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0.1 Introduction

This thesis is concerned with the theory of optimal stopping and martingale op-

timal transport, and its applications to the pricing and hedging of American-type

contingent claims.

In the first chapter we revisit the classical optimal stopping problem in con-

tinuous time and explore a delicate connection between semimartingale and Marko-

vian formulations of the problem. More specifically, in the Markovian setting we

are motivated by the question of whether the value function, corresponding to the

optimal stopping problem, belongs to a certain class of functions (i.e. the domain of

the extended or martingale generator) associated to the underlying Markov process.

We show that the answer follows naturally from the fundamental property of the

value process in a more general, semimartingale setting. We investigate applications

of these results to the dual formulation of the optimal stopping problem and the

classical smooth fit principle.

The goal of the second chapter is to study the problem in martingale optimal

transport, which is to move mass from a starting law (on R) to a terminal law (on

R) in a way which respects the martingale property. One method is the ‘shadow em-

bedding’ of Beiglböck and Juillet [10]. Using the potential functions of the starting

and terminal laws, we show how to explicitly construct the associated shadow mea-

sure. We also discuss the properties of the left-curtain martingale coupling, which

is a coupling that arises (via shadow measure) from a certain parametrisation of the

marginals. This coupling turns out to be optimal for the novel optimal martingale

transport with stopping problem studied in the third chapter.

The third chapter studies the problem of finding the highest robust or model-

independent price of the American put option given the prices of liquid European

options, in a simple (but non-trivial) two time period setting. Combining ideas

from the theory of optimal stopping and martingale optimal transport, we find,

under some simplifying but still general conditions on the given data, the optimal

model and the optimal stopping time. We also explicitly calculate the cheapest

superhedging trading strategy.

In the fourth chapter our goal is to find a specific geometric description of the

left-curtain martingale coupling, which can be viewed as a martingale counterpart of

the monotone Hoeffding-Fréchet coupling in the classical optimal transport. While

this is of independent interest, we also show that this generalised martingale coupling

maximises the price of the American put option (studied in the third chapter under

some simplifying assumptions).
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0.1.1 Classical optimal stopping

Consider the optimal stopping problem where we observe a stochastic (payoff or

gains) process and seek for the time instance at which the expected value of this

process is maximised. Two natural questions arise: can we characterise an optimal

stopping rule and what is the maximal value?

In the formulation of optimal stopping problems where the underlying payoff

process is given by a sequence of random variables, Snell [103] discovered a crucial

supermartingale characterisation of the associated value process and showed that

stopping at the first instance when the value process is equal to the gains process is

optimal. In continuous time, El Karoui [38] studied the problem when the payoff is

given by a progressive process. In this case it is not clear a priori that the value of the

game at every time instance can be identified with a progressive value process, and,

therefore, an important step is to find such a characteristic process. This problem

is solved by employing some delicate results from the General Theory of Processes

(the corresponding supermartingale process is historically called the Snell envelope

of the reward process). In the same setting, a penalisation method introduced by

Maingueneau [79] is used to show, under some right regularity conditions on the re-

ward process, the existence of ε-optimal stopping times. If, in addition, one imposes

left regularity conditions on the gains process, the minimal optimal stopping time is

indeed the first time the gains and value processes coincide. Moreover, if the gains

process is sufficiently integrable, the value process admits a Doob-Meyer decom-

position (as a difference of a uniformly integrable martingale and a non-decreasing

process of integrable variation). This decomposition is further used to characterise

the maximal optimal stopping time as the first time the increasing component of the

Doob-Meyer decomposition of the value process is positive. For the theory of the

optimal stopping problems in a more general framework, where the gains are given

by an admissible family of random variables, we refer to Kobylanksi and Quenez

[72] and references therein.

The relationship between the supermartingale characterisation of the value

process, the maximal stopping time and the reward process is further investigated

in the first chapter. In particular, from the general results on optimal stopping

mentioned above (see El Karoui [38]), the value process is a martingale (and thus the

non-decreasing finite variation part in its Doob-Meyer decomposition must be zero)

up until the maximal optimal stopping time. Now, in addition, suppose the gains

process is also a semimartingale (a sum of a local martingale and a process of finite

variation). Then (just as in the Hahn-Jordan decomposition for measures) we can

further decompose the finite variation part into (mutually singular) decreasing and

2



increasing components. The intuitive but crucial observation is that off the support

of the decreasing process, the reward process is (locally) a submartingale, so that it

is non-decreasing in (conditional) expectation and thus it is suboptimal to stop. In

this case we, therefore, again expect the value process to be (locally) a martingale.

This suggests that the finite variation part in the Doob-Meyer decomposition of the

value process increases only if the decreasing component of the finite variation part

of the reward process decreases. We prove the following fundamental result:

The finite-variation process in the Doob-Meyer decomposition of the

value process is absolutely continuous with respect to the decreasing

part of the corresponding finite-variation process in the semimartin-

gale decomposition of the gains process.

This being a very natural conjecture, it is not surprising that some variants of it have

already been considered. More specifically, several versions of this result were estab-

lished in the literature on reflected BSDEs under various assumptions on the gains

process, see El Karoui et. al. [39] (gains process is a continuous semimartingale),

Crepéy and Matoussi [28] (gains process is a càdlàg quasi-martingale), Hamadéne

and Ouknine [48] (gains process is a limiting process of a sequence of sufficiently

regular semimartingales). These results (except Hamadéne and Ouknine [48], where

the assumed regularity of the reward process is exploited) are proved essentially by

using (or appropriately extending) the related (but different) result established in

Jacka [64]. There, under the assumption that the reward and corresponding value

processes are both continuous and sufficiently integrable semimartingales, the author

shows that a local time of the difference of these two processes at zero is absolutely

continuous with respect to the decreasing part of the finite-variation process in the

semimartingale decomposition of the reward process. Our approach in proving the

absolute continuity result is different. We use the semimartingale decomposition of

relevant processes and exploit the classical methods establishing the Doob-Meyer

decomposition of a supermartingale.

In practice we often do not model the gains process directly. In particular,

in the (slightly less general) Markovian formulation of the problem, one starts with

an underlying Markov process and then applies a given payoff function to it, to

produce the corresponding gains process. One advantage of such a formulation is

that the value process is then also given in a functional form and the goal is to

construct a value function (or at least to deduce its properties) on the state space

of the underlying Markov process (see El Karoui et al. [40]). It was established by

Dynkin [36] that the proposed (by Snell [103]) supermartingale characterisation of
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the value process of an optimal stopping problem is equivalent to the superharmonic

characterisation of the value function in a Markovian setting. This resulted in further

development of the field producing more concrete results. We refer to the monograph

of Shiryaev [100] for an overview of optimal stopping theory for both discrete and

continuous-time Markov processes.

From the results of Snell [103] and Dynkin [36] it is clear that there is a

deep connection between the two formulations of the optimal stopping problem. In

particular, the properties of the value process (proved in a more general setting

of processes) carries over, in some sense, into the Markovian formulation of the

problem, and allows to deduce particular characteristics of the corresponding value

function. With this in mind, in chapter one we try to answer the following canonical

question of interest:

When does the value function of the optimal stopping problem be-

long to the domain of the extended (martingale) generator of the

underlying Markov process?

Trying to deduce such a property for the value function, it is reasonable to assume

that the payoff function also belongs to the domain of the martingale generator

of the underlying Markov process. Then, given the absolute continuity result in a

semimartingale setting, the answer to the motivating question follows naturally. We

show that (see Theorem 1.2.13) under very general assumptions on the underlying

Markov process, if the payoff function belongs to the domain of the martingale

generator, so does the value function of the optimal stopping problem.

Another advantage of the Markovian formulation of the optimal stopping

problem is that the decision whether to stop, at any given time instant, can be

based only on the location (or the value at that particular moment) of the underlying

Markov process, and not the whole history of the process. In particular, the state

space of the observed Markov process can be split into continuation and stopping

regions. The optimal stopping time is proved to be the first exit (entrance) time

from (into) the continuation (stopping) region, and the crux of the problem is then

to simultaneously find the value function and to characterise the unknown boundary

separating continuation and stopping regions. Consequently, a solution of the free-

boundary (or obstacle) problem for differential operators (for example, Stefan’s ice-

melting problem in mathematical physics) directly relates to the original optimal

stopping problem. Imagine a slab of ice (at temperature G, which corresponds to

the gain function) immersed in water (at temperature V , which corresponds to the

value function). Then the ice-water interface (as a function of time and space) will

4



coincide with the optimal boundary (surface). This illustrates a basic link between

optimal stopping and the Stefan’s problem.

In order to select the unique solution of the free-boundary problem, which

will eventually (by standard verification arguments such as extended Itô’s formula

and/or Doob’s optional sampling theorem) turn out to be the solution of the initial

optimal stopping problem, one usually imposes non-trivial boundary conditions. In

particular, one expects that the value and payoff functions (the so-called continuous

fit condition) and their first derivatives (the so-called smooth pasting condition) co-

incide at the (unknown and therefore free) optimal boundary points. The smooth

fit principle was first applied by Mikhalevich [80] for concrete problems in sequen-

tial analysis and later by Chernoff [22] and Lindley [77]. McKean [78] applied the

principle to the American option problem. See also Grigelionis and Shiryaev [45]

and van Moerbeke [107]. On the other hand, the continuous fit, as a key ingredient

of the solution, was recognised by Peskir and Shiryaev [88, 89]. The book by Peskir

and Shiryaev [90] provides many explicitly solved problems (via a free-boundary

approach) for various gains functionals. An extensive bibliography on the subject

can also be found in Shiryaev [100].

While one expects the smooth fit principle to hold at the boundary of the

continuation region, a priori it is not clear whether the value function associated

to the optimal stopping problem is even differentiable. The work by Peskir [86] in

the diffusion setting shows that, for the above to hold, in general, the differentia-

bility of the payoff function is not enough, and some sort of ‘smoothness’ of the

underlying Markov process is required. In the first chapter we investigate this fur-

ther. On one hand, the minimal concave characterisation of the value function by

Dynkin [36] (see also Dayanik and Karatzas [30]) and the extended Itô’s formula

for concave (or convex functions) provides a particular decomposition of the associ-

ated value process. On the other hand, if the value function belongs to the domain

of an extended generator of the underlying Markov process, the value process also

admits the Doob-Meyer decomposition with absolutely continuous (with respect to

Lebesgue measure on the time axis) finite variation part. Comparing these two, in a

sense, canonical decompositions, under some additional but general assumptions on

the Markov process, we show that the value function is nearly twice continuously

differentiable (i.e. it has absolutely continuous first derivative).

Solving optimal stopping problems can be quite straightforward in low di-

mensions. However, many problems arising in practice are high-dimensional, and

one has to resort to numerical approximations of the solutions. In particular, the

rate of convergence of these approximations is of great importance. On the other
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hand, embedding optimal stopping problems into stochastic control problems allows

one to use all the available machinery for stochastic control. Therefore a first step

in this direction is to identify a suitable stochastic control problem corresponding

to the initial optimal stopping problem.

It is known (see Krylov [75]) that optimal stopping problems for controlled

diffusion processes can be transformed into optimal control problems by means of

randomised stopping. More recently, Gyöngy et al. [47] showed that this trans-

formation is possible even in the case when the coefficients of the diffusions and

the functions defining the payoff are unbounded functions of the control parameter.

See also Peskir [87] for the duality principle (in terms of Legendre transform) of

the optimal stopping games. An alternative approach (which we adopt in the first

chapter) is due to Davis and Karatzas [29], Rogers [96], and Haugh and Kogan [49].

In particular, given any martingale, the Snell envelope process (the value process

associated to the optimal stopping problem) is dominated by the expected value of

the pathwise supremum of the difference of the reward process and a chosen mar-

tingale. Then the dual problem is to find a martingale that minimises this quantity.

Given that the value process admits a Doob-Meyer decomposition, Rogers [96] shows

that the martingale part of this decomposition is optimal for the dual problem, and,

in particular, strong duality holds. The restatement of this result in a Markovian

setting is provided in chapter one.

Unfortunately, even though the characterisation of the optimal martingale is

clear, since the value process (or the corresponding value function in the Markovian

setting) is unknown, finding an optimal martingale is, in principle, no easier than

exhibiting an optimal stopping time in the primal problem. On the other hand,

choosing an arbitrary martingale in the dual problem, produces an upper bound

for the value of the original optimal stopping problem. Therefore an important

challenge is to find or construct martingales with good approximating properties (see

e.g. Andersen and Broadie [2], Kolodko and Schoenmakers [73], Glasserman and Yu

[44], Belomestny et al. [12], Belomestny [13] Desai et al. [32]). Our contribution to

this subject is the following. If the value function lies in the domain of a martingale

generator of the underlying Markov process, the search for the optimal martingale

in the dual problem can be restricted to this particular set of functions. As a

consequence, the dual can be viewed as a stochastic control problem for a controlled

Markov process where the set of admissible controls is the domain of a martingale

generator, and thus is amenable to standard theory (see Fleming and Soner [41])

related to such problems.
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0.1.2 Martingale optimal transport (MOT)

Suppose we are given a pile of sand and a ditch (of the same volume as the pile)

that we have to completely fill up with the sand. As moving the sand needs some

effort, we suppose we are also given a (measurable) cost function c, such that c(x, y)

tells how much it costs to transport one unit of mass from location x to location

y. Then basic question in the theory of classical optimal transport (OT) is how to

realise the transportation at minimal cost?

Mathematically, the problem can be formulated (following Kantorovich [69])

as follows. Given two probability measures µ (corresponding to the pile of sand)

and ν (corresponding to the ditch) on some measurable spaces X and Y (for our

applications in Chapters 2 to 4 we take X = R = Y), respectively, consider a prob-

ability distribution π (also called transport plan or coupling) on the product space

X ×Y with given first and second marginals µ and ν, respectively. Probabilistically,

π represents a joint distribution of random variables X ∼ µ and Y ∼ ν. Informally,

π(dx, dy) measures the amount of mass transferred from location x to location y.

Then given a cost/payoff function c : X × Y 7→ R, the goal is to construct (or at

least to characterise) a joint distribution π which minimises the total expected cost

Eπ[c(X,Y )]. We refer to Villani’s [108] excellent exposition of the theory of the

classical optimal transportation.

A similar (and actually harder) formulation of the OT problem was already

considered in 1781 (a way before Kantorovich’s one) . Monge [82] studied the same

problem (of finding a minimal transport cost) without allowing the mass to be split,

so that all the mass from location x has to end up in a unique location y. In other

words, this restricts to the case when the random variable Y ∼ ν is a function of

a random variable X ∼ µ (i.e. Y = T (X), for some T : X 7→ Y). Mathematically,

Monge’s goal was to find a measurable function T (called a transport map) such

that the initial measure µ is pushed forward to the target measure ν through T

(i.e. µ({x ∈ X : T (x) ∈ A}) = ν(A), for any Borel set A) and the total expected

cost Eµ[c(X,T (X))] is minimal. In terms of transport plans, this means that we

restrict to joint distributions π (of X ∼ µ and Y ∼ ν) which are of the special form

π(dx, dy) = µ(dx)δT (x)(dy).

The fundamental question is under what conditions the Kantorovich’s and

Monge’s problems coincide. Put differently, when can the optimal transport plan π

be represented by a transport (push-forward) map T . A cornerstone result in this di-

rection is the so-called Brenier’s [17] theorem (see also Rüschendorf and Rachev [93])

which treats a particular case c(x, y) = |y − x|2: for sufficiently regular initial dis-

tribution µ, the optimal transport plan is unique and supported by the graph of
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the gradient of some convex function (a monotonically increasing function in one

dimension, so that in this case the optimal transport plan is realised by a mapping).

More specifically, when c(x, y) = h(y − x), where h : R 7→ R is a strictly convex

function, the monotone Hoeffding-Fréchet coupling πHF = (Gµ ⊗ Gν)#Leb[0,1] is

optimal and, when the initial measure µ is atomless, the optimal transport map is

given by T (x) = (Gν ◦ Fµ)(x) (here, for a measure χ, Fχ denotes the corresponding

cumulative distribution function, while Gχ is a generalised inverse of Fχ).

In this thesis we will study a particular variant of the classical OT prob-

lem. Beiglböck et al. [8] and Galichon et al. [42] (see also Dolinksy and Soner

[34]) introduced a martingale version of the transportation problem (and related

it to the problem of finding model-independent bounds of exotic derivatives in

mathematical finance, see Section 0.1.3). Given µ and ν in convex order, the

basic problem of martingale optimal transport (MOT) is to construct a martin-

gale M , with M1 ∼ µ,M2 ∼ ν, which minimises E[c(M1,M2)]. In this setting a

martingale transport plan or coupling can be identified with a measure π on R2

with univariate marginals µ and ν, and such that additional martingale constraint

(
∫
y∈R

∫
x∈A(y − x)π(dx, dy) = 0 for all Borel sets A) holds. In the context of mathe-

matical finance this problem was first studied in Hobson and Neuberger [58] for the

payoff c(x, y) = −|y − x|.
The MOT theory was developed in parallel to the classical one, and thus it

is not surprising that it shares some similar properties. It is worth noting that both,

the set of joint distributions (with given marginals) and its subset enjoying additional

martingale requirement, are both compact with respect to weak convergence of mea-

sures (a consequence of Prokhorov’s [91] theorem). Moreover, if the cost function is

lower semi-continuous, the same regularity property holds for π 7→ Eπ[c(X,Y )], for

both sets of joints distributions. From these observations it follows that the optimal

couplings exists in both OT and MOT, formulations of the problem.

On the other hand there are several important differences. While the set

of classical transport plans is always non-empty (the product measure belongs to

this set), the same conclusion does not hold for the set of martingale couplings.

In particular, the additional requirement that µ and ν are in convex order (see

Section 2.1) is necessary. Moreover, in OT problems the important tool in es-

tablishing the optimality of a candidate coupling is the corresponding dual prob-

lem. Suppose c(x, y) ≥ a(x) + b(y) for all x and y, for some functions a(·) and

b(·). Then, Eπ[c(X,Y )] ≥ Eµ[a(X)] + Eν [b(Y )]. Note that the left hand side of

inequality is independent of functions a and b, while the right hand side is inde-

pendent of the coupling π. Therefore, taking the supremum of the right hand side
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over the functions a(·) and b(·) satisfying path-wise inequality (this maximisation

problem is the corresponding dual problem) and the infimum of the left hand side

over joint distributions π (this corresponds to the primal problem), preserves the

inequality between expectations. Then, if we can find π, a(·) and b(·) such that

Eπ[c(X,Y )] = Eµ[a(X)] + Eν [b(Y )], we must have that π is optimal (i.e. minimises

the total expected cost). On the other hand, if π is a martingale coupling and f(·) a

given function, using a tower-property for expectations and a martingale condition

we have that Eπ[f(X)(Y −X)] = 0. Therefore, in MOT problems, if we can find a

triple a(·), b(·), f(·) satisfying c(x, y) ≥ a(x) + b(y) + f(x)(y−x) for all x and y, and

such that Eπ[c(X,Y )] = Eµ[a(X)] +Eν [b(Y )], then a martingale coupling π must be

optimal. Finally, for the quadratic cost functions in the classical OT theory, MOT

problems turn out to be trivial (see Remark 2.1.5).

Beiglböck and Juillet [10] introduced the notion of the shadow embedding,

which gives rise to a family of martingale couplings. See Section 2.2 for the definition

and the properties of the corresponding shadow measure. In particular, a specific

parametrisation of the initial law µ produces, via shadow measure, the left-monotone

martingale coupling. Beiglböck and Juillet [10] established that for (arbitrary) fixed

marginals µ and ν in convex order there exists a unique such coupling (called the

left-curtain martingale coupling and denoted by πlc). The left-curtain martingale

coupling may be viewed as a martingale analogue to the monotone Hoeffding-Fréchet

coupling in classical optimal transport. The authors also proved the optimality of πlc

for a specific class of payoff functions. Henry-Labordère and Touzi [50] extended the

results of Beiglböck and Juillet [10] and showed optimality for a wider class of payoff

functions. Beiglböck et al. [9] analysed the left-curtain coupling further and gave a

simplified proof (using a Skorokhod embedding argument) of uniqueness under the

additional assumption that µ is continuous. Juillet [67] proved that (µ, ν) 7→ πlc

is continuous (with respect to its marginals), and thus, for general distributions,

it can be approximated by the left-curtain couplings corresponding to ‘nice’ (e.g.

finitely supported or continuous) initial and/or target laws. A number of further

articles investigate the properties and extensions of πlc (e.g. multi-marginal case

and connections with Skorokhod embedding problem), see Beiglböck et al. [7, 9],

Nutz et al. [84, 85].

Beiglböck and Juillet [10] also established a martingale version of the fun-

damental Brenier’s theorem. In particular, the authors showed that under the as-

sumption that the initial law µ is continuous, the left-curtain martingale coupling

is supported by the graphs of lower and upper functions Td and Tu, respectively, so

that M2 ∈ {Td(M1), Tu(M1)}. Henry-Labordère and Touzi [50] gave an explicit con-
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struction of Td and Tu using differential equations. However, when µ has an atom at

x the element πxlc(·) in the disintegration πlc(dx, dy) = µ(dx)πxlc(dy) becomes a mea-

sure with support on non-trivial subsets of R and not just on a two point set. Then

we cannot construct functions (Td, Tu), unless we allow them to be multi-valued.

In Chapters 2 and 4 we study the shadow embedding and the left-curtain

martingale coupling, respectively. While Beiglböck and Juillet [10] proved the ex-

istence and uniqueness, Chapter 2 provides an explicit construction (via associated

potential functions) of the shadow measure. In Chapter 4 we concentrate on the

left-curtain martingale coupling. There the goal is to show how (for general initial

law µ, with or without atoms) by changing our viewpoint we can again recover the

property that M2 takes values in a two-point set. The idea is to write M1 = h(Z)

for a continuous random variable Z (in fact we take Z ≡ U ∼ U(0, 1)) and then

to find fZ,h and gZ,h such that M2 ∈ {fZ,h(Z), gZ,h(Z)}. Then, although there is

uniqueness at the level of martingale couplings π, when µ contains atoms there are

many possible choices of (fZ,h, gZ,h), even for fixed Z and monotonic increasing h.

Nonetheless, we show that amongst this set there is an essentially unique choice

(fZ,h, gZ,h) with a special monotonicity property.

The motivation for the extension of the left-curtain martingale coupling in

Chapter 4 comes from mathematical finance. The study of American put options

in Chapter 3 highlights the role of the left-curtain martingale coupling in finding

the model-independent upper bound on the price of the American put. When µ is

continuous we show how the optimal martingale coupling and the optimal stopping

time can be obtained from the functions f = Td and g = Tu which arise in the

construction of the left-curtain coupling. In particular, for the optimal model there

is a Borel subset of R, say B, such that it is optimal to stop at time-1 if M1 ∈ B,

and at time-2 otherwise. Moreover, by considering the corresponding dual problem,

the structure of f and g allows us to identify the cheapest superhedging strategy

that supports the price of the American put.

If µ has atoms then the situation becomes more delicate, essentially because

we must allow for a wider range of possible candidates for exercise determining sets

B. On atoms of µ we may want to sometimes stop and sometimes continue, although

we must still take stopping decisions which do not violate the martingale property.

As the stopping decision in the continuous case is based on the natural filtration of

the martingale M , if M1 ends up at the atom of µ, then it is not clear, using only the

structure of f and g, what part of mass at time-1 should be stopped and what part

should be allowed to continue. This is the reason why we must extend the notion of

the left-curtain martingale coupling.
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We show that the extended left-curtain coupling constructed in Chapter 4 is

again characterised by lower and upper functions, R and S, respectively. However,

while f and g are multi-valued on the atoms of µ, R and S remain well-defined.

Then our second achievement is to show how the structure of R and S can be used

to characterise the model and stopping rule which achieves the highest possible

price for the American put, and the cheapest superhedge. This generalises results

of Chapter 3: for arbitrary µ and ν, the highest model based price of the American

put is equal to the cost of the cheapest superhedge.

0.1.3 Model-independent approach to option pricing

The standard approach in pricing of financial contracts (derivatives or contingent

claims) is to start by postulating a model for the price process of the underlying risky

asset (i.e. a stochastic process living on some fixed filtered probability space). Then

the price of the contingent claim is calculated as a discounted expected value (with

respect to equivalent martingale measure, under which a discounted price process

is a martingale) of the payoff at the maturity. When the market is complete (so

that there exists only one equivalent martingale measure) this pricing rationale is

supported by the hedging or replication strategy. In particular, in this situation we

can construct a hedge that perfectly replicates the payoff of the derivative, given

that the model provides an exact description of reality. For example, the setting of

Chapter 1 belongs to this framework, and the value of the optimal stopping problem

considered in there, in financial context, is equivalent to the price of the American

type derivate contract, under the fixed probabilistic model.

However, if an agent confines herself in the situation described above, this

leaves her facing the Knightian uncertainty (i.e. the model risk). For this reason,

in Chapters 3 and 4 we employ an alternative approach, where our starting point

is not the model itself, but rather a financial data available in the market. The

idea is to take option prices (of liquidly traded securities) as exogenously given by

the market and to use those to extract the stochastic properties of the underlying

price process of the risky asset that we are trying to model. Then the next step is

to consider only those models that perfectly calibrate to the market data, so that

the prices of vanilla options, calculated as expectations under the chosen model,

match the prices observed in the market. (For example, Krylov [76], Dupire [35]

and Gyöngy [46] showed that if we know the prices of European puts (or calls) for

all strikes and maturities (which is a rather ideal situation), then there exists a

unique diffusion process under which prices of these vanilla options match the prices

quoted by the market.) Potentially, this approach still gives a large set of models
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to choose from, and while, under any of these models, the prices of vanilla options

are the same, the prices of exotic derivatives are different. The goal is then to look

for the ‘extremal’ models, i.e. the models that produce the highest/lowest price of

a given exotic derivative contract.

