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Abstract

This paper studies the problem of learning the correlation structure of a set of1

intervention functions defined on the directed acyclic graph (DAG) of a causal2

model. This is useful when we are interested in jointly learning the causal effects of3

interventions on different subsets of variables in a DAG, which is common in field4

such as healthcare or operations research. We propose the first multi-task causal5

Gaussian process (GP) model, which we call DAG-GP, that allows for information6

sharing across continuous interventions and across experiments on different vari-7

ables. DAG-GP accommodates different assumptions in terms of data availability8

and captures the correlation between functions lying in input spaces of different9

dimensionality via a well-defined integral operator. We give theoretical results10

detailing when and how the DAG-GP model can be formulated depending on the11

DAG. We test both the quality of its predictions and its calibrated uncertainties.12

Compared to single-task models, DAG-GP achieves the best fitting performance in13

a variety of real and synthetic settings. In addition, it helps to select optimal inter-14

ventions faster than competing approaches when used within sequential decision15

making frameworks, like active learning or Bayesian optimization.16

1 Introduction17

Solving decision making problems in a variety of domains such as healthcare, systems biology or18

operations research, requires experimentation. By performing interventions one can understand19

how a system behaves when an action is taken and thus infer the cause-effect relationships of a20

phenomenon. For instance, in healthcare, drugs are tested in randomized clinical trials before21

commercialization. Biologists might want to understand how genes interact in a cell once one of22

them is knockout. Finally, engineers investigate the impact of design changes on complex physical23

systems by conducting experiments on digital twins [33]. Experiments in these scenarios are usually24

expensive, time-consuming, and, especially for field experiments, they may present ethical issues.25

Therefore, researchers generally have to trade-off cost, time, and other practical considerations to26

decide which experiments to conduct, if any, to learn about the system behaviour.27

Consider the causal graph in Fig. 1 which describes how crop yield Y is affected by soil fumigants X28

and the level of eel-worm population at different times Z = {Z1, Z2, Z3} [11, 26]. By performing a29

set of experiments, the investigator aims at learning the intervention functions relating the expected30

crop yield to each possible intervention set and level. Naïvely, one could achieve that by modelling31

each intervention function separately. However, this approach would disregard the correlation32

structure existing across experimental outputs and would increase the computational complexity33

of the problem. Indeed, the intervention functions are correlated and each experiment carries34

information about the yield we would obtain by performing alternative interventions in the graph.35

For instance, observing the yield when running an experiment on the intervention set {X,Z1} and36

setting the value to the intervention value {x, z1}, provides information about the yield we would37

get from intervening only on X or on {X,Z1, Z2, Z3}. This paper studies how to jointly model38
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such intervention functions so as to transfer knowledge across different experimental setups and39

integrate observational and interventional data. The model proposed here enables proper uncertainty40

quantification of the causal effects thus allowing to define optimal experimental design strategies.41

Soil fumigants (X)

Eel-worm
t+1 (Z3)

Eel-worm
t (Z2)

Eel-worm
t-1 (Z1)

Crop yield (Y )

Figure 1: DAG for the crop
yield. Nodes denote variables,
arrows represent causal effects
and dashed edges indicate un-
observed confounders.

42

1.1 Motivation and Contributions43

The framework proposed in this work combines causal inference44

with multi-task learning via Gaussian processes (GP, [29]). Prob-45

abilistic causal models are commonly used in disciplines where46

explicit experimentation may be difficult and the do-calculus [26]47

allows to predict the effect of an intervention without performing48

the experiment. In do-calculus, different intervention functions are49

modelled individually and there is no information shared across50

experiments. Modelling the correlation across experiments is crucial51

especially when the number of observational data points is limited52

and experiments on some variables cannot be performed. Multi-task53

GP methods have been extensively used to model non-trivial corre-54

lations between outputs [4]. However, to the best of our knowledge,55

this is the first work focusing on intervention functions, possibly of56

different dimensionality, defined on a causal graph. Particularly, we57

make the following contributions:58

• We give theoretical results detailing when and how a causal multi-task model for the experimental59

outputs can be developed depending on the topology of the DAG of a causal model.60

