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Abstract

We introduce a framework for inference in general state-space hidden Markov1

models (HMMs) under likelihood misspecification. In particular, we leverage2

the loss-theoretic perspective of Generalized Bayesian Inference (GBI) to define3

generalised filtering recursions in HMMs, that can tackle the problem of inference4

under model misspecification. In doing so, we arrive at principled procedures for5

robust inference against observation contamination by utilising the β-divergence.6

Operationalising the proposed framework is made possible via sequential Monte7

Carlo methods (SMC), where most standard particle methods, and their associated8

convergence results, are readily adapted to the new setting. We apply our approach9

to object tracking and Gaussian process regression problems, and observe improved10

performance over both standard filtering algorithms and other robust filters.11

1 Introduction12

Estimating the hidden states in dynamical systems is a long-standing problem in many fields of sci-13

ence and engineering. This can be formulated as an inference problem of a general state-space hidden14

Markov model (HMM) defined via two processes, the hidden process (xt)t≥0, and the observation pro-15

cess (yt)t≥1. More precisely, we consider the general state-space hidden Markov models of the form16

x0 ∼ π0(x0), (1) xt|xt−1 ∼ ft(xt|xt−1), (2) yt|xt ∼ gt(yt|xt), (3)17

18 where xt ∈ X for t ≥ 0, yt ∈ Y for t ≥ 1, ft is a Markov kernel on X and gt : Y × X→ R+ is the19

likelihood function. We assume X ⊆ Rdx and Y ⊆ Rdy for convenience; however, the extension to20

general Polish spaces follows directly. The key inference problem in this model class is estimating21

is the filtering distributions, i.e. the posterior distributions of the hidden states (xt)t≥0 given the22

observations y1:t denoted as (πt(xt|y1:t))t≥1 — commonly known as Bayesian filtering [1, 2].23

Under assumptions of linearity and Gaussianity, the inference problem for the hidden states of HMMs24

can be solved analytically via the Kalman filter [3]. However, inference for general HMMs of the form25

(1)–(3) with nonlinear, non-Gaussian transitions and likelihoods lacked a general, principled solution26

until the arrival of the particle filtering schemes [4]. Particle filters (PFs) have become ubiquitous for27

Bayesian filtering in the general setting. In short, the PFs retain a weighted collection of Monte Carlo28

samples representing the filtering distribution πt(xt|y1:t) and recursively approximate the sequence29

of distributions (πt)t≥0 using a particle mutation-selection scheme [5].30

While PFs (and other inference schemes for HMMs) implicitly assume that the assumed model31

is well-specified, it is important to consider whether the proposed model class includes the true32

data-generating mechanism (DGM). In particular, for general state-space HMMs, misspecification33

can occur if the true dynamics of the hidden process significantly differ from the assumed model34
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ft, or if the true observation model is markedly different from the assumed likelihood model gt, e.g.35

corruption by heavy tailed noise. The latter case is of widespread interest within the field of robust36

statistics [6] and has recently attracted significant interest in the machine learning community [7]. It37

is the setting that this paper seeks to address.38

When the true DGM cannot be modelled, one principled approach to address misspecification is39

Generalized Bayesian Inference (GBI) [8]. This approach views classical Bayesian inference as40

a loss minimisation procedure in the space of probability measures, a view first developed by [9].41

In particular, the standard Bayesian update can be derived from this view, where a loss function42

is constructed using the Kullback-Leibler (KL) divergence from the empirical distribution of the43

observations to the assumed likelihood [8]. The KL divergence is sensitive to outliers [10], hence44

the overall inference procedure is not robust to observations that are incompatible with the assumed45

model. A principled remedy is to replace the KL divergence with alternative discrepancy, such as the46

β-divergence, which makes the overall procedure more robust [11] while retaining interpretability.47