This notion of model-independent, or robust, bounds on the prices of ex-

otic options was introduced in Hobson [54] in the context of lookback options, and

has been applied several times since, see Brown et al. [18] (barrier options), Cox

and Ob lój [26] (no-touch options), Hobson and Neuberger [58] and Hobson and

Klimmek [57] (forward-start straddles), Carr and Lee [19] and Cox and Wang [27]

(variance options), Stebegg [104] (Asian options) and the survey article Hobson [56].

The principal idea is that the prices of the vanilla European puts or call, by argu-

ments of Breeden and Litzenberger [16], determine the marginal distributions of the

price process at the traded maturities (but not the joint distributions) and that these

distributional requirements, coupled with the martingale property, place meaningful

and useful restrictions on the class of consistent models. These restrictions lead to

bounds on the expected payoffs of path-dependent functionals, or equivalently, to

bounds on the prices of exotic options.

In addition to the pricing problem there is a related dual or hedging problem.

In the dual problem the aim is to construct a static portfolio of European put options

and a dynamic discrete (or continuous) time hedge in the underlying which combine

to form a superhedge (pathwise over a suitable class of candidate price paths) for the

exotic option. The value of the dual problem is the cost of the cheapest superhedge.

There is a growing literature, beginning with Beiglböck et al. [8] for discrete-time

problems, and Galichon et al. [42] in continuous time, which aims to explain how to

formulate the problem in such a way that there is no duality gap, i.e. the highest

model-based price is equal to the cheapest superhedge, either for specific derivatives,

or in general.

Many of the early papers on robust hedging exploited a link with the Sko-

rokhod embedding problem (Skorokhod [102]). For example, in the study of the

lookback option in Hobson [54] the consistent model which achieves the highest

lookback price is constructed from the Azéma-Yor [5] solution of the Skorokhod em-

bedding problem. More recently, Beiglböck et al. [8] (see also Dolinsky and Soner [34]

and Touzi [106]) have championed the connection between robust hedging problems

and martingale optimal transport. In Chapter 3 we will make use of the left-curtain

martingale coupling introduced by Beiglböck and Juillet [10], and developed by

Henry-Labordère and Touzi [50] and Beiglböck et al. [9]. The generalised construc-

tion of the left-curtain martingale coupling is provided in Chapter 4.
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In Chapters 3 and 4 we are motivated by an attempt to understand the range

of possible prices of an American put in a robust, or model-independent, framework.

In our interpretation this means that we assume we are given today’s prices of a

family of European-style vanilla puts (for a continuum of strikes and for a discrete set

of maturities). The goal is to find the consistent model for the underlying, for which

the American put has the highest price, where by definition a model is consistent

if the discounted price process is a martingale and if the model-based discounted

expected values of European-put payoffs match the given prices of European puts.

The study of American style claims in the robust framework was initiated

by Neuberger [83], see also Hobson and Neuberger [60], Bayraktar and Zhou [6] and

Aksamit et al. [1]. (There is also a paper by Cox and Hoeggerl [25] which asks

about the possible shapes of the price of an American put, considered as a function

of strike, given the prices of co-maturing European puts.) The main innovation of

Chapter 3 is that rather than focussing on general American payoffs and proving

that the pricing (primal) problem and the dual (hedging) problem have the same

value, we focus explicitly on American puts and try to say as much as possible about

the structure of the consistent price process for which the model-based American

put price is maximised, and the structure of the cheapest superhedge.

Our problem can be cast as follows. Let M = (M0 = µ̄,M1 = X,M2 = Y )

represent the discounted price of an underlying asset, where µ̄ is a known constant.

The laws of X and Y are presumed to be given and L(X) = µ and L(Y ) = ν, where

µ and ν are (integrable) probability measures on R with mean µ̄. Given a martingale

model (a filtered probability space, supporting a stochastic process M which is a

martingale) we consider an American put on M with strike K. The option may

only be exercised at time 1 or time 2: if the put is exercised at time 1 the payoff

is (K1 − X)+; if the put is exercised at time 2 the payoff is (K2 − Y )+. Here K1

and K2 represent the discounted strikes of the put. For any martingale model, the

model-based price of the American put is then given by the expected value of the

payoff calculated under the best available stopping time (defined with respect to the

filtration associated to the given model, and taking values in time 1 or time 2). Our

primal problem is to find the highest possible model-based price of the American

put, i.e. the highest expected payoff, where expectations are calculated under the

probability measure of a consistent model (a model under which M is a martingale,

and has the given laws at times 1 and 2).

There is a corresponding dual or hedging problem of finding the cheapest

superhedge based on static portfolios of European puts and a piecewise constant

holding of the underlying asset, see Section 3.1.2.
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Our main achievement is as follows:

Suppose µ is continuous. The highest model-based expected payoff

of the American put is equal to the cheapest superhedging price.

Moreover, the highest model-based expected payoff is attained by

the model associated with the left-curtain martingale coupling of

Beiglböck and Juillet [10] (and a judiciously chosen stopping rule).

Further, we can characterise the cheapest super-hedging strategy and

it is one of four possible types.

For fixed µ, ν and K1 > K2 there is typically a family of optimal models.

Fixing µ and ν but varying K1 and K2 it turns out that there is a model which is

optimal for all K1 and K2 simultaneously. This model is related to the left-curtain

coupling of Beiglböck and Juillet [10] (see also Chapters 2 and 4).
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Chapter 1

Properties of the Doob-Meyer

decomposition of the Snell

envelope and its applications in

Markovian setting

The main result of this chapter (in a Markovian formulation of the optimal stop-

ping problem) is Theorem 1.2.13: if the payoff function belongs to the domain of a

martingale generator of the underlying Markov process, so does the value function.

This is a consequence of Theorem 1.1.15, a fundamental result relating semimartin-

gale decomposition of the gains process and the Doob-Meyer decomposition of the

value (Snell envelope) processes. Several applications to the dual problem (Theo-

rem 1.2.16) and to the smoothness of the value function (Theorems 1.2.18 and 1.2.23)

are investigated.

1.1 General framework

1.1.1 Preliminaries

Fix a time horizon T ∈ (0,∞]. Let G be an adapted, càdlàg gains process on

(Ω,F ,F = (Ft)0≤t≤T ,P), where F is a right-continuous and complete filtration. We

suppose that F0 is trivial. In the case T = ∞, we interpret F∞ = σ
(
∪0≤t<∞ Ft

)
and G∞ = lim inft→∞Gt. For two F-stopping times σ1, σ1 with σ1 ≤ σ2 P-a.s., by

Tσ1,σ2 we denote the set of all F-stopping times τ such that P(σ1 ≤ τ ≤ σ2) = 1. We
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will assume that the following condition is satisfied:

E
[

sup
0≤t≤T

|Gt|
]
<∞, (1.1)

and let

Ḡ be the space of all adapted, càdlàg processes such that (1.1) holds.

The optimal stopping problem is to compute the maximal expected reward

v0 := sup
τ∈T0,T

E[Gτ ].

Remark 1.1.1. First note that by (1.1), E[Gτ ] < ∞ for all τ ∈ T0,T , and thus v0

is finite. Moreover, most of the general results regarding optimal stopping problems

are proved under the assumption that G is a non-negative (hence the gains) process.

However, under (1.1), N = (Nt)0≤t≤T given by Nt = E[sup0≤s≤T |Gs||Ft] is a uni-

formly integrable martingale, while Ĝ := N +G defines a non-negative process (even

if G is allowed to take negative values). Then

v̂0 := sup
τ∈T0,T

E[Nτ +Gτ ] = E
[

sup
0≤t≤T

|Gt|
]

+ sup
τ∈T0,T

E[Gτ ],

and finding v̂0 is the same as finding v0. Hence we may, and shall, assume without

loss of generality that G ≥ 0.

The key to our study is provided by the family {vσ}σ∈T0,T of random variables

vσ := ess sup
τ∈Tσ,T

E[Gτ |Fσ], σ ∈ T0,T . (1.2)

The random variable vσ is the optimal conditional expected reward for stopping at

time σ or later. Note that, since each deterministic time t ∈ [0, T ] is also a stopping

time, (1.2) defines an adapted value process (vt)0≤t≤T .

Let σ ∈ T0,T and τ ∈ Tσ,T . Then, by Lemma 1.3.1, the family {E[Gρ|Fσ]}ρ∈Tτ,T
is directed upwards. Therefore, from the properties of essential supremum (see, for

example, Lemma 1.3 in Peskir and Shiryaev [90]), there exists a sequence {ρn}n≥1

of stopping times in Tτ,T such that the sequence {E[Gρn |Fσ]}n≥1 is non-decreasing

and

ess sup
ρ∈Tτ,T

E[Gρ|Fσ] = lim
n→∞

E[Gρn |Fσ] P-a.s. (1.3)

Then the definition of vτ , (1.3) and the monotone convergence theorem for condi-
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tional expectations give

E[vτ |Fσ] ≤ ess sup
ρ∈Tτ,T

E[Gρ|Fσ] P-a.s.

On the other hand, the reverse inequality also holds. To see this note that, since, for

any ρ ∈ Tτ,T , vτ ≥ E[Gρ|Fτ ] P-a.s., taking conditional expectations yields E[vτ |Fσ] ≥
E[Gρ|Fσ] P-a.s., and therefore E[vτ |Fσ] ≥ ess supρ∈Tτ,T E[Gρ|Fσ] P-a.s. This implies

that

E[vτ |Fσ] = ess sup
ρ∈Tτ,T

E[Gρ|Fσ] P-a.s. (1.4)

Several implications of (1.4) follow. Since τ ∈ Tσ,T , Tτ,T ⊆ Tσ,T , and therefore

ess supρ∈Tτ,T E[Gρ|Fσ] ≤ ess supρ∈Tσ,T E[Gρ|Fσ] P-a.s. Hence, E[vτ |Fσ] ≤ vσ P-a.s.,

which proves that the value process (vt)0≤t≤T is a supermartingale. Moreover, set-

ting σ = 0 in (1.4) and using supermartingale property of (vt)0≤t≤T , we have that

E[vτ ] = supρ∈Tτ,T E[Gρ] ≤ v0 <∞.

For σ ∈ T0,T , it is tempting to regard vσ as the process (vt)0≤t≤T evaluated

at the stopping time σ. It turns out that there is indeed a modification (St)0≤t≤T of

the process (vt)0≤t≤T that aggregates the family {vσ}σ∈T0,T at each stopping time

σ, i.e. vσ(ω) = Sσ(ω)(ω) for P-a.e. ω ∈ Ω. In particular, one can show (using the

right-continuity of G and supermartingale property of (vt)0≤t≤T ) that t 7→ E[vt] is

right-continuous (see Theorem 2.2 in Peskir and Shiryaev [90] or Proposition D.3

in Karatzas and Shreve [71] for the details). It is well-known (see, for example,

Theorem 1.3.13 in Karatzas and Shreve [70]) that this is necessary and sufficient

for the existence of an adapted càdlàg modification of (vt)0≤t≤T , which we denote

by S = (St)0≤t≤T . This process S is the Snell envelope of G. From the Optional

Sampling theorem and right-continuity of G and S, we have that S is the smallest

supermartingale dominating G and, in addition, it aggregates the supermartingale

(vt)0≤t≤T (see Theorem D.7 in Karatzas and Shreve [71]):

Theorem 1.1.2 (Characterisation of S). Let G ∈ Ḡ. For every σ ∈ T0,T , the Snell

envelope process S of G satisfies

Sσ = ess sup
τ∈Tσ,T

E[Gτ |Fσ] P-a.s. (1.5)

Moreover, S is the minimal càdlàg supermartingale that dominates G.

For the proof of Theorem 1.1.2 under slightly more general assumptions on

the gains process G (i.e. G is assumed to be optional process) consult Appendix I

in Dellacherie and Meyer [31] or Proposition 2.26 in El Karoui [38].
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Remark 1.1.3. The existence of a finite Snell envelope does not require condition

(1.1), however so-called prophet inequalities (see, for example, Hill and Kertz [52]

and Assaf, Goldstein and Samuel-Cahn [4]) show that the gap may be small. It is

also easy to prove, using the Optional Section Theorem and Markov’s Inequality that

if G is a non-negative optional process and S is finite then suptGt ∈ Lp for every

p < 1.

If G ∈ Ḡ, it is clear that G is a uniformly integrable process. In particular,

it is also of class (D), i.e. the family of random variables {Gτ1{τ<∞} : τ ∈ T0,T }
is uniformly integrable. On the other hand, a right-continuous adapted process Z

belongs to the class (D) if there exists a uniformly integrable martingale N̂ , such

that, for all t ∈ [0, T ], |Zt|≤ N̂t P-a.s. (see Appendix I in Dellacherie and Meyer

[31] and references therein, or, alternatively, Theorem D.13 in Karatzas and Shreve

[71]). In our case, by (1.5) and using the conditional version of Jensen’s inequality,

for t ∈ [0, T ], we have

|St|≤ E
[

sup
0≤s≤T

|Gs|
∣∣∣Ft] := Nt P-a.s.

But, since G ∈ Ḡ, N is a uniformly integrable martingale, which proves the following

Lemma 1.1.4. Suppose G ∈ Ḡ. Then S is of class (D).

Let M0 denote the set of right-continuous martingales started at zero. Let

M0,loc and M0,UI denote the spaces of local and uniformly integrable martingales

(started at zero), respectively. Similarly, the adapted processes of finite and inte-

grable variation will be denoted by FV and IV , respectively.

It is well-known that a right-continuous (local) supermartingale P has a

unique decomposition P = B − I where B ∈ M0,loc and I is an increasing (FV )

process which is predictable (see Theorem 16 in Protter [92] (p.116)). This can

be regarded as the general Doob-Meyer decomposition of a supermartingale. Spe-

cialising to class (D) supermartingales we have a stronger result (see, for example,

Theorem 11 in Protter [92] (p.112)):

Theorem 1.1.5 (Doob-Meyer decomposition). Let G ∈ Ḡ. Then the Snell envelope

process S admits a unique decomposition

S = M∗ −A, (1.6)

where M∗ ∈M0,UI , and A is a predictable, increasing IV process.
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Remark 1.1.6. It is normal to assume that the process A in the Doob-Meyer de-

composition of S is started at zero. The duality result alluded to in the introduction

is one reason why we do not do so here.

An immediate consequence of Theorem 1.1.5 is that S is a semimartingale.

In addition, we also assume that G is a semimartingale with the following decom-

position:

G = N +D, (1.7)

where N ∈ M0,loc and D is a FV process. Unfortunately, the decomposition (1.7)

is not, in general, unique:

Example 1.1.7. Let G be a semimartingale with the following decomposition: Gt =

G0 + Nt + Dt with N0 = 0 = D0. If the underlying filtered probability space

(Ω,F , (Ft)0≤t≤T ,P) supports a Poisson process P = (Pt)0≤t≤T (which is independent

of G), then

Gt = G0 + [Nt + Pt − t] + [At + t− Pt]

is another decomposition of G.

On the other hand, uniqueness is obtained by requiring the FV term to also

be predictable, at the cost of restricting only to locally integrable processes. If there

exists a decomposition of a semimartingale X with a predictable FV process, then

we say that X is special. For a special semimartingale we always choose to work

with its canonical decomposition (so that a FV process is predictable). Let

G be the space of semimartingales in Ḡ.

Due to the integrability condition (1.1), we have the following (see Theorems 36 and

37 in Protter [92] (p.132))

Lemma 1.1.8. Suppose G ∈ G. Then G is a special semimartingale.

The following lemma provides a further decomposition of a semimartingale

(see Proposition 3.3 in Jacod and Shiryaev [65] (p.27)). In particular, the FV

term of a special semimartingale can be uniquely (up to initial values) decomposed

in a predictable way, into the difference of two increasing, mutually singular FV

processes.

Lemma 1.1.9. Suppose that K is a càdlàg, adapted process such that K ∈ FV .

Then there exists a unique pair (K+,K−) of adapted increasing processes such that

K −K0 = K+ −K− and
∫
|dKs|= K+ + K−. Moreover, if K is predictable, then

K+, K− and
∫
|dKs| are also predictable.
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1.1.2 Main results

The assumption that G ∈ G (i.e. G is a semimartingale with integrable supremum

and G = N +D is its canonical decomposition), neither ensures that N ∈ M0, nor

that D is an IV process, the latter, it turns out, being sufficient for the main result

of this section to hold. In order to prove Theorem 1.1.15 we will need a stronger

integrability condition on G.

For any adapted càdlàg process H, define

H∗ = sup
0≤t≤T

|Ht| (1.8)

and

||H||Sp= ||H∗||Lp := E
[
|H∗|p

]1/p
, 1 ≤ p ≤ ∞. (1.9)

Remark 1.1.10. Note that Ḡ = S1, so that under the current conditions we have

that G ∈ S1.

For a special semimartingale X with canonical decomposition X = B̄ + Ī,

where B̄ ∈ M0,loc and Ī is a predictable FV process (with I0 = X0), define the Hp

norm, for 1 ≤ p ≤ ∞, by

||X||Hp= ||B̄||Sp+
∣∣∣∣∣∣ ∫ T

0
|dĪs|

∣∣∣∣∣∣
Lp

+ ||I0||Lp , (1.10)

and, as usual, write X ∈ Hp if ||X||Hp<∞.

Remark 1.1.11. A more standard definition of the Hp norm is with ||B̄||Sp re-

placed by ||[B̄, B̄]
1/2
T ||Lp. However, the Burkholder-Davis-Gundy inequalities (see,

for example, Theorem 48 in Protter [92] (p.195) and references therein) imply the

equivalence of these norms.

The following lemma follows from the fact that Ī∗ ≤
∫ T

0 |dĪs|+ |I0|, P-a.s:

Lemma 1.1.12. On the space of special semimartingales, the Hp norm is stronger

than Sp for 1 ≤ p <∞, i.e. convergence in Hp implies convergence in Sp.

In general, it is challenging to check whether a given process belongs to H1,

and thus the assumption that G ∈ H1 might be too stringent. On the other hand,

under the assumptions in the Markov setting (see Assumption 1.2.9 in Section 1.2.2),

we will have that G is locally in H1. Recall that a semimartingale X belongs to

Hploc, for 1 ≤ p ≤ ∞, if there exists a sequence of stopping times {σn}n∈N, increasing

to infinity almost surely, such that for each n ≥ 1, the stopped process Xσn belongs

to Hp. Hence, the main assumption in this section is the following:
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Assumption 1.1.13. G is a semimartingale in both S1 and H1
loc.

Remark 1.1.14. Let G be an adapted, càdlàg semimartingale with the following

decomposition

G = N +D, (1.11)

where N is a local martingale (started at zero) and D is an adapted FV process.

Assuming that G ∈ H1, Lemma 1.1.12 implies that Assumption 1.1.13 is

satisfied, and thus all the results of Section 1.1.1 hold. Moreover, we then have that

N ∈M0,UI and D is a predictable IV process.

On the other hand, under Assumption 1.1.13, N and D are only locally uni-

formly integrable martingale (started at zero) and the process of integrable variation,

respectively, i.e. Nσn ∈ M0,UI and Iσn is a predictable IV process, where {σn}n≥1

is a localising sequence.

We finally arrive to the main result of this section:

Theorem 1.1.15. Suppose Assumption 1.1.13 holds. Let D be a predictable FV

process in the decomposition (1.11) of the gains process G. Let D− (D+) denote the

decreasing (increasing) components of D, as in Lemma 1.1.9. Let A be a predictable,

increasing IV process in the decomposition of the Snell envelope S (of G), as in

Theorem 1.1.5.

Then A is, as a measure, absolutely continuous with respect to D− almost

surely on [0, T ], and µ, defined by

µt :=
dAt

dD−t
, 0 ≤ t ≤ T,

has a version that satisfies 0 ≤ µt ≤ 1 almost surely.

Remark 1.1.16. As is usual in semimartingale calculus, we treat a process of

bounded variation and its corresponding Lebesgue-Stiltjes signed measure as syn-

onymous.

The proof of Theorem 1.1.15 is based on the discrete-time approximation

of the predictable FV processes in the decompositions of S (1.6) and G (1.7). In

particular, let Pn = {0 = tn0 < tn1 < tn2 < ... < tnkn = T}, n = 1, 2, ..., be an

increasing sequence of partitions of [0, T ] (i.e. if, for n < m, Pn and Pm are two

partitions of [0, T ], then we have that kn < km and for each i ∈ {0, ..., kn} there

exists j ∈ {0, ..., km} such that tni = tmj ) with max1≤k≤kn t
n
k − tnk−1 → 0 as n → ∞.

Note that here T < ∞ is fixed, but arbitrary. Let Snt = Stnk if tnk ≤ t < tnk+1 and
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SnT = ST define the discretizations of S, and set

Ant = 0 if 0 ≤ t < tn1 ,

Ant =
k∑
j=1

E[Stnj−1
− Stnj |Ftnj−1

] if tnk ≤ t < tnk+1, k = 1, 2, ..., kn − 1,

AnT =

kn∑
j=1

E[Stnj−1
− Stnj |Ftnj−1

].

If S is regular, in the sense that for every stopping time τ and nondecreasing

sequence (τn)n∈N of stopping times with τ = limn→∞ τn we have limn→∞ E[Sτn ] =

E[Sτ ], or equivalently, if A is continuous, Doléans [33] showed that Ant → At uni-

formly in L1 as n→∞ (see also Theorem 31.2 (VI.31) in Rogers and Williams [97]).

Hence, assuming that S is regular, we can extract a subsequence {Anlt }, such that

liml→∞A
nl
t = At a.s. On the other hand, it is enough for G to be regular:

Lemma 1.1.17. Suppose G ∈ Ḡ is a regular gains process. Then so is its Snell

envelope process S.

See Section 1.3.2 for the proof of Lemma 1.1.17.

Remark 1.1.18. If it is not known that G is regular, Kobylanski and Quenez [72],

in a slightly more general setting, showed that S is still regular, provided that G is

upper semicontinuous in expectation along stopping times, i.e. for all τ ∈ T0,T and

for all sequences of stopping times (τn)n≥1 such that τn ↑ τ , we have

E[Gτ ] ≥ lim sup
n→∞

E[Gτn ].

The case where S is not regular is more subtle. In his classical paper Rao

[94] utilised the Dunford-Pettis compactness criterion and showed that, in general,

Ant → At only weakly in L1 as n → ∞ (where a sequence (Xn)n∈N of random

variables in L1 converges weakly in L1 to X if for every bounded random variable

Y we have that E[XnY ]→ E[XY ] as n→∞).

Recall that weak convergence in L1 does not imply convergence in prob-

ability, and therefore, we cannot immediately deduce an almost sure convergence

along a subsequence. (For example, let ([0, 1],B([0, 1]), λ[0,1]) were λ is the Lebesgue

measure, and take the following sequence of r.v.s Xn(ω) = sin(2πnω), ω ∈ [0, 1],

n ≥ 1.) However, it turns out that by modifying the sequence of approximating

random variables, the required convergence can be achieved. This has been done

in recent improvements of the Doob-Meyer decomposition (see Jakubowski [66] and
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Beiglböck et al. [11]. Also, Siorpaes [101] showed that there is a subsequence that

works for all (t, ω) ∈ [0, T ]×Ω simultaneously). In particular, Jakubowski proceeds

as Rao, but then uses Komlós’s theorem [74] (which can be viewed as a substitute

for the Bolzano-Weierstrass Theorem in infinite dimensional spaces) and proves the

following (Jakubowski [66], Theorem 3 and Remark 1):

Theorem 1.1.19. There exists a subsequence {nl} such that for t ∈ ∪∞n=1Pn and

as L→∞
1

L

( L∑
l=1

Anlt

)
→ At, P-a.s. and in L1. (1.12)

In particular, in any subsequence we can find a further subsequence such that (1.12)

holds.

We are now ready to prove Theorem 1.1.15.

Proof of Theorem 1.1.15. Let (σn)n≥1 be a localising sequence for G such that, for

each n ≥ 1, Gσn = (Gt∧σn)0≤t≤T is in H1. Similarly, set Sσn = (St∧σn)0≤t≤T for a

fixed n ≥ 1. We need to prove that

0 ≤ Aσnt −Aσns ≤ (D−)σnt − (D−)σns P-a.s., (1.13)

since then, as σn ↑ ∞ P-almost surely (as n→∞), and by uniqueness of A and D−,

the result follows. In particular, since A is increasing, the first inequality in (1.13)

is immediate, and thus we only need to prove the second one.

After localisation we assume that G ∈ H1. For any 0 ≤ t ≤ T and 0 ≤ ε ≤
T − t we have that

E[St+ε|Ft] = E
[

ess sup
τ∈Tt+ε,T

E[Gτ |Ft+ε]
∣∣∣Ft]

≥ E
[
E[Gτ |Ft+ε]

∣∣∣Ft]
= E[Gτ |Ft] P-a.s.,

where τ ∈ Tt+ε,T is arbitrary. Therefore

E[St+ε|Ft] ≥ ess sup
τ∈Tt+ε,T

E[Gτ |Ft] P-a.s. (1.14)

Then by (1.5) and using (1.14) together with the properties of the essential supremum
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(see also Lemma 1.3.1) we obtain

E[St − St+ε|Ft] ≤ ess sup
τ∈Tt,T

E[Gτ |Ft]− ess sup
τ∈Tt+ε,T

E[Gτ |Ft]

≤ ess sup
τ∈Tt,T

E[Gτ −Gτ∨(t+ε)|Ft]

= ess sup
τ∈Tt,t+ε

E[Gτ −Gτ∨(t+ε)|Ft] (1.15)

= ess sup
τ∈Tt,t+ε

E[Gτ −Gt+ε|Ft] P-a.s.

