = v correspond to the minima of the trophic
confusion function

F(h) ¼
P

mn wmn(hn � hm � 1)2P
mn wmn

, (A 1)

over all possible assignments of heights hn, n∈N. This is because the second derivative of F is positive
semi-definite, so all critical points are minima, and by differentiating with respect to each hn, the equation
for critical points is Λh = v. Furthermore, the minimum value of this expression is F0.

Since F(h)≥ 0 for all h, we see that F0≥ 0. Furthermore, F0 = 0 iff all height differences are 1. Next,
putting all heights equal, say to 0, denoted by 0, gives F(0) = 1, so F0≤ 1. Now if F0 = 1 at some h then
because F(0) = 1 and the second derivative of F is positive semi-definite with null space given by
constants on each connected component, then h− 0 must be in this nullspace, i.e. h is constant on each
connected component. Thus, all height differences along edges are zero.
A.3. Mean height difference
The mean height difference

�z ¼
P

mn wmn(hn � hm)P
mn wmn

, (A 2)

is 1− F0. To prove this, write the trophic confusion function as

F(h) ¼ s2 þ �z2 � 2�zþ 1, (A 3)

with

s2 ¼
P

mn wmn(hn � hm � �z)2P
mn wmn

: (A 4)

If h minimizes F then F(αh) must be minimized over a [ R at α = 1. But

F(ah) ¼ a2(s2 þ �z2)� 2a�zþ 1, (A 5)

which has unique minimum at a ¼ �z=(s2 þ �z2) (unless s ¼ �z ¼ 0). Thus �z ¼ s2 þ �z2. But
s2 þ �z2 � 2�zþ 1 ¼ F0. So �z ¼ F0 þ 2�z� 1, hence �z ¼ 1� F0. If s ¼ �z ¼ 0, we see that F0 = 1 and hence
�z ¼ 1� F0 is satisfied in that case too.
A.4. Electrical interpretation
Our notion of trophic levels can be given an electrical interpretation. The edge weights are conductivities
of bidirectional connectors between nodes. Current vn is injected into (or extracted from, according to
sign) each node n. The resulting voltages (modulo an arbitrary overall shift) are the trophic heights hn.
One could imagine the currents vn as being generated by making a copy of all the incoming and
outgoing edges of node n and imposing a voltage difference of +1 on all its input nodes and −1 on all
its output nodes, relative to n.
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A.5. Robustness of trophic levels to truncation of the network

We recall that we choose a connected subset called zone 1 and fix the height of one of its nodes (or the
weighted average of its nodes) to be 0. We choose a buffer zone 2 so that there are no direct connections
between zone 1 and the outside, called zone 3, and so that the union of zones 1 and 2 is connected.

Then the equation Λh = v for the heights can be broken into the block form

L11h1 þ L12h2 ¼ v1, (A 6)

L21h1 þ L22h2 þ L23h3 ¼ v2 (A 7)

and L32h2 þ L33h3 ¼ v3: (A 8)

Changes to the outside zone 3 can affect v2 and the diagonal part of Λ22. Let us suppose that the total
weights of connections in each direction between zone 3 and each node of 2 are given. Thus, v2 and
Λ22 are fixed. Let �h be the solution for the reference case where all of zone 3 is amalgamated to a
single node. By the connectedness assumption, �h exists and is unique up to an overall shift. Let
~h ¼ h� �h with h the solution for the true zone 3, subtracting the single number �h3 from each element
of h3. Then

L11
~h1 þ L12

~h2 ¼ 0 (A 9)

and

L21
~h1 þ L22

~h2 þ L23
~h3 ¼ 0: (A 10)

By the connectedness of zone 1, Λ11 is invertible modulo overall shifts, on the subspace such that the sum
of the components is zero. We have taken care of overall shifts by fixing a node of zone 1 to be at height
0. The sum of the components of L12

~h2 is automatically zero, because taking the sum of (A 9) over
components in zone 1, L11

~h1 gives 0. So

~h1 ¼ �L�1
11 L12

~h2: (A 11)

Similarly, by connectedness of the union of zones 1 and 2, and substituting the above,

~h2 ¼ �(L22 � L21L
�1
11 L12)

�1L23
~h3: (A 12)

Thus the desired answer is

~h1 ¼ L�1
11 L12(L22 � L21L

�1
11 L12)

�1L23
~h3: (A 13)

