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On the generation of discrete and topological Kac-Moody groups.

Inna Capdeboscq a,
aMathematics Institute, University of Warwick, Coventry, UK, CV4 7AL

Abstract

This article shows that discrete or topological Kac-Moody groups defined over finite fields are in many cases
2-generated. We provide explicit bounds on the minimal number of generators for arbitrary Kac-Moody groups.

1. Introduction

Kac-Moody groups over arbitrary fields were defined by J. Tits [13]. In this article we discuss Kac-
Moody groups G(q) defined over finite fields Fq. In [1] Abramenko and Muhlherr have shown that with
some restrictions (if the groups are 2-spherical and there are some mild bounds on the size of Fq), Kac-
Moody groups over Fq are finitely presented with the number of generators depending on q and the Lie
rank of G(q) 1 . In [3], the author has shown that the family of affine Kac-Moody groups over Fq (of rank
at least 3) possesses bounded presentations: there exists C > 0 such that if G(q) is an affine Kac-Moody
group corresponding to an indecomposable generalised Cartan matrix (IGCM) of rank at least 3 and with
q ≥ 4, then G(q) has a presentation with d(G) generators and r(G) relations satisfying d(G) + r(G) ≤ C.
Related results for other Kac-Moody groups over finite fields were also proved in [3]. As a consequence,
the number of generators of a 2-spherical Kac-Moody group is independent of q and depends on the type
of Dynkin diagram of G(q) rather than the rank of G. We make use of this observation to provide bounds
on the minimal number of generators of G.

Theorem 1.1 Let G = G(q) be a simply connected Kac-Moody group of rank m corresponding to an
IGCM A and defined over a finite field Fq. Let π = {α1, ..., αm} be the set of simple roots of G and
∆ be the Dynkin diagram of G whose vertices are labelled by α1, ..., αm. Suppose further that for any
αi1 , ..., αik ∈ π, ∆(αi1 , ..., αik) denotes the subdiagram of ∆ spanned by αi1 , ..., αik . Let d(G) denote the
minimal number of elements of G that are required to generate G. Then for q large enough there holds:

(i) If m = 2, then d(G) ≤ 3.
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1. An existence of finite generating set of G(q) can be derived directly from the original presentation of G(q).
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(ii) If G is affine with m ≥ 3, then d(G) = 2.

(iii) If G is (symmetrizable) strictly hyperbolic and m ≥ 3, then d(G) = 2.

(iv) If G is (symmetrizable) hyperbolic, then if m ≥ 5, then d(G) = 2, and if m = 3 or 4, then d(G) ≤ 3
(with d(G) = 2 in at least 34 out of 72 cases) at the possible exception of three rank 3 diagrams with
∆ of type (∞,∞,∞). In each of those three cases d(G) ≤ 4.

(v) Suppose that we may subdivide π into k mutually disjoint subsets πi = {αi1 , ..., αil(i)}, 1 ≤ i ≤ k,

such that for each i ∈ {1, ..., k − 1}, ∆(αi1 , ..., αil(i)) =
⊔s(i)
j=1 ∆ij with ∆ij an irreducible Dynkin

diagram of finite type. Then

(a) If ∆(αk1 , ..., αkl(k)
) =

⊔s(k)
j=1 ∆kj with ∆kj an irreducible Dynkin diagram of finite type, then

d(G) ≤ 2k.

(b) If ∆(αk1 , ..., αkl(k)
) =

⊔s(k)
j=1 ∆kj with ∆kj an irreducible Dynkin diagram of rank 2 of infinite

type, then d(G) ≤ 2k + 2 (and if we increase q, d(G) ≤ 2k + 1).

The bound d(G) = 2 is optimal and was obtained in cases (ii), (iii) and part of (iv). Note that the
bound d(G) ≤ 2m follows from (v)(a). Below are few examples of application of (v)(a).

Example 1 If the nodes of ∆ can be partitioned into two disjoint subsets π1 and π2 such that for every
two-element subset {αis , αit} ⊂ πi, ∆(αis , αit) is of type A1 ×A1 (i.e., αis and αit are not connected in
∆), then for q large enough, d(G) ≤ 4.