(1.15) follows by noting that Tt+ε,T ⊂ Tt,T , and that for any τ ∈ Tt+ε,T the term

inside the expectation vanishes. Using the decomposition of G and by observing

that, for all τ ∈ Tt,t+ε, (D+
τ − D+

t+ε) ≤ 0 P-a.s. (since τ ≤ t + ε and D+ is non-

decreasing, P-a.s.), while N is a uniformly integrable martingale, we obtain

E[St − St+ε|Ft] ≤ ess sup
τ∈Tt,t+ε

E[D−t+ε −D−τ |Ft]

= E[D−t+ε −D
−
t |Ft] P-a.s. (1.16)

Finally, for 0 ≤ s < t ≤ T , applying Theorem 1.1.19 to A together with

(1.16) gives

At −As = lim
L→∞

1

L

( L∑
l=1

k∑
j=k′

E[Stnlj−1
− Stnlj |Ft

nl
j−1

]
)

≤ lim
L→∞

1

L

( L∑
l=1

k∑
j=k′

E[D−
t
nl
j

−D−
t
nl
j−1

|Ftnlj−1
]
)

P-a.s., (1.17)

where k′ ≤ k are such that tnlk′ ≤ s < tnlk′+1 and tnlk ≤ t < tnlk+1 . Note that D−

is also the predictable, increasing IV process in the Doob-Meyer decomposition of

the class (D) supermartingale (G − D+). Therefore we can approximate it in the

same way as A, so that (D−t −D−s ) is the almost sure limit along, possibly, a further

subsequence {nlk} of {nl}, of the right hand side of (1.17).

We finish this section with a lemma that gives an easy test as to whether

the given process belongs to H1
loc (consult Section 1.3.2 for the proof). It will be

relevant in the Markovian treatment of the optimal stopping problem considered in

the following section.

Lemma 1.1.20. Let X ∈ G with a canonical decomposition X = L + K, where

L ∈ M0,loc and K is a predictable FV process. If the jumps of K are uniformly
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bounded by some finite constant c > 0, then X ∈ H1
loc.

1.2 Markovian setting

1.2.1 Preliminaries

The Markov process Let (E, E) be a metrizable Lusin space endowed with the

σ-field of Borel subsets of E. Let X = (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) be a

Markov process taking values in (E, E). We assume that a sample space Ω is such

that the usual semi-group of shift operators (θt)t≥0 is well-defined (which is the

case, for example, if Ω = E[0,∞) is the canonical path space). If the corresponding

semigroup of X, (Pt), is the primary object of study, then we say that X is a

realisation of a Markov semigroup (Pt). In the case of (Pt) being sub-Markovian,

i.e. Pt1E ≤ 1E , we extend it to a Markovian semigroup over E∆ = E ∪ {∆}, where

∆ is a coffin-state. We also denote by C(X) = (Ω,F ,Ft, Xt, θt,Px : x ∈ E, t ∈ R+)

the canonical realisation associated with X, defined on Ω with the filtration (Ft)
deduced from F0

t = σ(Xs : s ≤ t) by standard regularisation procedures (universal

completeness, with respect to all Px, x ∈ E, and right-continuity).

In this section our standing assumption is that the underlying Markov pro-

cess X is a right process (consult Getoor [43], Sharpe [99] for the general theory).

Essentially, right processes are the processes satisfying Meyer’s regularity hypotheses

(hypothèses droites) HD1 and HD2. If a given Markov semigroup (Pt) satisfies HD1

and µ is an arbitrary probability measure on (E, E), then there exists a homoge-

neous E-valued Markov process X with transition semigroup (Pt) and initial law µ.

Moreover, a realisation of such (Pt) is right-continuous (Sharpe [99], Theorem 2.7).

Under the second fundamental hypothesis, HD2, t 7→ f(Xt) is right-continuous for

every α-excessive function f . Recall, for α > 0, a universally measurable function

f : E 7→ R is α-super-median if e−αtPtf ≤ f for all t ≥ 0, and α-excessive if it is

α-super-median and e−αtPtf → f as t → 0. If (Pt) satisfies HD1 and HD2 then

the corresponding realisation X is strong Markov (Getoor [43], Theorem 9.4 and

Blumenthal and Getoor [15], Theorem 8.11).

Remark 1.2.1. One has the following inclusions among classes of Markov processes:

(Feller) ⊂ (Hunt) ⊂ (right)

Let L be a given extended infinitesimal (martingale) generator of X with a

domain D(L), i.e. we say a Borel function f : E 7→ R belongs to D(L) if there exists

a Borel function h : E 7→ R, such that
∫ t

0 |h(Xs)|ds <∞, ∀t ≥ 0, Px-a.s. for each x
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and the process Mf = (Mf
t )t≥0, given by

Mf
t := f(Xt)− f(x)−

∫ t

0
h(Xs)ds, t ≥ 0, x ∈ E, (1.18)

is a local martingale under each Px (see Revuz and Yor [95] p.285), and then we

write h = Lf .

Remark 1.2.2. Note that if A ∈ E and Px(λ({t : Xt ∈ A} = 0) = 1 for each

x ∈ E, where λ is Lebesgue measure, then h may be altered on A without affecting

the validity of (1.18), so that, in general, the map f 7→ h is not unique. This is why

we refer to a martingale generator.

Optimal stopping problem Let X = (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) be

a right process. Given a function g : E 7→ R (with g(∆) = 0), α ≥ 0 and T ∈
R+ ∪ {∞} define a corresponding gains process Gα (we simply write G if α = 0) by

Gαt = e−αtg(Xt) for t ∈ [0, T ]. In the case of T = ∞, we make a convention that

Gα∞ = lim inft→∞G
α
t . Let Ee, Eu be the σ-algebras on E generated by α-excessive

functions and universally measurable sets, respectively (recall that E ⊂ Ee ⊂ Eu).

We write

g ∈ Y, given that g(·) is Ee-measurable and Gα is of class (D).

For a filtration (Ĝt), and (Ĝt) - stopping times σ1 and σ2, with Px[0 ≤ σ1 ≤ σ2 ≤ T ] =

1, x ∈ E, let Tσ1,σ2(Ĝ) be the set of (Ĝt) - stopping times τ with Px[σ1 ≤ τ ≤ σ2] = 1.

Consider the following optimal stopping problem:

V (x) = sup
τ∈T0,T (G)

Ex[e−ατg(Xτ )], x ∈ E.

By convention we set V (∆) = g(∆). The following result is due to (Theorems 1.7

and 3.4 in) El Karoui et al. [40].

Theorem 1.2.3. Let X = (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈ R+) be a right process

with canonical filtration (Ft). If g ∈ Y, then

V (x) = sup
τ∈T0,T (F)

Ex[e−ατg(Xτ )], x ∈ E,

and (e−αtV (Xt)) is a Snell envelope of Gα, i.e. for all x ∈ E and τ ∈ T0,T (F)

e−ατV (Xτ ) = ess sup
σ∈Tτ,T (F)

Ex[Gασ |Fτ ] Px-a.s.
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The first important consequence of the theorem is that we can (and will)

work with the canonical realisation C(X). The second one provides a crucial link

between the Snell envelope process in the general setting and the value function in

the Markovian framework.

Remark 1.2.4. The restriction to gains processes of the form G = g(X) (or Gα

if α > 0) is much less restrictive than might appear. Given that we work on the

canonical path space with θ being the usual shift operator, we can expand the state-

space of X by appending an adapted functional F , taking values in the space (E′, E ′),
with the property that

{Ft+s ∈ A} ∈ σ(Fs) ∪ σ(θs ◦Xu : 0 ≤ u ≤ t), for all A ∈ E ′. (1.19)

This allows us to deal with time-dependent problems, running rewards and other

path-functionals of the underlying Markov process.

Lemma 1.2.5. Suppose X is a canonical Markov process taking values in the space

(E, E) where E is a locally compact, countably based Hausdorff space and E is its

Borel σ-algebra. Suppose also that F is a path functional of X satisfying (1.19)

and taking values in the space (E′, E ′) where E′ is a locally compact, countably

based Hausdorff space with Borel σ-algebra E ′, then, defining Y = (X,F ), Y is still

Markovian. If X is a strong Markov process and F is right-continuous, then Y is

strong Markov. If X is a Feller process and F is right-continuous , then Y is strong

Markov, has a càdlàg modification and the completion of the natural filtration of X,

F, is right-continuous and quasi-left continuous, and thus Y is a right process.

The proof is reported in Section 1.3.1.

Example 1.2.6. If X is a one-dimensional Brownian motion and α, f : R 7→ R
Borel functions, then Y , defined by

Yt =

(
Xt, L

0
t , sup

0≤s≤t
Xs,

∫ t

0
exp(−

∫ s

0
α(Xu)du)f(Xs)ds

)
, t ≥ 0,

where L0 is the local time of X at 0, is a Feller process on the filtration of X.

1.2.2 Main results

In the rest of the section (and the chapter) we consider the following optimal stopping

problem:

V (x) = sup
τ∈T0,T

Ex[g(Xτ )], x ∈ E, (1.20)
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for a measurable function g : E 7→ R and a Markov process X satisfying the following

set of assumptions:

Assumption 1.2.7. X is a right process.

Assumption 1.2.8. sup0≤t≤T |g(Xt)|∈ L1(Px), x ∈ E.

Assumption 1.2.9. g ∈ D(L), i.e. g(·) belongs to the domain of a martingale

generator of X.

Remark 1.2.10. Lemma 1.2.5 tells us that if X is Feller and F is an adapted

path-functional of the form given in (1.19) then (a modification of) (X,F ) satisfies

Assumption 1.2.7.

Example 1.2.11. Let X = (Xt)t≥0 be a Markov process and let D(L̂) be the domain

of a classical infinitesimal generator of X, i.e. the set of measurable functions

f : E 7→ R, such that limt→0(Ex[f(Xt)] − f(x))/t exists. Then D(L̂) ⊂ D(L).

In particular,

1. if X = (Xt)t≥0 is a solution of an SDE driven by a Brownian motion in Rd,
then C2

b (Rd,R) ⊂ D(L̂);

2. if the state space E is finite (so that X is a continuous time Markov chain),

then any measurable and bounded f : E 7→ R belongs to D(L̂)

3. if X is a Lévy process on Rd with finite variance increments then C2
b (Rd,R) ⊂

D(L̂)

Note that the gains process is of the form G = g(X), while by Theorem 1.2.3,

the corresponding Snell envelope is given by

STt :=

V (Xt) : t < T,

g(XT ) : t ≥ T.

In a similar fashion to that in the general setting, Assumption 1.2.8 ensures the

class (D) property for the gains and Snell envelope processes. Moreover, under

Assumption 1.2.9,

g(Xt) = g(x) +Mg
t +

∫ t

0
Lg(Xs)ds, 0 ≤ t ≤ T, x ∈ E, (1.21)

and the FV process in the semimartingale decomposition of G = g(X) is abso-

lutely continuous with respect to Lebesgue measure, and therefore predictable, so

that (1.21) is a canonical semimartingale decomposition of G = g(X). Then, by

Assumption 1.2.8, and using Lemma 1.1.20, we also deduce that g(X) ∈ H1
loc.
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Remark 1.2.12. When T <∞, the optimal stopping problem, in general, is time-

inhomogeneous, and we need to replace the process Xt by the process Zt = (t,Xt),

t ∈ [0, T ], so that (1.20) reads

Ṽ (t, x) = sup
τ∈T0,T−t

Et,x[g̃(t+ τ,Xt+τ )], x ∈ E, (1.22)

where g̃ : [0, T ]×E 7→ R is a new payoff function (consult Peskir and Shiryaev [90]

for examples). In this case, Assumption 1.2.9 should be replaced by a requirement

that there exists a measurable function h̃ : [0, T ]× E 7→ R such that M g̃
t := g̃(Zt)−

g̃(0, x)−
∫ t

0 h̃(Zs)ds defines a local martingale.

The crucial result of this section is the following:

Theorem 1.2.13. Suppose Assumptions 1.2.7 to 1.2.9 hold. Then V ∈ D(L).

Proof. In order to be consistent with the notation in the general framework, let

Dt := g(X0) +

∫ t

0
Lg(Xs)ds, 0 ≤ t ≤ T.

Recall Lemma 1.1.9. Then D+ and D− are explicitly given (up to initial values) by

D+
t : =

∫ t

0
Lg(Xs)

+ds,

D−t : =

∫ t

0
Lg(Xs)

−ds.

In particular, D− is, as a measure, absolutely continuous with respect to Lebesgue

measure. By applying Theorem 1.1.15, we deduce that

V (Xt) = V (x) +M∗t −
∫ t

0
µsLg(Xs)

−ds, 0 ≤ t ≤ T, x ∈ R, (1.23)

where µ is a non-negative Radon-Nikodym derivative with 0 ≤ µs ≤ 1. Then we

also have that
∫ t

0 |µsLg(Xs)
−|ds <∞, for every 0 ≤ t ≤ T .

In order to finish the proof we are left to show that there exists a suitable

measurable function λ : E 7→ R such that At =
∫ t

0 µsLg(Xs)
−ds =

∫ t
0 λ(Xs)ds P-a.s.,

for all t ∈ [0, T ]. For this, recall that a process Z (on (Ω,G,Gt, Xt, θt,Px : x ∈ E, t ∈
R+) or just on C(X)) is additive if Z0 = 0 P-a.s. and Zt+s = Zt+Zs◦θt P-a.s., for all

s, t ∈ [0, T ]. Then, for any measurable function f : E 7→ R, Zft = f(Xt)−f(x) defines

an additive process. (Çinlar et al. [23] gives necessary and sufficient conditions for

Zf to be a semimartingale.) More importantly, if Zf is a semimartingale, then
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the martingale and FV processes in the decomposition of Zf are also additive, see

Theorem 3.18 in Çinlar et al. [23].

Set Kt = lim infs↓0,s∈Q(At+s − At)/s and β(x) = Ex[K0], x ∈ E. We have

that At =
∫ t

0 µsLg(Xs)
−ds, t ∈ [0, T ], is an increasing additive process which is

absolutely continuous with respect to Lebesgue measure, Px-a.s., x ∈ E. For every

ω such that dAt(ω)� dt we then have At(ω) =
∫ t

0 Kt(ω)ds for all 0 ≤ t ≤ T . Now,

from the additivity of A we have that Kt = K0 ◦ θt, Px-a.s. Therefore, using the

Markov property we have that

β(Xt) = Ex[K0 ◦ θt|Ft] = Kt, Px-a.s., for all 0 ≤ t ≤ T. (1.24)

Define J = {(ω, t) : Kt(ω) 6= β(Xt(ω))}, Jω = {t : (ω, t) ∈ J} and Jt = {ω :

(ω, t) ∈ J}. Then, by (1.24), we have that Px[Jt] = 0, for all 0 ≤ t ≤ T .

Finally, Proposition 3.56 in Çinlar et al. [23] shows that J is measurable with

respect to (dPx ⊗ dt-completion of) F × [0, T ], and therefore we can apply Fubini’s

theorem: ∫ T

0
Px[Jt]dt = 0 =

∫
Ω

(∫ T

0
IJω(t)dt

)
dPx(ω).

We conclude that, for Px−almost every ω, Jω is a set of Lebesgue measure zero, and

therefore, for t ∈ [0, T ], At =
∫ t

0 β(Xs)ds Px-a.s. for each x ∈ E.

Remark 1.2.14. In some specific examples it is possible to relax Assumption 1.2.9.

Let S := {x ∈ E : V (x) = g(x)} be the stopping region. It is well-known that

S = V (X) is a martingale on the go region Sc, i.e. M c given by

M c
t
def
=

∫ t

0
1(Xs−∈Sc)dSs

is a martingale (see Lemma 1.3.2). This implies that
∫ t

0 1(Xs−∈Sc)dAs = 0, and

therefore we note that in order for V ∈ D(L), we need D to be absolutely con-

tinuous with respect to Lebesgue measure λ only on the stopping region, i.e. that∫ ·
0 1(Xs−∈S)dDs � λ.

For example, let E = R, fix K ∈ R+ and consider the optimal stopping prob-

lem (1.36), with g(·) given by g(x) = (K − x)+, x ∈ E. Then, in general, g /∈ D(L)

(e.g. a consequence of the Tanaka’s formula in the Brownian case). On the other

hand, we can easily show, under very weak conditions, that S ⊂ [0,K). Therefore,

for V to belong to D(L), we need only have that
∫ ·

0 1(Xs−<K)dDs is absolutely con-

tinuous (for example, this holds if X is a Brownian motion). However, the last

condition depends on the underlying process and needs to be verified case-by-case.
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1.2.3 Application: duality

Let x ∈ E be fixed. As before, let Mx
0,UI denote all the right-continuous uniformly

integrable càdlàg martingales (started at zero) on the filtered space (Ω,F ,F,Px).

Let S = V (X) be the Snell envelope of G = g(X). The main result of Rogers [96]

in the Markovian setting reads:

Theorem 1.2.15. Suppose Assumptions 1.2.7 and 1.2.8 hold. Then

V (x) = sup
τ∈T0,T

Ex[Gτ ] = inf
M∈Mx

0,UI

Ex
[

sup
0≤t≤T

(
Gt −Mt

)]
, x ∈ E. (1.25)

Proof. Fix x ∈ E. For any M ∈Mx
0,UI we have

V (x) = sup
τ∈T0,T

Ex[Gτ −Mτ ] ≤ Ex
[

sup
0≤t≤T

(
Gt −Mt

)]
and optimising over Mx

0,UI gives

V (x) ≤ inf
M∈Mx

0,UI

Ex
[

sup
0≤t≤T

(
Gt −Mt

)]
, x ∈ E.

On the other hand, suppose S = V (X) has the following decomposition

V (Xt) = V (x) +M∗t −A∗t ,

where M∗ ∈Mx
0,UI and A∗ is an adapted, increasing process of integrable variation,

with A∗0 = 0. Then Gt ≤ V (x) +M∗t −A∗t , Px-a.s., and therefore

inf
M∈Mx

0,UI

Ex
[

sup
0≤t≤T

(
Gt −Mt

)]
≤ Ex

[
sup

0≤t≤T

(
Gt −M∗t

)]
≤ Ex

[
sup

0≤t≤T

(
V (x)−A∗t

)]
= V (x), x ∈ E.

We call the right hand side of (1.25) the dual of the optimal stopping problem.

In particular, the right hand side of (1.25) is a ‘generalised stochastic control problem

of Girsanov type’, where a controller is allowed to choose a martingale fromMx
0,UI ,

x ∈ E. Note that an optimal martingale for the dual is M∗, the martingale appearing

in the Doob-Meyer decomposition of S, while any other martingale in Mx
0,UI gives

an upper bound of V (x). We already showed that M∗ = MV , which means that,
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when solving the dual problem, one can search only over martingales of the form

Mf , for f ∈ D(L), or equivalently over the functions f ∈ D(L). We can further

define DM0,UI
⊂ D(L) by

DM0,UI
:= {f ∈ D(L) : f ≥ g, f is superharmonic, Mf ∈M0,UI}.

To conclude that V ∈ DM0,UI
we need to show that V is superharmonic, i.e. for

all stopping times σ ∈ T0,T and all x ∈ E, Ex[V (Xσ)] ≤ V (x). But this follows

immediately from the Optional Sampling theorem, since S = V (X) is a uniformly

integrable supermartingale. Hence, as expected, we can restrict our search for the

best minimising martingale to the set DM0,UI
.

Theorem 1.2.16. Suppose that G = g(X) and the assumptions of Theorem 1.2.13

hold. Let DM0,UI
be the set of admissible controls. Then the dual problem, i.e.

the right hand side of (1.25), is a stochastic control problem for a controlled Markov

process (X,Y f , Zf ), f ∈ DM0,UI
(defined by (1.26) and (1.27)), with a value function

V̂ given by (1.28)

Proof. For any f ∈ DMx
0,UI

, x ∈ E and y, z ∈ R, define processes Y f and Zf via

Y f
t := y +

∫ t

0
Lf(Xs)ds, 0 ≤ t ≤ T, (1.26)

Zfs,t := sup
s≤r≤t

(
f(x) + g(Xr)− f(Xr) + Y f

r

)
, 0 ≤ s ≤ t ≤ T, (1.27)

and to allow arbitrary starting positions, set Zft = Zf0,t ∨ z, for z ≥ g(x) + y. Note

that, for any f ∈ D(L), Y f is an additive functional of X. Lemma 1.2.5 implies that

if f ∈ DM0,UI
then (X,Y f , Zf ) is a Markov process.

Define V̂ : E × R2 7→ R by

V̂ (x, y, z) = inf
f∈DMx

0,UI

Ex,y,z[ZfT ], (x, y, z) ∈ E × R× R. (1.28)

It is clear that this is a stochastic control problem for the controlled Markov pro-

cess (X,Y f , Zf ), where the admissible controls are functions in DM0,UI
. Moreover,

since V ∈ DM0,UI
, by virtue of Theorem 1.2.15, and adjusting initial conditions as

necessary, we have

V (x) = V̂ (x, 0, g(x)) = Ex,0,g(x)[Z
V
T ], x ∈ E.

a
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1.2.4 Application: smooth pasting condition

We will now discuss the implications of Theorem 1.2.13 for the smoothness of the

value function V (·) of the optimal stopping problem given in (1.20).

Remark 1.2.17. While in Theorem 1.2.18 (resp. Theorem 1.2.23) we essentially

recover (a small improvement of) Theorem 2.3 in Peskir [86] (resp. Theorem 2.3 in

Samee [98]), the novelty is that we prove the results by means of stochastic calculus,

as opposed to the analytic approach in [86] (resp. [98]).

In addition to Assumption 1.2.8 and Assumption 1.2.9, we now assume that

X is a one-dimensional diffusion in the Itô-McKean [63] sense, so that X is a strong

Markov process with continuous sample paths. We also assume that the state space

E ⊂ R is an interval with endpoints −∞ ≤ a ≤ b ≤ +∞. Note that the diffusion

assumption implies Assumption 1.2.7. Finally, we assume that X is regular: for

any x, y ∈ int(E), Px[τy < ∞] > 0, where τy = min{t ≥ 0 : Xt = y}. Let α ≥ 0 be

fixed; α corresponds to a killing rate of the sample paths of X.

The case without killing: α = 0 Let s(·) denote a scale function of X, i.e.

a continuous, strictly increasing function on E such that for l, r, x ∈ E, with

a ≤ l < x < r ≤ b, we have

Px(τr < τl) =
s(x)− s(l)
s(r)− s(l)

, (1.29)

see Proposition 3.2 in Revuz and Yor [95] (p.301) for the proof of existence and

properties of such a function.

From (1.29), using regularity of X and that V (X) is a supermartingale of

class (D) we have that V (·) is s-concave:

V (x) ≥ V (l)
s(r)− s(x)

s(r)− s(l)
+ V (r)

s(x)− s(l)
s(r)− s(l)

, x ∈ [l, r]. (1.30)

Theorem 1.2.18. Suppose the assumptions of Theorem 1.2.13 are satisfied, so that

V ∈ D(L). Further assume that X is a regular, strong Markov process with contin-

uous sample paths. Let Y = s(X), where s(·) is a scale function of X.

1. Assume that for each y ∈ [s(a), s(b)], the local time of Y at y, Ly, is singular

with respect to Lebesgue measure. Then, if s ∈ C1, V (·), given by (1.20),

belongs to C1.

2. Assume that ([Y, Y ]t)t≥0 is, as a measure, absolutely continuous with respect
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to Lebesgue measure. If s′(·) is absolutely continuous, then V ∈ C1 and V ′(·)
is also absolutely continuous.

Remark 1.2.19. If G is the filtration of a Brownian motion, B, then Y = s(X) is

a stochastic integral with respect to B (a consequence of martingale representation):

Yt = Y0 +

∫ t

0
σsdBs. (1.31)

Moreover, Proposition 3.56 in Çinlar et al. [23] ensures that σt = σ(Yt) for a suitably

measurable function σ and

[Y, Y ]t =

∫ t

0
σ2(Ys)ds.

In this case, both, the singularity of the local time of Y and absolute continuity

of [Y, Y ] (with respect to Lebesgue measure), are inherited from those of Brownian

motion. On the other hand, if X is a regular diffusion (not necessarily a solution to

an SDE driven by a Brownian motion), absolute continuity of [Y, Y ] still holds, if

the speed measure of X is absolutely continuous (with respect to Lebesgue measure).

Proof. Note that Y = s(X) is a Markov process, and let K denote its martingale

generator. Moreover, V (x) = W (s(x)) (see Lemma 1.2.21 and the following remark),

where, on the interval [s(a), s(b)], W (·) is the smallest nonnegative concave majorant

of the function ĝ(y) = g ◦ s−1(y). Then, since V ∈ D(L),

V (Xt) = V (x) +MV
t +

∫ t

0
LV (Xu)du, 0 ≤ t ≤ T,

and thus

W (Yt) = W (y) +MV
t +

∫ t

0
(LV ) ◦ s−1(Yu)du, 0 ≤ t ≤ T.

Therefore, W ∈ D(K), since

W (Yt) = W (y) +MV
t +

∫ t

0
KW (Yu)du, (1.32)

for y ∈ [s(a), s(b)], 0 ≤ t ≤ T , with KW = LV ◦ s−1 ≤ 0.

