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Abstract 24 

Motile bacteria sense chemical gradients using chemoreceptors, which consist of distinct 25 

sensing and signaling domains. The general model is that the sensing domain binds the 26 

chemical and the signaling domain induces the tactic response. Here, we investigated the 27 

unconventional sensing mechanism for ethanol taxis in Bacillus subtilis. Ethanol and other 28 

short-chain alcohols are attractants for B. subtilis. Two chemoreceptors, McpB and 29 

HemAT, sense these alcohols. In the case of McpB, the signaling domain directly binds 30 

ethanol. We were further able to identify a single amino-acid residue Ala431 on the 31 

cytoplasmic signaling domain of McpB, that when mutated to a serine, reduces taxis to 32 

the alcohols. Molecular dynamics simulations suggest that mutation of Ala431 to serine 33 

increases coiled-coil packing within the signaling domain, thereby reducing the ability of 34 

ethanol to bind between the helices of the signaling domain. In the case of HemAT, the 35 

myoglobin-like sensing domain binds ethanol, likely between the helices encapsulating 36 

the heme group. Aside from being sensed by an unconventional mechanism, ethanol also 37 

differs from many other chemoattractants because it is not metabolized by B. subtilis and 38 

is toxic. We propose that B. subtilis uses ethanol and other short-chain alcohols to locate 39 

prey, namely alcohol-producing microorganisms. 40 

  41 
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Importance 42 

Ethanol is a chemoattractant for Bacillus subtilis even though it is not metabolized and 43 

inhibits growth. B. subtilis likely uses ethanol to find ethanol-fermenting microorganisms 44 

for prey. Two chemoreceptors sense ethanol: HemAT and McpB. HemAT’s myoglobin-45 

like sensing domain directly binds ethanol, but the heme group is not involved. McpB is a 46 

transmembrane receptor consisting of an extracellular sensing domain and a cytoplasmic 47 

signaling domain. While most attractants bind the extracellular sensing domain, we found 48 

that ethanol directly binds between inter-monomer helices of the cytoplasmic signaling 49 

domain of McpB, using a mechanism akin to those identified in many mammalian ethanol-50 

binding proteins. Our results indicate that the sensory repertoire of chemoreceptors 51 

extends beyond the sensing domain and can directly involve the signaling domain. 52 

  53 
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Introduction 54 

Many bacteria move in response to external chemical gradients through a process 55 

known as chemotaxis (1). Typically, bacteria migrate up gradients of chemicals that 56 

support their growth and down ones that inhibit it. These chemicals are commonly sensed 57 

using transmembrane chemoreceptors, which consist of an extracellular sensing domain 58 

and a cytoplasmic signaling domain along with a cytoplasmic HAMP domain that couples 59 

the two domains. While a number of sensing mechanisms exist, the best understood one 60 

involves direct binding of the chemical to the extracellular sensing domain (2). In 61 

flagellated bacteria such as Bacillus subtilis and Escherichia coli, this binding event 62 

induces a conformational change in the cytoplasmic signaling domain that alters the 63 

autophosphorylation rate of an associated histidine kinase known as CheA (3). The 64 

phosphoryl group is then transferred to a soluble response regulator known as CheY, 65 

which modulates the swimming behavior of the bacterium by changing the direction of 66 

flagellar rotation. The chemical gradients themselves are sensed using a temporal 67 

mechanism involving sensory adaptation (4). 68 

While many chemicals are sensed by the extracellular sensing domain, some are 69 

sensed by the cytoplasmic domains, typically using an indirect mechanism. For example, 70 

sugars transported by the phosphoenolpyruvate transfer system (PTS) are indirectly 71 

sensed through interactions between the PTS proteins and chemoreceptor signaling 72 

complexes (5, 6). In the case of E. coli, changes in intracellular pH are sensed by the 73 

cytoplasmic HAMP domain (7). The HAMP and the signaling domains of E. coli Tar are 74 

also responsible for the repellent response to nickel and an attractant response to toluene 75 

and o-xylene (8). In addition, changes in osmolarity are sensed through alterations in the 76 
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packing of the chemoreceptors cytoplasmic signaling domains (9). To our knowledge, 77 

however, there have been no reports of direct sensing by the chemoreceptor cytoplasmic 78 

signaling domain. This has not been particularly surprising given that the cytoplasmic 79 

signaling domain, which consists of a long dimeric four-helix coiled-coil (10), lacks an 80 

obvious ligand-binding pocket. 81 

In this work, we investigated chemotaxis to ethanol in B. subtilis. This short-chain 82 

alcohol is an attractant for B. subtilis even though it is not used as a carbon source and 83 

inhibits cell growth. Ethanol is directly sensed by two chemoreceptors, HemAT and McpB. 84 

Sensing by HemAT fits the conventional model where ethanol binds the sensing domain. 85 

However, in the case of McpB, we found that ethanol is directly sensed by the cytoplasmic 86 

signaling domain using a mechanism analogous to many eukaryotic ethanol-binding 87 

proteins. 88 

  89 
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Results 90 

B. subtilis exhibits chemotaxis to short-chain alcohols. We employed the capillary 91 

assay to measure B. subtilis chemotaxis to alcohols with increasing chain lengths (C1 to 92 

C5). The resulting data show that B. subtilis exhibits chemotaxis to methanol, ethanol, 2-93 

propanol, and tert-butanol. No significant responses to 1-propanol, 1-butanol, and 1-94 

pentanol were observed (Fig. 1A). To elucidate the underlying sensing mechanism, we 95 

focused on ethanol, because it is produced and utilized by a wide range of 96 

microorganisms in nature (11). We first measured the response to increasing ethanol 97 

concentrations using the capillary assay. (Fig. 1B). Unlike many other attractants such 98 

as amino acids (12-14), a tactic response to ethanol was only observed at relatively high 99 

concentrations (> 50 mM). The ethanol response peaked at 1.78 M (~ 10% (v/v)). The 100 

response decreased at higher concentrations, most likely due to ethanol being toxic at 101 

these concentrations (15). 102 

 103 

All three adaptation systems contribute to ethanol taxis. B. subtilis employs 104 

three adaptation systems – the methylation, CheC/CheD/CheYp, and CheV systems – 105 

for sensing chemical gradients (4, 16). To test whether these adaptation systems are 106 

involved in ethanol taxis, we employed mutants where these systems were selectively 107 

inactivated. We first tested ethanol taxis using a mutant (DcheC DcheV) where the 108 

CheC/CheD/CheYp and CheV adaptation systems were inactivated, leaving only the 109 

methylation system functional. Taxis to both ethanol and asparagine, which was used 110 

as a control, was reduced 30% in this mutant (Fig. 1C). We also observed reduced 111 

taxis in the DcheC and DcheV mutants, though the reduction was less than what was 112 
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observed with the double mutant. Interestingly, CheC/CheD/CheYp system appears to 113 

be more important for sensing ethanol gradients than for asparagine gradients (Fig. 114 

1C). We did not test a DcheR DcheB mutant, which lacks the two enzymes involved in 115 

methylation system, because these mutants exhibit poor motility in general due to 116 

excessive tumbling. 117 

 118 

McpB and HemAT are the chemoreceptors for short-chain alcohols. B. subtilis 119 

has ten chemoreceptors (17). To determine the chemoreceptors involved in ethanol 120 

taxis, we first tested mutants expressing just one chemoreceptor using the capillary 121 

assay. Only strains expressing McpB or HemAT as their sole chemoreceptor were 122 

capable of ethanol taxis (Fig. 1D). The response was greater for strains expressing 123 

HemAT, suggesting that it is the main receptor for ethanol taxis. This is not surprising 124 

as HemAT is more highly expressed than McpB (19,000 versus 6,200) (17). We next 125 

tested the effect of deleting these chemoreceptors in the wild type. When either McpB 126 

or HemAT was deleted (DmcpB or DhemAT), we observed reduced taxis toward 127 

ethanol. The reduction was greater in the DhemAT mutant, again suggesting that 128 

HemAT is the main receptor for ethanol taxis. When both chemoreceptors were deleted 129 

in the wild type (DmcpB DhemAT), ethanol taxis was almost completely eliminated while 130 

the mutant exhibited a normal response to proline, an amino-acid attractant for McpC 131 

(1138.7 ± 34.6 versus 1276.9 ± 54.1 of wild type) (Fig. 1E). We also found that strains 132 

expressing McpB or HemAT as their sole chemoreceptor responded to methanol, 2-133 

propanol, and tert-butanol (Fig. 1F). Strains expressing HemAT as their sole 134 
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chemoreceptor exhibited stronger responses to these alcohols than strains expressing 135 

McpB alone with the exception of 2-propanol where the responses were similar. 136 

 137 

Chemotaxis to ethanol is independent of its metabolism. Many bacteria 138 

metabolize ethanol (18). One possibility is that B. subtilis senses products of ethanol 139 

metabolism rather than ethanol itself. Indeed, such a mechanism occurs in 140 

Pseudomonas putida with regards to alcohol taxis (19). Therefore, we tested whether 141 

B. subtilis can grow on ethanol (Fig. 2A). These growth experiments were performed 142 

using the parental strain B. subtilis 168, which lacks the auxotrophies present in the 143 

chemotaxis strain OI1085. When cells were cultured in minimal medium with ethanol 144 

as the sole carbon source, no growth was observed. However, the cells did grow when 145 

ethanol was replaced with glucose. We also tested B. subtilis 168 growth in rich medium 146 

containing different amounts of ethanol to determine whether the cells were able to 147 

consume ethanol even though it does not support growth as the sole carbon source. 148 

While the cells were able to grow in rich medium containing ethanol, no decreases in 149 

ethanol concentrations were observed (Fig. 2B). These results indicate that B. subtilis 150 

does not consume ethanol. 151 

Oxidation of alcohols to aldehydes and subsequently to carboxylic acids can 152 

potentially change the redox state of the cells. This change could possibly be perceived 153 

as a sensory signal through a process known as energy taxis (20). B. subtilis can 154 

ferment glucose to acetate and ethanol when grown in presence of pyruvate or a 155 

mixture of amino acids (21, 22). In this process, alcohol dehydrogenase (ADH) reduces 156 

acetaldehyde to ethanol using NADH as the cofactor. Whether ADH can oxidize ethanol 157 
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to acetaldehyde in B. subtilis is unknown. To test whether this occurs, we measured 158 

ADH activities using B. subtilis cell lysates prepared from aerobic and anaerobic 159 

cultures. As a positive control, ADH activities using E. coli cell lysates were also 160 

measured (23). No ADH activity was observed with B. subtilis lysates whereas E. coli 161 

lysates obtained from anaerobic cultures had an ADH activity of 31.25 ± 1.85 units/mL. 162 

