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Abstract  

 

In the nematode genus of Auanema, sex is determined by X chromosome dosage, 

females and self-fertilising hermaphrodites are XX and males are XO. 

Surprisingly, cross between XX female and XO male results in mostly XX 

progeny. This occurs because males only produce one functional sperm bearing 

an X chromosome, whereas nullo-X sperm is discarded. The exclusive formation 

of X-bearing sperm by males is attributed to the asymmetric segregation of 

essential sperm components, necessary for sperm function and motility, with the 

X chromosome. Whereas non-essential cytoplasmic materials (e.g., Golgi 

complex, ribosomes) disposed of in the nullo-X cell that takes the role of a 

residual body. This unique system permits easy-to-score phenotype on the 

organismal level to study asymmetric cell division; because the sex ratio of a 

cross-progeny can be used to monitor the type of divisions occurring during male 

spermatogenesis. Here I report that during Auanema spermatogenesis, the X 

chromosome acts as a polarising signal for sperm components to segregate with 

the cell inheriting the X chromosome.   

 

Sperm components also segregate with the X chromosomes in other A. rhodensis 

spermatogenesis models. During the spermatogenesis of A. rhodensis XX 

hermaphrodites, sperm components segregate to the cell inheriting the X 

chromosome. Similarly, I identified that during the spermatogenesis of A. 

rhodensis masculiniser mutant Arh-mas-1 (Genetically XX but with a male 

morphology), sperm components co-segregate with X chromosomes in 

asymmetric division or equally with X chromosomes to both daughter cells in 

symmetric division.  

 

I demonstrated that shuffling X chromosome haplotype blocks in A. freiburgensis 

RIAILs from two strains with different genetic background resulted in a new 

transgressive phenotype. Where, males from RIAILs produced a high number of 

males, due to their ability to form a functional nullo-X sperm. Genetic mapping 

using BSA analysis identified four candidate regions on the X chromosome 

involved in the spatial localisation of cytoplasmic components. Those findings led 

to hypothesised that interaction between a group of polygenes on the X 

chromosome in Auanema polarises sperm components to segregate with the X 

chromosome. 

 

Mechanisms describing how intrinsic factors regulate cell polarity are poorly 

understood, mostly because it is difficult to establish in the absence of extrinsic 

factors influence. Here, I present a novel mechanism for an intrinsic polarisation 

of asymmetrically dividing cells initiated by the X chromosome. 
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Chapter 1 

Introduction 

 

1.1. Asymmetric cell division  

Asymmetric cell division (ACD) is any cell division in which resulting sister cells 

have different fates [1]. The fate of cells resulting from asymmetric cell division 

is determined by size, shape, morphology or inheritance of biochemical fate 

determinants [2-5]. Asymmetric cell division is a fundamental biological process 

that is prevalent in nature from basic unicellular organisms, to higher multi-

cellular organisms [6]. Asymmetric cell division is crucial for multi-cellular 

organisms’ embryonic development, cellular differentiation and cellular diversity 

[4, 6]. The asymmetric cell division process is characterised by differential 

segregation of cytoplasmic components known as fate determinant factors to 

descendant cells, resulting in the formation of two distinct daughter cells. Two 

basic mechanisms are controlling the polarity of an asymmetrically dividing cell; 

an intrinsic or an extrinsic mechanisms [2, 7, 8]. Cytoplasmic fate-determining 

factors diffusion in the dividing mother cell in a polarised manner is an intrinsic 

mechanism to determine the fate of resulting cells (Figure 1.1) [9, 10]. On the 

other hand, polarising signals provided by the surrounding environment to the 

mother cell or daughter cells demonstrate an extrinsic mechanism to determine 

the fate of resulting cells (Figure 1.1) [7, 11]. 

 

Our understanding of the importance and mechanism orchestrating asymmetric 

cell division is gathered from a variety of model organisms throughout history. 

Whitman's study on leech egg clepsine marginata in (1878) established the 

hypothesis that asymmetric segregation of cytoplasmic components during cell 

division produces two intrinsically different daughter cells [12]. His investigation 

on leech cell lineages illustrated that leech egg cytoplasmic components 

differential segregation to descending cells determines the fate of those cells  [2, 

12]. Subsequently, the hypothesis was further consolidated in (1905) Conklin's 

study on ascidian Styela partita cell lineage. Conklin investigation revealed that 
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ascidian egg pigmented cytoplasmic determinants segregate differentially to 

daughter cells giving rise to five different tissues [9, 13]. Subsequent, studies 

complemented those classical findings of asymmetric segregation of fate-

determining factor. However, the molecular characterisation of the first cell fate 

determinant (Numb) was not known until 1994 [14]. To date, many cell fate 

determinants that establish the polarity of ACD have been characterized 

including, proteins, transcription factors, mRNA, histone DNA and organelles 

such as mitochondria [9].  

 

 
Figure 1.1: Mechanisms of asymmetric cell division.  

(A) When intrinsic, cytoplasmic determinants diffuse asymmetrically to one side 

of the dividing mother cell. Asymmetric segregation of fate-determining factors 

results in two different daughter cells. (B) External signals (green arrow) from the 

mother's neighbouring environment cause polarisation of the cytoplasm to 

segregate differentially. Besides, daughter cells differentiate as a result of an 

external signal from their surrounding environment or bias towards specific fate 

by interaction with the sister cell. 

 

1.2. Importance of Asymmetric cell division 

ACD is crucial in multicellular organisms for stem cells differentiation, 

specification, development, and tissue renewal [4, 9, 15]. However, dysregulation 

of ACD causes severe defects to tissue growth, manifested in cancer 

tumorigenesis [16-19]. A defining feature of stem cells is their ability to self-

renew and differentiate into specific tissue types, and asymmetric cell division is 

the core mechanism that gives stem cells their unique properties [3, 20-22]. 

Generally, stem cells differentiate daughter cells by asymmetric segregation of 

molecular fate determinants to resulting daughter cells [8, 15, 21]. Mouse 

mammary gland stem cells, purified from wild-type mammary glands into a 

laboratory culture, segregate fate determinant (Numb) asymmetrically to one of 

their daughter cells [23]. Dysregulation of asymmetric segregation of Numb leads 
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to severe consequences and the development of a tumour [23]. The number of 

stem cells in mouse mammary tumour model increased and divided 

symmetrically with Numb being uniformly distributed in daughter cells [23]. In a 

P53-mutant mice model, a similar observation was made [23]. Numb is a major 

repressor of breast cancer. Asymmetric segregation of Numb regulates the 

activity of tumour suppressor protein p53 by preventing its degradation and 

restricting the stemness to only one daughter cell [24].  

 

Moreover, epithelial stem-like cells (SLCs) identified from immortalised human 

mammary epithelial cells cultures, asymmetrically segregate mitochondria 

depending on age to daughter cells [25]. Stem-like mother cells contain both old 

and new mitochondria. However, upon division SLCs asymmetrically sorts new 

young mitochondria and passes them preferentially into the stem cell, and 

daughter cell undergoing specification inherits a mix of the two [25]. Age-

selective asymmetric segregation of mitochondria during SLCs division suggests 

a stem cell-specific mechanism to allocate young mitochondria asymmetrically to 

one daughter cell to maintain stemness properties [25]. Mitochondria is the 

powerhouse of the cell, the centre of its metabolism, regulates programmed cell 

death (apoptosis) and regulates signalling activity such as calcium signalling [26-

29]. A build-up of mitochondrial damage leads to severe consequences and aging-

related diseases such as muscle myopathies and neurodegenerative diseases [30-

32]. Accumulation of mitochondrial damage leads to dysfunction in 

mitochondrial cellular function, affects mitochondria membrane potential and 

reduces its energy production of ATP, leads to built-up of reactive oxygen species 

(ROS), and damages mitochondrial genome [33-35]. Investigation of 

mitochondrial function based on the level of reactive oxygen species (ROS) in 

living yeast indicates that ROS in the mitochondria of buds is significantly lower 

than in mother cells [36]. Accordingly, in budding yeast mitochondria undergo 

age-dependent asymmetric segregation based on their level of ROS  [36]. 

Asymmetrical inheritance of young mitochondria in SLC and budding yeast 

maintains youthhood and increases life expectancy, by preventing the 

accumulation of mitochondrial damage contributed by old mitochondria [36].  
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1.3. Mechanisms controlling asymmetric cell division in model organisms 

Mechanisms describing intrinsic factors controlling the polarity of an asymmetric 

dividing cell are poorly understood, mainly because it is difficult to develop in the 

absence of an extrinsic factor [2]. Our detailed understanding of asymmetric cell 

division in vertebrates and stem cells reliant on transferring the knowledge gained 

from studying asymmetric cell division in yeast, c. elegans and D. melanogaster 

[5, 16, 19, 37]. Almost all asymmetrically inherited fate determinant proteins are 

conserved but sometimes act differently. Most progress in understanding 

asymmetric cell division in Drosophila originates from neuroblast studies [22]. 

The mechanism of asymmetric cell division in D. melanogaster neuroblast is 

mediated by asymmetric localization of basal fate determinant factors [22, 38]. 

Between prophase and metaphase (prometaphase), basal determinant factors 

Numb and Brat (a translational inhibitor) localise at the basal plasma membrane 

[14, 38-41]. Localization of basal determinant factors is mediated by two other 

proteins; Miranda facilitates the localization of Brat and adaptor protein Pon 

mediates the localization of Numb [40, 42]. Asymmetric accumulation of basal 

determinants proceeds the localization of  PDZ domain-containing proteins at the 

apical cell cortex to establish Drosophila neuroblast apical-basal polarity [4, 16]. 

PDZ domain-containing proteins, include Par-3,  Par-6 and aPKC proteinase 

kinase, which is a D. melanogaster homolog of c. elegans PKC-3 [43-45]. Apical 

accumulation of PDZ domain-containing proteins in neuroblasts is originated 

from apical localization of Par-3, Par-6 and aPKC in epithelial cells of the ventral 

neuroectoderm during neuroblast delamination [45]. Apical asymmetric 

localization of Par-3, Par-6, and aPKC proteins is required to establish the 

apical/dorsal polarity in Drosophila neuroblast mitosis (Figure 1.2) [45]. In other 

Asymmetric cell division models, Par-proteins and their homologs are crucial to 

establish and maintain apical-basal polarity and influence the asymmetric 

localization of cell fare determinants [16]. However, localization of Par-proteins 

asymmetrically requires the influence of an extrinsic factor; such as in the one-

celled embryo of c. elegans, where polarity is influenced by sperm entry.  

 

Anterior-posterior axis in c. elegans zygote is generated during fertilization by 

sperm entry in an event known as symmetry-breaking [46-49]. The contribution 
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of sperm centrosome during fertilization and its localization posteriorly close to 

the male pronucleus initiates the polarisation of the zygote [46, 50]. Sperm entry 

polarises the actomyosin network; cortical non-muscle myosin (NMY-2) and F-

actin migrates towards the anterior pole [51]. As a result of the cortical 

actomyosin flow, Par-proteins asymmetry is established, where Par-3, Par-6, and 

PKC-3 are localized in the anterior half [51]. Cortical actomyosin surface 

contractions that were consistent throughout the cell before sperm entry become 

confined anteriorly following sperm entry [51]. Posterior localization of Par-2 

inhibits localization NMY-2 in the posterior cell cortex confining the actomyosin 

contractions anteriorly and the posterior end becomes smooth (Figure 1.2) [51].   

 

 
Figure 1.1: Mechanism of asymmetric cell divisions in multicellular 

organisms. 

 (A) Apical localization of Par-3, Par-6, and aPKC is essential to establish the 

apical/basal polarity in D. melanogaster neuroblast asymmetric cell division. 

Basal fate determinant factors Brat and Numb accumulate in the basal membrane 

following the apical localization of PDZ domain-containing proteins. Basal 

localization of Brat and Numb is facilitated by two other proteins, Miranda and 

Pon. (B) Anterior-posterior axis of c. elegans zygote is determined after sperm 

entry in an event known as symmetry breaking. Sperm entry polarises cytoplasm 

causing the actomyosin network to contract anteriorly. Following sperm entry Par 

proteins polarise where Par-3, Par-6, and PKC-3 accumulate anteriorly and Par-2 

localises to the posterior side. Par-2 inhibits the contractility of the actomyosin 

posteriorly confining its contraction to the anterior side of the zygote.     
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Until recently, the mechanism driving asymmetric localization of fate determinant  

factors in c. elegans and D. melanogaster remained a mystery. Different models 

were established to suggest a process facilitating asymmetric localization of 

future fate determinants [16].  Initial models suggested that localization of fate 

determinant in D. melanogaster neuroblasts depends on actomyosin contraction 

[52-54]. Asymmetric movement of actomyosin segregated basal fate determinants 

proteins asymmetrically to the basal side of dividing D. melanogaster neuroblasts 

[55]. However, this model has been challenged in recent findings that suggest 

Aurora-A dependent phosphorylation mechanism initiates the actomyosin flow 

and asymmetric localisation of fate determinants [56]. Moreover, in c. elegans 

zygote asymmetry breaking, Aurora-A regulates actomyosin network cortical 

flow by inhibiting its contractility from the proximal cortex and promoting its 

anterior cortical flow [57]. Therefore, the model of actomyosin cortical flow that 

asymmetrically segregate fate determinants by directional transport was 

substituted with other models that suggest a dynamic association with cortical 

proteins or cellular components facilitate the asymmetric localization of fate 

determinants [16].  

 

In lines with the above-mentioned examples of asymmetric cell division, intrinsic 

factors that establish cellular polarity are poorly understood without the influence 

of extrinsic polarising factors [2, 16]. In this thesis, we will discuss a new 

mechanism of intrinsic polarisation of asymmetrically dividing cell, found in the 

male spermatogenesis of Auanema nematode. During the male spermatogenesis 

of Auanema nematode daughter cell that inherits sex chromosome (X 

chromosome) inherits mitochondria and cytoskeletal proteins important for sperm 

function [58, 59]. The other daughter cell without sex chromosome inherits 

discarded components, such as Golgi complex and ribosomes (Figure 1.3).  
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Figure 1.3: Asymmetry in Auanema spermatogenesis. 

Cytoplasmic components, such as mitochondria (Black dots), asymmetric co-

segregation of with the X chromosome (red). This results in the production of 

exclusively X-bearing sperm by males and subsequent increase in XX progeny 

after a cross with a female.   

 

This thesis will investigate a new polarising signal during cell division caused by 

the sex chromosome to influence asymmetric segregation of cell fate 

determinants. One of few mechanism described in the literature where DNA 

causes cytoplasmic polarisation is in the fission yeast [60, 61]. The mechanism 

suggests that the fate of daughter cells is determined by the inheritance of either 

of the two parental chromatids (leading or lagging) [62]. Similarly, spatial 

arrangement and cytoplasmic localization of mitochondria caused by unequal 

chromosomes segregation was investigated in the gonadal mitosis of Acricotopus 

lucidus, a non-biting midges belonging to the bloodworm family Chironomidae 

[63]. In species of the Orthocladiinae, a superfamily of Chironomidae, germline 

soma were detected to have different karyotypes by Bauer and Beermann [64]. A 

varying number of germline-limited chromosomes (Ks) in addition to somatic 

chromosomes (S) were detected in the germline of both sexes [64, 65]. Name of 

the germline-limited chromosomes Ks derived from the German word Keimbahn, 

meaning germline [66]. All Ks chromosomes are eliminated from the future 

somatic nuclei of the early syncytial embryo, at the stage of cell polarisation, by 

remaining in the equatorial plane during mitotic cell division, while S 

chromosomes segregate equally [65, 67]. Similarly, about half of the Ks 

chromosomes are eliminated in a similar scheme in the first mitosis of the 

primordial germ cell [63, 65, 67]. However, in the last gonadal mitosis a 

differential segregation of chromosome occur; all Ks undivided migrate to only 

cell pole, while S chromosomes separate and segregate equally [65]. Daughter 
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cell that receives only S chromosomes differentiate into an aberrant spermatocyte 

in male and a nurse cell in female, whereas daughter cell inheriting all the Ks and 

Ss differentiate into a primary spermatocyte in male a and into the oocyte in 

female [65, 67]. Both daughter cells remain connected with cytoplasmic bridge, 

even while meiosis is undertaken [65]. In the germline of A. lucidus, differential 

monopolar movement of Ks to one pole is accompanied by asymmetric 

distribution of mitochondria to the cell opposite to the Ks segregation [63]. In A. 

lucidus, as result of the unequal unipolar segregation of Ks to the primary 

spermatocyte majority of mitochondria segregate to the aberrant spermatocyte 

(Figure 1.4) [63]. Mitochondria are transported back from the aberrant to the 

primary spermatocyte via a permanent cytoplasmic bridge (Figure 1.4) [63]. This 

indicate the role of aberrant spermatocyte to nourish the primary spermatocyte 

with cytoplasmic components during growth and meiosis division [63].  

 

 
Figure 1.4: Representation illustrates chromosomes segregation and 

mitochondria distribution in A. lucidus male germline.  

Mitochondria segregate opposite to the poleward-moving Ks exclusively to the 

aberrant spermatocyte in the last gonial mitosis. Later mitochondria are 

transported to the primary spermatocyte through a cytoplasmic bridge. 

Abbreviations in the figure; abs aberrant spermatocyte, spI primary spermatocyte, 

spII secondary spermatocyte and sp spermatid. The Figure was copied from [67].   
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Asymmetric polarisation of cytoplasm by chromosome segregation is poorly 

understood and has a little description in literature. The work in this thesis will 

aim to fill-in that literature gap and introduce a new mechanism of polarising 

mother cells in the event of asymmetric cell division. However, before detailing 

the asymmetric segregation of sperm components exclusively with the X 

chromosome during Auanema male spermatogenesis and its subsequent effect on 

broad sex ratio. I will first describe nematode species from the Auanema genus 

used in this research.   

 

1.4. Auanema as a model system to study asymmetric cell division 

Recently two free-living nematode species Auanema rhodensis and Aunema 

freiburgensis were discovered [68, 69]. The scientific name of the recently 

discovered genus with generic epithet  ‘aua’ derived from indigenous South 

America Tupi language meaning ‘hair’ [69].  Auanema are trioecious free-living 

nematodes were male, female and hermaphrodite co-exist simultaneously[69]. 

Nematoda phylum is vast and diverse containing a variety of reproductive modes 

[70, 71]. Predominantly nematodes reproduce sexually male/female in a 

reproductive mode known as dioecy [72]. Several other reproductive modes have 

evolved independently in other clades including hermaphrodite/male reproductive 

mode in the popular nematode c. elegans, known as (androdioecy) [73-75]. 

Trioecy is a good reproductive model to study the evolution of new mating 

systems. The co-existence of males, females, and hermaphrodites in a rare 

trioecious mating system is considered to be an evolutionary intermediate state. It 

is believed that sexually reproducing nematodes (dioecy) have evolved through 

the trioecious transient state to an androdioecy mating system [69].  

 

1.4.1. Auanema rhodensis and Auanema freiburgensis isolation and 

maintenance 

 Auanema resembles c. elegans as a laboratory model; it can be easily handled 

and maintained in the lab, these species are transparent with a short life cycle, and 

they produce a large number of progeny [69]. Auanema nematodes were first 

isolated from their natural environment; subsequently, they were inbred under 

laboratory conditions for several generations. Auanema rhodensis n. sp. (strain 

SB347) was isolated from deer ticks (Ixodes scapularis), that were used as a trap 
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for nematodes. Ticks were dropped on the upper layer of the soil in Kingston 

(Rhod Island), United States by Dr. Elyes Zhioua (W. Sudhaus, personal 

communication) [68]. Auanema rhodensis n. sp. (strain TMG33) was isolated 

from a dead tiger beetle on an AVT trail in West Virginia by Theresa Grana 

(University of Mary Washington). SB347 was subjected to 50 generations of 

inbreeding, subsequently, it was renamed APS4. TMG33 strain inbred for 11 

generations was renamed APS6. A. freiburgensis SB372 strain was isolated in 

Freiburg, Germany, by W. Sudhaus from a dung pile [69]. A. freiburgensis SB372 

strain was inbred in the lab for several generations to produce the inbred strain 

APS7. A. freiburgensis JU1782 strain was isolated from a rotting Petasites stem 

sampled in Ivry (Val-de-Marne, France). The JU1782 strain was inbred in 

laboratory conditions for several generations and was renamed inbred strain 

APS14. All strains were cultured at 20 oC in laboratory conditions, in NGM plates 

seeded with Escherichia coli OP50, as for c. elegans.  

 

1.5.  Sex determination and sex description in trioecious Auanema species  

In most of multicellular organisms, sexual reproduction has led to the formation 

of two separate sexes, males and females. However, the evolution of two separate 

sexes across lineages is not inescapable, almost 94% of flowering plants are 

hermaphrodites containing both male and female organs within the same flower 

or within the same individual plant [76]. Meanwhile in animals, hermaphroditism 

is rare compared to plants about 5% of all species [76]. The small representations 

of hermaphroditism in animals is attributed to its absence in the species-rich 

insects group, however it is common in other animal taxa, such as fish, and other 

invertebrates including barnacles, snails, corals and nematodes [76]. In most 

species in the animal kingdom with known sex determination mechanism sex is 

determined with genotypic sex determination mechanism (GSD), where genetic 

elements determine whether an individual develop into a male or a female [76]. In 

mammals, sex is determined by sex chromosomes, where males are XY and 

females are XX. In many animals the development of sex does not lie within 

genes, but an external stimulus determines the sex of the individual. This form of 

sex determination is known as environmental sex determination (ESD), such as 

the temperature-dependent sex determination in reptiles [77]. In other animals, 

sex is determined by the whole genome in a system known as haploidploidy, 
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where fertilised eggs develop into diploid females and unfertilised eggs develop 

to haploid males. This mechanism of sex determination found in about 12% of 

animal species, especially hymenopterans [77]. In other animals, there is only one 

sex chromosome, referred to as X chromosome. Sex on those animals determined 

by the dosage of  X chromosome, females are diploid for the sex chromosome 

(XX) and males are haploid for the sex chromosome (XO), in a system known as 

XX:XO sex determination system [76]. This system exist in  all apterygote and 

Plecopteran insects (e.g. dragon flies and silverfish), most exopterygote insects, 

(e.g. cockroaches, grasshoppers and crickets), some crustaceans, bony fish and 

nematodes [76]. 

 

Sex in Auanema is chromosomally determined as most nematode species. There 

is only one sex chromosome in nematodes (X chromosome) and sex 

determination depends on the X chromosome dosage [78, 79]. Males are a hetero-

gametic (XO) inheriting six pairs of autosomes and a single X chromosome (O 

indicates the absence of sex chromosome), whereas females/hermaphrodite are 

homo-gametic (XX) inheriting six pairs of autosomes and two X chromosomes 

[59] [72]. The mechanism for sex determination in Auanema is generally known 

as the XX: XO mechanism [69, 72]. The primary Sex determination signal in 

Auanema relies on the ratio between sets of autosomes and X chromosome [78]. 

Diploid animals resulting from fertilization between two X-bearing gametes (XX: 

AA ratio 1) develop to females or hermaphrodites depending on environmental 

conditions, whereas animals resulting from fertilization between nullo-X gamete 

(A gamete without sex chromosome)  and X-bearing gamete (X: AA ratio 0.5) 

develop as a male [59]. 

 

1.5.1. Difference between hermaphrodites and females  

Both species A. rhodensis and A. freiburgensis are generally morphologically 

similar, with a cylindric body covered with a fine annulation cuticle [69]. 

Auanema hermaphrodite produces all of the three sexes, males, females, and 

hermaphrodites, in varying ratios (Table 1.1) (Figure 1.7) [80]. Hermaphrodites 

and females are genetically similar and morphologically indistinguishable. The 

difference between females and hermaphrodites is environmentally determined, 

characterised during the larval developmental stages when hermaphrodites pass 
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through compulsory non-feeding dauer stage (Figure 1.5) [68]. Nematodes before 

adulthood naturally pass through four juvenile larval molts called (L1-L4) (Figure 

1.5) [68]. Independent of the environmental conditions specific proportion of L1 

larva are predetermined to form non-feeding and stress-resistant third larval 

morph called dauer [68, 81]. Dauer larvae are characterised by their ability to 

stand up on their tail and display a tube waving behaviour potentially searching 

for invertebrate carrier [68, 69]. In favourable growth conditions, dauers remain 

in their resistant non-feeding form for ~24h after they exit the dauer stage [68].  

A. rhodensis Juveniles L1 hermaphrodites are distinguished by their small gonad 

primordium in comparison to other L1 female siblings that don’t pass through the 

stress-resistant juvenile stage [68, 81]. In A. rhodensis sex determination and 

dauer formation are linked only hermaphrodites develop from dauer (Figure 1.5) 

[68, 80]. The link between hermaphroditism and dauer formation was determined 

by isolating only A. rhodensis dauers and killing all A. rhodensis non-dauer 

worms by 1% sodium dodecyl sulfate solution. All the 1,015 dauers developed 

into self-reproducing hermaphrodites [80]. A. rhodensis self-reproducing 

hermaphrodite throughout their reproductive life predominantly produces more 

hermaphrodites than female progeny (Table 1.1) [80, 81]. However, In standard 

culture conditions, eggs laid within the first 15h develop into mostly females [80]. 

Despite hermaphrodites and females being genetically identically dauer formation 

is environmentally determined. Manipulating hormones responsible for dauer 

formations can induce a pre-determined larvae as a female to undergo dauer 

formation, then develop to hermaphrodite, and vice versa [80, 81]. A. rhodensis 

L1 larvae that typically develop into females in standard culture conditions can be 

induced to become a dauer and redirected to develop as a hermaphrodite by the 

removal of cholesterol when cultured in low supply of food [69, 80]. 

Furthermore, dauer formation is inhibited in L1 larva with a small gonad 

primordium destined to become hermaphrodites and redirected to females 

development by the addition of the hormone dafachronic acid [69, 80].  

 

A. freiburgensis predominantly produce females in isolation (8.7% 

males, 91.1% females, 0.2% hermaphrodites) (Table 1.1) [69]. Whereas, In 

response to crowding conditions A. freiburgensis produce mostly hermaphrodites 

(80.1% hermaphrodites, 6.2% females, 13.6% males) [69]. In contrast to A. 
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rhodesnis, hermaphrodite and female juveniles (L2) are indistinguishable by the 

size of their gonad primordium. Similar to A. rhodensis, A. freiburgensis dauer 

formation, and hermaphroditism is linked, only juveniles that undergo dauer stage 

develop into hermaphrodites [69]. 

 
Figure 1.5: Auanema life cycle.  

Auanema males and females before adulthood pass through four juvenile larvae 

molt (L1-L4). Sex determination and dauer formation is linked in Auanema only 

L1 passes through a compulsory dauer stage, in response to stress signals, develop 

as a hermaphrodite   

 

1.5.2. Males relatively rare in Auanema  

Males in Aunema are generally smaller in size compared to their 

female/hermaphrodite counterparts. Males are characterized morphologically at 

the posterior end by the bluntness of the tail and the presence of copulatory 

spicules [69]. Males in Auanema are relatively rare, do not go through a dauer 

stage, and produced in a low percentage from self-fertilizing hermaphrodite. A. 

rhodensis hermaphrodite produce (9-13%) males and (8.7-13.6%) males produced 

from A. freibrugesnis hermaphrodite [80, 81]. Furthermore, Auanema male mated 

with a female produce cross-progeny with a remarkably skewed sex ratio [59, 68, 

69, 81]. A. rhodensis male outcross with a female produces a significantly skewed 

sex ratio, males are only (1.6-2.3 %) of the total cross progeny [59, 68]. Similarly, 

A. freibrugesnis male outcross with a female produces a low percentage of males 

(18%) (Table 1.1) [69]. The low percentage of males, in Auanema, produced 

during an outcross is particularly peculiar because it stands against Mendel’s first 

law that predicts a cross between an (XO)  male and an (XX) female should 

produce equal 1:1 ratio of males to females [82]. The unequal transmission of X 
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chromosome and subsequent production of skewed sex ratio in Auanema 

outcrosses is attributed to the near absence of motile nullo-X sperms [59]. A. 

rhodensis hermaphrodite self-fertilisation predominantly produce XX animals, 

because it generally produces duplo-X sperm and nullo-X oocyte (Figure 1.6C 

and D). In rare occasions during hermaphrodite spermatogenesis, when both X 

chromosomes fail to segregate together an X-bearing sperm is formed leading to 

the production of males from selfing (Figure 1.7). On the other hand, A. rhodensis 

females generally produce X-bearing oocyte and in rare occasions produce nullo-

X oocytes (Figure 1.6A). Since males only produce a one kind of sperm an X-

bearing sperm, a cross between male and female will result in mostly XX progeny 

and a rare number of males (Figure 1. 6)  [83]. As a result of the unique 

gametogenesis in A. rhodensis, X chromosome in sons is inherited paternally 

(Figure 1.7). This non-canonical inheritance pattern of X chromosome is 

explained by A. rhodensis male exclusive production of X-bearing sperm and 

females/hermaphrodite production of nullo-X oocyte [83]. It is not yet clear why 

there is a difference in outcross male brood ratio between A. freibrugesnis and A. 

rhodensis. But since males exclusively produce X-bearing sperm, it is likely that 

the difference is due to the rate of X chromosome non-disjunction in female 

leading to the production of nullo-X oocytes. i.e. the rate of X chromosome non-

disjunction in A. freibrugesnis female is higher than in A. rhodensis, therefore the 

former produces more nullo-X oocytes and hence more male progeny during an 

outcross (Figure 1.7).  

Table 1.1. Sex ratio of A. rhodensis and A. freibrugesnis progeny of whole 

broods from selfing and outcross. 

Some percentages are presented in a ratio depending on different experiments 

reported in different publications. Percentages with similar colour (blue) are from 

the same experiment.   

 
Species  Reproduction  (XO) 

Males % 

(XX) 

Females % 

(XX) Hermaphrodite 

% 

Rhodensis (APS4) Selfing in isolation 

(uncrowded 

condition) 

9-13 (10) 44 46 

outcross 1.6-2.3 98.4-97.7 (total XX progeny) 

Freiburgensis 

(APS7) 

Selfing in isolation 

(uncrowded 

condition)  

8.7-13.6 91.1 0.2 

outcross 18  82 (total XX progeny)  
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Figure 1.6: X chromosome segregation in A. rhodensis meiosis.  

The figure represents meiosis of F1s resulting from a cross between two 

polymorphic A. rhodensis strains copied from [83]. (A) female oogenesis 

produces X-bearing oocytes, and X chromosome recombines during the process. 

Autosomes in white and X chromosome in grey and black, representing 

inheritance of an X chromosome from each parental strain. (B) Male 

spermatogenesis exclusively produces an X-bearing oocyte. In the first meiosis, 

Autosomes segregate to different daughter cells, while unpaired single X 

chromatids separate and segregate equally to daughter cells. In the second 

meiosis, X chromatid segregates exclusively to one daughter cell. (C) 

hermaphrodite oogenesis exclusively produces an X bearing oocyte. Unpaired X 

chromosomes segregate to the polar body during the first meiosis. (D) 

hermaphrodite spermatogenesis produces duplo-X sperms. Chromatids of 

unpaired X chromosomes separate equally to both daughter cells during the first 

meiosis. In the second meiosis, both X chromosomes segregate to the future 

functional sperm. 
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Figure 1.7: Auanema mating dynamics.  