On the other hand, using the generalised Itô formula for concave/convex
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functions (see, for example, Theorem 1.5 in Revuz and Yor [95] (p.223)) we have

W (Yt) = W (y) +

∫ t

0
W
′
+(Yu)dYu −

∫ s(b)

s(a)
Lzt ν(dz),

for y ∈ [s(a), s(b)], 0 ≤ t ≤ T , where Lzt is the local time of Yt at z, and ν is a

non-negative σ-finite measure corresponding to the second derivative of −W in the

sense of distributions. Then, by the uniqueness of the decomposition of a special

semimartingale, we have that, for t ∈ [0, T ],

−
∫ t

0
KW (Yu)du =

∫ s(b)

s(a)
Lzt ν(dz) a.s. (1.33)

We prove the first claim by contradiction. Suppose that ν({z0}) > 0 for some

z0 ∈ (s(a), s(b)). Then, using (1.33) we have that

−
∫ t

0
KW (Yu)du = Lz0t ν({z0}) +

∫ s(b)

s(a)
1{z 6=z0}L

z
t ν(dz) a.s. (1.34)

Since Lz0t is positive with positive probability and, by assumption, Ly, y ∈ [s(a), s(b)],

is singular with respect to Lebesgue measure, the process on the right hand side of

(1.34) is not absolutely continuous with respect to Lebesgue measure, which contra-

dicts absolute continuity of the left hand side. Therefore, ν({z0}) = 0, and since z0

was arbitrary, we have that ν does not charge points. It follows that W ∈ C1. Since

s ∈ C1 by assumption, we conclude that V ∈ C1.

We now prove the second claim. By assumption, [Y, Y ] is absolutely continu-

ous with respect to Lebesgue measure (on the time axis). Invoking Proposition 3.56

in Çinlar et al. [23] again, we have that

[Y, Y ]t =

∫ t

0
σ2(Yu)du

(as in Remark 1.2.19). A time-change argument allows us to conclude that Y is

a time-change of a BM and that we may neglect the set {t : σ2(Yt) = 0} in the

representation (1.32). Thus

W (Yt) = W (Y0) +

∫ t

0
1Nc(Yu)dMV

u +

∫ t

0
1Nc(Yu)KW (Yu)du

where N is the zero set of σ. Then, using the occupation time formula (see, for
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example, Corollary 1.6 in Revuz and Yor [95] (p.224)) we have that

−
∫ t

0
KW (Yu)du =

∫ t

0
f(Yu)d[Y, Y ]u =

∫ s(b)

s(b)
f(z)Lzt dz a.s.,

where f : [s(a), s(b)] 7→ R is given by f : y 7→ −KW
σ2 1Nc(y).

Now observe that, for 0 ≤ r ≤ t ≤ T ,

η([r, t]) :=

∫ s(b)

s(a)
f(z)

(
Lzt − Lzr

)
dz and π([r, t]) :=

∫ s(b)

s(a)

(
Lzt − Lzr

)
ν(dz)

define measures on the time axis, which, by virtue of (1.33), are equal (and thus

both are absolutely continuous with respect to Lebesgue measure). Now define

T l,l̄ := {t : Yt ∈ [l, l̄]}, s(a) ≤ l ≤ l̄ ≤ s(b).

Then the restrictions of η and π to T l,l̄, η|T l,l̄ and π|T l,l̄ , are also equal. Moreover,

since Y is a local martingale, it is also a semimartingale. Therefore, for every

0 ≤ t ≤ T , Lzt is carried by the set {t : Yt = z} (see Theorem 69 in Protter [92]

(p.217)). Hence, for each t ∈ [0, T ],

η|T l,l̄([0, t]) =

∫ l̄

l
Lzt f(z)dz =

∫ l̄

l
Lzt ν(dz) = π|T l,l̄([0, t]), (1.35)

and, since l and l̄ are arbitrary, the left and right hand sides of (1.35) define measures

on [s(a), s(b)] ⊆ R, which are equal. It follows that ν is absolutely continuous with

respect to Lebesgue measure on [s(a), s(b)] and f(z)dz = ν(dz). This proves that

W ∈ C1 and W ′(·) is absolutely continuous on [s(a), s(b)] with Radon-Nikodym

derivative f . Since the product and composition of absolutely continuous functions

are absolutely continuous, we conclude that V ′(·) is absolutely continuous (since

s′(·) is, by assumption).

Remark 1.2.20. We note that for a smooth fit principle to hold, it is not necessary

that s ∈ C1. Given that all the other conditions of Theorem 1.2.18 hold, it is

sufficient that s(·) is differentiable at the boundary of the continuation region. On

the other hand, if g ∈ D(L), V ∈ C1, even if g /∈ C1.

Moreover, since V = g on the stopping region, Theorem 1.2.18 tells us that

g ∈ C1 on the interior of the stopping region. However, the question whether this

stems already from the assumption that g ∈ D(L) is more subtle. For example, if

g ∈ D(L) and g is a difference of two convex functions, then by the generalised Itô
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formula and the local time argument (similarly to the proof of Theorem 1.2.18) we

could conclude that g ∈ C1 on the whole state space E.

Case with killing: α > 0 We now generalise the results of the Theorem 1.2.18

in the presence of a non-trivial killing rate. Consider the following optimal stopping

problem

V (x) = sup
τ∈T0,T

Ex[e−ατg(Xτ )], x ∈ E. (1.36)

Note that, since α > 0, using the regularity of X together with the supermartingale

property of V (X) we have that

V (x) ≥ V (l)Ex[e−ατl1τl<τr ] + V (r)Ex[e−ατr1τr<τl ], x ∈ [l, r] ⊆ E. (1.37)

Define increasing and decreasing functions ψ, φ : E 7→ R, respectively, by

ψ(x) =

Ex[e−ατc ], if x ≤ c

1/Ec[e−ατx ], if x > c
φ(x) =

1/Ec[e−ατx ], if x ≤ c

Ex[e−ατc ], if x > c
(1.38)

where c ∈ E is arbitrary. Then, (Ψt)0≤t≤T and (Φt)0≤t≤T , given by

Ψt = e−αtψ(Xt), Φt = e−αtφ(Xt), 0 ≤ t ≤ T,

respectively, are local martingales (and also supermartingales, since ψ, φ are non-

negative); see Dynkin [37] and Itô and McKean [63].

Let p1, p2 : [l, r] 7→ [0, 1] (where [l, r] ⊆ E) be given by

p1(x) = Ex[e−ατl1τl<τr ], p2(x) = Ex[e−ατr1τr<τl ].

Continuity of paths of X implies that pi(·), i = 1, 2, are both continuous (the proof

of continuity of the scale function in (1.29) can be adapted for a killed process). In

terms of the functions ψ(·), φ(·) of (1.38), using appropriate boundary conditions,

one calculates

p1(x) =
ψ(x)φ(r)− ψ(r)φ(x)

ψ(l)φ(r)− ψ(r)φ(l)
, p2(x) =

ψ(l)φ(x)− ψ(x)φ(l)

ψ(l)φ(r)− ψ(r)φ(l)
, x ∈ [l, r]. (1.39)

Let s̃ : E 7→ R+ be the continuous increasing function defined by s̃(x) = ψ(x)/φ(x).

Substituting (1.39) into (1.37) and then dividing both sides by φ(x) we get

V (x)

φ(x)
≥ V (l)

φ(l)
· s̃(r)− s̃(x)

s̃(r)− s̃(l)
+
V (r)

φ(r)
· s̃(x)− s̃(l)
s̃(r)− s̃(l)

, x ∈ [l, r] ⊆ E,
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so that V (·)/φ(·) is s̃-concave.

Recall that (1.37) essentially follows from V (·) being α-superharmonic, so

that it satisfies Ex[e−ατV (Xτ )] ≤ V (x) for x ∈ E and any stopping time τ . Since

Φ and Ψ are local martingales, it follows that the converse is also true, i.e. given

a measurable function f : E 7→ R, f(·)/φ(·) is s̃-concave if and only if f(·) is α-

superharmonic (Proposition 4.1 in Dayanik and Karatzas [30]). This shows that a

value function V (·) is the minimal majorant of g(·) such that V (·)/φ(·) is s̃-concave.

Lemma 1.2.21. Suppose [l, r] ⊆ E and let W (·) be the smallest nonnegative concave

majorant of g̃ := (g/φ) ◦ s̃−1 on [s̃(l), s̃(r)], where s̃−1 is the inverse of s̃. Then

V (x) = φ(x)W (s̃(x)) on [l, r].

Proof. Define V̂ (x) = φ(x)W (s̃(x)) on [l, r]. Then, trivially, V̂ (·) majorizes g(·) and

V̂ (·)/φ(·) is s̃-concave. Therefore V (x) ≤ V̂ (x) on [l, r].

On the other hand, let Ŵ (y) = (V/φ)(s̃−1(y)) on [s̃(l), s̃(r)]. Since V (x) ≥
g(x) and (V/φ)(·) is s̃-concave on [l, r], Ŵ (·) is concave and majorizes (g/φ) ◦ s̃−1(·)
on [s̃(l), s̃(r)]. Hence, W (y) ≤ Ŵ (y) on [s̃(l), s̃(r)].

Finally, (V/φ)(x) ≤ (V̂ /φ)(x) = W (s̃(x)) ≤ Ŵ (s̃(x)) = (V/φ)(x) on [l, r].

Remark 1.2.22. When α = 0, let (ψ, φ) = (s, 1). Then Lemma 1.2.21 is just

Proposition 4.3. in Dayanik and Karatzas [30].

With the help of Lemma 1.2.21 and using parallel arguments to those in the

proof of Theorem 1.2.18 we can formulate sufficient conditions for V to be in C1

and have absolutely continuous derivative.

Theorem 1.2.23. Suppose the assumptions of (1.2.13) are satisfied, so that V ∈
D(L). Further assume that X is a regular Markov process with continuous sample

paths. Let ψ(·), φ(·) be as in (1.38) and consider the process Y = s̃(X).

1. Assume that, for each y ∈ [s̃(a), s̃(b)], the local time of Y at y ∈ [s̃(a), s̃(b)],

L̂y, is singular with respect to Lebesgue measure. Then if ψ, φ ∈ C1, V (·),
given by (1.36), belongs to C1.

2. Assume that [Y, Y ] is, as a measure, absolutely continuous with respect to

Lebesgue measure. If ψ′(·), φ′(·) are both absolutely continuous, then V ′(·) is

also absolutely continuous.

Proof. First note that Y is not necessarily a local martingale, while ΦY is. Indeed,

ΦY = Ψ. Hence

(Nt)0≤t≤T :=
(∫ t

0
ΦtdYt + [Φ, Y ]t

)
0≤t≤T
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is the difference of two local martingales, and thus is a local martingale itself. Using

the generalised Itô formula for concave/convex functions, we have

ΦtW (Yt) = Φ0W (y) +

∫ t

0
W (Ys)dΦs +

∫ t

0
W
′
+(Ys)dNs −

∫ s̃(r)

s̃(l)
ΦtL̂

z
t ν(dz), (1.40)

for y ∈ [s̃(l), s̃(r)], 0 ≤ t ≤ T , where L̂zt is the local time of Yt at z, and ν is a

non-negative σ-finite measure corresponding to the derivative W
′′

in the sense of

distributions.

On the other hand, if g ∈ D(L), then V ∈ D(L). Therefore,

e−αtV (Xt) = V (x)+

∫ t

0
e−αsdMV

s +

∫ t

0
e−αs{L−α}V (Xs)ds, 0 ≤ t ≤ T. (1.41)

Then, similarly to before, from the uniqueness of the decomposition of the Snell

envelope, we have that the martingale and FV terms in (1.40) and (1.41) coincide.

Hence, for t ∈ [0, T ],∫ s̃(r)

s̃(l)
e−αtφ(Xt)L̂

z
t ν(dz) = −

∫ t

0
e−αs{L − α}V (Xs)ds a.s.

Using the same arguments as in the proof of Theorem 1.2.18 we can show that both

statements of this theorem hold. The details are left to the reader.

The following example shows that the smooth pasting may fail even if g ∈
C∞.

Example 1.2.24. Suppose Xt = (Zt, L
0
t , t), t ≥ 0, where Z is a one-dimensional

Itô diffusion and L0 is its local time at 0. Fix α > 0 and let

g : (z, l, t) 7→ −e−αtl

be the payoff function and G, given by Gt = g(Zt, L
0
t , t), a corresponding gains

process. Let ψ : z 7→ Ez[e−ατ0 ], where τ0 is the first hitting time of 0 by Z.

Now, define

v : (z, l, t) 7→ −ψ(z)e−αtl,

and note that V , given by Vt = v(Zt, L
0
t , t), is the conditional expected payoff obtained

by stopping at the first hit of 0 by Z after time t. It follows that G ≤ V ≤ S,

where S is the Snell envelope of G. Conversely, since ψ is bounded and L0 is

continuous and only increases when Z is at 0, (Vt∧τ0)t≥0 is a uniformly integrable

martingale. Then, since ψ is positive and L0 is non-decreasing, it follows that V is
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a supermartingale. Consequently V = S and, in particular, v is the value function

of the optimal stopping problem (with payoff function g).

Notice that, in general, ψ (and hence v) is not in C1. For example, taking

Z to be a Brownian motion and α = 1/2 gives

ψ : z 7→ e−|z|.

1.3 Auxiliary results and proofs

In this section we retain the notation of Sections 1.1.1 and 1.2.1.

Lemma 1.3.1. Let G ∈ Ḡ, σ ∈ T0,T and τ ∈ Tσ,T . Then the family of random

variables {E[Gρ|Fσ] : ρ ∈ Tτ,T } is directed upwards, i.e. for any ρ1, ρ2 ∈ Tτ,T , there

exists ρ3 ∈ Tτ,T , such that

E[Gρ1 |Fσ] ∨ E[Gρ2 |Fσ] ≤ E[Gρ3 |Fσ] P-a.s.

Proof. Fix τ ∈ Tσ,T . Suppose ρ1, ρ2 ∈ Tτ,T and defineA := {E[Gρ1 |Fσ] ≥ E[Gρ2 |Fσ]}.
Set ρ3 := ρ11A + ρ21Ac . Note that ρ3 ∈ Tτ,T . Using Fσ-measurability of A, we have

E[Gρ3 |Fσ] = 1AE[Gρ1 |Fσ] + 1AcE[Gρ2 |Fσ]

= E[Gρ1 |Fσ] ∨ E[Gρ2 |Fσ] P-a.s.,

which proves the claim.

Lemma 1.3.2. Let G ∈ Ḡ and S be its Snell envelope with decomposition S =

M∗−A, where M∗ ∈M0,UI and A is an adapted, non-decreasing process of integrable

variation. For 0 ≤ t ≤ T and ε > 0, define

Kε
t = inf{s ≥ t : Gs ≥ Ss − ε}. (1.42)

Then AKε
t

= At a.s. and the processes (AKε
t
) and A are indistinguishable.

Proof. From the directed upwards property (Lemma 1.3.1) we know that E[St] =

supτ∈Tt,T E[Gτ ]. Then for a sequence (τn)n∈N of stopping times in Tt,T , such that

limn→∞ E[Gτn ] = E[St], we have

E[Gτn ] ≤ E[Sτn ] = E[M∗τn −Aτn ] = E[St]− E[Aτn −At],
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since M∗ is uniformly integrable. Hence, since A is non-decreasing,

0 ≤ lim
n→∞

E[Sτn −Gτn ] = − lim
n→∞

E[Aτn −At] ≤ 0,

and thus we have equalities throughout. By passing to a sub-sequence we can assume

that

lim
n→∞

(Sτn −Gτn) = 0 = lim
n→∞

(Aτn −At) a.s. (1.43)

The first equality in (1.43) implies that Kε
t ≤ τn0 a.s., for some large enough n0 ∈ N,

and thus AKε
t
≤ Aτn , for all n0 ≤ n. Since A is non-decreasing, we also have that

0 ≤ AKε
t
− At ≤ Aτn − At a.s., n0 ≤ n, and from the second equality in (1.43)

we conclude that AKε
t

= At a.s. The indistinguishability follows from the right-

continuity of G and S.

1.3.1 Proofs of results in Section 1.2

Proof of Lemma 1.2.5. The completed filtration generated by a Feller process satis-

fies the usual assumptions, in particular, it is both right-continuous and quasi-left-

continuous. The latter means that for any predictable stopping time σ, Fσ− = Fσ.

Moreover, every càdlàg Feller process is left-continuous over stopping times and sat-

isfies the strong Markov property. On the other hand, every Feller process admits

a càdlàg modification (these are standard results and can be found, for example, in

Revuz and Yor [95] or Rogers and Williams [97]). All that remains is to show that

the addition of the functional F leaves (X,F ) strong Markov. This is elementary

from (1.19).

1.3.2 Proofs of results in Section 1.1

Proof of Lemma 1.1.17. Let (τn)n∈N be a nondecreasing sequence of stopping times

with limn→∞ τn = τ , for some fixed τ ∈ T0,T . Since S is a supermartingale, E[Sτn ] ≥
E[Sτ ], for every n ∈ N. For a fixed ε > 0, Kε

τn (defined by (1.42)) is a stopping time,

and by Lemma 1.3.2, AKε
τn

= Aτn a.s. Therefore, since M∗ is uniformly integrable,

E[SKε
τn

] = E[M∗Kε
τn
−AKε

τn
] = E[M∗τn −Aτn ] = E[Sτn ].

Thus, by the definition of Kε
τn ,

E[GKε
τn

] ≥ E[SKε
τn

]− ε = E[Sτn ]− ε.
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Let τ̂ := limn→∞K
ε
τn . Note that the sequence (Kε

τn)n∈N is non-decreasing and

dominated by Kε
τ . Hence τ ≤ τ̂ ≤ Kε

τ a.s. Finally, using the regularity of G we

obtain

E[Sτ ] ≥ E[Sτ̂ ] ≥ E[Gτ̂ ] = lim
n→∞

E[GKε
τn

] ≥ lim
n→∞

E[Sτn ]− ε.

Since ε is arbitrary, the result follows.

Proof of Lemma 1.1.20. For n ≥ 1, define

τn := inf{t ≥ 0 :

∫ t

0
|dKs|≥ n}.

Clearly τn ↑ ∞ as n→∞. Then for each n ≥ 1

E[

∫ t∧τn

0
|dKs|] ≤ E[

∫ τn

0
|dKs|]

= E[

∫ τn−

0
|dKs|] + |∆Kτn |]

≤ n+ c.

Therefore, since X ∈ G,

||Lτn ||S1≤ ||Xτn ||S1+E[

∫ τn

0
|dKs|] <∞,

and thus, ||Xτn ||H1<∞, for all n ≥ 1.

28



Chapter 2

Shadow coupling

In this chapter we investigate the so-called shadow embedding between two measures,

introduced by Beiglböck and Juillet [10]. The main result, Theorem 2.2.2, provides

an explicit construction (via associated potential functions) of the shadow measure.

We also discuss the left-curtain martingale coupling, which is a martingale transport

between two probability measures that arises, via shadow measure, from a particular

parametrisation of the initial law. This martingale transport plan will be extensively

used in studying the robust upper bound of the American put option in Chapter 3,

while in Chapter 4 we will provide an explicit construction of the generalised left-

curtain coupling. For this reason, the current chapter also serves as a prerequisite

chapter for Chapters 3 and 4.

2.1 Measures and Convex order

LetM (respectively P) be the set of measures (respectively probability measures) on

R with finite total mass and finite first moment, i.e. if η ∈ M, then η(R) <∞ and∫
R|x|η(dx) < ∞. Given a measure η ∈ M (not necessarily a probability measure),

define η̄ =
∫
R xη(dx)∫
R η(dx)

to be the barycentre of η. Let Iη be the smallest interval

containing the support of η, and let {`η, rη} be the endpoints of Iη (if η has an atom

at `η then `η is included in I, and similarly for rη).

For η ∈ P let Fη be the distribution function of η and let Gη : (0, 1) 7→ R
be the quantile function of η, which is taken to be left-continuous unless otherwise

stated.

For any real numbers c < d and a measure η ∈ M, let ηc,d be the measure

given by ηc,d(A) = η(A ∩ (c, d)), A ∈ B(R). Let η̃c,d = η − ηc,d.
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For η ∈M, define the function Pη : R 7→ R+ by

Pη(k) :=

∫
R

(k − x)+η(dx), k ∈ R.

Then Pη is convex and non-decreasing, limz↓−∞ Pη(z) = 0, limz↑∞ Pη(z)− η(R)(z−
η̄)+ = 0 and {k : Pη(k) > η(R)(k − η̄)+} ⊆ Iη. Conversely, if h is a non-negative,

non-decreasing and convex function satisfying limz↓−∞ h(z) = 0 and limz↑∞ h(z) −
km(z − kb)+ = 0, for some numbers km, kb ∈ R, then there exists a unique measure

η ∈M, with a total mass η(R) = km and a barycentre η̄(R) = kb, such that h = Pη

(see, for example, Proposition 2.1 in Hirsch et al. [53]). In particular, η is uniquely

identified by the second derivative of h in the sense of distributions. (In financial

context, Pη represents the discounted European put-price, expressed as a function

of strike, if the discounted underlying has law η at maturity.) Additional properties

of Pη can be found in Chacon [20], and Chacon and Walsh [21]. Note that Pη is

related to the potential Uη, defined by

Uη(k) :=

∫
R
|k − x|η(dx), k ∈ R,

by Pη(k) = 1
2(Uη(k) + (k − η̄)η(R)).

For η, χ ∈M, we write η ≤ χ if∫
fdη ≤

∫
fdχ, for all f : R 7→ R+.

Then η ≤ χ if and only if Pχ − Pη is convex, i.e. Pη has a smaller curvature than

Pχ.

Two measures η, χ ∈M are in convex order, and we write η ≤cx χ, if∫
R
fdη ≤

∫
R
fdχ, for all convex f : R 7→ R. (2.1)

Then, if η ≤cx χ, η and χ have the same total mass (η(R) = χ(R)) and the same

barycentre (η̄ = χ̄). Indeed, since we can apply (2.1) to all affine functions, choosing

f(x) = ±1 and f(x) = ±x gives a desired result. Moreover, necessarily we must

have `χ ≤ `η ≤ rη ≤ rχ. From simple approximation arguments (see Hirsch et al.

[53]) we also have that, if η and χ have the same total mass and the same barycentre,

then η ≤cx χ if and only if Pη(k) ≤ Pχ(k), k ∈ R.

Example 2.1.1. If µ = αδx, for α > 0 and x ∈ R, then any ν ∈M, with ν(R) = α

and ν̄ = x, satisfies µ ≤cx ν.
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If µi ≤cx νi for i = 1, ..., n then
∑n

i=1 µi ≤cx
∑n

i=1 νi.

If µ(R) = ν(R) and µ̄ = ν̄, µ is concentrated on [a, b] ⊂ R and ν is concen-

trated on R \ (a, b), then µ ≤cx ν.

If µ(R) = ν(R) and µ̄ = ν̄, µ − (µ ∧ ν) is concentrated on [a, b] ⊂ R and

ν−(µ∧ν) is concentrated on R\(a, b), then µ ≤cx ν (see also Dispersion Assumption

3.2.3 in Chapter 3).

For our purposes in Section 2.2 we need a generalisation of the convex order

of two measures. We say η, χ ∈ M are in an extended convex order, and write

η ≤E χ, if ∫
fdη ≤

∫
fdχ, for all convex f : R 7→ R+.

The partial order ≤E generalises ≤cx in a sense that it preserves the old inequalities

and gives rise to new ones. If η ≤cx χ then also η ≤E χ (since non-negative convex

functions are convex), while if η ≤ χ, we also have that η ≤E χ (since non-negative

convex functions are non-negative). Note that, if η ≤E χ, then η(R) ≤ χ(R) (apply

the non-negative convex function φ(x) = 1, x ∈ R, in the definition of ≤E). It is

also easy to prove that, if η(R) = χ(R), then η ≤E χ is equivalent to η ≤cx χ.

Example 2.1.2. Let 0 ≤ µ′ ≤ µ and µ ≤cx ν. Then, for any convex f : R 7→ R+,∫
fdµ′ ≤

∫
fdµ ≤

∫
fdν,

and thus µ′ ≤E ν.

Let (ηn)n≥1 be a sequence of probability measures in P. For η ∈ P, we

write ηn
w−→ η, and say ηn converges weakly to η, if limn→∞

∫
fdηn =

∫
fdη for all

bounded and continuous functions f : R 7→ R (see Billingsley [14]). If ηn
w−→ η, if

ηn ≤cx η and if (ηn)n≥1 is increasing in convex order, i.e. ηn ≤cx ηn+1 for each n,

then we write ηn ↑cx η.

Lemma 2.1.3. Suppose µ ∈ P. Then there exists a sequence (µn)n≥1 of finitely

supported integrable measures in P such that µn ↑cx µ.

Proof. Recall that for any η ∈ P(R), Uη is convex, linear on each interval I ⊂ R
with η(I) = 0, Uη(x) ≥ |η̄ − x|= Uδη̄(x) on R, and lim|x|→∞ Uη(x) − |η̄ − x|= 0.

Moreover, ηn ↑cx η if and only if Uηn ↑ Uη pointwise, see Chacon [20].

Let Uµ be a set of piecewise linear convex functions Ũ : R 7→ R+ such that

Uδµ̄(x) ≤ Ũ(x) ≤ Uµ(x). Then each Ũ ∈ Uµ corresponds to a finitely supported

integrable probability measure µ̃ on R such that δµ̄ ≤cx µ̃ ≤cx µ. Finally, Chacon
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and Walsh [21] provide a sequence of functions (Ũn)n≥1 in Uµ, such that Ũn ↑ Uµ
pointwise, proving our claim.

Let Π̄(η, χ) be the set of probability measures on R2 with the first marginal

η and second marginal χ. Let Π(η, χ) be the set of martingale couplings of η and χ.

Then

Π(η, χ) =
{
π ∈ Π̄(η, χ) : (2.2) holds

}
where (2.2) is the martingale condition∫

x∈B

∫
y∈R

yπ(dx, dy) =

∫
x∈B

∫
y∈R

xπ(dx, dy) =

∫
B
xη(dx) ∀ Borel B ⊆ R. (2.2)

Equivalently, Π(η, χ) consists of all transport plans π (i.e. elements of Π̄(η, χ)) such

that the disintegration in probability measures (πx)x∈R with respect to η satisfies∫
R yπx(dy) = x for η-almost every x. Then, π ∈ Π(η, χ) if and only if

∫
R2 h(x)(y −

x)π(dx, dy) = 0 for all bounded and measurable h : R 7→ R.