Thus by taking norms throughout (for example, the weighted sum khk ¼Pn unjhnj and the
corresponding operator norm), we obtain a bound on the changes to the levels on zone 1 in terms of
a bound on the changes to the levels on the part of zone 3 connecting directly to zone 2:

k~hk � kL�1
11 kkL12kk(L22 � L21L

�1
11 L12)

�1kkL23
~h3k: (A 14)

The latter is unknown in general, but the formula gives some idea of how much the levels change on
zone 1 on incorporating more detail about zone 3. In particular, if zone 1 is well connected in the
sense that kL�1

11 k is not large, and zones 1 and 2 are well connected in the sense that
k(L22 � L21L

�1
11 L12)

�1k is not large then ~h1 is not very sensitive to changes ~h3 to the levels in zone 3.
An alternative to fixing the height of a node in zone 1 is to consider height vectors as equivalent if

they differ by an overall shift and use a norm that pays attention only to height differences, e.g.
khk ¼Pmn wmnjhn � hmj.
A.6. Balanced iff maximally incoherent
If v = 0 then Λh = 0 so h is constant on connected components, so F0 = 1. Conversely, if F0 = 1 then h is
constant on connected components, so v = Λh = 0.

Note that it follows that maximally incoherent networks have no basal nodes (more precisely, any
basal node is connected to no other nodes).
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A.7. Maximal coherence implies normality zero

If W is maximally coherent then the level difference for each edge is +1 so, arranging the nodes in order
of height, the matrix W is upper triangular with zero diagonal. It follows that all its eigenvalues are
0. Hence ν = 0.

A.8. Stability of contagion processes
For x(t) = x(0)Wt/rt, we have

kx(t)k1 �
kx(0)k1kWtk1

rt
, (A 15)

using the induced operator-norm on W, so

t�1 log kx(t)k1 � t�1 log kx(0)k1 þ t�1 log kWtk1 � log r: (A 16)

But for any operator-norm t−1log‖Wt‖→ log ρ as t→∞ [50]. So if ρ < r then ‖x(t)‖1→ 0 as t→∞.
In the other direction, we need theory for non-negative matrices W, e.g. [51]. A node in a directed

graph is recurrent if there is a cycle through it. Two recurrent nodes communicate if there is a cycle
through both. The set of recurrent nodes can be decomposed into communicating classes, subsets in
which each pair of nodes communicate and between which no pair of nodes communicate. The
eigenvalues of W consist of the eigenvalues of its restrictions Wc to each communicating class c and
an eigenvalue 0 for each non-recurrent node. The period P of a communicating class c is the highest
common factor of the lengths of all cycles in it. The communicating class c can be decomposed into P
cyclic classes, whose nodes can only be reached from each other in a multiple of P steps. They can be
labelled c0,…cP−1 so that one can get from cj to ck only in a number of steps congruent to k− j
modulo P.

On each cyclic class cj, the restriction of WP is irreducible and aperiodic. So by Perron–Frobenius
theory [51] it has a simple positive eigenvalue λ1 with positive eigenvector, and the remaining
eigenvalues satisfy |λk| < λ1. Throughout this item, we consider left eigenvectors because we are
interested in the action of W on row-vectors x. The eigenvalues of WP

cj on the cyclic classes of c are
related as follows. If xWP

c ¼ lx with x supported on c0 and non-zero, then xWc is supported on c1 and
(xWc)WP

c ¼ xWP
c Wc ¼ lxWc, so either xWc is an eigenvector for WP

c on c1 with the same eigenvalue or
it is zero. If xWc = 0 then lx ¼ xWcWP�1

c ¼ 0 so λ = 0. Thus WP
cj have the same eigenvalues apart from

possible 0s. If the cyclic classes have different sizes, eigenvalues 0 must occur for all but the smallest ones.
From the non-zero eigenvalues λ of WP

cj , we deduce that the non-zero eigenvalues of Wc are the
(complex) Pth roots of λ as follows. Take an eigenvector x on c0 for λ≠ 0. Let ζ be any Pth root of λ.
Then [zPx, zP�1xWc, . . . zxWP�1

c ] is an eigenvector of Wc with eigenvalue ζ, where the components in
the vector are grouped according to the cyclic classes c0,…cP−1. So the eigenvalues of Wc are the Pth

roots of the non-zero eigenvalues of WP
c0 , augmented by 0s. The eigenvectors of Wc can be extended to

eigenvectors of W on the whole network with the same eigenvalue.
If x(0)≥ 0 is positive on some node of a cyclic class cj of a communicating class c then by