• Exploiting our theoretical results, we develop a joint probabilistic model for all intervention61

functions, henceforth named DAG-GP, which flexibly accommodates different assumptions in terms62

of data availability – both observational and interventional.63

• We demonstrate how DAG-GP achieves the best fitting performance in a variety of experimental64

settings while enabling proper uncertainty quantification and thus optimal decision making when65

used within Active Learning (AL) and Bayesian Optimization (BO).66

1.2 Related work67

While there exists an extensive literature on multi-task learning with GPs [9, 4] and causality [27, 17],68

the literature on causal multi-task learning is very limited. The majority of the studies have focused69

on domain adaptation problems [30, 25, 34] where data for a source domain is given, and the task70

is to predict the distribution of a target variable in a target domain. Several works [28, 6–8] have71

studied the problem of transferring the causal effects of a given variable across environments and72

have identified transportability conditions under which this is possible. Closer to our work, [2]73

have developed a linear coregionalization model for learning the individual treatment effects via74

observational data. While [2] is the first paper conceptualizing causal inference as a multi-task75

learning problem, its focus is on modelling the correlation across intervention levels for a single76

intervention function corresponding to a dichotomous intervention variable.77

Differently from these previous works, this paper focuses on transfer within a single environment,78

across experiments and across intervention levels. The set of functions we wish to learn have79

continuous input spaces of different dimensionality. Therefore, capturing their correlation requires80

placing a probabilistic model over the inputs which enables mapping between input spaces. The81

DAG, which we assumed to be known and is not available in standard multi-task settings, allows us to82

define such a model. Therefore, existing multi-output GP models are not applicable to our problem.83

Our work is also related to the literature on causal decision making. Studies in this field have focused84

on multi-armed bandit problems [5, 21, 24, 22] and reinforcement learning [10, 14] settings where85

arms or actions correspond to interventions on a DAG. More recently, [1] proposed a Causal Bayesian86

Optimization (CBO) framework solving the problem of finding an optimal intervention in a DAG by87

modelling the intervention functions with GPs. In CBO each function is modelled independently and88

their correlation is not accounted for when exploring the intervention space. This paper overcomes89

this limitation by introducing a multi-task model for experimental outputs. Finally, in the causal90
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literature there has been a growing interest for experimental design algorithms to learn causal graphs91

[19, 18, 16] or the observational distributions in a graph [31]. Here we use our multi-task model92

within an AL framework so as to efficiently learn the experimental outputs in a causal graph.93

2 Background and Problem setup94

Consider a probabilistic structural causal model (SCM) [27] consisting of a directed acyclic graph G95

(DAG) and a four-tuple 〈U,V, F, P (U)〉, where U is a set of independent exogenous background96

variables distributed according to the probability distribution P (U), V is a set of observed endogenous97

variables and F = {f1, . . . , f|V|} is a set of functions such that vi = fi(Pai, ui) with Pai = Pa(Vi)98

denoting the parents of Vi. G encodes our knowledge of the existing causal mechanisms among V.99

Within V, we distinguish between two different types of variables: treatment variables X that can be100

manipulated and set to specific values1 and output variables Y that represent the agent’s outcomes of101

interest. Given G, we denote the interventional distribution for two disjoint sets in V, say X and Y,102

as P (Y|do (X = x)). This is the distribution of Y obtained by intervening on X and fixing its value103

to x in the data generating mechanism, irrespective of the values of its parents. The interventional104

distribution differs from the observational distribution which is denoted by P (Y|X = x). Under105

some identifiability conditions [15], do-calculus allows to estimate interventional distributions and106

thus causal effects from observational distributions [26]. In this paper, we assume the causal effect107

for X on Y to be identifiable ∀X ∈ P(X) with P(X) denoting the power set of X.108

2.1 Problem setup109

Consider a DAG G and the related SCM. Define the set of intervention functions for Y in G as:110

T = {ts(x)}|P(X)|
s=1 ts(x) = Ep(Y |do(Xs=x))[Y ] = E[Y |do (Xs = x)]. (1)

with Xs ∈ P(X) where P(X) is the power set of X minus the empty set2 and x ∈ D(Xs)111

where D(Xs) = ×X∈Xs
D(X) with D(X) denoting the interventional domain of X . Let DO =112

{xn, yn}Nn=1, with xn ∈ R|X| and yn ∈ R, be an observational dataset of size N from this SCM.113