If we ignore the martingale requirement (2.2), it is easy to see that the set of

probability measures with given marginals is non-empty, i.e. Π̄(η, χ) 6= ∅ (consider

the product measure η⊗ χ). However, the fundamental question whether, for given

η and χ, the set of martingale couplings Π(η, χ) is non-empty, is more delicate. For

any π ∈ Π(η, χ) and convex f : R 7→ R, by conditional Jensen’s inequality, we have

that ∫
R
f(x)η(dx) ≤

∫
R

∫
R
f(y)πx(dy)η(dx) =

∫
R
f(y)π(R, dy) =

∫
R
f(y)χ(dy),

so that η ≤cx χ. On the other hand, Strassen [105] showed that a converse is also

true (i.e. η ≤cx χ implies that Π(η, χ) 6= ∅), so that Π(η, χ) is non-empty if and only

if η ≤cx χ.

It is worth noting that Π(η, χ) is compact (with respect to weak convergence

of measures). To see this, observe that, since Π(η, χ) ⊆ Π̄(η, χ) (and Π̄(η, χ) is

compact by Prokhorov’s [91] theorem), it is enough to show that Π(η, χ) is closed.

However, by standard approximation arguments, (2.2) is equivalent to
∫
R2 h̃(x)(y −

x)π(dx, dy) = 0 for all continuous and bounded h̃ : R 7→ R, while, by Lemma 2.2 in

Beiglböck and Juillet [10], π 7→
∫
c̃dπ (with c̃ : (x, y) 7→ h̃(x)(y − x)) is continuous

(with respect to weak convergence of measures).

Remark 2.1.4. Suppose we are given η ≤cx χ and want to show that Π(η, χ) 6= ∅.
The idea is to first show that the assertion holds when η is finitely supported (see

also Section 4.1.2 in Chapter 4). Then, by Lemma 2.1.3, there exists a sequence
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of measures {ηn}n≥1 (where each ηn consists of n atoms) such that ηn ≤cx η and

ηn
w−→ η. For each n, consider πn ∈ Π(ηn, χ). Relying on the compactness of

Π̃ := Π(η, χ) ∪
(
∪∞n=1 Π(ηn, χ)

)
we have that {πn}n≥1 has an accumulation point

π∞ ∈ Π̃, which thus has a desired (marginal and martingale) properties. (See Section

2 in Beiglböck and Juillet [10] for more details.)

Remark 2.1.5. The main problem in the theory of the classical optimal transport

is, for a given cost function c : R2 7→ R, to find a probability measure π on R2 (with

given marginals η and χ) that minimises the total expected cost
∫
R2 c(x, y)π(dx, dy).

Arguably the most important cost function is c(x, y) = (x−y)2, for which Hoeffding-

Fréchet coupling can be shown to be optimal.

However, if we are interested in minimising π 7→
∫
R2(x − y)2π(dx, dy) over

martingale couplings Π(η, χ), the problem becomes trivial. Indeed, for any π ∈
Π(η, χ),∫

R2

(x− y)2π(dx, dy) =

∫
R
x2η(dx)− 2

∫
R2

xyπ(dx, dy) +

∫
R
y2χ(dy)

=

∫
R
x2η(dx)− 2

∫
R
x

∫
R
yπx(dy)η(dx) +

∫
R
y2χ(dy)

=

∫
R
x2η(dx)− 2

∫
R
x2η(dx) +

∫
R
y2χ(dy)

=

∫
R
y2χ(dy)−

∫
R
x2η(dx),

so that the total expected cost does depend on the marginals, but not on a particular

choice of a martingale coupling (i.e. any π ∈ Π(η, χ) is optimal).

For a pair of measures η, χ on R, let the function D = Dη,χ : R 7→ R+ be

defined by Dη,χ(k) = Pχ(k) − Pη(k). Note that if η, χ have equal mass and equal

barycentre then η ≤cx χ is equivalent to D ≥ 0 on R. Let ID = [`D, rD] be the

smallest closed interval containing {k : Dη,χ(k) > 0}. If ID is such that ID ⊂ Iχ
then we must have η = χ on [`χ, `D) ∪ (rD, rχ].

The following result, first observed by Hobson [55] (see also Beiglböck and

Juillet [10], Section A.1), tells us that, if Dη,χ(x) = 0 for some x, then in any

martingale coupling of η and χ no mass can cross x.

Lemma 2.1.6. Suppose η and χ are probability measures with η ≤cx χ. Suppose that

D(x) = 0. If π ∈ Π(η, χ), then we have π((−∞, x), (x,∞))+π((x,∞), (−∞, x)) = 0.
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Proof. If (η̄, X, Y ) is a martingale with X ∼ η and Y ∼ χ then

Pχ(x) = E[(x− Y )+] ≥ E[(x− Y )+;X ≤ x] ≥ E[(x− Y );X ≤ x]

= E[(x−X);X ≤ x] = Pη(x). (2.3)

If D(x) = 0 we must have equality in the first two inequalities. From the fact

that the first inequality is an equality we conclude that (Y < x) ⊆ (X ≤ x)

and π((x,∞), (−∞, x)) = 0. Observe that (2.3) also holds if we replace (X ≤ x)

with (X < x). Again, if D(x) = 0 there is equality in the first two inequali-

ties. This time from the second inequality we conclude (Y > x) ⊆ (X < x)c and

π((−∞, x), (x,∞)) = 0.

It follows from Lemma 2.1.6 that, if there is a point x in the interior of the

interval Iη such that Dη,χ(x) = 0, then we can separate the problem of constructing

martingale couplings of η to χ into a pair of subproblems involving mass to the

left and right of x, respectively, always taking care to allocate mass of χ at x ap-

propriately. Indeed, if there are multiple {xj}j≥1 with Dη,χ(xj) = 0, then we can

divide the problem into a sequence of ‘irreducible’ problems1, each taking place on

an interval Ii such that D > 0 on the interior of Ii and D = 0 at the endpoints. All

mass starting in a given interval is transported to a point in the same interval.

2.2 The shadow measure

In this section we study the shadow embedding introduced by Beiglböck and Juil-

let [10], which induces a family of martingale couplings.

Let µ′, ν ∈ M with µ′ ≤E ν. Define Sµ′,ν := {θ ∈ M : θ ≤ ν, µ′ ≤cx θ}.
Then Sµ′,ν is non-empty (see Proposition 4.4 in Beiglböck and Juillet [10]) and has

a minimal element in convex order:

Lemma 2.2.1 (Beiglböck and Juillet [10], Lemma 4.6 and Theorem 4.8). Let µ′, ν ∈
M and assume µ′ ≤E ν. Then there exists a (unique) measure Sν(µ′), called the

shadow of µ′ in ν, such that

1. Sν(µ′) ≤ ν.

2. µ′ ≤cx Sν(µ′).

3. If η is another measure satisfying Item 1 and Item 2, then Sν(µ′) ≤cx η.

1The terminology ‘irreducible’ is due to Beiglböck and Juillet [10] although the idea of splitting a
problem into separate components is also present in the earlier papers of Hobson [55] and Cox [24].
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Moreover, let µ1, µ2, ν ∈M and suppose µ′ = µ1+µ2 ≤E ν. Then, µ2 ≤E ν−Sν(µ1),

µ1 ≤E ν − Sν(µ2) and the following associativity property holds

Sν(µ1 + µ2) = Sν(µ1) + Sν−S
ν(µ1)(µ2) (2.4)

= Sν(µ2) + Sν−S
ν(µ2)(µ1). (2.5)

In Theorem 2.2.2 below we will provide an explicit construction of the shadow

measure in terms of its potential function. On the other hand, the associativity

property (2.4) (or equivalently (2.5)) can be proved by approximation arguments,

similarly as in Remark 2.1.4.

Fix µ′, ν ∈ M such that µ′ ≤E ν. Our goal is to construct the shadow

measure Sν(µ′). On the other hand, given PSν(µ′), S
ν(µ′) can be identified as the

second derivative of PSν(µ′) in the sense of distributions. Moreover, consider the

measure Ŝν(µ′) := ν −Sν(µ′). Then PSν(µ′) = Pν −PŜν(µ′) on R, and hence, to find

PSν(µ′) it is enough to find PŜν(µ′).

For a measurable function h : R 7→ R, let hc denote its convex hull, i.e. the

greatest convex minorant of h. The main result of this chapter (which relies on the

auxiliary Lemma 2.5.1) is the following

Theorem 2.2.2. Let µ′, ν ∈M with µ′ ≤E ν. Then

PŜν(µ′)(x) = (Pν − Pµ′)c(x), x ∈ R. (2.6)

In particular, PSν(µ′) = Pν − (Pν − Pµ′)c on R.

Proof of Theorem 2.2.2. We first restate the defining properties of the shadow mea-

sure, Items 1 to 3, in Lemma 2.2.1 in terms of the potential function PŜν(µ′).

From Item 1 we have that 0 ≤ Ŝν(µ′) ≤ ν, and therefore

PŜν(µ′) and Pν−Ŝν(µ′) = Pν − PŜν(µ′) are both convex on R. (2.7)

Item 2 is equivalent to∫
fdŜν(µ′) ≤

∫
fd(ν − µ′), for all convex f : R 7→ R,

and therefore

PŜν(µ′)(k) ≤ Pν(k)− Pµ′(k), k ∈ R. (2.8)

Finally, if η is another measure satisfying Items 1 and 2 in Lemma 2.2.1, then
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Item 3 is equivalent to∫
fd(ν − η) ≤

∫
fdŜν(µ′), for all convex f : R 7→ R,

and thus Pν − Pη ≤ PŜν(µ′) on R. In particular,

PŜν(µ′) is pointwise maximal with respect to (2.7) and (2.8). (2.9)

Our goal is to show that PŜν(µ′) = (Pν − Pµ′)c.
Since (Pν−Pµ′)c is the largest convex function dominated by Pν−Pµ′ (while

PŜν(µ′) is convex and satisfies (2.8)), we have both, (Pν−Pµ′)c is convex and PŜν(µ′) ≤
(Pν − Pµ′)c ≤ Pν − Pµ′ on R.

Now, note that Pν and Pµ′ are both convex (on R). Therefore, by Lemma 2.5.1,

we have that Pν − (Pν − Pµ′)c is also convex (on R). Hence, (Pν − Pµ′)c satisfies

(2.7) and (2.8). But, by (2.9), PŜν(µ′) is maximal with respect to (2.7) and (2.8).

Therefore, (Pν − Pµ′)c ≤ PŜν(µ′) on R. It follows that (Pν − Pµ′)c = PŜν(µ′).

2.3 The left-curtain coupling πlc

The left-curtain coupling (or martingale transport) was introduced by Beiglböck and

Juillet [10] (and further studied by Henry-Labordère and Touzi [50] and Beiglböck

et al. [9]).

The left-curtain martingale coupling, denoted by πlc, is a martingale coupling

that arises, from a particular parametrisation of the initial law, via shadow measure.

More specifically (see Theorem 4.18 in Beiglböck and Juillet [10]), there exists a

(unique) measure πlc ∈ Π(µ, ν) that transports µ|(−∞,x] to the shadow Sν(µ|(−∞,x]),

x ∈ R. In other words, the first and second marginals of πlc|(−∞,x]×R are µ|(−∞,x]

and Sν(µ|(−∞,x]), respectively.

Definition 2.3.1. A transport plan π ∈ Π(µ, ν) is said to be left-monotone if there

exists Γ ∈ B(R2) with π(Γ) = 1 and such that, if (x, y−), (x, y+), (x′, y′) ∈ Γ we

cannot have x < x′ and y− < y′ < y+.

Using the minimality of the shadow measure with respect to convex order,

i.e. Item 3 in Lemma 2.2.1, it can be shown that πlc is also a unique left-monotone

martingale coupling (see Theorems 4.21 and 5.3 in Beiglböck and Juillet [10]).

The following additional property of πlc is of particular importance in Chap-

ters 3 and 4. When the initial law µ is continuous, the left-curtain coupling has

a rather simple representation. In particular, the element πxlc(·) in the disintegra-

tion πlc(dx, dy) = µ(dx)πxlc(dy) is a measure supported on a set of at most two
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points. For real numbers c, d with c ≤ x ≤ d define the probability measure χc,x,d

by χc,x,d = d−x
d−c δc + x−c

d−cδd with χc,x,d = δx if (d− x)(x− c) = 0. Note that χc,x,d has

mean x. χc,x,d is the law of a Brownian motion started at x evaluated on the first

exit from (c, d).

Lemma 2.3.2 (Beiglböck and Juillet[10], Corollary 1.6). Let µ, ν be probability

measures in convex order and assume that µ is continuous. Then there exists a pair

of measurable functions Td : R 7→ R and Tu : R 7→ R such that Td(x) ≤ x ≤ Tu(x),

such that for all x < x′ we have Tu(x) ≤ Tu(x′) and Td(x
′) /∈ (Td(x), Tu(x)), and

such that, if we define π̂(dx, dy) = µ(dx)χTd(x),x,Tu(x)(dy), then π̂ ∈ Π(µ, ν) and

π̂ = πlc.

Note that there is no claim of uniqueness of the functions Td, Tu in Lemma 2.3.2.

Indeed, Td, Tu are unique only µ-a.s. (see Beiglböck et al. [9], Proposition 3.4). For

example, the definitions of Td and Tu are immaterial outside [`µ, rµ]. Further, if

Tu has a (necessarily upward) jump at x′ then it does not matter what value we

take for Tu(x′) provided Tu(x′) ∈ [Tu(x′−), Tu(x′+)]. (Since we are assuming µ is

continuous, the probability that we choose an x-coordinate value of x′ is zero.) More

importantly, if (Td, Tu) satisfy the properties of Lemma 2.3.2 and if Tu(x) = x on an

interval [x, x) then we can modify the definition of Td on [x, x) to either Td(x) = x

or Td(x) = Td(x−) and still satisfy the relevant monotonicity properties. Henry-

Labordère and Touzi [50] resolve this indeterminacy by setting Td(x) = x on the set

Tu(x) = x and also taking Tu and Td to be right-continuous.

In a sequel we follow Henry-Labordère and Touzi [50] by taking Td(x) = x

on the set Tu(x) = x but we do not make right-continuity assumptions on Td and

Tu. Also we write (f, g) in place of (Td, Tu). Our functions f and g will eventually

be defined on R, see Section 3.2.3, but for now we define them just on [`µ, rµ].

Lemma 2.3.3. Let (Td, Tu) be a pair of functions satisfying the monotonicity prop-

erties listed in Lemma 2.3.2. Suppose they lead to a solution πlc ∈ Π(µ, ν).

On [`µ, rµ] set g(x) = Tu(x), on g(x) > x set f(x) = Td(x) and on g(x) = x

set f(x) = x. Then (f, g) are such that f(x) ≤ x ≤ g(x) and for all x′ > x

we have g(x′) ≥ g(x) and f(x′) /∈ (f(x), g(x)). Moreover, µ(dx)χf(x),x,g(x)(dy) =

µ(dx)χTd(x),x,Tu(x)(dy).

Proof. The property f(x) ≤ x ≤ g(x) is immediate so we simply need to check

that for x′ > x we have g(x′) ≥ g(x) and f(x′) /∈ (f(x), g(x)). Monotonicity of

g is inherited from monotonicity of Tu. If g(x) = x then f(x) = x and f(x′) /∈
(f(x), g(x)) = ∅. If g(x) > x and g(x′) > x′ then f(x′) = Td(x

′) /∈ (Td(x), Tu(x)) =
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(f(x), g(x)). Finally, if g(x) > x and g(x′) = x′ then f(x′) = x′ /∈ (f(x), x′ =

g(x′)) ⊇ (f(x), g(x)).

Figure 2.1 gives a stylised representation of f and g in the case where ν has

no atoms. (Atoms of ν lead to horizontal sections of f and g, see Section 3.2.6.)

In the figure, the set {g(x) > x} is a finite union of intervals whereas in general

it may be a countable union of intervals. Similarly, in the figure f has finitely

many downward jumps, whereas in general it may have countably many jumps.

Nonetheless Figure 2.1 captures the essential behaviour of f and g.

Remark 2.3.4. The left-curtain martingale coupling can be identified with Fig-

ure 2.1 in the following way: choose an x-coordinate according to µ; then if g(x) = x

set Y = x = X so the pair (X,Y ) lies on the diagonal; otherwise if g(x) > x then

f(x) < x and we set the y-coordinate to be g(x) with probability x−f(x)
g(x)−f(x) and f(x)

with probability g(x)−x
g(x)−f(x) . Then the coordinates (x, y) represent the realised values

of (X,Y ).

For a horizontal level y there are two cases. Either, g(y) > y and then the

value of y arises from a choice according to µ of x = g−1(y) for which g(x) is chosen

rather than f(x); or g(y) = y and the value y arises either from a choice according

to µ of x = y, or from a choice according to µ of f−1(y) combined with a choice of

y-coordinate of f(f−1(y)) = y.

g

f

Figure 2.1: Stylised plot of the functions f and g in the general case (with no atoms).

Note that on the set g(x) = x we have f(x) = x.
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Suppose ν is also continuous and fix x. Under the left-curtain martingale

coupling mass in the interval (f(x), x) at time 1 is mapped to the interval (f(x), g(x))

at time 2. Thus {f(x), g(x)} with f(x) ≤ x ≤ g(x) are solutions to∫ x

f
µ(dz) =

∫ g

f
ν(dz), (2.10)∫ x

f
zµ(dz) =

∫ g

f
zν(dz). (2.11)

Essentially, (2.10) is preservation of mass condition and (2.11) is preservation

of mean and the martingale property. If ν has atoms then (2.10) and (2.11) become∫ x

f
µ(dz) =

∫
(f,g)

ν(dz) + λf + λg, (2.12)∫ x

f
zµ(dz) =

∫
(f,g)

zν(dz) + fλf + gλg, (2.13)

respectively, where 0 ≤ λf ≤ ν({f}) and 0 ≤ λg ≤ ν({g}).
Returning to the case of continuous µ and ν, for fixed x there can be multiple

solutions to (2.10) and (2.11). If, however, we consider f and g as functions of x

and impose the additional monotonicity properties of Lemma 2.3.2 (for x < x′,

g(x) ≤ g(x′) and f(x′) /∈ (f(x), g(x))), then typically, for almost all x there is a

unique solution to (2.10) and (2.11). However, there are exceptional x at which f

jumps and at which there are multiple solutions, see Section 3.2.3.

Remark 2.3.5. We note that mass and mean equations (2.10) and (2.11) are crucial

in Chapter 3. If g(x) = Tu(x) = x = f(x) > Td(x) then we typically do not have∫ x
Td(x) µ(dz) =

∫ Tu(x)
Td(x) ν(dz) and

∫ x
Td(x) zµ(dz) =

∫ Tu(x)
Td(x) zν(dz). However, we trivially

have
∫ x
f(x) µ(dz) =

∫ g(x)
f(x) ν(dz) and

∫ x
f(x) zµ(dz) =

∫ g(x)
f(x) zν(dz). This explains our

choice of f(x) when g(x) = x.

Remark 2.3.6. In a related problem, Hobson and Klimmek [57] show how under

natural simplifying assumptions, upper and lower functions can be characterised as

solutions of a pair of coupled differential equations. For example, under the Disper-

sion Assumption 3.2.3, (f, g) solve a pair of coupled differential equations on [e−, rµ)

obtained from differentiating (2.10) and (2.11):

df

dx
= −g − x

g − f
ρ(x)

η(f)− ρ(f)
,

dg

dx
=

x− f
g − f

ρ(x)

η(g)
,
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with the initial condition f(e−) = e− = g(e−). In addition, see Henry-Labordère

and Touzi [50, Equations (3.10) and (3.9)], where the construction of Td and Tu are

exactly based on the resolution of (2.10) and (2.11).

There are many pairs (µ, ν) which lead to the same pair of functions (f, g).

Moreover, given a pair µ ≤cx ν it may be difficult to determine the properties

of (f, g) which define the left-curtain coupling, beyond the fact that (f, g) satisfy

monotonicity properties as in Lemma 2.3.2. (For example, it may be difficult to

ascertain the number of downward jumps of f without calculating f and g every-

where.) However, if we want to construct examples for which (f, g) have additional

properties (such as no downward jump) then we can start with an appropriate pair

(f, g), take arbitrary (continuous) initial law µ with support on the interval where

f is defined, and then define ν via (2.14). This observation underpins our analysis

in Sections 3.2.2 and 3.2.3.

Lemma 2.3.7. Let I1 ⊆ I2 ⊆ R be intervals and define

ΞI1,I2 = {(f, g) : g : I1 → I2, g(x) ≥ x, f : I1 → I2, f(x) ≤ x},

ΞI1,I2Mon = {(f, g) ∈ΞI1,I2 : g increasing, f(x) = x on g(x) = x, for x′ > x f(x′) /∈ (f(x), g(x))},

Ξ = ∪I1⊆I2ΞI1,I2 , ΞMon = ∪I1⊆I2 .Ξ
I1,I2
Mon .

Suppose (f, g) ∈ Ξ and µ is any continuous and integrable measure with support in

I1 and define π via π(dx, dy) = µ(dx)χf(x),x,g(x)(dy) and ν via

ν(dy) =

∫
x
µ(dx)χf(x),x,g(x)(dy). (2.14)

Then, subject to integrability condition
∫
µ(dx) (g(x)−x)(x−f(x))

g(x)−f(x) 1{g(x)>f(x)} <∞, ν is

integrable, µ ≤cx ν and π ∈ Π(µ, ν). In addition, if (f, g) ∈ ΞMon then π = πlc.

Proof. Let X ∼ µ and Y ∼ ν, and note that the first and second marginals of π are

µ and ν, respectively. Therefore

Eν [|Y |]− Eµ[|X|] ≤ Eπ[|Y −X|] ≤ Eν [|Y |] + Eµ[|X|],

and, since µ is integrable by assumption, Eπ[|Y − X|] < ∞ if and only if ν is
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integrable. Using the definition of π we have that

Eπ[|Y −X|] =

∫
R2

|y − x|µ(dx)χf(x),x,g(x)(dy)

=

∫
R

[
g(x)− x

g(x)− f(x)
|f(x)− x|+ x− f(x)

g(x)− f(x)
|g(x)− x|

]
1{g(x)>f(x)}µ(dx)

=

∫
R

2
(g(x)− x)(x− f(x))

g(x)− f(x)
1{g(x)>f(x)}µ(dx) <∞.

Moreover, a direct calculation shows that the martingale property is also

satisfied:∫
R
yχf(x),x,g(x)(dy) =

g(x)− x
g(x)− f(x)

f(x)+
x− f(x)

g(x)− f(x)
g(x) = x, for µ-almost every x.

It follows that π ∈ Π(µ, ν) and µ ≤cx ν.

Finally, since (f, g) ∈ ΞMon, it is immediate to verify that π is left-monotone

in a sense of Definition 2.3.1. Therefore, by uniqueness, π = πlc.

2.4 Extensions

The fundamental question related to the left-curtain martingale coupling πlc ∈
Π(µ, ν) is how, given x ∈ Iµ, to find two points f(x), g(x) such that (2.10) and

(2.11) hold. Put differently, how to explicitly construct upper and lower functions

characterising πlc. One such construction when µ is atomless is provided by Henry-

Labordère and Touzi [50] via differential equations. For general µ, in Chapter 4 we

construct the upper and lower functions that give rise to the extended left-curtain

martingale coupling. We conjecture, however, that the relevant functions can be

read off directly from Theorem 2.2.2, and (2.6) in particular.

Suppose µ ≤cx ν and (for simplicity) that both measures are atomless (the

following arguments can be easily extended to general measures). Fix x ∈ R and

consider the measure µx defined by

µx(A) := µ((−∞, x] ∩A), for all Borel sets A ⊆ R.

Then Pµx(k) = Pµ(k) for k ≤ x, while Pµx(k) ≤ Pµ(k) for k > x. In particular,

Pµx(·) is linear on [x,∞) and P ′µx(k) = P ′µ(x) for k ≥ x. Recall the definition of

D(k) = Pν(k)− Pµ(k), k ∈ R.
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Define Eu : R 7→ R+ by

Ex(k) = Pν(k)− Pµx(k)

= D(k) + Pµ(k)− Pµx(k), k ∈ R.

Note that Ex(k) = D(k) for k ≤ x. Moreover, Pµ − Pµx is non-negative and convex

on R, and hence Ex(k) ≥ D(k) for k > x. Let Ecx denote the convex hull of Ex. Then,

by Theorem 2.2.2, we have that

PSν(µx)(k) = Pν(k)− Ecx(k), k ∈ R.

Recall that Sν(µx) is the second marginal of πlc|(−∞,x]×R.

Set

Z= := {k ∈ R : Ecx(k) = Ex(k)}.

Z<x := {k < x : Ecx(y) < Ex(y) for all y ∈ (k, x)},

Z>x := {k > x : Ecx(y) < Ex(y) for all y ∈ (x, k)}

and define L,U : R 7→ R by L(x) = x = U(x) if x ∈ Z=, and

L(x) = Z<x ∩ Z= and U(x) = Z>x ∩ Z= if x /∈ Z=.

Conjecture. Suppose µ ≤cx ν. Then π̂, defined by

π̂(dx, dy) = µ(dx)χL(x),x,U(x)(dy),

is the left-curtain martingale coupling πlc ∈ Π(µ, ν).