Partition corresponding to Example 1 can often be obtained, one possible obstacle being the existence of
many cycles of length 3 in ∆. Example 2 is a special case of Example 1.

Example 2 If ∆ is a finite rooted tree and has rank m, then d(G) ≤ 4 provided that q ≥
√
m.

The following example illustrates the fact that infinite subdiagrams of ∆ can sometimes be ignored.

Example 3 If ∆ is the diagram below, then d(G) ≤ 4.

t2

s1

t1

s2

The groups discussed so far are often called the minimal Kac-Moody groups. They are discrete infinite
groups. In recent years there has been a significant progress in the study of topological Kac-Moody
groups. Those are either completions of minimal Kac-Moody groups G(q), q = pa, achieved by various
methods (e.g., a completion of Carbone and Garland Gcλ obtained via methods of representation theory,
a Caprace-Rémy-Ronan completion Gcrr obtained via geometric methods) or a topological group Gma+

explicitly constructed by Mathieu. All of these are discussed in details in a recent paper of Rousseau
[12]. There it is further shown that provided that p is large enough, Gma+ � Gcλ � Gcrr and G(q) is
dense in each of those topological groups. In [4] it was shown that under the same restriction on p (and
modulo the centres), Gma+ ∼= Gcλ ∼= Gcrr. Thus one can simply talk about a topological Kac-Moody
group G = G(q) that corresponds to G = G(q) without any ambiguity. We now observe that since for p
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large enough G(q) is dense in G(q), an immediate consequence of Theorem 1.1 is a bound on the number
of (topological) generators of G(q).

Corollary 1.2 Let G be a minimal Kac-Moody group defined over the field Fq, with q = pa and p ≥
maxi 6=j |aij | (where A = (aij) is the IGCM of G). Let G denote the topological Kac-Moody group corre-
sponding to G. Then Theorem 1.1 holds if we replace G by G and d(G) stands for the minimal number
of topological generators of G.

We make an extensive use of a result of Guralnick and Kantor [9] regarding the generation of finite
groups of Lie type. We also use recent estimates obtained by Menezes, Quick and Roney-Dougal [11].

2. Outline of a Proof

Let G = G(q) be a simply connected Kac-Moody group. Let A be its IGCM of size m and α1, ..., αm
its fundamental roots. In the next paragraph we will assume Proposition 2.1 of [7] that defines a simply
connected Kac-Moody group via its presentation.

The group G is generated by its root elements xα(u), α ∈ Φ (the set of real roots), t ∈ Fq. For
each u ∈ Fq and each 1 ≤ i ≤ m, write xi(u) = xαi

(u) and x−i(u) = x−αi
(u). Then for each a ∈ F∗q

and 1 ≤ i ≤ m, put ni(a) = xi(a)x−i(a
−1)xi(a), ni = ni(1), and let hi(a) = ni(a)n−1i . For α ∈ Φ,

Xα := 〈xα(u), u ∈ Fq〉 ∼= (Fq,+) and Mα := 〈Xα, X−α〉 ∼= A1(q). In particular, Xi := 〈xi(u), u ∈ Fq〉 and
Mi := 〈Xi, X−i〉. Moreover, G is a group with a BN -pair, (B, N) where N is generated by a subgroup
T and elements ni, 1 ≤ i ≤ m, and T = 〈hi(a), a ∈ F∗q , 1 ≤ i ≤ m〉 ∼= Cmq−1 is a torus of G. Remark that
T normalises each Mi, 1 ≤ i ≤ m. Also, N/T ∼= W , the Weyl group of G, and as each ni ∈ Mi projects
onto a generator wi of W , we obtain the first basic ingredient of our proof.

Lemma 2.1 If we have generated all Mi, 1 ≤ i ≤ m, we have generated G.

Notice that the notations above work just as well for finite groups of Lie type which can be thought of
as a special case of Kac-Moody groups over Fq.
Lemma 2.2 Let Σ(q) be a finite (quasi-) simple group of Lie type that is defined over Fq and correspond-
ing to a root system Σ = A2, C2 or G2. Let α1 and α2 be the fundamental roots of Σ with |α1| ≤ |α2| .
Then Σ(q) is generated by M1 and n2.