Consider an interventional dataset DI = (XI ,YI) with XI =
⋃

s{xI
si}

NI
s

i=1 and YI =
⋃

s{yIsi}
NI

s
i=1114

denoting the intervention levels and the function values observed from previously run experiments115

across sets in P(X). N I
s represents the number of experimental outputs observed for the intervention116

set Xs. Our goal is to define a joint prior distribution p(T) and compute the posterior p(T|DI) so as117

to make probabilistic predictions for T at some unobserved intervention sets and levels.118

3 Multi-task learning of intervention functions119

In this section we address the following question: can we develop a joint model for the functions T120

in a causal graph and thus transfer information across experiments?121

To answer this question we study the correlation among functions in T which varies with the topology122

of G. Inspired by previous works on latent force models [3], we show how any functions in T can123

be written as an integral transformation of some base function f , also defined starting from G, via124

some integral operator Ls such that ts(x) = Ls(f)(x), ∀Xs ∈ P(X). We first characterize the125

latent structure among experimental outputs and provide an explicit expression for both f and Ls126

for each intervention set (§3.1). Based on the properties of G, we clarify when this function exists.127

Exploiting these results, we detail a new model to learn T which we call the DAG-GP model (§3.2).128

In DAG-GP we place a GP prior on f and propagate our prior assumptions on the remaining part of the129

graph to analytically derive a joint distribution of the elements in T. The resulting prior distribution130

incorporates the causal structure and enables the integration of observational and interventional data.131

3.1 Characterization of the latent structure in a DAG132

Next results provide a theoretical foundation for the multi-task causal GP model introduced later. In133

particular, they characterize when f and Ls exist and how to compute them thus fully characterizing134

when transfer across experiments is possible. All proofs are given in the appendix.135

1This setting can be extended to include non-manipulative variables. See [23] for a definition of such nodes.
2We exclude the empty set as it corresponds to the observational distribution t∅(x) = E[Y ].
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Definition 3.1. Consider a DAG G where the treatment variables are denoted by X. Let C be the set136

of variables directly confounded with Y , CN be the set of variables in C that are not colliders3 and I137

be the set Pa(Y ). For each Xs ∈ P(X) we define the following sets:138

• INs = I\(Xs ∩ I) represents the set of variables in I not included in Xs.139

• CI
s = CN ∩Xs is the set of variables in C which are included in Xs and are not colliders.140

• CN
s = CN\CI

s is the set of variables in C that are neither included in Xs nor colliders.141

In the following theorem vN
s gives the values for the variables in the set INs while c represents the142

values for the set CN which are partition in cNs and cIs depending on the set Xs we are considering.143

Theorem 3.1. Causal operator. Consider a causal graph G and a related SCM where the output144

variable and the treatment variables are denoted by Y and X respectively. Denote by C the set145

of variables in G that are directly confounded with Y and let I be the set Pa(Y ). Assume that C146

does not include nodes that have both unconfounded incoming and outcoming edges. It is possible147

to prove that, ∀Xs ∈ P(X), the intervention function ts(x) : D(Xs) → R can be written as148

ts(x) = Ls(f)(x) where149

Ls(f)(x) =

∫
· · ·
∫
πs(x, (v

N
s , c))f(v, c)dv

N
s dc, (2)

with f(v, c) = E
[
Y |do (I = v) ,CN = c

]
representing a shared latent function and150

πs(x, (v
N
s , c)) = p(cIs|cNs )p(vN

s , c
N
s |do (Xs = x)) giving the integrating measure for the set Xs.151

In the sequel we call Ls(f)(x) the causal operator, (I ∪C) the base set, f(v, c) the base function152

and πs(·, ·) the integrating measure of the set Xs. A simple limiting case arises when the DAG does153

not include variables directly confounded with Y or C only includes colliders. In this case C = ∅154

and the base function is included in T. Theorem 3.1 provides a mechanism to reconstruct all causal155

effects emerging from P(X) using the base function as a “driving force”. In particular, the integrating156

measures can be seen as Green’s functions incorporating the DAG structure [3]. While it can be157

further generalized to select I to be different from Pa(Y ), this choice is particularly useful due to the158

following result.159

Corollary 3.1. Minimality of I. The smallest set I for which Eq. (2) holds is given by Pa(Y ).160