As expected, no ADH activity was detected with aerobic E. coli lysates. These results 163 

suggest that ethanol taxis in B. subtilis is independent of ethanol catabolism and is 164 

instead sensed directly by McpB and HemAT. 165 

 166 

Ethanol induces receptor-coupled kinase activity. We next performed an in vitro 167 

receptor-coupled kinase assay to test whether ethanol is able to activate CheA kinase 168 

(24). This assay has been used to study how attractant binding to chemoreceptors 169 

modulates CheA kinase activity (16, 24). Briefly, membranes expressing either McpB or 170 

HemAT were isolated. The chemotaxis signaling proteins CheA, CheW, and CheD were 171 

then added to these membranes to final concentrations that matched their stoichiometry 172 

in wild-type cells. Using this assay, we found that ethanol activates CheA kinase in a 173 

dose-dependent manner with membranes containing either McpB or HemAT as the sole 174 

chemoreceptor. Ethanol concentrations as low as 10 mM were sufficient to activate CheA 175 

kinase in both cases (Fig. S1 and Fig. 2C). These results indicate that ethanol can induce 176 

chemotaxis signaling in vitro. This assay, however, is unable to determine whether 177 

ethanol directly interacts with the chemoreceptors, because the membranes might 178 

contain associated proteins that could be involved in signaling. 179 

 180 
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McpB cytoplasmic signaling domain is involved in ethanol sensing. We next 181 

investigated ethanol taxis using receptor chimeras involving McpB to provide further 182 

insight regarding the sensing mechanism (25-27). We focused on McpB due to its high 183 

amino-acid similarity (57% to 65%) with three other B. subtilis chemoreceptors: McpA, 184 

TlpA, and TlpB. These four chemoreceptors all employ the same double Cache 1 domain 185 

for their sensing domain (2) and a highly conserved coiled-coil structure for their 186 

cytoplasmic signaling domain (10) (Fig. 3A and 3B). Unlike McpB, HemAT is not a 187 

transmembrane chemoreceptor. We attempted to construct chimeras involving HemAT, 188 

McpA, and YfmS, another soluble chemoreceptor. However, none were functional in the 189 

sense that they did not respond to ethanol or molecular oxygen, which is the conventional 190 

attractant for HemAT (28). 191 

We created chimeras between McpB and McpA, because the latter is not involved in 192 

ethanol taxis. In addition, we also measured the response to asparagine, because it is a 193 

known attractant for McpB, but not McpA, and binds the extracellular sensing domain 194 

(12). We first fused the N-terminal region of McpB to the C-terminal region of McpA: 195 

mcpB287A and mcpB359A. We then tested whether strains expressing these chimeras as 196 

their sole chemoreceptor respond to ethanol using the capillary assay. Both mutants did 197 

not respond to ethanol even though they still responded to asparagine (Fig. 3C). These 198 

results demonstrate that the extracellular sensing and cytoplasmic HAMP domains are 199 

not involved in sensing ethanol. Rather, the cytoplasmic signaling domain is involved. To 200 

verify our hypothesis, we tested a mcpA358B chimera. As expected, a strain expressing 201 

mcpA358B as its sole chemoreceptor responded to ethanol. This strain, however, does not 202 

respond to asparagine, because it lacks the requisite McpB sensing domain (Fig. 3C). 203 
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A key feature of chemoreceptor cytoplasmic signaling domains are the characteristic 204 

heptad repeats (labeled a to g) associated with their coiled-coil structure, where each 205 

repeat is equivalent to two helical turns. Based on sequence conservation and structural 206 

analysis of heptads from several bacterial and archaeal chemoreceptors, the cytoplasmic 207 

signaling domains are classified into three structurally distinct subdomains. These 208 

subdomains are known as the methylation (adaptation) helices, the flexible (coupling) 209 

bundle, and the conserved signaling tip (protein contact region) (10) (Fig. 3 and Fig. S2). 210 

To narrow down the region on these subdomains involved in ethanol sensing, we created 211 

mcpB374A, mcpB397A, mcpB423A, mcpB433A, and mcpB481A chimeras. Strains expressing 212 

mcpB374A and mcpB397A as their sole chemoreceptor did not respond to ethanol even 213 

though they still responded to asparagine. Strains expressing mcpB423A as their sole 214 

chemoreceptor exhibited a reduced response to ethanol and asparagine. However, when 215 

mcpB433A and mcpB481A were tested, the corresponding chimera expressing strains were 216 

able to respond to ethanol and asparagine at levels similar to the wild-type control (Fig. 217 

3C). These results suggest that the region spanning the residues 397 to 433 on McpB is 218 

involved in sensing ethanol. Furthermore, the region spanning the residues 423 to 433 219 

on McpB appears to be the principal region involved in ethanol sensing. 220 

 221 

McpB residue involved in ethanol sensing. The region spanning residues 397 to 222 

433 on McpB is necessary for ethanol taxis. As a first step towards identifying the binding 223 

site, we performed in silico docking experiments with ethanol and the McpB dimer 224 

fragment spanning residues 390 to 435 on the N-helix and neighboring residues 577 to 225 

622 on the C-helix. The resulting data from the docking analysis yielded five distinct 226 
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clusters of putative amino acid residues involving both the N-helix and the C-helix of the 227 

dimer fragment (Table S1 and Fig. S3A). We next aligned the amino-acid sequences 228 

spanning residues 392 to 434 on the N-helix and neighboring residues 578 to 620 on the 229 

C-helix of McpB, McpA, TlpA, and TlpB. (Fig. S3B). Among the 20 putative binding 230 

residues, Thr424, Asp427, and Ala431 on the N- helix and Glu581 and Lys585 on the C-helix 231 

were not conserved between the four chemoreceptors and, thus, were targeted for 232 

mutational analysis (Fig. 4A and 4B). Mutants expressing mcpB-T424A, mcpB-D427T, 233 

mcpB-E581Q, and mcpB-K585E as their sole chemoreceptor exhibited responses to 234 

ethanol similar to the wild-type mcpB. However, the strain expressing mcpB-A431S as its 235 

sole chemoreceptor failed to respond to ethanol. In addition, all strains supported 236 

asparagine taxis, indicating that these mutated receptors were functional (Fig. 4C). We 237 

also measured the response of the strain expressing mcpB-A431S to methanol, 2-238 

proponal, and tert-butanol in the capillary assay and observed reduced responses (Fig. 239 

4D), suggesting that Ala431 is an important residue for alcohol taxis overall. 240 

 241 

Ethanol directly binds to the McpB cytoplasmic signaling domain. To test 242 

whether ethanol directly interacts with McpB, we conducted saturation-transfer difference 243 

nuclear magnetic resonance (STD-NMR) experiments using recombinant McpB. STD-244 

NMR has been used to measure weak interactions between proteins and their ligands 245 

(29-32). Briefly, in these experiments, the protein is selectively saturated at specific 246 

frequencies. The magnetization is then transferred to the surrounding, low molecular-247 

weight ligands in a distance-dependent manner. The ligand epitopes in close proximity of 248 

the protein receive higher saturation (33), implying direct binding to the protein. 249 
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We first tested the McpB cytoplasmic region (McpBC) spanning residues 305 to 662, 250 

which corresponds to the HAMP and signaling domains (see Fig. 3A). The resulting 1H 251 

spectra for the McpBC protein incubated with 3 mM ethanol (60-fold excess of the protein) 252 

is shown in Fig. 4E. Two peaks for ethanol appeared near 1.05 ppm and 3.51 ppm, which 253 

respectively correspond to -CH3 and -CH2 epitopes of ethanol. Ligand signals were also 254 

observed at the expected chemical shift values (1.05 ppm and 3.51 ppm) on the STD 255 

spectra. Additionally, the area under the STD peak corresponding to the -CH2 epitope 256 

was about five-fold (18%) less than that of the -CH3 epitope (Fig. 4E), suggesting that the 257 

-CH3 moiety of ethanol is closer to the protein than its -CH2 moiety. Moreover, control 258 

experiments using 3 mM 1-pentanol, which is not an attractant, and McpBc showed 259 

negligible STD peaks near the characteristic chemical shift values (3.5, 1.41, 1.18, 0.8 260 

ppm), suggesting that 1-pentanol does not bind McpBc (Fig. S4A). As an additional 261 

negative control, we performed STD-NMR experiments using the McpA cytoplasmic 262 

region spanning residues 305 to 661 with 3 mM ethanol. Consistent with our in vivo 263 

results, we did not observe significant STD peaks near the characteristic chemical shift 264 

values (Fig. S4A). These results collectively indicate that ethanol directly interacts with 265 

the McpB cytoplasmic region. 266 

Strains expressing mcpB-A431S as their sole chemoreceptor exhibited a reduced 267 

response to ethanol when tested in the capillary assay (Fig. 4C). To determine whether 268 

the A431S mutation reduces ethanol binding, we repeated the STD-NMR experiments 269 

with recombinant McpBC-A431S protein. Because single mutations may impair proper 270 

folding of proteins, we first measured the circular dichroism spectra for both the wild-type 271 

McpBC and the McpBC-A431S proteins. We observed similar spectra for both proteins, 272 
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which suggests that the mutant protein preserves the wild-type helical structure (Fig. S4). 273 

We then performed STD-NMR experiments with the McpBC-A431S in presence of 3 mM 274 

ethanol. The resulting STD spectra showed reduced peaks near 1.05 ppm and 3.51 ppm 275 

as compared to wild-type McpBC (Fig. 4E). The saturation fraction of ethanol, which 276 

corresponds to the ratio of areas under the respective -CH3 peaks on STD and 1H spectra, 277 

is 0.23 for McpBC and 0.1 for the McpBC-A431S. These results imply that the residue 278 

Ala431 has a role in ethanol binding to the McpB signaling domain. 279 

 280 

Molecular dynamics simulation suggests the A431S mutation reduces ethanol 281 

affinity to the McpB cytoplasmic signaling domain. To gain insight regarding the 282 

ethanol binding mechanism, we performed molecular dynamics simulations of the wild-283 

type and A431S McpB cytoplasmic signaling dimers (residues 352 to 662) in presence of 284 

ethanol. Our simulations demonstrate that ethanol can bind nonspecifically throughout 285 

the cytoplasmic signaling domain in both the wild-type and the mutant McpB dimers, 286 

primarily interacting along the inter-helical grooves of the four-helix bundle (Fig. 4F and 287 