Proof. This is achieved by an easy calculation. 2

In the future, we will denote by Mij the semi-simple subgroup of G that corresponds to ∆(αi, αj). We
now prove our main result.

Proposition 2.3 Let G be an affine simply connected Kac-Moody group of rank (m+1) ≥ 3, correspond-
ing to an IGCM, defined over a field Fq, q large enough. Then d(G) = 2.

Proof. For the affine groups, we use the notations from the book of Carter [6]. In particular, we denote

the fundamental roots of G by α0, ..., αm. For the type C̃ ′m we use the description given on p.585 of [6].

Suppose first that G is neither of type C̃tm, nor of type Ã2. Choose i so that α0 and αi are not joined by
an edge in ∆. Take an element x = n0xi ∈ G with xi ∈Mi chosen so that if p is odd, 1 6= xi ∈ Xi, while
if p = 2, xi ∈Mi of order (q+1). Since (o(n0), o(xi)) = 1 and [n0, xi] = 1, we have that 1 6= (n0xi)

o(n0) =

x
o(n0)
i ∈Mi and 1 6= (n0xi)

o(xi) = n
o(xi)
0 ∈M0. Now consider a subgroup G0 of G that corresponds to the

Dynkin subdiagram ∆(α1, ..., αm). Notice that G0 is a finite (possibly quasi-) simple group. By [9], there

exists y ∈ G0 such that G0 is generated by x
o(n0)
i and y. Let j ∈ {1, 2, ...,m} be such that αj and α0 are

joined in ∆ (e.g., j = 1 for Ãn, F̃4; j = 2 for B̃n, etc.). Notice that G0 ≥ Mj for every such j. Consider

M0j . We have M0j ≥M0 and by Lemma 2.2, M0j = 〈Mj , n
o(xi)
0 〉. Since 〈G0,M0j〉 ≥ 〈Mi, 0 ≤ i ≤ m〉 = G,
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we obtain G = 〈x, y〉.
Suppose now that G is of type C̃tm with m ≥ 3. Take x = h0(u)n1xm where u2 6= ±1 and xm ∈ Mm

of odd order s co-prime to t := o(h0(u2)h1(−u2)). Notice that as m ≥ 3, [h0(u)n1, xm] = 1. Then
x2 = h0(u)h0(u)n1n21x

2
m = h0(u)h0(u)h1(u−A01)h1(−1)x2m = h0(u2)h1(−u2)x2m. An explicit calculation

shows that x2s = h0(u2s)h1((−u2)s) induces a non-trivial inner-diagonal automorphism on M0. Thus
by [9], there exists y0 ∈ M0 such that 〈x2s, y0〉 ≥ M0. On the other hand, 1 6= x2t = x2tm ∈ Mm. Let
H ≤ G corresponding to ∆(α2, ..., αm). Again by [9], there exists ym ∈ H such that 〈x2tm, ym〉 = H. Take
y = y0ym. Clearly [y0, ym] = 1, [y0, H] = 1 and [ym,M0] = 1. It follows that 〈x, y〉 ≥ 〈x2s, y0ym〉 ≥ M0

and 〈x, y〉 ≥ 〈x2t, y0ym〉 ≥ H. In particular, h0(u), xm ∈ 〈x, y〉, and so n1 ∈ 〈x, y〉. But by Lemma 2.2,
〈M0, n1〉 = M01 ≥M1, and so G = 〈x, y〉.

If G is of type C̃t2, take x = h0(u0)h2(u2)n1 with o(h0(u0)) and o(h2(u2)) as large as possible and such
that u20u

−2
2 6= −1. Then x2 = h0(u0)h2(u2)h0(u0)n1h2(u2)n1n21 = h0(u20)h2(u22)h1(−u20u22). Now choose

y0 ∈ M0 − T of order q − 1 if q is even and (q − 1)/|Z(M0)| if q is odd, and y2 ∈ M2 of order q + 1 if q
is even and (q + 1)/|Z(M2)| if q is odd. A celebrated Theorem of Dickson (cf. 6.5.1 of [8]) implies that

〈x2, yo(yj)i 〉 ≥Mi, {i, j} = {0, 2}. Take y = y0y2. It follows that 〈x, y〉 contains M0 and M2; in particular,
n1 ∈ 〈x, y〉. Now Lemma 2.2 implies that 〈x, y〉 ≥ 〈M0, n1〉 ≥M1. Thus G = 〈x, y〉.