The dimensionality of I when chosen as Pa(Y ) has properties that have been previously studied161

in the literature. In the context of optimization [1], it corresponds to the so-called causal intrinsic162

dimensionality, which refers to the effective dimensionality of the space in which a function is163

optimized when causal information is available. The existence of f depends on the properties of the164

nodes in C which also represents the smallest set for which Eq. (2) holds (§1.4 in the supplement).165

Theorem 3.2. Existence of f . If C includes nodes that have both unconfounded incoming and166

outcoming edges the function f does not exist.167

When f does not exist, full transfer across all functions in T is not possible (DAGs with red edges in168

Fig. 4). However, these results enable a model for partial transfer across a subset of T (§1.6 supp.).169

3.2 The DAG-GP model170

Next, we introduce the DAG GP model based on the results from the previous section.171

Model Likelihood: Let DI = (XI ,YI) be the interventional dataset defined in Section 2.1. Denote172

by TI the collection of intervention vector-valued functions computed at XI . Each entry yIsi in YI ,173

is assumed to be a noisy observation of the corresponding function ts at xI
i :174

yIsi = ts(x
I
i ) + εsi, for s = 1, . . . , |P(X)| and i = 1, . . . , N I

s , (3)

with εsi ∼ N (0, σ2). In compact form, the joint likelihood function is p(YI |TI , σ2) = N (TI , σ2I).175

Prior distribution on T: To define a join prior on the set of intervention functions, p(T), we take176

the following steps. First, we follow [1] to place a causal prior on f , the base function of the DAG.177

Second, we propagate this prior on f through all elements in T via the causal operator in Eq. (2).178

3Variables in C causally influenced by X and Y .
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Figure 2: Posterior mean and variance for tX(x) in the DAG of Fig. 4 (a) (without the red edge).
For both plots mX(·) and KX(·, ·) give the posterior mean and standard deviation respectively. Left:
Comparison between the DAG-GP model and a single-task GP model (GP). DAG-GP captures the
behaviour of tX(x) in areas where DI is not available (see area around x = −2) while reducing the
uncertainty via transfer due to available data for z. Right: Comparison between DAG-GP with the
causal prior (DAG-GP+) and a standard prior with zero mean and RBF kernel (DAG-GP). In addition
to transfer, DAG-GP+ captures the behaviour of tX(x) in areas where DO (black ×) is available (see
region [−2, 0]) while inflating the uncertainty in areas with no observational data.

Step 1, causal prior on the base function: The key idea of the causal prior, already used in [1], is to179

use the observational dataset DO and the do-calculus to construct the prior mean and variance of a180

GP that is used to model an intervention function. Our aim is to compute such prior for the causal181

effect of the base set I ∪C on Y . The causal prior has the benefit of carrying causal information but182

at the expense of requiring DO to estimate the causal effect. Any sensible prior can be used in this183

step, so the availability of DO is not strictly necessity. However, in this paper we stick to the causal184

prior since it provides an explicit way of combining experimental and observational data.185

For simplicity, in the sequel we use b = (v, c) to denote in compact form the values of the186

variables in the base set I = v and C = c. Using do-calculus we can compute f̂(b) = f̂(v, c) =187

Ê[Y |do (I = v) , c] and σ̂(b) = σ̂(v, c) = V̂[Y |do (I = v) , c]1/2 where V̂ and Ê represent the188

variance and expectation of the causal effects estimated from DO. The causal prior f(b) ∼189

GP(m(b),K(b,b′)) is defined to have prior mean and variance given by m(b) = f̂(b) and190

K(b,b′) = kRBF(b,b
′)+σ̂(b)σ̂(b′) respectively. The term kRBF(b,b

′) := σ2
f exp(−||b−b′||2/2l2)191

denotes the radial basis function (RBF) kernel, which is added to provide more flexibility to the model.192

Step 2, propagating the distribution to all elements in T: In Section 3.1 we showed how, ∀Xs ∈193

P(X), ts(x) = Ls(f)(x) with f given by the intervention function defined in Theorem 3.1. By194

linearity of the causal operator, placing a GP prior on f induces a well-defined joint GP prior195

distribution on T. In particular, for each Xs ∈ P(X), we have ts(x) ∼ GP(ms(x), ks(x,x
′)) with:196

ms(x) =

∫
· · ·
∫
m(b)πs (x,bs) dbs (4)

ks(x,x
′) =

∫
· · ·
∫
K(b,b′)πs (x,bs)πs (x

′,b′
s) dbsdb′

s. (5)

where bs = (vN
s , c) is the subset of b including only the v values corresponding to the set INs .197

