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Abstract

We propose and study a strategic model of hiding in a network, where
the network designer chooses the links and his position in the network facing
the seeker who inspects and disrupts the network. We characterize optimal
networks for the hider, as well as equilibrium hiding and seeking strategies
on these networks. We show that optimal networks are either equivalent
to cycles or variants of a core-periphery networks where every node in the
periphery is connected to a single node in the core.
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1 Introduction

In this paper, we consider the following network design problem involving two
players. One player, H, is the “principal” or “leading” member of a covert or
underground network with (n − 1) members. H builds a network (set of links or
arcs) on n nodes. This network is observed by an adversary (henceforth S). In a
second stage, H chooses one node as her own hiding place, while S attacks one node.
These actions are taken simultaneously. H is captured if she is in the neighbourhood
of the node attacked by S, and then pays a penalty to S. Conditional on not being
caught, H’s payoff is increasing in the size of the component containing H if she
is not caught – this is the set of network members with whom she can continue to
communicate. The gain to H is also the loss of S and so the second-stage game is
zero-sum.

This model has many potential applications, the leading one being the design of
a covert organisation – a terrorist organisation such as Al Qaeda, a drug or criminal
gang – where the leader H hides in a specific location from which he manages the
organization. As is well known, leaders of Al Qaeda have been hiding in safe havens
from which they have directed terror operations.1 Criminal networks in Italy, Mex-
ico and Colombia have also been led by fugitive bosses managing the organization
from hiding places.2 In most examples, the geographical locations where leaders
hide are also the homes of some members of the network, so that we can identify
the network of locations with the network of members of the organization. In these
settings, S represents the enforcement agency.

As a historical example, the leaders of underground resistance movements in
Europe during World War II hid under false identities to organize political and
military actions against Nazi Germany.3

Hiding a leader while maintaining efficient communication among members of
the organization involves a well-known trade-off between security (the ability to
escape from the adversary) and efficiency (the ability to connect agents in the
network). In the criminology literature, this trade-off has been highlighted by
Morselli et al. (2007) who observe that it either results in long linear networks (when
security matters most) or core-periphery networks (when efficiency and security
both matter). This trade-off is also at the heart of our characterization of the
optimal design of an underground network.

We characterise optimal network architectures chosen by the Hider. The op-
timal network can only take one of two forms: either it contains a Hamiltonian
cycle (where all nodes are connected in a circle) with at least a third of the nodes
only connected to two other agents, or is a special core-periphery network where
half of the nodes form an interconnected core, and the other half are leaves, each

1See, among many others, the book by Gunaratna (2002) for a very clear account of the early
organization of Al Qaeda.

2See Allum et al. (2019) for a recent account of the Italian mafias and a discussion of the role
of fugitives.

3There is an extensive literature on underground movements during the Second World War.
As an example, the memoir of Egon Balas (Balas (2008)) contains a detailed account of his
experience as an underground communist party member hiding in the city of Koloszvar/Cluj in
1944. We are grateful to a referee for suggesting this reference.
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connected to a single node in the core.4 In addition, a subset of the nodes will
remain isolated. The number of isolated nodes, and the choice between the circle
and the core-periphery network for connected nodes depends on the parameters
of the game, and in particular the shape of the function mapping the size of the
network into the benefit of the Hider. Moreover, in the cases where non-singleton
nodes form a core-periphery network, the characterisation of an optimal network
we obtain is complete.

To understand this characterisation of an optimal network, notice that any
network which cannot be “disrupted” (in the sense that the network is not broken
into different components if the Seeker fails to find the hidden object) must be
2-connected, and hence contain a cycle. Now, adding links to the cycle can only
increase the sizes of the neighborhoods and hence the probability that the hidden
object is discovered.5 Therefore, if the objective of the Hider is primarily to avoid
disruption of the network, forming a cycle will be an optimal choice for the hider.
Notice however that in a cycle, every agent has two neighbors, so the probability of
discovery of the hidden object must be at least equal to 3

n
. In order to reduce this

probability of discovery, while keeping the network connected, one has to allow
for the possibility that some nodes only have degree one. In the core-periphery
network where half of the nodes are leaves connected to one node in the core, the
probability of discovery is reduced to the minimal value for a connected graph. In
equilibrium, the Hider chooses to hide in any of the peripheral nodes, whereas the
Seeker seeks in any of the core nodes. This uniform hide and seek strategy results
in a probability of discovery equal to 2

n
, lower than in the cycle, but induces a

larger disruption, as the size of the remaining component after the Seeker fails to
find the object is equal to n − 2 rather than n − 1. In the main characterization
Theorem, we show that no other network performs better than the cycle or the
core-periphery network. The cycle is preferred when the Hider puts more weight
on avoiding disruption and the core-periphery network is preferred when the Hider
puts more weight on avoiding discovery of the hidden object.

While no real network has the exact architecture of a cycle or core-periphery
network, our results echo some observations on underground networks. Balas (2008)
describes his interactions with other communist party members while hiding in the
spring and summer of 1944 in several safe houses in the city of Kolosvar/Cluj
(then in Hungary and now in Romania). He managed to stay at the homes of
sympathizers of the communist party, who knew very little of the underground
organization. Balas only had contact with a small number of party members.
He regularly met with the secretary of the regional committee, Sanyi Jakab, who
was himself in contact with the party leadership in Budapest. When the leaders
in Budapest were arrested in 1943, the communication links between the regional
committee of the party in of Kolosvar/Cluj and the national committee of the party
in Hungary were disrupted. The underground network of the communist party thus
shares some characteristics with the core-periphery network: sympathizers offering

4If the number of nodes in the core-periphery network is odd, the architecture is slightly
different.

5Notice however that adding links may not change the probability of capture, if the hider only
hides in a subset of the nodes in the cycle.
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hiding places are isolated, and only communicate with one or two other nodes in
the network. However, the nodes that they connect too, like the regional committee
secretary, belong to the core and are themselves connected to all other leaders of
the party.

As an example of a circle network, consider the apartments which were used by
French resistance fighters during the second world war in the city of Lyon. Lyon
was the capital of the French resistance between 1940 and 1944. Historians claim
that this is partly due to the existence of hidden passageways, the ”traboules”,
some dating back from the Renaissance, which connect buildings and streets in
the city. The traboules describe a circular network, allowing for easy communi-
cation through buildings and streets. This network was extensively used by the
underground during the German occupation (Curvat et al. (2015)), as it allowed
for secret meetings while guaranteeing easy escape and the possibility of keeping
communication channels open if one of the buildings was raided by the German
police.

Morselli et al. (2007) use data on terrorist networks (Krebs (2002)’s map of
the 9/11WTC terrorist cells) and criminal networks (a drug-trafficking network
in Canada) to illustrate the security/efficiency trade-off. They argue that terrorist
networks are more sensitive to security, and have longer average distances and fewer
connections than criminal networks with no node assuming a central position. In
contrast, criminal networks are more geared towards efficiency, are clustered and
exhibit a core of nodes with high centrality. In addition they note that support
nodes (which are not direct perpetrators of criminal or terrorist activities) help
connect distant nodes in terrorist networks but not in criminal networks, where
each support agent is attached to a single agent in the core. The criminal networks
thus resemble the core-periphery network we identify in our analysis, while the
terrorist networks share one characteristic of the cycle: they have a large diameter
and the average distance between agents is high and no agent is more central than
any other agent. Figure 1 illustrates these network architectures, by reproducing
the map of the 9/11 WTC terrorist network (Krebs (2002)) as well as the maps of
two drug-trafficking mafia groups collected by Calderoni (2012).

2 Related literature

The related literature spans a variety of disciplines, with the earlier literature
focusing more on the aspect of hiding and seeking. Perhaps, the first paper was by
Von Neumann (1953) who discusses a zero-sum game where H chooses a cell of an
exogenously given matrix, while S simultaneously chooses a column or row in the
matrix. S “captures” H if the cell chosen by H lies in the row or column chosen
by S. A related paper is Fisher (1991), who too analyses a similar zero-sum game,
where H and S simultaneously choose vertices of an exogenously given graph. H is
caught if S chooses the same node as him or a node connected to the node chosen
by him. Interestingly, the value of this “hide and seek game” on a fixed arbitrary
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The	  9/11WTC	  terrorist network

Mapping Networks of Terrorist Cells  / Krebs46

I was amazed at how sparse the network was and how
distant many of the hijackers on the same team were
from each other.  Many pairs of team members where
beyond the horizon of observability (Friedkin, 1983)
from each other – many on the same flight were more
than 2 steps away from each other.  Keeping cell mem-
bers distant from each other, and from other cells,
minimizes damage to the network if a cell member is
captured or otherwise compromised.  Usama bin
Laden even described this strategy on his infamous
video tape which was found in a hastily deserted house
in Afghanistan. In the transcript (Department of
Defense, 2001) bin Laden mentions: 

Those who were trained to fly didn’t know the others. 
One group of people did not know the other group. 