Finally let G be of type Ã2. Take x = n0h1(u) with u3 6= ±1. Then x2 = h1(u)n0n20h1(u) =
h1(u)h0(u−A10)h0(−1)h1(u) = h1(u2)h0(−u). An explicit calculation shows that x2 acts non-trivially
on M12 and so by [9], there exists y ∈M12 such that 〈x2, y〉 ≥M12. In particular, Mi ≤ 〈x, y〉 for i = 1, 2,
and so n0 ∈ 〈x, y〉. But by Lemma 2.2, 〈M1, n0〉 = M01 ≥M0. Therefore G = 〈x, y〉. 2

Proposition 2.4 Let G be a simply connected Kac-Moody group of rank 2 defined over a field Fq. Then
d(G) ≤ 3.

Proof. We label the simple roots by α1 and α2. Choose 1 6= x = h1(u)h2(v) ∈ T that induces a non-trivial
inner-diagonal automorphisms on both M1 and M2. Now use [9] to choose yi ∈Mi so that 〈x, yi〉 ≥Mi,
i = 1, 2. The result follows immediately. 2

Proposition 2.5 Let G be a simply connected strictly hyperbolic (symmetrizable) Kac-Moody group of
rank at least 3. Then if q is large enough, d(G) = 2.

Proof. We use the list of diagrams and notations as in Table 2 of [2]. If G is of type BG3, BG′3, GG3 or
G′G3, choose x = h1(u)n2h3(v) with appropriately chosen u, v ∈ F∗q and yi ∈ Mi for i ∈ {1, 3} so that

(o(y1), o(y3)) = 1 and 〈x2, yo(yj)i 〉 ≥ Mi, {i, j} = {1, 3}. Let y = y1y3. Then 〈x, y〉 contains M1, M3 and
n2. Apply Lemma 2.2 to conclude that M12 = 〈M1, n2〉 ≤ 〈x, y〉. As M1 ≤M12, the result follows.

If G is of type CG′3, CG3, G′G′3, choose x = n1h3(v) with appropriately chosen v ∈ F∗q and y ∈ M2

such that 〈x2, y〉 ≥M23. Since h3(v) ∈M23 and n1 and M2 generate M12, we have that G = 〈x, y〉.
IfG is of type AD

(2)
3 , AGG3, AC

(1)
2 or AG′G′3, choose x = n1h2(u) and y ∈M23 such that 〈x2, y〉 ≥M23.

Now use the fact that h2(u) ∈M23 and that 〈n1,M2〉 = M12 to conclude that G = 〈x, y〉.
Finally, if G is of type AC

(1)
3 , take x = n1h4(u) and y ∈ M234 such that 〈x2, y〉 ≥ M234 (such y exists

by [9]). Since 〈n1,M4〉 = M14 while M4 ≤M234, we conclude that 〈x, y〉 = G. 2

The proof of part (iv) of 1.1 for the hyperbolic groups follows by similar tricks and calculations done for
every single group on the list of 130 diagrams (cf. [5]). The proof of part (v)(a) and (v)(b) of Theorem 1.1
are obvious if one uses an observation (cf. Lemma 5 of [10]) that two elements generate a product of finite
simple groups Hm1

1 × ...×Hmn
n (Hi 6∼= Hj , i 6= j) if and only if their projections into each Hmi

i generate
it, and from the estimates (recently obtained in [11]) on the number h in a direct product Hh (H is a
finite simple group) for which it is possible to be generated by 2 elements .

Acknowledgement. I would like to thank Guy Rousseau and Bertrand Rémy for illuminating discus-
sions on Kac-Moody groups.
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