Perron–Frobenius theory,

l�n
1 x(0)WnP

cj ! Cx̂ as n ! 1, (A 17)

for some C > 0, where x̂ is the Perron–Frobenius eigenvector on cj and λ1 its eigenvector. Furthermore
l�n
1 x(0)WnPþs

c ! Cx̂Ws
c . Including the rest of the edges,

lim
n!1 t�1 log kx(t)k1 � P�1 logl1: (A 18)

We say a communicating class is ‘key’ if its λ1 = ρP. There is always at least one such. Thus if x(0) is
positive on some node of a key communicating class, then, combining with (A 16) and (A 18),

t�1 log kx(t)k1 ! log
r

r

� �
as t ! 1: (A 19)

Similarly, if x(0) is positive on a node leading to a key communicating class, then in finitely many steps
x(t) is positive on some node of that class and hence the same result follows.
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A.9. Other dynamics

The context in which trophic coherence was first proposed [7] is that of Lotka–Volterra dynamics for
populations of species in an ecosystem. This is somewhat difficult to treat because if W quantifies how
much one species eats of another this does not give a complete specification of the population
dynamics. But as in [7], one can propose

_xn ¼ xn rn �
X
m

wnmxm þ h
X
m

xmwmn � knxn

 !
, (A 20)

where rn is a natural birth or death rate (according to sign) for species n, the negative sum accounts for
species n being eaten, the positive sum accounts for the enhancement of population of species n from
what it eats, with an efficiency factor η, and the final term accounts for effects of intraspecies
competition not included in cannibalism (wnn). Write it in the form

d
dt

log x ¼ r� Bx, (A 21)

where log x stands for the vector with components log xn.
One first question is whether this has any positive equilibria. The equilibria are given by choosing any

subset of species to be extinct and the rest to satisfy Bx = r where the rows and columns corresponding to
extinct species have been deleted. To be physical, the remaining components of x must all be positive.

Given a positive equilibrium x, possibly of a subsystem given by deleting extinct species, a second
question is whether it is stable. The linearized equations for deviations ξ from an equilibrium are

_jn ¼ �xn
X
m

Bmnjn: (A 22)

So even if we know B, the linearized equations are not completely determined because we need to know
the equilibrium x.

Similarly, economic dynamics can be proposed on supply networks [52] and the question arises
whether there is a relation between stability and trophic coherence.

A.10. Ensemble relation of normality to incoherence
It is possible to relate trophic coherencewith various other topological features by considering ensembles of
random graphs [10]. The ‘coherence ensemble’ is the set of all unweighted, directed networkswith given in-
and out-degree sequences and given trophic coherence. For example, using the standard definition of
trophic incoherence q, the expected value of the spectral radius ρ in the coherence ensemble is

r ¼ et, (A 23)

where

t ¼ lnaþ 1
2q̂2

� 1
2q2

, (A 24)

(and we use a bar to represent coherence-ensemble expectation). Here, q̂ is the expected trophic incoherence
in the ‘basal ensemble’, and α = 〈winwout〉/〈w〉 is the branching factor, but for current purposes we need not
discuss these magnitudes in detail. In previous work, the trophic coherence was measured with the
incoherence parameter q, which corresponds to the standard deviation over trophic differences when the
average trophic difference is 1. Using the new definition of levels we are proposing here, the equivalent
of this magnitude is

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F0

1� F0

s
, (A 25)

as given in the main text.
We note that the ratio between the expected spectral radius for a given coherence, r, and the value

corresponding to a maximally incoherent network,

rmax ¼ lim
h!1 et, (A 26)

depends only on trophic coherence:
r

rmax
¼ exp � 1

2h2

� �
: (A 27)
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In the main text we measure normality with

n ¼
P

j jljj2

kWk2F
: (A 28)

A normal network (if unweighted) is, as described in the main text, a balanced network, which is
maximally incoherent (F0 = 1). In this case, we have ν = 1. On the other hand, the greatest deviation
from normality is achieved when |λj| = 0 for all j, which is the case of maximally coherent networks
(F0 = 0). For networks in the coherence ensemble with 0≤ F0≤ 1, we postulate thatP

i jlij2
kWk2F

≃ r2

r2max
, (A 29)

which amounts to assuming that the distribution of eigenvalues of W within the spectral radius ρ does
not depend on trophic coherence. This argument uses (i) kWk2F ¼ tr WTW , which in turn is the sum of the
eigenvalues of WTW, (ii) for W normal the eigenvalues of WTW are precisely the squares of the absolute
values of the eigenvalues of W, and (iii) normality is almost equivalent to maximal incoherence, as
already discussed. Combining this expression with equations (A 25), (A 27) and (A 28), we have an
approximate expression for the expected normality in the coherence ensemble,

n ≃ exp 1� 1
F0

� �
: (A 30)