The metrics for the network in Figure 2 are shown
below and in Table 1. We see a very long mean path
length, 4.75,  for a network of less than 20 nodes.
From this metric and bin Laden’s comments above we
see that covert networks trade efficiency for secrecy. 

no shortcuts with shortcuts

Group Size
Potential Ties
Actual Ties
Density
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       16 %
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  = without shortcuts = with shortcuts

Yet, work has to be done, plans have to be executed.
How does a covert network accomplish its goals?
Through the judicious use of transitory short-cuts
(Watts, 1999) in the network.   Meetings are held that
connect distant parts of the network to coordinate
tasks and report progress.  After the coordination is

The	  N’Drangheta network	  of	  cocaine
trafficking (operationChalonero)

The	  N’Drangheta network	  of	  cocaine
trafficking (operation Stupor Mundi)

Figure 1: Three examples of terrorist and criminal networks

network can been computed following Fisher (2002), using fractional graph theory.6

Computer scientists have also contributed to this literature with Waniek et al.
(2017) and Waniek et al. (2018) studying a related, but different problem, of hiding
in a network. They consider the leader of a terrorist or criminal organization, and
ask the following question: How can a set of edges be added to the network in order
to reduce the leader’s measure of centrality in order to avoid detection? Waniek
et al. (2017) show that, both for degree and closeness centrality, the problem is
NP-complete. However, they also propose a procedure to build a new network
from scratch around the leader (the “captain network”) which achieves low levels
of degree and closeness centrality but high values of diffusion centrality, where
diffusion centrality is measured using the independent cascade and linear threshold
diffusion models. Waniek et al. (2018) extend the analysis to betweenness centrality
and to the detection of communities (rather than individuals) in the network.
Notice, however, that these models are not fully strategic since S does not best
respond to H’s strategy.

Our paper is also related to a recent strand of the economics literature analyz-
ing network design and attack and defense on networks. Baccara and Bar-Isaac
(2008) study network design by a criminal organization taking the detection strat-
egy of the adversary as fixed. They highlight differences between two forms of
detection, one which depends on the cooperation between criminals and the other
which does not. In both situations, they characterize the optimal network archi-

6See also Theorem 1.4.1 in Scheinerman and Ullman (1997)
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tecture of the criminal network, which either consists of isolated two-player cells
(with independent detection) or an asymmetric structure with one agent serving as
an information hub (with cooperation-based detection). Goyal and Vigier (2014)
propose an alternative model of network design where the defender designs the
network and chooses the distribution of defense across nodes before the attacker
chooses to attack. Nodes are captured according to a Tullock contest function
given the resources spent by the attacker and the defender. If a node is captured
by the attacker, contagion occurs and the attacker starts attacking neighboring
nodes while the defender loses his defense resources. The main message of Goyal
and Vigier (2014) is that the defendant optimally forms a star and concentrates
all the defenses at the hub. Dziubiński and Goyal (2013) analyze a related model,
where the defender designs the network and chooses defense resources before the
attacker attacks. As opposed to Goyal and Vigier (2014), contagion does not oc-
cur and the network structure only matters through the payoffs of the two-person
zero-sum game between the defender and the attacker. The objective function of
the defender is assumed to be increasing and convex in the size of components of
the network, reflecting the fact that the defender wants to avoid disruption in the
network. The analysis shows that the designer will either form a star and protect
the hub, or not protect any node and choose to form a (k + 1)-connected network
when the attacker has k units, so that the attacker will not be able to disrupt
the network. In the same model, Dziubiński and Goyal (2017) study equilibrium
strategies of the defender and attacker for any arbitrary network structure while
Cerdeiro et al. (2017) consider decentralized defense decisions by the different nodes
in the network.

Thus, we see that the early (non-economics) literature focussed on the hide-
and-seek issue, while the more recent literature from economists has focused on
disruption. There is an important sense in which our model brings the two strands
of the literature together. Our model incorporates the hide-and-seek aspect because
the “leader” of the organisation, H, has a special significance and so seeking her is
an objective of the adversary. At the same time, the payoff to H is increasing in the
size of the residual network and so she wants to avoid disruption as far as possible.
Like Baccara and Bar-Isaac (2008), our paper involves a trade-off between the
optimal organisation of criminal organisation and the threat of disruption, though
this trade-off emerges for quite different reasons. Notice also that unlike several
of the previously cited papers, nodes cannot be defended in our model. Another
difference between our model and related models comes from the timing of the
game. We suppose that the hider and seeker simultaneously choose the nodes in
which to hide and that they inspect, resulting in equilibria in mixed strategies as in
Colonel Blotto games, whereas Goyal and Vigier (2014) and Dziubiński and Goyal
(2013) assume that the defender and attacker move sequentially, allowing for pure
strategy equilibria.
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3 The Model

There are two players, a Hider (H) and a Seeker (S). The hider H constructs
a network among n nodes and chooses a location in the network. For example,
the Hider may be the leader of a covert terrorist or criminal organisation, which
has n − 1 other members. The seeker is then interpreted as a law enforcement
agency whose objective is to capture the leader of the organization or to disrupt
the communication channels within the organisation. The interaction between H
and S is modelled as a two-stage process, which is described below.

In the first stage, H chooses a network of interactions amongst the members of
the organisation. Formally, H chooses a graph G = 〈V,E〉 where V is a set of n
vertices, and E is a set of undirected edges E ⊆

(
V
2

)
. A typical edge e ∈ E will be

denoted ij, where i, j ∈ V .
Both players observe the chosen network at the beginning of the second stage.

After observing the network G, players H and S simultaneously choose one node
each. The node chosen by the hider is his (hiding) position in the network. The
node chosen by the seeker is the node she inspects (or attacks). Let k be the node
chosen by S, and NG(k) = {j ∈ V |kj ∈ E}. That is, NG(k) is the set of all
neighbours of k in G. All nodes in {k} ∪NG(k) can be observed by the seeker. If
the chosen position of H is in {k} ∪NG(k), then H is captured by S. In addition,
node k is removed from the network, irrespective of whether H is captured or not.

The seeker uses his choice to capture the hider and to damage the network.
Payoffs depend on whether or not the hider has been captured. If caught, the
hider gets payoff −β, where β ≥ 0.

If the hider is not captured, the covert network remains operational, but is
damaged by the attack of the seeker. Then the hider’s payoff is an increasing
function of the size of the component where he is hiding in the residual network.
The reason behind this specification is that communication is possible only within
a connected component. Moreover, the larger the number of followers with whom
H can communicate, the larger is the payoff to the organisation. Formally, his
payoff is given by a function f : R≥0 → R≥0 of the size of his component in the
residual network. We assume f to be strictly increasing with f(0) = 0. An example
of function f in line with these assumptions is the identity function, f(x) = x for
all x ∈ R≥0. The game is assumed to be a zero-sum game, so that the payoff to
the seeker is equal to minus the payoff of the hider.

Given a set of nodes U ⊆ V , let G(U) be the set of all undirected graphs over
U and let G =

⋃
U⊆V G(U) be the set of all undirected graphs that can be formed

over V or any of its subsets. A strategy for the hider is a pair (G, h) ∈ G(V )× V ,
where G is the graph and h is the hiding place chosen by H in G. As the seeker
chooses his inspected node after observing the network, a strategy for the seeker is
a function s : G(V )→ V .

Before defining the payoffs we introduce some auxiliary definitions on networks.
Given a set of nodes U ⊆ V and a graph G = 〈U,E〉 over U , a maximal set of
nodes C ⊆ U such that any two nodes i, j ∈ C are connected in G is a component
of G.7 The set of all components of G is denoted by C(G). In addition, given

7 Two nodes i, j ∈ U are connected in G = 〈U,E〉 if there exists a sequence of nodes i1, . . . , il
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i ∈ U , let Ci(G) be the component in G containing i. Given a set of nodes U ⊆ V ,
a graph G = 〈U,E〉 over U , and a set of nodes U ′ ⊆ U , let G[U ′] = 〈U ′, E[U ′]〉
with E[U ′] = {ij ∈ E : {i, j} ⊆ U ′} be the subgraph of G induced by U ′. Given a
node k ∈ V let G − k = G[U \ {k}] be the residual network obtained from G by
removing k and all its links from G.