Fig. S5A). A comparison of the ethanol occupancy between the wild-type and A431S 288 

mutant McpB shows little variation overall but exhibits a marked difference in the region 289 

immediately surrounding residue 431. In particular, while ethanol was observed to bind 290 

at both the inter- and intra-monomer interfaces in the wild-type simulations, the inter-291 

monomer binding site associated with the residue 431 side chain was not present in the 292 

mutant simulations (Fig. 4G), suggesting that the A431S mutation reduces the binding 293 

affinity of ethanol. Indeed, within the flexible-bundle region, the residues displaying the 294 

greatest change in ethanol coordination between the wild-type and the A431S mutant 295 
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form a concentric pocket centered on residue 431 at the inter-monomer interface (Fig. 296 

4H).  297 

Our analyses identified another interesting feature of ethanol binding, namely that it is 298 

able to penetrate the surface of the McpB cytoplasmic domain to bind within the core of 299 

the coiled coil. In particular, we observed that ethanol entered between the individual 300 

helices of the four-helix bundle at two locations in the methylation-helix region: one 301 

involving N-helix residues 393-400 and C-helix residues 613-617 and another involving 302 

N-helix residues 382-387 and C-helix residues 628-631 (Fig. S5A). While ethanol binding 303 

to these regions was observed in both the wild-type and A431S mutant simulations, the 304 

wild-type binding events resulted in longer dwell times, giving rise to the difference in 305 

ethanol coordination observed in these regions (Fig. S5A). Preliminary analysis of the 306 

two sites, however, suggests they do not themselves play a significant role in signaling. 307 

The latter is located outside the region involved in ethanol sensing (see Fig. 3C) and the 308 

former, except for residue Glu399, is highly conserved among the four chemoreceptors 309 

(see Fig. S3B). Indeed, we did not observe a significant reduction in response to ethanol 310 

compared to the wild-type control when we tested a mutant expressing mcpB-E399K as 311 

its sole chemoreceptor in the capillary assay (569 ± 29.1 cells versus 586.1 ± 9.0 cells, 312 

respectively). Nevertheless, these observations hint at a signaling mechanism in which 313 

ethanol may penetrate to the core of the cytoplasmic domain where it can affect the 314 

packing and overall stability of the bundle. 315 

To further investigate the above packing hypothesis, we analyzed the strength of 316 

knobs-in-holes interactions in the region surrounding residue 431 over the course of the 317 

simulations. We observed that the A431S mutation leads to increased occupancy of the 318 
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431 knob itself as well as nearby knobs on the C-helix at positions 583 and 585 (Fig. 319 

S5B), indicating stronger hydrophobic interactions between the individual helices. 320 

Therefore, our simulation results suggest that the A431S mutation, which decreases the 321 

McpB ethanol response, not only reduces the direct binding of ethanol but also 322 

strengthens coiled-coil packing in the region. One possibility is that the reduced local 323 

concentration of ethanol and improved packing in the A431S mutant decreases the ability 324 

of ethanol to intercalate with the knobs-into-holes interactions near residue 431 and, thus, 325 

its ability to induce signaling. 326 

 327 

The HemAT sensing domain helices are involved in direct ethanol sensing. 328 

HemAT is a cytoplasmic chemoreceptor, which consists of an N-terminal sensing domain 329 

and a C-terminal signaling domain. To determine whether the HemAT signaling domain 330 

is also involved in ethanol sensing, we conducted the STD-NMR experiments with the 331 

purified signaling domain (HemATS), spanning residues 177 to 432, and the purified 332 

sensing domain (HemATN), spanning residues 1 to 178 of the HemAT, in presence of 3 333 

mM ethanol. The STD spectra with the HemAT signaling domain showed negligible peaks 334 

near the expected chemical shift values (1.05 ppm and 3.51 ppm) while the resulting 1H 335 

and STD spectra with the HemATN showed clear peaks near 1.05 ppm and 3.51 ppm, 336 

which correspond to the -CH3 and the -CH2 moieties of ethanol. The ratio of areas in the 337 

STD spectra compared to 1H spectra was 0.27 for the -CH3 moiety and 0.85 for the -CH2 338 

moiety, suggesting that -CH2 moiety of ethanol is closer to the protein than its -CH3 339 

moiety. (Fig. 5A). These results collectively indicate that ethanol binds the sensing 340 

domain of the HemAT. 341 
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The sensing domain of the HemAT dimer is composed of a four-helical bundle as its 342 

core and a heme group in each subunit (Fig. 5B), which is known to bind molecular 343 

oxygen (34). UV-spectral analyses have shown that the oxygen molecule binds the heme 344 

group by forming hydrogen bonds with 6-coordinate ferrous heme (35, 36). To determine 345 

whether the heme group also interacts with ethanol, we conducted UV spectroscopy 346 

experiments with the purified HemAT sensing domain (HemATN) and ethanol. As a 347 

control, we first measured UV absorption of both oxygenated and deoxygenated forms of 348 

the protein to verify that the heme group on the purified protein is functional. Consistent 349 

with the previous reports (28, 35, 37), the oxygenated form of the HemATN exhibited three 350 

major canonical peaks at 412 nm (Soret), 544 nm (b-band), and 578 nm (a-band), and 351 

the dithionite-reduced deoxygenated form of the protein exhibited two major peaks at 434 352 

nm and 556 nm (Fig. 5C). Next, we measured UV absorption of the deoxygenated 353 

HemAT sensing domain in presence of varying concentrations of ethanol. The resulting 354 

spectra showed two major peaks at 434 nm and 556 nm similar to what we observed with 355 

the deoxygenated form of the protein in absence of any ligand (Fig. 5C). These results 356 

imply that the heme group does not interact with ethanol. Rather, they suggest that 357 

ethanol binds the alpha helices of the HemAT sensing domain, perhaps using a 358 

mechanism similar to the one proposed for the McpB cytoplasmic signaling domain. 359 

  360 
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Discussion 361 

We found that B. subtilis performs chemotaxis to multiple short-chain alcohols. These 362 

alcohols are directly sensed by two chemoreceptors, McpB and HemAT. McpB is a 363 

transmembrane chemoreceptor, with an extracellular sensing domain and a cytoplasmic 364 

signaling domain, linked by a cytoplasmic HAMP domain. It is known to sense the amino-365 

acid asparagine and alkaline environments as attractants using the extracellular sensing 366 

domain (12, 25). HemAT, on the other hand, is a soluble chemoreceptor, which consists 367 

of a sensing and signaling domain but lacks a HAMP domain. Its myoglobin-like sensing 368 

domain contains heme and is known to bind molecular oxygen (28, 36). Using chimeric 369 

receptors and STD-NMR, we found that short-chain alcohols are directly sensed by the 370 

cytoplasmic signaling domain of McpB and the sensing domain of HemAT. In the case of 371 

HemAT, the alcohols do not appear to bind heme; rather, they likely bind between the 372 

helices encapsulating the heme. 373 

Among the alcohols tested, ethanol is the most likely physiological attractant, because 374 

it is produced by many microorganisms and is prevalent in nature (11). As a consequence, 375 

we focused on this chemical. Curiously, ethanol is not consumed by B. subtilis, 376 

suggesting that it is used for purposes other than nutrition. One possibility is that B. subtilis 377 

uses ethanol to locate prey, which could potentially explain why B. subtilis is attracted to 378 

a chemical that nominally inhibits its growth. The most likely prey are Crabtree-positive 379 

yeast such as Saccharomyces cerevisiae, which produce ethanol at high concentrations 380 

even during aerobic growth (38). Indeed, B. subtilis can lyse S. cerevisiae cells through 381 

the production of cell-wall degrading compounds (Fig. S6) (39-41). 382 
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Aside from ethanol, methanol may also be a physiological attractant. It is a byproduct 383 

of pectin degradation and, as a consequence, can contaminate alcoholic beverages (42). 384 

However, B. subtilis does not consume methanol because it lacks methanol 385 

dehydrogenase activity (43). Similar to ethanol, B. subtilis may use methanol to locate 386 

prey, this time pectin-degrading microorganisms.  387 

These speculations are in line with the results from an earlier study where no 388 

correlation was observed between the metabolic and chemotactic preferences of B. 389 

subtilis for amino acids. This study proposed that B. subtilis uses amino-acid gradients as 390 

cues to locate sources of nutrients, for example, during plant root colonization (44, 45). 391 

The only other bacterium known to exhibit taxis toward alcohols is Pseudomonas putida 392 

(19). However, this bacterium consumes alcohols. In addition, it does not directly sense 393 

these alcohols but rather the byproducts of their degradation, namely carboxylic acid. 394 

Finally, alcohol taxis is also observed in E. coli and Ralstonia pseudosolanacearum. In 395 

these bacteria, however, alcohols are sensed as repellents (46, 47). 396 

A key difference between taxis to alcohols and conventional attractants, such as 397 

amino acids, is their respective sensitivities. Amino acids are sensed at micromolar 398 

concentrations whereas alcohols are sensed at millimolar concentrations. Though it 399 

should be noted while low millimolar concentrations (e.g. 3 mM) of ethanol can bind McpB 400 

and HemAT in vitro, much higher ethanol levels are required for optimal chemotaxis in 401 

the capillary assay experiments. The disparity may be due to the architecture of the 402 

capillary assay. Briefly, chemotaxis to ethanol occurs when ethanol concentrations in the 403 

capillaries are as low as 50 mM (190.1 ± 44.5 cells versus 42.3 ± 6.2 cells for buffer) and 404 

the response to ethanol peaks when capillaries contain about 2 M ethanol. These 405 
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concentrations, however, do not reflect the ethanol concentrations that cells experience 406 

near mouth of the capillary in the pond. Three-dimensional simulations based on finite-407 

element analysis of ethanol diffusion from a capillary into a pond indicate that ethanol 408 

concentration falls dramatically, 10-50 times as compared with initial ethanol 409 

concentration in the capillary near mouth of the capillary (Fig. S7). These simulation 410 

results suggest that cells are able to respond to ethanol levels ranging from 1 – 200 mM. 411 

That said, the weak affinity for alcohols is not surprising as most ethanol receptors in 412 

mammals also exhibit weak affinity for ethanol (48). 413 

The question then is whether ethanol is actually an attractant for B. subtilis given that 414 

relatively high concentrations are necessary to elicit taxis. Over-ripe fruits provide one 415 

potential source for high ethanol concentrations, where concentrations can exceed one 416 

molar (49). In addition, flooded plant roots can also provide another source at millimolar 417 

concentrations (50-52). In this case, B. subtilis perhaps uses ethanol to locate roots for 418 

colonization to initiate symbiosis (44). This suggests that ethanol taxis can indeed occur 419 

in the environment. Whether the other alcohols reach such concentrations in the 420 

environment is not known. 421 

Perhaps the most interesting aspect of ethanol taxis involves the sensing mechanism. 422 