Previous work on robust particle filters have been done for handling outliers, sensor failures and48

misspecification of the transition model [12, 13, 14, 15, 16, 17, 18, 19]. However, these approaches49

are either based on problem-specific heuristic outlier detection schemes, or make strong assumptions50

about the DGM in order to justify the use of heavy-tailed distributions [15]. This requires knowledge51

of the contamination mechanism that is implicitly embedded in the likelihood.52

In this work we propose a principled approach to robust filtering that does not impose additional53

modelling assumptions. We adapt the GBI approach of [8] to the Bayesian filtering setting and develop54

sequential Monte Carlo (SMC) methods for inference. We illustrate the performance of this approach,55

using the β-divergence, to mitigate the effect of outliers. We show that this approach significantly56

improves the PF performance in settings with contaminated data, while retaining a general and57

principled approach to inference. We provide empirical results that demonstrate improvement over58

Kalman and particle filters for both linear and non-linear HMMs. We further provide comparisons59

with various robust schemes against heavy-tailed noise, including t-based likelihoods [15] or auxiliary60

particle filters (APFs) [12]. Finally, exploiting the state-space representations of Gaussian processes61

(GPs) [20], we demonstrate our framework on London air pollution data using robust GP regression62

which has linear time-complexity in the number of observations.63

Notation. We denote the space of bounded, Borel measurable functions on X asB(X). We denote the64

Dirac measure located at y as δy(dx) and note that f(y) =
∫
f(x)δy(dx) for f ∈ B(X). We denote65

the Borel subsets of X as B(X) and the set of probability measures on (X,B(X)) as P(X). For a66

probability measure µ ∈ P(X) and ϕ ∈ B(X), we write µ(ϕ) :=
∫
ϕ(x)µ(dx). Given a probability67

measure µ, we abuse the notation denoting its density with respect to the Lebesgue measure as µ(x).68

2 Background69

2.1 Generalized Bayesian Inference (GBI)70

Bayesian inference implicitly assumes that the generative model is well-specified, in particular, the71

observations are generated from the assumed likelihood model. When this assumption is not expected72

to hold in real-world scenarios, one may wish to take into account the discrepancy between the true73

DGM and the assumed likelihood. GBI [8] is an approach to deal with such cases. Here, we present74

the main idea of GBI and refer the reader to the appendix for a more detailed description and to the75

original reference for a full-treatment.76

For the simple Bayesian updating setup, consider a prior π0 and the assumed likelihood function77

g(y|x). The posterior π(x|y) =: π(x) is given by Bayes rule π(x) = π0(x) g(y|x)
Z , where Z :=78 ∫

g(y|x)π0(x)dx. [9] and [8] showed that this update can be seen as a special case of a more general79

update rule, which can be described as a solution of an optimisation problem in the space of measures.80

This leads to a more general belief updating rule given by81

π(x) = π0(x)
G(y|x)

Z
, (4)

with G(y|x) := exp(−`(x,y)) where `(x,y) is a loss function connecting the observations to the82

model parameters. Specifying `(x,y) as the cross-entropy (from the KL-divergence) of the assumed83

likelihood relative to the empirical distribution of the data recovers the standard Bayes update.84
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As noted before, the standard Bayes update is not robust to outliers due to the properties of KL85

divergence [10]. Hence, substituting the cross-entropy with a more robust loss such as the β-cross-86

entropy [7], based on the β-divergence, can make the inference more robust. Specifically, in this87

setting the generalised Bayes update for the likelihood g(y|x) is written as π(x) = π0(x)G
β(y|x)
Zβ

,88

where89

Gβ(y|x) = exp

(
1

β
g(y|x)β − 1

β + 1

∫
g(y′|x)β+1dy′

)
. (5)

One can consider Gβ(y|x) as a generalised likelihood, resulting from the use of a different loss90

function compared to the standard Bayes procedure. Here β is a hyperparameter that needs to be91

selected depending on the degree of misspecification. In general β ∈ (0, 1) and limβ→0G
β(y|x) =92

g(y|x). Thus, intuitively, small β values are suitable for mild model misspecification and large β93

values are suitable when the assumed model is expected to significantly deviate from the true model.94