Given the strategy profile ((G, h), s), the payoff to the hider is

ΠH(G, h, s) =

{
−β if h ∈ {s(G)} ∪NG(s(G))
f(|Ci(G− s(G))|) otherwise.

(1)

The payoff to the seeker is ΠS((G, h), s) = −ΠH((G, h), s).
The cycle network and the core-periphery networks will be important in our

analysis. The cycle network is a connected network where every node has exactly
two neighbours.

A core-periphery network over a set V = P ∪C of n nodes is defined as follows.
There are q ≥ dn/2e core nodes in set C = {c1, . . . , cq} and m ≤ bn/2c periphery
nodes in set P = {p1, . . . , pm}. Nodes of the core form a connected graph, while
each periphery node, pi with 1 ≤ i ≤ m, is connected to core node ci. Nodes of the
core which are not connected to a periphery node are called orphaned. Figure 2
illustrates a core-periphery network with orphaned nodes.

Figure 2: A core-periphery network over 39 nodes, with 15 periphery nodes and 9
orphaned core nodes.

A particular class of core-periphery networks, which we call maximal, plays
a crucial role in our characterisation. If n is even, a core-periphery network is

such that i0 = i, in = j, and for all k ∈ {1, . . . , l}, ik−1ik ∈ E.
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maximal if and only if it has n/2 periphery nodes and nodes of the core form a
2-connected graph.8 If n is odd, a core-periphery network is maximal if and only
if it has (n − 3)/2 periphery nodes (and hence 3 orphaned nodes), nodes of the
core form a 2-connected graph, and one orphaned node has exactly the two other
orphaned nodes as its neighbours. Examples of maximal core-periphery networks
are presented in Figure 3.

Figure 3: Maximal core-periphery networks over 16 nodes (left) and 17 nodes
(right).

4 The Characterisation Results

Our objective in this section is to provide optimal networks for the hider as well as
to characterise the hiding and the seeking strategies on these networks. We show in
our main result (Theorem 1) that these networks consist of a number of singleton
nodes and a connected component which either contains a cycle with at least a
third of the nodes connected to only two agents or has a particular core periphery
topology.

We state and prove a preliminary lemma that will be useful in proving the main
result. The lemma asserts that in an optimal network there cannot be a component
containing just two or three nodes.

Lemma 1. Suppose G is an optimal network for H whose set of non-singleton
components is X . Then, each component C ∈ X contains at least 4 nodes.

Proof. Suppose the lemma is not true and some C ∈ X has exactly three nodes,
C = {n1, n2, n3}. Following standard arguments, C must have a non-empty in-
tersection with the support of H’s optimal hiding strategy as well as S’s optimal
seeking strategy, given G. (If not, the hider or the seeker would have profitable
deviations). Moreover, conditional on hiding in C, H is caught with probability ρ,
where ρ is the total probability with which S seeks in C. This is true because S
can always search one node in C that has two neighbours, and hence observe all
nodes in the component.

8 A graph is 2-connected if and only if it does not get disconnected after removing a single
node.
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Let G′ be another network which coincides with G everywhere except that C
is broken up into singleton components {n1}, {n2}, {n3}. Moreover, suppose H’s
hiding strategy coincides with that in G everywhere on V \C, while H distributes
the earlier probability weight on C uniformly on the three nodes n1, n2, n3. It is
straightforward to check that H’s expected payoff in G′ is strictly higher than his
expected payoff in inspecting a node in the component C, which must be equal to
his expected payoff of using a mixed strategy in G, contradicting optimality of G.

A similar argument rules out an optimal network containing a component with
only two nodes.

Remark 1. An implication of this lemma is that the optimal network will either be
completely disconnected with n singletons or will contain at most n− 4 singletons.
This implication will be used throughout the proof of the theorem.

At this stage, we describe the main result of the paper informally (the formal
statement appears at the end of this Section). Whether a cycle or a core-periphery
topology is better for H depends on the value of the expression.

T (n, s) = (n− s− 3)f(n− s− 1)− (n− s− 2)f(n− s− 2). (2)

We will construct an equilibrium with the following features.

• The optimal network G has a fixed number of singleton nodes s (that will be
determined) where s ≤ n− 4 or s = n.

• If T (n, s) ≥ β and s 6= n, then G has a cycle component over n− s nodes.

• If T (n, s) < β, n − s ≥ 4, then G has a maximal core periphery component
over n− s nodes.

• The hider mixes between hiding in the singleton nodes and in the connected
component with probabilities that will be determined. When hiding in the
singleton nodes, he mixes uniformly across all these nodes. When hiding in
the connected component, he mixes uniformly across all the nodes when it
is a cycle, mixes uniformly across the periphery nodes when it is a maximal
core-periphery network over even number of nodes, and mixes between hiding
in periphery nodes, mixing uniformly across them, and the middle orphaned
node, otherwise.

• The seeker mixes between seeking in the singleton nodes and in the connected
component. When seeking in the singleton nodes, he mixes uniformly across
all these nodes. When seeking in the connected component, he mixes uni-
formly across all the nodes when it is a cycle, mixes uniformly across the
core nodes when it is a maximal core-periphery network over even number
of nodes, and mixes between seeking in the neighbours of periphery nodes,
mixing uniformly across them, and the middle orphaned node, otherwise.

To get some intuition behind this construction, notice that the hider faces a
tradeoff between the cost of being caught and the value he gets in the residual
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network. Adding links in the network increases connectivity and hence secures a
larger value after the seeker’s action provided he is not caught. However, a larger
number of links also leads to higher exposure and a greater probability of being
caught, as it increases the size of the neighbourhoods of the nodes in which the
hider can hide.

Given a number of singleton nodes s, the choice between a cycle and a core-
periphery network is influenced by the change in value of f , as measured by the
quantity T (n, s). The probability of being caught in a cycle of size n−s is 3/(n−s),
as each node has exactly two neighbours, while only one node is lost from the cycle
component if H is not caught. The probability of being caught in a maximal
core-periphery network (if n− s is even) is 2/(n− s) since the hider hides mixing
uniformly across the periphery nodes; in the event of H not being caught, two
nodes are lost from the core periphery component since the seeker seeks mixing
uniformly across the core nodes. If the change in f between n− s−2 and n− s−1
is sufficiently large, so that T (n, s) > β then the marginal loss from an additional
node being removed from a component is high, as compared to the penalty for
being caught. In this case, a cycle is preferred over the core-periphery network.
On the other hand, if the change in f is not sufficiently large, the marginal loss
from an additional node being removed from a component is not sufficiently high
and the hider prefers to opt for the safer core-periphery network.

The proof of the main theorem is rather long. We first give a brief sketch of the
main steps of the proof. We start by constructing a feasible strategy of the seeker
that, for each network over the set of nodes V , provides a (mixed) seeking strategy
on that network. This strategy determines the payoffs the seeker can secure for each
possible network over V . Since the game is zero-sum, minus these payoffs provide
an upper bound on the payoff the hider can get for each network. Next, for each
s ∈ {0, . . . , n − 4, n}, we construct a network that is optimal for the hider across
all possible networks with exactly s singleton nodes. In the case of T (n, s) ≥ β, as
well as in the case of n − s being even, these networks yield payoffs to the hider
that meet the upper bound determined in the first part of the proof. In the case
of T (n, s) < β and odd n − s, the upper bound from the first part of the proof is
not exact and we need additional computations to identify the optimal network.
Finally, we show how the number of singleton nodes is determined to characterise
the optimal network.

We now proceed to prove the theorem. We first introduce a partition of the
nodes into different sets that will play a crucial role in the construction of a strategy
for the seeker.

Given a (possibly disconnected) network G over the set of nodes V , node i ∈ V
is a singleton node if |NG(i)| = 0. The set of singleton nodes of G is denoted by
S(G). Node i ∈ V is a leaf if |NG(i)| = 1. The set of leaves of G is denoted by L(G).
Given node i ∈ V , let li(G) = |NG(i)∩L(G)| denote the number of leaf-neighbours
of i. Let D(G) = {i ∈ L(G) : NG(i) ⊆ L(G)} be the set of leaves connected to a
leaf only. Such leaves constitute two-node components in G. The set D(G) can be
partitioned into two equal-size subsets, D1(G) and D2(G), D1(G)∪D2(G) = D(G),
such that for each l ∈ {1, 2}, and any two distinct nodes, i, j, in Dl(G), nodes i
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and j are not connected in G. In other words, for any 2-node component of G, one
of its nodes is in D1(G) and the other one is in D2(G). We pick one such partition
D1(G), D2(G).