Typically, small-molecule attractants bind the extracellular sensing domain. The main 423 

exceptions are PTS sugars, which are sensed indirectly through the PTS system (5, 6). 424 

Ethanol is sensed intracellularly. In the case of HemAT, this distinction is minor, as 425 

ethanol binds the sensing domain, albeit one normally associated with oxygen sensing. 426 

In the case of McpB, the cytoplasmic signaling domain is involved in sensing ethanol 427 

through direct binding. This appears to be first documented case of the cytoplasmic 428 
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signaling domain being directly involved in sensing. While we were able to establish that 429 

ethanol binds the McpB cytoplasmic signaling domain using genetics and STD-NMR, the 430 

detailed binding and induced signaling mechanisms are still somewhat opaque. In 431 

particular, it is not clear whether ethanol exerts its effect precisely at residue 431 or 432 

possibly at one or multiple other positions along the lengthy cytoplasmic domain. 433 

Molecular dynamics simulations suggest that ethanol can bind nonspecifically at several 434 

places on the McpB cytoplasmic surface as well as penetrate to the core of the four-helix 435 

bundle, at least within the methylation helix region. Although we did not observe ethanol 436 

enter the bundle core near residue 431 in our simulations, it may do so on longer 437 

timescales or in particular signaling states. In addition, the precise molecular details of 438 

how ethanol binding induces signaling in wild-type McpB remain to be worked out. The 439 

enhanced packing interactions in the A431S McpB, which does not respond to ethanol, 440 

suggest that it may disrupt or loosen packing, leading to changes in the overall stability 441 

of McpB that can be transmitted to the kinase. This idea is in line with numerous previous 442 

studies of the E. coli Tsr and Tar chemoreceptors, for example, that suggest that changes 443 

in the periplasmic ligand binding and adaptation state affect packing throughout the 444 

cytoplasmic bundle (5, 6). 445 

Many aspects of ethanol sensing in B. subtilis are analogous to mechanisms observed 446 

in higher eukaryotes. Alcohols generally bind proteins with low affinities, and relatively 447 

high concentrations of alcohols are required to induce behavioral effects. For example, 448 

ligand-gated ion channels receptors such as the N-methyl-D-aspartate-type glutamate 449 

receptors, γ-aminobutyric acid type A (GABAA) receptors, and glycine receptors all exhibit 450 

weak affinity for ethanol (> 10 mM) (48). Although the binding sites on these proteins are 451 
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not well characterized, ethanol is thought to bind helical regions in most cases. In the 452 

case of GABAA receptor, for example, ethanol binds within a small cavity between two 453 

transmembrane helices (TM2 and TM3) (53). Molecular dynamics studies show that 454 

ethanol modulates the receptor states by stabilizing helical crossing angles with a 455 

‘wringing motion’ (54, 55). Ethanol inhibition of the NMDA receptor is regulated by 456 

counteracting forces on M3 helices of the receptors with additional interactions with side 457 

chains (56). Potassium channels are also affected by >100 mM ethanol concentrations. 458 

Kinetic and structural studies of Shaw2 K+ channels have shown that the alpha helical 459 

propensity of the loop in the pore forming subunit is important for ethanol binding (57) . 460 

Similarly, in the case of odorant binding protein LUSH from Drosophila melanogaster, a 461 

small cavity between the alpha helices accommodate a single ethanol molecule, where 462 

its hydroxyl group form hydrogen bonds with neighboring Thr57 and Ser52 residues (58). 463 

The binding motif found in LUSH is shared by the GABAA-R receptor, glycine receptor 464 

and Drosophila Shaw2 K+ channel (58), suggesting a common alcohol-binding 465 

mechanism in eukaryotes. Experimental and computational studies of the ion channel 466 

GLIC in the bacterium Gloeobacter violaceus also point to a mechanism of alcohol binding 467 

within cavities between transmembrane helices (59). Analysis of binding sites from 468 

structural studies suggests that ethanol preferentially binds helices with amphipathic 469 

surfaces (48, 60, 61). The sensing mechanisms for these proteins typically involve 470 

replacement of water molecules with ethanol within small hydrophobic cavities between 471 

two or more helices. Indeed, an analogous mechanism appears to be employed by the 472 

B. subtilis chemoreceptors. Given the reported similarities in the mode of action of ethanol 473 
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in both prokaryotic and eukaryotic proteins, the model hypothesized in this investigation 474 

could provide evolutionary clues on the mechanisms of alcohol sensing proteins.   475 

 476 

  477 
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Materials and Methods 478 

Chemicals and growth media. The following media were used for cell growth: Luria-479 

Bertani broth (LB: 1% tryptone, 0.5% yeast extract, and 0.5% NaCl); tryptone broth (TB: 480 

1% tryptone and 0.5% NaCl); tryptose blood agar base (TBAB: 1% tryptone, 0.3% beef 481 

extract, 0.5% NaCl, and 1.5% agar); yeast-peptone-dextrose broth (YPD: 1% yeast 482 

extract, 2% peptone, and 2% dextrose); and capillary assay minimal medium (CAMM: 50 483 

mM potassium phosphate buffer (pH 7.0), 1.2 mM MgCl2, 0.14 mM CaCl2, 1 mM 484 

(NH4)2SO4, 0.01 mM MnCl2, and 42 µM ferric citrate). Chemotaxis buffer consists of 10 485 

mM potassium phosphate buffer (pH 7.0), 0.14 mM CaCl2, 0.3 mM (NH4)2SO4, 0.1 mM 486 

EDTA, 5 mM sodium lactate, and 0.05% (v/v) glycerol. All alcohols used in this study were 487 

purchased from Fisher Scientific, Inc. 488 

 489 

Strains and plasmids. All strains and plasmids used in this work are listed in Tables 490 

1 and 2, respectively. Chemotaxis experiments were performed with derivatives of B. 491 

subtilis OI1085. Growth experiments were performed using B. subtilis 168, which is the 492 

parental strain. The undomesticated B. subtilis strain NCBI3610 and the Saccharomyces 493 

cerevisiae CEN.PK113-7D yeast strain were used in the antimicrobial diffusion assays. 494 

All cloning was performed using NEB® 5-alpha Competent E. coli (New England Biolabs). 495 

All oligonucleotides used in this study are provided in (Table S2). 496 

Gene deletions were constructed using plasmids derived from pJSpe, which provides 497 

a CRISPR/Cas9-based, marker-free, and scarless genome editing system for B. subtilis 498 

(62). To construct a deletion vector, a 20-bp crRNA target sequence complementary to 499 

the targeted gene sequence was designed using the CHOPCHOP online tool (63). The 500 
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5’-end phosphorylated complementary oligonucleotides were then annealed and 501 

subcloned into BsaI restriction sites on pJSpe plasmid using Golden Gate assembly (64). 502 

The resultant plasmid was then linearized at SpeI restriction site and joined to two PCR 503 

fragments (~700 to 800 bp) flanking the targeted gene using Gibson assembly (65). Prior 504 

to transformation into B. subtilis strain, each of the pJSpe-derived deletion plasmids was 505 

linearized at XhoI restriction site and subsequently self-ligated to create a long DNA 506 

concatemer. The concatemer was then transformed into B. subtilis strain using the two-507 

step Spizizen method (66). Transformation product of B. subtilis strain and deletion 508 

plasmid concatemer was incubated on a LB agar (LB and 1.5% agar) plate supplemented 509 

with 5 µg/mL kanamycin and 0.2% mannose for about 24 h at 30 °C. Next, single colonies 510 

were isolated and twice streaked on fresh drug plates (described above) to assure a 511 

clonal genotype. Positive colonies were verified using colony PCR and again streaked on 512 

a plain LB agar plate and incubated for additional 24 h at 50 °C to cure the deletion 513 

plasmid. Colonies with cured plasmids were unable to grow on a LB agar plate 514 

supplemented with 5 µg/mL kanamycin. 515 

To construct chemoreceptor chimeras, two opposing primers were designed to amplify 516 

DNA regions outward from the fusion points of the chimeric gene using PCR with 517 

pAIN750mcpB integration plasmid as the DNA template. Then, a second pair of primers 518 

with short overlapping regions were used to PCR amplify the desired fragment of mcpA 519 

gene from pAIN750mcpA. Following purification of PCR DNA products by gel extraction, 520 

the DNA fragments were assembled using Gibson assembly and transformed into E. coli. 521 

Following isolation from E. coli and sequence verification, the concatemer of the resultant 522 

integration plasmid was prepared as described above and transformed into B. subtilis 523 
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OI3545, which lacks all ten chemoreceptors. Transformation product was then incubated 524 

on a LB agar plate supplemented with 100 µg/mL spectinomycin for 15 h at 37 °C. Single 525 

colonies were isolated and streaked on a TBAB agar (TBAB and 1.5% agar) plate 526 

supplemented with 1% soluble starch. A single positive colony with chemoreceptor 527 

expression cassette recombined to amyE locus was verified using Gram Iodine solution 528 

(0.33% iodine, 0.66% potassium iodide, and 1% sodium bicarbonate). Correct colonies 529 

with disrupted amyE gene were unable to form clear zones on TBAB-starch plate. 530 

Point mutations on mcpB chemoreceptor gene were introduced using the inverse PCR 531 

method. Briefly, two opposing primers containing the desired mutations were used to PCR 532 

amplify integration pAIN750mcpB plasmid. Following purification of PCR DNA by gel 533 

extraction, 5’-ends of the DNA fragment was phosphorylated with T4 polynucleotide 534 

kinase and then blunt-end ligated using T4 DNA ligase. Ligation product was heat-535 

inactivated and transformed into E. coli. Following isolation from E. coli and sequence 536 

verification, concatemer of the resultant integration plasmid was prepared as described 537 

above and transformed into B. subtilis OI3545 to integrate the mutant chemoreceptor 538 

expression cassette into the amyE locus. 539 

Protein expression plasmids were constructed with the pET28(+) expression vector 540 

system using Gibson assembly. Briefly, DNA for the HemAT sensing domain (residues 1 541 

to 178) was cloned in frame with a C-terminal His6-tag between the NcoI and HindIII 542 

restriction sites on pET28a(+). Similarly, the DNAs for the wild-type McpB, wild-type McpA 543 

and McpB[A431S] cytoplasmic regions including the HAMP domain (residues 305 to 662 544 

for McpB and residues 304 to 661 for McpA) were cloned in frame with a C-terminal His6 545 

tag at NcoI restriction site on pET28a(+). The DNA for HemAT signaling domain (residues 546 
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177 to 432) was cloned in frame with a N-terminal His6-tag at the NheI restriction site on 547 

pET28a(+). After isolation and sequence verification, all plasmids were transformed into 548 