(A) A cross between a male and a female generally produces XX animals that 

develop to either female or hermaphrodites depending on environmental 

conditions. In the event of nondisjunction during female oogenesis, a nullo-X 

oocyte is produced, leading to the generation of male cross progeny. (B) 

hermaphrodites generally produce XX animals from selfing due to its overall 

predominant production of nullo-X oocytes and duplo-X sperm. However, on rare 

occasions, single X-bearing sperm are produced, leading to the male formation. 

(C) Since hermaphrodites produce nullo-X oocytes and males exclusively 

produces X-bearing sperm, a cross between hermaphrodite and a male only 

produces male cross progeny.  

 

During male spermatogenesis, subcellular components important for sperm 

function and motility co-segregate asymmetrically with the X chromatid 

exclusively producing functional X-bearing sperm, whereas nullo-X sperm is 

discarded [59]. Modifications to the spermatogenesis scheme in Auanema male, 

in contrast to c. elegans male (XO), results in the exclusive production of X-

bearing sperm. The absence of nullo-X sperm in Auanema males helps explain 

the low percentage of males produced during an outcross [59]. To understand the 

importance of this asymmetric X chromosome transmission and its subsequent 

co-segregation with sperm components in producing skewed sex ratio we first 

need to understand male spermatogenesis in the popular nematode model c. 

elegans.  
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1.6.  Spermatogenesis in Auanema compared to c. elegans 

A remarkable feature of Auanema male spermatogenesis is the exclusive 

production of X-bearing sperms and the near absence of motile nullo-X sperms in 

contrast to c. elegans [59]. Males in c. elegans (XO) produce functional X-

bearing and nulllo-X sperms; both sperms are transmitted equally in the event of 

an outcross. In the dividing c. elegans spermatocyte during the second anapahse, 

sperm component important for sperm function and motility segregate equally 

from the central residual body to the budding spermatids resulting in the 

production of a nullo-X and X-bearing motile spermatozoa [84]. The difference 

between Auanema male and c.elegans spermatogenesis is clear in the second 

anaphase, however in the first anaphase cytoplasmic components segregate 

equally in both species.  

 

1.6.1. physiology and cytology of c. elegans male spermatogenesis  

Primary c.elegans spermatocyte divides equally to generates two secondary 

spermatocytes during meiosis I of c. elegans spermatogenesis [85]. During 

meiosis II from each secondary spermatocyte, two haploid sperm segregate from 

a central residual body [85]. Spermatids budding from the central residual body 

will contain essential components important for sperm function and motility, 

including centriole pair, mitochondria and major sperm protein (MSP) [86]. On 

the other hand, discarded cytoplasmic materials, including Cytoskeletal 

components (myosin, actin, and tubulin) the Golgi apparatus, endoplasmic 

reticulum (ER) and all ribosomes, segregate to the central residual body (Figure 

1.8) [85, 87]. MSP is an important protein for nematode sperm motility. It forms 

an elaborate filament system that enables amoeboid crawling motility [88-90]. In 

c. elegance spermatogenesis, MSP is initially synthesized and assembled into a 

fibrous body in the primary spermatocyte. Fibrous body (FB) accumulates inside 

a membranous organelle (MO) assembling into a doubled-membrane organelle 

known as fibrous body membranous organelle (FB-MO) [91]. The assembly of 

the FB-MO complex ensures the segregation of MSP into the budding spermatids 

[91]. FB-MO complex separates after spermatids segregation, fibrous filaments 

depolymerize depositing MSP into the spermatid cytoplasm and the membranous 

organelle fuse with the spermatid plasma membrane [91]. Activation of MSP 

inside the sperm enables amoebae-like crawling motility [91].  
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In total, c. elegans spermatogenesis produces two X-bearing sperms, two nullo-X 

sperms and two residual bodies (RB). Essential components important for sperm 

function and motility segregate with the spermatids, unwanted cellular 

components discarded into a central residual body [85]. The primary 

spermatocyte contains a single unpaired X chromosome that lags during the first 

meiosis and segregates to either of the two secondary spermatocytes. When the 

secondary spermatocyte containing the X undergoes meiosis II, sister chromatids 

of the X chromosome separate equally to the budding spermatids producing two 

X-bearing sperms and a central residual body (RB). Meanwhile, in the other 

secondary spermatocyte without the X, cellular components essential for sperm 

function segregate to the budding spermatids and non-sperm cellular materials 

discarded to a central residual body (Figure 1.8) [59, 92, 93].  

 

 
 

Figure 1.8: X chromosome segregation in c. elegans male spermatogenesis.  

c. elegans primary spermatocyte contains a single unpaired X chromosome (red). 

X chromosome lags during c. elegance Anaphase I, then segregates to one of the 

two secondary spermatocytes. Cellular components important for sperm function 

and motility segregate equally in meiosis I irrespective of the direction of the 

lagging X. During anaphase II of secondary spermatocyte with the X, sister 

chromatids of the X chromosome split and segregate equally to budding 

spermatids, producing two X-bearing sperms and a central residual body. On the 

other secondary spermatocyte, sperm components segregate equally to budding 

spermatids producing two nullo-X sperms and a central residual body. DAPI 

staining merged with DIC (differential interference contrast) microscopy image 

illustrates the shape of the dividing cell in correspondent stages and lagging of the 

X chromosome in Anaphase I. DAPI and DIC cytology images adopted from 

[58]. 
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1.6.2. Auanema male spermatogenesis exclusively produces X bearing sperm  

Primary Auanema male spermatocyte divides equally during meiosis I, similar to 

c. elegans. In contrast to c. elegans meiosis I no lagging of the unpaired X 

chromosome is observed, X chromatids of the unpaired X segregate equally to 

both secondary spermatocyte [59]. However, during meiosis II, The lone X 

chromatid lags and reductionally segregate to either pole of the dividing 

secondary spermatocyte (Figure 1.9) [59]. In contrast to c. elegans 

spermatogenesis, lagging X chromosome in Auanema is observed during meiosis 

II. During meiosis II, cellular components important for sperm function and 

motility, including MSP and mitochondria, segregate exclusively to the X bearing 

sperm (Figure 1.9) [58, 59]. In the first meiosis, fibrous bodies (later 

depolymerizing to MSP) and mitochondria segregate equally to secondary 

spermatocytes. However, in the second anaphase, they segregate exclusively with 

the X-bearing spermatid. As a result, only the X-bearing sperm will contain 

essential cellular components important for sperm function and mature to motile 

spermatozoa [59]. Cellular components unnecessary for sperm function, including 

Golgi-apparatus and cytoskeletal proteins segregate to the nullo-X pole of the 

dividing secondary spermatocyte, suggesting that nullo-X cell undertake the 

function of the residual body (Figure 1.10). In contrast to c. elegans 

spermatogenesis, no central residual body is formed, rather the nullo-X cell 

inherits discarded materials and function as disposal residual body with DNA 

[59].  
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Figure 1.9: X chromosomes segregation in A. rhodensis male 

spermatogenesis.  

During Anaphase I X chromatids of the unpaired X chromosome (red cylinder) 

splits and segregate equally to both secondary spermatocytes. During anaphase II, 

X chromosome lags then segregate exclusively to one pole of the dividing 

secondary spermatocytes. Sperm components important for sperm function and 

motility segregate exclusively to the X-bearing pole. DAPI and DIC images 

illustrate chromosomes and the shape of the dividing cells for the corresponding 

phase. DAPI staining illustrates lagging X chromosome in the second anaphase 

segregating exclusively to one pole of the dividing spermatocyte. There is no 

formation of a central residual body when spermatids partitioned. Daughter cells 

without the X undertake the role of a residual body with DNA. DAPI and DIC 

adopted from [58].  

 

 

 
Figure 1.10: Segregation of MSP (green) to the X-bearing pole during A. 

rhodensis male spermatogenesis.  

Images illustrate the segregation of MSP (green) and DAPI (blue) in 

corresponding spermatogenesis phases. Lagging X chromosome in anaphase II is 

indicated by the red arrow. MSP segregates exclusively with the X bearing pole in 

meiosis II. Producing an X bearing sperm and a residual body with DNA. 

Cytology images adopted from [58].   

 

Major changes in male spermatocyte microtubule organization cause a unipolar 

portioning towards the X-bearing pole. During the first meiotic division 

organisation of microtubules is asymmetric leading to equal segregation of X 

chromatids and sperm components to the secondary spermatocytes. During the 

second anaphase, microtubules were assembled symmetrically as long as the X 

chromosome is centrally located. However, this symmetry shifts as soon as the X 

chromosome physically contacted one anaphase plate without being fully 

incorporated, spindles were asymmetric with longer microtubules emerged from 

the X-bearing pole [58]. In the second anaphase, sperm components, including 

MSP, initially remain centrally positioned regardless of the direction of the 

lagging X chromosome. However, when the X chromosome is fully incorporated 

into one anaphase plate, MSP partitioned unipolarly towards the X-bearing pole. 
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Electron Microscopy analysis followed by electron tomography analysis of 

dividing A. rhodensis spermatocyte revealed that the partitioning of sperm 

components in anaphase II occurred briefly after the X segregation [58]. MSP and 

mitochondria were centrally positioned as long as the X chromatid remained 

centrally located during metaphase II. However, briefly, after X chromosome 

segregation to one pole, mitochondria and MSP segregate exclusively to the X-

bearing pole (Figure 1.11) [58]. As a result of asymmetric co-segregation of 

sperm components with the X chromosome and exclusive production of X-

bearing sperm, a cross between Auanema and females produces a significantly 

skewed sex ratio, with predominantly female progeny [59]. Auanema XX females 

generally produce X bearing oocyte, but in the event of X chromosome 

nondisjunction, females produce nullo-X oocytes in a very low percentage [83]. 

The near absence of null-X sperm produced by Auanema male and rarity of nullo-

X oocytes produced by females explains the low number of male progeny 

resulting from an outcross (Figure 1.12) [59, 81, 83].  

 
Figure 1.11: Electron tomography of anaphase II of A. rhodensis male 

spermatogenesis. 

 X chromosome segregates exclusively to one pole of the dividing secondary 

spermatocytes. As soon as the X chromosome is incorporated into one anaphase 

plate sperm components, MSP and mitochondria, segregate  

towards the X-bearing pole. Figure provided by Anna Schwarz (personal 

communication). 
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Since there is a correlation between sperm components and X chromosome 

segregation, we hypothesised that Auanema X chromosome guides and reorganise 

the cytoplasm during meiosis II. This thesis will investigate the internal polarising 

signal initiated by the X chromosome causing asymmetric segregation of 

subcellular compartments. Auanema offers a unique easy-to-score phenotype, 

where the type of division occurring during male spermatogenesis can be 

determined from the sex progeny of that male.  

 
Figure 1.12: Asymmetric cell division in anaphase II of A. rhodensis 

spermatogenesis.  

(A) a schematic representation illustrates a cytological observation. Sperm 

components, including mitochondria and MSP, segregate exclusively with the X 

chromosome. The sister cell inheriting the X chromosome is viable, whereas the 

sister cell inherits discarded components, including ribosomes, Golgi-complex, 

and endoplasmic reticulum. It undertakes the role of a residual body that contains 

DNA. (B) Antibody staining of anaphase II illustrates MSP (green) segregates 

exclusively to the X-bearing pole. DAPI staining of DNA (blue) indicates that the 

residual body will contain DNA. (C) A cross between an XX female and an XO 

male will produce predominantly XX progeny since only the paternal gamete 

with the X viable and the nullo-X gamete is non-viable. In the rare event of 

nondisjunction in females (N.D.) in females, nullo-X oocytes will be produced. 

Maternal nullo-oocyte fertilization with paternal X sperm will produce an XO 

male. The rarity of nullo-oocytes and the near absence of nullo-X sperms explains 

the low number of the male population in Auanema. 
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1.7. Scope of the thesis 

The Thesis investigate if the X chromosome is a polarising signal during the 

spermatogenesis of Auanema male. 

 

First, I will investigate the hypothesis if the X chromosome is a polarising signal 

during the spermatogenesis of an XX masculiniser mutant, pseudo-male (chapter 

3). An A. rhodensis XX male mutant was isolated from a chemical mutagenesis 

screen. This mutant, called masculiniser (Arh-mas-1), has the XX karyotype, but 

the morphology of a male. In this chapter, I will investigate the spermatogenesis 

of XX masculinisers to determine if the X chromosome is also a polarising signal 

directing cytoplasmic components segregation.  

 

Secondly, in the 4th chapter, I will discuss the generation of A. freibrugesnis 

recombinant advanced intercross lines (RIAILs) using two A. freiburgensis 

polymorphic strains. A. freiburgensis RIAILs were constructed to determine if 

mosaic shuffling from two different parental genomes will give rise to a new 

extreme phenotype (transgression), males that are able to produce functional 

nullo-X sperm. Then, genome from RIAILs will be used for genetic mapping 

analysis to identify candidate regions involved in the X chromosome segregation 

and the spatial localisation of cytoplasmic components during Auanema 

spermatogenesis. 

 

Finally, I will discuss the introgression of the X chromosome from one strain into 

the genetic and cellular background of another (Chapter 5. The unique X 

chromosome inheritance pattern in Auanema, where the X chromosomes in sons 

is inherited paternally, will enable the generation of males with an X chromosome 

from one strain while autosomes and the cellular background will be from another 

strain. Spermatogenesis of those males will provide a model system to study 

mito-nuclear interactions. Since I hypothesized that the X chromosome is a 

polarising signal in Auanema male spermatogenesis, incompatibility between X 

chromosomes, autosomes and mitochondria in those males is expected.  
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Chapter 2 

 

General materials and methods 

General materials and methods for this thesis will be detailed here unless stated 

otherwise in each chapter's materials and methods. Pre-prepared materials are 

provided by the University of Warwick school of life science preparation room. 

 

2.1. Materials 

 

2.1.1. Reagents 

 

1N M9 Buffer 

For 1 litter of M 9, 3 g of KH2PO4, 6 g of Na2HPO4, 5 g of NaCl, dissolved into 1 

L of dH2O. Autoclaved, then 1 ml of 1 M MgSO4 was added.  

 

1M NaOH:  

To make up one litter of 1 M of sodium hydroxide. 40 g of NaOH was dissolved 

into a 1 litter of dH2O. Solution mixed well until NaOH fully dissolved using a 

magnetic stirrer.  

 

1M Sodium azide  

65 mg of powder sodium azide was dissolved into 1 ml of dH2O. Stored at 4 oC.  

 

Nematode freezing solution 

For 1 Litre of the liquid freezing solution, 5.85 g of NaCl, 6.8 g of KH2PO4, 300 

ml of glycerol was added to 600 ml of dH2O and autoclaved. After autoclaving, 3 

ml of sterile 0.1M MgSO4 was added.  

 

Lysis buffer  

100 mM Tris(pH 8.5), 100 mM NaCl, 50 mM EDTA, 1% SDS and 1% beta-

Mercaptoethanol added fresh to the lysis mix when required. Then 2.5 µl of 

proteinase K (20mg/ml) was added to each tube containing 500 µl of lysis buffer. 
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3 M sodium acetate (CH3COONa) 

24.61 g of CH3COONa were dissolved in 80 ml of water to make up a total of 

~100 ml solution. The solution was mixed using a magnetic stirrer. 

 

1 M Tris-HCl  

To make one litter of 1 M Tris-HCl, 121.14 g of Tris dissolved in 800 ml dH2O. 

pH adjusted to 7.0 by adding an appropriate volume of concentrated HCl. dH2O 

was added to bring the solution to 1 liter. Generally, Tris-HCl is prepared by the 

Warwick school of life science preparation room. Stored at room temperature.  

 

Alkaline hypochlorite solution (bleach solution)  

1.5 ml of sodium hypochlorite and 2 ml of 4 N NaOH were added to 7.5 ml of 

dH2O.  

 

1 M KPO4 (Potassium phosphate) buffer 

to prepare 1 liter of 1 M KPO4, 108.3 g of KH2PO4 ,35.6 g of K2HPO4, and dH2O 

was added to 1 liter. The solution was autoclaved then mixed well until 

completely dissolved. 

 

5 mg/ml cholesterol  

0.5 g of cholesterol mixed in 100 ml of 100% ethanol. The solution was mixed 

well in a magnetic stirrer. 

 

1 M MgSO4 Magnesium sulfate  

98.59 g of MgSO4 was mixed in 400 ml of dH2O. The solution was mixed well 

using a magnetic stirrer. 

 

1M CaCl2 calcium chloride  

58.8 g of CaCl2 was mixed in 400 ml of dH2O. The solution was mixed well using 

a magnetic stirrer. 
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Nystatin 10mg/ml  

0.25 g of Nystatin was mixed with 25 ml of 70% ethanol in a 50 ml falcon tube 

and Stored at -20.   

 

50X TAE 

242 g of Tris-base dissolved in 700 ml of dH2O. 57.1 ml of acetic acid and 100 ml 

of 0.5 M EDTA (pH 8.0) were added, the pH of the buffer is not adjusted and 

should be ~8.5. The solution is adjusted to a final volume of 1L by adding dH2O. 

Generally, 50X TAE is prepared by Warwick school of life science preparation 

room. Stored at room temperature.    

 

2.1.2. LB plates 

LB plates are prepared by mixing the following items; 10 g of Bacto-tryptone, 5 g 

of Bacto-yeast, 5 g of  NaCL, and 15 g of agar to 1 L dH2O,  the pH is adjusted to 

7.5 by adding 1 M of NaOH [94]. LB solution was sterilized by autoclaving, then 

when cooled, was poured into plates. Once solidified plates are ready to use. LB 

plates were prepared by Warwick school of life science preparation room.  

 

2.1.3. L-Broth 

LB broth is made by mixing the following items; 10g of Bacto-tryptone, 5g of 

Bacto-yeast, 5g of NaCl, and dH2O added to 1L, pH adjusted to 7.0 using 1 M 

NaOH. L-Broth was prepared by Warwick school of life science preparation 

room.   

 

2.1.4. Nematode and bacterial Strains 

 

Table 2.1. Nematode and bacterial strains used in the study.  

 

Strain Species Mutant or 

wildtype 

Genotype Allele 

APS4  A. rhodensis strain SB347, inbred 50x.  wildtype   

APS6 A. rhodensis strain TMG33, inbred 11x.  

 

Wild type   

APS20 A. rhodensis Mutant (EMS)  mas-1 brz-3 

APS7 A. freiburgensis SB372, inbred 10X Wild Type    
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APS14 A. freiburgensis JU1782, inbred 10X Wild Type    

APS28 A. freiburgensis Mutant (EMS) clr-1 brz-4 

OP50-1 E. coli Wildtype   

 

2.2. Methods 

 

2.2.1.  preparation of bacterial food source 

Auanema nematodes can be maintained axenically. However, it is difficult to 

maintain it alone over a long period; it will develop very slowly due to the 

formation of dauer in the absence of food source [69, 95]. Therefore, it is 

maintained monoxenically in laboratory conditions, as c. elegans, with E. coli 

strain OP50-1 used as a food source [96]. Initially, E. coli strain OP50-1 from 

glycerol stock was streaked for a single colony on a pre-prepared LB agar plate. 

Bacterial culture grew by incubation at 37 oC overnight. A rich pre-prepared L-

broth containing Streptomycin with a final concentration of 50 µg/ml was 

inculcated aseptically using a single colony from a streak plate. Inoculated LB 

medium with E. coli OP50-1 was allowed to grow overnight at 37 oC. The E. coli 

OP50-1 streak plate and the liquid culture were moved to 4 oC for a long period of 

incubation. 

 

2.2.2. preparation of nematode growth medium (NGM) 

 

Materials and reagents:  

NaCl, Agar, peptone, 5 mg/ml of cholesterol in ethanol, 1 M of KPO4 buffer 

(potassium phosphate buffer), 1 M of MgSO4, Streptomycin, Nystatin, dH2O. See 

the reagent section for the recipe. The amount and concentration of each 

component to make up a final volume of 400 ml and 1 L of NGM are outlined in 

table (2.2).   

 

Table 2.2. Components required to prepare NGM.  

component  Stock 

concentration 

Final 

concentration 

Final 

Volume 400 

ml 

Final Volume 

1 L 

NaCl   1.2 g   3 g 

Bacto-peptone   1 g  2.5 

Agar    6.8 g 17 
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Magnesium 

sulphate  

1 M 1 mM 400 ul 1 ml  

Cholesterol  5 mg/ml  5mg/l  400 ul 1 ml  

Calcium 

chloride  

1 M  1 mM  400 ul 1 ml  

Potassium 

phosphate ph6 

1 M  25 mM  10 ml  25 ml  

Streptomycin 50mg/ml 50 ug/ml 400 ul  1 ml  

Nystatin  10 mg/ml 

75% Ethanol  

0.01 mg/ml 400 µl  1 ml  

Water    390 ml 975 ml  

 

Method 

To make up a final volume of 1 L of NGM, 3 g of NaCl, 17 g of agar, and 2.5 g of 

peptone in a 2 L Erlenmeyer flask. 975 ml of dH2O was added. The mouth of the 

flask was covered with aluminium foil and autoclaved. Once cooled, the 

following components were added; 1 ml of 1 M CaCl2, 1 ml of 5 mg/ml 

cholesterol in ethanol, 1 ml of 1 M MgSO4, and 25 ml of 1 M KPO4 buffer. Anti-

bacterial streptomycin and anti-fungal nystatin were added. Then, the NGM 

solution was mixed well.     

 

2.2.3. Preparation of NGM Petri plates 

With a careful sterile procedure, NGM solution was dispensed into Petri plates 

using a peristaltic pump filling Petri plates 2/3 full of agar. Plates were left at 

room temperature overnight to allow for the detection of contaminants, and to 

allow excess moisture to evaporate.  

 

2.2.4. Seeding NGM plates   

Using a sterile technique, 1 ml of the OP50-1 E. coli liquid culture is pipetted to 6 

cm NGM plates, 3-5 ml in 10cm plates, and ~100 ul to each well of 24 multi-well 

plates. E. coli OP50-1 lawn was allowed to grow overnight at room temperature.    

 

2.2.5. Nematodes handling and maintenance of stock  

Several methods were used to transfer nematodes and maintenance of different 

Auanema stocks. A convenient method used often to maintain stocks was 

chunking, where a sterilised spatula was used to chunk agar from an old plate 

with hundreds of worms to a fresh plate.    
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The second method was picking individual worms using a platinum wire, a 

worm-picker. Platinum wire worm-picker is made by mounting a piece of 2-3 

inches of platinum wire to the narrow tip of a pasture pipet. The tip of the 

platinum wire was shaped into a hook, and sandpaper was used to smooth sharp 

edges. Under a dissecting microscope, individual worms were picked from plates 

and released to new plates. Sometimes the stickiness of the OP50-1 E. coli lawn 

was used to form a blob at the end of the worm-picker, then individual worms 

were selected by touching the top of the worm.  

 

 Auanema nematode culture was generally incubated at 20 oC. However, 

sometimes they were moved to 15 oC to slow down the growth of the culture.    

 

2.2.6. Isolating Auanema hermaphrodites and females  

Under a dissecting microscope, Adult males are generally easily distinguished by 

their blunt tail and almost transparent body. However, Adult hermaphrodites and 

females are morphologically indistinguishable in the Auanema population unless 

females were isolated before impregnation by males. Auanema hermaphrodites 

can be separated by isolating stress-resistant dauers from crowded plates. Dauers 

are characterised by their ability to stand on their tails and display a tube waving 

behaviour.  In favourable growth conditions, dauers exit their resistance non-

feeding state and develop to adult hermaphrodites in ~24 h [69].  

 

In isolation, A. rhodensis hermaphrodite produced a mixture of dauers and non-

dauers [80]. It is relatively difficult to isolate the non-dauers under a dissecting 

microscope. Therefore, to efficiently separate XX larvae that will develop into 

females, eggs laid by a hermaphrodite were separated into individual plates; 

usually, a multi-well plate is used. A. rhodensis hermaphrodite was left to lay 

eggs for ~24 h before moving it to a fresh new plate. Eggs laid on the same day 

will be synchronised and grow relatively at the same age. Once they exit the 

second larval stage after 2-3 days, XX larvae destined to be females will proceed 

to the 3rd larvae, and those predetermined to be hermaphrodites will develop into 

non-feeding dauer. At this stage, individual animals were separated into separate 

wells of a multi-well plate. At adulthood, hermaphrodites will be distinguished 
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from unimpregnated females by their ability to self-fertalise and lay fertilised 

eggs. 

 

On the other hand, A. freiburgensis hermaphrodites generally produce females in 

isolation. A. freiburgensis hermaphrodites are left to lay eggs for ~24 h to 

synchronise the age of the developing larvae. Once larvae exit the second larval 

stage after 2-3 days, A. freiburgensis dauers are distinguished by their distinctive 

long then body and small gonad. 3rd larvae females can be isolated by the shape of 

their body and the size of their gonads compared to dauers. At adulthood, A. 

freiburgensis females that are not impregnated will lay unfertilised eggs.     

 

2.2.7. Cleaning contaminated stocks using sodium hypochlorite treatment 

In a fresh seeded NGM plate, 5 ul of bleach solution was pipetted to form a spot 

on the side of the bacterial loan. A mixture of adults and eggs from contaminated 

culture were added to the spot using the pick to break up any bacterial clumps. 2-

3 spots of bleach added in separate locations adjacent to the lawn, and a mixture 

of adults and eggs were added to each of them. Once the bleach is soaked, and 

bacterial contamination is still visible, another 5 ul of bleach is added to the same 

spot. The plate was left at room temperature for ~5 h until eggs hatched and 

larvae crawled back to the OP50-1 loan. Healthy contamination-free larvae were 

moved to a fresh NGM plate to establish a new culture.         

 

2.2.8. Freezing nematodes 

Nematodes were cultured into two 10 cm NGM plates. Nematodes were let until 

plates have just been starved of food at this stage; there should be numerous L1 

and L2 larvae, as those are the nematodes that would survive freezing most 

readily. Plates were washed with 5-10 ml of M9 buffer or dH2O and swirled 

around to loosen worms. The solution was carefully pipetted into 15 ml conical 

tubes. Tubes were centrifuged, and worms were collected at the bottom of the 

tube. The supernatant was removed, and worms were resuspended in 3 ml of M9. 

1ml was pipetted to screwcap cryogenic tube to make triplicate of each line. An 

equal volume freezing solution was added to each tube. Tubes were then placed 

inside a styrofoam box and put inside -80 incubator and left overnight to help 
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freezing worms slowly before moving worms’ stock to the final liquid nitrogen 

storage. 

 

2.2.9. EMS mutagenesis  

Three Petri plates of 6 cm diameter containing a few hundred Auanema 

nematodes at the early adult stage were washed off using 2-3 ml of sterile M9 

buffer per plate. The M9 nematode suspension was collected in a sterile, 

disposable 15 ml centrifuge tube. The tube was then centrifuged at maximum 

speed for 7 minutes, and nematodes were re-suspended in 2 ml of M9. 20 µl of 

EMS was then added to the tube using filtered tips. The tube was gently swirled 

to allow EMS to dissolve, to a final concentration of 47 mM. EMS is a potent 

mutagen, and thus all materials (gloves, pipette, tips) that were in contact with the 

EMS were treated with 1N NaOH to inactivate it. The tube was covered with 

parafilm, and the nematode suspension was incubated at room temperature (20 

oC) on a low-speed rack for 3.5 h. The tube was then incubated vertically until 

nematodes sank and formed a pellet. The supernatant was then discarded into the 

1 N NaOH beaker. Nematodes were washed three times using 5 ml of M9. The 

tube was inverted 25-30 times and left to form a pellet. The supernatant was 

discarded into the 1 N NaOH baker. After the final wash, nematodes were 

resuspended into ~500 μl of M9 and pipetted out into two NGM plates containing 

a lawn of Escherichia coli OP50-1. The liquid was let to dry. Healthy-looking 

adults were transferred to a new plate to be used as the P0 generation. 

 

2.2.10. Single worm genotyping 

DNA extraction  

Single nematodes were picked into a 200 µl PCR tube, each containing 10-20 µl 

of 1X PCR buffer mix. Tubes containing nematodes were frozen at -80 °C. 

Frozen samples were thawed, and 0.5 µl of proteinase K was added. Samples 

were incubated at 65 °C for 60 minutes, and the enzyme was deactivated at 95 °C 

for 15 minutes. Then, DNA was stored at -80 °C to be used when required. 

 

PCR 

DNA fragment harbouring genetic markers were amplified by adding 2 µl of 

forward primer, 2 µl of reverse primers, 10 µl of PCR green master mix (Promega 
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2X), 4 µl of water and 2 µl of DNA in each PCR reaction. Samples were run for 

30-35 cycles, with initial denaturation for 7min at 95 °C. Cycling conditions were 

as following; denaturation at 94 °C for 15 s, primers annealing at 55 °C for 30 s, 

and elongation at 72 °C for 1 min. 

 

2.2.11. Restriction enzyme digestion  

PCR products were digested by adding 0.5 µl of a restriction enzyme to the PCR 

product. Samples were incubated for 1-2 h at 37 °C. 

 

2.2.12. Gel electrophoresis and UV imaging 

Digested products were loaded into 1.8% agarose gel covered with 10X TAE 

buffer inside an electrophoresis apparatus, and samples were run at 70 Volts for 

~40 min. Individuals' genotype was determined from gel images by matching 

them with wildtype genotypes. 

 

2.2.13. Agarose pad slides preparation 

First of all, 3 g of agarose powder was added to 100 ml of dH2O. The solution 

was heated for 1min in a microwave and mixed thoroughly until the solution was 

clear with no bubbles. Two microscope slides with tape wrapped in the middle for 

a thickness of ~1 mm were prepared. One microscope slide was placed between 

the two microscope slides with the tape aligning all three slides next to each 

other. A small drop of 3% agarose using a plastic pipette was placed on the clear 

microscope slide. Quickly it was covered with another clear slide forming a cross 

with both of its sides are elevated slightly by the thickness of the tape forming a 1 

mm thick pad. After left to cool at room temperature, slides were dissembled 

apart with the agarose pad stuck on one of the clear slides.       

 

2.2.14. Immobilization of nematode for imaging  

Nematodes were immobilized by picking them directly into 5 ul of 1 M sodium 

azide drop placed on agarose pad slide or unseeded NGM plate. The agarose pad 

slide was covered with a coverslip and pressed gently to remove air bubbles 

before being placed on an inverted microscope. On the surface of an unseeded 

NGM plate, nematodes were manually aligned using a platinum wire pick.   
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2.2.15. Microscopy  

Auanema nematode was generally maintained, crossed, and screened for mutants 

using an Olympus SZ61 stereomicroscope. For high magnification and imaging, 

Olympus SZX7 was regularly used. For high-resolution imaging of nematodes, a 

Zeiss Axio Zoom V16 fluorescence microscope was used.  