The intuition behind the conjecture above is that, for each x ∈ R, L(x) and

U(x) satisfy the mass and mean conditions, (2.10) and (2.11), respectively. To see

this, suppose x /∈ Z=, so that L(x) < x < U(x). See Fig. 2.2. Since Ecx(·) is linear

on [L(x), U(x)], the slopes of Ecx(·) at L(x) and U(x) are equal:

D′(L(x)) = P ′ν(U(x))− P ′µx(U(x)), (2.15)

which is equivalent to ∫ L(x)

−∞
d(ν − µ) =

∫ U(x)

−∞
dν −

∫ x

−∞
dµ. (2.16)
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Rearranging (2.16) shows that L and U satisfy the mass condition (2.10):∫ x

L(x)
µ(dz) =

∫ U(x)

L(x)
ν(dz). (2.17)

L(x) U(x)x

y 7→ Ex(y)

y 7→ D(y)

Figure 2.2: Plot of locations of L(x) < x < U(x), when x /∈ Z=. Dotted curve

corresponds to the graph of Ex. The solid line below Ex is tangent to Ex at L(x) and

U(x). In particular, it corresponds to the linear section of Ecx on [L(x), U(x)].

Moreover, note that Ecx(L(x)) = D(L(x)) and Ecx(U(x)) = Pν(U(x))−Pµx(U(x)).

Then, using linearity of Ecx(·) on [L(x), U(x)] again, we have that

D(L(x)) +D′(L(x))(U(x)− L(x)) = Pν(U(x))− Pµx(U(x))

= Pν(U(x))− Pµ(x)− (U(x)− x)P ′µ(x),

which is equivalent to∫ L(x)

−∞
(U(x)− z)[ν(dz)− µ(dz)] =

∫ U(x)

−∞
(U(x)− z)ν(dz)−

∫ x

−∞
(U(x)− z)µ(dz).

(2.18)

Rearranging (2.18) and using (2.16) we have that L and U also satisfy the mean
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condition (2.11): ∫ x

L(x)
zµ(dz) =

∫ U(x)

L(x)
zν(dz). (2.19)

On the other hand, when x ∈ Z=, L(x) = x = U(x). Then the mass and mean

conditions, (2.17) and (2.19), respectively, are trivially satisfied.

In order to prove the conjecture, we have to show that the second marginal

of π̂ is ν, i.e.
∫
x µ(dx)χL(x),x,U(x)(dy) = ν(dy) (which we expect to follow from the

mass and mean equations, (2.17) and (2.19)), and that (L,U) ∈ ΞMon. This is left

for future research.

2.5 Auxiliary results

Lemma 2.5.1. Let f, g : R 7→ R be two convex functions. Set h = g − f on R, and

let hc be the largest convex minorant of h.

Set ψ = g − hc on R. Then, ψ is convex.

Proof. First note that, since hc(x) ≤ h(x), ψ(x) = g(x)− hc(x) ≥ f(x), x ∈ R.

Define

A= := {y : h(y) = hc(y)} and A> := {y : h(y) > hc(y)}.

Then ψ = f on A=, while ψ > f on A>.

Recall that φ : R 7→ R is convex if for all x, y, z ∈ R, with x < y < z,

φ(y) ≤ λφ(x) + (1− λ)φ(z), where λ =
z − y
z − x

.

Suppose y ∈ A=. Then

ψ(y) = f(y) ≤ λf(x) + (1− λ)f(z) ≤ λψ(x) + (1− λ)ψ(z),

where the first inequality follows from convexity of f , while the second one holds

since ψ dominates f on R.

In the rest of the proof we take y ∈ A>. In this case y belongs to the

linear section of hc. In particular, let y−, y+ ∈ Z= be such that y− < y < y+ and

hc(k) < h(k), k ∈ (y−, y+). Then

hc(y) = γh(y−) + (1− γ)h(y+), where γ =
y+ − y
y+ − y−

.
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Suppose x < y− < y+ < z. Then

ψ(y) = g(y)− hc(y)

≤ [γg(y−) + (1− γ)g(y+)]− [γh(y−) + (1− γ)h(y+)] (2.20)

= γf(y−) + (1− γ)f(y+)

≤ γ
[
z − y−
z − x

f(x) +
y− − x
z − x

f(z)

]
+ (1− γ)

[
z − y+

z − x
f(x) +

y+ − x
z − x

f(z)

]
(2.21)

= λf(x) + λf(z)

≤ λψ(x) + λψ(z). (2.22)

(2.20) follows from convexity of g on R and linearity of hc on [y−, y+]. (2.21) is a

consequence of convexity of f on R. Finally, (2.22) holds since f ≤ ψ on R.

Suppose y− ≤ x < y < z ≤ y+. Then hc is also linear on [x, z], and therefore

hc(y) = λhc(x) + (1− λ)hc(z). Using convexity of g on R we conclude that

ψ(y) = g(y)− hc(y)

≤ [λg(x) + (1− λ)g(z)]− [λhc(x) + (1− λ)hc(z)]

= λψ(x) + (1− λ)ψ(z).

Suppose y− ≤ x < y < y+ < z. (The case x < y− < y < z ≤ y+ follows by

symmetry.) In this case hc(·) is also linear on [x, y+] and therefore

hc(y) = δhc(x) + (1− δ)hc(y+)

= δhc(x) + (1− δ)h(y+), where δ =
y+ − y
y+ − x

.
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Then

ψ(y) = g(y)− hc(y)

≤ [δg(x) + (1− δ)g(y+)]− [δhc(x) + (1− δ)h(y+)] (2.23)

= δ[g(x)− hc(x)] + (1− δ)[g(y+)− h(y+)]

= δψ(x) + (1− δ)f(y+)

≤ δψ(x) + (1− δ)
[
z − y+

z − x
f(x) +

y+ − x
z − x

f(z)

]
(2.24)

≤ δψ(x) + (1− δ)
[
z − y+

z − x
ψ(x) +

y+ − x
z − x

ψ(z)

]
(2.25)

= λψ(x) + λψ(z).

(2.23) follows from convexity of g on R and linearity of hc on [x, y+]. (2.24) is a

consequence of convexity of f on R. Finally, (2.25) holds since f ≤ ψ on R. This

finishes the proof.
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Chapter 3

Robust bounds for the

American put

This chapter is structured as follows. In the next section we formulate precisely our

problem of finding the robust, model-independent price of an American put. We

also explain how the pricing problem is related to the dual problem of constructing

the cheapest superhedge. In Section 3.2 we assume that a starting law is continuous,

transform the primal pricing problem into a martingale optimal transport (MOT)

problem and show by studying a series of ever more complicated set-ups how to

determine the best model and hedge. The constructions in this section make use of

results on the left-curtain coupling of Beiglböck and Juillet [10] and Henry-Labordère

and Touzi [50] (see Chapter 2).

By weak duality the highest model price is bounded above by the cost of the

cheapest superhedge. Hence, if on the one hand we can identify a consistent model

and stopping rule, and on the other a superhedge, such that the expected payoff in

that model with that stopping rule is equal to the cost of the superhedge, then we

must have identified an optimal model and an optimal stopping rule together with an

optimal hedging strategy. Moreover, there is no duality gap. This is the strategy of

our proofs. One feature of our analysis is that wherever possible we provide pictorial

explanations and derivations of our results. In our view this approach helps to bring

insights which may be hidden under calculus-based approaches.

3.1 Preliminaries and set-up

For this chapter, Section 2.1 serves as a prerequisite section on probability measures,

convex order, martingale couplings and, in particular, the left-curtain martingale

coupling.
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3.1.1 The financial model and model-based prices for American

puts

Suppose time is discrete and let M̃ = (M̃Ti)i=0,1,2 be the price of a financial security

which pays no dividends, where T0 = 0 is today’s date. (In this section a superscript

∼ denotes an undiscounted quantity.) Suppose interest rates are non-stochastic.

Let one unit of cash invested at time T0 in a bank account paying the riskless rate

be worth B̃Ti at time Ti for i = 0, 1, 2. Then B̃0 = 1. Define M = (Mi)i=0,1,2 by

Mi = M̃Ti/B̃Ti , so that M is the discounted asset price (with a simplified time-index

i = 0, 1, 2) which we expect to be a martingale under a pricing measure. We assume

that M0 is known at time 0.

Let Σ be the set of stopping rules taking values in {T1, T2} and let T be

the set of stopping rules taking values in {1, 2}. We are interested in pricing an

American put with strike K̃ and maturity T2, and which may be exercised at T1

or T2 only. (Note that we do not allow exercise at t = 0.) Define Ki = K̃/B̃Ti
and note that K1 > K2 provided interest rates are strictly positive, which we now

assume without further comment. Under a fixed model the expected payoff of an

American put under an exercise (stopping) rule σ taking values in {T1, T2} is given

by E[ 1
B̃σ

(K̃−M̃σ)+] and the price of the American option (assuming exercise is only

allowed at T1 or T2) is

sup
σ∈Σ

E
[

1

Bσ
(K̃ − M̃σ)+

]
= sup

τ∈T
E[(Kτ −Mτ )+].

We suppose we are given European put prices {P̃Ti(k̃)}k̃≥0 for i = 1, 2 for a

continuum of strikes k̃. If the call prices have come from a (market) model for which

the discounted price process is a martingale, then

P̃Ti(k̃) =
1

B̃Ti
E[(k̃ − M̃Ti)

+] = E

[(
k̃

B̃Ti
−Mi

)+]
=: Pi

(
k̃

B̃Ti

)
.

Then for fixed i we have Pi(k) = P̃Ti(kB̃Ti), and if we are given European put prices

with maturity Ti then, by classical arguments (e.g. Breeden and Litzenberger [16]),

it is possible to infer the laws of the price of the asset, and hence the laws of the

discounted asset price:

P(Mi < k) = P ′i (k−) =
∂

∂k
P̃Ti(kB̃Ti−).

Henceforth we assume we work in a discounted setting and with time-index

in the set i = 0, 1, 2. In this setting the American put has payoff (K1−M1)+ at time
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1 and payoff (K2−M2)+ at time 2. Denote the law of X = M1 by µ and the law of

Y = M2 by ν. It follows from Jensen’s inequality that, if µ and ν have arisen from

sets of European put options, µ and ν are in convex order and we write µ ≤cx ν (see

Section 2.1 for a further discussion of the properties of µ and ν).

Definition 3.1.1 (Hobson and Neuberger [59]). Suppose µ ≤cx ν.

Let S = (Ω,F ,P,F = {F0,F1,F2}) be a filtered probability space. We say

M = (M0,M1,M2) = (µ̄,X, Y ) is a (S, µ, ν)-consistent stochastic process and we

write M ∈M(S, µ, ν) if

1. M is a S-martingale,

2. L(M1) = µ and L(M2) = ν.

We say (S,M) is a (µ, ν)-consistent model if S is a filtered probability space and M

is a (S, µ, ν)-consistent stochastic process. Where µ and ν are clear from the context

this is sometimes abbreviated to a consistent model.

Let B1 ∈ F1. Define the stopping time τB1 by τB1 = 1 on B1 and τB1 = 2 on

Bc
1. (Conversely, any stopping rule taking values in {1, 2} has a representation of

this form.) Suppose (S,M) is a (µ, ν)-consistent model. The (S,M) model-based

expected payoff (MBEP ) of the American put under stopping rule τB1 is

A(B1,M,S) = E[(KτB1
−MτB1

)+].

Then, optimising over stopping rules under the model (S,M), the model-based price

of the American put is A(M,S) = supB1∈F1
A(B1,M,S). The highest model-based

expected payoff for the American put is

P = P(µ, ν) = sup
S

sup
M∈M(S,µ,ν)

A(M,S).

Amongst the class of consistent models there is a natural and important

class of models which we call the class of canonical models. Although in the fi-

nance context we typically expect non-negative prices, in this definition and in the

mathematical analysis which follows, we allow for measures µ and ν supported on

R.

Definition 3.1.2. Suppose µ ≤cx ν.

We say (Ŝ = (Ω̂, F̂ , P̂, F̂ = {F̂0, F̂1, F̂2}), M̂) is a canonical (µ, ν)-consistent

model if (Ŝ, M̂) is a (µ, ν)-consistent model such that Ω̂ = R × R, F̂ = B(Ω̂),

M̂1(ω1, ω2) = ω1, M̂2(ω1, ω2) = ω2 and such that F̂0 is trivial, F̂1 = σ(M̂1) and
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F̂2 = σ(M̂1, M̂2). Then B̂1 ∈ F1 can be identified with an element B̂ in B(R) via

B̂1 = B̂ × R.

In the canonical setting different models (consistent or not) can be parametrised

by a probability measure π on R2. To simplify the notation we shall write M̂π for

the canonical model (Ŝπ = (Ω̂, F̂ , P̂π, F̂), M̂), where P̂π is the probability measure

such that P̂π(X ∈ dx, Y ∈ dy) = π(dx, dy). Note that there is a 1-1 correspondence

between canonical, (µ, ν)-consistent models and martingale couplings π ∈ Π(µ, ν)

(recall Section 2.1), given by P̂(M̂1 ∈ dx, M̂2 ∈ dy) = π(dx, dy).

We say π maps A ⊆ R to B ⊆ R if π(A × R) = π(A × B) (or equivalently

if under the canonical model M̂1 ∈ A implies M̂2 ∈ B almost surely). We say π

maps A onto B if π(A × R) = π(A × B) = π(R × B) (or equivalently if under the

canonical model M̂1 ∈ A if and only if M̂2 ∈ B almost surely). Finally, we say π is

constant on A if π(C × R) = π(C × C) for all C ⊆ A or equivalently if M̂2 = M̂1

almost surely on M̂1 ∈ A.

Define P̂ = sup supB̂∈B(R) E[(KτB̂
− MτB̂

)+], where the first supremum is

taken over canonical (µ, ν)-consistent models and τB̂(ω) = 1 if X(ω) ∈ B̂ and

τB̂(ω) = 2 otherwise. Clearly, since the set of canonical consistent models is a

subset of the set of all consistent models, we have P̂ ≤ P.

In this chapter we will concentrate on the case where µ is continuous. In that

case we will show that P̂ = P. The main insight of this chapter is that the structure

of functions f , g that characterise the left-curtain coupling (recall Section 2.3) allows

us to determine the optimal stopping time and the optimal superhedging strategy.

However, if µ has atoms, then the situation becomes more delicate, as pointed

out in Hobson and Neuberger [60], see also Hobson and Neuberger [59], Bayraktar

and Zhou [6] and Aksamit et al. [1]. In particular, it is sometimes possible to

achieve a higher model price if we work on a richer probability space. (In the

financial context, the choice of probability space is typically not specified. Instead

the choice of probability space is a modelling issue, and it seems unreasonable to

restrict attention to a sub-class of models without good reason, especially if this

sub-class does not include the optimum.) On the one hand, we must allow for a

wider range of possible candidates for exercise determining sets B1. On atoms of

X we may want to sometimes stop and sometimes continue, although we must still

take stopping decisions which do not violate the martingale property of future price

movements. On the other hand, the functions f , g that characterise the left-curtain

coupling (see Section 2.3) become ill-defined on the points where µ has atoms. Then

it is not clear how the optimal model can be identified. For these reasons we must

extend our notion of a martingale coupling and generalise, in a useful fashion, the
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left-curtain martingale coupling of Beiglböck and Juillet [10] to the case with atoms.

The appropriate extension of the left-curtain coupling to the case with atoms in µ

is discussed in Chapter 4; in this chapter we focus on the financial aspects of our

results, namely the application to the robust hedging of American puts.

3.1.2 Superhedging

The following notion of a robust superhedge for an American option was first in-

troduced by Neuberger [83], see also Bayraktar and Zhou [6] and Hobson and Neu-

berger [60].

We work in discounted units over two time-points. Consider a general American-

style option with payoff a if exercised at time 1, and payoff b if exercised at time 2,

where a : R 7→ R+ and b : R 7→ R+ are positive functions.

Definition 3.1.3. (φ, ψ, {θi}i=1,2) is a superhedge for (a, b) if

a(x) ≤ φ(x) + ψ(y) + θ1(x)(y − x), (3.1)

b(y) ≤ φ(x) + ψ(y) + θ2(x)(y − x). (3.2)

The hedging cost (HC) associated with the superhedge (φ, ψ, {θi}i=1,2) is given by

C = C(φ, ψ, {θi}i=1,2;µ, ν) =

∫
φ(x)µ(dx) +

∫
ψ(y)ν(dy),

where we set C =∞ if
∫
φ(x)+µ(dx) +

∫
ψ(y)+ν(dy) =∞. We let H(a, b) be the set

of superhedging strategies (φ, ψ, {θi}i=1,2).

The idea behind the definition is that the hedger purchases a portfolio of

maturity-1 European puts (and calls) with payoff φ and a portfolio of maturity-2

European puts (and calls) with payoff ψ. (The fact that this can be done and has

cost C follows from arguments of Breeden and Litzenberger [16].) In addition, if the

American option is exercised at time 1 the hedger holds θ1 units of the underlying

between times 1 and 2; otherwise the hedger holds θ2 units of the underlying over

this time-period. In the former case, (3.1) implies that the strategy superhedges the

American option payout; in the later case (3.2) implies the same.

Remark 3.1.4. We could extend the definition and allow a holding of θ0 units of

discounted asset over the time-period [0, 1). Then the RHS of (3.1) would be

φ(x) + ψ(y) + θ0(x−M0) + θ1(x)(y − x). (3.3)
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However, after a relabelling φ(x) + θ0(x−M0) 7→ φ(x), (3.3) reduces to (3.1). (Note

that
∫
θ0(x−M0)µ(dx) = 0 by the martingale property so that C is unchanged.) Sim-

ilarly for (3.2). Hence there is no gain in generality by allowing non-zero strategies

between times 0 and 1.

The dual (superhedging) problem is to find

D = D(a, b;µ, ν) = inf
(φ,ψ,{θi}i=1,2)∈H(a,b)

C(φ, ψ, {θi}i=1,2;µ, ν).

Potentially the space H = H(a, b) could be very large and it is extremely

useful to be able to search over a smaller space. The next lemma shows that any

convex ψ, with ψ ≥ b, can be used to generate a superhedge (φ, ψ, {θi}i=1,2).

For a convex function χ let χ′+ denote the right-derivative of χ.

Lemma 3.1.5. Suppose ψ ≥ b with ψ convex. Define φ = (a− ψ)+ and set θ2 = 0

and θ1 = −ψ′+. Then (φ, ψ, {θi}i=1,2) is a superhedge.

Proof. We have

b(y) ≤ ψ(y) ≤ φ(x) + ψ(y) = φ(x) + ψ(y) + θ2(x)(y − x)

and (3.2) follows. Also, by the convexity of ψ, ψ(x) ≤ ψ(y)− ψ′+(x)(y − x) and

a(x) ≤
(
a(x)− ψ(x)

)+
+ ψ(x) ≤ φ(x) + ψ(y) + θ1(x)(y − x).

Hence (3.1) follows.

Let H̆ = H̆(b) be the set of convex functions ψ with ψ ≥ b. For ψ ∈ H̆ we

can define the associated hedging cost C̆(ψ;µ, ν) by

C̆(ψ;µ, ν) = C
(
(a− ψ)+, ψ, θ1 = −ψ′+, θ2 = 0;µ, ν

)
=

∫ (
a(x)− ψ(x)

)+
µ(dx) +

∫
ψ(y)ν(dy).

The reduced dual hedging problem restricts attention to superhedges generated from

ψ ∈ H̆ and is to find

D̆ = D̆(a, b;µ, ν) = inf
ψ∈H̆(b)

C̆(ψ;µ, ν).

Clearly we have D ≤ D̆: we will show that D = D̆ for the American put.
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3.1.3 Weak and Strong Duality

Let (S,M) be a (µ, ν)-consistent model and let τ be an arbitrary stopping time in

this framework. The expected payoff of the American put under this stopping rule is

E[(Kτ−Mτ )+]. Conversely, let ψ be any convex function with ψ(y) ≥ (K2−y)+ and

let φ(x) = [(K1 − x)+ − ψ(x)]+ and θi(x) = −ψ′+(x)1{i=1}. Then for any i ∈ {1, 2}
we have (Ki−Mi)

+ ≤ ψ(M2)+φ(M1)+θi(M1)(M2−M1) and hence for any random

time τ taking values in {1, 2}, (Kτ −Mτ )+ ≤ ψ(M2) + φ(M1) + θτ (M1)(M2 −M1).

Then E[(Kτ −Mτ )+] ≤ EX∼µ,Y∼ν [φ(X) + ψ(Y )] and we have weak duality P ≤ D.

In Section 3.2 we will show that we can find (Ŝ∗, M̂∗, B̂∗) with (Ŝ∗, M̂∗) a

canonical (µ, ν)-consistent model and B̂∗ ⊆ B(R), and ψ∗ ∈ H̆ such that

A(B̂∗ × R, M̂∗, Ŝ∗) = C̆(ψ∗;µ, ν).

Then A(B̂∗ × R, M̂∗, Ŝ∗) ≤ P̂ ≤ P ≤ D ≤ D̆ ≤ C̆(ψ∗;µ, ν) but since the two

outer terms are equal we have P = D and strong duality. Moreover, (Ŝ∗, M̂∗) is a

canonical, consistent model which generates the highest price for the American put

(and τ∗ given by τ∗ = 1 if and only if X ∈ B̂∗ is the optimal exercise rule) and ψ∗

generates the cheapest superhedge.

3.2 Robust bounds for American puts when µ is atom-

free

3.2.1 Problem formulation

Our goal in this section is to derive the highest consistent model price for the Amer-

ican put. We begin by giving a concise reformulation of the primal problem (recall

Section 3.1.1) as a problem of martingale optimal transport (MOT), and stating

the main theorem (Theorem 3.2.1). Then we first study the problem in a simple

special case, second generalise to a case which exhibits all the main features and

third present the analysis in the general case.

Recall the definition of the canonical (µ, ν)-consistent model (abbreviated to

M̂π) for which P̂(M̂1 ∈ dx, M̂2 ∈ dy) = π(dx, dy) where π ∈ Π(µ, ν). For a pair of

fixed constants K1 and K2 the problem we consider is to find

P̂ := sup
π∈Π(µ,ν)

sup
B∈B(R)

EL(X,Y )∼π[(K1 −X)+1{X∈B} + (K2 − Y )+1{X/∈B}
]
. (3.4)

Note that P̂ corresponds to the highest model-based price of the American put over
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the specific subset of consistent models, and therefore P̂ ≤ P. By weak duality

(recall Section 3.1.3) it follows that P̂ ≤ P ≤ D ≤ D̆.

Throughout this chapter we assume that µ has no atoms. The same as-

sumption is made in (parts of) Beiglböck and Juillet [10], Henry-Labordère and

Touzi [50] and Beiglböck et al. [9]. (The case with atoms requires an extension of

the left-curtain martingale coupling, which is the subject of Chapter 4.)

Theorem 3.2.1. Suppose µ has no atoms. Then P̂ = P = D = D̆.

We begin by considering a couple of degenerate cases.

We say the put is in-the-money at time 1 (respectively time 2) if X < K1

(respectively Y < K2). If the inequality is reversed then the put is out-of-the-money.

Recall that {`µ, rµ} (resp. {`ν , rν}) are the endpoints of Iµ (resp. Iν), the smallest

interval containing the support of µ (resp. ν). If K1 ≤ `µ then the American

put is always out-of-the-money at time 1, and the American put is equivalent to

the European put with strike K2 and maturity 2. Since puts with strike K and

maturity 1 are costless for K ≤ `µ, a simple superhedging strategy is to purchase

one European put with strike K1 and sell one European put with strike K2, both

with maturity 1, and also purchase one European put with strike K2 and maturity

2. (This strategy is of the form discussed in Lemma 3.1.5 and is generated by

Ψ(y) = (K2 − y)+.) The cost of this hedge is Pν(K2), this is also the model-based

expected payoff of the American put under any consistent model.

If K1 ≤ K2 then E[(K2 − Y )+|X] ≥ (K2 − X)+ ≥ (K1 − X)+ and τ = 2

is optimal. Again, the American put is equivalent to the European put with strike

K2 and maturity 2. In this case, for a superhedge it is sufficient to purchase one

European put with strike K2 and maturity 2. By Lemma 3.1.5 (with ψ(y) = (K2 −
y)+ and φ = 0) this generates a superhedge with cost Pν(K2). Again, this is the the

model-based expected payoff of the American put under any consistent model.

For the remainder of the chapter we make

Standing Assumption. K1 > max{`µ,K2}.

Remark 3.2.2. Recall Lemma 2.1.6 in Chapter 2. In the present setting, in ad-

dition to specifying a model (or equivalently a martingale coupling) we also need to

specify a stopping rule, and this needs to be defined across all irreducible components

simultaneously. For this reason, when looking for an optimal martingale coupling

π ∈ Π(µ, ν), we do not insist that D > 0 on the interior of Iν , although this will be

the case in the simple settings in which we build our solution.
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3.2.2 American puts under the dispersion assumption

The left-curtain coupling

The goal in this section is to present the theory in a simple special case, and to

illustrate the main features and solution techniques of our approach unencumbered

by technical issues or the consideration of exceptional cases. The following assump-

tion is a small modification of one introduced by Hobson and Klimmek [57], see also

Henry-Labordère and Touzi [50]. See Figure 3.1.

Assumption 3.2.3 (Dispersion Assumption). µ and ν are absolutely continuous

with continuous densities ρ and η, respectively. ν has support on (`ν , rν) ⊆ (−∞,∞)

and η > 0 on (`ν , rν). µ has support on (`µ, rµ) ⊆ (`ν , rν) and ρ > 0 on (`µ, rµ). In

addition:

(µ− ν)+ is concentrated on an interval E = (e−, e+) and ρ > η on E;

(ν − µ)+ is concentrated on (`ν , rν) \ E and η > ρ on (`ν , e−) ∪ (e+, rν).

ρ

η

f

e−
x g

e+

Figure 3.1: Sketch of the densities ρ and η and, for given x > e−, the locations of

the functions f, g that characterise the left-curtain martingale coupling, evaluated

at x. Time-1 mass in the interval (f, x) stays in the same place if possible. Mass

which cannot stay constant is mapped to (f, e−) or (x, g) in a way which respects

the martingale property.

Example 3.2.4. If µ ≤cx ν are centred normal distributions with different variances

or distinct lognormal random variables with common mean, then Assumption 3.2.3

is satisfied.