E. coli BL21 (DE3) strain for protein expression and purification. 549 

 550 

Protein expression and purification. CheA, CheW, and CheD proteins used in the 551 

kinase assay were expressed from glutathione S-transferase (GST) fusion plasmids and 552 

purified from E. coli BL21(DE3) strain as described previously (16, 24). GSTrap columns 553 

(5 mL; GE Healthcare) were used with an Akta Prime FPLC system (GE Healthcare) for 554 

purification. To purify the GST fusion proteins, cells were grown in 2 liters of LB with 100 555 

μg/mL ampicillin at 37 °C and shaking at 250 rpm until OD600 = 0.8. Expression was then 556 

induced by the addition of 1 mM IPTG (isopropyl-β-d-thiogalactopyranoside), and the 557 

culture was grown for 12 h at 25 °C with 250 rpm shaking. For CheA, the culture was 558 

induced at 37 °C for 4 h. Cells were then centrifugated at 8000 x g for 8 min and 559 

resuspended in Tris-buffered saline (TBS: 50 mM Tris, 150 mM NaCl, pH 7.5) 560 

supplemented with 1% Triton X100 and 1 mM of dithiothreitol (DTT) for every 1 g of cell 561 

pellet. The cells were then disrupted by sonication (5 x 10 s pulse). The supernatants 562 

were clarified by two rounds of centrifugations (9,000 x g, 15 min; 40,000 x g, 40 min), 563 

and loaded onto 5 mL GSTrap columns pre-washed with 10 column-volumes of TBS. 564 

Protein-bound columns were then washed with at least 15 volumes of TBS, and GST 565 

tagged proteins were eluted using 10 mL glutathione elution buffer (GEB: 50 mM Tris, 5 566 

mM glutathione, pH 8). To remove the GST tag, the purified proteins were cleaved by 567 

PreScission protease, as specified by the supplier (Amersham Biosciences), and applied 568 

to another 5 mL GSTrap column. The flow-through was collected and concentrated to 569 
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approximately 5 mL using a cellulose ultrafiltration membrane (Millipore) in an Amicon 570 

ultrafiltration cell. Last, the purified proteins were dialysed in TKMD buffer (50 mM Tris, 571 

50 mM KCl, 5 mM MgCl2, 0.1 mM DTT, pH 8) and aliquots were stored at −80°C. 572 

E. coli BL21 (DE3) cells harboring the His6-tagged expression plasmids were grown 573 

in 2 L of LB medium supplemented with 30 µg/mL kanamycin at 37 °C and shaking at 250 574 

rpm until A600 = 0.7. Expression was then induced by the addition of 1 mM IPTG, and the 575 

cultures were grown for 12 h at 25 °C. Cells were harvested by centrifugation at 7,000 x 576 

g at 4°C for 10 min. Cells harboring HemATN were resuspended in lysis buffer (50 mM 577 

NaH2PO4, 300 mM NaCl, 10 mM Imidazole, pH 8) and sonicated (5 x 10 s pulses). Cell 578 

debris was removed by centrifugation at 12,000 x g for 1 h. The dark-red supernatant 579 

containing HemATN was loaded on a 5 mL GE HisTrap column prewashed with NiSO4 580 

and binding buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8). The protein-581 

bound column was then washed with binding buffer and proteins were eluted with elution 582 

buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM Imidazole, pH 8). The collected HemATN 583 

protein samples were concentrated using an Amicon ultrafiltration cell (Millipore) and 584 

dialyzed into dialysis buffer (50 mM Tris, 300 mM NaCl, pH 8) at 4 °C and aliquots were 585 

stored at -80°C. 586 

McpBC, McpBC [A431S], McpAC, and HemATS proteins were purified under denaturing 587 

conditions. Briefly, cells were induced and grown as described above. Cells were then 588 

resuspended in buffer B (8 M urea, 0.1 M NaH2PO4, 0.01 M Tris, pH 8) with 1% Triton 589 

X100 and 1 mM of DTT for every 1 g of cell pellet and incubated at room temperature for 590 

1 h. Cell suspension was clarified by centrifugation at 40,000 x g for 1 h. The cell lysates 591 

were loaded onto 5 mL GE Hi-Trap Chelating column charged with 0.1 M NiSO4 and 592 
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washed with buffer B and buffer C (buffer B at pH 6.3). The fusion proteins were eluted 593 

from the column with 25 mL elution buffer E (buffer B at pH 4.5). Proteins were refolded 594 

by dialyzing in PBS (10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 595 

7.4) at 4 °C, and aliquots were stored at -80 °C. Purified proteins proper folding was 596 

verified with circular dichroism spectroscopy. Concentration of all purified proteins were 597 

quantified by Pierce BCA protein assay kit. SDS-PAGE images of the purified 598 

recombinant chemoreceptor proteins are shown in Data set S1. 599 

 600 

Capillary assay for chemotaxis. The capillary assay was performed as described 601 

previously (67). Briefly, cells were grown for 16 h at 30 °C on TBAB plates. The cells were 602 

then scraped from the plates and resuspended to OD600 = 0.03 in 5-mL CAMM 603 

supplemented with 50 μg/mL histidine, 50 μg/mL methionine, 50 μg/mL tryptophan, and 604 

20 mM sorbitol, and 2% TB. The cultures were grown to OD600 = 0.4 – 0.45 at 37 °C with 605 

shaking at 250 rpm. At this point, 50 μL of GL solution (5% (v/v) glycerol and 0.5 M sodium 606 

lactate) was added, and cells were incubated for another 15 min (at 37 °C and 250 rpm 607 

shaking). The cells were then washed twice with chemotaxis buffer and incubated for 608 

additional 25 min (at 37 °C and 250 rpm shaking) to assure that the cells were motile. 609 

Cells were then diluted to OD600 = 0.001 in chemotaxis buffer and aliquoted into 0.3-mL 610 

ponds on a slide warmer at 37 °C and closed-end capillary tubes filled with alcohol 611 

solutions or asparagine solution (3.16 μM) prepared in the same chemotaxis buffer were 612 

inserted. After 30 min, cells in the capillaries were harvested and transferred to 3 mL of 613 

top agar (1% tryptone, 0.8% NaCl, 0.8% agar, and 0.5 mM EDTA) and plated onto TB 614 

agar (TB and 1.5% agar) plates. These plates were incubated for 16 h at 37 °C and 615 
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colonies were counted. Experiments were performed in triplicate each day and repeated 616 

on three different days. 617 

 618 

Cell growth. Cells density was measured as optical absorbance at 600 nm. Briefly, 619 

B. subtilis 168 was first grown for 16 h at 30°C on a TBAB plate. For growth experiments 620 

in minimal medium, the cells were first scraped from the TBAB plate and then 621 

resuspended to OD600 = 0.03 in 50 mL CAMM supplemented with 50 μg/mL tryptophan 622 

and 5 g/L glucose; and grown at 37 °C with shaking at 250 rpm. At the OD600 = 0.8, the 623 

cells were diluted 1:20 (v/v) into 50 mL CAMM containing 50 μg/mL tryptophan, 624 

supplemented with 0.01 M ethanol, 0.1 M ethanol, or 5 g/L glucose (positive control), 625 

respectively, and grown for 24 h at 37 °C with shaking at 250 rpm. For growth experiments 626 

in rich medium, cell cultures starting at OD600=0.03 were grown to OD600 = 0.4 at 37°C 627 

with shaking at 250 rpm in 50 mL LB media. At this point, cell cultures were supplemented 628 

with 0.01 M, 0.1 M, or 1.0 M ethanol, respectively, and grown for another 5 h at 37°C with 629 

shaking at 250 rpm. All growth experiments were performed in triplicate.  630 

 631 

Ethanol utilization experiments. Ethanol concentrations were measured using a 632 

Shimadzu high-performance liquid chromatography system equipped with a RID-10A 633 

refractive index detector, an Aminex HPX-87H carbohydrate analysis column (Bio-Rad 634 

Laboratories), and a cation H microguard cartridge (Bio-Rad Laboratories). The column 635 

and guard cartridge were kept at 65 °C, and 0.5 mM H2SO4 was used a mobile phase at 636 

a constant flow rate of 0.6 mL/min. Prior to measurements, cells in culture samples were 637 

pelleted, and the resulting supernatant was passed through a 0.22-µm polyethersulfone 638 



 

 

31 

syringe filter. Peaks were identified and quantified by retention time comparison to the 639 

standards. 640 

 641 

Alcohol dehydrogenase activity measurement. B. subtilis OI1085 was first grown 642 

for 16 h at 30 °C on a TBAB plate. For aerobic growth, the cells were then scraped from 643 

the TBAB plate and resuspended to OD600 = 0.03 in 5 mL CAMM supplemented with 50 644 

µg/mL histidine, methionine, tryptophan, 20 mM sorbitol, and 2% TB, and grown at 37 °C 645 

with vigorous shaking at 250 rpm. For anaerobic growth, however, cells were cultured 646 

starting at OD600 = 0.03 in a sealed bottle filled to the top without agitation in CAMM 647 

supplemented with 1% glucose and mixture of all 20 amino acids at 50 µg/mL (21). For 648 

E. coli cultures, the cells (MG1655) were grown in M9 media supplemented with 0.4% 649 

glucose at 37°C in sealed bottles filled to the top without agitation for anaerobic growth 650 

and in flasks with shaking at 250 rpm for aerobic growth (23). All cell cultures were grown 651 

to stationary phase prior to sonication (7 x 10 s pulses), and soluble cell extracts were 652 

obtained by centrifugation (7000 x g at 4°C for 10 min). Alcohol dehydrogenase enzyme 653 

assays were performed as described previously (68). Briefly, the assay reactions were 654 

prepared with 22 mM sodium pyrophosphate (pH 8.8), 0.3 mM sodium phosphate, 7.5 655 

mM β-nicotinamide adenine dinucleotide, 0.003% (w/v) bovine serum albumin, 1.6% (v/v) 656 

of desired cell lysate, and 3.2% (v/v) ethanol in 200 µL reaction volume. Then, the 657 

reduction of NAD+ to NADH was recorded at 340 nm using a Shimadzu UV-1800 658 

spectrophotometer. One unit of alcohol dehydrogenase activity is defined as the amount 659 

of enzyme that converts 1 µmole of ethanol to acetaldehyde per minute at pH 8.8 at 25 660 