 

Cytology images throughout the thesis were acquired on an Olympus BX60 

epifluorescence microscope with a QImaging EXi Aqua cooled CCD camera. An 

Olympus PlanApo 60X objective lens and iVision software were used to take 

images. Z-stacks through the whole gonad was acquired, 10-15µm in 90-120 z-

planes. Finally, images were minimally processed using Adobe Photoshop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 35 

 

 

 

 

Chapter 3 

 

Investigating spermatogenesis of A. rhodensis XX 

spermatocyte 

 

 

Summary 

In this chapter, I investigated the spermatogenesis of A. rhodensis XX male to 

determine if the X chromosome polarises specific cytoplasmic components. An A. 

rhodensis XX male mutant was isolated from a chemical mutagenesis screen. 

This mutant, called masculiniser (Arh-mas-1), has the XX karyotype, but the 

morphology of a male. Sexing and genotyping of Arh-mas-1 broods following an 

outcross with a wildtype A. rhodensis female indicates that masculinisers produce 

X-bearing sperm, nullo-X sperm, and diplo-X sperm. Immunostaining analysis of 

Arh-mas-1 spermatogenesis revealed that sperm components essential for sperm 

function and motility segregate equally with X chromosomes in a symmetric 

division, or co-segregate with both X chromosomes in an asymmetric division (as 

a result of chromosome non-disjunction). Segregation of sperm components 

specifically to the cell inheriting X chromosomes during asymmetric divisions 

supports the hypothesis that sperm components segregate exclusively to the cell 

inheriting the X chromosome. 

 

3.1. Introduction   

A defining feature of the A. rhodensis male spermatogenesis is the exclusive 

production of one type of sperm containing an X chromosome. The complete 

absence of nullo-X sperm in the male explains the low proportion of XO male 

progeny produced after a cross with an XX female. This occurs because, in the 

final cell division of spermatogenesis, only the spermatid inheriting the X 

chromosome becomes viable and motile sperm.  The sister spermatid nullo-X cell 
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(the cell without the X) becomes non-viable and is discarded by programmed cell 

death (Figure 3.1).  

 

Since there is a correlation between the X chromosome and sperm components 

segregation, we hypothesised that the Auanema X chromosome acts as a 

polarising signal that guides and reorganise the cytoplasm during 

spermatogenesis. To test if the X chromosome is a polarising signal, the 

spermatogenesis pattern in XX spermatocytes was investigated. According to our 

hypothesis, I expect that sperm components essential for sperm function and 

motility in the secondary XX spermatocyte should segregate to both daughter 

cells, each with an X chromosome. The A. rhodensis XX hermaphrodite produces 

spermatocytes and oocytes throughout their reproductive life simultaneously and 

continuously (Figure 1.6) [97, 98]. Therefore, XX spermatocytes in A. rhodensis 

hermaphrodite provide a good initial model to investigate if the X chromosome 

acts as a polarising signal in Auanema spermatogenesis.  

 

3.1.1. Spermatogenesis in A. rhodensis hermaphrodite  

When A. rhodensis hermaphrodites self-fertilise, they usually produce XX 

animals. In principle, an XX spermatocyte in A. rhodensis hermaphrodite would 

be expected to produce four sperm cells, each with an X chromosome. A. 

rhodensis hermaphrodites were thought to produce 1 X-bearing oocyte and 1 X-

bearing sperm to be able to produce XX progeny predominantly. However, the 

cytological analysis revealed that during hermaphrodite oogenesis, both X 

chromosomes segregate to the first polar body during the first meiotic division, 

yielding a nullo X oocyte (Figure 1.6) [83]. Since the A. rhodensis hermaphrodite 

usually produces nullo-X oocytes, its predominant production of XX progeny 

through self-fertilisation suggests that hermaphrodite spermatogenesis regularly 

produces diplo-X sperm (instead of haplo-X sperm) [81] [80]. Genetic analysis of 

A. rhodensis hybrid XAPS4XAPS6  hermaphrodite progeny illustrates that the X 

chromosome in hermaphrodite does not recombine, and progeny resulting from 

hermaphrodite selfing were heterozygote for all X chromosomes markers [83]. 

The complete absence of homozygous X chromosome markers at all loci suggests 

that, in addition to the production of diplo-X sperm, there is no recombination 
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event between X chromosomes during hermaphrodite spermatogenesis (Figure 

1.6) [83].  

 

Cytological analysis of hermaphrodite spermatogenesis revealed that cytoplasmic 

components essential for sperm function and motility (e.g., mitochondria and 

MSP) segregate asymmetrically exclusively to the side inheriting both X 

chromosomes; the sister nullo-X cell becomes a residual body with DNA 

inheriting discarded material and proteins (e.g., tubulin) (Figure 3.1). As in A. 

rhodensis, wildtype males, the X chromosomes lags in the second anaphase; 

subsequently, cellular components necessary for sperm function segregate to the 

pole inheriting both X chromosomes. The chromatin mass revealed by the DAPI 

staining was approximate twice the size of those observed in anaphase II of male 

spermatogenesis, suggesting that the two X chromosomes segregate to the same 

pole (Figure 3.1) [83]. Similar to male spermatogenesis, X chromosomes and 

cytoplasmic components essential for sperm function segregate together in the 

hermaphrodite. However, in contrast to male spermatogenesis, cytological and 

genetics studies suggest that hermaphrodite spermatogenesis produces diplo-X 

sperm rather than haplo-X sperm. The asymmetric segregation of cytoplasmic 

components important for sperm function and motility, together with both X 

chromosomes in hermaphrodite spermatogenesis, are consistent with our 

hypothesis that the X is involved in cytoplasmic polarisation and subsequent 

asymmetric segregation of cytoplasmic components. To confirm that the X is 

involved in organising the cytoplasm during spermatogenesis, I generated a 

masculinising mutation in A. rhodensis. Sex determination in A. rhodensis XX 

animal was disrupted by ethyl methanesulfonate (EMS) chemical mutagenesis, 

causing the appearance of a masculine phenotype. Since the recovered mutation 

causes an XX animal to exhibit masculine appearance, it was called masculiniser 

and abbreviated to Arh-mas-1(brz-3).  
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Figure 3.1: A. rhodensis XX spermatocyte segregate asymmetrically 

producing diplo-X sperm.  

chromosomes were stained with DAPI (blue), and microtubules were stained with 

anti-tubulin antibody. A schematic diagram representing autosomes (white 

cylinders) and X chromosome (red cylinders) segregation during spermatogenesis 

is shown alongside the immunostaining images. Spindles in green are shown in 

both orientations representing the two poles of the dividing spermatocyte. In the 

second anaphase, X chromosomes lag (red arrow) and segregate exclusively to 

one pole of the dividing secondary spermatocyte. In the second anaphase, the 

intensity of the lagging X chromosome DAPI staining in hermaphrodite in 

comparison to males indicates the segregation of two X chromosomes producing 

diplo-X sperm rather than haplo-X sperm. Tubulin segregates to the residual body 

with the smaller chromatin mass (orange arrow), whereas cellular components 

(mitochondria and MSP) essential for sperm function and motility segregates with 

the cell inheriting X chromosomes (blue arrow). Staining and schematic 

representation of chromosomes segregation were adapted from [83].   

 

2.1.2. The masculinising mutation converts a genetically XX female to have 

the phenotype of a male   

A. rhodensis males contain six pairs of autosomes and a single X chromosome 

(2A; XO), whereas hermaphrodites/females contain six pairs of autosomes and 

two X chromosomes (2A; XX) [69, 99, 100]. In c. elegans, the X chromosome 

ploidy ratio controls sex determination; individuals inheriting a single X 

chromosome develop into males (0.5 ratio), and individuals inheriting two X 

chromosomes develop into hermaphrodite (ratio of 1) [78, 100-103]. However, 

mutations in autosomal genes involved in sex determination can cause a reversal 
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to the normal process, where animals with XX karyotype develop a masculinised 

phenotype and animals with XO karyotype develop a feminised phenotype [99, 

100, 104-106]. Earlier studies in c. elegans showed that the autosomal genes tra-

1, tra-2, and tra-3 are essential for both the somatic and germline development of 

females/hermaphrodites: loss-of-function mutation on those genes transforms a 

genetically XX animal to exhibit masculine phenotypes. Hence, they were named 

transformers genes and abbreviated to tra  [99, 104-106] (Figure 3.2).  

 

The difference in X chromosome dosage between XX female and XO male, 

unless regulated, causes a difference in the expression of genes located on the X 

chromosome [78]. Since females and hermaphrodites inherit two X 

chromosomes, they can potentially produce X-linked genes product twice as 

much as in males [102]. However, the amount of X-linked gene products in 

hermaphrodites are reduced by half to equalise the expression of X-linked genes 

between the two sexes [107, 108]. Somatic and germline cells in hermaphrodites 

evolved a molecular mechanism known as “dosage compensation”  to deal with 

the X chromosome dosage challenge, whereby in XX animals, the expression of 

genes located on the X down-regulated by twofold [78]. Cells determine the 

number of X chromosomes by the expression of  X-linked genes on the X 

chromosome, known as the X signal elements (XSEs) [78].  High expression of 

XSEs represses the activity of  her-1 gene, an essential gene for hermaphrodite 

development in the sex determination pathway [78, 109-111]. Mutation in the 

her-1 gene converts XO embryos to hermaphrodites [100]. During embryonic 

development, the expression of her-1 in XX embryo is much lower than in XO 

embryo, because XSEs in XX embryo are expressed twice as much [78]. 

Antagonistic action on the upstream global sex regulation by the Autosomal 

signal elements (ASEs) counterbalances XSEs [78]. The HER-1 level in diploid 

XX embryo is kept low because the double dose of XSE genes products outweigh 

the antagonistic activity of ASEs [78, 102]. 

 

On the other hand, HER-1 level in XO embryos is high because a single dosage of 

XSEs is insufficient to override the antagonistic activity of ASEs, leading to 

failure to implement dosage compensation [78]. In XO embryos, a high level of 

HER-1 represses the activity of downstream tra genes leading to the development 
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of males [78]. On the other hand, low expression of her-1 in XX embryos will be 

insufficient to inhibit the activity of downstream tra genes leading to the 

development of hermaphrodites/females (Figure 3.2).  

 

Epistasis genetic interactions between other sex determination genes and tra-1 in 

a regulatory pathway illustrate their wildtype role of mediating between the key 

tra-1 gene and the initial sex determination signal caused by the ratio of X 

chromosome to autosomes [104]. tra-1 is a critical gene in nematode sex 

determination. It is function is essential and solely sufficient to induce the 

development of females, whereas loss-of-function of tra-1 gene is sufficient for 

males development [104]. In XX hermaphrodites/females, a cascade of genes 

acting upstream of tra-1 activate the transcription factor TRA-1 to be translocated 

to the nucleus to activate transcription of tissue-specific sex determination gene 

[104]. In XX animals, cleavage of transmembrane TRA-2 protein by TRA-3 

producing (TRA-2ic) inhibits the activity of FEM protein [104, 106]. Therefore, 

TRA-1 is translocated to the nucleus, where it activates the transcription of 

downstream local sex determination genes. In XO males where XSEs dosage is 

low TRA-1 is inhibited by FEM protein and retained in the cytoplasm. Initially, 

HER-1 inhibits the cleavage of TRA-2 by TRA-3; consequently, TRA-1 is 

inhabited by FEM protein (Figure 3.2) [104, 106]. Sex determination genes acting 

upstream of tra-1 are global sex determination factors; mutation on those genes 

transform the sex of the animal completely, irrespective of the X chromosome to 

autosomes ratio [106].  
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Figure 3.2: Regulatory pathway of sex determination in nematodes. 

The figure is adapted from [78, 106]. Initially, sex is determined by the ratio of X 

chromosomes to autosomes. The double dosage of XSE negatively regulates the 

activity of HER-1. Low level of HER-1 initiates a cascade of interactions that 

result in the activation of TRA-1 to be translocated to the nucleus to activate the 

transcription of local sex determination genes. TRA-3 cleaves the intracellular 

domain of TRA-2 (TRA-2ic), which inhibits the activity of FEM protein. In 

males, a single dosage of XSE is not sufficient to block the activity of HER-1, 

leading to a high level of her-2 expression. The activity of HER-1 protein inhibits 

cleavage of TRA-2 intracellular domain; as a result, the activity of TRA-1 is 

inhibited by FEM protein and retained in the cytoplasm.  

 

Loss-of-function (lf) mutations in any one of the three genes (tra-1, tra-2, and tra-

3) causes genotypically XX animals to masculinise into pseudo-male, a sex 

determination mutant with both a male soma and germline phenotype [99, 100, 

104, 105, 112]. A. rhodensis sex determination mutant Arh-mas-1 (masculiniser) 

that is phenotypically male but with an XX karyotype was isolated from (EMS) 
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mutagenesis. It is likely that the A. rhodensis sex determination mutant Arh-mas-1 

is a result of Loss-of-function (lf) mutations of one of the tra genes during the 

EMS mutagenesis. However, in this thesis the cause of the sex determination 

mutation was not fully explored. In this chapter, I will investigate the 

spermatogenesis of XX masculinisers to determine if the X chromosome is a 

polarising signal causing asymmetric segregation of cytoplasmic components in 

A. rhodensis wild type male spermatogenesis. If the hypothesis is correct, we 

predict that each X chromosome will segregate to opposite poles of the dividing 

cell. Sperm components essential for sperm function and motility will segregate 

symmetrically, generating functional X-bearing sperm in every instance. 
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3.2. Materials and Methods  

 

3.2.1. Post-mutagenesis screening for A. rhodensis APS4 masculiniser (Arh-

mas-1) mutant   

Mutagenised P0 of early adult A. rhodensis APS4 hermaphrodites were let to lay 

eggs on a fresh plate for ~24 h to decrease the number of females. An A. 

rhodensis (APS4) self-fertilising hermaphrodite produces a higher percentage of 

female and male progeny during the first day of adulthood, which interferes with 

the screen design [81]. However, the percentage of male and female progeny 

drops considerably by the second day, where the ratio of hermaphrodite progeny 

is at its peak [81]. Because we wanted to find XX animals with male morphology, 

the eggs laid during the first ~24h from P0s and F1s were discarded. After 24 

hours, hermaphrodites were moved into a new separate plate each. P0 

mutagenised nematodes were left to self-fertilise, in a separate plate each, to 

produce F1 Progeny. F1 self-fertilising hermaphrodites were then moved to a 

single plate each and left to lay eggs for ~24 hours to reduce the number of 

females. Later, F1 hermaphrodites were moved to a separate plate each to lay F2 

progeny. Finally, F2 progeny from 521 F1 were screened for phenotype of 

masculiniser recessive mutation (Figure 3.3). The mutation was maintained by 

propagating potential heterozygote mas-1 +/- sibling hermaphrodites (Figure 3.3).  

 

3.2.2 A. rhodensis masculiniser (Arh-mas-1) backcross with APS4 and 

polymorphic APS6 

Backcrossing with APS4 strain was conducted to remove any potential mutations 

that might have arisen alongside the mas-1 mutation during EMS wide 

mutagenesis. Masculiniser strain backcrossing with polymorphic APS6 strain 

generates hybrid XAPS4XAPS6 masculinisers, when genotyped provides genetic 

evidence that the mutant is masculinised XX. The masculiniser strain was 

backcrossed with A. rhodensis APS4 strain in two separate experiments. In the 

first experiment, five rounds of backcrosses were performed using males that 

were heterozygote for the mas-1 mutation. However, this backcrossed strain was 

lost. Therefore, a second experiment was conducted after discovering that 

masculinisers are fertile, where three rounds of backcrosses were conducted.  
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3.2.2.1. Using males that were heterozygote for the mas-1 mutation mas-1 +/- 

In the first experiment, ten P0 males from a heterozygote plate for the 

masculinising mutation were crossed with 10 A. rhodensis wildtype females, in 

separate crosses. Crossed individuals were left to cross for almost ~24 h before 

males were removed. Then 10 F1 dauers were picked from each plate and moved 

to a new fresh plate each to make a total of 100 F1 individuals. Masculiniser 

phenotype was screened for in the F2 progeny and recovered for the next round of 

backcross. This backcrossing scheme was repeated five times with APS4 strain. 

However, backcrossed masculiniser strain with APS4 strain using this experiment 

was lost during maintenance. Masculiniser strain recovered from the chemical 

mutagenesis was backcrossed with APS6 females using a similar backcrossing 

scheme to generate a hybrid XAPS4XAPS6 masculiniser mutants. Hybrids 

XAPS4XAPS6 were isolated to be genotyped.     

 

3.2.2.2. Backcrossing using A. rhodensis masculinises 

The second experiment of backcross with (APS4) strain was conducted after 

discovering that masculinisers are fertile. In the second experiment, five P0 

masculinisers (XX males) were crossed with five wildtype females in 5 separate 

crosses. Masculinisers and females were kept together throughout their entire life 

to ensure fertilisation of the female. Then, ten F1 early adult XX individuals were 

moved from each cross to a fresh new plate to make a total of 50 F1 individuals. 

masculiniser phenotype was screened for in the F2 progeny. This procedure was 

repeated three times. The strain, after three times backcross to APS4, was 

renamed to APS20 [Arh-mas-1 (brz-3)]. The APS20 was backcrossed with 

polymorphic APS6 strain to generate a hybrid XAPS4XAPS6 masculiniser mutant. 

the hybrid XAPS4XAPS6 masculiniser mutant was isolated to be genotyped.  

 

3.2.3. Masculiniser cross with APS4 and APS6 females to sex and genotype 

progeny 

Crosses   

APS20 Arh-mas-1 was crossed with virgin females from APS4 and APS6 strain 

to determine the pattern of divisions occurring in masculinisers spermatogenesis. 

Masculinisers were crossed with females of APS4 strain to sex progeny resulting 

from the cross and with females of APS6 strain to sex and genotype progeny 
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resulting from the cross. Masculinisers generally are not interested in mating, and 

thus, masculinisers and females were left ~24 h together for the cross to happen, 

after the cross masculinisers were removed. Gravid females were moved to a new 

plate every day. Progeny of crosses with APS4 females were scored in three 

separate categories, (XO) males, (XX) females or hermaphrodites, and (XXX) 

dump. Single animals resulting from APS6 females and masculinisers cross were 

isolated for genotyping.  

 

3.2.4. A. rhodensis APS4 and APS6 X chromosome genotyping 

Single nematodes were picked into 200 µl PCR tubes, each containing 10-20 µl of 

1X PCR buffer mix. Tubes containing nematodes were frozen at -80 °C. Frozen 

samples were thawed, and 0.5 µl of proteinase K was added. Samples were 

incubated at 65 °C for 60 minutes, and the enzyme was deactivated at 95 °C for 

15 minutes. Then, DNA was stored at -80 °C to be used when required. A. 

rhodensis X chromosome markers were amplified by adding 2 µl of forward 

primer, 2 µl of reverse primers, 10 µl of PCR green master mix (Promega 2X), 4 

µl of water and 2 µl of DNA. Samples were run for 30-35 cycles, with initial 

denaturation for 7 min at 95 °C. Cycling conditions were as following; 

denaturation at 94 °C for 15 s, primers annealing at 55 °C for 30 s, and elongation 

at 72 °C for 1 min. PCR products were digested by adding 0.5 µl of a restriction 

enzyme to the PCR product. Samples were incubated for 1-2 h at 37 °C. Digested 

products were loaded into 1.8 % agarose gel, and samples were run at 70 Volts 

for ~40 min. Individuals' genotype was determined from gel images by matching 

them with wildtype genotypes. 

 

3.2.5. Detecting apoptotic cells using SYTO 12 staining  

SYTO 12TM  (ThermoFisher scientific) (4 mM in DMSO) was diluted to a 

working solution of 33 μM in M9 buffer. Plates were placed in a slanting 

horizontal position, and 1ml of the SYTO 12 solution was added on the plate such 

that the solution stayed on one side of the plate. The plate is kept slanted so that 

after staining, it was easier to recover nematodes from the solution. Nematodes to 

be stained by SYTO12 were transferred to the plate and left to swim in it for 

about 1 hour in the dark. SYTO 12 solution was checked to be sufficient, so it 

would not dry out after a few minutes. After staining, the plate was kept 
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horizontal so that the liquid would spread on the plate, and nematodes were more 

comfortable to pick. Nematodes were transferred to a new NGM plate and left to 

crawl for an hour in the dark to remove excess staining from their intestine. 

Nematodes were immobilised with 3mM of sodium azide, mounted on slides with 

agar pads, and visualised under a fluorescence microscope. 

 

3.2.6. Immunostaining of germ cells   

Gonads of 10-20 nematodes were dissected inside a sperm solution (for 100 ml; 

1.8 ml of 5 M NaCl, 5 ml of 1 M KCl, 0.4 ml of 0.5 M MgCl2, 2 ml of 0.5 M 

CaCl2, 2.383 g of HEPES and 40 ml of 50 mM dextrose dissolved in dH2O) on a 

poly-L-Lysine slide. Dissected nematodes were covered with a 22x40 cm 

coverslip, where the entire assembly should look like a cross. The coverslip was 

pressed diagonally but not too hard. The slide was immediately dropped in liquid 

N2 flask to freeze-crack the tissues. The slide was taken out of the flask using 

forceps, and the coverslip was taken off. Quickly, the slide was put inside cold 

100 % methanol for overnight fixation at -20 °C. The slide was removed from 

methanol at -20°C and washed three times for 10min in a 1x PBS buffer. Three 

Coplin jars were made to help with the washing step, each with 1x PBS. Then, 

dissected nematodes were incubated with 50 µl of blocking solution (for 10 ml; 

0.05 g of BSA, 0.1 ml of 4% sodium azide and 10 µl of tween dissolved in 1x 

PBS) for at least 30 min at room temperature inside a humid chamber to prevent 

the sample from drying out. Blocking solution was removed, and dissected 

nematodes were incubated in 30-50 µl of the primary antibody solution, antibody 

diluted (1:1000) in antibody buffer (for 10 ml, 0.3 g BSA, 0.1 ml of 4% azide 

dissolved in 1xPBS), for 3-4 hours at room temperature or overnight at 4 °C. At 

the end of the incubation period, the primary antibody was washed 2x for 5 min 

with 1x PBS. Then, 30-50 µl of secondary antibody solution was added, antibody 

diluted (1:1000) in antibody buffer, and dissected nematodes were incubated in 

the dark for 3-4 hours. The slide was washed for 2min in 1x PBS. Excess PBS 

was removed, and the sample was mounted with DAPI. Coverslip was placed on 

the sample, sealed with nail polish, and observed under the microscope when 

dried. Z-stacks through the whole gonad was acquired, 10-15µm in 90-120 z-

planes. Stacks were analysed using Fiji image and minimally using Adope 

Photoshop software analysis. 
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3.3. Results and Discussion   

 

3.3.1. A sex-determination masculinising mutation (mas-1) was isolated from 

ethyl methanesulfonate (EMS) mutagenesis screen 

It is still difficult to perform targeted loss-of-function of selected genes to 

generate mutations in Auanema. Therefore, I conducted a chemical mutagenesis 

screen to identify recessive mutations in a sex determination mutant using  Ethyl 

methanesulfonate (EMS) (Figure 3.3) [113]. EMS is a chemical mutagen that 

causes random G/C to A/T transitions [114, 115]. EMS will cause other type of 

mutations as well as desired mutations at random. Therefore, during the 

mutagenesis screen it is necessary to mutate large number of animals to maximise 

the chance of finding the mutation of interest, and once the mutation of interest is 

found it is essential to backcross it with the original wildtype strain to reduce 

random mutations that may have potentially occurred with the isolated mutation 

of interest.  A. rhodensis rapid generation time and its consistent production of 

hermaphrodites make it a suitable genetic model for isolation of mutants using a 

mutagenesis screen [69, 116]. After performing EMS mutagenesis and screening 

521 F1s, a masculiniser and four dumpy mutants (short and fat) were identified in 

the F2 generation. I screened for F1s that produced a significant percentage of 

males (>20%), since F1 hermaphrodite heterozygous for the mas-1 +/- mutation 

should produce ~25% of F2 masculinisers (Figure 3.3).  
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Figure 3.3: F2 screening for masculiniser mutants.  

A recessive masculiniser mutation (Arh-mas-1) was identified in the second 

generation (F2) of mutagenised parental strain (P0). F2 progeny from 521 F1s 

were screened to identify a masculiniser phenotype. Hermaphrodites from 

heterozygote Arh-mas-1 +/- plate were transferred to a fresh new plate to maintain 

the mutation.  

 

 

Microscopic examination revealed that the the size and morphology of 

masculinisers and wildtype males are almost indistinguishable. As wild type 

males, masculinisers have a blunt tail with spicules, which are structures used for 

female insemination (Figure 3.4). Masculinisers were more distinguishable from 

wildtype males at their late adult stage, as masculinisers display dark gut 

morphology with irregular dark patches along their gut compared to the near 

transparent wildtype males (Figure 3.4A). The masculiniser phenotype itself was 

not thoroughly investigated in this current study. In this study, the goal was to 

confirm that those masculinisers are, in fact, XX pseudo-males, subsequently 

observe the spermatocyte division in the presence of two X chromosomes. 
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Figure 3.4: Masculiniser mutants are genotypically XX animals, but they 

have the morphology of a male.  

(A) Arh-mas-1 can be distinguished from wildtype males and 

hermaphrodites/females through body size and tail morphology (C-D). WT male 

(B) and mas-1 (C) have blunt tail and spicules, a structure used for inseminating 

XX animals. (D) XX hermaphrodite tail is long and thin. Despite having a blunt 

male tail, Arh-mas-1 can be distinguished from wildtype males by the gut 

morphology as masculinisers generally appear with dark gut under the 

microscope (A), especially during the late adult stage, compared to the near 

transparent wildtype male body. Bar, 100 µm. 

 

 

3.3.2. Masculiniser strain backcross   

3.3.2.1. Backcrossing with a polymorphicAPS6 strain using males 

heterozygote for the mas-1 mutation (mas-1 +/-)  

APS4 masculiniser strain was backcrossed with the A. rhodensis polymorphic 

APS6 strain, to test whether putative masculinisers (APS4 background) contain 

two X chromosomes. Crossing APS4 Arh-mas-1 +/- male with the APS6 Arh-

mas-1 +/+  wildtype female produces 50% F1 progeny (males and 

females/hermaphrodites) heterozygous for the Arh-mas-1 +/- and 50% F1 
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progeny of all sexes that are wildtype, all the XX progeny resulting from the cross 

will be hybrid XAPS4XAPS6 heterozygous for the X chromosomes at all loci. In 

APS4 masculiniser plate, it is not possible to distinguish between wildtype males 

and males that are heterozygous for the Arh-mas-1 +/- mutation because they are 

phenotypically identical. Therefore, ten P0 separate crosses were made, expecting 

some of those males to be heterozygous for the Arh-mas-1 +/- mutation. From 

each cross, it is also not possible to distinguish between F1 A. rhodensis adult 

hermaphrodites and females that are wildtype or heterozygous for the Arh-mas-1 

mutation, therefore 100 F1 XX, 10 F1 XX per cross were isolated (Figure 3.5 B). 

F1 hermaphrodites that are heterozygote for the X chromosome and Arh-mas-1 

+/-  will generate 25% F2 masculinisers that are XAPS4XAPS6 hybrid heterozygous 

for the X chromosome at all loci, 50% F2 heterozygous progeny (males and 

females/hermaphrodites) for the Arh-mas-1 -/+, and 25% wildtype F2 progeny of 

all the three sexes (Figure 3.3 and 3.5). Hybrid (XAPS4XAPS6) masculinisers were 

genotyped using X chromosome markers designed along the X chromosome 

(Figure 3.5A) [83]. F2 masculinisers produced by F1 heterozygous 

hermaphrodites will be heterozygous for the X chromosome at all X chromosome 

loci due to the complete lack of recombination between the two X chromosomes 

in A. rhodensis hermaphrodites [83]. Whereas, F2 masculinisers resulting from F1 

Arh-mas-1 +/- females that have mated with Arh-mas-1 +/- F1 males, were 

homozygous for some X chromosome markers and heterozygote for others as a 

result of X chromosome recombination in the female germline (Figure 1.6 and 

3.5C). 
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Figure 3.5: Masculiniser strain backcrossed with the polymorphic strain 

(APS6) to produce hybrid XAPS4XAPS6 masculinisers. 

 X chromosome markers (A) designed to genotype APS6 (blue) and APS4 (red) X 

chromosomes at different loci were used to genotype masculinisers resulting from 

the cross. P0 males heterozygous for the mas-1 mutation were crossed with a 

wildtype APS6 female to produce F2 masculinisers that are heterozygote for the 

X chromosome (B). Genotyping (C) using marker (9686) illustrates that mas-1 A, 

B, and C are heterozygote for the X chromosome. Whereas genotyping using 

marker (12469) illustrates that mas-1 (A) is a heterozygote for the X 

chromosome, mas-1 (B) has an APS6 X chromosome (at that locus), and mas-1 

(C) has APS4 X chromosome (at that locus). Genotyping results from the two 

different markers revealed that mas-1 (A) was produced by a hermaphrodite were 

the X chromosome did not recombine. Whereas, mas-1 (B) and mas-1 (C) were 
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produced by females as the X chromosome has recombined. X chromosome 

markers figure (A) was adapted from [83].   

 

3.3.2.2. Backcrossing with wildtype APS4 strain   

EMS chemical mutagenesis causes genome-wide random mutations. Therefore, 

there could be other genes that have been mutated alongside the mas-1 mutation. 

To eliminate any other potential mutations that may have been created alongside 

the Arh-mas-1 mutation, the masculiniser strain was backcrossed with APS4 

wildtype female. The masculiniser strain was backcrossed with A. rhodensis 

APS4 strain in two separate experiments. In the first experiment, five rounds of 

backcrosses were performed using males that were heterozygote for the mas-1 

mutation; however, this backcrossed strain was lost. Therefore, a second 

experiment was conducted after realising that masculinisers are fertile, and three 

rounds of backcrosses were conducted.  

 

3.3.2.2.1. Backcrossing using mas-1 +/- males   

The masculiniser strain was backcrossed with APS4 strain five times using P0 

males that are heterozygote for the Arh-mas-1 mutation. Whenever a masculiniser 

was identified within the F2 population from a cross between WT APS4 female 

and P0 Arh-mas-1 +/- males, male siblings were isolated for the next round of 

backcross (Figure 3.6A). APS4 P0 Arh-mas-1 +/- cross with wildtype APS4 

female will produce 50% F1 (males, females and hermaphrodites) Arh-mas-1 +/- 

and 50% wildtype. F1 hermaphrodite that is Arh-mas-1 +/- will produce 25% F2 

masculinisers, 25% F2 wildtype progeny of all the three sexes and 50% F2 Arh-

mas-1 +/- of all sexes. F2 Arh-mas-1 +/- males are isolated from each cross for 

the next round of backcross (Figure 3.6A). Unfortunately, backcrossed strain 

using this method was lost because it was tough to distinguish between males and 

masculinisers. Masculinisers were only distinguishable from males by darker gut 

pigmentation later in their adult life (Figure 3.6B and C). Masculinisers lost the 

intensity of gut pigmentation progressively with each backcross; hence it was 

difficult to distinguish masculinisers from wildtype males (Figure 3.6B and E).  
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Figure 3.6: Masculiniser strain Arh-mas-1 backcross with (APS4) female 

using (APS4) males heterozygote for the mas-1 mutation.  