Let
M(G) = {i ∈ V \D2(G) : li(G) = 1}

be the set of nodes which are not in D2(G) and are connected to exactly one leaf
in G and let

SL(G) = {i ∈ L(G) : NG(i) ∩M(G) 6= ∅}

be the set of leaves connected to an element of M(G) (clearly D2(G) ⊆ SL(G)).
Such leaves are called singleton leaves. Let R(G) = V \ (S(G) ∪ SL(G) ∪M(G))
be the set of nodes in G which are neither a singleton, nor a singleton leaf, nor a
neighbour of a singleton leaf.

We now construct step by step a strategy for the seeker which guarantees a
fixed payoff for any network G. Take any network G over V and let s = |S(G)| and
m = |M(G)|. Moreover, let GR = G[R(G)] be the subnetwork of G generated by
the set of nodes R(G). In particular, when R(G) = ∅, GR is the empty network
with empty sets of nodes and links. Let D(GR) be the set of nodes in R(G) that
belong to two-element subsets of R(G).

Consider a mixed strategy of player S, σ = (σ1, . . . , σn), with the following
probabilities:

σ = λSσ
S + (1− λS)

(
λRσ

R + (1− λR)σM
)

(3)

where λR, λS ∈ [0, 1], and

σS
i =

{
1
s
, if i ∈ S(G),

0, otherwise,

σM
i =

{
1
m
, if i ∈M(G),

0, otherwise,

σR
i =

{
li(GR)+1
n−s−2m

, if i ∈ R(G) \ (L(GR),

0, otherwise,

We first show that these probabilities are well-defined.

Lemma 2. σ is a feasible strategy for the seeker S.

Proof. Clearly, σS is a valid probability distribution as long as S(G) 6= ∅, that
is s > 0. Similarly, σM is a valid probability distribution as long as M(G) 6= ∅,
that is m ≥ 1. We also claim that σR is a valid probability distribution as long as
R(G) 6= ∅. To see this, notice that R(G) contains exactly n−s−2m nodes and σR

can be obtained from a uniform distribution on R(G) by moving the probability
mass assigned to leaves in GR to their neighbours. Lastly, notice that if S(G) 6= ∅,
then either all the non-singleton nodes in G have degree 1, in which case M(G) 6= ∅,
or there exists a node in G of degree 2 or more, in which case either M(G) 6= ∅
or R(G) 6= ∅. Hence if S(G) 6= ∅, then either σM or σR is a valid probability
distribution. By these observations, σ is a valid probability distribution as long as
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λS = 1, if s = n, λS = 0, if s = 0, λR = 0, if R(G) = ∅, and λR = 1, if m = 0. So,
the lemma is true.

The idea behind the construction of strategy σ is as follows. With probability
λS, player S seeks in the set of singleton nodes, S(G), and with probability (1−λS)
he seeks outside this set. Conditional on seeking outside S(G), with probability
λR player S seeks in the set of nodes R(G) and with probability (1− λR) he seeks
in the set SL(G)∪M(G). When seeking in S(G), S mixes uniformly across all the
singleton nodes. When seeking in SL(G)∪M(G), S mixes uniformly across all the
nodes neighbouring a singleton leaf, that is all the nodes in M(G). Lastly, when
seeking in the set of nodes R(G), S mixes using strategy σR.

In the next two lemmas, we compute lower bounds on the probability of capture
of the hider in different regions of the network.

Lemma 3. The probability of capture of player H is at least 3(1−λS)λR
(n−s−2m)

, if H hides

in R(G) \ (S(GR) ∪ SL(GR)).

Proof. Take any node i ∈ R(G) \ (S(GR)∪SL(GR)∪D(GR)). Suppose, first, that
i is not a leaf in GR, i.e. i ∈ R(G) \ L(GR). Then i has at least two neighbours
in R(G) and the probability that seeker seeks at i or at one of i’s neighbours is at
least (1−λS)λR3/(n−s−2m). Suppose, next, that i ∈ L(GR)\(SL(GR)∪D(GR)).
Then i has a neighbour j ∈ R(G) that has at least one more leaf neighbour in GR.
Since σj = (1− λS)λR3/(n− s− 2m), the lemma is true.

We now narrow down the possible strategies, σ, by setting the value of λR.
This is done under the assumption that S(G) 6= V , that is s ≤ n − 4 and there
exist non-singleton nodes in G. Let

ρ =
(n− s− 2m)(f(n− s− 2) + β)

3m(f(n− s− 1) + β) + (n− s− 2m)(f(n− s− 2) + β)

= 1− 3m(f(n− s− 1) + β)

3m(f(n− s− 1) + β) + (n− s− 2m)(f(n− s− 2) + β)

and

λR =

{
0, if R(G) = ∅,

ρ, otherwise.
(4)

Clearly ρ ∈ [0, 1] and λR ∈ [0, 1].

Lemma 4. The probability of capture of player H is at least 3(1−λS)λR
(n−s−2m)

, if H hides

in S(GR) ∪ SL(GR).

Proof. In this case, i must have a neighbour, j, in M(G). For otherwise i would be
a singleton node in H or a singleton leaf in H and so i would belong to S(G)∪M(G)
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and not to R(G). Now,the probability of S putting a seeking resource in j is

σj = (1− λS)(1− λR)

(
1

m

)
≥ (1− λS) min

(
1,

3m(f(n− s− 1) + β)

3m(f(n− s− 1) + β) + (n− s− 2m)(f(n− s− 2) + β)

)(
1

m

)
= (1− λS)

(
3(f(n− s− 1) + β)

3m(f(n− s− 1) + β) + (n− s− 2m)(f(n− s− 2) + β)

)
> (1− λS)

(
3(f(n− s− 2) + β)

3m(f(n− s− 1) + β) + (n− s− 2m)(f(n− s− 2) + β)

)
= (1− λS)λR

(
3

n− s− 2m

)
.

Thus i is caught with probability at least (1− λS)λR3/(n− s− 2m).

We now use these characterisations to compute lower bounds on the expected
payoff of the seeker when the hider hides in different parts of the network.

Lemma 5. Conditional on H hiding in a node of R(G) and S using σ, the expected
payoff of S is at least

LR(n,m, s) = (1− λS)

(
λR

((
3

n− s− 2m

)
β−
(

1− 3

n− s− 2m

)
f(n−s−1)

)
− (1− λR) f(n− s− 2)

)
− λSf(n− s) (5)

Proof. Suppose that H hides in R(G). From Lemmas 3 and 4, H is captured with
probability at least (1−λS)λR3/(n−s−2m) when S chooses σ. If not captured, only
one node is removed when S searches in R(G). With probability (1−λS)((1−λR),
S searches in M(G) and removes two nodes, but does not capture H. Finally, with
probability λS, S searches in S(G), and does not catch H. Then, her payoff is at
least −f(n− s) – this happens if G is connected over n− s nodes.

Similarly, we compute a lower bound on the expected payoff of the seeker when
the hider hides in M(G) or SL(G):

Lemma 6. Conditional on H hiding in a node of M(G) ∪ SL(G), player S by
choosing σ obtains a payoff of at least

LM(n,m, s) = (1− λS)

(
(1− λR)

((
1

m

)
β−(

1− 1

m

)
f(n− s− 2)

)
− λRf(n− s− 1)

)
− λSf(n− s), (6)

Proof. The probability of capture of H is at least (1−λS)(1−λR)1/m. If H is not
captured, S guarantees that the component of the hider has size at most n− s− 2
with probability (1 − λS)(1 − λR) when the attack is in M(G). Furthermore, at
least one node is removed with probability (1− λS)λR when the attack is in R(G).
Finally, the component containing H has size at most n− s when the attack is in
S(G), and this happens with probability λS.
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We show in the Appendix that the chosen value of λR ensures that for any
s ∈ {0, . . . , n− 4},

L(n,m, s) = LR(n,m, s) = LM(n,m, s) = (1− λS)A(n,m, s)− λSf(n− s) (7)

where A(n,m, s) is a complex function whose exact functional form is derived in
the Appendix.

Remark 2. A(n,m, s) is strictly decreasing in m if T (n, s) > β and strictly in-
creasing in m if T (n, s) < β.