Under the Dispersion Assumption {k : Dµ,ν(k) > 0} is an interval and D =

Dµ,ν is convex to the left of e−, concave on (e−, e+) and again convex above e+.
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Lemma 3.2.5 (Henry-Labordère and Touzi [50], Section 3.4). Suppose Assump-

tion 3.2.3 holds. For all x ∈ (e−, rµ), there exist f, g with f < e− < x < g such

that (2.10) and (2.11) hold. Moreover, if we consider f and g as functions of x on

(e−, rµ) then f and g are continuous, f is strictly decreasing and g is strictly in-

creasing, limx↓e− f(x) = e− = limx↓e− g(x), limx↑rµ f(x) = `ν and limx↑rµ g(x) = rν .

Finally, if we extend the domain of f and g to [`µ, rµ] by setting f(x) = x = g(x)

on [`µ, e−] and f(rµ) = `ν and g(rµ) = rν then (f, g) ∈ Ξ
[`µ,rµ],[`ν ,rν ]
Mon .

(e−, e−)

f

g

Figure 3.2: Sketch of functions f and g under the Dispersion Assumption, with

the regions K2 < f(K1) and K2 > f(K1) shaded. This is a simple special case of

Figure 2.1.

Remark 3.2.6. As discussed in Lemma 2.3.7 and the paragraph above it, for the

purposes of the analysis of this section it is not the fact that the measures µ and

ν satisfy the Dispersion Assumption which is important, but rather that πlc is so

simple, and {k : g(k) > k} is a single interval on which f is a monotone decreasing

function.

Starting with monotonic f and g, letting µ be continuous and defining ν by

ν(dy) =
∫
x µ(dx)χf(x),x,g(x)(dy) and πlc by

πlc(dx, dy) = µ(dx)δx(dy)1{x≤e−} + µ(dx)χf(x),x,g(x)(dy)1{x>e−}, (3.5)

the pair (µ, ν) may or may not satisfy Assumption 3.2.3 but nonetheless, a candidate

optimal model, stopping time and hedge can be constructed exactly as described in

this section, and can be proved to be optimal by the methods of this section.

Since our analysis depends on the pair (µ, ν) only through the functions (f, g)

we may take as our starting point (f, g) ∈ ΞMon.
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The principle behind the left-curtain martingale coupling in Beiglböck-Juillet [10]

is that they determine where to map mass at x at time 1 sequentially working from

left to right. In our current setting there is an interval (`µ, e−] on which mass can

remain unmoved between times 1 and 2. To the right of e− we can define f, g in

such a way that mass is moved as little as possible. This leads to the ODEs in

Remark 2.3.6.

The American put

Suppose K1 ∈ (e−, rµ] and suppose f and g are constructed as in Lemma 3.2.5.

Define Λ : [g−1(K1),K1] 7→ R by

Λ(x) =

(
K2 − f(x)

)
− (K1 − x)

x− f(x)
− (K1 − x)

g(x)− x
=

(
g(x)−K1

)
g(x)− x

− (K1 −K2)

x− f(x)
. (3.6)

Pictorially Λ is the difference in slope of the two dashed lines in Figure 3.3.

K1K2f x g

slope (K2−f)−(K1−x)
x−f

slope (K1−x)
g−x

Figure 3.3: Sketch of put payoffs with points x, f and g marked. Λ(x) is the

difference in slope of the two dashed lines.

Lemma 3.2.7. Suppose K1 ∈ (e−, rµ] and f(K1) < K2. Then there is a unique

scalar x∗ = x∗(µ, ν;K1,K2) ∈ (g−1(K1),K1) such that Λ(x∗) = 0. Moreover

f(x∗) < K2 and(
K2 − f(x∗)

)
g(x∗)− f(x∗)

=
(K1 − x∗)
g(x∗)− x∗

=

(
x∗ − f(x∗)

)
− (K1 −K2)

x∗ − f(x∗)
= 1− (K1 −K2)

x∗ − f(x∗)
. (3.7)

Proof. First note that, from the continuity and monotonicity properties of f and

g, we have that (see Figure 3.3) Λ is continuous and strictly increasing. Moreover,
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Λ(g−1(K1)) = − (K1−K2)
g−1(K1)−(f◦g−1)(K1)

< 0 and Λ(K1) = K2−f(K1)
K1−f(K1) > 0 by hypothesis.

Hence there is a unique root to Λ = 0. At this root the equalities in (3.7) hold.

Suppose K1 > e− and f(K1) < K2 and that x∗ = x∗(µ, ν;K1,K2) ∈ (e−,K1)

is such that Λ(x∗) = 0. It is easy to find a martingale coupling π of µ and ν such that

π maps (f(x∗), x∗) onto (f(x∗), g(x∗)), and π is constant on (−∞, f∗). For example,

we may take π̂ = πlc = πlc(µ, ν), the left-curtain martingale coupling of Beiglböck

and Juillet [10]. More generally, let πx∗ ∈ Π(µ, ν) be any martingale coupling

such that πx∗ maps (−∞, f(x∗)) to itself, maps (f(x∗), x∗) onto (f(x∗), g(x∗)) and

maps (x∗,∞) to (−∞, f(x∗)) ∪ (g(x∗),∞). The martingale coupling represented in

Figure 3.2 has this property.

Consider a canonical (µ, ν)-consistent model M̂πx∗ , under which the corre-

sponding probability measure P̂ is given by P̂(X ∈ dx, Y ∈ dy) = πx∗(dx, dy). Let

τ∗ be the stopping time such that τ∗ = 1 on (−∞, x∗) and τ∗ = 2 otherwise. Our

claim in Theorem 3.2.8 below is that M̂πx∗ and the stopping time τ∗ are such that

the model-based price of the American put under this stopping time is the highest

possible, over all consistent models.

Continue to suppose K1 > e− and f(K1) < K2. Now we define a superhedge

of the American put. Let ψ∗ be the function

ψ∗(z) =


(K2 − z) z ≤ f(x∗);(
g(x∗)−z

)(
K2−f(x∗)

)
g(x∗)−f(x∗) f(x∗) < z ≤ g(x∗);

0 z > g(x∗).

(3.8)

Note that by construction and by (3.7), K2−f(x∗)
g(x∗)−f(x∗) = K1−x∗

g(x∗)−x∗ . Therefore, we have

that ψ∗(x∗) = K1 − x∗. Moreover, ψ∗ is convex and satisfies ψ∗(z) ≥ (K2 − z)+.

Hence by Lemma 3.1.5, ψ∗ can be used to generate a superhedge (ψ∗, φ∗, θ∗1,2).

In the following theorem we will assume the American put is not always

strictly in-the-money at time 1 (or equivalently, K1 ≤ rµ). Discussion of the case

K1 > rµ is postponed until Section 3.2.3 below.

Theorem 3.2.8. Suppose Assumption 3.2.3 holds and K1 ≤ rµ.

1. Suppose K1 ∈ (e−, rµ] and f(K1) < K2. The model M̂πx∗ described in the

previous paragraphs is a canonical (µ, ν)-consistent model for which the price

of the American option is the highest. The stopping time τ∗ is the optimal

exercise time. The function ψ∗ defined in (3.8) defines the cheapest superhedge.

Moreover, the highest model-based price is equal to the cost of the cheapest

superhedge.
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2. Suppose either that Case A: K1 ≤ e− or that Case B: K1 ∈ (e−, rµ] together

with f(K1) ≥ K2. Then there exists is a canonical, consistent model under

which

{Y < K2} = {X < K2} ∪ {X > K1, Y < K2}

and any model with this property, with the stopping rule τ = 1 if X < K1

and τ = 2 otherwise, attains the highest consistent model price. The cheapest

superhedge is generated from ψ(x) = (K2 − x)+ and the highest model-based

price is equal to the cost of the cheapest hedge.

x∗x
K1K2

Figure 3.4: A combination of Figures 3.2 and 3.3, showing how jointly they define

the best model and best hedge. By adjusting x we can find x∗ such that Λ(x∗) = 0.

Together the quantities (f(x∗), x∗, g(x∗)) define the optimal model, stopping time

and hedge.

Remark 3.2.9. In Part 2 of the Theorem 3.2.8, the left-curtain coupling generates

a model for which {Y < K2} = {X < K2} ∪ {X > K1, Y < K2}, and hence when

associated with the stopping rule of the theorem, attains the highest consistent model

price.

Proof. 1. SupposeK1 > e− and f(K1) < K2. Then by Lemma 3.2.7 there is a unique

x∗ ∈ (g−1(K1),K1) such that Λ(x∗) = 0. For this x∗ we can find f∗ = f(x∗) and
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g∗ = g(x∗) with f∗ < K2 and K1 < g∗ such that K2−f∗
g∗−f∗ = K1−x∗

g∗−x∗ . For typographical

reasons we abbreviate this (x∗, f∗, g∗) to (x, f, g) for the rest of this proof.

Since ν is continuous we have that f, x, g solve (2.10) and (2.11). The ele-

ments f, x, g can be used to define a model using the construction after Lemma 3.2.7

above. For this model we can calculate the expected payoff of the American put.

At the same time we can use (f, x, g) to define a superhedge. The remaining task

is to show that the cost of the superhedge equals that of the model-based expected

payoff. Then by the discussion in Section 3.1.3 we have found an optimal model and

a cheapest superhedge.

The model-based expected payoff (MBEP ) of the American put (for this

model and stopping rule) is

MBEP =

∫ x

−∞
(K1 − w)µ(dw) +

∫ f

−∞
(K2 − w)(ν − µ)(dw)

= Pµ(x) + (K1 − x)P ′µ(x) +D(f) + (K2 − f)D′(f).

Now we consider the hedging cost (HC). Set Θ = K2−f
g−f ∈ (0, 1). Note that,

since x is such that Λ(x) = 0, we have Θ = K1−x
g−x . Recall the definition of ψ∗ in

(3.8). Then

ψ∗(y) = Θ(g − y)+ + (1−Θ)(f − y)+.

Following Lemma 3.1.5 we can use ψ∗ to generate a superhedging strategy. The

hedging cost (HC) of this strategy is

HC = ΘPν(g) + (1−Θ)Pν(f) + (1−Θ)
(
Pµ(x)− Pµ(f)

)
, (3.9)

where the first two terms arise from the purchase of the static time-2 portfolio ψ∗

and the third comes from the purchase of the time-1 portfolio ((K1−w)+−ψ∗(w))+.

The expression in (3.9) can be rewritten as

Pµ(x) +D(f) + Θ
(
Pν(g)− Pν(f)− Pµ(x) + Pµ(f)

)
.

Now we consider the difference between the hedging cost and the model-based

expected payoff. First recall that Pχ(k) =
∫ k
−∞(k − x)χ(dx), χ ∈ {µ, ν}, and that

D(k) = Dµ,ν(k) = Pν(k)− Pµ(k). Then (2.10) and (2.11) can be rewritten as

P ′µ(x)− P ′µ(f) = P ′ν(g)− P ′ν(f), (3.10)(
xP ′µ(x)− Pµ(x)

)
−
(
fP ′µ(f)− Pµ(f)

)
=
(
gP ′ν(g)− Pν(g)

)
−
(
fP ′ν(f)− Pν(f)

)
.

(3.11)
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We find

HC −MBEP = Θ
(
Pν(g)− Pν(f)− Pµ(x) + Pµ(f)

)
− (K1 − x)P ′µ(x)− (K2 − f)D′(f)

= Θ
(
gP ′ν(g)− xP ′µ(x)− fD′(f)

)
− (K1 − x)P ′µ(x)− (K2 − f)D′(f)

= Θ
(
(g − x)P ′µ(x) + (g − f)D′(f)

)
− (K1 − x)P ′µ(x)− (K2 − f)D′(f)

= P ′µ(x)
(
Θ(g − x)− (K1 − x)

)
+D′(f)

(
Θ(g − f)− (K2 − f)

)
= 0,

where we use (3.11), (3.10) and the definition of Θ, respectively. Optimality of the

model, stopping rule and hedge now follows.

(K1,K2)

K1K2

ψ(y)

φ(x) + ψ(x)

Figure 3.5: Sketch of put payoffs with ψ(y) = (K2 − y)+ and φ(x) = (K1 − x)+ −
(K2 − x)+.

2. Now suppose K1 ≤ e−. Consider an exercise rule in which the American

put is exercised at time 1 if it is in-the-money, otherwise it is exercised at time 2,

and a model in which mass below K1 at time 1 stays constant between times 1 and

2. (This is possible since µ ≤ ν on (−∞, e−) and K1 ≤ e−.) The expected payoff of

the American put is∫ K1

−∞
(K1−x)µ(dx)+

∫ K2

−∞
(K2−y)(ν−µ)(dy) = Pµ(K1)+Pν(K2)−Pµ(K2). (3.12)
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Alternatively, suppose K1 > e− and f(K1) ≥ K2. Then under the left-curtain

martingale coupling mass below K2 at time 1 stays constant between times 1 and 2

(note that K2 ≤ f(K1) ≤ e−), and mass between K2 and K1 at time 1 is mapped

to (K2,∞). Then, mass which is below K2 at time 2 was either below K2 at time 1,

or above K1 at time 1. The expected payoff under this model (using a strategy of

exercising at time 1 if the American put is in-the-money) is again given by (3.12).

Now consider the hedging cost. Let ψ(y) = (K2 − y)+. Defining φ as in

Lemma 3.1.5 we find φ(x) = (K1 − x)+ − (K2 − x)+ = (K1 − (x ∨K2))+ and the

superhedging cost is

HC = Pν(K2) + Pµ(K1)− Pµ(K2).

Hence the model-based expected payoff equals the hedging cost.

3.2.3 Two intervals of g > x and one downward jump in f

We now relax the Dispersion Assumption to the case where f is not monotone. The

simplest situation when this may arise is when there are two intervals on which

g(x) > x. We do not contend that there are many natural examples which fall into

this situation, but rather that this intermediate case illustrates phenomena which are

to be found in the general case but which were not to be found under the Dispersion

Assumption.

Assumption 3.2.10 (Single Jump Assumption). µ and ν are absolutely continuous

with continuous densities ρ and η, respectively. ν has support on (`ν , rν) ⊆ (−∞,∞)

and η > 0 on (`ν , rν). µ has support on (`µ, rµ) ⊆ (`ν , rν) and ρ > 0 on (`µ, rµ). In

addition:

(µ− ν)+ is concentrated on E = (e1
−, e

1
+) ∪ (e2

−, e
2
+) with e1

+ < e2
− and ρ > η on E;

(ν − µ)+ is concentrated on (`ν , rν) \ E and η > ρ on (`ν , e
1
−) ∪ (e1

+, e
2
−) ∪ (e2

+, rν);

there exists f ′ < e1
− and x′ ∈ (e1

+, e
2
−) such that

∫ x′

f ′
µ(dz) =

∫ x′

f ′
ν(dz) and

∫ x′

f ′
zµ(dz) =

∫ x′

f ′
zν(dz). (3.13)

Under Assumption 3.2.10 it is possible to find functions g : (`µ, rµ)→ (`ν , rν)

and f : (`µ, rµ)→ (`ν , rν) with the properties (see the lower part of Figure 3.6):

1. g(x) = x on (`µ, e
1
−] ∪ [x′, e2

−];
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2. g(x) > x on (e1
−, x

′) ∪ (e2
−, rµ);

3. g is continuous and strictly increasing;

4. f(x) = x on (`µ, e
1
−] ∪ [x′, e2

−];

5. f : (e1
−, x

′) 7→ (f ′, x′) is continuous and strictly decreasing;

6. f : (e2
−, rµ) 7→ (`ν , e

2
−) \ (f ′, x′) is strictly decreasing;

7. there exists x′′ ∈ (e2
−, rµ) such that f jumps at x′′ and f(x′′−) = x′ > f ′ =

f(x′′+). Away from x′′, f is continuous on (e2
−, rµ).

By construction we have that∫ x′′

x′
µ(dz) =

∫ g(x′′)

x′
ν(dz);

∫ x′′

x′
zµ(dz) =

∫ g(x′′)

x′
zν(dz), (3.14)

so that if mass in (x′, x′′) at time 1 is mapped to (x′, g(x′′)) at time 2 then total

mass and mean are preserved. Further, given that (f ′, x′) satisfy (3.13), we also

have that
∫ x′′
f ′ µ(dz) =

∫ g(x′′)
f ′ ν(dz) and

∫ x′′
f ′ zµ(dz) =

∫ g(x′′)
f ′ zν(dz). In particular,

given (3.13) and (3.14), the pair of equations∫ x′′

f
µ(dz) =

∫ g(x′′)

f
ν(dz);

∫ x′′

f
zµ(dz) =

∫ g(x′′)

f
zν(dz)

has two solutions for f , namely f = x′ and f = f ′. Hence, in defining the left-curtain

martingale coupling there are two choices for f at x′′: we may take f(x′′) = x′ or

f(x′′) = f ′. Rather than assuming one of these choices (for example by requiring

left-continuity of f) it is convenient to allow f to be multi-valued. Then, for each x,

such that g(x) > x, let ℵ(x) = {f : (f, x, g(x)) solves (2.10) and (2.11)}. Then we

have that, in the setting of Assumption 3.2.10, for x > e−, |ℵ(x)| = 1 except at x′′

and there ℵ(x′′) = {f(x′′+), f(x′′−)} = {f ′, x′}.

Remark 3.2.11. As discussed in Lemma 2.3.7 and a paragraph above it, when

constructing examples which fit with the analysis of this section, we may begin with

f, g as presented in the bottom half of Fig. 3.6. Given µ with support (`µ, rµ) we
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can define ν via ν(dy) =
∫
µ(dx)χf(x),x,g(x)(dy). Then the pair (µ, ν) satisfy the

hypothesis of Assumption 3.2.10.

f ′ x′ = g′

(f ′, f ′)

(e1
−, e

1
−)

(x′, x′)

(x′, x′)

(e2
−, e

2
−)

(x′′, x′′)

(x′′, f ′)

(x′′, g(x′′))

g

g

f

f

f

Figure 3.6: Picture of f and g under Assumption 3.2.10.

Remark 3.2.12. Recall Remark 2.3.6 and the principle that quantities in the left-

curtain coupling are determined working from left to right. Given that µ and ν have

continuous densities and given that η > ρ on (`µ, e
1
−) we can set f = g = x on this

interval. To the right of e1
− we have ρ > η and we can define f and g using the

differential equations in Remark 2.3.6. There are two cases, either g(x) > x for

all x ∈ (e1
−, rµ) (in which case we can define (f, g) on (e1

−, rµ) with the properties

described in Lemma 3.2.5) or there is some point at which g first hits the diagonal

line y = x again. This point is exactly x′.
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If x′ exists it must satisfy x′ ∈ (e1
+, e

2
−). Then we set g(x) = x on (x′, e2

−) and

let f = g solve the same coupled differential equations as in Remark 2.3.6 but with a

new starting point g(e2
−) = e2

− = f(e2
−). The ODEs determine f and g until f first

reaches x′. This happens at x′′, and at x′′ f jumps down to f ′ (and g is continuous).

To the right of x′′, f and g solve the differential equations again subject to initial

conditions f(x′′) = f ′, g(x′′) = g(x′′−).

Recall the definition Λ(x) = g(x)−K1

g(x)−x −
(K1−K2)
x−f(x) . If f is multi-valued, then Λ

will also be multi-valued. In Section 3.2.2, one of our main steps was to find x such

that Λ(x) = 0, and our aim is similar here.

Introduce Υ = ΥK1,K2(f, x, g) which is defined for f ≤ K2, x ≤ K1 ≤ g by

Υ(f, x, g) =
(K2 − f)− (K1 − x)

x− f
− K1 − x

g − x
=
g −K1

g − x
− (K1 −K2)

x− f
.

Instead of seeking x which is a root of Λ(x) = 0 our goal is to find (f, x, g) with

g = g(x) and f ∈ ℵ(x) such that Υ(f, x, g) = 0.

For a fixed K1, the value of K2 such that Υ(f ′ = f(x′′+), x′′, g(x′′)) = 0 is

given by K2 = f ′ + (K1 − x′′) g(x
′′)−f ′

g(x′′)−x′′ . On the other hand, setting K2 = x′ + (K1 −
x′′) g(x

′′)−x′
g(x′′)−x′′ gives Υ(x′ = f(x′′−), x′′, g(x′′)) = 0. This motivates the introduction of

the linear increasing functions Lu, Ld : [x′′, g(x′′)] 7→ R defined by

Lu(x) = x′ + (x− x′′) g(x′′)− x′

g(x′′)− x′′
,

Ld(x) = f ′ + (x− x′′) g(x′′)− f ′

g(x′′)− x′′
.

Pictorially, Ld and Lu are the lower and upper boundaries, respectively, of the dotted

triangular area G in Figure 3.7.

From Figure 3.7 we identify four regions (and various subregions) on which

four different hedging strategies will be needed in order to find the cheapest super-

hedge for the American put. (Compare this with two regimes under the Dispersion

Assumption in Figure 3.2.)

Define

R1 = {(k1, k2) : e1
− < k1 < x′, f(k1) < k2 < k1},

which we write more compactly as R1 = {e1
− < k1 < x′, f(k1) < k2 < k1}. Using
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the same compact notation define

R2 = {e2
− < k1 < x′′, f(k1) < k2 < k1} ∪ {k1 = x′′, x′ < k2 < k1};

R3 = {x′′ < k1 < g(x′′), Lu(k1) ≤ k2 < k1};

R4 = {x′′ < k1 < g(x′′), f(k1) < k2 ≤ Ld(k1)};

R5 = {g(x′′) ≤ k1 ≤ rµ, f(k1) < k2 < k1};

B1 = {`µ ≤ k1 ≤ e1
−, k2 < k1} ∪ {e1

− < k1 < x′, k2 ≤ f(k1)}

∪ {x′′ < k1 ≤ rµ, k2 ≤ f(k1)};

B2 = {x′ ≤ k1 ≤ x′′, k2 ≤ f ′};

B3 = {x′ ≤ k1 ≤ e2
−, x

′ ≤ k2 < k1} ∪ {e2
− < k1 ≤ x′′, x′ ≤ k2 ≤ f(k1)};

G = {x′′ < k1 < g(x′′), Ld(k1) < k2 < Lu(k1)};

W = {x′ ≤ k1 ≤ x′′, f ′ < k2 < x′};

and set R = ∪5
i=1Ri and B = ∪3

i=1Bi. In general, on the boundaries between the

regions the boundaries could be allocated to either region. However, we allocate

points on the boundary to the region where the hedge is simplest.

Note that R∪ B ∪ G ∪W = {(k1, k2) : `µ ≤ k1 ≤ rµ, k2 < k1}.

Figure 3.7: Picture of f and g in the single jump case, now with 4 regions shaded

(cross-hatched, diagonally, dotted and blank).

Case (K1,K2) ∈ R.

Lemma 3.2.13. Suppose that (K1,K2) ∈ R.

Then there exists a unique x∗ = x∗(µ, ν;K1,K2) ∈ (g−1(K1),K1) and f∗ ∈ ℵ(x∗)

such that Υ(f∗, x∗, g∗ = g(x∗)) = 0.
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Proof. Suppose that (K1,K2) ∈ R1 ∪ R2 ∪ R5. Consider Λ : [g−1(K1),K1] 7→ R
defined by (3.6). Note that for this choice of (K1,K2), f and g are both continuous

on [g−1(K1),K1], see Figure 3.6. Hence Λ(x) = Υ(f(x), x, g(x)) is also continuous.

Then the same argument as in the proof of Lemma 3.2.7 shows that there exists a

unique x∗ = x∗(µ, ν;K1,K2) ∈ (g−1(K1),K1) such that Λ(x∗) = 0.

Now suppose (K1,K2) ∈ R3 ∪R4 and consider Λ as before. Recall that Λ is

increasing, Λ(g−1(K1)) < 0 and Λ(K1) > 0. On the other hand, g−1(K1) < x′′ and

hence Λ has an upward jump at x′′ (since f has a downward jump at x′′). There

are two cases depending on whether (K1,K2) ∈ R3 or R4.

1. Suppose that K2 > Lu(K1). Then Λ(x′′−) > 0. Moreover, since Λ(g−1(K1)) <

0, the continuity of Λ on (g−1(K1), x′′) ensures that there exists a unique scalar

x∗ = x∗(µ, ν;K1,K2) ∈ (g−1(K1), x′′) such that Λ(x∗) = 0. If K2 = Lu(K1)

then Υ(x′, x′′g(x′′)) = 0 and we take x∗ = x′′, g∗ = g(x′′) and f∗ = f(x′′−) =

x′.

2. Suppose that K2 < Ld(K1). Then Λ(x′′+) < 0. Further, since Λ(K1) > 0

there exists a unique x∗ = x∗(µ, ν;K1,K2) ∈ (x′′,K1) such that Λ(x∗) = 0. If

K2 = Ld(K1) then Υ(f ′, x′′, g(x′′)) = 0 and we take x∗ = x′′, g∗ = g(x′′) and

f∗ = f(x′′+) = f ′.

By Lemma 3.2.13, for (K1,K2) ∈ R there exists {f∗ ∈ ℵ(x∗), x∗, g∗ = g(x∗)}
such that Υ(f∗, x∗, g∗) = 0. Suppose (K1,K2) ∈ R1 ∪ R4 ∪ R5. In this case we

let M̂πx∗ be a canonical (µ, ν)-consistent model (recall that M̂π is the abbreviated

notation for the canonical model (Ŝπ, M̂) for which P̂(X ∈ dx, Y ∈ dy) = π(dx, dy)).

Here πx∗ ∈ Π(µ, ν) is a martingale coupling that is constant on (−∞, f∗), maps

(f∗, x∗) onto (f∗, g∗) and (g∗,∞) to (−∞, f∗) ∪ (g∗,∞).