Males heterozygote for the mas-1 were crossed with wt APS4 female (A), F1 

hermaphrodite progeny that are heterozygote for the Arh-mas-1 mutation will 

produce F2 masculinisers. Masculinisers were isolated for the next round of 

backcross. Backcrossing using this scheme was repeated five times. Masculinisers 

recovered from EMS mutagenesis are distinguishable from wildtype males 

through gut morphology (B and D). After backcrossing the masculiniser strain 

five times with APS4 strain, masculinisers lost the intensity of the gut 

pigmentation, making it hard to distinguish between males and masculinisers (C 

and E). 
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3.3.2.2.2. Backcrossing using fertile Arh-mas-1   

A second backcrossing experiment was conducted by crossing masculinisers with 

wildtype females. This method was conducted shortly after discovering that the 

masculiniser mutants recovered from the EMS mutagenesis are fertile. In each 

backcross, five masculinisers were crossed with wildtype APS4 females in 

separate crosses to produce XX F1 heterozygote for the Arh-mas-1 mutation. P0 

cross between wildtype APS4 female and masculinisers will produce F1 progeny 

of all sexes that are Arh-mas-1 +/- heterozygous. F1 Arh-mas-1 +/- self-fertilising 

hermaphrodite will produce 25% masculinisers (Figure 3.7A). 50 XX F1s (10 per 

cross), either self-fertile Arh-mas-1 +/- hermaphrodites or females that have 

mated with male siblings heterozygote for the mas-1 mutation, were isolated to 

separate individual plates. Masculinisers recovered in the F2 generation were 

isolated for the next round of backcrossing (Figure 3.7A). Backcrossing using this 

scheme with APS4 females was conducted three times. Masculinisers strain with 

three times backcrosses to APS4 was named APS20 [Arh-mas-1(brz-3)].  

 

APS20 strain was backcrossed again with polymorphic APS6 females (Figure 

3.7B). Hybrid XAPS4XAPS6 masculinisers recovered in the F2 were subjected to 

genotyping using X chromosome markers (Figure 3.7A) to confirm that 

masculinisers recovered from the backcross strain contain two X chromosomes 

(Figure 3.7C). From this point onwards, APS20 [Arh-mas-1(brz-3)] strain was 

used for all further investigation; I will still refer to it as masculiniser or Arh-mas-

1 for the rest of the thesis. 
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Figure 3.7: Backcrossing of masculiniser strain using fertile masculinisers.  

Fertile masculinisers were backcrossed with APS4 females in 5 separate crosses 

(A). Some XX F1s resulting from APS4 wildtype female and masculiniser cross 

will be heterozygous for the mas-1 mutation. Masculiniser recovered from the F2 

generation were isolated for the next round of backcross with APS4 females. 

After three rounds of backcrosses, masculinisers were crossed with polymorphic 

strain APS6 in order to produce XAPS4XAPS6 hybrid masculinisers (B). Hybrid 

masculinisers were genotyped to illustrates that they are pseudo-males diploid for 

the X chromosome (C).  
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3.3.3. Sexing and genotyping masculinisers progeny revealed that 

masculinisers produce nullo-X, X-bearing, and diplo-X sperm   

The fertility of masculinisers offers the opportunity to investigate masculinisers 

spermatogenesis through sexing and genotyping of their F1 progeny. Sexing F1 

progeny resulting from A. rhodensis APS4 females and APS20 masculinisers 

contributed to our understanding of masculinisers spermatogenesis. A. rhodensis, 

female oogenesis predominantly produce X-bearing oocytes and rarely produce 

nullo-X oocytes [69]. Since we know the gametes produced by A. rhodensis 

female, the sex ratio of progeny resulting from masculinisers cross with a 

wildtype female will reveal types of sperm produced by masculinisers. During the 

maintenance of the masculiniser strain, animals with (short and fat) dpy 

phenotype were observed (Figure 3.8). Animals with dpy phenotype isolated to 

separate plates showed that they are infertile with a very short life span compared 

to other A. rhodensis dpy mutants. The presence of animals with dpy phenotype in 

a plate heterozygote for the masculiniser mutation could be attributed to the 

occurrence of a dpy mutation alongside the masculinisers mutation during EMS 

mutagenesis. However, the presence of dpy mutation alongside the mas-1 

mutation can be ruled out for the following reasons; masculinisers phenotype was 

only selected for when maintaining the mutation, there was no presence of dpy 

males only dpy hermaphrodites/females, masculinisers strain was backcrossed 

with the wildtype strain to eliminate mutations that may have happened alongside 

the Arh-mas-1, and the identified short and fat mutants are only produced by 

female siblings isolated from Arh-mas-1 heterozygote plates. Since they are only 

produced by females, I hypothesised that masculinisers produce viable diplo-X 

sperm, as in hermaphrodite; and their crosses with female siblings produce short 

and fat triploid-X hermaphrodites/females. It has been identified that 3X 

hermaphrodites in c. elegans are generally shorter and infertile compared to the 

2X hermaphrodites [117, 118].  
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Figure 3.8: Short and fat triploid-X animals compared to wildtype XX 

animals.  

Wildtype Females cross with masculinisers produced animals that are 

considerably short, and fat compared to wildtype animals. Those short and fat 

individuals are believed to be triploid-X resulted from masculinisers ability to 

produce functional diplo-X sperm.  

 

To predict the pattern of spermatocytes divisions in masculinisers, they were 

crossed with WT APS4 females in 23 separate crosses and produced a total 

progeny of (3135). Total brood was scored in three categories XO males, XX 

females/hermaphrodites, and triploid-X females/hermaphrodites. The overall 

compositions of F1 progeny resulting from masculinisers cross with APS4 

females differ. Masculinisers crosses produced considerably more 

hermaphrodites/females (75%) than males (23%) (Wilcoxon test = 479, p-value 

<0.001), as well as more males than triploid-X individuals (1 %) (Wilcoxon test = 

520, p-value <0.001) (Table 3.1) (Figure 3.9). Considering that A. rhodensis 

females predominantly produce X-bearing oocytes, we can conclude that 

masculinisers generally produce X-bearing sperm and rarely produce diplo-X 

sperm. However, the percentage of males produced from masculinisers crosses 

(23%) is significantly higher than wildtype crosses (1-2%). The high percentage 

of males produced from masculinisers outcross suggests that masculinisers might 

be producing functional nullo-X sperm, which challenges the primary hypothesis. 

In the following experiments, the production of functional nullo-X sperm by 

masculinisers will be investigated. Since males only contain a single X 

chromosome using molecular markers for the X, it will be possible to determine 

the strain of which the nullo-X gamete belongs. 
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Table 3.1: Count of progeny resulting from wt APS4 female cross with 

masculinisers from 23 separate crosses.  

Progeny were sexed in three categories; (XO) Males, XX Her/Fem, and short/fat 

(triploid-X).   

 

 Males 

 (XO) 

Hermaphrodites/

Female (XX) 

Triploid-X  

(XXX) 

Total (3135) 733 2359 43   

Percentage % 23.38 75.25 1.37 

Mean 31.86 102.56 1.86 

SD 23.95 60.39 3.02 

 

 
 

Figure 3.9: Boxplot of F1 progeny resulting from APS4 females cross with 

masculinisers from 23 separate crosses.  

Masculinisers generally produce XX (Females and hermaphrodites), suggesting 

its predominant production of X-bearing sperm. Masculinisers low production of 

triploid-X animals suggests its rare production of diplo-X sperm. Male progeny is 

significantly higher than wildtype crosses suggesting masculinisers might produce 

viable nullo-X sperm.  

 

Progeny resulting from masculinisers crosses with APS6 females were genotyped 

to determine the type of sperm produced by masculinisers spermatogenesis. A. 

rhodensis X chromosome markers (Figure 3.5A) were used to determine the 

origin of gametes constituting F1 progeny resulting from the crosses. Since males 

only contain a single X chromosome, if masculinisers do not produce nullo-X 
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sperm F1 male progeny expected to inherit the X chromosome from (APS4) 

masculinisers and the nullo-X oocyte from (APS6) females. A total of 90 F1s 

were collected from different separate crosses between APS6 females and (APS4) 

masculinisers; divided into 57 males and 33 females (Table. 3.2). All of the 

genotyped (n= 33) XX progeny were heterozygous for the X chromosome 

marker, illustrating the production of viable X-bearing sperm by masculinisers 

(Figure 3.10). Thirteen of the genotyped males inherited the X chromosome from 

masculinisers (APS4) (Figure 3.10), indicating that XX masculinisers produce 

1X-bearing sperm. However, 44 out of 57 males inherited the X chromosome 

from the APS6 mother, indicating the production of functional nullo-X sperm by 

masculinisers (Figure 3.10). Production of nullo-X sperm would challenge our 

initial hypothesis unless the nullo-X cell inherited sperm components in the 

absence of X chromosomes from a dividing spermatocyte. However, before 

outlining conclusions, investigating masculinisers spermatogenesis by 

immunostaining is crucial to observe the pattern of spermatocyte division, mainly 

how those nullo-X and diplo-X sperm are formed.  

 

Table 3.2: Genotyping of masculinisers progeny from a cross with the 

polymorphic strain (APS6).  
 APS4 APS6 Total  

XO Males  13 44 57 

XX Her/Fem  All heterozygote  33 

 

 
Figure 3.10: Genotyping of masculinisers progeny.  

The same individuals were genotyped in A and B using different markers for the 

X chromosome. XX progeny in A and B were heterozygous for the X 
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chromosome marker, whereas XO males were homozygous for the X 

chromosome markers, and some of those males inherited the nullo-X from the 

Arh-mas-1 and the X from APS6 mother. More males were genotyped in C to 

ensure that Arh-mas-1 produces functional nullo-X sperm.  

 

3.3.4. Syto-12 staining indicates apoptosis in masculinisers germline   

The asymmetric division of the secondary spermatocyte in wildtype males and 

hermaphrodite spermatogenesis produces only one functional sperm and a 

residual body that undergoes apoptosis. Sexing and genotyping masculinisers 

progeny indicates that the XX spermatocyte in masculinisers predominantly 

produces 1X-bearing sperm; in rare events, XX spermatocyte divides 

asymmetrically producing diplo-X sperm, leading to the development of short and 

fat X-polyploid, and unexpectedly masculinisers produce functional nulo-X 

sperm. Since there is a production of functional nullo-X sperm, it is not yet clear 

if there would be apoptosis in the masculinisers' germline. Masculinisers were 

incubated with SYTO 12 to be able to visualise apoptotic cells within 

masculinisers germline. SYTO-12 is retained exclusively inside cells undergoing 

apoptosis, which in turn makes it easy to visualise apoptosis in the germline of 

live animals [119]. SYTO-12 staining reveals that there are cells undergoing 

apoptosis in masculinisers germline (Figure 3.11).  

 
Figure 3.11: Apoptosis in the germline of masculinisers and wt A.rhodensis 

male.  

Apoptotic cells in the masculinisers and wt male germline are labeled in red.  

 

Production of functional nullo-X sperm challenges our hypothesis that the X 

chromosome is a polarising signal if the nullo-X sperm are formed from an 

asymmetric division in the presence of X chromosomes. However, it is not clear 

from the apoptotic marker staining if those cells undergoing apoptosis are nullo-X 

cells resulting from asymmetric segregation of duplo-X chromosomes to one side 
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of the dividing spermatocyte. Another reason for the presence of apoptotic cells 

could be the production of a central residual body where unessential cellular 

components for sperm function are discarded. Immunostaining of MSP and other 

essential sperm components will help us determine the exact division scenarios 

during masculinisers spermatogenesis. With immunostaining, it will be evident if 

the nullo-X sperm are produced during the event of asymmetric segregation of X 

chromosomes.  

 

3.3.5. MSP in XX masculinisers anaphase II either segregate equally or 

segregate exclusively to one pole with more significant DNA mass  

Sexing and genotyping progeny resulting from wildtype A. rhodensis female 

cross with masculinisers predicted specific patterns of masculinisers 

spermatogenesis. Sexing and genotyping Arh-mas-1 progeny indicates that 

masculinisers predominantly produced X-bearing sperm, and in rare instances, 

produce diplo-X sperm and nullo-X sperm. In the first anaphase of Arh-mas-1 XX 

primary spermatocyte meiosis division, MSP and tubulin segregate equally to 

both secondary spermatocytes (Figure 3.12). In some instances of anaphase I 

chromatin mass does not segregate equally; as a result, one secondary 

spermatocyte inherits more significant DNA mass potentially due to the unequal 

segregation of the unpaired X chromosomes in anaphase I, however, no lagging-

X was observed. In the second anaphase, MSP either segregates symmetrically to 

both daughter cells resulting in the formation of two spermatids or segregate 

exclusively asymmetric to the daughter cell with the more significant DNA mass. 

In contrast, the other daughter cell with small DNA mass inherits tubulin and 

become a residual body with DNA (Figure 3.12).  

 

Unequal distribution of DNA after the second anaphase is attributed to the 

unequal segregation of X chromosomes. Different variations of the lagging-X 

chromosome were observed in the second anaphase, including 1x, 2X, 3X, and 

4X lagging-X chromosomes. In addition to variation in numbers of lagging-X 

chromosomes, a variation in the DNA mass of those lagging-X was observed 

determined by DAPI surface area. The difference in the mass of the lagging-X 

chromosomes suggests that the nature of the lagging-X can be either a 

chromosome from a single chromatid (small DAPI surface area) or a chromosome 



 62 

 

 

from two sister chromatids (big DAPI surface area). The nature of the observed 

lagging-X chromosome can be determined from the size of the DAPI surface 

area. The variation and the number of lagging-X chromosomes observed in 

anaphase II depends on the segregation pattern of X chromosomes in anaphase I. 

Segregation of X chromosomes in anaphase I has multiple possible patterns 

depending on if X chromosome sister chromatids split equally or if X 

chromosome sister chromatids do not split. Patterns of X chromosome 

segregation in the first meiotic division determines the number and the structure 

of X chromosomes inherited in each secondary spermatocyte. As a result, 

multiple segregation patterns of X chromosomes are also expected in anaphase II; 

thus, variation in the number of lagging-X chromosomes are observed. 

 

When a 1x lagging-X chromosome is observed, it can be either a chromosome 

from a single chromatid (small DNA mass) or an X chromosome from two sister 

chromatids (big DNA mass). When a 1x lagging-X chromosome is observed, it is 

always asymmetric division with MSP segregating to the side inheriting the 

lagging-X chromosomes resulting in the formation of an X-bearing sperm or 

duplo-X sperm, while tubulin segregates to the other cell that undertakes the role 

of a residual body with DNA.  

 

When 2X lagging-X chromosomes were observed, they either segregate equally 

with the MSP or asymmetrically together with the MSP to only one cell, while the 

nullo-X cell inherits tubulin. X chromosomes during the 2X lagging-X 

chromosome can be either a chromosome from a single chromatid (small DAPI 

area) or a chromosome from two sister chromatids (bigger DAPI area).  

 

In the events when 3X lagging-X chromosomes were observed, MSP segregation 

was symmetric to both daughter cells. 2 X chromosomes lag from the nucleus of 

one cell while one X chromosome lags from the nucleus of the other cell. In some 

divisions, all 3-lagging chromosomes were from a single chromatid, while in 

other divisions, two X chromosomes were from single chromatids, and one was 

from two sister chromatids as identified by DAPI surface area. 
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4X lagging chromosomes were also observed in anaphase II, suggesting unequal 

segregation of X chromosomes in anaphase I. Where X chromosomes in anaphase 

I segregate exclusively to one secondary spermatocyte resulting in a secondary 

spermatocyte with all the Xs and a secondary spermatocyte without X 

chromosomes. This unequal segregation of X chromosomes is represented by the 

unequal segregation of DNA masses observed in anaphase I. Observed 4X 

lagging-X chromosomes in anaphase II explains the formation of nullo-X sperm 

by Arh-mas-1, where nullo-X sperm originates from symmetrically dividing 

secondary spermatocyte without X chromosomes. This is the only observation 

that can explain the origin of nullo-X sperm, since, in the event of asymmetric 

segregation, MSP segregate to the cell with a larger DNA mass that has inherited 

X chromosomes and the other cell with small DNA mass (nullo-X) inherits 

tubulin and takes the role of a residual body. Sometimes during the event of 

symmetric segregation of sperm components, a formation of a central residual 

body was observed where actin was disposed of in a central region (Figure 3.12). 

However, it is not clear if those cells separate and become functional sperm.       
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Metaphase plate Anaphase I (Eq) Anaphase I (Uneq)

1x lagging-X 

Early Late

Small (Asym) 

2x lagging-X 

S/S (Asym) 

Big (Asym) 

Early Late

S/B(Sym) S/S(Sym) 

3x lagging-X 

S/S/S (Sym) S/B/S (Sym) 

4x lagging-X 

Partitioning

Asym Sym

Sym cRB

Merge

DAPI

DAPI

Tubulin

MSP

MSP

Tubulin

Merge

(A) (B)

(C)
(D) (E)

(F)

Abbreviations; (Eq) equal, (Uneq) unequal, (S) small DAPI surface area, (B) big DAPI surface area, (Sym) symmetric, (Asym) asymmetric and (cRB) central residual body       
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Figure 3.12: Anaphase II of Arh-mas-1 spermatogenesis, MSP either 

segregates symmetrically to both sperms or exclusively to the cell with larger 

DNA mass.    

(A) Immunostaining using MSP and tubulin antibodies in Arh-mas-1 primary 

spermatocyte meiosis during metaphase I and anaphase I. DAPI staining in 

masculinisers metaphase I indicates that Arh-mas-1 primary spermatocyte 

contains eight chromosomes (6 autosomes and 2 X chromosomes). MSP and 

tubulin of anaphase I of Arh-mas-1 primary spermatocyte meiosis always 

segregate symmetrically to both secondary spermatocytes. However, in some 

events, unequal distribution of DNA was also observed (Uneq) manifested by the 

large size of the DAPI surface area of one secondary nucleus compared to the 

other. This unequal distribution of DNA is attributed to the unequal segregation 

of X chromosomes during anaphase I. (B) During anaphase II of Arh-mas-1 

spermatogenesis 1x lagging X chromosome was observed. In the event when a 1x 

lagging X chromosome was observed, MSP segregates asymmetrically with the 

cell inheriting the lagging-X. 1x lagging-X chromosome can be either a small 

DAPI surface area (red arrow) or a big DAPI surface area (yellow arrow). The 

size of the DAPI surface area suggests that the lagging chromosome is a single 

chromatid (small surface area) or chromosomes of sister chromatids (big surface 

area). (C) 2X lagging-X chromosomes were also observed in the second anaphase 

of Arh-mas-1 spermatogenesis. Different division scenarios were observed in the 

occasion of 2X lagging-X chromosomes. 2 small DAPI (s/s) (red arrow) X 

chromosomes of a single chromatid segregating asymmetrically (S/S, Asm) with 

the MSP exclusively to one cell. Both lagging-X chromosomes (S/B) segregate 

equally with the MSP (S/B, Sym), where one X chromosome is of sister 

chromatids (yellow arrow). And, symmetric distribution of MSP (S/S, Sym) with 

equal segregation of X chromosomes (single chromatids). (D) when 3X lagging-

X chromosomes observed MSP distribution in anaphase II was symmetric. Three 

small DAPI signal of  X chromosomes from single chromatids (red arrow) 

segregate in a way where two chromosomes segregate to one cell, and one 

chromosome segregate to the other, while MSP segregates symmetrically (s/s/s, 

Sym). In other scenarios (S/B/S. Sym), one of the two X chromosomes moving 

together to one cell is from two sister chromatids with a bigger DAPI signal 

(yellow arrow).  (D) 4X lagging-X chromosomes during the second anaphase of 

Arh-mas-1 spermatogenesis suggest unequal distribution of X chromosomes in 

anaphase I, where all X chromosomes segregate to only one secondary 

spermatocyte. (F) In anaphase II, partitioning MSP either segregate 

asymmetrically with the cell inheriting lagging-X chromosomes (big DAPI 

surface area) or distribute symmetrically to both spermatids. In the event of 

asymmetric segregation (Asym), MSP segregates to the future sperm, while 

tubulin segregates to the cell with a smaller DAPI surface area (nullo-X cell). 

However, in the event of symmetric segregation (Sym), both MSP and tubulin 

segregate symmetrically to both spermatids. There are cases when tubulin in 

symmetric segregation (Sym, CRB) was discarded in a central region, suggesting 

the formation of a residual body. However, it is not clear if those sperms 

segregate fully and become functional sperm.        
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3.3.6. Staining using mitochondria antibody (ATPB) revealed that 

mitochondria either segregate equally or asymmetrically to the cell with 

more DNA  

Mitochondria during Arh-mas-1 spermatocytes meiosis were labeled using 

antibodies against mitochondrial ATP synthase beta subunit (ATPB) to track the 

pattern of mitochondria segregation [120, 121]. In the first anaphase of Arh-mas-1 

male spermatogenesis mitochondria segregated symmetrically to both daughter 

secondary spermatocytes. However, during the second anaphase, mitochondria 

either segregated in a unipolar or bipolar pattern. In the event of unipolar 

segregation, mitochondria segregate with the cell that has more DNA mass, the 

cell that inherited lagging-X chromosome, meanwhile, the cell with smaller DNA 

mass, nullo-X cell, does not inherit any mitochondria and take the role of a 

residual body with DNA (Figure 3.13).   

 

During the second anaphase, X chromosomes lag in 1X, 2X, or 3X variations 

similar to the variations observed in MSP/tubulin antibody staining. In the 1X 

variation, X chromosome lags from one of the two dividing nuclei. Later, 

mitochondria segregate exclusively to the cell with the lagging-X (more 

significant DNA mass), and the sister cell with smaller DNA mass behaves like a 

residual body with DNA. In the 2X variation, lagging X either segregate 

symmetrically to both cells resulting in bipolar segregation of mitochondria to 

both future cells or sometimes both lagging X chromosomes segregate together, 

resulting in unipolar segregation of mitochondria to only the cell inheriting both 

lagging-X chromosomes and the other cell becomes a residual body with DNA. In 

the 3X variation, mitochondria segregate symmetrically to both daughter cells, 

where two X chromosome lag from one dividing nucleus and one X chromosome 

lags from the other nucleus (Figure 3.13).  

 

Immunostaining analysis using antibodies against mitochondrial (ATPB), MSP, 

and tubulin combined with DAPI staining of chromosomes illustrated that 

masculinisers pseudo-males either produce single X-bearing sperm, duplo-X 

sperms, nullo-X sperms and sperms with X chromosome polyploidy (Figure 

3.13).   
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DAPI

ATPB

2x lagging-X 

DAPI

ATPB

3x lagging-X     (S/B/S), Sym 
AII

AII

Early Late  Early Late  

chunky 

DAPI

DAPI

ATPB

ATPB

Merge 

Merge 

Merge 

Merge 

(A)

1x lagging-X (Asym) 

DAPI

ATPB

AII

Merge 

(B)

(C)
(D)

(E) Unipolar 

Bipolar 
Early Late 

(S/S), Sym (S/S), Asym(S/B), Sym

Partitioning

Abbreviations; (AI) first anaphase, (AII) second anaphase, (S) small DAPI surface area, (B) big DAPI surface area, (Sym) symmetric, (Asym) asymmetric 

and  (Chunky) lagging-X is observed but no segregation of mitochondria yet.     
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Figure 3.13: Mitochondria in masculinisers male anaphase II segregate 

either symmetrically or asymmetrically to the cell with the more significant 

DNA mass. 

 (A) Mitochondria stained with antibody against ATP synthase beta subunit 

(ATPB) (green) and DNA staining using (DAPI) (blue) in A. rhodensis wild type 

male spermatogenesis. The single unpaired X chromosomes lag (red arrow) 

during the second anaphase. Mitochondria segregate exclusively to the cell that 

inherits the X chromosome (bigger DNA mass), resulting in the production of X-

bearing spermatid and a residual body with DNA. (B) In Arh-mas-1 pseudo-male 

spermatogenesis, mitochondria during anaphase I segregate symmetrically to both 

secondary spermatocytes. However, in the second anaphase, mitochondria 

segregate exclusively to one daughter cell. A lagging-X chromosome is observed 

(red arrow) during the second anaphase, and mitochondria segregate with the 

lagging-X chromosome. (C) 2X lagging-X chromosomes are also observed in 

masculinisers second anaphase. 2X lagging-X chromosomes either segregate 

equally to both daughter cells with mitochondria segregating symmetrically (S/B, 

Sym) (S/S, Sym), or both X chromosomes segregate together to one cell with 

mitochondria segregating asymmetrically with the X (S/S, Asym). The structure 

of lagging-X chromosomes is determined from the surface area of the DAPI 

signal, the small surface area represents a chromosome of a single chromatid (red 

arrow), and a large surface area represents a chromosome of two sister chromatids 

(yellow arrow). (D) 3X lagging-X chromosomes are also observed in Arh-mas-1 

male anaphase II. Where, 2X lagging-X chromosomes segregate to one daughter 

cell, while 1x lagging-X chromosome segregates to the second daughter cell. 

Mitochondria segregate symmetrically to both daughter cells in the event of 3X 

lagging-X chromosomes. Overall, mitochondria in Arh-mas-1 spermatogenesis 

either segregate symmetrically to both spermatids (E) or asymmetrically to the 

daughter cell with larger DNA mass because of X chromosomes inheritance. 
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3.4. Conclusion 

Masculinisers recovered from EMS mutagenesis are genetically XX individuals; 

however, they have the morphology of a male. Masculinisers can be distinguished 

from wildtype males during the late adult stage by dark gut pigmentation (Figure 

3.4). In this study, the Arh-mas-1 phenotype itself was not thoroughly 

investigated since the aim of the study is to determine if the X chromosome is a 

polarising signal during XX spermatocyte spermatogenesis. Nile red was used to 

investigate those dark patches as potential fat storage, but no clear difference was 

shown between wildtype males and masculinisers  [122, 123]. Another reason for 

the presence of dark patches could be the production of vitellogenin, a precursor 

for yolk proteins; however, masculinisers were not tested for the production of 

vitellogenin proteins. Production of vitellogenin protein can be investigated 

directly by amplifying vitelogenin-1(vit-1) RNA by standard PCR from 

masculinisers cDNA [124, 125].  

 

Sexing and genotyping of masculinisers progeny indicates that Arh-mas-1 

generally produces X-bearing oocytes and a low percentage of nullo-X sperms. 

Genotyping results did not illustrate the production of diplo-X sperm by 

masculinisers as we expected to observe XX animals with only APS4 marker 

(Figure 3.10). All genotyped XX Arh-mas-1 progeny were heterozygote, no APS4 

homozygous for the X were observed probably due to the small sample size of 

genotyped XX individuals. So far, there is no genetic evidence illustrating the 

production of diplo-X sperm by masculinisers apart from the short and fat 

triploid-X animals recovered from masculinisers cross with APS4 females. I tried 

to karyotype those triploid-X animals using single animal karyotyping by 

quantitative RT-PCR of X-linked XOL-1 genes [126, 127]. Since males contain a 

single X chromosome and females/hermaphrodites contains two X chromosomes 

they will be a good control to determine that the short and fat individuals are 

triploid-X individuals, as the average cycle threshold (Ct) value expected to 

double for XX individuals from the value of males and triple for triploid-X 

individuals. However, it was hard to obtain conclusive results due to the small 

amount of DNA contained in a single animal. Production of diplo-X sperms was 

evident in immunostaining data, wherein Arh-mas-1 anaphase II 2X lagging-X 
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chromosomes observed to segregate exclusively with mitochondria and MSP to 

one daughter cell.   

 

During spermatogenesis of Arh-mas-1 male, MSP and mitochondria in anaphase 

II either segregate symmetrically or asymmetrically to the cell that inherits X 

chromosomes. In the event of asymmetric segregation, mitochondria and MSP 

segregate to the cell with the bigger DNA mass due to its inheritance of X 

chromosomes. Different patterns of lagging-X chromosomes observed in Arh-

mas-1 anaphase II including, 1X, 2X, 3X, and 4X lagging-X chromosomes 

(Figure 3.12) (Figure 3.13). The pattern of lagging-X chromosomes observed in 

the second anaphase is dependent on the way unpaired X chromosomes segregate 

in the first anaphase (Figure 3.14). Sperm components in the first meiotic division 

segregate symmetrically irrespective of the X chromosomes segregation, as in all 

other examples of A. rhodensis spermatogenesis. Segregation of the X 

chromosome in the first anaphase does not follow a single uniform pattern. In the 

first anaphase unpaired X chromosomes may split and segregate equally, or 

segregate to both poles as a whole without splitting. They may all segregate 

together to only one secondary spermatocyte, or one X segregates exclusively to 

one cell and the other splits to segregate equally to both cells, whereby one 

secondary spermatocyte will inherit one X chromosome, and the other will inherit 

3 X chromosomes (Figure 3.14). Unequal segregation of X chromosomes in the 

first anaphase is manifested by the difference in surface area of DAPI staining 

between secondary spermatocytes nuclei (Figure 3.12). Multiple patterns of X 

chromosome segregations are also expected in anaphase II depending on the 

number and structure of X chromosomes inherited from the first meiotic division 

(Figure 3.14).  
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Figure 3.14: Expected patterns of X chromosome segregation during 

masculinisers spermatogenesis. 

 In the first anaphase, unpaired X chromosomes may split and segregate equally, 

or segregate equally without splitting. They may segregate together to only one 

secondary spermatocyte, or one X segregates exclusively to one cell and the other 

splits to segregate equally to both cells, whereby one secondary spermatocyte will 

inherit one X chromosome, and the other will inherit 3 X chromosomes. 

According to the number and the structure of X chromosomes inherited in each 

secondary spermatocyte, different scenarios of X chromosomes segregation 

patterns are expected. 

 

 

Genetics and cytological studies revealed that masculinisers produce X-bearing, 

duplo-X, and nullo-X sperms. Anaphase II in Arh-mas-1 spermatogenesis exhibits 

different segregation patterns than expected, depending on the number and 

structure of X chromosomes inherited from the first meiosis. X chromosomes 

either segregate exclusively to one spermatid with sperm components or segregate 

to both spermatids, while sperm components segregate equally (Figure 3.15). In 

anaphase II, 4X lagging-X chromosomes were observed, suggesting unequal 

segregation of X chromosomes in anaphase I, where X chromosomes segregate to 

only one secondary spermatocyte. Nullo-X sperm is expected to originate from 

symmetrically dividing secondary spermatocyte without X chromosomes. 

Further research is required to determine the exact pattern of X chromosome 

segregation as multiple segregation patterns are expected. Future research will 

include the use of fluorescent in situ hybridisation (FISH) against the X 

chromosomes to track the pattern of its segregation during spermatogenesis. 

However, irrespective of the pattern of X chromosome segregation, this study 

concludes that the X chromosome is a polarising signal in Arh-mas-1 

spermatogenesis since in the event of asymmetric segregation sperm components 

segregate with the lagging-X chromosomes to the spermatid with the larger DNA 

mass. At the same time, the other sister nullo-X cell behaves as a residual and 

inherits tubulin (Figure 3.15).  
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Figure 3.15: Variations of lagging-X chromosomes segregation in anaphase 

II of Arh-mas-1 spermatogenesis.  