Let D be a finite set of inputs for the functions in T, that is D =
⋃

s{xsi}Mi=1. T computed in D fol-198

lows a multivariate Gaussian distribution that is TD ∼ N (mT(D),KT(D,D)) with KT(D,D) =199

(KT(x,x
′))x∈D,x′∈D and mT(D) = (mT(x))x∈D. In particular, for two generic data points200

xsi,xs′j ∈ D with s and s′ denoting two distinct functions we have mT(xsi) = E[ts(xi)] = ms(xi)201

and KT(xsi,xs′j) = Cov[ts(xi), ts′(xj)].202

When computing the covariance function across intervention sets and intervention levels we differen-203

tiate between two cases. When both ts and ts′ are different from f , we have:204

Cov[ts(xi), ts′(xj)] =

∫
· · ·
∫
K(b,b′)πs (xi,bs)πs′ (xj ,b

′
s′) dbsdb′

s′ .
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∏

s
p(ts(x))

ts(x) ∼ GP(m+(x),K+(x,x′))

f(b) ∼ GP(m+(b),K+(b,b′))

p(T) =
∏

s
p(ts(x)|f)

f(b) ∼ GP(0,KRBF (b,b
′))

ts(x) =
∫
f(b)πs(x,bs)dbs

p(T) =
∏

s
p(ts(x)|f)

gp

gp
+

dag-gp

dag-gp
+

Mechanistic
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t
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Interventional data

ts(x) =
∫
f(b)πs(x,bs)dbs

Figure 3: Models for learning the intervention functions T defined on a DAG. The do-calculus
allows estimating T when only the observational data is available. When the interventional data is
also available, one can use a single-task model (denoted by GP) or a multi-task model (denoted by
DAG-GP). When both data types are available one can combine them using the causal prior parameters
represented by m+(·) and k+(·, ·). The resulting models are denoted by GP+ and DAG-GP+.

If one of the two functions equals f , this expression further reduces to:205

Cov[ts(xi), ts′(xj)] =

∫
K(b,b′)πs′ (xj ,b

′
s′) db′

s′ .

Note that the integrating measures πs (·, ·) and πs′ (·, ·) allow to compute the covariance between206

points that are defined on spaces on possibly different dimensionality, a scenario that traditional207

multi-output GP models are unable to handle. The prior p(T) enables to merge different data types208

and to account for the natural correlation structure among interventions defined by the topology209

of the DAG. For this reason we call this formulation the DAG-GP model. The parameters in Eqs.210

(4)–(5) can be computed in closed form only when K(b,b′) is an RBF kernel and the integrating211

measures are assumed to be Gaussian distributions. In all other cases, one needs to resort to numerical212

approximations e.g. Monte Carlo integration in order to compute the parameters of each ts(x).213

Posterior distribution on T: The posterior distribution p(TD|DI) can be derived analytically via214

standard GP updates. For any set D, p(TD|DI) will be Gaussian with parameters mT|DI (D) =215

mT(D) +KT(D,X
I)[KT(X

I ,XI) + σ2I](TI −mT(X
I)) and KT|DI (D,D) = KT(D,D) −216

KT(D,X
I)[KT(X

I ,XI) + σ2I]KT(X
I , D). See Fig. 2 for an illustration of the DAG-GP model.217

4 A helicopter view218

Different variations of the DAG-GP model can be considered depending on the availability of both219

observational DO and interventional data DI (Fig. 3). Our goal here is not to be exhaustive, nor220

prescriptive, but to help to give some perspective. When DI is not available do-calculus is the only221

way to learn T, which in turns requires DO. When both data types are not available, learning T via a222

probabilistic model is not possible unless the causal effects can be transported from an alternative223

population. In this case mechanistic models based on physical knowledge of the process under224

investigation are the only option. When DI is available one can consider a single task or a multi-task225

model. If f does not exist, a single GP model needs to be considered for each intervention function.226