In the experimental section, we devote some attention to the selection of β and sensitivity analysis.95

Generalised Bayesian updating is more robust against outliers if a suitable divergence is chosen96

[21, 22, 10]. We note that GBI is conceptually different from approximate Bayesian methods with97

alternative divergences such as [23, 24, 25, 26]. While these methods target approximate posteriors98

that minimise some discrepancy from the true posterior and are not necessarily robust, GBI methods99

change the inference target from the standard Bayesian posterior (obtained by setting `(x,y) to the100

KL divergence) to a different target distribution with more desirable properties such as robustness to101

outliers. Later, we demonstrate how the GBI approach can be used to construct robust PF procedures.102

2.2 Sequential Monte Carlo for HMMs103

Let x1:T be a hidden process with xt ∈ X and y1:T an observation process with yt ∈ Y. Our goal is104

to conduct inference in HMMs of the form (1)–(3) where π0(·) is a prior probability distribution on105

the initial state x0, ft(x|x′) is a Markov transition kernel on X and gt(yt|xt) is the likelihood for106

observation yt. The observation sequence y1:T is assumed to be fixed but otherwise arbitrary.107

The typical interest in probabilistic models is the estimation of expectations of general test functions108

with respect to the posterior distribution, in this case, of the hidden process πt(xt|y1:t) and the109

associated joint distributions pt(x0:t|y1:t). More precisely, given a bounded test function ϕ ∈ B(X),110

we are interested in estimating integrals of the form111

πt(ϕ) =

∫
ϕ(xt)πt(xt|y1:t). (6)

Kalman filtering [3, 1] can be used to obtain closed form expressions for (πt, pt)t≥0 if ft and gt are112

linear-Gaussian. However, for non-linear or non-Gaussian cases, the target distributions are almost113

always intractable, requiring an alternative approach, such as SMC methods [5, 27]. Known as Particle114

Filters (PFs) when employed in the HMM setting, SMC methods combine importance sampling and115

resampling algorithms tailored to approximate the solution of the filtering and smoothing problems.116

In a typical iteration, a PF method proceeds as follows: given a collection of samples {x(i)
t−1}Ni=1117

representing the posterior πt−1(xt−1|y1:t−1), it first samples from a (possibly observation dependent)118

proposal x̄(i)
t ∼ qt(xt|x(i)

1:t−1,y1:t). It then computes weights for each sample (particle) x̄(i)
t−1 in119

the collection for a given observation yt, evaluating its fitness with respect to the likelihood gt as120

w
(i)
t ∝ gt(yt|x̄(i)

t )
ft(x̄

(i)
t |x

(i)
t−1)

qt(x̄
(i)
t |x

(i)
1:t−1,yt)

, where
∑N
i=1 w

(i)
t = 1. Finally, an optional resampling step 1121

is used to prevent degeneracy, leading to x
(i)
t ∼

∑N
i=1 w

(i)
t δ

x̄
(i)
t

(dxt). One can then construct the122

empirical measure πNt (dxt|y1:t) = 1
N

∑N
i=1 δx(i)

t
(dxt), and the estimate of πt(ϕ) in (6) is given by123

πNt (ϕ) =
1

N

N∑
i=1

ϕ(x
(i)
t ). (7)

1In the simplest form, drawing N times with replacement from the weighted empirical measure to obtain
an unweighted sample whose empirical distribution approximates the same target; see [28] for an overview of
resampling schemes and their properties.
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Algorithm 1 The generalised particle filter

Input: Observation sequence y1:T , number of samples N , proposal distributions q1:T (·).
Initialize: Sample {x̄(i)

0 }Ni=1 for the prior π0(x0).
for t = 1 to T do

Sample: x̄(i)
t ∼ qt(xt|x

(i)
1:t−1,yt), for i = 1, . . . , N.