To complete the definition of strategy σ we compute the value of the probability
of seeking in singleton nodes, λS. Conditional on H hiding in a node of S(G),
using any of the strategies σ defined above, player S obtains payoff of at least
LS(n,m, s) = λSB(s)− (1− λS) f(1), where

B(s) =

(
1

s

)
β −

(
1− 1

s

)
f(1),

regardless of the strategy of the hider, as the probability of capture is λS/s and, in
the case of not capturing the hider, S gets payoff −f(1). Let

λS =


1, if s = n,

A(n,m,s)+f(1)
A(n,m,s)+B(s)+f(1)+f(n−s) , if s 6= n and A(n,m, s) > −f(1),

0, otherwise.

To see that λS ∈ [0, 1], notice that B(s) > −f(1) ≥ −f(n− s), for any β ≥ 0 and
0 ≤ s ≤ n− 4.

It is straightforward to verify the following for any s ∈ {0, . . . , n− 4}:

(i) if A(n,m, s) > −f(1), then Ls(n,m, s) = L(n,m, s).

(ii) if A(n,m, s) ≤ −f(1) then Ls(n,m, s) ≥ L(n,m, s).

To summarize, the lower bound on the payoff of S in G, secured by the strategy
σ, is given by

Q(n,m, s) =


B(n), s = n
A(n,m,s)B(s)−f(1)f(n−s)

A(n,m,s)+B(s)+f(1)+f(n−s) , if s ≤ n− 4 and A(n,m, s) > −f(1),

A(n,m, s), otherwise,

(8)

This, together with Remark 2 and Claim 1 in the Appendix, yields the following
crucial fact.

Remark 3. For all s ≤ n − 4, Q(n,m, s) is minimised at m = (n − s)/2, when
T (n, s) < β, and is minimised at m = 0, when T (n, s) > β.
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Why is Remark 3 important? Since the game is zero-sum, the lower bound on
the payoff of S is also the upper bound on the payoff of H. Since the upper bound
on H’s payoff will be when Q(n,m, s) is minimised, Remark 3 indicates the nature
of the optimal network for H.

Fix the number of singleton nodes, s ≤ n− 4. Define a new function Q̄(n, s) as
follows

Q̄(n, s) =


Q(n, 0, s), if s ≤ n− 4 and T (n, s) ≥ β,

Q(n, (n− s)/2, s), if 0 ≤ s ≤ n− 4, T (n, s) < β and n− s is even,

Q(n, (n− s− 3)/2, s), if 0 ≤ s ≤ n− 4, T (n, s) < β and n− s is odd.

Consider first the case where n− s is even.

Lemma 7. Suppose H builds a network with s singleton nodes such that n − s
is even. Then, an optimal strategy for H provides H with payoff −Q̄(n, s). If
T (n, s) < β, G is optimal if the subnetwork over n − s nodes is a maximal core-
periphery network. If T (n, s) > β, G is optimal if the subnetwork over n− s nodes
is a cycle.

Proof. Fix s such that n− s is even. Let

Ā(n, s) =

{
A(n, (n− s)/2, s), if T (n, s) < β,

A(n, 0, s), if T (n, s) ≥ β.

and let

κ =

{
B(s)+f(1)

Ā(n,s)+B(s)+f(n−s)+f(1)
if Ā(n, s) > −f(1),

1, otherwise.
(9)

Let H choose a network G such that :

(i) G has exactly s singletons.

(ii) G is a maximal core periphery on n− s nodes if T (n, s) < β.

(iii) G is a cycle on n− s nodes if T (n, s) ≥ β.

Moreover, suppose that the hider hides in the component of size n − s with
probability κ, mixing uniformly on the periphery nodes in the case of the component
being a core-periphery network, and mixing uniformly over all its nodes in the
case of the component being a cycle. Also, she hides in the singleton nodes with
probability 1− κ, mixing uniformly on them. By similar arguments to those used
for λS above, κ ∈ [0, 1] and so the strategy is valid.

If the seeker seeks in the singleton nodes, this yields payoff of at least κf(n −
s) − (1 − κ)B(s) to the hider. Similarly, if the seeker seeks in the core-periphery
component, this yields payoff of at least −κĀ(n, s)+(1−κ)f(1) to the hider. With
the value of κ, above, both values are equal in the case of Ā(n, s) > −f(1), and
the latter is greater, otherwise.

Hence, the strategy guarantees a payoff −κĀ(n, s) + (1 − κ)f(1) to the hider.
Note that

−κĀ(n, s) + (1− κ)f(1) = −Q̄(n, s)
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As we have mentioned before, −Q̄(n, s) is the maximal payoff the hider can get
on any network with exactly s singleton nodes and hence the network constructed
above as well as the hiding strategy must be optimal for the hider.

Next, consider the case of n − s being odd. The proof of the following lemma
is in the Appendix.

Lemma 8. Suppose that n− s is odd. Then, an optimal strategy for H gives him
a payoff of −Q(n, (n− s− 3)/2, s). If T (n, s) < β, G is optimal if the subnetwork
over n−s nodes is a maximal core-periphery network. If T (n, s) > β, G is optimal
if it the subnetwork over n− s nodes is a cycle.

Since the game is zero-sum, the hider maximises his payoff when the seeker’s
payoff is minimised. Therefore, an optimal network has s ∈ S∗(n) singleton nodes,
where

S∗(n) = arg min
s∈{0,...,n}

Q̄(n, s).

Lemmas 7 and 8 have therefore proved the characterization result that we sum-
marize in the following Theorem.

Theorem 1. For any number of nodes, n ≥ 1, and any β ≥ 0 there exists an
equilibrium of the game, ((G, h), s) such that

• G has exactly s ∈ S∗(n) singleton nodes and either s ≤ n− 4 or s = n.

• If T (n, s) ≥ β and n−s ≥ 4 then G has a cycle component over the remaining
n− s nodes.

• If T (n, s) < β, n − s ≥ 4 then G has a maximal core-periphery component
over n− s nodes.

• The hider mixes between hiding in the singleton nodes and in the connected
component. When hiding in the singleton nodes, he mixes uniformly across
all these nodes. When hiding in the connected component, he mixes uniformly
across all the nodes (when it is a cycle), mixes uniformly across the periphery
nodes (when it is a maximal core-periphery network and n− s is even), and
mixes between hiding in periphery nodes, mixing uniformly across them, and
the middle orphaned node (otherwise).

• The seeker mixes between seeking in the singleton nodes and in the connected
component. When seeking in the singleton nodes, he mixes uniformly across
all these nodes. When seeking in the connected component, he mixes uni-
formly across all the nodes (when it is a cycle), mixes uniformly across the
core nodes (when it is a maximal core-periphery network and n− s is even),
and mixes between seeking in the neighbours of periphery nodes, mixing uni-
formly across them, and the middle orphaned node (otherwise).

Equilibrium payoff to the hider is −Q̄(n, s).
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We have shown in the proof of Theorem 1, that the equilibrium payoff to the
seeker in an optimal network with at least one singleton node is a convex combi-
nation of B(s) which is greater than −f(1) and −f(1) and so it is at least −f(1).
Hence the payoff that the hider can secure in such a network is at most f(1). Thus
if the payoff the seeker can secure in a connected component of size n, Ā(n, 0) is
smaller than −f(1), then the payoff the hider can secure in such a component is
−Ā(n, 0) > f(1). If that inequality holds, it is optimal for the hider to choose a
connected network without singleton nodes.

If, on the other hand, the cost of being caught, β, is sufficiently high then
Ā(n, 0) > −f(1) and the payoff the hider can secure in a connected network,
−Ā(n, 0), is less than the payoff he gets if he is not caught in a singleton node.
This leads the hider to construct a network with a smaller component and s ≥ 1
singleton nodes. If the cost of being caught is sufficiently high, it is optimal for the
hider to choose a disconnected network with s = n singleton nodes.

The characterisation of equilibrium networks provided in Theorem 1 is not
complete. This Theorem displays network architectures which achieve the highest
possible payoff for the hider, but does not show that these network topologies are
unique. As we prove below, if T (n, s) < β the connected component must be a
maximal core-periphery network. So in this case we obtain a complete charac-
terization of equilibrium networks. If T (n, s) > β there exist network topologies
other than the cycle which are optimal. We establish necessary properties that the
optimal network topologies must possess.

Theorem 2. For any number of nodes, n ≥ 1, and any β ≥ 0, if ((G, h), s) is an
equilibrium of the game then

• G has exactly s ∈ S∗(n) singleton nodes.

• If T (n, s) < β, n − s ≥ 4, then G has a maximal core-periphery component
over n− s nodes.