Depending on the availability ofDO, integrating observational data into the prior distribution (denoted227

by GP+) or adopting a standard prior (denoted by GP) are the two alternatives. In both cases, the228

experimental information is not shared across functions and learning T requires intervening on all229

sets in P(X). When instead f exists, DAG-GP can be used to transfer interventional information and,230

depending on DO, also incorporating observational information a priori (DAG-GP+).231

5 Experiments232

This section evaluates the performance of the DAG-GP model on two synthetic settings and on a real233

world healthcare application (Fig. 4). We first learn T with fixed observational and interventional data234

(§5.1) and then use the DAG-GP model to solve active learning (AL) (§5.2) and Bayesian Optimization235

(BO) (§5.3)4. Implementation details are given in the supplement.236

4Code and data for all the experiments will be provided.
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E

D

Y
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F
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(c)

Figure 4: Examples of DAGs (in black) for which f exists and the DAG-GP model can be formulated.
The red edges, if added, prevent the identification of f making the transfer via DAG-GP not possible.

Table 1: RMSE performances across 10 initializations of DI . See Fig. 3 for details on the compared
methods. do stands for the do-calculus. N is the size of DO. Standard errors in brackets.

N = 30 N = 100

DAG-GP+ DAG-GP GP+ GP do DAG-GP+ DAG-GP GP+ GP do

DAG1
0.46 0.57 0.60 0.77 0.70 0.43 0.57 0.45 0.77 0.52

(0.06) (0.09) (0.2) (0.27) - (0.05) (0.08) (0.05) (0.27) -

DAG2
0.44 0.45 0.62 1.26 1.40 0.36 0.41 0.58 1.28 1.41
(0.1) (0.13) (0.10) (0.11) - (0.09) (0.12) (0.07) (0.11) -

DAG3
0.05 0.44 0.23 0.89 0.18 0.06 0.44 0.48 0.89 0.23

(0.04) (0.12) (0.03) (0.23) - (0.04) (0.12) (0.06) (0.23) -

Baselines: We run our algorithm both with (DAG-GP+) and without (DAG-GP) causal prior and237

compare against the alternative models described in Fig. 3. Note that we do not compare against238

alternative multi-task GP models because, as mentioned in Section 1.2, the models existing in239

the literature cannot deal with functions defined on different inputs spaces and thus can not be240

straightforwardly applied to our problem.241

Performance measures: We run all models with different initialisation of DI and different sizes of242

DO. We report the root mean square error (RMSE) performances together with standard errors across243

replicates. For the AL experiments we show the RMSE evolution as the size of DI increases. For the244

BO experiments we report the convergence performances to the global optimum.245

5.1 Learning T from data246

We test the algorithm on the DAGs in Fig. 4 and refer to them as (a) DAG1, (b) DAG2 and (c) DAG3.247

DAG3 is taken from [32] and [13] and is used to model the causal effect of statin drugs on the levels248

of prostate specific antigen (PSA). We consider the nodes {A,C} in DAG2 and {age, BMI, cancer} in249

DAG3 to be non-manipulative. We set the size of DI to 5× |T| for DAG1 (|T| = 2), to 3× |T| for250

DAG2 (|T| = 6) and to |T| for DAG3 (|T| = 3). As expected, GP+ outperforms GP incorporating the251

information in DO (Tab. 1). Interestingly, GP+ also outperforms DAG-GP in DAG3 when N = 30252

and in DAG1 when N = 100. This depends on the effect that DO has, through its size N and its253

coverage of the interventional domains, on both the causal prior and the estimation of the integrating254

measures. Lower N and coverage imply not only a less precise estimation of the do-calculus255

but also a worse estimation of the integrating measures and thus a lower transfer of information.256

Higher N and coverage imply more accurate estimation of the causal prior parameters and enhanced257

transfer of information across experiments. In addition, the way DO affects the performance results258

it’s specific to the DAG structure and to the distribution of the exogenous variables in the SCM.259

More importantly, Tab. 1 shows how DAG-GP+ consistently outperforms all competing methods260

by successfully integrating different data sources and transferring interventional information across261

functions in T. Differently from competing methods, these results holds across different N and DI262

values making DAG-GP+ a robust default choice for any application.263

5.2 DAG-GP as surrogate model in Active Learning264

The goal of AL is to design a sequence of function evaluations to perform in order to learn a target265

function as quickly as possible. We run DAG-GP within the AL algorithm proposed by [20] and select266

observations based on the Mutual Information (MI) criteria extended to a multi-task setting (see §5.2267
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Figure 5: AL results. Convergence of the RMSE performance across functions in T and across
replicates as more experiments are collected. DAG-GP+ gives our algorithm with the causal prior
while DAG-GP is our algorithm with a standard prior. # interventions is the number of experiments
for each Xs. Shaded areas give± standard deviation. See Fig. 3 for details on the compared methods.