Weight: w(i)
t ∝ exp(−`(x̄(i)

t ,yt))
ft(x̄

(i)
t |x

(i)
t−1)

qt(x̄
(i)
t |x

(i)
1:t−1,yt)

, for i = 1, . . . , N.

Resample: x(i)
t ∼

∑N
i=1 w

(i)
t δ

x̄
(i)
t

(dxt), for i = 1, . . . , N.

end for

If the proposal is chosen as the transition density, i.e., qt(xt|x(i)
1:t−1,yt) = ft(xt|x(i)

t−1), we obtain124

the bootstrap particle filter (BPF) [4]. This corresponds to the simple procedure of sampling x̄
(i)
t125

from ft(xt|x(i)
t−1), and setting its weight w(i)

t ∝ gt(yt|x̄
(i)
t ).126

3 Generalised Bayesian filtering127

3.1 A simple generalised particle filter128

As explained in Section 2.1, given a standard probability model comprised of the prior π0(x) and a129

likelihood g(y|x), the general Bayes update defines an alternative, generalised likelihood G(y|x).130

The sequence of generalised likelihoods, denoted as Gt(yt|xt) for t ≥ 1, in an HMM yields a joint131

generalised posterior density which factorises as132

pt(x0:t|y1:t) ∝ π0(x0)

t∏
k=1

fk(xk|xk−1)Gk(yk|xk), (8)

where Gt(yt|xt) := exp(−`t(xt,yt)). Inference can be done via SMC applied to this sequence of133

twisted probabilities defining a Feynman-Kac flow in the terminology of [29].134

Comparing the update rule in (4) to the standard Bayes update suggests a generalisation of the particle135

filter. In particular, under the model in (1)–(3), one can perform generalised inference using (ft)t≥1136

as usual, but replacing the likelihood with (Gt)t≥1. Hence, a generalised sequential importance137

resampling PF (given fully in Algorithm 1) keeps the sampling step intact, but applies a different138

weight computation step w
(i)
t ∝ exp(−`(x̄(i)

t ,yt))
ft(x̄

(i)
t |x

(i)
t−1)

qt(x̄
(i)
t |x

(i)
1:t−1,yt)

. Indeed, most PFs (including the139

APF, see Algorithm 3 in the appendix) and related algorithms can be adapted to the GBI context.140

3.2 The β-BPF and the β-APF141

The β-BPF is derived by selecting `t(xt,yt) as the β-divergence and applying the BPF procedure142

with the associated generalised likelihood. In this case, the loss is143

`βt (xt,yt) =
1

β + 1

∫
gt(y

′
t|xt)β+1dy′t −

1

β
gt(yt|xt)β . (9)

We can then construct the general β-likelihood as144

Gβt (yt|xt) ∝ exp(−`βt (xt,yt)). (10)

In this instance, the use of the β-divergence provides the sampler with robust properties [11]. This145

can informally be seen from the form of the loss function in (9), where small values of β temper146

the likelihood extending its tails making the loss more forgiving to outliers. The β-BPF procedure147

is given in Algorithm 2 in the appendix. The β-APF (Algorithm 3 in the appendix) is an Auxiliary148

Particle Filter [12, 30] adapted to the GBI setting, and is derived similarly to the β-BPF.149

Note that the integral term in (9) is independent of xt and can be absorbed, without evaluation, into150

the normalising constant when xt is a location parameter for a symmetric gt(·) and Y is a linear151

subspace of Rdy . More generally, if gt(·) is a member of the exponential family, the integral can be152
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computed by identifying gβt (·) with the kernel of another member of the same family with canonical153

parameters scaled by β. The overhead of computing Gβt (·) is negligible in this instance, which is154

not too restrictive in the context of misspecitfied models. For other likelihoods, unbiased estimators155

for Gβt (·), e.g. Poisson estimator [31], can be used in a random weight particle filter framework156