Figure 12 shows ν against F0 for our set of empirical networks, alongside equation (A 30). The
empirical values fall fairly close to the ensemble expectations, with high coherence corresponding to a
maximal non-normality, and incoherence being associated with greater normality. In many cases, the
real networks are somewhat less normal than the ensemble prediction. This might be because these
are relatively small networks in which statistical fluctuations play a large role, and at intermediate
values of trophic coherence there are more ways of being non-normal than normal.
A.11. Ensemble relation with scaled spectral radius
Using the results for the coherence ensemble again, in particular equations (A 27) and (A 25), we obtain that

rs ¼
r

kWk2
≃ r

rmax
¼ exp

1
2

1� 1
F0

� �� �
: (A 31)

Here, no assumption on the distribution of the eigenvalues ofW is required, simply the fact that ρ = ‖W‖2 for
maximally incoherent networks.

The fit in figure 13 is again reasonable.
A.12. Maximal incoherence implies cycles
A maximally incoherent network is balanced. Make a volume-preserving dynamical system in
continuous time by converting each edge mn to a tube of volume Vmn > 0 of incompressible fluid with
flow rate wmn from m to n, splitting the resulting flow into n in any way between the out-edges of n
consistent with their weights. If none of the fluid originally in tube mn comes back to that tube then
after time T, tube mn has ejected a volume wmnT of fluid that has to fit in the volume

P
Vjk of the

other tubes. But that is finite, so for T large enough we get a contradiction. Hence there is a cycle
through mn. So each edge of a maximally incoherent network is on a cycle.

One could allow the nodes to have volume too. The same argument works for countably infinite
networks, by choosing the volumes to have a finite sum.
A.13. Zeta function
The zeta function of the main text is a weighted version of the Bowen–Lanford zeta function (described in
section 3.1 of [53]). It can be related to the prime cycles, those which are not repetitions of a shorter cycle.
We consider two prime cycles to be the same if they differ only by a cyclic permutation. We denote by P
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the set of prime cycles. The formula is

z(z) ¼
Y
g[P

(1� zjgjwg)
�1, (A 32)

where |γ| is the length of γ and wg its weight.
Here is a proof of the identity (cf. [53]).

log
Y
g

(1� zjgjwg)
�1 ¼ �

X
g

log (1� zjgjwg)

¼
X
g

X
k�1

(zjgjwg)
k

k
¼
X
k�1

X
g

jgj z
kjgj

kjgjw
k
g

¼
X
p�1

zp

p
tr Wp,

(A 33)

because every cycle is a repetition of some prime cycle γ, say k times, its weight is wk
g and there are |γ|

cyclic permutations of it. The last expression is logζ(z), concluding the proof.
Equation (A 32) can be reduced to one in terms of ‘elementary cycles’, those which do not repeat

a node before closing. They are prime and for a finite network there are only finitely many of them.
The formula is

1
z(z)

¼ 1þ
X
C

Y
g[C

(� zjgjwg), (A 34)

where the sum is over non-empty collections C of disjoint elementary cycles. This is a clean case of
Cvitanovic’s cycle expansions [54], and appeared already in eqn (18.13) of [55]. We give a proof,
however, because it seems to us that [55] left out the case of self-edges.

To prove (A 34), use 1=z(z) ¼ det (I � zW) and the formula

detM ¼
X
p[Sn

epM1p1 . . .Mnpn , (A 35)

for an n × n matrix M, where Sn is the group of permutations of {1,…n} and ep is the sign of the
permutation π (+1 if π can be written as an even number of transpositions, −1 for an odd number).
For M = I− zW, the only permutations for which the product in (A 35) is non-zero are those which can
be written as a product of disjoint cyclic permutations corresponding to elementary cycles of period at
least 2 in the network and the identity permutation on the remaining nodes. The contribution of a
collection C2 (possibly empty) of disjoint elementary cycles of period at least 2 isY

m[C0
(1� zwmm)

Y
g[C2

(� zjgjwg), (A 36)

where C0 is the set of nodes not in C2. If there are no self-edges then wmm = 0 for all m and there are no
cycles of period 1, so adding in the case of the empty collection, we obtain (A 34) when there are no
self-edges.