°C. 661 
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 662 

Antimicrobial diffusion assay. Antifungal activity of the B. subtilis strains were 663 

assayed using the disc diffusion method as described previously (69). Briefly, the S. 664 

cerevisiae CEN.PK113-7D was grown in YPD rich medium for 24 h at 30 °C with shaking 665 

at 200 rpm. 0.1% (v/v) of yeast culture was mixed with YPD top agar (YPD with 0.8% 666 

agar) and spread on top of a YPD plate (YPD with 2% agar). Once top yeast layer was 667 

solidified, 10-mm filter paper (Whatman Filter Paper, Grade 1) discs loaded with 668 

supernatants from B. subtilis strains grown overnight in LB medium at 37°C, were placed 669 

on top of the yeast layer. As negative controls, separate discs were loaded with LB and 670 

water. The plate was incubated at 30°C for another 24 h, and then imaged. A zone of 671 

inhibition around the discs indicated antifungal activity. 672 

 673 

Preparation of bacterial membranes. Cells were grown for 16 h at 30 °C on TBAB 674 

plates. The cells were then scraped from the plates and resuspended to OD600 = 0.03 in 675 

50-mL CAMM supplemented with 50 μg/mL histidine, 50 μg/mL methionine, 50 μg/mL 676 

tryptophan, 20 mM sorbitol, and 2% TB. The cells were grown at 37 °C with aeration until 677 

they reach mid-exponential phase. The cells were then diluted 1:10 (v/v) into 50 mL 678 

CAMM media and grown till mid-exponential phase. The cells were again diluted to an 679 

OD600 of 0.01 in 50 mL media and grown till mid-exponential phase. Finally, the cultures 680 

were diluted 1:10 (v/v) into multiple flasks containing 50 mL media and grown with shaking 681 

at 37 °C until an OD600 of 0.6. The cells were then harvested by centrifugation at 9900 x 682 

g for 15 min and washed 3 times with 1 M KCl to remove extracellular proteases. Cells 683 

were resuspended in sonication buffer+ (10 mM potassium phosphate (pH 7), 10 mM 684 
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MgCl2, 1 mM EDTA, 0.3 mM DTT, 20 mM KCl, 1 mM glutamate, 2 mM 685 

phenylmethanesulphonyl fluoride, and 20% glycerol). EDTA and 686 

phenylmethanesulphonyl fluoride were added as protease inhibitors. Cells were 687 

sonicated, and the cell debris was removed by centrifugation at 17,600 x g at 4 °C for 15 688 

min. Bacterial membranes were removed by centrifugation at 120,000 x g for 2 h at 4 °C 689 

in a Beckman 70 Ti rotor. Pelleted membranes were resuspended in MT buffer (10 mM 690 

potassium phosphate (pH 7), 1 mM MgCl2, 0.1 mM EDTA, and 1 mM 2-mercaptoethanol), 691 

and homogenized using a glass/Teflon homogenizer followed by another centrifugation 692 

at 120,000 x g for 2 h at 4 °C. This step was repeated once more. Finally, the membranes 693 

were homogenized in MT buffer at a concentration of 32 mg/mL and stored in small 694 

aliquots at -80 °C. 695 

 696 

In vitro assay for receptor-coupled kinase activity. Reactions consisted of purified 697 

B. subtilis membranes expressing McpB or HemAT as the sole chemoreceptor and 698 

purified CheW, CheA, and CheD prepared in buffer (50 mM Tris, 50 mM KCl, 5 mM MgCl2, 699 

pH 7.5) at the following concentrations: 6 µM chemoreceptor, 2 µM CheW, 2 µM CheA 700 

kinase, and 2 µM CheD. Ethanol was then added to the mixture at different final 701 

concentrations in 20 µL reaction volume. As a negative control, only buffer was added. 702 

Reactions were then pre-incubated at 23 °C for 1 h to permit the formation of the 703 

chemoreceptor-kinase complex. CheA autophosphorylation was initiated by the addition 704 

of [g-32P] ATP (4000-8000 cpm/pmol) to a final concentration of 0.1 mM. 5 µL aliquots 705 

were quenched at 15 s by mixing the reactions with 15 µL of 2X Laemmli sample buffer 706 

containing 25 mM EDTA at room temperature, essentially fixing the level of phosphor-707 
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CheA. Initial phosphor-CheA formation rates were analyzed using 12% SDS-PAGE. Gels 708 

were dried immediately after electrophoresis and phosphor-CheA was quantified by 709 

phosphor-imaging (Molecular Dynamics) and ImageJ (70). 710 

 711 

Circular dichroism (CD) spectroscopy. Far UV CD-spectra was measured on a 712 

JASCO J-720 spectropolarimeter (Japan Spectroscopic Co., Inc., Tokyo, Japan) with a 713 

cuvette of path length 0.1 cm. Prior to measurements, protein samples were dialyzed into 714 

10 mM sodium phosphate buffer (pH 8) and diluted to 2.5 µM. Spectral measurements 715 

were carried out in triplicate using a scanning rate of 50 nm/min, 0.1 nm step size with 5 716 

accumulations per sample. A buffer only control sample was used for baseline correction 717 

and curves were smoothed according to Savitzky-Golay algorithm (71). Structural 718 

analysis was done using BeStSel (72). 719 

 720 

Ultraviolet-visible (UV) spectral measurements. All UV-spectral measurements 721 

were performed on a Shimadzu UV-1800 spectrophotometer. The UV-spectra of the 722 

oxygenated sensing domain of HemAT (HemATN) protein was measured in aerobic 723 

conditions. To measure the UV-spectra of HemATN in presence of ethanol, protein 724 

samples were first deoxygenated by adding a few grains of sodium dithionite in a glove 725 

box. Sodium dithionite-reduced protein samples were then titrated with different doses of 726 

ethanol in sealed quartz cuvettes, and the UV-spectra (200 nm to 600 nm) of these 727 

samples were immediately recorded in the spectrophotometer. 728 

 729 
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Saturation-transfer difference nuclear magnetic resonance spectroscopy (STD-730 

NMR). All NMR spectroscopy measurements were performed on a Varian VNMRS 731 

instrument at 750 MHz with 5 mm Varian HCN probe at 298 K without sample spinning. 732 

Prior to measurements, protein samples were buffer exchanged into PBS (50 mM 733 

KH2PO4, 20 mM NaCl, pH 7.4) in D2O using Micro Bio-Spin® Columns with Bio-Gel® P-734 

6 (Bio-Rad Laboratories, Hercules, CA, USA). To avoid aggregation, HemATN protein 735 

was buffer exchanged into modified PBS (50 mM KH2PO4, 300 mM NaCl, pH 8.0) 736 

containing 10% D2O. 50 µM Protein samples were then mixed with the alcohol (final 737 

concentration of 3 mM) in a 500 µL solution. 1H spectra were obtained from 32 scans with 738 

a 90-degree pulse and a 2-s relaxation delay. In STD-NMR experiments, the protein 739 

samples were selectively saturated at 2.15 ppm with a train of Gaussian pulses of 50 ms 740 

duration with 0.1 ms delay and 5 s relaxation delay for a total saturation time of 3 s and 741 

2048 scans. Off-resonance irradiation was applied at 30 ppm. Trim pulse of 50 ms was 742 

used to reduce protein background. In the case of HemATN, the protein sample was 743 

saturated at 7.06 ppm and 256 scans were used to obtain spectra. All STD spectra were 744 

obtained by internal subtraction via phase cycling after a block size of 8 to reduce artifacts 745 

resulted from temperature variation and magnet instability. Control experiments were 746 

performed on samples containing only the alcohol without protein. All areas were 747 

calculated using MNova V14.1 (by Mestrelab chemistry solutions) in stacked mode. 748 

 749 

Structural analysis. Domains of the McpB, McpA, TlpA, and TlpB chemoreceptors 750 

from B. subtilis were predicted using phmmer search engine on the HMMER web server 751 

using the UniProt reference proteomes database with default sequence E value 752 
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thresholds (73). The amino acid sequences of the cytoplasmic signaling domains were 753 

then manually obtained based on the previous large-scale alignment results (10). To 754 

identify the three structural subdomains of the cytoplasmic signaling domain, the 755 

sequences were then aligned with the amino acid sequences of the corresponding 756 

domains from the Tar, Tsr, Trg, and Tap chemoreceptors of E. coli using MUSCLE (74) 757 

with the default parameter values. Pairwise amino-acid sequence alignments between 758 

the protein-pairs (McpA-McpB; McpA-HemAT; and HemAT-YfmS) for chimeric receptor 759 

analysis were performed using EMBOSS Water (75). A homology model of the 760 

cytoplasmic signaling domain of the McpB dimer (residues 352 to 662) was constructed 761 

in Modeller (v-9.23) (76) using the Thermatoga maritima Tm113 chemoreceptor (PDB 762 

2CH7) as the template (77). Side chain conformations were refined using SCWRL4 (78) 763 

and the entire structural model was subsequently refined using the YASARA energy 764 

minimization server (79). The resulting Ramachandran plots were verified using Procheck 765 

(80). The crystal structure of HemAT sensing domain from B. subtilis (PDB 1OR6) (34) 766 

was used for visualization. Visualization of all structures was accomplished using the 767 

VMD software package (v-1.9.3) (81). 768 

 769 

Receptor-ligand in silico docking experiment. The putative binding sites for 770 

ethanol were determined using Autodock (v-4.0) (82). Briefly, hydrogen atoms were first 771 

added to the McpB cytoplasmic signaling domain dimer model, and the number of 772 

torsional degrees of freedom for ethanol were set at 1. Autogrid was then used to adjust 773 

the position of grid boxes (60 x 60 x 60 points with 0.375 Å spacing for each box) on the 774 
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ethanol-sensing region (residues 390 to 435). Finally, the Lamarckian genetic algorithm 775 

was employed to obtain the best docking site configurations. 776 

 777 

Molecular dynamics simulations. All-atom molecular dynamics simulations were 778 

conducted using NAMD 2.13 (83) and the CHARMM36 force field (84). Simulations were 779 

carried out in the NPT ensemble (pressure = 1 atm, temperature = 310 K) with values for 780 

general simulation parameters as previously described (85). The McpB cytoplasmic dimer 781 

model was solvated with TIP3P water and 150 mM NaCl using VMD (81), and 165 ethanol 782 

molecules (0.316 M) were randomly placed within the simulation box using the gmx insert-783 

molecules tool. A copy of the system that included the A431S mutation was created, and 784 

both the wild-type and mutant McpB/ethanol systems were subjected to a conjugant-785 

gradient energy minimization (2,000 steps) followed by a 10 ns equilibration simulation 786 

with protein backbone restraints and 3 x 600 ns unrestrained production simulations.  787 