[32], where the overhead of computing Gβt (·) will depend on the variance of the estimator and the157

convergence results from this setting apply but as [32] demonstrate this cost need not be prohibitive.158

3.3 Selecting β159

It is often the case that the primary goal of inference, particularly in the presence of model misspeci-160

fication, is prediction. Hence, we propose choosing divergence parameters that lead to maximally161

predictive posterior belief distributions. In particular, for the β-BPF and β-APF, define Lβ(yt, ŷt) as162

a loss function of the observations yt and the predictions ŷt. We propose to choose β as the solution163

to the following decision-theoretic optimisation problem:164

min
β

aggTt=1(Ep(ŷt|y1:t−1)Lβ(yt, ŷt)), (11)

where agg denotes an aggregating function. This approach requires some training data to allow the165

selection of β. In filtering contexts, this can be historical data from the same setting or other available166

proxies. For offline inference one could also employ the actual data within this framework. Since,167

this proposal relies on the quality of the observations, which in the case of outlier contamination is168

violated by definition. To remedy this, we propose choosing robust versions for agg and L, e.g. the169

median and the (standardised) absolute error respectively.170

4 Theoretical guarantees171

Theoretical guarantees for SMC methods can be extended to the generalised Bayesian filtering172

setting. Since the generalised Bayesian filters can be seen as a standard SMC methods with modified173

likelihoods, the same analytical tools can be used in this setting. We provide guarantees for the β-BPF174

but emphasise that essentially the same results can be obtained much more broadly (including for the175

β-APF via the approach of [30]). We denote the generalised filters and generalised posteriors for the176

HMM in the β-divergence setting as πβt and pβt respectively. Consequently, corresponding quantities177

constructed by the β-BPF are denoted as πβ,Nt and pβ,Nt .178

Although the generalised likelihoods Gβt (yt|xt) are not normalised, they can be considered as179

potential functions [29]. Since Gβt (yt|xt) < ∞ whenever gt(yt|xt) < ∞ and β is fixed, we can180

adapt the standard convergence results into the generalised case.181

Assumption 1. For a fixed arbitrary observation sequence y1:T ∈ Y⊗T , the potential functions182

(Gβt )t≥1 are bounded and Gβt (yt|xt) > 0, ∀t ∈ {1, . . . , T} and xt ∈ X.183

This assumption holds for most used likelihood functions and their generalised extensions.184

Theorem 1. For any ϕ ∈ B(X) and p ≥ 1, ‖πβ,Nt (ϕ)− πβt (ϕ)‖p ≤ ct,p,β‖ϕ‖∞√
N

, where ct,p,β <∞185

is a constant independent of N .186

The proof sketch and the constant ct,p,β are in the supplement. This Lp bound provides a theoretical187

guarantee on the convergence of particle approximations to generalised posteriors. The special case188

when p = 2 also provides the error bound for the mean-squared error. It is well known that Theorem 1189

with p > 2 leads to to a law of large numbers via Markov’s inequality and a Borel-Cantelli argument:190

Corollary 1. Under the setting of Theorem 1, limN→∞ πβ,Nt (ϕ) = πβt (ϕ) a.s., for t ≥ 1.191

Finally, a central limit theorem for estimates of expectations with respect to the smoothing distribu-192

tions can be obtained by considering the path space X⊗t. Recall the joint posterior pβt (x1:t|y1:t) and193

consider a test function ϕt : X⊗t → R. We denote ϕβt :=
∫
ϕβt (x1:t)p

β
t (x1:t|y1:t) and denote the194

β-BPF estimate of ϕt with ϕβ,Nt :=
∫
ϕt(x1:t)p

β,N
t (dx1:t).195

Theorem 2. Under the regularity conditions given in [33, Theorem 1],
√
N
(
ϕβ,Nt − ϕβt