If there are some self-edges then expand out (A 36) toX
C2þ

Y
g 0[C2þ

(� zjg
0 jwg 0 ), (A 37)

where the sum is over collections C2+ of disjoint elementary cycles formed by adding any 1-cycles to C2,
including the case of adding no 1-cycles. Lastly, the contribution of the identity permutation isY

m
(1� zwmm) ¼ 1þ

X
C1

Y
g[C1

(� zwg), (A 38)

where the sum is over non-empty collections of disjoint 1-cycles. Adding together (A 37) and (A 38), we
obtain the result (A 34) for the general case.
A.14. Relation to Helmholtz–Hodge decomposition
Iyetomi et al. [34] and Kichikawa et al. [35] obtain levels and a notion of circularity by a graph version of
the Helmholtz–Hodge decomposition of a vector field into a gradient part and a conservative
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(divergence-free) part. Here we show the equivalence of our method to theirs. For maximum generality,

we do this in the context of arbitrary target height-differences (see §7).
They take flows Fmn and conductivities wmn for each edge and decompose F into Fp + Fc, with

Fpmn ¼ wmn(fm � fn) and Fc balanced, by minimizingX
mn

w�1
mn(Fmn � wmn(fm � fn))

2

over potentials ϕ. We can write this in the form of our method,
P

mn wmn(hn � hm � tmn)
2, with hn =−ϕn

and

tmn ¼ Fmn

wmn
: (A 39)

Thus there is a simple map (A 39) between (flows F, conductivities w) and (weights w, targets τ). One just
has to bear in mind that often we consider our weights w to be flows, so the terminology can be
confusing. They are the same in the main case treated in our paper (all targets = 1) and in [35] (w = F),
but in general need distinguishing.

The approach of Kichikawa et al. [35] leads to alternative terminology, which can be advantageous.
Their ‘circularity’ is our incoherence. A caveat, however, is that feed-forward motifs make a
contribution to circularity. It would be interesting to devise a modified notion of true circularity,
perhaps by automatic adjustment of the target height differences.
01138
References

1. Newman MEJ. 2003 The structure and function

of complex networks. SIAM Rev. 45, 167–256.
(doi:10.1137/S003614450342480)

2. Bang-Jensen J, Gutin GZ. 2008 Digraphs: theory,
algorithms and applications. Berlin, Germany:
Springer.

3. Levine S. 1980 Several measures of trophic
structure applicable to complex food webs.
J. Theor. Biol. 83, 195–207. (doi:10.1016/0022-
5193(80)90288-X)

4. Antràs P, Chor D, Fally T, Hillberry R. 2012
Measuring the upstreamness of production and
trade flows. Am. Econ. Rev. 102, 412–416.
(doi:10.1257/aer.102.3.412)

5. McNerney J, Savoie C, Caravelli F, Farmer D. How
production networks amplify economic growth.
(http://arxiv.org/abs/1810.07774).

6. Soramäki K, Cook S. 2013 SinkRank: an
algorithm for identifying systemically important
banks in payment systems. Economics E J. 7,
2013–2028. (doi:10.5018/economics-ejournal.ja.
2013-28)

7. Johnson S, Dominguez-Garcia V, Donetti L,
Muñoz MA. 2014 Trophic coherence determines
food-web stability. Proc. Natl Acad. Sci. USA
111, 17 923–17 928. (doi:10.1073/pnas.
1409077111)

8. Dominguez-Garcia V, Johnson S, Muñoz MA. 2016
Intervality and coherence in complex networks.
Chaos 26, 065308. (doi:10.1063/1.4953163)

9. Johnson S. 2020 Digraphs are different: Why
directionality matters in complex systems.
J. Phys. Complex 1, 015003. (doi:10.1088/2632-
072X/ab8e2f )

10. Johnson S, Jones NS. 2017 Looplessness in
networks is linked to trophic coherence. Proc.
Natl Acad. Sci. USA 114, 5618–5623. (doi:10.
1073/pnas.1613786114)

11. Klaise J, Johnson S. 2016 From neurons to
epidemics: how trophic coherence affects
spreading processes. Chaos 26, 065310. (doi:10.
1063/1.4953160)