 788 

Molecular dynamics simulation analysis. Density maps representing the average 789 

ethanol occupancy were computed using the VolMap plugin in VMD with default settings 790 

and averaging over each production simulation for the wild-type and A431S McpB/ethanol 791 

systems. To highlight unique binding sites between the two maps, a difference map was 792 

computed by subtracting the A431S map from the wild-type using VMD’s volutil plugin 793 

and removing smaller volumes resulting from slight irregularities in overlapping sites using 794 

the ‘hide dust’ feature in UCSF Chimera. All densities are visualized at an isovalue of 0.03 795 

besides the difference map, which used an isovalue of 0.015. Protein-ethanol 796 

coordination was computed by measuring the minimum distance between non-hydrogen 797 
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atoms in each residue and the nearest ethanol molecule; if this distance was less than 4 798 

Å, the pair was considered to be in contact. Average coordination values were computed 799 

for each residue in the wild-type and A431S mutant McpB/ethanol systems by averaging 800 

over all three production simulations at 200 picosecond intervals. Percent changes were 801 

obtained by subtracting the values obtained in the latter from the former. Knobs-in-holes 802 

packing within the McpB cytoplasmic signaling domain was analyzed using the program 803 

SOCKET (86) with a packing cutoff of 7.8 Å (87). For each production simulation, knobs-804 

in-holes packing was assessed at 2-ns intervals over the course of the trajectory, not 805 

including the first 100 ns to allow for packing changes resulting from equilibration or the 806 

A431S mutation. The occupancy of a particular knob-in-hole interaction over a given 807 

simulation was taken as the number of intervals in which it was identified by SOCKET 808 

divided by the total number of intervals analyzed in the simulation. The reported knobs-809 

in-holes occupancies were averaged over both McpB monomers and all three production 810 

simulations for each McpB/ethanol system; error bars denote one standard deviation from 811 

the mean. 812 

 813 

Simulation of ethanol diffusion in the capillary assay. Spatiotemporal evolution of 814 

ethanol (C) in the capillary assay was modeled using Fick’s second law equation with 815 

Neumann (no-flux) boundary conditions shown in the equation below: 816 

𝑑𝐶
𝑑𝑡 = 𝐷∇𝐶 817 

Initial ethanol concentration (C0) was set to 50 mM in the capillary and to zero in the pond. 818 

Ethanol diffusion coefficient (D) was assumed to be 1.23 x 10-3 mm2/s (88). The above 819 

partial differential equation was solved using the finite element method with the help of 820 
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the FEniCS (v-2019.1.0), an open-source computing platform (89). Briefly, the 821 

computation domain consists of capillary and proximal region near the mouth of capillary 822 

in the pond. The capillary was modeled as a 10-mm long cylinder with a diameter of 0.2 823 

mm attached to an 8-mm long cylinder with diameter of 4 mm, respectively. Gmsh (v-824 

4.5.2) (90) was used to generate the three-dimensional finite element mesh and the XML 825 

file of the resulting mesh was produced using the meshio-convert tool available from 826 

FEniCS. The implicit Euler method was employed for time integration with step size of Dt 827 

= 1 s. A custom Python script was generated for solving the finite-element problem. 828 

 829 

Data availability 830 

Raw data for all experiments are provided as Data set S1. The Python script for diffusion 831 

simulation is provided at https://github.com/paymantohidifar/alcoholtaxis. 832 
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TABLE 1. Strains used in this study. 1085 

  1086 

Strain Relevant genotype or description Reference 
5-alpha E. coli cloning host New England Biolabs 
BL21(DE3) E. coli protease deficient expression host Novagen 
GBS111 Saccharomyces cerevisiae CEN.PK113-7D  
NCBI3610 Undomesticated wild type B. subtilis isolate  
OI3269 Bacillus subtilis 168, trpC2  
OI1085 trpF7 hisH2 metC133 che+ (91) 
PTS375 ΔcheC ΔcheV This work 
PTS097 ΔcheC (25) 
PTS135 ΔcheV (25) 
PTS185 ΔmcpB (25) 
PTS328 ΔhemAT This work 
PTS238 ΔmcpB ΔhemAT This work 
OI3545 Δ10mcp, ErmR, CmR, KanR ,che+ (28) 
OI3921 OI3545 amyE5720::mcpA, SpcR (92) 
OI3605 OI3545 amyE5720::mcpB, SpcR (5) 
OI3974 OI3545 amyE5720::mcpC, SpcR (5) 
OI4474 OI3545 amyE5720::tlpA, SpcR (25) 
OI4475 OI3545 amyE5720::tlpB, SpcR (25) 
OI4483 OI3545 amyE5720::tlpC, SpcR (25) 
OI4476 OI3545 amyE5720::yfmS, SpcR (25) 
OI4477 OI3545 amyE5720::yvaQ, SpcR (25) 
OI4482 OI3545 amyE5720::hemAT, SpcR (25) 
OI4479 OI3545 amyE5720::yoaH, SpcR (25) 
PTS522 OI3545 amyE5720::mcpB[M1-V287] mcpA[L287-E661] This work 
PTS529 OI3545 amyE5720::mcpB[M1-Q359] mcpA[D359-E661] This work 
GBS103 OI3545 amyE5720::mcpB[M1-A374] mcpA[S374-E661] This work 
GBS104 OI3545 amyE5720::mcpB[M1-N397] mcpA[E397-E661] This work 
GBS142 OI3545 amyE5720:: mcpB[M1-Q423] mcpA[A423-E661] This work 
GBS090 OI3545 amyE5720::mcpB[M1-I433] mcpA[Q433-E661] This work 
GBS091 OI3545 amyE5720::mcpB[M1-I481] mcpA[Q433-E661] This work 
PTS252 OI3545 amyE5720::mcpA[M1-Q358] mcpB[D359-E662] This work 
GBS149 OI3545 amyE5720:: mcpB[A431S] This work 
GBS176 OI3545 amyE5720:: mcpB[T424A] This work 
GBS175 OI3545 amyE5720:: mcpB[D427T] This work 
GBS158 OI3545 amyE5720:: mcpB[E581Q] This work 
GBS170 OI3545 amyE5720:: mcpB[K585E] This work 
GBS192 OI3545 amyE5720:: mcpB[399K] This work 
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TABLE 2. Plasmids used in this study. 1087 

  1088 

Plasmid Description Reference 
pET28a (+) His-tagged cloning vector for protein purification; KanR Novagen 
pJSpe Modified pJOE8999 optimized for Gibson assembly of 

homology templates; AmpR, KanR 
(25) 

pPT037 pJSpe::cheV (for cheV knockout) (25) 
pPT058 pJSpe::mcpB (for mcpB knockout) (25) 
pPT053 pJSpe::hemAT (for hemAT knockout) This work 
pAIN750 B. subtilis empty vector for integration at amyE; AmpR, 

SpcR 
(92) 

pPT200 pAIN750::mcpB[M1-V287] mcpA[L287-E661] This work 
pPT205 pAIN750::mcpB[M1-Q359] mcpA[D359-E661] This work 
pGB42 pAIN750::mcpB[M1-A374] mcpA[S374-E661] This work 
pGB43 pAIN750::mcpB[M1-N397] mcpA[E397-E661] This work 
pGB34 pAIN750::mcpB[M1-I433] mcpA[Q433-E661] This work 
pGB64 pAIN750::mcpB[M1-Q423] mcpA[A423-E661] This work 
pGB35 pAIN750::mcpB[M1-L481] mcpA[R481-E661] This work 
pPT086 pAIN750::mcpA[M1-Q358]-mcpB[D359-E662] This work 
pGB65 pAIN750::mcpB[A431S] This work 
pGB83 pAIN750::mcpB[T424A] This work 
pGB82 pAIN750::mcpB[D427T] This work 
pGB67 pAIN750::mcpB[E581Q] This work 
pGB79 pAIN750::mcpB[K585E] This work 
pGB94 pAIN750::mcpB[E399K] This work 
pPT262 6xHis-C terminal McpB expression plasmid, 

pET28(a)::mcpBC 
This work 

pGB78 6xHis-C terminal McpBC[A431S] expression plasmid, 
pET28(a)::mcpBC[A431S] 

This work 

pGB53 6xHis-C terminal McpA expression plasmid, 
pET28(a)::mcpAC 

This work 

pGEX-6p-2::cheA GST-CheA overexpression plasmid (16) 
pGEX-6p-2::cheW GST-CheW overexpression plasmid (16) 
pGEX-6p-2::cheD GST-CheD overexpression plasmid (16) 
pGB46 6xHis-C terminal HemAT expression plasmid, 

pET28(a)::hemATS 
This work 

pSP03 6xHis-N terminal HemAT expression plasmid, 
pET28(a)::hemATN 

This work 
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Figure Legends 1089 

 1090 

FIG 1. B. subtilis exhibits chemotaxis toward short-chain alcohols. (A) Responses 1091 

of the wild-type strain to 0.5 M short-chain alcohols with increasing chain lengths (C1 to 1092 

C5). (B) Dose-dependent response of the wild-type strain to increasing concentration of 1093 

ethanol. (C) Responses of adaptation-deficient mutants to ethanol and asparagine. (D) 1094 

Responses of mutants expressing single chemoreceptors to ethanol. (E) Responses of 1095 

mutants lacking key chemoreceptors to ethanol. (F) Responses of mutants expressing 1096 

McpB or HemAT as their sole chemoreceptor to short-chain alcohols. In these 1097 

experiments, ethanol and asparagine concentrations were 1.78 M and 3.16 µM, 1098 

respectively, unless otherwise mentioned. Negative control responses of the strains 1099 

expressing single chemoreceptor to buffer were all under 100 colonies per capillary. Error 1100 

bars denote the standard deviations from three biological replicates performed on three 1101 

separate days. 1102 
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 1103 

 1104 

FIG 2. B. subtilis chemotaxis to ethanol is independent of its metabolism. (A) Cell 1105 

growth in minimal medium supplemented with 10 mM ethanol (blue solid circles), 100 mM 1106 

ethanol (blue solid squares), and 5 g/L glucose (red solid triangles) tested as a positive 1107 

control. Dashed lines with the corresponding symbols depict normalized concentrations 1108 

of chemicals measured over the course of 24 h. (B) Cell growth in rich medium containing 1109 

10 mM ethanol (black sold circles), 100 mM ethanol (blue solid squares), and 1 M ethanol 1110 