)
d−→196

N
(

0, σ2
t,β(ϕt)

)
, as N →∞ where σ2

t,β(ϕt) <∞.197
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The expression for σ2
t,β(ϕt) can be found in the appendix. These results illustrate that the standard198

guarantees for generic particle filtering methods extend to our case.199

5 Experiments200

In this section, we focus on β-BPF illustrating its the properties and empirically verifying its robust-201

ness. We include three experiments in the main text and another in Appendix D. Furthermore, we202

specifically investigate the β-APF in Section 5.2 comparing its behaviour to the β-BPF. Throughout,203

we report the normalised mean squared error (NMSE) and the 90% empirical coverage as goodness-204

of-fit measures. The NMSE scores indicate the mean fit for the inferred posterior distribution and205

the empirical coverage measures the quality of its uncertainty quantification. We note that any claim206

in performance difference is based on the Wilcoxon signed-rank test. Further results and in-depth207

details on the experimental setup are given in the supplementary material.208

5.1 A Linear-Gaussian state-space model209

The Wiener velocity model [34] is a standard model in the target tracking literature,210

where the velocity of a particle is modelled as a Wiener process. The discretised ver-211

sion of this model can be represented as a Linear-Gaussian State-Space model (LGSSM),212

xt = Axt−1 + νt−1, νt ∼ N (0,Q), (12) yt = Hxt + εt, εt ∼ N (0,Σ), (13)213

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.1

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

Kalman Filter
BPF

-BPF
Predictive Selection

Figure 1: The mean metrics over state dimensions for the Wiener
velocity example with pc = 0.1. The top panel presents the NMSE
results (lower is better) and the bottom panel presents the 90%
empirical coverage results (higher is better), on 100 runs. The
vertical dashed line in gold indicate the value of β chosen by the
selection criterion in Section 3.3. The horizontal dashed line in
black in the lower panel indicates the 90% mark for the coverage.

where A,Q are state-transition pa-214

rameters dictated by the continuous-215

time model and H is the observation216

matrix (see Appendix). We simulate217

this model in two-dimensions with218

Σ = I, contaminating the observa-219

tions with a large scale, zero-mean220

Gaussian, N (0, 1002) with probabil-221

ity pc. Our aim is to obtain the222

filtering density under the heavily-223

contaminated setting where optimal224

filters struggle to perform. We com-225

pare our scheme for a large range of226

β to the standard BPF with a Gaus-227

sian likelihood (BPF), as well as the228

(optimal) Kalman filter.229

We shed light onto three questions on230

this simple setup: (a) Does the β-BPF231

produce accurate and well-calibrated232

posterior distributions in the presence233

of contaminated data? (b) Is it sen-234

sitive to the choice β? (c) Does the235

method described in Section 3.3 for236

selecting β return a near optimal re-237

sult?238

Figure 1 shows the results for pc =239

0.1. We observe that (a) the β-BPF outperforms the Kalman filter and the standard BPF for β ≤ 0.2240

while producing well-calibrated posteriors accounting for the uncertainty (for β ∈ [0.01, 0.2] the241

coverage approaches the 90% threshold), (b) we see drastic performance gains (with median NMSE242

scores around 10× smaller than the BPF and 100× smaller that the Kalman filter) for a large range243

of β values, (c) we also see that the β-choice heuristic 2 chooses a well-performing β (gold vertical244

2We apply this choice criterion on an alternative dataset that is obtained from the same simulation but with
90% fewer observations.
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lines in Figure 1). Note that, for most values of β, the β-BPF significantly outperforms both the245

Kalman filter and the standard BPF predictively. The full set of results for the predictive performance246

are presented in Table 4 in Appendix F.1.247

5.2 Terrain Aided Navigation248

Terrain Aided Navigation (TAN) is a challenging estimation problem, where the state evolution249

is defined as in (12) (in three dimensions), but with a highly non-linear observation model, yt =250

h(xt) + εt, where h(·) is a non-linear function, typically including a non-analytic Digital Elevation251