• If T (n, s) > β, then G has a 2-connected component over n− s non-singleton
nodes with at least d(n− s)/3e nodes of degree 2 and the hider never hides in
nodes of degree greater than 2 in equilibrium.

Proof. The fact that G must have exactly s ∈ S∗(n) singleton leaves is already
established in proof of Theorem 1. For the properties of the remaining part of
equilibrium network, we consider the cases of T (n, s) < β and T (n, s) > β sepa-
rately.

Suppose that T (n, s) < β. Suppose first that n − s is even. Since Q(n,m, s)
is decreasing in m and the maximum feasible value for m, when n − s is even, is
(n− s)/2, the subnetwork over n− s non-singleton nodes in any optimal network
must have (n − s)/2 singleton leaves. If the network is optimal, the neighbours
of the singleton leaves must form a 2-connected network. Otherwise, the seeker
would obtain a payoff that is strictly higher than Q̄(n, s) by mixing uniformly on
the neighbours of non-singleton leaves when seeking outside singleton nodes. This
is because in the case of not capturing the hider, he will leave the subnetwork over
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n−s nodes disconnected with non-zero probability. Hence the optimal subnetwork
over n− s non-singleton nodes must be a maximal core-periphery network.

Second, suppose that n−s is odd. We have shown in proof of Lemma 8 that the
optimal number of singleton leaves in the subnetwork over n−s non-singleton nodes
is (n−s−3)/2. Moreover, as we argued above, nodes which are not singleton leaves
must form a 2-connected network. Thus this subnetwork must be a core-periphery
network with 2-connected core and three orphaned nodes.

What remains to be shown is that one of the orphaned nodes must have exactly
the other two orphaned nodes as its neighbours in this subnetwork. Since the
subnetwork formed by the nodes of the core must be 2-connected, any node of the
core must have at least two neighbours. Suppose, to the contrary, that each of the
orphaned nodes has at least one neighbour that is not an orphaned node. Then,
mixing uniformly on non-orphaned core nodes, the seeker captures the hider with
higher probability than in a maximal core-periphery network (regardless of the
strategy of the hider) and causes the same damage in the case of not capturing the
hider. This results in strictly lower payoff to H than −Q̄(n, s) and so the network
is not optimal. Therefore the neighbours of one of the orphaned nodes must be
exactly the two other orphaned nodes.

Suppose next that T (n, s) > β. In this case, Q(n,m, s) is increasing in m and
so the optimal network has no singleton leaves in the subnetwork over the n − s
non-singleton nodes.

Let U be the set of n − s non-singleton nodes in the network and let F be
the subnetwork over this set of nodes. As argued above, the seeker has a seeking
strategy that guarantees him a probability of capture at least 3/(n− s) in F . If F
is not 2-connected, the seeker will leave the subnetwork disconnected in the event
of not capturing H. This gives strictly lower payoff to H than in the cycle. Hence
F must be 2-connected. Hence all the nodes in F have degree at least 2.

Suppose that F has t < d(n − s)/3e nodes of degree 2. Note that since F
is 2-connected, only one node is removed if H is not captured. So, the expected
payoff of H (and hence S) only depends on the probability of capture. Consider
any strategy η of H and let T be its support on U . Let σ′T be a mixed strategy
of the seeker that mixes uniformly on NF [T ].9 Let σT = λσ′T + (1 − λ)σS be a
strategy of the seeker that mixes uniformly on the singleton nodes with probability
1− λ and uses σ′T with probability λ, where λ is such that the lower bound on the
expected payoff to the seeker when the hider hides in T is equal to the lower bound
on the expected payoff to the seeker when the hider hides in singleton nodes.

Notice that the lower bound on the expected payoff to the seeker from using
σ′T when the hider hides in T is strictly higher than 3/(n − s). For if T contains
a node of degree at least 3 then the seeker captures the hider with probability
strictly greater than 3/|NF [T ]| ≥ 3/(n − s), and if T does not contain a node
of degree 3 then |NF [T ]| ≤ 3|T | < n − s and the seeker captures the hider with
probability 3/|NF [T ]| > 3/(n − s). Hence there exists pT > Q̄(n, s) such that the
expected payoff to the seeker from using σT against any strategy of the hider, η,
with support T on U is at least pT . Taking ε = minT⊆U(Q̄(n, s)− pT ) shows that

9 Given graph G = 〈V,E〉 and a set of nodes U ⊆ V , set NG[U ] = U ∪ {v ∈ V : uv ∈
E for some u ∈ U} is the closed neighbourhood of U in G.
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F cannot be optimal for H.
Notice also that if the support of H’s strategy in a network with 2-connected

component F contains nodes of degree greater then 3 then strategy σ guarantees
the seeker payoff strictly greater than Q̄(n, s). Therefore, in equilibrium, the hider
never hides in nodes of degree greater than 2 in the 2-connected component of an
optimal network.

We next provide examples of topologies of the connected component other than
the cycle in equilibrium networks for the case of T (n, s) > β. Suppose that n−s =
3t where t ≥ 2 is an integer. Let U be the set of nodes of the component. Suppose
that the nodes in U are connected, forming a cycle, and let T ⊆ U , |T | = t, be a
subset of the nodes such that any two nodes in T are separated by two nodes from
U \ T . Any network obtained from the cycle by adding links between the nodes
in U \ T is optimal (an example is presented in Figure 4). Both players mixing
uniformly on U is an equilibrium on any such network.

Figure 4: An optimal component for n− s = 12.

Theorems 1 and 2 provide a characterization of optimal networks for the hider
in terms of the quantity T (n, s). As this expression is not transparent, we provide
sufficient conditions on the utility function f(·) which guarantee that the connected
component of an optimal network is a maximal core-periphery network.

Theorem 3. Suppose that either

(i) f is concave, or

(ii) f is convex and for all x ≥ 2

f(x+ 1) <
x

x− 1
f(x)

Then, for all n ≥ 1, and any β ≥ 0, G is an equilibrium network if and only if G
has s ∈ S∗(n) singleton nodes and a maximal core-periphery component over n− s
nodes. In addition, if f is linear then S∗(n) = {0, 1, n}.

20



Proof. Notice that

T (n, s) = (n− s− 3)∆f(n− s− 2)− f(n− s− 2)

and

T (n, s+ 1) = (n− s− 3)∆f(n− s− 3)− f(n− s− 2)

Hence,

T (n, s+ 1)− T (n, s) = −(n− s− 3)(∆f(n− s− 2)−∆f(n− s− 3))

= −(n− s− 3)∆2f(n− s− 3).

where ∆f(x) = f(x+ 1)− f(x) is the first-order (forward) difference of f at x and
∆2f(x) = ∆f(x + 1) − ∆f(x) is the second-order (forward) difference of f at x.
Hence, if f is concave, then ∆2f(n− s− 3) ≤ 0, and so

T (n, s+ 1)− T (n, s) ≥ 0 for all s ≤ n− 4

In addition T (n, n−4) = f(3)−2f(2) which is negative if f is concave and strictly
increasing. Thus for all n ≥ 4 and s ≤ n− 4, T (n, s) < 0 ≤ β.

From Theorems 1 and 2, G is an equilibrium network if and only if its connected
component is a maximal core-periphery network over n− s nodes.

If f is convex then ∆2f(n − s − 3) ≥ 0 and T (n, s + 1) − T (n, s) ≤ 0, for all
s ≤ n− 4. Thus T (n, s) is decreasing in s on [0, n− 4], for all n ≥ 4.

Suppose that f(x + 1) < x/(x − 1)f(x) for all x ≥ 2.10 Then T (n, 0) =
(n− 3)f(n− 1)− (n− 2)f(n− 2) < 0 and so

T (n, s) ≤ T (n, 0) < β, for all s ∈ [0, n− 4].

Again, by Theorems 1 and 2, G is an equilibrium network if and only if its
connected component is a maximal core-periphery network over n− s nodes.

Next, note that if n ≤ 5, then Lemma 1 shows that s∗ ≤ 1. Suppose that f is
linear and that n ≥ 6. We show in the Appendix (Lemma 10) that if n ≥ 6, then
Q(n, (n− s)/2, s) is minimised either at s = 0 or at s = 1 or at s = n. This shows
that s∗ ∈ {0, 1, n} and completes the proof of the theorem.

Remark 4. The theorem establishes a full characterisation of equilibrium networks
when f is concave or convex but growing slowly.