12. Klaise J, Johnson S. 2017 The origin of motif
families in food webs. Sci. Rep. 7, 16197.
(doi:10.1038/s41598-017-15496-1)

13. Barrat A, Barthélemy M, Pastor-Satorras R,
Vespignani A. 2004 The architecture of complex
weighted networks. Proc. Natl Acad. Sci. USA
101, 3747–3752. (doi:10.1073/pnas.
0400087101)

14. Cohen JE, Schittler DN, Raffaelli DG, Reuman DC.
2009 Food webs are more than the sum of
their tritrophic parts. Proc. Natl Acad. Sci. USA
52, 22 335–22 340. (doi:10.1073/pnas.
0910582106)

15. Antràs P, Chor D. 2018 On the measurement of
upstreamness and downstreamness in global
value chains. NBER Working Paper Series No.
24185.

16. Backer K, Miroudot S. 2014 Mapping global
value chains. ECB Working Paper Series
No. 1677.

17. Àlvarez LJ, Cabrero A. 2010 Does housing really
lead the business cycle? Banco de Espana
Working Paper No. 1024.

18. Leamer EE. 2007 Housing is the business cycle.
NBER Working Paper Series No. 13428.

19. Gerstein MB, Kundaje A, Hariharan M, Landt SG,
Yan K, Cheng C, Grubert F. 2012 Architecture of
the human regulatory network derived from
ENCODE data. Nature 488, 91–100. (doi:10.
1038/nature11245)

20. Jothi R, Balaji S, Wuster A, Grochow JA, Gsponer
J, Przytycka TM, Babu MM. 2009 Genomic
analysis reveals a tight link between
transcription factor dynamics and regulatory
network architecture. Mol. Syst. Biol. 5, 294.
(doi:10.1038/msb.2009.52)

21. Yu H, Gerstein M. 2006 Genomic analysis of the
hierarchical structure of regulatory networks.
Proc. Natl Acad. Sci. USA 103, 14 724–14 731.
(doi:10.1073/pnas.0508637103)

22. Bhardwaj N, Kim PM, Gerstein MB. 2010
Rewiring of transcriptional regulatory networks:
hierarchy, rather than connectivity, better
reflects the importance of regulators. Sci. Signal.
3, 79. (doi:10.1126/scisignal.2001014)

23. Gupte M. 2011 Finding hierarchy in directed
online social networks. In Proc. of WWW’11,
Hyderabad, March, pp. 557–566. New York, NY:
ACM. (doi:10.1145/1963405.1963484)

24. Lu C, Yu JX, Li R, Wei H. 2016 Exploring
hierarchies in online social networks. IEEE Trans.
Knowl. Data Eng. 28, 2086–2100. (doi:10.1109/
TKDE.2016.2546243)

25. Ronen S, Gonçalves B, Hu KZ, Vespignani A,
Pinker S, Hidalgo CA. 2014 Links that speak:
the global language network and its
association with global fame. Proc. Natl Acad.
Sci. USA 111, E5616–E5622. (doi:10.1073/pnas.
1410931111)

26. UNESCO. Index Translationum: World
Bibliography of Translation. Available at www.
unesco.org/xtrans/bsform.aspx.

27. Moutsinas G, Shuaib HC, Guo W, Jarvis S. 2019
Generalised trophic levels and graph hierarchy.
(http://arxiv.org/abs/1908.04358).

28. Tatti N. 2014 Faster way to Agony. In ECML
PKDD 2014 Pt III (ed T Calders et al.), vol. 8726,
pp. 163–78. Lecture Notes in Computer Science.
Berlin, Germany: Springer.

29. Leticia E, Barucca P, Lillo F. 2018 Resolution of
ranking hierarchies in directed networks. PLoS
ONE 13, e0191604. (doi:10.1371/journal.pone.
0191604)