Map (DEM). This problem simulates the trajectory of an aeroplane or a drone over a terrain map,252

where we observe its elevation over the terrain and its distance from its take-off hub from on-board253

sensors (see supplement for more details). We simulate transmission failure of the measurement254

system as impulsive noise on the observations, i.e., i.i.d. draws from a Student’s t distribution with255

ν = 1 degrees of freedom. In other words, we define εt ∼ (1− pc)N (0, 202) + pctν=1(0, 202).256

We apply both the β-BPF and the β-APF to this problem and compare them to the standard BPF257

with the Gaussian (BPF). We also compare against two other robust PF methods from the literature:258

Student’s t (t-BPF) [15] and the APF [12]. We set the degrees of freedom for the t-BPF to the same259

value as the contamination ν = 1.260

10 3
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TAN experiment: aggregate metrics
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Contamination probability pc
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90
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C

BPF t-BPF -BPF = 0.1 APF -APF = 0.1

Figure 2: The mean metrics over state dimensions for the TAN example
for different pc. The top panel presents the NMSE results (lower is better)
and the bottom panel presents the 90% empirical coverage results (higher
is better), both evaluated on 50 runs. The horizontal dashed line in black
in the lower panel indicate the 90% mark for the coverage.

From Figure 2, we observe261

that for low contamination, both262

the β-BPF and the β-APF out-263

perform the standard Gaussian264

BPF, the t-BPF and the APF.265

This shows that the use of t-266

distribution for the low contam-267

ination setting is inappropriate.268

This gap in the performance269

tightens, naturally, as pc grows270

since t-distribution becomes a271

good model for the observations.272

Notably, the performance gaps273

between the standard PFs and274

their β-robustified counterparts275

are similar, indicating that the276

use of the β-divergence in a par-277

ticle filtering procedure does in-278

deed robustify the inference.279

In Figure 3, we plot the filtering280

distributions for the sixth state281

dimension (vertical velocity) obtained from an illustrative run with pc = 0.1. The top panel shows the282

filtering distributions from the (Gaussian) BPF (up) and the β-BPF (down). The locations of the most283

prominent outliers are marked with dashed vertical lines in black. Figure 3 displays the significant284

difference between the two approaches: while the uncertainty for the standard BPF collapses when285

it meets the outliers, e.g. around t = 1700, the β-BPF does not suffer from this problem. This286

performance difference is partly related to the stability of the weights. The lower panel in Figure 3287

demonstrates the effective sample size (ESS) with time for the two filters showing that the β-BPF288

consistently exhibits larger ESS values, avoiding particle degeneracy. The ESS values for the BPF,289

on the other hand, sharply decline when it meets outliers. A similar result is observed for the APF290

versus the β-APF in the figures in the Appendix F.2. Further results on predictive performance can be291

found in Appendix F.2.292

5.3 London air quality Gaussian process regression293

To measure air quality, London authorities use a network of sensors around the city recording pollutant294

measurements. Sensor measurements are susceptible to significant outliers due to environmental295

effects, manual calibration and sensor deterioration. In the experiment, we use Gaussian process (GP)296

regression to infer the underlying signal from a PM2.5 sensor.297
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Figure 3: The left panel shows the inferred marginal filtering distributions for the velocity in the z direction for
the BPF and β-BPF with β = 0.1. The right panel shows the effective sample size with time. The locations of
the most prominent (largest deviation) outliers are shown as dashed vertical lines in black in both panels.