5 Conclusions

We propose and study a strategic model network design and hiding in the network
facing a hostile authority that attempts to disrupt the network and capture the
hider. We characterise optimal networks for the hider as well as optimal hiding and
seeking strategies in these networks. Our results suggests that the hider chooses

10 An example of a family of strictly increasing convex functions that satisfy this property are
the functions f(x) = xγ/(x+ 1)γ−1 with γ > 1.
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networks that allow him to be anonymous and peripheral in the network. We also
develop a technique for solving such models in the setup of zero-sum games.

There are at least two avenues for future research. Firstly, different forms of
benefits from the network could be considered. For example, the utility of the hider
could dependent not only on the size of his component but also on his distance to
the nodes in the component. Given our results, we conjecture that this would
make the core periphery components with better connected core more attractive.
But answering this problem precisely requires formal analysis. Secondly, the seeker
could be endowed with more than one seeking unit and the units could be used
either simultaneously or sequentially. Our initial investigation suggests that solving
such an extension might be an ambitious task.
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Appendix

Derivation of A(n,ms)

Using value of λR, the lower bound on the payoff of player S in G when H hides
outside singleton nodes is

L(n,m, s) = LR(n,m, s) = LM(n,m, s) = (1− λS)A(n,m, s)− λSf(n− s) (10)

where

A(n,m, s) =


β
m
−
(
m−1
m

)
f(n− s− 2), if R(G) = ∅,(

D(n,s)D(n−1,s)
3D(n,s)−2D(n−1,s)

)(
3(β−T (n,s))

m(3D(n,s)−2D(n−1,s))+(n−s)D(n−1,s)
− 1
)

+ β,

otherwise

with
D(n, s) = f(n− s− 1) + β

and
T (n, s) = (n− s− 3)D(n, s)− (n− s− 2)D(n− 1, s) + β

In particular, the derivation above is valid for the extreme cases of m = 0 and
m = (n− s)/2). Notice that A(n,m, s) is strictly increasing in m if T (n, s) > β, is
strictly decreasing in m if T (n, s) < β, and is constant if T (n, s) = β.

We now derive the formula for A(n,m, s). By Equations (6) and (7)

A(n,m, s) = (1− λR)

((
1

m

)
β −

(
1− 1

m

)
f(n− s− 2)

)
− λRf(n− s− 1)

If R(G) = ∅ then, by (4), λR = 0 and so

A(n,m, s) =

(
1

m

)
β −

(
1− 1

m

)
f(n− s− 2).

If R(G) 6= ∅ then, by (4), λR = ρ and

A(n,m, s) = (1− ρ)

((
1

m

)
β −

(
1− 1

m

)
f(n− s− 2)

)
− ρf(n− s− 1), (11)

where

ρ = 1− 3m(f(n− s− 1) + β)

3m(f(n− s− 1) + β) + (n− s− 2m)(f(n− s− 2) + β)

= 1− 3mD(n, s)

3mD(n, s) + (n− s− 2m)D(n− 1, s)

= 1− 3mD(n, s)

Z(n,m, s)
=

(n− s− 2m)D(n− 1, s)

Z(n,m, s)

where

Z(n,m, s) = m(3D(n, s)− 2D(n− 1, s)) + (n− s)D(n− 1, s).
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Equation (11) can be rewritten as

A(n,m, s) = −(1− ρ)

(
(m− 1)(f(n− s− 2) + β)

m

)
− ρ

(
m(f(n− s− 1) + β)

m

)
+ β

= −(1− ρ)

(
(m− 1)D(n− 1, s)

m

)
− ρ

(
mD(n, s)

m

)
+ β

=
−3(m− 1)D(n, s)D(n− 1, s)− (n− s− 2m)D(n, s)D(n− 1, s)

Z(n,m, s)
+ β

= X(n, s)Y (n,m, s) + β

where

X(n, s) =
D(n, s)D(n− 1, s)

3D(n, s)− 2D(n− 1, s)

and

Y (n,m, s) =
(3D(n, s)− 2D(n− 1, s))(−3(m− 1)− (n− s− 2m))

Z(n,m, s)

=
(3D(n, s)− 2D(n− 1, s))(−m− (n− s− 3))

Z(n,m, s)

=
3(β − T (n, s))− Z(n,m, s)

Z(n,m, s)

=
3(β − T (n, s))

Z(n,m, s)
− 1.

This complete the derivation of A(n,m, s).

Proofs

Proof of Lemma 8
Suppose that n− s is odd. Then, an optimal strategy for H gives him a payoff

of −Q(n, (n−s−3)/2, s). If T (n, s) < β, G is optimal if the subnetwork over n−s
nodes is a maximal core-periphery network. If T (n, s) > β, G is optimal if it the
subnetwork over n− s nodes is a cycle.

Proof. Let

Ā(n, s) =

{
A(n, (n− s− 3)/2, s), if T (n, s) < β,

A(n, 0, s), if T (n, s) ≥ β.

and let κ be defined as in (9). If T (n, s) ≥ β then choosing a cycle over n−s nodes
and using the same hiding strategy as in the case of n − s being even, the hider
secures the highest possible payoff on a network with exactly s singleton nodes.

Suppose that T (n, s) < β. Since (n − s)/2 is not an integer, the hider cannot
attain the upper bound on his payoff determined by the lower bound on the payoff
to the seeker, Q̄(n, s). Recall that if T (n, s) < β then for any 0 ≤ s ≤ n − 4,
Q(n,m, s) is decreasing in m. We show below for any 0 ≤ s ≤ n− 4, the hider can
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attain payoff −Q(n, (n − s − 3)/2, s), and that this is the maximal payoff he can
secure when n− s is odd.

Suppose that the hider chooses a maximal core-periphery network (with three
orphaned nodes) over n− s nodes (c.f. Figure 5).

Consider a strategy of the hider

η = κ(µηM + (1− µ)ηR) + (1− κ)ηS,

where

ηM
i =

{
1
m
, if i ∈ SL(G),

0, otherwise,

(i.e. ηM mixes uniformly on the periphery nodes of G),

ηR
i =

{
1, if i is the middle orphaned node in G,

0, otherwise,

ηS
i =

{
1
s
, if i ∈ S(G),

0, otherwise.

(i.e. ηS mixes uniformly on the singleton nodes of G), and

µ =
(n− s− 3)f(n− s− 2) + (n− s− 3)β

(n− s− 3)f(n− s− 1) + 2f(n− s− 2) + (n− s− 1)β
.

It is immediate to see that µ ∈ [0, 1] and so the hiding strategy is valid. If the seeker
seeks in the orphaned nodes of the core-periphery component, this yields payoff of
at least κ(µf(n− s− 1)− (1−µ)β) + (1− κ)f(1) to the hider and, since the game
is zero-sum, of at most minus this value to the seeker. Similarly, if the seeker seeks
in periphery nodes or their neighbours in the core-periphery component, this yields
payoff of at least κ(µ(−2β/(n − s − 3) + (1 − 2/(n − s − 3))f(n − s − 2)) + (1 −
µ)f(n− s− 2)) + (1− κ)f(1) to the hider and of at most minus this value to the
seeker. With the value of µ, above, both these guarantees are equal.

It is straightforward to verify that

κ(µf(n− s− 1)− (1− µ)β) + (1− κ)f(1) = −κA(n, (n− s− 3)/2, s) + (1− κ)f(1)

= −Q(n, (n− s− 3)/2, s).

Since Q(n, (n− s− 3)/2, s) is a lower bound on the payoff that the seeker can
secure in a network with exactly s singleton nodes and at most (n − s − 3)/2
singleton leaves, the negative of this value is the highest payoff that the hider can
secure in a network with exactly s singleton nodes and at most (n − s − 3)/2
singleton leaves. The only networks that could yield a higher payoff to the seeker
are networks with exactly s singleton nodes and (n−s−1)/2 singleton leaves. But
we show in Lemma 9 that these networks have a lower value for the hider.
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Figure 5: A core-periphery network over 23 nodes with 3 orphaned nodes.
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Lemma 9. If n − s is odd and T (n, s) < β, the hider obtains a higher expected
payoff in a core-periphery network with (n − s − 3)/2 singleton leaves than in a
core-periphery network with (n− s− 1)/2 singleton leaves.

Proof. In a core-periphery network with (n − s − 1)/2 singleton leaves, the set
R(G) consist of exactly one node and this node is connected to at least two nodes
in M(G). It cannot be connected to one node in M(G), because in this case its
neighbour would have two leaf-neighbours and could not be a member of M(G).