Multiple patterns of lagging-X chromosomes segregation observed during 

masculinisers spermatogenesis. Numbers and patterns of lagging-X chromosomes 

in anaphase II depends on the numbers and structure of X chromosomes inherited 

in each secondary spermatocyte. In the event of asymmetric division, sperm 

components segregate with the lagging-X chromosomes to the spermatid with the 

more significant DAPI surface area. Red arrow indicates a lagging-X 

chromosome from a single chromatid because of its smaller DAPI surface area, 

while the yellow arrow indicates a lagging-X chromosome from two sister 

chromatids with a bigger DNA mass represented by DAPI surface area. 
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Chapter 4 

 

Identifying genomic region regulating X 

chromosome and sperm components 

segregation in A. freiburgensis.  

Summary:  

This chapter reports the mapping of 4 QTLs on the X chromosome in A. 

freiburgensis that are associated with an asymmetric cell division.  During this 

process, the X chromosome acts as a cue to polarise the cytoploplasm of the 

dividing cell. To identify the underlying QTLs, I generated Recombinant Inbred 

Advanced Intercross Lines (RIAILs). Hybrid A. freiburgensis strains from two 

polymorphic strains resulted in a new transgressive phenotype in some RIAILs, in 

which they produced a high number of males. The DNA from each RIAIL was 

extracted and pooled into two bulks, one with normal proportion of males (<20%) 

and other with high number of males (>20%). Bulk segregant analysis BSA 

identified the underlying QTLs located on the X chromosome. 

 

4.1. Introduction:  

 

4.1.1. Recombinant inbred lines (RILs) are a powerful tool for genetic 

mapping  

Correlating phenotypes with genotypes is the basis of genetics. Mapping allelic 

variants associated with traits is achieved through the generation of recombinant 

inbred lines (RILs). Recombinant inbred lines (RILs) are created by crossing two 

polymorphic strains, followed by sibling mating or selfing for several generations 

[128-130]. At the end of the breeding scheme, each RIL genome will be a mosaic 

shuffle of parental strains genome due to meiotic recombination [131]. 

Recombinant lines inbred to isogeny are homozygous at all loci and can be 

maintained separately [131]. Genetic mapping using recombinant inbred lines has 
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many advantages: 1) From the same set of genomes, multiple different 

phenotypes can be obtained. 2) RILs and parents' genome genotyping is carried 

out against the same reference.  3) Sufficient mapping resolution can be obtained 

from RILs, since meiotic recombination in RILs generates more significant 

haplotype breakpoints than those taking place in any single meiosis [128]. 

Genetically distinct RILs either exhibit quantitatively varying phenotypes derived 

from parental strains or in rare cases a new extreme phenotype (transgression) 

may form, due to shuffling of a linked group of polygenes, as a result of RILs 

genome dense breakpoints introduced through recombination [131, 132]. 

Polygenes are a group of genes that interact together in an epistatic interaction to 

influence a phenotypic trait, examples of polygenetic inheritance in human 

includes skin colour, height, weight and eye colour [133]. When a group of a 

linked polygenes are disrupted and shuffled due to RILs genome dense 

breakpoints, a new transgressive phenotype appears in some of the RILs that is 

not in the original parents used to establish the lines [133] 

 

RILs phenotype can be mapped to their causative loci, referred to as quantitative 

trait loci (QTL). The mapping of a QTL depends on genotyped markers being 

located near the causative loci [131]. Genotyped markers and underlying QTL 

have to be in a linkage disequilibrium (LD) showing a non-random association 

with the underlying phenotype [131, 134]. Increasing RILs genome breakpoints 

by meiotic recombination increases the chance of genotyping a marker near the 

underlying QTL [133]. There are two techniques predominantly used to increase 

the number of meiotic recombination. The first technique simply increases the 

amount of derived F2 individuals, each with unique recombination [135]. In the 

second approach the number of meiosis is increased per individual to increase 

mapping resolution [135]. The number of haplotype breakpoints can be 

accumulated by allowing sibling mating in the F2 progeny of two polymorphic 

parents and promoting lines intercross for successive generations before selfing 

[136]. This advanced form of highly recombinant inbred lines is called 

Recombinant Inbred Advanced Intercross Lines (RIAIL) (Figure 4.1 and 

4.2)[135].  
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4.1.2. A. freiburgensis Recombinant Inbred Advanced Intercross Lines  

(RIAILs) design and construction 

A. freiburgensis, as c. elegans, exhibits certain features that render it a good 

model for the construction of recombinant inbred lines [137]. It is free-living 

species, produces plenty of progeny, and has a short life cycle [69]. A. 

freiburgensis reproduces in two ways: by hermaphrodite self-fertilisation, and 

males outcrossing with females or hermaphrodites. By mating males with 

females, recombination events are generated and can be brought to homozygosity 

by letting the hermaphrodites to inbreed by self-fertilisation. c. elegans 

chromosome undergoes a single recombination event per meiosis [138-140]. 

Assuming A. freiburgensis is similar, recombinant inbred lines (RILs) derived 

from F2 progeny of polymorphic parents will contain few recombinant 

breakpoints per chromosome, making it challenging to introduce haplotype 

breakpoints near the underlying QTL.Moreover, the X chromosome of closely 

related A. rhodensis species does not recombine in hermaphrodites [15]. 

Therefore there is a high chance it also does not recombine in A. freiburgensis 

hermaphrodites [83]. Inbreeding A. freiburgensis recombinant lines from the F2 

generation by hermaphrodite selfing will have a significant flaw, because the X 

chromosome might not contain any haplotype breakpoints. Hybrid RILs derived 

from polymorphic strains were heterozygous for all X chromosome markers, 

indicating that the X chromosome does not recombine in A. rhodensis 

hermaphrodites [83].    

 

RIAILs were generated using two A. freiburgensis polymorphic strains. We used 

A. freiburgensis instead of A. rhodensis because in preliminary studies we did not 

manage to generate A. rhodensis RILs with a transgressive phenotype (lines with 

high production of males).  However, RILs generated in A. freiburgensis resulted 

in lines that have a high proportion of males (Adams, S. personal 

communication). These RILs were derived from A. freiburgensis APS14 and 

APS7 strains, which were crossed in both directions. F1 hermaphrodites resulting 

from both crosses were isolated to produce F2 hermaphrodites. Then, F2 

hermaphrodites were used to establish the lines by single nematode descent 

(SWD). 5 lines from a total of 30 F2-derived RILs (approx. 16.6%) produced a 

high number of males. Moreover, males from those lines also produced a high 
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number of males after an outcross. Therefore, to improve the genetic map in A. 

freiburgensis, lines from the F2 were crossed for successive generations before 

being inbred by selfing to produce Recombinant Inbred Advanced Intercross 

Lines (RIAILs). 

 

Initially, A. freiburgensis APS14 female was crossed with APS7 male to establish 

the recombinant lines. The Breeding design involved an inbreeding avoidance 

(IA-RIAILs) crossing scheme from F2 to the F7 generation to avoid 

consanguineous mating [141, 142]. Every two lines derived from unique F2 

recombination were only crossed once during the crossing scheme to maximise 

meiosis breakpoints (Figure 4.1) [135, 141]. Then, hermaphrodite selfing by 

SWD for ten generations brought all introduced haplotype breakpoints during the 

crossing scheme into homozygosity (Figure 4.1).      

 
Figure 4.1: Inbreeding avoidance recombinant inbred advanced intercross 

lines (IA-RIAILs) designed for A. freiburgensis. 

 IA-RIAILs were designed in a way to maximise haplotype breakpoints and to 

avoid consanguineous mating. Every two lines were only crossed once during the 

7th generation crossing scheme. A colored grid was made to ensure lines 

inbreeding avoidance. Each color corresponds to a generation from F2 to F7.   
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A. freiburgensis RIAILs were constructed to determine if a group of linked 

polygenes mosaic shuffling from two different parental genomes will give rise to 

a new extreme phenotype (transgression). Generation of genetic variations via 

independent assortments of entire chromosomes and meiotic recombination are a 

driving force for speciation, adaptation, and selection [143, 144]. Meiotic 

recombination enables the creation of unique haplotypes through crossovers and 

gene conversion at many sites along the chromosome [145]. However, the 

distribution of meiotic recombination across the genome is not consistent in many 

organisms [108, 144, 146]. As a result, over an evolutionary period, favourable 

polygenes are maintained on genomic regions with a low rate of recombination 

[144]. Epistatic interactions between loci within species maintain genetic 

variations, and disruption of this epistasis leads to the development of an extreme 

phenotype [147]. A group of polygenes epistatic interactions across different loci 

can be shuffled by the accumulation of meiotic recombination leading to the 

development of a novel phenotype or transgression [132, 147]. The generation of 

extreme phenotype from segregating hybrid population is defined as transgressive 

segregation [148]. This segregation is a fundamental mechanism through which 

novel adaptive phenotype develops, and speciation thought to arise [148].   

 

Generation of IA-RIAILs will increase recombination between homologs 

chromosomes from two A. freiburgensis strains with different genetic 

backgrounds; as a result, crossovers will accumulate over a relatively short 

period. I expected that producing A. freiburgensis RIAILs by mixing two strains 

(APS14 and APS7) from different genetic backgrounds will give rise to lines 

where males produce a high number of males after an outcross. In wildtype A. 

freiburgensis male, I expect that asymmetric segregation of cytoplasmic 

components exclusively with the X chromosome in anaphase II to produce only 

X-bearing sperm is maintained via an epistatic interaction between a group of 

linked polygenes. Therefore, I hypothesise that the mosaic shuffle from the two 

different parental genomes in RIAILs, will disrupt the epistatic interaction that 

maintenance asymmetric segregation, leading to the production of a high number 

of males in some RIAILs. Spermatogenesis in males from those RIAILs are 
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capable of producing a functional nullo-X sperm, resulting in the production of a 

high number of males after an outcross.  

 

The novelty of A. freiburgensis as a model system enables the identification of the 

type of divisions occurring in males’ germline through broad count after an 

outcross with a wt female. Indeed, 65% of the 110 generated RIAILs produced a 

high number of males (Figure 4.3). Males from lines producing a high number of 

males also produced a high number of males when crossed with a wildtype 

female, indicating their ability to create a functional nullo-X sperm. Genotyping 

of RIAILs will enable correlating observed phenotypes with the underlying 

candidate trait loci (QTLs) responsible for the observed phenotype.  

 

4.1.4. Bulk Segregant Analysis (BSA) is an elegant strategy to identify QTLs 

linked to a phenotype of interest 

Bulk segregant analysis (BSA) is a simplified alternative to the conventional QTL 

mapping used to identify molecular markers closely associated with genes [133, 

149-153]. After assessing the degree of expression of a phenotype of interest in a 

segregating population, individuals with extreme contrasting phenotypes bulked 

into two groups. DNA from individuals constituting each contrasting bulk is 

extracted separately, then pooled equally into a DNA sample corresponding to 

each bulk [151-154]. The fast development of Next Generation Sequencing 

(NGS) – NGS-BSA based strategies accelerated the process of identifying 

quantitative genes in plants [149, 151, 152, 155]. NGS-BSA based approach has 

also been used successfully to identify complex traits in c. elegans [133, 156, 

157]. In the BSA approach, QTLs are generally identified by comparing allele 

frequencies between the two genotyped bulks [133, 150]. BSA-QTL analysis of 

A. freiburgensis RIAILs identified 4 QTLs located on the X chromosome that are 

in involved in X chromosome segregation and subsequent spatial localisation of 

sperm components. QTLs were identified using two methods; QTL-seq approach 

and The G’ approach.  

 

QTL-seq 

Takagi et al. (2013) developed a pipeline to identify quantitative trait loci in rice 

[150]. Takagi et al. (2013) suggests that in each bulk equal contribution of both 
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parental genomes is expected in most of the genomic regions in a 1:1 ratio. 

However, unequal representation of genome from both parents will indicate 

genomic regions containing QTLs for the contrasting phenotype. The contribution 

of genomic reads from both parents in each bulk can be estimated through 

discriminating short reads corresponding to each parent through single nucleotide 

polymorphism (SNPs). Sequenced short reads from each bulk are aligned against 

a reference genome of one of the two parents. Subsequently, the number of reads 

containing SNPs (alternate allele) was counted from the total number of reads, 

and their ratio was determined. The ratio of those SNPs containing reads from the 

total number of reads at a specific genomic position is defined as SNP-Index. 

 

SNP-Index = alternate allele depth / total read depth  

 

At a specific genomic region, SNP-index of 0 indicates that reads at that position 

are from the parent that was used as a reference genome for genotyping 

contrasting bulks. SNP-Index of 1 indicates that all the reads are from the other 

parent.  A SNP index of 0.5 indicates an equal contribution of reads from both 

parents. In practice, a SNP index is calculated for all the SNPs detected in each 

genotyped bulk. The relationship between SNP-Index and SNP position is 

represented in a graphic plot.  To simplify the visualisation a sliding window 

analysis is applied by averaging SNP-indices of a number of SNPs located within 

a determined genomic interval (tricubed-smoothed SNP-index). The graphs for 

both contrasting phenotypes are expected to be similar across genomic regions 

that are not contributing to the difference of phenotype between the two bulks. 

However, in the genomic areas harbouring QTL underlying the contrasting 

phenotype unequal representation of the parental genome will be observed in both 

bulks. Therefore, graphs from both bulks with contrasting phenotypes are 

combined to determine the QTL region by subtracting SNP-index values at each 

SNP position of one bulk from the other to produce a delta-SNP graph. In this 

graph, Delta-SNP index of 0 represents equal contribution of genomic reads from 

both parents (e.g., A and B), delta-SNP index of 1 represents that bulked DNA on 

that genomic location is derived from parent A, and delta-SNP of -1 indicates that 

reads are contributed from only parent B [150].   
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G’ analysis  

An alternative approach developed by Magwene et al. (2011), based on G-

statistic, was conducted to identify QTLs associated with the asymmetric 

segregation of X chromosome and spatial localization of sperm components. 

After the preparation of DNA pools from contrasting bulks, SNPs from both 

bulks were genotyped at each position with an average coverage of C. The data 

for each SNP can be summarized in a 2X2 table (Table 4.1). A1 is the allele from 

parent used as a reference genome, A0 is the corresponding allele from the other 

parent, and ni represents the count of both parents allele after genotyping each 

bulk.  

 

Table 4.1: Coverage at an individual SNP.  

 
 High bulk  Low Bulk  Total  

A1 n1 n2 n1 + n2 

A0 n3 n4 n3 + n4 

Total  n1 + n3 n2 + n4  

 

In most genomic regions that do not affect the contrasting phenotype observed 

allele frequency for A0 in the high bulk P1= n3 / ( n1 + n3) will be equal to 

observed allele frequency for A0 in low bulk P2= n4 / ( n2 + n4). However, in 

genomic regions harbouring QTLs that affect the phenotype P1 > P2, where an 

allele from one parent will be overrepresented in that region. The following 

equation characterises G-statistic at each SNP: 

 

G = 2 × Σ ni × ln(
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (𝑛𝑖)

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (𝑛𝑖)
) 

For each SNP, ni from i = 1 to 4 correspond to the reference and alternative allele 

depth for each bulk and observed (ni) correspond to the allele depth as reported 

for each SNP. 

E(x ) (n1) = 
(𝑛1 + 𝑛2)∗(𝑛1+𝑛3)

(𝑛1+𝑛2+𝑛3+𝑛4)
 

 

E(x) (n2) = 
(𝑛2 + 𝑛1)∗(𝑛2+𝑛4)

(𝑛1+𝑛2+𝑛3+𝑛4)
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E(x) (n3) = 
(𝑛3+ 𝑛1)∗(𝑛3+𝑛4)

(𝑛1+𝑛2+𝑛3+𝑛4)
 

 

E(x) (n4) = 
(𝑛4+ 𝑛2)∗(𝑛4+𝑛2)

(𝑛1+𝑛2+𝑛3+𝑛4)
 

 

G value for each SNP is calculated from expected values with the notion that 

alleles read depth is equal in both bulks. The null hypothesis is that the 

investigated SNP is not associated with a QTL region. Moreover, if we 

hypothesise an equal average sequencing coverage of both bulks, then 

E(n1)=E(n2)=E(n3)=E(n4)=C/2. If sequencing coverage of both bulks at a 

particular SNP is not equal, the allele from one parent is over-represented, then 

the null hypothesis will be rejected, and that SNP might be significant for the 

underlying QTL. To help simplify the visualisation of G value on a graph across 

the entire genome, G’ A smoothed version of G value is calculated by averaging 

G values of neighbouring SNPs depending on the suggested window size. From 

the null distribution of the G’ that assumes no QTL, p-values can be estimated. 

Mean and variance of the G' null distribution is estimated, then p-values are 

calculated. 

 

A. freiburgensis RIAILs construction and subsequent BSA analysis led to the 

discovery of 4 QTLs located on the X chromosome associated with X 

chromosome segregation and cytoplasm spatial localization in A. freiburgensis 

male spermatogenesis. In this chapter, First, I will outline the results of RIAILs 

construction and phenotype characterization of RIAILs. Then, I will present the 

BSA analysis and QTLs located on the X chromosome associated with the 

observed transgressive phenotype. Finally, I will discuss genes within identified 

QTLs that might have a direct role in X chromosome co-segregation with sperm 

components. 
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4.2. Materials and Methods 

 

4.2.1. Producing A. freiburgensis Recombinant Inbred Advanced Intercross 

Lines (RIAILs)  

Recombinant inbred advanced intercrosses lines (RIAILs) were generated in A. 

freiburgensis by crossing APS7 male with polymorphic strain APS14 female. 

Hybrid F1s progeny resulting from the cross was left to mate in a large mating 

pool. F1 self-producing hermaphrodites and females, each have mated with one or 

more males, were isolated to a separate plate each to establish 110 lines. 3-5 F2 

females were picked from each line and crossed with two males from a different 

line, in an inbreeding avoidance scheme. Inter-crosses between lines from F2 to 

F7 was established in a way where every two lines were only crossed once to 

maximise haplotype breakpoints. After seven generations of crosses, lines were 

inbred by single worm descent for ten generations to bring all the alleles into 

homozygosity at all loci. Once the 17th generation was reached, lines were 

maintained by scooping mixed animals from a crowded plate to a fresh new plate 

once a month, at this point each line is homozygous at each locus. 

 

4.2.2. Freezing A. freiburgensis Recombinant Inbred Advanced Inter-crosses 

Lines 

The freezing protocol explained in section 2.2.8. Lines were frozen in liquid 

nitrogen to be recovered if lost in the future. Each line was frozen in triplicate 

tubes. Tubes were then placed inside a styrofoam box and put inside -80 

incubator, left overnight to help freezing nematodes slowly. Then tubes were 

moved to the final liquid nitrogen storage.  

 

4.2.3. Crossing males from A. freiburgensis Recombinant Inbred Advanced 

Intercross Lines (RIAILs) with wild type females 

In each cross, a male from each line was crossed with a wild type APS7 female 

for ~24h. After the cross, males were isolated and incinerated. The gravid female 

was moved to a new plate every day until they stopped laying eggs, in order to 

synchronize the growth of the F1 progeny. Ratios of male to female progeny were 

scored for each cross. 
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4.2.4. DNA Extraction from A. freiburgensis Recombinant Inbred Advanced 

Inter-crosses Lines (RIAILs) 

Washing plates 

Nematodes were harvested from non-starved plates right after the bacteria has 

been consumed with M9 or water from five 10 cm plates for each line. 

Nematodes from all stages were washed and collected in a 50ml conical tube. 

Nematodes were washed two times, then mixed gently for 1 hour on a roller to 

introduce starvation. Starving nematodes will help clean them from bacteria that 

reside in their gut. Then, nematodes were washed 2-3 times with water. After 

each wash, nematodes were let to settle to the bottom of the tube rather than 

centrifuging. Nematodes are generally heavier than bacteria so that they will settle 

at the bottom of the tube faster. The supernatant containing bacteria was 

discarded after each wash. Nematodes were pelleted by centrifuging to maximum 

speed, and excess water was removed. Pellet was separated into two 1.5 ml 

Eppendorf or more depending on the size of the pellet. 500 µl of lab-made lysis 

buffer was added. Lab-made lysis buffer contains; 100 mM Tris (pH 8.5), 100 

mM NaCl, 50 mM EDTA, 1% SDS and 1% beta-Mercaptoethanol added fresh to 

the lysis mix before each extraction. Tubes were then frozen in -80 overnight.  

 

RIAILs DNA extraction  

The frozen pellet was allowed to thaw at room temperature then frozen again 

instantly using liquid nitrogen or dry ice. This repeated cycle of thawing and 

freezing was repeated three times to allow the physical break of nematodes 

cuticle. 2.5 µl of proteinase K (20mg/ml) was added to each tube. Tubes were 

incubated at 65 °C for 3-4 hours. Tubes were centrifuged at maximum speed for 5 

minutes to pellet protein and large debris at the bottom of the tube. The 

supernatant containing DNA was moved to a fresh new tube. Tubes were cooled 

by incubating on ice for 5 minutes. Then 170 µl of protein precipitation solution 

from Gentra Puregene Core kit A provided by Qiagen was added. Tubes were 

inverted 50 times and incubated on ice for 10 minutes. Tubes were centrifuged at 

maximum speed for 2 minutes, then incubated on the ice again for 10 minutes, 

and the centrifuging step was repeated. The supernatant was moved to a fresh new 
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tube, being careful not to disrupt the pellet. Tubes were then centrifuged again to 

pellet any carried over protein, and the supernatant was moved to a fresh tube. 

 

Alcohol precipitation  

500µl of isopropanol and 100 µl (1/10) volume of 3M NaAC was added. Tubes 

were inverted 50 times to mix and incubated in ice for 15 minutes. Then 

centrifuged at maximum speed for 10 minutes to pellet the nucleic acid. The 

supernatant was discarded, and the nucleic acid pellet was washed in 400µl of 

70% ethanol. Tubes were centrifuged at maximum speed for 5 minutes, and the 

supernatant was discarded. The nucleic acid pellet was left to dry at room 

temperature. 100 µl of 10 mM Tris-HCl (pH 8.0) added to dissolve the DNA 

pellet at 4C overnight.   

 

RNase treatment 

0.5 µl of RNase was added to each tube and incubated in a heat block at 37 C 

with shaking (700 rpm) for 1 hour. RNA from samples was cleaned using Zymo 

research genomic DNA, and a concentrator kit. For 100 µl of DNA, 4000 µl of 

chip DNA binding buffer was added. A mixture of DNA and chip DNA binding 

buffer was added to the spin column. Spin columns were centrifuged for 30 s and 

flow-through was discarded. 200µl of DNA wash buffer was added to the column 

and centrifuged for 1 minute. The wash step was repeated. Finally, 100 µl of 10 

mM Tris-HCl (pH 8.0) added to elute DNA. Spin columns were incubated for 3 

minutes at room temperature before centrifuging for one minute. Finally, the 

quality of the DNA was examined by running 1 µl of DNA on 1.8 % agarose gel, 

and concentration was measured using Qubit fluorometer. 

 

4.2.5. Pooling DNA from lines with similar phenotypes into different pools  

Genome from the APS14 maternal strain and four DNA Pools were prepared, two 

pools were from lines producing a high number of males (H-Pools) and two pools 

from lines producing a low number of males (L-Pools). DNA in each pool was 

created by mixing equal concentration of DNA from 10 lines with the same 

phenotype. A volume containing 150 ng of DNA from each line was pipetted into 

the DNA pool to make up a total of 1.5 µg of DNA in each pool. The quality of 
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DNA was examined by running 1 µl of DNA on 1.8 % agarose gel, and 

concentration was measured using Qubit fluorometer.  

 

4.2.6. DNA sequencing 

Five DNA samples; 2 H-pools, 2 L-pools, and DNA from APS14 maternal strain, 

were sequenced. Sequencing libraries were generated using TruSeq DNA nano 

gel free at the GenePool facility at the University of Edinburgh. The four Pooled 

DNA samples plus a DNA sample for the APS14 strain were sequenced using the 

Illumina HiSeq platform to generate 150-bp paired-end reads, with an insert size 

estimation of 350 bp.   

 

4.2.7. Sequences pre-processing and variant calling  

First of all, the quality of the reads was assessed using the FastQC software to 

have an overview of the reads' quality, contamination, and GC content [158]. 

From this overview, it was possible to determine the overall quality of the 

samples, and the overall GC content are reasonably good. Low-quality regions of 

the reads were trimmed using trimmomatic software (version 0.36) [159]. Paired-

end reads were reported in phred33 quality score, and reads were cleaned 

depending on the following criteria: (1) ILLUMINACLIP, TruSeq3-

PE.fa:2:30:10, to cut adapters and other Illumina-specific sequences from the 

reads. (2) LEADING:3 to cut bases off the start of the read that is below a 

threshold quality. (3) TRAILING:3 to cut off bases at the end of the reads that are 

below the threshold quality. (4) SLIDINGWINDOW:4:15 a sliding window 

trimming, to cut once the average quality within the window falls below the 

threshold. (5) MINLEN:36 drop the read if it is below a minimum length of 36 

base pairs. 

The quality of reads was reexamined after cleaning using FastQC software. Then, 

BWA program was used to align short reads from each pool separately to the 

APS7, paternal strain, reference genome [160-162]. Alignment files in sam 

format were converted to bam files using samtools “view” command [160]. 

Initially, the analysis was conducted using four pools, two H-pool, and two L-

pool; this resulted in four comparisons; each reported different numbers of 

quantitative trait loci (QTLs) [163]. Therefore, both bam files from the H-pools 

and the L-pools were merged to produce a single bam called Low Bulk (LB) and 
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High Bulk (HB) respectively, in order to make the analysis more robust and 

reduce the number of (QTLs), to only the (QTLs) that are shared between the four 

comparisons.  

 

Bam files were sorted using samtools software command “sort” [160]. Sorted 

bam files of all pool samples and APS14 parental strain were subjected to variant 

calling analysis using GATK (Genomic Analysis Toolkit) to call SNPs and small 

indels [164]. SNPs and small indels across samples and APS14 parental strain 

were called using GATK “Haplotypecaller" command to produce separate variant 

calling files (VCF) for each sample [165]. Individual variant calling files (VCF) 

were merged into one file using GATK "GenotypeGVCFs” command. Joint 

genotyping using “GenotypeGVCFs" combined all SNPs and indels records from 

all samples to produce correct genotype likelihood outputting a single combined 

variant calling file (VCF) [166, 167]. The joint variant calling file (VCF) was 

converted to a table using "Variant To Table" command provided by the GATK 

software [168, 169].  

 

4.2.8. Bulk segregate analysis (BSA) and quantitative trait loci (QTLs) 

identification  

Quantitative trait loci responsible for the production of a high number of males 

were identified with the help of R-package "QTLseqr” [163]. Data from the table 

produced using GATK "Variant To Table" tool was loaded into R. Imported data 

were assigned new names, H-pool and L-pool were called high-bulk and low-

bulk, respectively. Importing the SNP data into R using "QTLseqr" import 

function performs primary calculations to identify reference allele frequency, 

SNP-index per bulk and  (SNP-index):  

 

Reference allele frequency = (Ref allele depthHighBulk + Ref allele depthLowBulk) / 

total read depth for both bulks.  

SNP-indexper bulk = Alternate allele depth/ total read depth  

∆(SNP-index) = SNP-indexHighBulk − SNP-indexLowBulk 
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After loading the data into R, the data were cleaned up by filtering out low 

confidence SNPs. In order to determine filtering threshold, quality of the SNPs 

were analysed by generating a histogram plot for the following data: (1) depth of 

the reads of both high-bulk and low-bulk, (2) reference sequence frequency, (3) 

SNPindex of high bulk and low bulk were evaluated separately.  

 

High quality SNPs were selected and filtered from the data depending on the 

following parameters: 1) SNPs with reference allele frequency (0.2 <= reference 

allele frequency  <= 0.8), 2) total sample read depth (500 >= total read depth >= 

1750), 3) Depth difference between bulks <= 100, 4) filtering by read depth per 

sample >=40, 5) Filtering by genotype quality >=99.  

 

QTLseq analysis 

QTLseq analysis developed by Takagi et al. (2013)[150] for NGS-BSA was used 

to calculate the allele frequency difference,  (SNP-index), from the alleles depth 

at individual SNP. The method relies on calculating the delta-SNP-index at each 

SNP between high-bulk and low-bulk, to identify candidate regions, where delta-

SNP-index in that region differs from the expected delta-SNP-index of 0. The 

analysis was conducted using "QTLseq” R package [163] were the following 

calculations were performed:   

1- a sliding window size was set to 1Mbp, and the number of SNPs was counted 

in that window.    

2-  Within each sliding window, a tricube-smoothed delta-SNP-index was 

calculated by constant local regression.  

3- For each sliding window, tricube-smoothed depth was calculated, and for each 

SNP position, the minimum read depth was calculated. 

4-  A simulation was preformed were the delta-SNP-index per bulk was 

calculated and simulated over 1000 replications based on RILs F2 population 

with a bulk size of 20. Confidence intervals were estimated using the quantile 

from the simulation.  

5- At each SNP, the confidence intervals were matched with the corresponding 

window depth. 
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G’ analysis  

An alternative approach developed by Magwene eta al (2011) was used to 

identify significant QTLs from BSA [154]. Once the analysis was performed 

using the "QTLseq" R Package, the following steps were undertaken. 

1- G statistic was calculated genome-wide, and a tricube-smoothed G statistic (G') 

was predicted in each sliding window. 

2- P values were estimated, Benjamini-Hochberg adjusted p-values, and negative 

log10- were calculated [170].   

 

Graphs were plotted using functions provided by the “QTLseqr” R package, apart 

from the SNPindex and deltaSNPindex figures were produced using "ggplot2" R 

package from the imported SNPs data using “QTLseqr” package.  

 

4.2.9. Synteny analysis and identification of scaffolds constituting A. 

freiburgensis X chromosome  

In order to determine which A. freiburgensis  APS7 scaffolds represent the X-

chromosome. A. rhodensis linkage groups were aligned with c. elegans genome, 

A. freiburgensis (APS7) scaffolds were aligned with c. elegans genome, and A. 

freiburgensis (APS7) scaffolds were aligned against A. rhodensis linkage groups 

(LGs). Alignment between the three species enabled visualisation of macro-

synteny between the three strains and determined APS7 scaffolds that align with 

the X chromosome. The whole-genome alignment was generated using PROmer 

program part of MUMmer package (version 3.23) [171]. PRomer is a rapid whole 

genome alignment that uses the six-frame translation of both input sequences to 

generate alignments [172, 173]. The alignment file produced by PRomer was 

used to produce macro-synteny between the three species using Circos plot 

version (0.69-6) [174]. Circos plots were generated for each of the alignment, A. 

rhodensis vs. c. elegans, A. freiburgensis vs. c. elegans, and A. freiburgensis vs. 