30. Crofts JJ, Higham DJ. 2013 Googling the brain:
discovering hierarchical and asymmetric network
structures, with applications in neuroscience.
Internet Math. 7, 233–254. (doi:10.1080/
15427951.2011.604284)

http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/0022-5193(80)90288-X
http://dx.doi.org/10.1016/0022-5193(80)90288-X
http://dx.doi.org/10.1257/aer.102.3.412
http://arxiv.org/abs/1810.07774
http://arxiv.org/abs/1810.07774
http://dx.doi.org/10.5018/economics-ejournal.ja.2013-28
http://dx.doi.org/10.5018/economics-ejournal.ja.2013-28
http://dx.doi.org/10.1073/pnas.1409077111
http://dx.doi.org/10.1073/pnas.1409077111
http://dx.doi.org/10.1063/1.4953163
http://dx.doi.org/10.1088/2632-072X/ab8e2f
http://dx.doi.org/10.1088/2632-072X/ab8e2f
http://dx.doi.org/10.1073/pnas.1613786114
http://dx.doi.org/10.1073/pnas.1613786114
http://dx.doi.org/10.1063/1.4953160
http://dx.doi.org/10.1063/1.4953160
http://dx.doi.org/10.1038/s41598-017-15496-1
http://dx.doi.org/10.1073/pnas.0400087101
http://dx.doi.org/10.1073/pnas.0400087101
http://dx.doi.org/10.1073/pnas.0910582106
http://dx.doi.org/10.1073/pnas.0910582106
http://dx.doi.org/10.1038/nature11245
http://dx.doi.org/10.1038/nature11245
http://dx.doi.org/10.1038/msb.2009.52
http://dx.doi.org/10.1073/pnas.0508637103
http://dx.doi.org/10.1126/scisignal.2001014
http://dx.doi.org/10.1145/1963405.1963484
http://dx.doi.org/10.1109/TKDE.2016.2546243
http://dx.doi.org/10.1109/TKDE.2016.2546243
http://dx.doi.org/10.1073/pnas.1410931111
http://dx.doi.org/10.1073/pnas.1410931111
http://www.unesco.org/xtrans/bsform.aspx
http://www.unesco.org/xtrans/bsform.aspx
http://arxiv.org/abs/1908.04358
http://arxiv.org/abs/1908.04358
http://dx.doi.org/10.1371/journal.pone.0191604
http://dx.doi.org/10.1371/journal.pone.0191604
http://dx.doi.org/10.1080/15427951.2011.604284
http://dx.doi.org/10.1080/15427951.2011.604284


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201138
24
31. Luo J, Magee CL. 2011 Detecting evolving

patterns of self-organizing networks by flow
hierarchy measurement. Complexity 16, 53–61.
(doi:10.1002/cplx.20368)

32. Carmel L, Harel D, Koren Y. 2002 Drawing
directed graphs using one-dimensional
optimization. In Graph drawing 2002
(eds MT Goodrich, SG Kobourov), vol. 2528,
pp. 193–206. Lecture Notes in Computer
Science. Berlin, Germany: Springer.

33. De Bacco C, Larremore DB, Moore C. 2018 A
physical model for efficient ranking in networks.
Sci. Adv. 4, eaar8260. (doi:10.1126/sciadv.
aar8260)

34. Iyetomi H, Ikeda Y, Mizuno T, Ohnishi T,
Watanabe T. 2017 International trade
relationship from a multilateral point of view.
Abstract for 6th Int. Conf. Complex Networks &
Applications, Lyon, France, 29 November–
1 December.

35. Kichikawa Y, Iyetomi H, Iino T, Inoue H.
2019 Community structure based on circular flow
in a large-scale transaction network. Appl. Netw.
Sci. 4, 92. (doi:10.1007/s41109-019-0202-8)

36. Zafeiris A, Vicsek T. 2017 Why we live in
hierarchies: a quantitative treatise. Berlin,
Germany: Springer.

37. Corominas-Murtra B, Goñi J, Solé RV, Rodriguez-
Casoa C. 2013 On the origins of hierarchy in
complex networks. Proc. Natl Acad. Sci. USA
110, 13 316–13 321. (doi:10.1073/pnas.
1300832110)
38. Ravasz E, Somera AL, Mongru DA, Oltvai ZN,
Barabasi A-L. 2002 Hierarchical organization of
modularity in metabolic networks. Science 297,
1551–1555. (doi:10.1126/science.1073374)

39. Ruths J, Ruths D. 2014 Control profiles of
complex networks. Science 343, 1373–1376.
(doi:10.1126/science.1242063)

40. Czègel D, Palla G. 2015 Random walk hierarchy
measure: what is more hierarchical, a chain, a
tree or a star? Sci. Rep. 5, 17994. (doi:10.1038/
srep17994)

41. Mones E, Vicsek L, Vicsek T. 2012 Hierarchy
measure for complex networks. PLoS ONE 7,
e33799. (doi:10.1371/journal.pone.0033799)

42. Maktoubian J, Noori M, Amini M, Ghasempour-
Mouziraji M. 2017 The hierarchy structure in
directed and undirected signed networks.
Int. J. Commun. Netw. Syst. Sci. 10, 79544.