Let σ̃ = λσS + (1 − λ)σM, where σM and σS are the mixed strategies of the
seeker, defined earlier in the proof,

λ =

{
X(n,s)+f(1)

B(s)+X(n,s)+f(1)+f(n−s) , if X(n, s) > −f(1),

0, otherwise,

and

X(n, s) =
2β

n− s− 1
−
(

1− 2

n− s− 1

)
f(n− s− 2).

Using this strategy, with probability λ, S mixes uniformly on the nodes in M(G)
and with probability (1− λ), S mixes uniformly on the singleton nodes of G. The
payoff to S conditional onH hiding in a singleton node is at least λB(s)−(1−λ)f(1)
and the payoff to S conditional on H hiding outside singleton nodes is at least
(1−λ)X(n, s)−λf(n− s). It is easy to verify that the value of λ is such that both
these payoffs are equal (in the case of X(n, s) > −f(1)) or the latter is higher, for
any value of λ. Therefore the payoff to S from using σ̃ against any strategy of H
is at least

Y (n, s) =

{
B(s)X(n,s)−f(1)f(n−s)

B(s)+X(n,s)+f(1)+f(n−s) , if X(n, s) > −f(1),

X(n, s), otherwise,

and so the upper bound on the payoff to the hider on any network with s singleton
nodes and (n−s−1)/2 singleton leaves is at most −Y (n, s). To see that −Q(n, (n−
s− 3)/s, s) > −Y (n, s) notice that

X(n, s)− A(n, (n− s− 3)/2, s) =

2(f(n− s− 1)− f(n− s− 2))(f(n− s− 2) + β)(n− s− 3)

(n− s− 1)(f(n− s− 1)(n− s− 3) + 2f(n− s− 2) + β(n− s− 1))
> 0

and so X(n, s) > A(n, (n− s− 3)/2, s).
Next consider the following Claim:

Claim 1. The function

ϕ(Z) =

{
B(s)Z−f(1)f(n−s)

Z+B(s)+f(n−s)+f(1)
, if Z > −f(1),

Z, otherwise,

is strictly increasing in Z.
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Proof. Notice that ϕ(−f(1)) = −f(1) when Z = −f(1). Moreover, ϕ is increasing
in Z if Z < −f(1). Let Z > −f(1). Taking the derivative of ϕ with respect to Z
we get

ϕ′(Z) =
(B(s) + f(1))(B(s) + f(n− s))
(Z +B(s) + f(n− s) + f(1))2

and it is immediate to see that ϕ′(Z) > 0 and ϕ increases in Z when B(s) > −f(1)
and B(s) ≥ −f(n − s). Notice that B(s) = (β + f(1))/s − f(1) > −f(1) for
any β ≥ 0 and s > 0. Also f(n − s) ≥ f(1) for all s ∈ [0, n − 1]. Thus, by the
observation on function ϕ, above, ϕ(Z) increases when Z increases.

Claim 1, together with X(n, s) > A(n, (n− s− 3)/2, s), implies that Y (n, s) >
Q(n, (n− s− 3)/2, s), completing the proof of the Lemma.

Lemma 10. Let λ > 0 and let f(x) = λx, for all x ∈ R≥0. For any natural n ≥ 6,
t ∈ {0, 1} and any s ∈ {t+1, . . . , n}, Q(n, (n−s)/2, s) > min(Q(n, 0, n), Q(n, (n−
t)/2, t))

Proof. Let f(x) = λx, with λ > 0, and let β̃ = β/λ. Let

Ã(n, s) = A(n, (n− s)/2, s) = λ

(
2

(
β̃ − 2

n− s

)
+ 4− (n− s)

)
, for 0 ≤ s ≤ n− 2,

B(s) = λ

(
β̃ + 1

s
− 1

)
,

and

Q̃(n, s) = Q(n, (n− s)/2, s) =


Ã(n, s), if Ã(n, s) ≤ −λ or s = 0,

AB(n, s), if 1 ≤ s ≤ n− 2 and Ã(n, s) > −λ
B(n), otherwise,

with
AB(n, s) = (1− ρ)Ã(n, s)− ρλ(n− s) (12)

where ρ solves

(1− ρ)Ã(n, s) + ρλ(s− n) = ρB(s)− (1− ρ)λ. (13)

Solving (13) we get

ρ =
s(2(β̃ − 2)− (n− s)(n− s− 5))

s(2(β̃ − 2)− (n− s)(n− s− 5)) + (n− s)(s(n− s− 1) + β̃ + 1)
.

Notice that 2(β̃ − 2) − (n − s)(n − s − 5) > 0 if and only if Ã(n, s) > −λ, and

(n−s)(s(n−s−1)+ β̃+1) > 0 for s ≤ n−1. Thus if Ã(n, s) > −λ then ρ ∈ (0, 1).
In addition B(s) > −λ, for all s > 0, so if ρ ∈ (0, 1) then AB(n, s) > −λ. Moreover,

Ã(n, s) is increasing in s on [0, n − 2] and it is equal to β at s = n − 2. By the
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observations above, if Ã(n, 1) ≤ −λ then Q̄(n, 0) = Ã(n, 0) < Ã(n, 1) = Q̃(n, 1) ≤
−λ < Q̄(n, s), for all s ∈ {2, . . . , n}, and the claim of the lemma holds.

For the remaining part of the proof suppose that Ã(n, 1) > −λ. This implies

2(β̃ − 2) > (n − 1)(n − 6) and, consequently, β̃ > 2 if n ≥ 6. We will show that

Q̃(n, s) is either decreasing or first increasing and then decreasing on [0, n − 1].

Let s̃ = inf{s ∈ [0, n − 2) : Ã(n, s) ≥ −λ}. Since Ã(n, s) is increasing in s and
equal to β ≥ 0 at s = n− 2 so the infimum exists and s̃ is well defined. On [0, s̃],

Q̃(n, s) = Ã(n, s) and, as we argued above, Q̃(n, s) is increasing. Consider the
interval [s̃, n− 1]. Notice that since B(s) > −λ ≥ −λ(n− s), for all 0 < s ≤ n− 1,

and Ã(n, s̃) = −λ so AB(n, s̃) = −λ. In addition, AB(n, n) = B(n). We will show
that AB(n, s) is either decreasing or first increasing and then decreasing on [0, n].
Inserting ρ into (12) we get

AB(n, s) =
(n2(β̃ + 1)− 2n(s(β/λ− 1) + 2(β̃ + 1)) + s2(β̃ − 3) + 6sβ̃ − 2(β̃ + 1)(β̃ − 2))

s(4s− β̃ + 5)− n(4s+ β̃ + 1)
.

Taking the derivative of AB(n, s) with respect to s we get

∂AB(n, s)

∂s
=

(β̃ + 1)W (s)

(s(4s− β̃ + 5)− n(4s+ β̃ + 1))2
,

where

W (s) = Xs2 − 2Y s+

(
n+

β̃ − 2

2

)
Y −

(
β̃ − 2

2

)
(n− 4)(β̃ + 1),

with X = 4n− β̃ − 15 and Y = 4n2 + n(β̃ − 19)− 8(β̃ − 2).
The sign of ∂AB/∂s is the same as the sign of W (s). Notice that W (n) =

−2(β̃ − 2)(n + β̃ − 5) < 0, as n ≥ 6 and β̃ > 2. When X > 0, then W (s) is
an
⋃

-shaped parabola and, since W (n) ≤ 0, either W is negative or W is first
positive and the negative on [0, n]. Thus in this case AB is either increasing or first
increasing and then decreasing on [0, n]. Similar observation holds when X = 0.
Suppose that X < 0. In this case W (s) is an

⋂
-shaped parabola and it has a

maximum at s∗ = Y/X. Suppose that s∗ ∈ (0, n − 2). Since X < 0 so Y < 0.
Moreover, for n ≥ 6, X < 0 implies β > 5 and, consequently,

W (s∗) = −Y s∗ +

(
n+

β̃ − 2

2

)
Y −

(
β̃ − 2

2

)
(n− 4)(β̃ + 1)

=

(
n− s∗ +

β̃ − 2

2

)
Y −

(
β̃ − 2

2

)
(n− 4)(β̃ + 1) < 0.

Thus W is either negative or first positive then negative on [0, n], for any natural
n ≥ 5. Hence ABQ is either decreasing or first increasing and then decreasing on
[0, n], for any natural n ≥ 6.

By the analysis above, when Ã(n, 1) > −λ then AB(n, s) is either decreasing or
first increasing and then decreasing in s on [0, n] and AB(n, n) = B(n). Hence, by

the definition of Q̃(n, s), the claim of the lemma follows immediately.
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