A. rhodensis. Moreover, Circos plots were produced for the c. elegans X 

chromosome and A. rhodensis (LG5) to identify scaffolds form A. freiburgensis 

APS7 genome that represents the X chromosome.   
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4.2.10. Variants calling analysis A. freiburgensis strains, filtering variants 

and predicting their effect on the genome   

Variant calling for APS14 was carried out using GATK best practice, as 

explained in 4.2.7. Called variants between APS7 paternal strain and APS14 

maternal strain were subjected to filtration only to keep true and homozygous 

variants. Initially, variants were filtered according to the default values described 

in GATK tutorial as follows; Quality depth (QD < 0.2), Fisher strand (FS > 60), 

RMSMapping Quality (MQ < 40), Mapping Quality RankSum Test 

(MQRankSum < -12.5), Read Position RankSum Test (ReadPosRankSum < -8.0), 

and Strand Odds Ratio (SOR > 3.0). After variants were filtered based on depth 

and genotype quality using bcftools program [175]. Only variants with a depth 

coverage (DP) > 100, variants with genotype quality (GQ) >= 99, and quality 

score on Phred-scale (QUAL) >= 50. When filtering using bcftools, only 

homozygous variants were considered, and heterozygous variants were excluded. 

The effect of APS14 variants called on the genome was predicted using SnpEff 

(version 4.3T) [176]. APS7 A. freiburgensis was configured and built as a new 

genome into SnpEff database manually, as it was not part of the already built 

database for different research species. After the database was run, the analysis 

was run to predict the effect of the variants. A new variant calling file was 

outputted with an extra column illustrating the effect of each SNP. 

 

4.2.11. Gene Ontology (GO) analysis of identified QTLs  

Genome annotation produced using MAKER by a collaborator Dr. Jun Kim 

(personal communication), revealed that there are hundreds of cDNAs within 

candidate regions identified from the BSA analysis. Annotation, as well as the 

genome for APS7, was visualised using Geneious® (version 10.2.2). In order to 

narrow down the number of cDNAs within each QTL to only candidate 

transcripts, only transcripts with effects were extracted from the variant calling 

file produced by SnpEff analysis. SnpSift program part of SnpEff package was 

used to filter variants calling files produced by SnpEff. First of all, SNPs located 

within the identified QTLs were extracted using SnpSift. Out of all the SNPs 

within each QTL, only SNPs causing missense variants were considered. Then 

SNPs and transcripts IDs were extracted into a table using SnpSift “extractFields” 

command. A set of sed and Awk commands were used to extract IDs of 
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transcripts with missense mutations in each QTL. Samtools was used to extract 

the full-length sequence of those transcripts from the APS7 transcriptomic file. 

The identity of transcripts within each QTL was identified using the interactive 

software blast2go (version 5.2.5). Transcripts were blasted using the public NCBI 

blast service, with the option (blastX-fast) against the RefSeq-protein database, 

taxonomy was filtered to nematodes only, blast expectation value was set to 1.0E-

5 and number of the blast hit was set to 5. Functional labels (Go terms) of 

proteins were obtained through GO mapping. Proteins associated with hits from 

the blast result were mapped against curated gene ontology associated proteins.    

 

4.2.12. Genome assembly of A. freiburgensis mitochondria and designing of a 

molecular marker for mitochondria, non-muscle myosin, and myosinXVIII 

APS7 mitochondrion genome was assembled by Sophie Tandonnet (Personal 

communication). APS4 mitochondrion genome was used as a blast query to 

identify contigs within the APS7 genome aligning belonging to the 

mitochondrion. Contigs from the APS7 genome belonging to the mitochondrion 

genome were extracted into a fasta file. APS7 mitochondrial contigs were 

assembled against APS4 mitochondrion reference using Geneious software. 

Variants from the APS14 variant file were loaded into Geneious. SNP between 

APS14 and APS7 mitochondrion that is also a restriction enzyme cut site was 

used to design a genetic marker. Primers were designed around the restriction 

enzyme cut site. Restriction enzyme will digest amplified fragment from APS7 

mitochondrion but not the same amplicon from APS14 mitochondrion due to the 

presence of a SNP. A. freiburgensis mitochondria genetic marker was used to 

genotype mitochondria in RIAILs and identify their strain of origin. Online tool 

GeSeq was used to annotate the APS7 mitochondrial genome and produce a 

schematic map of APS7 mitochondria [177].   

Genetic markers were designed for non-muscle myosin and myosin XVIII. The 

strain of origin of both myosins was investigated in 40 RIAILs, 20 HM, and 20 

LM. Genetic markers were used to identify a direct role between non-muscle 

myosin, myosin XIII, and the asymmetric segregation of mitochondria during in 

A. freiburgensis male spermatogenesis. 
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4.3. Results  

 

4.3.1. Generation of Recombinant inbred Advanced Inter-crosses Lines 

(RIAILs) in A. freiburgensis resulted in a transgressive phenotype: lines 

produce a high percentage of males  

110 Recombinant inbred Advance inter-cross lines (RIAILs) were produced by 

crossing two polymorphic strains of A. freiburgensis, APS14, and APS7. The 

breeding scheme consisted of 7 generations of crosses, by crossing avoidance 

scheme between lines to increase haplotype breakpoints [138]. Followed by 

repeated selfing of all lines for ten generations to bring all of the alleles to 

homozygosity (Figure 4.2). After inbreeding RIAILs, 65% of the lines were 

associated with the production of a high number of males, a phenotype that is not 

present in any of the parental strains.  

 

While maintaining (RIAILs), it was obvious to differentiate between lines that 

produce a high proportion of males (HM) and line that produce a low proportion 

of males (LM). Lines that produce a high number of males have slow population 

growth and take longer for the population to crowd, whereas lines with a low 

percentage of males reproduce faster, causing plates to crowd quicker. More than 

half of the RIAILs produced a high number of males (Figure 4.3). However, it 

was unclear if those males also produce a high number of male progeny after an 

outcross with wt females. Therefore, males from RIAILs were crossed with a wt 

APS7 female to determine if males from HM lines produce viable nullo-X sperm 

(Figure 4.4).  
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Figure 4.2: Recombinant inbred Advanced inter-crosses lines (RIAILs) 

produced by crossing two A. freiburgenesis polymorphic strains.  

APS14 female was crossed with APS7 male. F1s resulting from the cross were let 

to mate in a large mating pool. Hermaphrodites and females that have mated with 

male siblings were isolated to 110 individual plates to produce F2s, each with 

unique recombination. From F2 to the F7 generation, lines were inter-crossed to 

increase haplotype breakpoints. Then, lines were selfied by single nematode 

descent (SWD) for ten generations to increase genome homozygosity. By the F17 

generation, lines have a unique mixed genome from both parental strains that are 

homozygous at each locus. 

 

 
 

Figure 4.3: Sorting RIAILs lines by phenotype.  

From the total number of RIAILs, 65% of lines produced a high number of males, 

and 45% of lines produced a low number of males when crossed with wt APS7 

feamales in separate crosses. 
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In separate crosses, males form 65% of the lines produced unusual high number 

of males when crossed with wildtype female and males from 45% of the lines 

produced the normal low proportion of male brood after an outcross with 

wildtype APS7 females (Figure 4.3 and 4.4). During an outcross, APS7 A. 

freiburgensis produces on average 18% male brood, with sometimes variations 

between 20-25% (Table 1.1) [69]. Therefore, a threshold of 25% of male brood 

after an outcross with wt APS7 female was considered as a cut off between (LM) 

and (HM) (Figure 4.4). Number of XO and XX progeny resulted from each 

RIAIL separate cross are outlines in (Table B.1), probability of 0.18 (average 

number of male broods produced by wildtype cross) was used to calculate 

binomial and beta distribution for each cross (Table B.1). Production of a high 

number of males by males from (HM) is attributed to males' ability to produce a 

functional nullo-X sperm. The novelty of our model organism offers an easy to 

score phenotype. By scoring the sex ratio, it is possible to determine the kind of 

divisions occurring in the male germline. Production of functional nullo-X sperm 

by males isolated from HM lines was determined from the sex ratio when crossed 

with wildtype females. Production of functional nullo-X sperm resulted in a 

higher percentage of male progeny than wildtype crosses, close to 50% and 

sometimes higher, after an outcross with females (Figure 4.4).  
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Figure 4.4: Percentage of males produced after males from RIALs crossed with wild type females in separate crosses.  

Males from HM lines produced a high number of males after an outcross with APS7 wt female. Whereas, males from LM lines produced 

low/normal numbers of males. A threshold of 25% of male brood was considered as cut off between HM and LM. Red color represents HM, 

blue clour LM, and * crosses data not available. Table B.1 outlines number of  XX and XO progeny from each separate cross.
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4.3.2. Bulk segregant analysis identified quantitative trait loci on the X 

chromosome of A. freiburgensis associated with asymmetric cell division  

 

4.3.2.1. Data collection for bulk segregant analysis and identification of 

genetic variants  

The whole genome was extracted from the APS14 maternal strain and all RIAILs 

separately (Figure 4.5). DNA pools from lines producing high male progeny and 

another two DNA pools from lines producing a low number of male progeny 

were generated. Each pool is composed of an equal amount of DNA pooled 

together from 10 different lines (Table B.2) (Figure B.1). The four DNA pools 

and the APS14 maternal samples were sequenced by NGS. FastQC examination 

of raw reads showed poor quality score, especially towards the end of reads. 

Besides, two peaks for GC content were observed with the lowest peak 

representing bacterial contaminants (Figure B.2) [178]. Trimming of low-quality 

reads improved the per-base sequence quality by trimming and filtering out low-

quality reads (Figure B.2) (Table B.3).  

 

Trimmed reads alignment to reference (APS7) genome revealed different 

mapping percentages depending on the presence of contaminant reads in each 

sample after sequencing (Table 4.2). Alignment to reference genome eliminated 

contaminant reads by only aligning nematode reads to the APS7 reference 

genome and discarding bacterial reads. FastQC test on alignment bam file 

illustrated one GC peak corresponding to nematode reads, in comparison to the 

FastQC test of raw and trimmed reads (Figure B.2). Alignment bam files from L-

pools and H-pools were merged into one bam file called LowBulk (LB) and 

HighBulk (HB). Variants between each bulk and APS7 reference genome were 

called separately (Table 4.3). Then, VCF files were merged using to a single VCF 

file. Merging VCF files combined the vcf records at each position by multi-

sample aggregation. Hence, the number of combined Low Bulk and High Bulk 

variants at each position in the combined VCF file were 399319, significantly 

reduced than the total number of variants called separately for each bulk (Table 

4.3).   
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Figure 4.5: Data collection for bulk segregant analysis. 

 RIAILs chromosomes at F17 will by a hybrid mix between APS14 and APS7 

genome; however, it will be homozygote at each locus. RIAILs were sorted into 

high males or low males, depending on the production of males. The genome was 

extracted from all lines separately. DNA from lines with similar phenotypes was 

pooled together to generate high males pool and low males pool. Finally, DNA 

pools were sequenced using NGS technology in high depth. 

 

Table 4.2: Alignment results using BWA of trimmed reads.  

 
Sample  Total QC passed reads   Number of mapped reads  Percentage of mapping  

APS14 215883207 76501280 35.44% 

Pool1 195745572 131954473 67.41% 

Pool2 182728793 132138960 72.31% 

Pool3 186390896 144178811 77.35% 

Pool4 183971885 148638391 80.79% 
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Table 4.3: Number of variants called for each bulk.  

Consolidating called variants from both bulks into a combined VCF file 

significantly reduces the number of variants in the combined file to 399319.  

 
Bulk Total Number of 

variants  

SNPs  Insertions  Deletions  Indels 

Low Bulk 1371822 329604 30197 24702 460 

High Bulk  1451138 335409 30131 25216 373 

 

4.3.2.2. SNPs filtering eliminates low confidence SNPs from the BSA analysis 

Low confidence SNPs were filtered based on read depth. SNPs with high read 

depth that may be located in a repetitive region and SNPs with low coverage were 

also filtered out [179]. To assess the quality of SNPs and define filtering 

thresholds, histograms were plotted for reads depth, per bulk SNP-index, and 

reference allele frequency (Figure B.3). Histogram plots of per bulk SNP-index 

illustrate peaks at each end of SNP-index of 0 and 1. Histogram plots for reads 

depth and reference allele frequency determined the threshold used to filter low 

confidence SNPs (Table 4.4). SNPs plot after filtering low confidence, SNPs 

appeared to be more normally distributed and without a peak at each end of SNP-

index of 0 and 1 (Figure 4.6).   

 

Table 4.4: Threshold used for each variable to filter low confidence SNPs 

and the number of SNPs filtered at each step.  

 
Filtering by  Threshold  Number of SNPs filtered  

Reference allele frequency  0.2 <=REF_FRQ <=0.8  133682 

Total sample read depth Total DP >= 500 14876 

Total sample read depth  Total DP <= 1750 6808 

Per sample read depth  DP >= 40 29 

Genotype quality  GQ >= 99 3426 

Difference between bulks <= 100 45480 

   

Original Number of SNPs Filtered  Remaining  

399319 204301 195018 
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Figure 4.6: Histogram plots of SNPs after filtering low confidence SNPs.  

SNPs with a total read depth between 500 and 1750 were maintained. Per bulk, 

SNP-index is moderately distributed normally around SNP-index value of 0.5. 

Peaks at each end of 0 and 1 in from the per-bulk SNP index plots were filtered 

out.  
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4.3.2.3. BSA analysis identified 4 QTLs associated with asymmetry in the 

male germline  

Four Quantitative Trait Loci (QTLs) were identified on scaffolds number 5, 6, 25, 

and 26, and they were named QTL1-4, respectively. QTL2 (mean p-value 5.90E-

05 and mean Q-value 0.000876097) on scaffold 6 was the largest by size 

(3278726bp) with 12096 SNPs (3689 average SNPs per Mb). QTL1 ( mean p-

value 4.18E-05 and mean Q-value 0.000668699) on scaffold 5 was the second 

largest by size (2035319bp), with 6847 SNPs (3364 average SNPs per Mb).  

QTL3 (mean p-value 5.22E-05 and mean Q-value 0.000791481) located on 

scaffold 25 with a size of 278182bp containing 187 SNPs. QTL4 (mean p- 1.55E-

05 and mean Q-value 0.000606695) located on scaffold 26 was the shortest 

candidate region reported with a size of 138237bp containing 108 SNPs (Table 

4.5) (Figure 4.7) (Figure 4.8).  

 

Table 4.5: Four QTLs were identified on different scaffolds with a significant 

mean p-value and mean q-value. 

 

QTL QTL1 QTL2 QTL3 QTL4 

Scaffolds  5 6 25 26 

start 9035 45748 33889 16474 

end 2044354 3324474 312071 154711 

length 2035319 3278726 278182 138237 

nSNPs 6847 12096 187 108 

avgSNPs_Mb 3364 3689 672 781 

peakDeltaSNP 0.35907495 0.43719216 0.42908529 0.44841324 

posPeakDeltaSNP 9035 864832 33889 154711 

avgDeltaSNP 0.35576673 0.38135858 0.42831606 0.44834105 

maxGprime 308.859984 357.049435 282.212248 359.015893 

posMaxGprime 9035 866623 33889 16474 

meanGprime 301.680279 294.89346 281.616387 358.980606 

sdGprime 18.0352498 48.8814072 0.39200526 0.03002877 

AUCaT 228109358 517066524 37880374.9 29535392.9 

meanPval 4.18E-05 5.90E-05 5.22E-05 1.55E-05 

meanQval 0.0006687 0.0008761 0.00079148 0.0006067 
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Figure 4.7: BSA-QTL analysis Identified QTLs on four different scaffolds.  

Highlighted scaffold 2 in red contains non-significant QTLs compared to other QTLs. In each scaffold, the number of SNPs in each window was 

plotted against the genomic position in (Mb). Scaffolds 25 and 26 are smaller than 1Mb compared to other scaffolds. QTLs in scaffolds 5, 6, 25 

and 26 have a P-value that is above the threshold. Besides, calculated delta-SNP-index indicates significant QTLs in scaffolds 5, 6, 25, and 26 

where the calculated delta-SNP-index is above the confidence intervals, 95%) (red) and 99% (green). 
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Figure 4.8: delta-SNP-index of SNPs from scaffolds 5,6,25 and 26 revealed a 

region of significance.  

Highlighted scaffold in red does not contain a region of significance compared to 

the other four scaffolds QTLs.  Calculated delta SNP-index for scaffolds 5,6,25 

and 26 are above confidence intervals 95% (red) and 99% (blue).  

 

4.3.3. Macrosynteny revealed that identified QTLs are on A. freiburgensis X 

chromosome  

The 45 Mb A. freiburgensis APS7 genome was assembled into 75 scaffolds. 

Therefore, it is challenging to determine the chromosomes identified QTLs 

belong without a genetic linkage map. However, scaffolds were mapped to 

chromosomes through whole-genome alignment of A. freiburgensis APS7 

genome with the  genome of the related species A. rhodensis APS4. The general 

gene composition of each chromosome is highly conserved in nematodes [180-

182]. Synteny to A. rhodensis and c. elegans enabled assigning A. freiburgensis 

scaffolds representing the X chromosome. A. rhodensis APS4 genome has been 

previously organized into seven linkage groups, each representing a chromosome. 

A. rhodensis APS4 whole-genome alignment with c. elegans genome identified 

linkage group-5 (lg5) to represent the X chromosome in A. rhodensis (Figure 

4.10). Whole-genome alignment of A. freiburgensis APS7 with A. rhodensis 

APS4 identified APS7 scaffolds that align with A. rhodensis APS4 linkage group 

5 (Figure 4.9). Scaffolds 5,6,25 and 26 with identified QTLs aligned with the X 

chromosome of A. rhodensis.  
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Figure 4.9: Identified QTLs located on A. freiburgensis scaffolds share 

orthologues sequences with A. rhodensis X chromosome (LG5).  

Whole-genome alignment between X chromosome (LG5) of A. rhodensis and A. 

freiburgensis indicates that scaffolds 5, 6, 25 and 26 where QTLs were identified 

share orthologues sequences. This is a significant indication that identified QTLs 

are in the X chromosome of A .freiburgensis.  
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Figure 4.10: Orthologous sequences between c. elegans vs. A. rhodensis and 

A. rhodensis vs. A. freiburgensis identified A. freiburgensis scaffolds 

belonging to the X chromosome.  

Red arrows and scaffolds labeled in red indicate the location of identified QTLs. 
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3.3.4. Predicting the effect of SNPs called between A. freiburgensis RIAILs 

parental strains narrowed down the search for candidate genes 

In order to identify candidate genes from the identified QTLs, only transcripts 

with missense mutations were considered for the analysis. Initially, 1728880 

variants were called between APS14 and APS7 reference genome. However, 

when low confidence SNPs were filtered based on depth, genotype quality, and 

filtering out heterozygote SNPs, 320312 true variants were maintained. From the 

true overall variants, there were 277788 SNPs, 22521 insertions, 19992 deletions, 

and 11 Indels (Table 4.6). The variant rate between APS14 and APS7 reference 

genome is one variant in every 161 bases, the ratio between missense and silent 

mutations is  0.3415 (missense/silent ratio), and the ratio between SNPs 

transitions to transversions is 1.61(transitions/transversions) (Table B.5) (Table 

B.6).   

 

SnpEff software was used to predict the effect of SNPs called on transcripts to 

only consider transcripts with non-synonymous mutations. The total number of 

transcripts in the APS7 genome is 18532. SnpEff predicted 9452 transcripts have 

non-synonymous mutations, 238 transcripts with a stop codon gained, and 192 

with both missense variants and stop codon gained. QTL1 has 250 transcripts 

with missense mutations, of which 219 transcripts had a blast hit with nematode 

RefSeq-protein database, and 14 transcripts with stop codon gained, of which 13 

transcripts had a blast hit. In qtl1 the highest deltaSNP index (deltaSNP 

0.673076923, P-value 3.47E-05 and Q-value 0.000606695) at scaffold five 

positions 339811 is an insertion of 198bp long approximately 18688bp upstream 

of the non-muscle myosin transcript, that contains missense variants and variants 

causing stop codon. The insertion is over-represented in the high bulk with 

SNPindex of (0.950549451) compared to the low bulk (Table 4.7).  

 

QTL2 is the largest candidate region in size containing 315 transcripts with 

missense variants in APS14, of which 271 have a blast hit, and eight transcripts 

with stop codon gained, of which seven transcripts have a blast hit. An insertion 

of 224bp at scaffold 6 position 2008276 was overrepresented in high bulk (SNP-

index 0.918439716) with the highest delta-SNP-index in QTL2 (deltaSNP 

0.904694012, P-value 4.85E-05 and Q-value 0.000753638) (Table 4.7).  
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There were 23 transcripts with missense variants in qtl3, with 16 of them 

correspond to a protein from the nematode RefSeq-protein database. The smallest 

candidate region qtl4 harbours 12 transcripts with missense mutations, the 

identity of 8 of those transcripts has been identified with search against nematode 

RefSeq-protein database (Table 4.7).  

 

 Table 4.6: Number of variants called and filtered between APS14 and APS7 

reference genome.  

 
Variant calling 

stage  

Number 

of SNPs 

Insertions  Deletions  Indels Total  Percentage 

kept  

Initial variants 

called 

344301 29282 26823 40 1728880 100% 

Filtering by 

genotype 

quality (QUAL 

>= 50) and 

(GQ>= 99) 

320034 25820  24049 34 369937 21.4% 

Filter by depth 

>=100 

297905 24147 22412 26 344490 19.92% 

Filtering out 

heterozygote 

SNPs 

277788 22521 19992 11 320312 18.52% 

 

Table 4.7: Variants' effect on transcripts in each QTL as reported by snpEff.  

 
 Qtl1 Qtl2 Qtl3 Qtl4 

Number of variants reported with effect   

 

21496 17477 1833 2194 

Number of variants causing mis-sense 

variants  

 

938 794 85 73 

Number of variants with stop gained 

 

15 8 0 1 

Total Number of Transcripts  

 

843 1225 83 55 

Number of transcripts with missense 

variants 

 

250 315 21 12 

Number of transcripts with missense 

variants have blast hits 

 

219 271 16 8 

Number of transcripts with stop gained  

 

14 8 0 1 
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Number of transcripts with stop gained 

have blast hit 

 

13 7 0 0 

4.3.5. All RIAILs inherited mitochondria from the maternal line APS14 

Assembled APS7 mitochondrial genome was loaded into genious software and 

aligned with the APS14 variant file. Variants on the mitochondrial genome 

between APS14 and APS7 were discovered. A molecular marker to differentiate 

between both mitochondria was designed. Primers were designed on both ends of 

a SNP site that also a restriction enzyme cut site. Amplified fragment is digested 

by restriction enzyme in one strain but not the other. The size of the digested 

fragment determines the strain of the investigated mitochondria (Table B). A 

molecular marker for A. freiburgensis mitochondria revealed that all of the 

investigated RIAILs had inherited the mitochondria from maternal line APS14 

(Figure 4.11) (Figure 4.12).  

 

 
 

Figure 4.11: Schematic map of the APS7 assembled mitochondria.  

SNPs between APS7 and APS14 mitochondria used to design molecular markers 

to determine the origin of mitochondria in each RIAIL. 
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4.3.6. Investigation of candidate genes non-muscle myosin and myosin XVIII 

shows no direct role in the asymmetric segregation of mitochondria   

Candidate genes non-muscle myosin and myosinXVIII were identified on QTL1. 

SNPs contained on both genes were predicted by SnpEff to cause misesne 

mutations (Table 4.8). I hypothesised that non-muscle myosin, myosinXVIII and 

mitochondria have to be from the same strain in LM-RIAILs to achieve the 

wildtype phenotype. Wherase, in HM-RIAILs non-muscle myosin, myosinXVIII 

and mitochondria will be inherited from different A. freiburgensis strains. 

Incompatibility between myosin and mitochondria is possible to generate the 

transgressive phenotype in HM-RIAILs. Therefore, Molecular markers were 

designed on SNPs close or within non-muscle myosin and myosinXVIII to 

determine their inheritance in RIALS.  

 

Molecular markers used to genotype non-muscle myosin and myosinXVIII 

located on QTL1, indicate that myosin and mitochondria do not have to be from 

the same strain in LM-RAILs to achieve the wildtype phenotype (Figure 4.12). 

On the other hand, Mitochondria in HM-RIAILs segregte to the nullo-X sperm 

even when mitohonria, non-muscle myosin and myosinXVIII were from the same 

strain. There is still a limitation in terms of cytological analysis to determine 

whether anaphase II mitochondria in the spermatogensis of HM-RIAILs segregate 

symmetrically. However, this conclusion could be true based on the fact that 

males from HM-RIAILs produce a functional nullo-X sperm.  

 

This experiment indicates that inheritance of both myosin genes has no direct role 

in the underlying phenotype. However, non-muscle myosin and myosinXVIII 

were always inherited together in all investigated RIAILs indicating that they 

segregate together during recombination. An X chromosome marker located away 

from QTL1 was also genotyped. Genotyping X chromosomes marker and both 

myosin genes, which are located on the X, indicate that the X chromosome in 

RIAILs is composed of different rearrangements of haplotype blocks from both A. 

freiburgensis strains (Figure 4.12).  
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Table 4.8: Non-muscle myosin and myosinXVIII were identified on QTL1.  

table contains combine data from SnpEff and blast2go. SnpEff determined that 

transcripts within QTL1 contain missesne variants and blast2go determined the 

identity of those transcripts by blasting them agianst protein databse.  

 

Gene Name Non-muscle 

Myosin 

Myosin XVIIIA 

Transcript Id gene-3.0-mRNA-4 gene-9.5-mRNA-1 

Bio-type Protein coding Protein coding 

Length  1470 2091 

Missense variants 1 3 

E-value 9.24E-107 1.05E-174 

Function  actin binding motor activity; actin binding; 

myosin complex 
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Figure 4.12: Inheritance of mitochondria, myosinXVIII, and non-muscle myosin in RIAILs.  

Inheritance of non-muscle myosin and myosinXVIII is not related to the transgressive phenotype and mitochondrial inheritance. However, in all 

investigated RIAILs, both myosins are inherited together. Both myosins are located on QTL1, and their inheritance together indicates that they 

segregated together during recombination.  Red APS7, blue APS14, and green APS14 mitochondria
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4.4. Discussion 

 

4.4.1.  X chromosome haplotype block mosaic shuffling in RIAILs resulted in 

a transgressive phenotype, where males produce viable nullo-X sperm  

RIAILs were constructed using A. freiburgensis paternal APS7 and maternal 

APS14 polymorphic strains. Genotyping mitochondrial genome from 40 RIAILs 

indicated that all the investigated RIAILs inherited the mitochondria from their 

maternal APS14 strain (Figure 4.12). Intercrosses between lines in an inbreeding 

avoidance scheme to avoid consanguineous mating (IA-RIAILs) led to an 

increase in haplotype breakpoints in the RIAILs genome introduced by meiotic 

recombination (Figure 4.1). As a result, the RIAILs genome was a varied mix 

from the two APS7 and APS14 parental strains. In some RIAILs, mosaic 

shuffling of its genome from two parental strain might have disrupted the 

wildtype interaction of a group of linked polygenes resulting in a new 

transgressive phenotype, where lines produced a high number of males. 

 

BSA analysis identified 4 QTLs associated with X chromosome segregation and 

spatial localization of cytoplasmic components in A. freiburgensis male 

spermatogenesis. Macrosynteny between A. freiburgensis and A. rhodensis 

genome revealed that identified QTLs allign with A. rhodensis LG5, that shares 

homologs with c. elegans X chromosome (Figure 4.9). Therefore, it is posible that 

in wildtype A. freiburgensis male spermatogenesis, epistatic interaction between a 

linked group of polygenes, located on the X chromosome, and sperm components 

maintains asymmetric co-segregation of sperm components exclusively with the 

X chromosome (Figure 4.13). In lines were wildtype epistatic interaction between 

X chromosome polygenes and sperm components is lost, an extreme transgressive 

phenotype is observed, where males from those lines produce a high number of 

males during an outcross with a wildtype female. The wildtype epistatic 

interaction was lost probably due to RIAILs genome mosaic shuffling of 

haplotype blocks from both APS7 and APS14 A. freiburgensis strains. A. 

freiburgensis as a model organism enables the determination of the type of 

divisions occurring in males germline through brood count of sex ratios after an 

outcross with a wildtype female. Males from lines producing a high number of 

males also produced a high number of males during an outcross with a wildtype 
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female. The production of a high number of males by those males indicates their 

ability to produce functional nullo-X sperm. Therefore, I hypothesise that males 

from lines producing a high number of males, lack the wildtype epistatic 

interactions between X chromosome polygenes and sperm components that 

maintain asymmetric segregation in the second anaphase, due to the RIAILs 

genome mosaic mix (Figure 4.13). As a result, sperm components in males from 

lines producing a high number of males segregate symmetrically during the 

second anaphase, irrespective of the X chromosome, leading to the production of 

functional nullo-X sperm. Production of functional nullo-X sperm varies between 

lines, some lines produced males as high as 80%, and other lines did not produce 

males at all (Figure 4.4). Several environmental and biological factors contributed 

to the variation of production of functional nullo-X sperms between males from 

RIAILs constrained us from displaying RIAILs phenotype in a continuous graph. 

Percentages of nullo-X sperms produced by males from RIAILs, represented by 

male brood count after an outcross, are influenced by the age of individuals 

involved in the cross, period of the cross, temperature, varying percentages of 

nullo-X produced between females and sperm competition [183, 184]. Therefore, 

RIAILs were sorted into two discrete groups, a high males group, and a low males 

group.  Since wildtype females predominantly produce X-bearing oocytes, the 

only explanation for the production of a high number of males from HM-RIAILs 

is their ability to produce functional nullo-X sperm. However, the production of 

nullo-X sperm from HM-RIAILs was not observed through cytology and 

remained an area for future investigation.  

 

Since the spermatogensis of HM-RIAILs has not yet been invetigated by 

cytologicaly analysis, It is possible that nullo-X sperm in HM-RIAILs is produced 

in a similar spermatogeneis to that of c. elegans (Figure 1.8). However, I do not 

favour that hypothesis, since the diminitive size of the Auanema male 

spermatocyte compared to c. elegans spermatpcyte does not have enough material 

for the formation of two centrual residual bodies and 4 sperm [58]. Moreover, 

central residual bodies did not form during Arh-mas-1spermatogensis when sperm 

components (MSP and mitochondria) segregated symmetrically (Figure 2.13 and 

2.14). There were incidances of residual body formation (Figure 2.13), but it was 

very rare compared to other symmetic divisions that resolved into only two cells, 
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and it is not yet clear if sperms detached completely from the central residual 

body. From the observations of wildtype Auanema male spermatognenesis, the 

investigation of Auanema Arh-mas-1 spermatogenesis and the fact that Auanema 

male spermatocyte is smaller than c. elegans, I would favour the notion that 

nullo-X sperm in HM-RIAILs is a result of symmetric segregation of cytoplasmic 

components in anaphase II.  Indeed there is still limitations of cytlogical analysis 

of HM-RIAILs spermatognesis to draw a final conclusion of how the nullo-X 

sperm is produced. However, conclusions drawn from the RIAILs-BSA analysis 

are still strong hypotheses completely worth investigating in the future. 

 

 

 

 

 

Figure 4.13: Wildtype epistatic interactions between a group of polygenes on 

the X chromosome and sperm components.  

Results from RIAIL-BSA analysis are compatible with the hypothesis that 

asymmetric segregation of sperm components exclusively with the X 

chromosome in wildtype A. freiburgensis males is maintained by epistatic 

interaction between X chromosome polygenes and sperm components 

(mitochondria). Four candidate regions discovered associated with the X 

chromosome of A. freiburgensis to be responsible for the investigated phenotype, 

red arrows in APS7 and blue arrows in APS14.    