(red solid triangles). Dashed lines with open symbols depict absolute concentration of 1111 

ethanol measured at three different conditions over the course of 5 h. (C) Levels of 1112 

phosphorylated CheA kinase complexed with CheW, CheD, and McpB or HemAT within 1113 

the isolated membranes, in presence of 1 M ethanol or buffer, as negative control. Error 1114 

bars denote the standard deviations from three biological replicates performed on three 1115 

separate days; *P<0.05 (two-sided t-test, correction for unequal variances was applied). 1116 

 1117 
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FIG 3. McpB cytoplasmic signaling domain is involved in ethanol sensing. (A) 1118 

Domain structure of McpB, McpA, TlpA, and TlpB. All four chemoreceptors consist of an 1119 

extracellular sensing domain with dCACHE_1 structure (orange) followed by 1120 

transmembrane, TM1 and TM2 (gray), HAMP (yellow), and cytoplasmic signaling (green) 1121 

domains. Three subdomains of the cytoplasmic signaling domain classified as 1122 

methylation (adaptation) helices (MH), flexible (coupling) bundle (FB), and conserved 1123 

signaling (protein contact region) (CS) tip are shown. (B) Cartoon structure of a monomer 1124 

of the chemoreceptors. (C) Responses of mutants expressing chimeric receptors 1125 

between McpA (white) and McpB (black) to 1.78 M ethanol, 3.16 µM asparagine, and 1126 

buffer. Error bars denote the standard deviations from three biological replicates 1127 

performed on three separate days. 1128 

 1129 

 1130 
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 1131 

FIG 4. Alcohols are directly sensed by the cytoplasmic signaling domain of McpB 1132 

(A) A putative binding site within the primary ethanol-sensing region spanning residues 1133 

(423 to 433) on the N-helix and the neighboring residues (579 to 589) on the C-helix of 1134 

the McpB cytoplasmic signaling domain. (B) Amino acid sequence alignment of the 1135 
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primary ethanol-sensing region for McpB and the corresponding regions on McpA, TlpA, 1136 

and TlpB. (C) Responses of strains expressing McpB mutants as their sole 1137 

chemoreceptors to 1.78 M ethanol, 3.16 µM asparagine, and buffer. (D) Responses of 1138 

strains expressing wild-type McpB and the McpB-A431S mutant as their sole 1139 

chemoreceptor to 1.78 M short-chain alcohols and buffer. (E) 1H and STD-NMR spectra 1140 

for 50 µM wild-type and mutant (A431S) recombinant McpB cytoplasmic region (McpBC) 1141 

spanning residues (305 to 662). Two peaks at 1.05 ppm and 3.51 ppm (shown inside 1142 

dashed boxes) respectively correspond to -CH3 and -CH2 epitopes of ethanol. (F) Density 1143 

map of the average ethanol occupancy (purple) along the wild-type McpB cytoplasmic 1144 

signaling domain (McpBC) spanning residues 352 to 662, as predicted by MD simulation. 1145 

(G) Enlarged side and top views of the ethanol occupancy surrounding the residue 431 1146 

(yellow) in the wild-type (purple) and the A431S mutant (orange) McpBC. (H) Difference 1147 

map (red density) between the wild-type and the A431S mutant McpBC surrounding the 1148 

residue 431, highlighting the loss of an inter-monomer ethanol binding site in the A431S 1149 

mutant. Changes in protein-ethanol coordination highlight the putative amino-acid 1150 

residues (red bars) involved in ethanol binding. Error bars reported in panels C and D 1151 

denote the standard deviations from three biological replicates performed on three 1152 

separate days. Ethanol occupancy and coordination values are generated from three 1153 

independent MD simulations. 1154 

 1155 
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 1156 

FIG 5. Ethanol directly binds within the helices of the HemAT sensing domain. (A) 1157 

1H and STD-NMR spectra for 50 µM recombinant HemAT C-terminal signaling domain 1158 

(HemATS) spanning residue (177 to 432) and for 50 µM recombinant HemAT N-terminal 1159 

sensing domain (HemATN) spanning residues (1 to 178), in presence of 3 mM ethanol. 1160 

Two peaks at 1.05 ppm and 3.51 ppm (shown inside dashed boxes) respectively 1161 

correspond to -CH3 and -CH2 epitopes of ethanol. (B) Crystal structure of the dimeric 1162 

HemAT sensing domain. (C) UV-spectra of recombinant HemAT N-terminal sensing 1163 

domain (HemATN) in absence and presence of molecular oxygen, 0.1 M ethanol, and 1.0 1164 

M ethanol. 1165 

  1166 
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Supplementary Information 1167 

TABLE S1. Putative ethanol-binding sites within the McpB ethanol-sensing region 1168 

predicted by in silico docking experiments. 1169 

 1170 

TABLE S2. Oligonucleotides used in this study  1171 

 1172 

FIG S1. Ethanol induces receptor-coupled kinase activity. Levels of phosphorylated 1173 

CheA kinase protein complexed with CheW, CheD, and (A) McpB or (B) HemAT 1174 

chemoreceptors within the isolated membranes, or (C) receptorless membrane (negative 1175 

control) were measured in presence of increasing ethanol concentrations. 3.16 µM 1176 

asparagine was used as positive control for membranes containing McpB, and buffer was 1177 

used as negative control in all experiments. 1178 

 1179 

FIG S2. Amino-acid sequences of three structural subdomains within the 1180 

cytoplasmic signaling domains of B. subtilis transmembrane chemoreceptors. 1181 

Amino-acid sequences of three structural subdomains, known as methylation helix (MH), 1182 

flexible bundle (FB), and conserved signaling (CS)), within the cytoplasmic signaling 1183 

domains of four B. subtilis transmembrane chemoreceptors are shown. For comparison, 1184 

aligned amino-acid sequences of the corresponding subdomains from four E. coli 1185 

transmembrane chemoreceptors are also shown. Characteristic seven-residue repeats 1186 

(heptads) along the helices are labeled a to g and the corresponding amino-acid 1187 

sequences are separated by alternating gray and white colors. 1188 

 1189 
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FIG S3. Identification of putative ethanol-binding sites on the cytoplasmic signaling 1190 

domain of McpB dimer. (A) Five different clusters of putative binding sites within the 1191 

ethanol sensing region spanning residues (390 to 435) on the N-helix and neighboring 1192 

residues (577 to 622) on the C-helix of the McpB dimer fragment, predicted by in silico 1193 

docking experiments. Monomers A and B are shown in blue and green, respectively. (B) 1194 

Amino-acid sequence alignment of the ethanol-sensing region spanning residues (392 to 1195 

434) on the N-helix and neighboring residues (578 to 620) on the C-helix of McpB and 1196 

the corresponding regions on McpA, TlpA, and TlpB. Conserved and non-conserved 1197 

putative ethanol-binding residues are highlighted in red and green, respectively. 1198 

 1199 

FIG S4. Control experiments for in-vitro binding measurements. (A) 1H and STD-1200 

NMR spectra for 50 µM recombinant McpA cytoplasmic region (McpAC) spanning 1201 

residues (304 to 661) with 3 mM ethanol (top red); two peaks at 1.05 ppm and 3.51 ppm 1202 

(shown inside dashed boxes) respectively correspond to -CH3 and -CH2 epitopes of 1203 

ethanol. 1H and STD-NMR spectra for 50 µM recombinant McpB cytoplasmic region 1204 

(McpBC) spanning residues (305 to 662) with 3 mM 1-pentanol (bottom black); peaks 1205 

shown inside dashed boxes correspond to -CH epitopes of 1-pentanol as indicated by 1206 

increasing numerical superscripts with 1 corresponding to the first carbon adjacent to 1207 

hydroxyl group. (B) The CD-spectra of recombinant wild-type and mutant (A431S) McpBC 1208 

and recombinant McpAC, reported as mean residual ellipticity (MRE). (C) The CD-spectra 1209 

of recombinant HemAT signaling domain (HemATS) spanning residues (177 to 432). 1210 

 1211 
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FIG S5. Ethanol and knob-residues occupancy along the McpB coiled-coil. (A) 1212 

Density maps of the average ethanol occupancy along the wild-type (purple) and the 1213 

A431S mutant (orange) McpB cytoplasmic signaling domain (McpBC). Differences 1214 

between the wild-type and the A431S mutant (red density) reveal three distinct putative 1215 

ethanol binding sites (S1, S2, and S3). Average changes in protein-ethanol coordination 1216 

highlight the putative amino-acid residues (red bars) involved in ethanol binding in each 1217 

site. (B) Distribution of knob residues (purple, space-filling) on the McpB cytoplasmic 1218 

signaling dimer as identified using SOCKET (hole residues are not shown). The close-up 1219 

depicts the identified knobs nearby the residue Ala431 (yellow). In addition to Ala431, 1220 

residues Ala583 and Lys585 (cyan) are predicted to have higher average knob occupancies 1221 

in McpBC-A431S compared to the wild-type McpBC. Data and error bars associated with 1222 

the knob occupancies in panel b denote the means ± standard deviations from three 1223 

independent simulations. 1224 

 1225 

FIG S6. Antifungal activity of B. subtilis strains. (A) Growth inhibition of S. cerevisiae 1226 

by supernatants from overnight cell cultures of B. subtilis OI1085 laboratory chemotaxis 1227 

strain and undomesticated NCBI 3610 strain is measured using disk diffusion assay. 1228 

Similar experiments were conducted using only water or LB instead of culture 1229 

supernatant, as negative controls. (B) Chemotaxis responses of B. subtilis OI1085 1230 

laboratory chemotaxis strain and undomesticated NCBI 3610 strain to 1.78 M ethanol and 1231 

buffer. Data and error bars shown in panel b denote the means ± standard deviations 1232 

from three biological replicates performed on at three separate days. 1233 

 1234 
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FIG S7. Simulation of ethanol diffusion in the capillary assay. (A) The three-1235 

dimensional finite-element computation domain consists of the ethanol column in the 1236 

capillary and region near the mouth of capillary in the pond. (B) Normalized ethanol 1237 

concentration profile along the centerline of the capillary and the pond at three different 1238 

time points. (C) Normalized ethanol concentration dynamics near mouth of the capillary 1239 

in the pond during a 30-minute long assay. In panels B and C, ethanol concentration is 1240 

normalized to initial ethanol concentration in the capillary. Initial ethanol level in the pond 1241 

was set to zero. 1242 

DATA SET S1. Raw data for all experiments and SDS-PAGE images of purified 1243 

recombinant chemoreceptor proteins reported in the manuscript. 1244 