Figure 6: BO results. Convergence of the CBO algorithm to the global optimum (E[Y ?|do (Xs = x)])
when our algorithm is used as a surrogate model with (DAG-GP+) and without (DAG-GP) the causal
prior. See the supplement for standard deviations across replicates.

in the supplement for details). Fig. 5 shows the RMSE performances as more interventional data268

are collected. Across different N settings, DAG-GP+ converges to the lowest RMSE performance269

faster then competing methods by collecting evaluations in areas where: (i) DO does not provide270

information and (ii) the predictive variance is not reduced by the experimental information transferred271

from the other interventions. As mentioned before, DO impacts on the causal prior parameters via272

the do-calculus computations. When the latter are less precise, because of lower N or lower coverage273

of the interventional domains, the model variances for DAG-GP+ or GP+ are inflated. Therefore,274

when DAG-GP+ or GP+ are used as surrogate models, the interventions are collected mainly in areas275

where DO is not observed thus slowing down the exploration of the interventional domains and the276

convergence to the minimum RMSE (Fig. 5 DAG2, N = 100).277

5.3 DAG-GP as surrogate model in Bayesian optimization278

The goal of BO is to optimize a function which is costly to evaluate and for which an explicit279

functional form is not available by making a series of function evaluations. We use DAG-GP within280

the CBO algorithm proposed by [1] (Fig. 6 right plot) where a modified version of the expected281

improvement is used as an acquisition functions to explore a set of intervention functions. We282

compare DAG-GP against the single-task models used in [1]. We found DAG-GP to significantly speed283

up the convergence of CBO to the global optimum both with and without the causal prior.284

6 Conclusions285

This paper addresses the problems of modelling the correlation structure of a set of intervention286

functions defined on the DAG of a causal model. We propose the DAG-GP model, which is based287

on a theoretical analysis of the DAG structure, and allows to share experimental information across288

interventions while integrating observational and interventional data via do-calculus. Our results289

demonstrate how DAG-GP outperforms competing approaches in term of fitting performances. In290

addition, our experiments show how integrating decision making algorithms with the DAG-GP model291

is crucial when designing optimal experiments as DAG-GP accounts for the uncertainty reduction292

obtained by transferring interventional data. Future work will extend the DAG-GP model to allow293

for transfer of experimental information across environments whose DAGs are partially different. In294

addition, we will focus on combining the proposed framework with a causal discovery algorithm so295

as to account for uncertainty in the graph structure.296
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7 Broader Impact297

Computing causal effects is an integral part of scientific inquiry, spanning a wide range of questions298

such as understanding behaviour in online systems, assessing the effect of social policies, or inves-299

tigation the risk factors for diseases. By combining the theory of causality with machine learning300

techniques, Causal Machine Learning algorithms have the potential to highly impact society and301

businesses by answering what-if questions, enabling policy-evaluation and allowing for data-driven302

decision making in real-world contexts. The algorithm proposed in this paper falls into this category303

and focuses on addressing causal questions in a fast and accurate way. As shows in the experiments,304

when used within decision making algorithms, the DAG-GP model has the potential to speed up the305

learning process and to enable optimal experimentation decisions by accounting for the multiple306

causal connections existing in the process under investigation and their cross-correlation. Our algo-307

rithm can be used by practitioners in several domains. For instance, it can be used to learn about the308

impact of environmental variables on coral calcification [12] or to analyse the effects of drugs on309

cancer antigens [13]. In terms of methodology, while the DAG-GP model represents a step towards a310

better model for automated decision making, it is based on the crucial assumption of knowing the311

causal graph. Learning the intervention functions of an incorrect causal graph might lead to incorrect312

inference and sub-optimal decisions. Therefore, more work needs to be done to account for the313

uncertainty in the graph structure.314
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