I expect that during the second anaphase of male spermatogenesis, sperm 

components segregate exclusively with the X chromosome. It is possible that 

epistatic interaction between genetic elements on the X chromosome maintains its 

polarising cue of sperm components to co-segregate with the X chromosome. 
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Figure 4.14: X chromosome mosaic mix in males from HM RIAILs lost its 

wildtype role leading to the formation of nullo-X sperm.  

It is possible that in wildtype males epistatic interaction between X chromosome 

polygenes, represented by the four identified QTLs, and sperm components, 

represented by the mitochondria, is lost in males from HM lines, due to X 

chromosome haplotype blocks mix from APS7 and APS14 genome. Lack of this 

epistatic interaction results in symmetric segregation of sperm components in the 

second anaphase leading to the production of nullo-X sperms. On the other hand, 

in males from LM lines, wildtype epistatic interaction between X chromosome 

polygenes and sperm components is maintained, leading to asymmetric 

segregation of sperm components with the X chromosome to exclusively produce 

X bearing sperm. Red arrows represent qtls from APS7 and blue arrows represent 

Qtls from APS14.   
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4.4.2. Investigating candidate genes  

Identified QTLs responsible for X chromosome segregation and subsequent 

localization of cytoplasmic components during anaphase II of male 

spermatogenesis contains many transcripts with missense mutations (Table 4.7). 

Gene ontology analysis using blast2go helped to identify the identity of those 

transcripts. Due to the large number of transcripts with missense mutations 

identified in each QTL, the lack of complete genome of A. freiburgensis that is 

organised into chromosomes, and preliminary annotation of A. freiburgensis 

genome, it was challenging to narrow down the number of genes to a specific set 

of genes with a direct role with the observed phenotype.   

 

Genomic regions identified using BSA-QTL analysis were associated with a 

male-specific phenotype, as RIAILs were segregated into discrete groups HM 

lines and LM lines. However, RIALs DNA used in the analysis was not extracted 

exclusively from males. DNA was extracted from plates, including females and 

hermaphrodites. RIAILs hermaphrodite and female phenotype was not considered 

mainly, and therefore characterised for each RIAIL, because my investigation 

only concerned with RIAILs males. Since lines were a result of a single 

hermaphrodite that was inbred for ten generations by SWD when RIAILs were 

made, it is rational to conclude that hermaphrodites from lines producing a high 

number of males also produce a high number of males. It was also clear that 

hermaphrodites from lines producing a high number of males also produced a 

high number of males during the maintenance of lines; isolated hermaphrodites 

from HM lines into a fresh plate produced a high number of male progeny. 

Auanema hermaphrodites generally produce diplo-X sperms and a nullo-X 

oocyte, hence predominantly produce XX progeny [81, 83]. As a result of X 

chromosome nondisjunction during hermaphrodite spermatogenesis, 

hermaphrodite spermatogenesis sometimes produces haplo-X sperm leading to 

the production of XO males. Production of a high number of males from HM 

hermaphrodites indicates that the rate of X chromosome nondisjunction in HM 

hermaphrodites spermatogenesis is higher than LM and wildtype hermaphrodites. 

Therefore, identified QTLs are not only associated with male ability to produce 

nullo-X sperm; they are also associated with a hermaphroditic rate of X 
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chromosome nondisjunction during spermatogenesis. This explains the large 

number of transcripts with missense mutations reported in those QTLs. 

 

Non-muscle myosin (myosin II) and myosin XVIII were identified on QTL1 to 

have missense variants (Table 4.8). Thus, they were investigated for their direct 

role in X chromosome segregation and subsequent localization of cytoplasmic 

components. The role of myosin II and myosin VI are required for residual body 

formation and spermatids budding during c. elegans spermatogenesis. The role of 

Myosin II in c. elegans spermatogenesis was illustrated to regulate and mediate 

RB expansion [185]. Residual body expansion and budding of c. elegans 

spermatids are mediated by the polarised movement of myosin II to opposite 

directions. Furthermore, myosin II mediates the segregation of cytoplasmic 

components between c. elegans residual body and spermatids. Mitochondria are 

believed to be connected with astral microtubules that are physically linked to the 

cell cortex. Myosin II ensures that mitochondria are not partitioned to the central 

RBs by omitting astral mitochondria from the central region to spermatids buds 

during RB expansion [185]. Myosin VI-mediated cytokinesis eventually separate 

spermatids from the central residual body [186, 187]. Mutant spermatocyte 

lacking myosin VI cannot efficiently segregate sperm components, including; 

mitochondria and MSP, to the differentiating spermatid [186]. Lack of myosin VI 

affects the complete separation of budding spermatids, where spermatids expand, 

but no complete separation is observed [186]. Initially, myosin II-mediated 

segregation excludes mitochondria and MSP to spermatids; however, spermatids 

do not separate when myosin VI is absent. Subsequently, mitochondria and MSP 

withdraw to RB. Excision of spermatids by myosin VI-mediated cytokinesis is 

precisely timed to maintain MSP and mitochondria within spermatids [185]. Lack 

of myosin VI or myosin II does not cause a global segregation failure as 

chromosomal segregation is not affected [186]. Non-muscle myosin (Myosin II) 

coassembles with myosin XVIII into mixed polarised filaments [188]. Myosin 

XVIII lacks motor activity, and their cellular function highlighted to be co-

assembly and regulation of Myosin II [188].  

 

Investigation of Myosin II and Myosin XVIII revealed no immediate role with 

mitochondrial inheritance. All RIAILs inherited the mitochondria from the 
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APS14 maternal strain. Mitochondria segregated asymmetrically with the X 

chromosome in anaphase II of males form LM-RIAILs. As a result, males from 

LM-RIAILs produced low males during an outcross, due to the exclusive 

formation of only X bearing sperm. Whereas, mitochondria segregate 

symmetrically in males from HM-RIAILs irrespective of X chromosome 

inheritance. Therefore, males from HM produce high males during outcross, due 

to the formation of functional nullo-X sperm. Inheritance of APS14 mitochondria 

in RIAILs was not affected by the inheritance of myosin II and myosin XVIII. 

Mitochondria in HM-RIAILs segregated symmetrically even when myosin II and 

myosin XVIII were inherited from the same strain as the mitochondria. In LM-

RIAILs mitochondria segregated asymmetrically even when myosin II and 

myosin XVIII were inherited from a different strain, indicating that movement of 

myosin II and myosin XVIII was polarised and mediated segregation of 

mitochondria exclusively with the X-bearing sperm. The polarised mono-oriented 

movement of mitochondria mediated by myosin II and myosin XVIII exclusively 

to the X-bearing sperm in LM-RIAILs, indicates that the X chromosome 

polarising cue acts upstream myosin II and myosin XVIII. Another genetic 

component on the X chromosome initiates the polarisation of actomyosin 

complex, constituting myosin II and myosin XVIII. When the polarising signal on 

the X and actomyosin are interacting, i.e. from the same strain, actomyosin 

polarises and mediates the cosegregation of sperm components with the X 

chromosome. However, when the polarising signal is from another strain and 

actomyosin are not interacting, actomyosin will not polarise leading to symmetric 

segregation of sperm components.    

 

In all the genotyped RIAILs, myosin II and myosin XVIII were inherited 

together, always from the same strain. Inheritance of both myosin together 

indicates their segregation together during meiotic recombination. Genotyping 

RIAILs for A. freiburgensis X chromosome specific-marker together with myosin 

II and myosin XVIII, which are located on the X chromosome, indicates mosaic 

shuffling of RIAILs X chromosome from both parental genomes (Figure 4.12). It 

is expected that all the identified QTLs are located on the X chromosome and the 

RIAILs generation resulted in X chromosome mosaic shuffling. Therefore, I 

expect that a combined inheritance of different genetic elements from all 
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identified QTLs is required to maintain wildtype asymmetric segregation of 

mitochondria. In this thesis, I have only investigated the direct role of genes from 

QTL1 in the cytoplasmic spatial organisation during sperm formation of RIAILs 

males. BSA analysis identified 4 QTLs involved in creating the extreme 

transgressive phenotype represented by HM-RIAILs. Therefore, the genotype of 

all identified QTLs should have been investigated in RIAILs to determine the 

pattern of inheritance of identified QTLs in both HM and LM RIAILs. 

Genotyping of all QTLs in RIAILs will determine which of the QTLs are 

physically linked and consequently inherited together in RIAILs. It will also 

determine which of those identified QTLs are required to work together in 

epistatic interaction to maintain the wildtype phenotype in LM-RIAILs.    

 

Molecular network controlling the asymmetric portioning of sperm components 

with the X chromosome was not completely determined in this thesis and remain 

an area for future investigation. However, from the results obtained in this study I 

expect genetic signal expressed by the X chromosome during the second meiosis 

of male spermatogenesis to influence the polarisation of the actomyosin complex, 

and consequently the unipolar segregation of MSP and mitochondria with the X 

chromosome occurs. The first sign of asymmetric cell division in wildtype 

Auanema males spermatogenesis is the lagging of the X chromosome. Once the 

lagging-X chromosome is included into one anaphase plate MSP and 

mitochondria exclusively segregate with the cell inheriting the X chromosome. In 

wildtype Auanema male spermatogenesis X chromosome possibly initiates 

polarisation of actomyosin complex, constituting non-muscle myosin, which 

elongate dividing spermatocytes and ensures mitochondria and MSP segregation 

with the X chromosome. During c. elegans spermatogenesis equal segregation of 

mitochondria and MSP is mediated by non-muscle myosin and complete excision 

of spermatids by cytokinesis is meditated by Myosin VI [185, 186, 189]. I expect 

the same mechanism to occur during Auanema spermatogenesis, however the 

function of non-muscle myosin will be restricted unipolarly mono-oriented to the 

X bearing pole. In wildtype Auanema male and LM-RIAILs, X chromosome 

polarising signal influences the unipolar polarisation of non-muscle myosin 

towards the X-bearing pole, as a consequence mitochondria and MSP segregate 

with X bearing pole. Then, myosin IV-mediated cytokinesis ensures final 
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separation of the X-bearing sperm with essential components and the sister cell 

exhibits the role of residual body (RB) with DNA. However, in HM-RIAILs 

actomyosin complex constituting non-muscle myosin fails to polarise unipolarly 

and exclusively with the X bearing pole, because X chromosome mosaic mix 

disrupts its polarising cue. The polarising signal on the X chromosome in HM-

RIAILs will not be able to mediate the polarisation of the actomyosin complex, 

there will be incompatibility because of its inheritance from a different A. 

freiburgensis strains. As a result, mitochondria and MSP will fail to separate 

exclusively to the X-bearing pole and distribute symmetrically. When myosin VI-

mediated cytokinesis separates the two daughter cells, both cells will contain 

mitochondria, MSP and essential cytoplasmic components important for sperm 

function and motility. Hence, a functional nullo-X sperm is produced leading to 

production of high number of males by males from HM-RIAILs (Figure 4.15).  

 

 
Figure 4.15: Schematic draw of myosin II (red) and myosin IV (green) 

localization in anaphase II of males from RIAILs spermatogenesis.  

In LM-RIAILs X chromosome (red) polarising signal causes unipolar polarisation 

of non-muscle myosin (myosin II), resulting in active transportation of 

mitochondria and MSP to the pole inheriting the X chromosome. Following 

myosin VI-mediated cytokinesis mitochondria and MSP will exclusively 

segregate with the cell inheriting the X chromosome. Whereas, in HM line X 

chromosome fails to polarise the non-muscle myosin, as a result mitochondria and 

MSP distribute symmetrically in the dividing secondary spermatocyte. Following 

myosin VI-mediated cytokinesis X-bearing and nullo-X sperm will be viable 

containing MSP and mitochondria.   
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The genome of all RIAILs has been sequenced individually to create a genetic 

map for A. freiburgensis genome. A future work of a genetic map construction 

will organise A. freiburgensis 75 scaffolds into linkage groups. Using genome 

from individual RIAILs will enable the identification of QTLs associated with the 

RIAILs transgressive phenotype. BSA-QTL analysis on the new A. freiburgensis 

genome will identify QTL on the linkage group corresponding to the X 

chromosome. Inheritance of candidate genes within identified QTLs can be 

investigated in all RIAILs since all the RIAILs will be genotyped against the 

same APS7 reference genome. SNPs close to or on candidate genes can be 

investigated in all RIAILs to identify genes involved in causing the transgressive 

phenotype in HM-RIAILs. 
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Chapter 5  

 

Investigating mito-nuclear interaction 

through X chromosome introgression into 

polymorphic mitochondrial and 

autosomal background 

 

Summary 

In this chapter I will outline attempts to introgress the X chromosome from one A. 

freiburgenis into the autosomal and cellular background of another strain. The 

unique X chromosome inheritance pattern in Auanema, where the X 

chromosomes in sons is inherited paternally, will enable the generation of males 

with an X chromosome from one strain while autosomes and the cellular 

background will be from another strain. Spermatogenesis of those males will 

provide a model system to study mito-nuclear interactions. Since I hypothesized 

that the X chromosome is a polarising signal in Auanema male spermatogenesis 

incompatibility, between X chromosomes, autosomes and mitochondria in those 

males is expected. Attempts to introgress the X chromosome from one A. 

freiburgenis strain into the background of another did not follow expected 

paternal transmission as in A. rhodensis. However, we have identified differences 

in the meiosis between A. freiburgensis and A. rhodensis, despite belonging to the 

same genus. In contrast to A. rhodensis, where X chromosome in sons is always 

inherited from the father, paternal X chromosome transmission in A. freiburgensis 

occur in age-controlled crosses, during the first day of adulthood.  

5.1. Introduction 

5.1.1. Reciprocal communication between mitochondria and nuclear genome  

Mitochondria derived from bacterial ancestor co-evolved with its host organism 

through an endosymbiosis event occurred in the estimation of more than 1.45 
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billion years ago [190]. The primary function of mitochondria is the maintenance 

of energy supply [191]. Despite having its own genome, 98% of mitochondrial 

proteins, essential for mitochondrial function, are encoded by the nuclear genome 

[191]. Due to mitochondria's limited-expression capability, it cannot be 

reconstructed de novo. Thus, proteins required for mitochondrial genome 

replication, transcription, and translation are encoded in the nuclear genome [191, 

192].  

Mitochondria are not only crucial for the production of ATP but serve other 

critical cellular functions. Mitochondria are involved in apoptosis, synthesising 

essential molecules (heme and phospholipids), and intervenes in numerous 

signaling pathways [28, 191]. Mitochondrial retrograde signaling or retrograde 

regulation is a general term for signaling pathways mediated by the mitochondria. 

Mitochondria signaling pathways to the nucleus impacts a variety of cellular and 

organismal activities under normal and pathophysiological conditions [27]. 

Intracellular signaling mediated by mitochondria implicates life expectancy, 

development, disease, environmental adaptation and epigenetics [27, 193]. 

Signaling from mitochondria has a direct role in activating cellular apoptotic 

programs and in the cellular immune system [28, 29, 193]. On the other hand, 

factors encoded in the nuclear genome have been implicated in regulating 

mitochondria copy number [192]. Quantity and activity of mitochondria are 

controlled by nuclear transcription regulatory networks according to energy 

demand in different cells under a variety of physiological conditions [194]. 

Therefore, coordinated expression and reciprocal communication between two 

sets of genes encoded by mitochondria and nucleus is crucial for mitochondria 

biogenesis and to maintain cellular hemostasis [191]. 

5.1.2. Mito-Nuclear co-evolution is crucial to maintain cellular homeostasis 

Mitochondria originated from free-living bacteria co-evolved with its eukaryotic 

host thorough an endosymbiosis event [195]. Through this process, a large 

number of genes, once coded by the mitochondria, translocated to the nucleus 

[195, 196]. The majority of mitochondrial function genes are encoded by the 

nuclear genome; the only subset of these crucial genes is encoded by the 

mitochondria [196]. In higher eukaryotes, out of approximately 1500 genes 
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encoding for mitochondria, only 37 genes of which are within the mtDNA [195, 

196]. This explains why the majority of mitochondria-associated disorders are not 

due to mutation in the mtDNA but rather mutation in the nuclear genes encoding 

mitochondrial functions [195]. Mitochondria contain a high rate of mutation that 

enables its genome to evolve ten times faster than the nuclear genome [197]. The 

difference in mutation rate between mtDNA and nDNA could lead to functional 

mutation in the mitochondrial genome that halts mitochondrial function resulting 

in most cases to disease-causing mutations [198]. Therefore, co-evolution 

between nDNA and mtDNA is required to maintain cellular homeostasis [198].  

Previous studies reported incompatibility between the mitochondrial genome and 

nuclear genome between two different wild strains in male-female nematode 

Caenorhabditis nouraguensis [199]. Incompatibility between the two genomes 

results in a natural reproductive barrier within the species leading to a significant 

rate of embryonic lethality [199]. In A. rhodensis, males naturally inherit paternal 

X chromosomes, while autosomes and mitochondria are inherited maternally 

[83]. This unique pattern of X chromosome inheritance in Auanema renders it a 

good model to study mito-nuclear interactions in males. 

5.1.3. A. freibrugensis as a model to study mito-nuclear interaction 

In this chapter, I will outline attempts and challenges to introgress the X 

chromosome from one Auanema strain into the background of another strain to 

study mito-nuclear interaction. Production of males that have an X chromosome 

from one strain and cellular background from another is made possible because of 

the Auanema X chromosome unique inheritance pattern, in which the X 

chromosome in sons is inherited paternally. In A. rhodensis, F1 males resulting 

from a cross between two A. rhodensi strains inherit the X chromosome 

paternally [83]. This unique inheritance pattern is explained by the males' 

exclusive production of X-bearing sperms and because A. rhodensis females 

produce nullo-X oocyte, in rarer events of X chromosome nondisjunction (Figure 

1.6) [83]. In crosses between A. rhodensis male and hermaphrodite, cross-progeny 

males inherit the X chromosome paternally. This is due to the predominant 

production of nullo-X oocytes by the hermaphrodites (Figure 1.6 and 1.7) [83].  
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To study mito-nuclear interaction a strain can be generated with X chromosome 

from one strain while mitochondria and half of the autosomes from another. F1 

males resulting from Auanema outcross will be backcrossed with their maternal 

strain for several generations. Thus, those lines will have the paternal X in the 

genetic and cellular background of the maternal strain. If the X chromosome is a 

polarising signal, incompatibility is possible between the X chromosome, 

autosomes and mitochondria from the two highly divergent genotypes. My 

hypothesis is that this incompatibility will result in the asymmetric segregation of 

mitochondria in the second meiosis of male spermatogenesis, and consequently, a 

functional nullo-X sperm will be produced. The production of functional nullo-X 

sperm is expected to result in the generation of a high number of males during an 

outcross. X chromosome introgression experiment was conducted in A. 

freiburgensis instead of A. rhodensis because previous sequencing data indicate 

higher genetic diversity between A. freiburgensis strains. Generation of F2-

derived RILs from two different strains of each species resulted in the formation 

of a transgressive phenotype in A. freiburgenis RILs but not A. rhodensis RILs 

[200].  

Unfortunately, the introgression of the X chromosome into the background of 

another strain was not successful. However, in this chapter, I will outline the 

attempts made to introgress the X chromosome, discuss possible reasons for the 

unsuccessful introgression, and suggest amendments to the introgression scheme 

for future experiments.   
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5.2. Methods  

 

5.2.1. X chromosome introgression using wildtype APS7 female crossed with 

APS14 male 

A. freiburgensis APS7 female was crossed with APS14 male. F1 males resulting 

from the outcross were isolated and backcrossed with A. freiburgensis APS7 

females in separate crosses. Male progenies resulting from each cross were mated 

back to the maternal strain to establish lines of repeated crosses for 10 

generations. 

5.2.2. Mutagenesis screening 

A. freiburgensis produces hermaphrodites, which are convenient for mutagenesis 

screens because they harbour male and female gametes within the same 

individual, avoiding setting up crosses. Hermaphrodites can be identified already 

at larval stages, because every dauer becomes a hermaphrodite. Dauers in A. 

freiburgensis are produced in response to a crowding pheromone signal 

experienced by the maternal generation [201]. Therefore, it is essential to culture 

a minimum of ~10 nematodes in a single plate to initiate a crowding a signal and 

produce F1 dauers. After mutagenesis, mutagenised P0 hermaphrodites were 

isolated into fresh plates ten hermaphrodites per plate. Then, F1 dauers were 

isolated into a single plate each and let to develop to hermaphrodites. Placing a 

single F1 dauer into a fresh plate will result in F2 females. Morphological mutants 

recovered from the F2 generation produced in a non-crowding condition will be 

females. It is difficult to maintain a recessive morphological mutant from F2 

females. Therefore, ~20 F2 mutant females were isolated into a separate plate to 

simulate crowding and left to lay eggs for ~24 h before being moved to a fresh 

new plate. Dauers produced by the F2 mutant females were isolated to a single 

plate each and left to develop to hermaphrodites and reproduce. A hermaphrodite 

that is homozygous for the morphological mutation will produce 100%, mutant 

progeny.  
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5.3. Results and discussion  

 

5.3.1. X chromosome introgression into the cellular background of 

polymorphic wildtype females is age-dependent 

In A. freiburgensis, a cross between XO males and XX females predominantly 

result in XX animals [69]. This unusual sex ratio skew is attributed to Auanema's 

male ability to produce X-bearing sperm exclusively. In the rare instance of X 

chromosome nondisjunction in female Auanema,a nullo-X oocyte is produced 

that leads to the generation of males, when fertilised by male X-bearing sperm. 

Given this unique paternal transmission of X chromosome to sons in Auanema, it 

should be possible to introgress the X from the paternal strain into the genetic and 

cellular background of the maternal strain. To do this, an APS7 female was 

crossed with APS14 male to generate males with the APS14 paternal X 

chromosome, but cellular background (including mitochondria) and autosomes 

from the APS7 female. This mixed background strains, will help to investigate a 

possible mito-nuclear incompatibility. In case there is an incompatibility between 

X chromosome, autosomes and mitochondria, those males will produce functional 

nullo-X sperm, and consequently, a high number of males during an outcross. X 

chromosome will fail to attract subcellular compartments during male 

spermatogenesis, leading to asymmetric segregation of mitochondria to daughter 

cells. Males resulting from a cross between APS14 male and APS7 female were 

backcrossed to their maternal mother for successive generations (Figure 5.1). 

However, genotyping males, after several generations of crosses, indicated that 

they inherited the maternal X chromosome rather than the paternal X as 

previously suggested.  

Further investigation of X chromosome inheritance in age-controlled crosses on 

the first day of adulthood by Thomas Murrell (Personal communication) indicated 

that sons resulting from APS7 female crossed with APS14 male inherited paternal 

X chromosome. However, the reciprocal cross inherited the maternal X 

chromosome and produced very few males if none. Since APS14 X chromosome 

transmission to sons is age-dependent, it may have affected previous attempts to 

introgress the APS14 X chromosome into the mitochondria and cellular 

background of APS7 female for several generations.  
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Figure 5.1: APS14 males X chromosomes introgression into the background 

of APS7 female. 

Males resulting from a cross between APS14 male and APS7 female were 

backcrossed to their maternal mother for successive generations.  

 

5.3.1. Investigating A. freiburgensis hermaphrodite meiosis 

A. rhodensis hermaphrodites predominantly produce diplo-X sperm and nullo-X 

oocyte [83]. Therefore, a cross between a male and a hermaphrodite will always 

produce male cross progeny. Since hermaphrodites predominantly produce nullo-

X oocyte, introgression of the polymorphic X chromosome in male cross progeny 

will be almost certain. We hypothesised that A. freiburgensis hermaphrodite 

meiosis is similar to A. rhodensis since it generally produces XX animals when it 

self-fertilises [69]. To investigate A. freiburgensis hermaphrodite meiosis, EMS-

mutagenesis was preformed to identify morphologically mutant A. freiburgensis 

hermaphrodite, any morphological mutant with distinctive body morphology will 

be good. If A. freiburgensis hermaphrodites predominantly produce nullo-X 

oocyte, then I hypothesised that a cross between wildtype male and a 

morphologically mutant hermaphrodite would only produce males’ cross 

progeny, that are heterozygous for the morphological mutation but wildtype 

looking (Figure 1.7C). A homozygous morphologically mutant hermaphrodite 

will produce homozygous mutant progeny through self-fertilisation, but if crossed 

with a wildtype male it will produce only males’ cross progeny that are a wildtype 

looking but heterozygous for the mutation (Figure 1.7C).  
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A. freiburgensis (APS7) Morphological mutants were recovered from EMS-

chemical wide mutagenesis. In the first mutagenesis, 290 F1 plates were screened 

and identified one roller, two uncs, and one dumpy. However, it was difficult to 

maintain the mutations by moving a mutated animal to a fresh new plate. Moving 

a mutated animal to a fresh new plate produced mutants and wildtype nematodes. 

It seemed as the mutation was not penetrant enough. Despite changing the 

temperature to check if the mutation was temperature-dependent, mutated animals 

continued to produce wildtype and mutated animals. This problem persisted until 

I lost the mutants. Research in the development of A. freiburgensis revealed that 

A. freiburgensis hermaphrodites in uncrowded plates produce females and 

crowding conditions dauer/hermaphrodites [69]. Therefore, F1 A. freiburgensis 

hermaphrodites isolated in an individual plate only produced females. It was 

challenging to maintain mutation using female mutants mated with wild type or 

heterozygote males since they will produce a mixture of mutant and wild type 

animals in the next generation. A new screen design was introduced, once a 

mutation was found, several mutated females were moved to a single plate to 

induce crowding and increase the chance of dauer formation that is homozygous 

for the mutation. Homozygote dauers for the mutation produced by impregnated 

females will be separated to separate plates to maintain a homozygous line of the 

mutation.  

In the second EMS mutagenesis, 250 F1 plates were screened by Thomas Murrell 

(Personal communication) to identify a mutant that exhibited a transparent 

phenotype. Recovered mutant lacked the dark pigmentation identified in wt 

animals. Recovered F2 female mutants were isolated into a separate plate approx, 

ten animals per plate (Figure 5.2). This procedure was conducted to induce dauer 

formation and produce daures that are homozygous for the mutation. Dauers were 

isolated to separate plates to develop to hermaphrodites. A homozygous 

hermaphrodite for the mutation will produce a population that is homozygous for 

the mutation. The mutant was named A. freiburgensis APS28 clear-1 [(Afr-clr-1-

brz-4)]. Those mutants were morphologically different from wildtype; however, 

they reproduced normally. 
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A cross between A. freiburgensis clear-1 and wildtype male failed to produce 

male cross progeny that are wildtype. In all crosses, A. freiburgensis clear-1 

hermaphrodite only produced Afr-clr-1 clear mutants demonstrating difficulties in 

crossing the two sexes. 

 

Figure 5.2: EMS-mutagenesis screen identified A. freiburgensis clear-1 

mutant.  

A. freiburgensis clear-1 were recovered in the F2 generation from a mugginsed 

P0. A. freiburgensis generally produce females in isolation; therefore, recovered 

F2 female mutants were isolated to a single plate to induce crowding condition 

and produce dauers. Dauers were isolated to a separate plate each and left to 

develop to hermaphrodites, a homozygous hermaphrodite for the mutation will 

generate only mutant animals.  
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5.4. Conclusion 

X chromosome introgression from one strain into the cellular and autosomal 

background of another strain in A. freiburgensis did not follow the expected 

pattern. Even though A. freiburgensis and A. rhodensis belong to the same genus, 

the meiosis in the two species is not similar. A. freiburgensis has more genetic 

diversity than A. rhodensis since F2-derived RILs in A. freiburgensis generated a 

new transgressive phenotype but not in A. rhodensis. Therefore, I hypothesised 

that the introgression of the X chromosome from one strain into the molecular 

and cellular background of another strain in A. freiburgensis would have a 

significant effect due to the genetic diversity between APS7 and APS14 strain.   

Paternal to son X chromosome transmission in A. freiburgensis only occurs in 

age-controlled crosses, on the first day of adulthood between APS7 female and 

APS14 male but not in the reciprocal cross. As a result, it was challenging to 

introgress the X chromosome from one strain into the cellular background of 

another for several generations.  

The X chromosome introgression experiment was designed to investigate if genes 

expressed by the X chromosome interact with autosomes and mitochondria in 

wildtype A. freiburgensis strains to achieve the asymmetric segregation of sperm 

components with the X chromosome. However, BSA analysis on RIAILs 

identified four candidate regions just on the X chromosome, to be responsible for 

the asymmetric segregation of sperm components with the X chromosome. 

Polygenes expressed only on the X responsible for asymmetric segregation of 

sperm components. When this group of polygenes located on the X chromosome 

are able to interact sperm components co-segregate with the X chromosome. 

However, when the interaction between the group of polygenes located on the X 

chromosome is disrupted by RIAILs X chromosome mosaic shuffling, sperm 

components segregate symmetrically. Even if I managed to introgress the X 

chromosome from APS14 strain into the mitochondrial and autosomal 

background of APS7, I do not expect a significant change to those males’ 

spermatogenesis. As long as the group of polygenes located on the X 

chromosome are from the same strain and able to interact, sperm components will 

co-segregate asymmetrically with the X chromosome.  
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A. freiburgensis can still be used as a model to investigate mito-nuclear 

interactions and its effect on embryonic lethality as in  C. nouraguensis [199]. 

APS14 female crossed with APS7 males will produce females with APS14 

mitochondria and Some chromosomes from APS7. Females resulting from the 

cross backcrossed to their paternal line for several generation will have 

mitochondria from one strain introgressed in the genetic background of another 

strain. Mito-nuclear interaction effect on embryonic lethality can be investigated 

using those females. This experiment is not related to the investigation of X 

chromosome as a polarising signal. However, it a suggestion of a future project 

that stemmed from my investigation in this thesis.  
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Chapter 6 

 

Conclusions and future directions  

 

6.1. Conclusions  

 

6.1.1. Auanema nematode is a unique model to study asymmetric cell division   

 

Auanema nematode is a unique model offers an easy-to-score phenotype to study 

asymmetric cell division, where divisions occurring in the second meiosis of 

males spermatogenesis can be determined by ratio of sex progeny of that male. 

Wildtype A. rhodensis male produce low number of males when crossed with a 

female, 1.6-2.3 % of the total cross progeny are male [69]. Similarly, A. 

freiburgensis male produces skewed sex ratio during an outcross, where male 

progeny ratio is around 18% [69]. This remarkable production of skewed sex ratio 

is attributed to the production of only one kind of sperm, an X bearing sperm 

(Figure 1.10). During the second anaphase of Auanema male spermatogenesis, 

sperm components important for sperm function and motility exclusively 

segregate to the pole inheriting the lagging-X chromosome (Figure 1.9 and 1.10). 

Investigation in this study identified X chromosome as a polarising signal causing 

asymmetric segregation of sperm components exclusively with the X 

chromosome. X chromosome of Auanema harbours genomic region involved in 

mono-orientation of sperm components exclusively with the lagging-X in the 

second anaphase of male spermatogenesis.  