43. Easley D, Kleinberg J. 2010 Networks, crowds
and markets. Cambridge, UK: Cambridge
University Press.

44. Trefethen LN, Embree M. 2005 Spectra and
pseudospectra: the behavior of nonnormal
matrices and operators. Princeton, NJ: Princeton
University Press.

45. Asllani M, Lambiotte R, Carletti T. 2018
Structure and dynamical behavior of non-
normal networks. Sci. Adv. 4, eaau9403.
(doi:10.1126/sciadv.aau9403)

46. Khoruzhenko BA, Sommers H-J. 2015 Non-
Hermitian ensembles, ch. 18. In The Oxford
handbook of random matrix theory (eds G
Akemann, J Baik, P Di Francesco). Oxford, UK:
Oxford University Press.

47. MacKay RS. 2020 Incomplete pairwise
comparison. Math. Today August, 132–135.

48. Cirtwill AR, Eklüf A. 2018 Data from: Feeding
environment and other traits shape species’
roles in marine food webs. Dryad Digital
Repository. (doi:10.5061/dryad.1mv20r6)

49. Davenport R. 2012 Bloomberg’s Supply Chain
Algorithm: providing insight into company
www.overleaf.com/project/
5df787ec7e70160001def6ed Relationships,
Bloomberg Terminal. 18 Aug.

50. Reed M, Simon B. 1980 Functional analysis.
New York, NY: Academic Press.

51. Berman A, Plemmons RJ. 1994 Nonnegative
matrices in the Mathematical Sciences.
Philadelphia, PA: SIAM.

52. Moran J, Bouchaud J-P. 2019 May’s instability in
large economies. Phys. Rev. E 100, 032307.
(doi:10.1103/PhysRevE.100.032307)

53. Pollicott M. 2020 Dynamical zeta functions and
the distribution of orbits. In Handbook of group
actions (eds L Ji et al.), vol. V. Boston, MA:
International Press.

54. Artuso R, Aurell E, Cvitanovic P. 1990 Recycling
of strange sets: I. Cycle expansions. Nonlinearity
3, 325–359. (doi:10.1088/0951-7715/3/2/005)

55. Cvitanovic P, Artuso R, Mainieri R, Tanner G,
Vattay G, Whelan N, Wirzba A. Chaos:
classical and quantum. See http://chaosbook.
org/paper.

http://dx.doi.org/10.1002/cplx.20368
http://dx.doi.org/10.1126/sciadv.aar8260
http://dx.doi.org/10.1126/sciadv.aar8260
http://dx.doi.org/10.1007/s41109-019-0202-8
http://dx.doi.org/10.1073/pnas.1300832110
http://dx.doi.org/10.1073/pnas.1300832110
http://dx.doi.org/10.1126/science.1073374
http://dx.doi.org/10.1126/science.1242063
http://dx.doi.org/10.1038/srep17994
http://dx.doi.org/10.1038/srep17994
http://dx.doi.org/10.1371/journal.pone.0033799
http://dx.doi.org/10.1126/sciadv.aau9403
http://dx.doi.org/10.5061/dryad.1mv20r6
http://www.overleaf.com/project/5df787ec7e70160001def6ed
http://www.overleaf.com/project/5df787ec7e70160001def6ed
http://dx.doi.org/10.1103/PhysRevE.100.032307
http://dx.doi.org/10.1088/0951-7715/3/2/005
http://chaosbook.org/paper
http://chaosbook.org/paper
http://chaosbook.org/paper

	How directed is a directed network?
	Introduction
	The improved notions of trophic level and incoherence
	Illustrations
	Comparison with previous notions
	Robustness of local computation
	Connections to other network properties
	Normality
	Stability
	Cycles

	Extension to arbitrary target height differences
	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	Appendix A
	Solutions of Λh = v
	Range for trophic incoherence F0
	Mean height difference
	Electrical interpretation
	Robustness of trophic levels to truncation of the network
	Balanced iff maximally incoherent
	Maximal coherence implies normality zero
	Stability of contagion processes
	Other dynamics
	Ensemble relation of normality to incoherence
	Ensemble relation with scaled spectral radius
	Maximal incoherence implies cycles
	Zeta function
	Relation to Helmholtz–Hodge decomposition

	References