For 1-D time series data, GP inference [35] can be accelerated to linear time in the number of298

observations by formulating an equivalent stochastic differential equation whose solution precisely299

matches the GP under consideration 3 [20]. The resulting model is a LGSSM of the form (12)–300

(13) where the smoothing distribution matches the GP marginals at discrete-times. One can then301

apply smoothing algorithms, such as Rauch Tung Striebel (RTS) [36] or Forward Filters Backward302

Smoothing (FFBS) [37], to obtain the GP posterior. These require a forward filtering step with the303

Kalman filter for RTS or a PF for FFBS. Here, we fit a Matérn 5/2 GP with known hyperparameters304

to a time series from one of the sensors. We plot the median of the signals from the wider sensor305

network to obtain a simple approximation of the ground truth.306

Table 1: GP regression NMSE (higher is better) and 90% empir-
ical coverage for the credible intervals of the posterior predictive
distribution, on 100 runs. Bold indicates statistically significant
best result from Wilcoxon signed-rank test. All presented results
are statistically different from each other according to the test.

median (IQR)

Filter (Smoother) NMSE EC

Kalman (RTS) 0.144(0) 0.685(0)
BPF (FFBS) 0.116(0.015) 0.650(0.020)
(β = 0.1)-BPF (FFBS) 0.061(0.003) 0.760(0.015)
(β = 0.2)-BPF (FFBS) 0.059(0.002) 0.803(0.020)

To further investigate the GP solution of307

the β-BPF (FFBS), we show the fit for308

β = 0.1 and compare it with Kalman309

(RTS) smoothing. In Figure 24 we see310

that the latter is sensitive to outliers forc-311

ing the GP mean towards them while the312

β-BPF is robust and ignores them.313

Table 1 compares results with a Gaus-314

sian likelihood for GP regression with315

Kalman (RTS) smoothing, the standard316

BPF (FFBS) and two runs for the β-BPF317

(FFBS) (β = 0.1 by predictive selection318

as Section 3.3 and β = 0.2 by overall319

best performance). For both choices of β, the β-BPF outperforms all other methods on both metrics .320

6 Conclusions321

We provided a generalised filtering framework based on GBI, which tackles likelihood misspecifi-322

cation in general state-space HMMs. Our approach leverages SMC methods, where we extended323

some analytical results to the generalised case. We presented the β-BPF, a simple instantiation of our324

approach based on the the β-divergence, developed an APF for this setting, and showed performance325

gains compared to other standard algorithms on a variety of problems and contamination settings.326

This work opens up many exciting avenues for future research. Principle among which is online327

learning for model parameters (system identification) in the presence of misspecification. Our328

framework can directly incorporate most estimators found in the SMC literature and the computation329

of derivatives can be tackled with automatic differentiation tools.330

3The SDE representation of a GP depends on the form of the covariance function. In this paper we use a GP
with the Mateŕn 5/2 kernel, which admits a dual SDE representation.
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7 Broader Impact331

Robust inference in the context of misspecified models is a topic of broad interest. However, there are332

a few robust generally-applicable methods which can be employed in the context of online inference333

in time series settings. This paper provides a principled solution to this problem within a formal334

framework backed by theoretical guarantees and opening up the benefits to multiple application335

domains. The illustrative applications demonstrate the potential improvements in settings including336

navigation and Gaussian process regression, which, if realised more widely, could have wide-reaching337

impact. We hope that this inspires the community to build-on or apply our work to other challenging338

real-world scenarios.339

Of particular interest is the application of Robust SMC methods, like the β-BPF and the auxiliary340

counterpart which were developed in this work, to impactful data-streaming applications in environ-341

mental monitoring and forecasting. Indeed, our research in this area was motivated by a real-world342

application in which existing techniques were inadequate (see anonymized reference for more details).343

We have demonstrated the benefits such methods in proof-of-concept work and are incorporating the344

resulting algorithms into a fully-developed platform, that has been in development for approximately345

three years. We are partnering with local authorities to help in directly informing policy makers and346

ultimately the general public.347

More widely, this work provides an additional illustration that the GBI framework can provide348

good solutions to challenging problems in the world of misspecified framework and hence provides349

additional motivation to further investigate this extremely promising but rather new direction.350
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