 

6.1.2. In all examples of A. rhodensis spermatogenesis, including masculiniser 

mutant, sperm components co-segregate with the X chromosome 

 

In all A. rhodensis spermatogenesis examples, sperm components in anaphase II 

always co-segregate with the X chromosomes. During the spermatogenesis of A. 

rhodensis OX (male), XX (hermaphrodite), and XX masculinisers, sperm 

components important for sperm function and motility segregate exclusively to 

the sperm inheriting X chromosomes, while the cell without the X (nullo-X cell) 
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inherits discarded materials and behave as a residual body. Spermatogenesis in A. 

rhodensis hermaphrodite predominantly produce duplo-X sperm; where, in the 

second anaphase of hermaphrodite spermatogenesis, sperm components segregate 

asymmetrically exclusively with the pole inheriting duplo-X chromosomes, while 

tubulin is discarded in the nullo-X cell (Figure 3.1). To investigate further if the X 

chromosome is a polarising signal in XX spermatocyte, a masculiniser (Arh-mas-

1) an XX pseudomale was generated using EMS chemical mutagenesis (Figure 

3.3). A masculiniser  mutant was generated in A. rhodensis rather than in A. 

freiburgensis simply because all previous cytological studies on male 

spermatogenesis were undertaken on A. rhodensis male, however males from both 

species exclusively produce X-bearing sperm as indicated by the brood skewed 

sex ratio after an outcross. Sexing and genotyping of Arh-mas-1 brood indicates 

that Arh-mas-1 spermatogenesis produces X-bearing, nullo-X and duplo-X 

sperms in different proportions (Figure 3.9). In the second anaphase of A. 

rhodensis Arh-mas-1 spermatogenesis MSP and mitochondria in anaphase II 

either segregate symmetrically with X chromosomes or asymmetrically to the cell 

that inherits X chromosomes. In the event of asymmetric segregation 

mitochondria and MSP segregate to the cell with the more significant DNA mass, 

due to its inheritance of X chromosomes, while the other nullo-X cell takes the 

role of a residual body and inherits discarded materials such tubulin (Figure 3.12 

and 3.14). Multiple patterns of lagging-X chromosomes were observed in Arh-

mas-1 male anaphase II including, 1X, 2X, 3X and 4X lagging-X chromosomes 

(Figure 3.15). Patterns of lagging-X chromosomes observed in the second 

anaphase are dependent on the way unpaired X chromosomes segregate in the 

first anaphase (Figure 3.14). Multiple segregation patterns of X chromosome in 

anaphase I and anaphase II are expected depending on whether sister chromatids 

of unpaired X chromosomes split and segregate equally or the X chromosome 

segregate without splitting (Figure 3.14). The unequal segregation of X 

chromosomes in the first anaphase is manifested by the unequal distribution of 

DNA between two secondary spermatocyte (Figure 3.12A). However, different 

patterns of X chromosomes segregation in the second anaphase were determined 

by the number and structure of lagging-X chromosome. Structure of the lagging-

X was determined because lagging-X chromosome from two sister chromatids 

has bigger DAPI surface area compared to lagging-X chromosome from a single 
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chromatid (Figure 3.14).  In conclusion, in the event of asymmetric segregation in 

anaphase II during Arh-mas-1 spermatogenesis sperm components always 

segregate with the cell inheriting the lagging-X chromosomes, while the nullo-X 

cell behaves as a residual body, were cellular materials are discarded.  

 

The first sign of asymmetric segregation in anaphase II of A. rhodensis 

spermatogenesis is the lagging of X chromosomes. MSP and mitochondria remain 

positioned in the central region of the dividing cell as long as lagging-X 

chromosomes are centrally positioned. However, once lagging-X chromosomes 

are incorporated into one anaphase plate, MSP and mitochondria segregate 

exclusively to the cell inheriting the lagging-X. Lagging-X chromosomes in 

anaphase result from equi-merotelic kinetochores (equi Latin roots term for 

equal), where those kinetochores has equal number of microtubules oriented 

towards both poles [202-205]. Chromosomes lags due to the equal pulling force 

experienced by equi-merotelic kinetochores from both poles [202]. The highlight 

of meiosis is that every one round of DNA replication is followed by two rounds 

of chromosome segregation, resulting in reduction in ploidy [206]. During 

meiosis one, sister chromatids co-segregate together enabling the separation of  

homologues chromosomes. However, in the second meiosis, sister chromatids 

separate [206]. In the first meiosis co-segregation of sister chromatids in a range 

of different organisms is suggested to be due to fusion of sister kinetochores [207, 

208]. Fused kinetochores in meiosis I harbours more microtubules binding 

elements than kinetochores from meiosis II, therefore, forming a stronger 

attachment with microtubes and direct sister chromatids to co-segregate together 

[206]. In the first anaphase of A. rhodenis  male spermatogenesis, X chromosome 

sister kinetochores were separated despite fusion and sister chromatids segregate 

equally. The separation of X chromosome sister kinetochores in meiosis I is 

probably due to their weak cohesion as a result of A. rhodensis small X 

chromosome (3.6 Mb) [200]. Kinetochores in nematodes are holocentric 

extending along each chromatid [209, 210]. Therefore, the small A. rhodensis X 

chromosomes will have weaker sister kinetochores cohesion in the first meiosis 

compared to other big chromosomes. In the second anaphase of A. rhodenis  male 

spermatogenesis, X chromosome (from a single chromatid) will have a merotelic 

kinetochore, where equal number of microtubules will be oriented to both poles. 
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As a result lagging X chromosome is observed in the second anaphase of male 

spermatogenesis. Since all chromosomes in the second metaphase are from two 

sister chromatids but only X chromosome is from a single chromatid, only X 

chromosome will have a merotelic kinetochore causing it to lag during the second 

anaphase (Figure 3.1). In A. rhodenis Arh-mas-1spermatogenesis segregation of X 

chromosome does not follow a predictable pattern as in male or hermaphrodite 

spermatogenesis. Multiple variations are expected in A. rhodenis Arh-mas-1 

spermatogenesis depending on the segregation of X chromosome sister 

kinetochores in the first meiosis. Sister kinetochores of the unpaired X 

chromosomes either segregate and separate equally or co-segregate together. In 

the second anaphase a variation of lagging-X chromosomes were observed 

depending on the number of X chromosome inherited from the first meiosis.  

 

6.1.3. RIAILs genome mosaic shuffling resulted in a transgressive phenotype  

 

Auanema short life cycle and its amenability for genetic to generate Recombinant 

Inbred Advanced Intercross lines (RIAILs) was utilised to map genomic regions 

of the underlying phenotype (Figure 4.2). The genomic region regulating X 

chromosome mediated asymmetric segregation of sperm components in Auanema 

male was mapped by generating A. freiburgensis RIAILs. A. freiburgensis mating 

dynamics enables the production of highly advanced RIAILs; Males cross with 

females increased haplotype breakpoints introduced by meiosis and inbreeding by 

hermaphrodite selfing brought all introduced breakpoints into homozygosity. At 

the end of the inbreeding scheme, genome of RIAILs was a mosaic mix from A. 

freiburgensis APS7 and APS14 parental genome. In some RIAILs, mosaic 

shuffling of its genome disrupted the wildtype interaction of a linked group of 

polygenes resulting in the production of a novel transgressive phenotype, where 

64% of RIAIL lines produced a high number of males. A. freiburgensis provides 

easy-to-score phenotype, where the kind of divisions occurring in male germline 

can be determined from its brood sex ratio after an outcross (Figure. 4.4). Males 

from HM-RIAILs lines produced a high number of males after an outcross with a 

wildtype female due to their ability to produce functional nullo-X sperm. Mosaic 

shuffling of its genome disrupted the wildtype epistatic interaction between the X 

chromosome and sperm components leading to symmetric segregation of sperm 
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components irrespective of lagging-X chromosome orientation, consequently 

viable nullo-X sperm produced. A. freiburgensis RIAILs were not organised into 

a continuous phenotype, in terms of their production of nullo-X sperms, because 

there were many environmental variables that affected scoring the exact ratio of 

nullo-X sperms produced. Production of nullo-X sperm was determined from the 

ratio of male broods resulting from males from RIAILs cross with wildtype 

female. However, in addition to production of functional nullo-X sperms by 

males from HM-RIAILs production of males in each cross is influenced by the 

ratio of nullo-X oocyte produced by wild type females in each cross, the age of 

individuals involved in the cross and the period of the cross. Therefore, RIAILs 

phenotype was sorted into two discrete phenotypes; high male RIAILS and low 

male RIAILs. The wildtype interaction between X chromosome and sperm 

components is disrupted in HM-RIAILs because of their genome mosaic shuffling 

results in symmetric segregation of sperm components producing a functional 

nullo-X sperm, that led to production of high number of males during an outcross. 

Whereas, in LM-RIAILs genome shuffling retained the wildtype phenotype of 

asymmetric segregation of sperm components with the X bearing sperm, 

exclusively producing X-bearing sperm. Genomic mapping using bulk segregant 

analysis (BSA) was conducted to correlate observed phenotype with the genotype 

rather than Genomic linkage map (GLM), Even though whole genome was 

extracted from all RIAILs lines separately and APS14 maternal strain. Bulk 

segregant analysis offers a cheaper, faster and affective approach to map genomic 

regions of interest.   

 

6.1.4. BSA analysis identified candidates regions on the X chromosome  

 

X chromosome of A. freiburgensis harbours genomic regions essential for 

establishing unipolar segregation of sperm components with the X chromosome. 

Four candidate regions belonging to four different scaffolds were identified to 

underlie the observed transgressive phenotype in RIAILs using BSA analysis 

(Figure 4.8). Macrosynteny analysis with closely related A. rhodensis genome 

revealed that identified scaffolds with candidate regions belong to the X 

chromosome of A. freiburgensis (Figure 4.9). Therefore, genetic elements on four 

location on the X chromosome of A. freiburgensis epistatically interact together to 
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achieve asymmetric segregation of sperm components with the X chromosome. 

Disruption of this epistatic interaction by shuffling X chromosome with haplotype 

blocks from two different A. freiburgensis strains results in symmetric 

segregation of sperm components in HM-RIAILs. X chromosome in HM-RIAILs 

fails to establish its wildtype function of guiding and reorganising sperm 

components to exclusively segregate with the X-bearing pole. Molecular network 

controlling the asymmetric portioning of sperm components with the X 

chromosome were not completely determined in this thesis and remain an area of 

investigation in the future. I expect genetic elements expressed by the X 

chromosome during the second meiosis of male spermatogenesis to influence the 

polarisation of the actomyosin complex to achieve the unipolar segregation of 

MSP and mitochondria with the X chromosome (Figure 4. 15).  

 

The unique inheritance of X chromosome in Auanema, where X chromosome in 

sons is inherited paternally, enables the production of males that have X 

chromosome from one strain, while autosomes and cellular background will be 

from another stain. However, the introgression of A. freiburgensis APS14 X 

chromosome into the background of A. freiburgensis APS7 female did not follow 

the expected pattern. Paternal X chromosome transmission only occurs in age-

controlled crosses, on the first day of adulthood (Thomas Murrell, Personal 

communication). As a result, it was challenging to produce A. freiburgensis male 

with X chromosome introgresed into the background of a polymorphic strain to 

study X chromosome interaction with mitochondria. However, mixing the 

genome of the two A. freiburgensis strains through the generation of highly 

recombinant RIAILs resulted in a transgressive phenotype. 59% of RIAILs 

produced unusual high percentage of males indicating that the wildtype mito-

nuclear interaction in males from those lines have been disrupted, and hence, 

those males are able to produce nullo-X sperm. BSA analysis identified candidate 

regions only on the X chromosome to be involved in X chromosome segregation 

and spatial rearrangement of cytoplasm during Auanema spermatogenesis. 

Interaction between a group of polygenes on the X chromosome was disrupted by 

the RIAILs genome mosaic shuffling resulting in a transgressive phenotype. 

Therefore, if the complete X chromosome from one strain is introgressed into the 

genetic background of another strain, it will not have a drastic effect to its 
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spermatogenesis, as long as the group of polygenes on the X are from the same 

strain and able to interact.  

 

 

In multicellular organisms intrinsic factors controlling the polarity of asymmetric 

cell division are poorly understood without the influence of an extrinsic factor. 

Our understanding of asymmetric cell division in stem cells and vertebrate relies 

in transferring the knowledge gained from studying asymmetric cell division in 

model organisms. This study highlights a new intrinsic mechanism to control 

polarisation during asymmetric cell division, where X chromosome polarises 

cytoplasm unipolarly, and establishes Auanema as a model organism to study 

asymmetric cell division. The molecular network involved in creating the 

asymmetric segregation of cytoplasmic components was not entirely characterised 

in this study. However, this is a new study that highlights sex chromosome (X 

chromosome) to be involved in creating an intrinsic polarisation signal for 

asymmetric cell division in multicellular organisms.   

 

6.2. Future Directions 

 

In this study genomic region underlies asymmetric segregation of sperm 

components asymmetric with the X chromosome during Auanema 

spermatogenesis was located on the X chromosome. Identifying the molecular 

mechanism involved in creating the asymmetry will help our current 

understanding of asymmetric cell division or possibly outline a new mechanism 

of asymmetric cell division. In order to precisely determine the location of QTLs 

that were mapped provisionally using BSA analysis, a genetic linkage map 

(GLM) must be produced to provide chromosome resolution. Individual RIAILs 

genome was recently sequenced using Illumina sequencing (30 X coverage) to 

generate linkage map and precisely determine A. freiburgensis chromosomes 

resolution. BSA analysis combined with QTL analysis using data from individual 

RIAILs on the new A. freiburgensis genome, organised to linkage group, will 

determine the prices location and size of candidate regions. Candidate genes 

identified from BSA and QTL analysis can be investigated for their role in the 

underlying phenotype depending on their inheritance in individual RIAILs. 
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Inheritance of candidate genes in RIAILs can be investigated by the inheritance of 

SNPs on or close to the candidate gene, using data from the vcf file of each 

RIAIL line. Candidate genes identified will be knocked out using CRISPR/Cas9 

to generate mutant, and assay the phenotypic consequence on sex ratio following 

male outcross [211]. 

Live imaging of organelles, X chromosome and Myosin and cytoskeleton in 

wildtype Auanema male will determine the timing of events during cell divisions. 

A. rhodensis secondary spermatocyte division takes about 2 hours as determine by 

the vital dye Hochest used to label the DNA. This is long enough time for 

temporal resolution to take into accounts exposure time and different optical 

sections. Until recently nematode male spermatocyte couldn’t be cultured outside 

the gonad [212]. Recently a protocol has been established to culture spermatocyte 

in vitro[185].  Live in vitro culture of Auanema spermatocyte will enable live 

tracking of cellular events following X chromosome segregation. Mitochondria 

can be tracked by generating A. rhodensis transgenic line with fluorescent-marked 

mitochondrial protein; GFP reporter for Cox-4, a mitochondrial cytochrome c 

oxidase subunit. Chromosomes including the X chromosome can be labelled by a 

fusion of mCherry protein with histone H2B (his-58) under the control of a 

germline promoter of the gene pi1-1. X chromosome can be recognised easily 

since it is the only chromosome that lags during anaphase [58, 59, 92].  Non-

muscle myosin can be tracked in cultured spermatocyte in vitro by fusion with 

GFP reporter generating A. rhodensis males expressing GFP::NMY-2[185]. 

Myosin VI can be tracked in vitro by generating a transgenic A. rhodensis male 

expressing GFP::SPE-15 [185]. Furthermore, conducting live imaging of HM-

RIAILs male spermatocyte expressing GFP::NMY-2 will validate our prediction 

that non-muscle myosin II fails to polarise  and actively transport mitochondria 

and MSP exclusively to the X-bearing pole. Whereas, non-muscle myosin 

polarisation in LM-RIAILs will be similar to that of wildtype male. Those 

transgenic lines can be created using CRISPR/Cas9 a method recently described 

for Auanema [211].  
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Appendix A  

 

Table A.1: A. rhodensis X chromosome markers.  
Marker APS4 

allele 

APS6 

allele 

Restriction 

enzyme 

Allele 

that 

gets 

cut 

Primers Size of 

undigested 

amplicon 

sizes 

after 

digestion 

9686 CATCTG CATATG NdeI APS6 UW231/UW232 666 533 / 

133 

7963 GGTC GGCC HaeIII APS6 UW239/UW242 450 290 / 

160 

12469 GTAC GCAC RsaI APS4 UW235/UW236 400 327 / 73 

 

Primers   

UW231  

Orientation Forward  

Sequence 5’-TGTCCTGACCCGCGTGTTGA-3’ 

UW232   

Orientation Reverse  

Sequence 5’-AACTGAGTTTGCAGCCCTGT-3’ 

UW239   

Orientation Froward 

Sequence 5’-TGGTGGGGCTTGGAGTTCGA-3’ 

UW240   

Orientation Reverse  

Sequence 5’-ACGGCTGATGTTGACGCTC-3’ 

UW235   

Orientation Forward 

Sequence 5’-TGCAAGGCAGACGTCCCTTG-3’ 

UW236   

Orientation Reverse 

Sequence 5’-CCAATTCTTCGCTTATTGCCCG-3’ 
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Appendix B  

 

Table B.1: Males from RIAILs crosses with wildtype APS7 females.  

Table outlines RIAILs lines number, its corresponding phenotype, number of XX 

and XO progeny produced in each separate cross. Binomial distribution for the 

probability of 0.18 (ratio of males produced in wildtype crosses) was calculated 

for all the lines using number of males as number of success and total number of 

progeny as (n). Beta distribution of probability of 0.18 was calculated using 

number of males as  and number of females as . Binomial and Beta distribution 

were calculated to assess the success and failure of the proportion of males in 

each line, using the wt male ratio of 0.18 as probability (p). Line numbers labelled 

with yellow indicates that crosses data are not available, while genome is 

available, and * indicates where data are missing. Cells shaded in green indicates 

that beta distribution was not calculated because number of success  is equal to 

0.  

 
Line 

number   

Males 

Production 

High/normal  XX 

XO 

(Number 

of 

sucesses) Total (n)  

Binomial.dist 

(probablity of 

0.18)  

Beta 

(probablity of 

0.18) 

                 1  
High  22 35 57 3.8123E-13 2.05477E-13 

                 2  
Normal  64 2 66 0.000211865 3.81673E-05 

                 3  
Normal  87 7 94 0.001989928 0.001159855 

                 4  
Normal  40 8 48 0.148414842 0.371610473 

                 5  
Normal  154 7 161 1.59282E-07 4.63747E-08 

                 6  
Normal  140 7 147 1.33863E-06 4.35342E-07 

                 7  
Normal 33 0 33 0.001431717   

                 8  
Normal  78 5 83 0.001039336 0.000443403 

                 9  
Normal  106 10 116 0.002130773 0.00159399 

               10  
High 48 37 85 3.35201E-08 3.14962E-08 

               11  
High 37 17 54 0.006672026 0.00956626 

               12  
High 55 43 98 2.11846E-09 1.97429E-09 

               13  
Normal  33 0 33 0.001431717   

               14  
Normal 49 0 49 5.98245E-05   

               15  
Normal  40 1 41 0.002633968 0.000356906 

               16  
High 41 19 60 0.00423835 0.006078788 

               17  
Normal * * * * * 

               18  
Normal  84 8 92 0.005907506 0.004375498 

               19  
High 68 40 108 1.46635E-06 1.73652E-06 

               20  
Normal  71 20 91 0.063302783 0.181033464 

               21  
High 26 43 69 3.82313E-16 2.00473E-16 
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               22  
Normal 77 5 82 0.001191128 0.000516032 

               23  
High 117 65 182 6.52441E-09 8.25615E-09 

               24  
High  19 29 48 6.72421E-11 3.73118E-11 

               25  
Normal 59 2 61 0.000487544 9.55484E-05 

               26  
Normal 73 0 73 5.10989E-07   

               27  
Normal 70 3 73 0.000336163 8.72216E-05 

               28  
High 26 26 52 1.23497E-07 9.40841E-08 

               29  
High 106 79 185 4.31549E-15 4.22126E-15 

               30  
High 20 36 56 2.29772E-14 1.12651E-14 

               31  
Normal 42 0 42 0.000239984   

               32  
Normal 85 0 85 4.72256E-08   

               33  
high 31 35 66 1.17324E-10 8.20143E-11 

               34  
Normal 103 0 103 1.32687E-09   

               35  
High 15 16 31 1.85982E-05 1.33225E-05 

               36  
high 46 33 79 5.39277E-07 5.35562E-07 

               37  
Normal  129 11 140 0.000332039 0.000217321 

               38  
Normal 76 2 78 2.74128E-05 4.13598E-06 

               39  
Normal  63 0 63 3.71769E-06   

               40  
Normal  43 3 46 0.017421476 0.007751505 

               41  
Normal  47 0 47 8.89715E-05   

               42  
high 37 25 62 2.29847E-05 2.37693E-05 

               43  
high 48 38 86 1.3655E-08 1.25673E-08 

               44  
high 59 30 89 0.000167959 0.000225793 

               45  
high 93 60 153 4.1689E-10 4.59107E-10 

               46  
high 59 61 120 2.91411E-16 2.19413E-16 

               47  
high 19 21 40 6.94053E-07 4.87935E-07 

               48  
Normal  * * * * * 

               49  
High 24 38 62 4.15487E-14 2.2498E-14 

               50  
Normal  40 0 40 0.000356906   

               51  
Normal 230 16 246 9.53767E-08 4.83829E-08 

               52  
Normal  36 0 36 0.000789403   

               53  
Normal  51 3 54 0.005818965 0.002137704 

               54  
High 35 35 70 9.28886E-10 7.11941E-10 

               55  
High 88 59 147 2.01245E-10 2.14283E-10 

               56  
high 22 18 40 5.66692E-05 4.9744E-05 

               57  
High 28 15 43 0.003948041 0.004848931 

               58  
High 71 134 205 1.96091E-50 9.34272E-51 

               59  
High 67 36 103 1.8994E-05 2.43899E-05 

               60  
high 38 35 73 3.77598E-09 3.08214E-09 

               61  
High 54 55 109 1.19801E-14 9.11405E-15 

               62  
High 28 32 60 5.90705E-10 4.08543E-10 

               63  
High 29 48 77 7.50154E-18 3.93525E-18 
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               64  
High 119 81 200 6.43257E-14 6.7942E-14 

               65  
High 54 39 93 4.9195E-08 4.87927E-08 

               66  
Normal  60 5 65 0.010523685 0.006182772 

               67  
High 40 32 72 1.50125E-07 1.36487E-07 

               68  
High 81 77 158 1.04163E-18 8.38713E-19 

               69  
Normal 107 4 111 3.77161E-06 8.58945E-07 

               70  
Normal  66 6 72 0.010892774 0.007320412 

               71  
High 28 22 50 1.41563E-05 1.29138E-05 

               72  
High 21 11 32 0.012845783 0.015696605 

               73  
High 21 17 38 9.74611E-05 8.60611E-05 

               74  
Normal 47 2 49 0.003390029 0.000841671 

               75  
High 30 23 53 1.20352E-05 1.12089E-05 

               76  
High 42 31 73 7.60761E-07 7.36988E-07 

               77  
Normal  78 0 78 1.89444E-07   

               78  
High 20 23 43 1.34919E-07 9.2275E-08 

               79  
Normal * * * * * 

               80  
High 115 83 198 3.24319E-15 3.26028E-15 

               81  
High 42 78 120 8.22512E-30 3.95974E-30 

               82  
High 19 49 68 2.48928E-22 9.20501E-23 

               83  
Normal 62 4 66 0.003430168 0.001443648 

               84  
High 34 21 55 0.00022676 0.000250992 

               85  
High 18 21 39 4.02043E-07 2.71451E-07 

               86  
High 40 32 72 1.50125E-07 1.36487E-07 

               87  
High 61 32 93 7.06215E-05 9.23576E-05 

               88  
High 42 47 89 1.08477E-13 7.66599E-14 

               89  
High 16 21 37 1.23458E-07 7.63252E-08 

               90  
High 22 36 58 1.10557E-13 5.83355E-14 

               91  
High 54 36 90 5.94074E-07 6.28574E-07 

               92  
Normal  32 0 32 0.001745996   

               93  
High 48 28 76 5.10588E-05 6.01564E-05 

               94  
Normal 36 3 39 0.042074104 0.022938784 

               95  
Normal 70 0 70 9.26765E-07   

               96  
High 28 34 62 6.45125E-11 4.26645E-11 

               97  
High 39 25 64 4.20474E-05 4.5437E-05 

               98  
High 89 0 89 2.13517E-08   

               99  
High 16 17 33 1.06574E-05 7.671E-06 

             100  
Normal  84 0 84 5.75922E-08   

             101  
Normal 128 34 162 0.047963483 0.175988727 

             102  
High 29 70 99 2.06413E-30 8.06902E-31 

             103  
High 20 23 43 1.34919E-07 9.2275E-08 

             104  
high 32 20 52 0.000280444 0.000306612 

             105  
Normal 79 0 79 1.55344E-07   
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             106  
Normal 84 0 84 5.75922E-08   

             107  
high * * * * * 

             108  
High 21 42 63 2.25295E-17 1 

             109 
High Switched to line 33 * * 

             110  
High Switched to line 73 * * 

probability  
0.18 

  
DNA available but not the line 

 *  
data not available  

  
beta distribution not calculated number of success = 0 

 

  

Table B.3: DNA pools and their constituting lines.  

Pools were constructed by pipetting a volume from each line containing 150ng of 

DNA, from total Qubit fluorometer concentration measured in the lab, to make up 

a total concentration of 1.5ug of DNA of each pool. The reported concentration 

for each pool was reported to us by the sequencing company upon receiving the 

samples. 

 
Sample  Lines constituting the pool  Phenptype Amount 

received in 

(ug) 

Volume 

(uL)  

APS14 Maternal line  Maternal line 

(LM)  

5.5 120 

Pool1  5,9,54,77,74,2,13,14,17,20 LM 2.7 175 

Pool2 61,23,24,28,29,30,33,36,45,57 HM 3.6 77 

Pool3 35,42,46,55,56,59,63,65,72,87 HM 4.5 120 

Pool4 6,8,15,18,25,37,40,69,95,27 LM 2.3 80 
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Figure B.1: Gel image assessing the quality of RIAILs DNA pools. 

Pools DNA was constructed from RIAILs with a similar phenotype. Four DNA 

pools were created 2 HM-Pools (1 & 4)  and 2 LM-Pools (2 & 3). Besides, DNA 

from maternal line APS14 was extracted for sequencing.  

 

Table B.2: Number of reads in all DNA samples and results of trimming low-

quality reads.  

The table represents the number of reads as reported by FastQC Html file.  

 
Sample  strain Library type  Raw reads  Trimmed reads  Kept % 

APS14-1 APS14 PE 111466603 107728015 96.64 

APS14-2 APS14 PE 111466603 107728015 96.64 

Pool1-1 RIAILs PE 101559334 97655752 96.15 

Pool1-2 RIAILs PE 101559334 97655752 96.15 

Pool2-1 RIAILs PE 95145518 91069393 95.71 

Pool2-2 RIAILs PE 95145518 91069393 95.71 

Pool3-1 RIAILs PE 97615600 92874421 95.14 

Pool3-2 RIAILs PE 97615600 92874421 95.14 

Pool4-1 RIAILs PE 95361733 91739956 96.20 

Pool4-2 RIAILs PE 95361733 91739956 96.20 
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Figure B.2: Quality check using FastQC of raw reads, trimmed reads, and 

mapped reads against the APS7 genome.  

Quality score across all bases for pool1-1 raw reads improved after trimming the 

reads using trimmomatic; however, the per sequence GC content revealed two GC 

peaks, the lower peak represents GC content for nematode reads, and the higest 

peak represent the GC content of bacterial contaminant. After mapping trimmed 

reads to the reference APS7 genome, only nematode sequences aligned to the 

reference and bacterial reads were eliminated. Therefore, FastQC of the aligned 

file revealed one GC content peak after aligning trimmed reads with the APS7 

genome. 
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Figure B.3: Histogram Plots of total read depth, reference allele frequency, 

and per bulk SNP-Index.  

Per bulk, SNP-index has a small peak at 0 and 1. SNP-index of 0 indicates that 

the reads at that SNP position have the reference allele. SNP-index of 1 indicates 

that all the reads at that SNP position have the alternative allele. Filtering low 

confidence, SNPs will eliminate small peaks at 0 and 1 from both bulks SNP-

index.    
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Figure B.4: G’ Value distribution. 

 P-value is calculated from the null distribution of G'. The graph illustrates that 

the null distribution of filtered G' values (red) is close to log-normally distribution 

compared to raw data (blue).  
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Table B.4: Percentages of SNP effects by impact between APS14 and APS7 

reference genome.  

 

 
Table B.5: Number of effects and percentages by functional class reported by 

SnpEff. 

 

Table B.6: Number of effects by their type and location within the genome.  
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Figure B.5: Bar chart illustrating the percentage of APS14 SNP effects by 

location within the genome:  

 

 

 

 
 

Figure B.6: Bar chart represents APS14 SNPs substitutions count with other 

bases. 
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Figure B.7: APS14 InDel length plotted against the count.  

InDel length count normally distributes around InDel length of 0, with the highest 

InDel count close to 0. 
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Table B.7: Markers used to investigate RIAILs inheritance of mitochondria,  

Non-muscle myosin, and Myosin XVIII. 

 

 

 

Primer sequences (5’- 3’): 

• UW265- CAGCTGGTCTTGTCGCCAGAAAG 

• UW280- ACTTCATTCAAATCTGCTTGAAC 

• UW594- TGGAGCTTCTACAGTCAAGACACCA 

• UW595- CGTCGTCACGGAAGCAGCTT 

• UW580- ACTAGAGGTGCTGAAAAACCA 

• UW581- AGGTACAGCAGGATTTTTACGT 

• UW600- AAACCCGGCGTTGATACTGT 

• UW601- CTGAGCTCAGCAAAGTTCGC 

• UW602- ACACGTTTTCCCCACGATGA 

• UW603- ATCACTTTGCGACTGGGAGG 

 

 

 

 

 

 

 

 

 

 

 

Marker  Experiment(s) 

Used 

Primers Restriction 

Enzyme 

and buffer 

Amplicon 

size (bp) 

Sizes of 

digested 

fragments 

(bp) 

X Chromosome RIAIL analysis UW594 & 

UW595 

BamHI & 

Buffer E 

909 637 &  

272 

Mitochondria RIAIL analysis UW580 & 

UW581 

AluI 

& 

Buffer B 

582 352 & 230 

Non-muscle 

Myosin  

RIAIL analysis UW602 & 

UW603 

HindIII & 

Buffer E 

617 70 & 547 

Myosin XVIII RIAIL analysis UW600 & 

UW601 

RsaI & 

Buffer C 

623 80 & 543 
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Figure B.8: A map of all the steps taken from RIAILs construction to the 

identification of QTLs.  
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Appendix C 

Table C.1: Marker used to investigate X chromosome pattern of inheritance 

in A. freiburgensis. 

   
Marker Name  Primers Restriction 

Enzyme 

and buffer 

Amplicon 

size (bp) 

Sizes of 

digested 

fragments 

(bp) 

X Chromosome UW265 & 

UW280 

HindIII & 

Buffer E 

385 75 & 310  

Primer sequences (5’- 3’): 

• UW265- CAGCTGGTCTTGTCGCCAGAAAG 

• UW280- ACTTCATTCAAATCTGCTTGAAC 
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