Recall the proof of Theorem 3.2.8. There, to show that MBEP = HC,

we used the fact that under canonical model M̂πx∗ , πx∗ is constant on (−∞, f∗)
and maps (f∗, x∗) onto (f∗, g∗). In fact, the equality MBEP = HC will hold for

any canonical model for which the associated martingale coupling has the same

property. Then, the mass that is ‘unexercised’ at time 1 and is in-the-money at time

2 is given by (ν − µ)|(−∞,f∗) where f∗ < e−. When f(x′) < e1
− (as is the case when

(K1,K2) ∈ R1 ∪ R4 ∪ R5), the same proof applies, so that MBEP = HC and we

have optimality. On the other hand, if (K1,K2) ∈ R2 ∪ R3, then it is not the case

that f∗ < e1
− and thus, in order to specify the optimal model, we need to impose

additional structure on the coupling µ̃f∗,x∗ 7→ ν̃f∗,g∗ .
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Suppose that (K1,K2) ∈ R2∪R3. Then x′ < f∗, so that (f ′, x′)∩(f∗, g∗) = ∅.
From the defining properties of f ′ and x′ we see that there exists a martingale

coupling, which we term πx′,x∗ ∈ Π(µ, ν), which is constant on (−∞, f ′) and (x′, f∗),

which maps (f ′, x′) onto itself and (f∗, x∗) onto (f∗, g∗) and which maps (x∗,∞) to

(−∞, f ′) ∪ (x′, f∗) ∪ (g∗,∞).

If (K1,K2) ∈ R1 ∪ R4 ∪ R5 we have the canonical model M̂πx∗ and in the

case when (K1,K2) ∈ R2 ∩ R3 we have M̂πx′,x∗ . For both models we consider a

candidate stopping time τ∗ = 1 if X < x∗ and τ∗ = 2 otherwise, and a candidate

superhedge (ψ∗, φ∗, θ∗1,2) generated by the function ψ∗ defined in (3.8).

Theorem 3.2.14. Suppose Assumption 3.2.10 holds and (K1,K2) ∈ R. Then,

depending on whether (K1,K2) ∈ R1 ∪ R4 ∪ R5 or R2 ∪ R3, the models M̂πx∗ and

M̂πx′,x∗ and the stopping time τ∗ are the consistent models for which the price of

the American option is the highest. The function ψ∗ defined in (3.8) defines the

cheapest superhedge. Moreover, the highest model-based price is equal to the cost of

the cheapest superhedge.

Proof. If (K1,K2) ∈ R1 ∪ R4 ∪ R5 then the proof is essentially the same as the

proof of the first case in Theorem 3.2.8. We repeat the main steps for convenience.

First find x∗ ∈ (g−1(K1),K1) and f∗ ∈ ℵ(x∗) such that Υ(f∗, x∗g∗ = g(x∗)) = 0.

If x∗ = x′′ we find f∗ = f(x′′+) = f ′. Under the candidate model M̂πx∗ mass

below f∗ at time 1 is mapped to the same point at time 2 (which is possible since

f∗ < e1
−), and mass in (f∗, x∗) is mapped onto (f∗, g∗), while mass above x∗ is either

mapped to below f∗ or to above g∗. Then under the candidate stopping rule τ∗ the

model-based expected payoff is equal to the cost of the hedging strategy generated

by ψ∗:

MBEP =

∫ x∗

−∞
(K1 − w)+µ(dw) +

∫ f∗

−∞
(K2 − w)+(ν − µ)(dw)

= Pµ(x∗) + (K1 − x∗)P ′µ(x∗) +D(f∗) + (K2 − f∗)D′(f∗)

= HC.

Now suppose that (K1,K2) ∈ R2 ∪R3. Then, by Lemma 3.2.13, there exists

a unique x∗ ∈ (g−1(K1), x′′] and f∗ ∈ ℵ(x∗) such that Υ(f∗, x∗, g∗ = g(x∗)) = 0. If

x∗ = x′′ then we have f∗ = f(x′′−) = x′. Then, since ν is continuous we have that

f∗, x∗, g∗ solve (2.10) and (2.11). Note, however, that x′ ≤ f∗ < e2
−.

Under the candidate model M̂πx′,x∗ mass in (f ′, x′) at time 1 is mapped onto

the same interval at time 2. Also, mass below f ′ and mass in (x′, f∗) at time 1 is

mapped to the same point at time 2, and mass in (f∗, x∗) is mapped onto (f∗, g∗).
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Mass above x∗ is either mapped to below f ′, to (x′, f∗), or to above g∗. In particular

(ν−µ)|(−∞,f ′)∪(x′,f∗) is the mass that was not ‘exercised’ at time 1 and is ‘exercised’

in-the-money at time 2. In other words, (ν−µ)|(−∞,f ′)∪(x′,f∗) is the probability under

M̂πx′,x∗ that {X > x∗, Y < K2}. From (3.13) we have
∫ f ′
x′ (K2 −w)(ν − µ)(dw) = 0.

Then

MBEP =

∫ x∗

−∞
(K1 − w)µ(dw) +

∫ f ′

−∞
(K2 − w)(ν − µ)(dw)

+

∫ f∗

x′
(K2 − w)(ν − µ)(dw)

=

∫ x∗

−∞
(K1 − w)µ(dw) +

∫ f∗

−∞
(K2 − w)(ν − µ)(dw)

−
∫ x′

f ′
(K2 − w)(ν − µ)(dw)

=

∫ x∗

−∞
(K1 − w)µ(dw) +

∫ f∗

−∞
(K2 − w)(ν − µ)(dw)

= Pµ(x∗) + (K1 − x∗)P ′µ(x∗) +D(f∗) + (K2 − f∗)D′(f∗)

= HC.

Case (K1,K2) ∈ B = B1 ∪ B2 ∪ B3

Theorem 3.2.15. Suppose that Assumption 3.2.10 holds and (K1,K2) ∈ B. Then

there is a consistent model for which {Y < K2} = {X < K2} ∪ {X > K1, Y < K2}
and, if x′ < K2, {f ′ < X < x′} = {f ′ < Y < x′}. Then any model with these

properties with the stopping rule τ = 1 if X < K1 and τ = 2 otherwise attains the

highest consistent model price. The cheapest superhedge is generated from ψ(x) =

(K2−x)+ and the highest model-based price is equal to the cost of the cheapest hedge.

Proof. Let ψ(y) = (K2 − y)+. Now, as in Lemma 3.1.5, define a corresponding φ.

We find that φ(x) = (K1−x)+− (K2−x)+ and the superhedging cost (which is the

same for all the cases) is

HC = Pν(K2) + Pµ(K1)− Pµ(K2).

Suppose (K1,K2) ∈ B1. Then using the properties of f and g and the left-

curtain coupling we see that the proof that the model-based expected payoff is equal
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to the hedging cost is the same as in the second case of Theorem 3.2.8. In particular,

MBEP =

∫ K1

−∞
(K1 − x)µ(dx) +

∫ K2

−∞
(K2 − y)(ν − µ)(dy)

= Pµ(K1) + Pν(K2)− Pµ(K2).

Now suppose (K1,K2) ∈ B2. Then under the left-curtain coupling mass from

(f ′, x′) at time 1 is mapped onto the same interval at time 2. Therefore mass which is

below K2 at time 2 was either below K2 at time 1, or above x′ at time 1. Therefore,

we again have

MBEP =

∫ K1

−∞
(K1 − x)µ(dx) +

∫ K2

−∞
(K2 − y)(ν − µ)(dy).

Finally, suppose (K1,K2) ∈ B3. We again utilise the fact that under the

left-curtain coupling, mass from (f ′, x′) at time 1 is mapped onto the same interval

at time 2. In both cases, the mass which is below K2 at time 2 was either below

K2 at time 1, or above K1 at time 1. In particular, mass that can be ‘exercised’ at

time 2 is given by (ν−µ)|(−∞,f ′)∪(x′,K2). Then using
∫ x′
f ′ (K2− z)(ν−µ)(dz) = 0 we

again have

MBEP =

∫ K1

−∞
(K1 − x)µ(dx) +

∫ f ′

−∞
(K2 − y)(ν − µ)(dy) +

∫ K2

x′
(K2 − y)(ν − µ)(dy)

=

∫ K1

−∞
(K1 − x)µ(dx) +

∫ K2

−∞
(K2 − y)(ν − µ)(dy),

which ends the proof.

Case (K1,K2) ∈ W

Suppose (K1,K2) ∈ W. For this case we associate the following superhedge: let ψx
′

be given by

ψx
′
(z) =


(K2 − z) z ≤ f ′;
(K2 − f ′)− (z − f ′)K2−f ′

x′−f ′ f ′ < z ≤ x′;
0 z > x′,

(3.15)

see Figure 3.8. Since ψx
′

is convex and ψx
′
(z) ≥ (K2−z)+, we can use Lemma 3.1.5

to generate a corresponding superhedging strategy (ψx
′
, φx

′
, θx

′
1,2).

Theorem 3.2.16. Suppose Assumption 3.2.10 holds and (K1,K2) ∈ W.

Then there is a consistent model for which {f ′ < X < x′} = {f ′ < Y < x′} and any
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model with this property with the stopping rule τ = 1 if X < K1 and τ = 2 otherwise

attains the highest consistent model price. The cheapest superhedge is generated from

ψx
′

defined in (3.15) and the highest model-based price is equal to the cost of the

cheapest hedge.

(K1,K2)

f ′ x′

ψx
′

Figure 3.8: Picture of f and g along with superhedge for the blank region W.

Proof. First note that

ψx
′
(z) = Θ(x′ − z)+ + (1−Θ)(f ′ − z)+,

where Θ = K2−f ′
x′−f ′ . Since x′ < K1 we have

φx
′
(w) + ψx

′
(z) = (K1 − w)+ − ψx′(w) + ψx

′
(z)

= (K1 − w)+ + Θ
(
(x′ − z)+ − (x′ − w)+

)
+ (1−Θ)

(
(f ′ − z)+ − (f ′ − w)+

)
.

It follows that HC = Pµ(K1) + ΘD(x′) + (1 − Θ)D(f ′) is the cost of this strategy

(under any consistent model).

Now consider the model-based expected payoff. From (3.13) it follows that
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µf ′,x′ and νf ′,x′ have the same mean and mass, and are in convex order. Moreover,

the same holds for µ̃f ′,x′ and ν̃f ′,x′ . Therefore, there exists a martingale coupling,

which we term πx′ ∈ Π(µ, ν), which is constant on (−∞, f ′) and maps (f ′, x′) onto

itself. It follows that under this model the only mass that can be ‘exercised’ at time

2 is given by (ν − µ)|(−∞,f ′).
Note that, since f ′ and x′ satisfy (3.13), and hence

∫ x′
f ′ (x

′−w)(ν−µ)(dw) = 0,

D(x′)−D(f ′) =

∫ x′

−∞
(x′ − w)+(ν − µ)(dw)−

∫ f ′

−∞
(f ′ − w)+(ν − µ)(dw)

=

∫ f ′

−∞
(x′ − f ′)(ν − µ)(dw) +

∫ x′

f ′
(x′ − w)(ν − µ)(dw)

= (x′ − f ′)
∫ f ′

−∞
(ν − µ)(dw).

Then given that we stop at time 1 if X < K1 and at time 2 otherwise we

have

MBEP =

∫ K1

−∞
(K1 − w)+µ(dw) +

∫ f ′

−∞
(K2 − w)+(ν − µ)(dw)

=

∫ K1

−∞
(K1 − w)µ(dw) +

∫ f ′

−∞
(f ′ − w)(ν − µ)(dw)

+ (K2 − f ′)
∫ f ′

−∞
(ν − µ)(dw)

= Pµ(K1) +D(f ′) + Θ
(
D(x′)−D(f ′)

)
= Pµ(K1) + ΘD(x′) + (1−Θ)D(f ′) = HC

as required.

Case (K1,K2) ∈ G

Recall the construction of Lu and Ld. ForK1 ∈ (x′′, g(x′′)) andK2 ∈ (Ld(K1), Lu(K1))

there does not exist x∗ ∈ (g−1(K1),K1) such that Λ(x∗) = 0; instead we have that

Λ(x′′−) < 0 < Λ(x′′+). On the other hand, from (3.14) we have that there exists

a martingale coupling of µx′,x′′ and νx′,g(x′′). Moreover, note that the restrictions of

µ̃f ′,x′ to (x′, x′′) and ν̃f ′,x′ to (x′, g(x′′)) are equal to µx′,x′′ and νx′,g(x′′), respectively.

Then we define a martingale coupling πx′,x′′ ∈ Π(µ, ν) which is constant on (−∞, f ′),
maps (f ′, x′) onto itself, (x′, x′′) onto (x′, g(x′′)) and (x′′,∞) to (−∞, f ′)∪(g(x′′),∞).

Let M̂πx′,x′′ be the canonical model under which P̂(X ∈ dx, Y ∈ dy) = πx′,x′′(dx, dy).

Note that the model M̂πx′,x′′ is a refinement of M̂πx′ used in the proof of Theorem
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3.2.16.

Given x′, and thus also x′′, we define the superhedge as follows. First define

linear functions ∆1 : [f ′, x′] 7→ R and ∆2 : [x′, g(x′′)] 7→ R by

∆1(x) = (K2−f ′)−(x−f ′)(K2 − f ′)−∆2(x′)

x′ − f ′
; ∆2(x) =

(
g(x′′)−x

) K1 − x′′

g(x′′)− x′′
.

Then ∆1(f ′) = (K2 − f ′), ∆1(x′) = ∆2(x′), ∆2(x′′) = K1 − x′′ and ∆2(g(x′′)) = 0.

Moreover, direct calculation shows that −1 < ∆′1(x) < ∆′2(x) < 0. Now define a

function ψx
′,x′′ by

ψx
′,x′′(z) =


(K2 − z) z ≤ f ′;
∆1(z) f ′ < z ≤ x′;
∆2(z) x′ < z ≤ g(x′′);

0 z > g(x′′).

(3.16)

By construction ψx
′,x′′ is convex and ψx

′,x′′(z) ≥ (K2 − z)+ (see Figure 3.9), and

thus by Lemma 3.1.5 it can be used to construct a superhedge (ψx
′,x′′ , φx

′,x′′ , θx
′,x′′

1,2 ).

Theorem 3.2.17. Suppose Assumption 3.2.10 holds and (K1,K2) ∈ G. The model

M̂πx′,x′′ and the stopping time τ = 1 if X < x′′ and τ = 2 otherwise attains the

highest consistent model price. Moreover, ψx
′,x′′ defined in (3.16) generates the

cheapest superhedge and the highest model-based price is equal to the cost of the

cheapest superhedge.

Proof. The candidate canonical model is associated with the martingale coupling

πx′,x′′ which is constant on (−∞, f ′), maps (f ′, x′) onto itself, maps (x′, x′′) onto

(x′, g(x′′)), and (x′′,∞) to (−∞, f ′)∪(g(x′′),∞). Then under the candidate stopping

time (exercise at time 1 if X < x′′ and at time 2 otherwise) we have that the law

of Y (under M̂πx′,x′′ ), on the event that the option was not exercised at time 1, is

given by (ν − µ)|(−∞,f ′)+ν|(g(x′′),∞). Therefore

MBEP =

∫ x′′

−∞
(K1 − w)+µ(dw) +

∫ f ′

−∞
(K2 − w)+(ν − µ)(dw)

= Pµ(x′′) + (K1 − x′′)P ′µ(x′′) +D(f ′) + (K2 − f ′)D′(f ′).

Now consider the hedging cost generated by ψx
′,x′′ . Let Θ1 = K2−f ′−∆2(x′)

x′−f ′ =

−∆′1 and Θ2 = K1−x′′
g(x′′)−x′′ = −∆′2. Note that we can rewrite (3.16) as

ψx
′,x′′(z) = Θ2

(
g(x′′)− z

)+
+ (Θ1 −Θ2)(x′ − z)+ + (1−Θ1)(f ′ − z)+.
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(K1,K2)

g(x′′)x′′f ′

ψx
′,x′′

x′ = g′

Figure 3.9: Picture of f and g along with superhedge for the dotted region G. The

hedge function ψx
′,x′′ has a kink at x′.

Then

φ(z) = (1−Θ1)
(
(x′ − z)+ − (f ′ − z)+

)
+ (1−Θ2)

(
(x′′ − z)+ − (x′ − z)+

)
,

and thus the hedging cost is

HC = Θ2Pν
(
g(x′′)

)
+ (1−Θ1)D(f ′) + (1−Θ2)Pµ(x′′) + (Θ1 −Θ2)D(x′)

= Pµ(x′′) +D(f ′) + Θ1

(
D(x′)−D(f ′)

)
+ Θ2

(
Pν
(
g(x′′)

)
− Pν(x′)− Pµ(x′′) + Pµ(x′)

)
.

Now using (3.13) and the fact that g(x′) = x′ we have that D′(f ′) = D′(x′)

and f ′D′(f ′)−D(f ′) = x′D′(x′)−D(x′). Hence

Θ1

(
D(x′)−D(f ′)

)
= (K2 − f ′)D′(f ′)−∆2(x′)D′(f ′); (3.17)
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moreover, (3.14) gives that

Θ2

(
Pν
(
g(x′′)

)
− Pν(x′)− Pµ(x′′) + Pµ(x′)

)
= Θ2

(
g(x′′)P ′ν

(
g(x′′)

)
− x′′P ′µ(x′′)− x′D′(x′)

)
= Θ2

((
g(x′′)− x′′

)
P ′µ(x′′) +

(
g(x′′)− x′

)
D′(x′)

)
= (K1 − x′′)P ′µ(x′′) + ∆2(x′)D′(f ′). (3.18)

Then, combining (3.17) and (3.18) we conclude that HC = MBEP .

Case K1 > rµ

In Lemma 3.2.5, and under the Dispersion Assumption, we constructed f and g but

only on the interval (e−, rµ]. More generally, when µ is continuous the arguments of

Beiglböck and Juillet [10] and Henry-Labordère and Touzi [50] allow us to construct

Td = f and Tu = g on [`µ, rµ] for arbitrary laws µ ≤cx ν. For their purposes the

definitions of f and g outside the range of µ are not important since they have no

impact on the construction of the left-curtain martingale coupling.

Nonetheless, we can extend the definitions of f and g to R in a way which

respects the conditions in Lemma 2.3.2, by setting

f(x) = x = g(x), −∞ < x ≤ `µ;

f(x) = `ν , g(x) = rν , rµ < x < rν ;

f(x) = x = g(x), rν ≤ x <∞.

We will show that with these definitions for f and g the analysis of the previous

sections extends to the case K1 > rµ.

Suppose that rν > rµ and rµ < K1 < rν . Then Λ(rµ) = rν−K1
rν−rµ −

(K1−K2)
rµ−`ν and

Λ(rν−) = ∞. If Λ(rµ) ≥ 0 and Λ is continuous then there exists x∗ ∈ [`µ, rµ] such

that g(x∗) > x∗ and Λ(x∗) = 0. Then, exactly as in Section 3.2.2 we can construct

a model, stopping time and superhedge such that the model-based expected payoff

equals the hedging cost, and hence the model, stopping time and hedge are all

optimal. The model could be based on the left-curtain coupling, and the optimal

exercise rule is to exercise the American put at time 1 if X < x∗. Even if Λ is not

continuous, there may exist x∗ such that Λ(x∗) = 0 and the same arguments apply

(see Section 3.2.3). If not, then we are in the setting of Section 3.2.3, but again we

can identify the optimal model and hedge. Essentially, the case Λ(rµ) ≥ 0 is covered
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by a direct extension of existing arguments. Note that Λ(rµ) ≥ 0 is equivalent to

K2 ≥ K1 −
(rµ − `ν)(rν −K1)

rν − rµ
.

`ν rµ rν

Figure 3.10: The various cases for K1 > rν in the setting of Section 3.2.3.

Now suppose rµ < K1 < rν and K2 < K1 − (rµ−`ν)(rν−K1)
rν−rµ . Then Λ(rµ) < 0

and since Λ(rν−) = ∞ and Λ is continuous on [rµ, rν ] (note that we have defined

f and g to be constants on this range) there must exist x∗ ∈ (rµ,K1) such that

Λ(x∗) = 0. It is always optimal to exercise at time 1 and any martingale coupling

can be used to generate a model which attains the highest model based price of

Pµ(K1) = (K1 − µ). A cheapest superhedge is generated by

ψ(y) =
K2 − `ν
rν − `ν

(rν − y)+ +
rν −K2

rν − `ν
(`ν − y)+. (3.19)

The cost of this hedge is

K2 − `ν
rν − `ν

Pν(rν) +
rν −K2

rν − `ν
Pν(`ν) + Pµ(K1)− K2 − `ν

rν − `ν
Pµ(rν)− rν −K2

rν − `ν
Pµ(`ν)

=
K2 − `ν
rν − `ν

(rν − µ̄) + (K1 − µ̄)− K2 − `ν
rν − `ν

(rν − µ̄) = (K1 − µ̄).

Finally suppose K1 > rν . Then Y < K1 almost surely under any consistent

model and

E[(K2 − Y )+|F1] ≤ E[(K1 − Y )+|F1] = E[(K1 − Y )|F1] = (K1 −X).
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Therefore, it is always optimal to exercise the American put at time 1. If K2 > rν

or K2 < `ν then we are in the case studied in Section 3.2.3 and the cheapest hedge

is generated by a time 2 payoff ψ(y) = (K2− y)+. If K2 ∈ [`ν , rν ] then we are in the

case studied in Section 3.2.3 and the cheapest superhedge is generated by ψ = ψ(y)

where ψ is given by (3.19). In either case the highest model-based expected payoff

is Pµ(K1) = (K1 − µ̄) and this is also the cost of the superhedge.

3.2.4 Intervals where ν has no mass, or ν = µ.

The definition of the left-curtain martingale coupling (recall Lemma 3.2.5) only

requires that g = Tu is increasing, and not that it is continuous. In general g may

have jumps; such jumps occur when there is an interval on which ν places no mass.

If g has a jump then we need to adapt the superhedge. Suppose g has a jump

at x̂ (which has to be upwards since g is increasing) and f is continuous at x̂. Suppose

further that K1 is such that x̂ ∈ (g−1(K1),K1). Then as before, we would like to find

x∗ ∈ (g−1(K1),K1) such that Λ(x∗) = 0. Recall that Λ is increasing and suppose

Λ(g−1(K1)) < 0 < Λ(K1). If Λ(x̂−) < 0 and Λ(x̂+) > 0, then there will be no

solution to Λ = 0. However, by keeping x = x̂, f̂ = f(x̂) fixed in (3.6), and varying g

only, we can find ĝ ∈ (g(x̂−), g(x̂+)), such that (ĝ−K1)/(ĝ− x̂) = (K1−K2)/(x̂− f̂)

so that Υ(f(x̂), x̂, ĝ) = 0. Then, the candidate (and indeed optimal) superhedging

strategy is generated by ψ∗, given in (3.8), with (f∗, x∗, g∗) = (f̂ , x̂, ĝ), see Figure

3.11. Moreover, since ν does not charge (g(x̂−), g(x̂+)), the triple (f̂ , x̂, ĝ) solves

the mass and mean equations (2.10) and (2.11). The strong duality between the

model-based expected payoff and the hedging cost follows as before.

K1K2f̂ x̂ g(x̂−) g(x̂+)ĝ

Figure 3.11: Sketch of put payoffs with points x̂, f̂ and ĝ marked.
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Alternatively, suppose f has a downward jump at x̄. This can happen if

ν = µ on (f(x̄+), f(x̄−)). Suppose that K1 is such that x̄ ∈ (g−1(K1),K1) and

Λ(x̄−) < 0 and Λ(x̄+) > 0, so that again we cannot find x ∈ (g−1(K1),K1) with

Λ(x) = 0. We can deal with this similarly as in the case of discontinuity in g: choose

f̄ ∈ (f(x̄+), f(x̄−)) such that Υ(f̄ , x̄, g(x̄)) = 0, then consider a hedging strategy

generated by ψ∗ with (f∗, x∗, g∗) = (f̄ , x̄, g(x̄)). Note that µ = ν on (f(x̄+), f(x̄−))

and so if (2.10) and (2.11) hold for some f ∈ [f(x̄+), f(x̄−)] (with x̄, ḡ) then they

hold for all f in this interval. It follows that we can construct a coupling in which

(f̄ , x̄) is mapped to (f̄ , ḡ) and strong duality holds.

In the case of f and g jumping simultaneously, we have a pictorial represen-

tation of the regions of pairs (K1,K2) which lead to a hedging strategy which has

to be adapted as above, see Figure 3.13. If g has a jump at x̂, then Λ(x̂−) < 0 and

Λ(x̂+) > 0 is equivalent to point (K1,K2) lying in the interior of a triangle with

vertices {(g(x̂−), g(x̂−)), (g(x̂+), g(x̂+)), (x̂, f(x̂))}. On the other hand, if f jumps

downwards at x̄, then Λ(x̄−) < 0 and Λ(x̄+) > 0 is equivalent to point K1, K2

lying in the interior of a triangle with vertices {(x̄, f(x̄−)), (x̄, f(x̄+)), (g(x̄), g(x̄))}
(compare this with a region G).

Exceptionally we may have simultaneous jumps in g and f at x̌. Then the

set of (K1,K2) for which these arguments are needed is a quadrilateral with vertices

(x̌, f(x̌−)), (x̌, f(x̌+)), (g(x̌+), g(x̌+)) and (g(x̌−), g(x̌−)). In particular, then there

are multiple pairs (f̌ , ǧ) with f̌ ∈ (f(x̌+), f(x̌−)) and ǧ ∈ (g(x̌−), g(x̌+)) such that

Υ(f̌ , x̌, ǧ) = 0, so that an optimal hedging strategy is not unique.

3.2.5 The general case for continuous ν

In the previous sections we showed how the left-curtain coupling can be used to

find an optimal model, exercise strategy and a superhedge, under the assumption

that both µ and ν are continuous together with further regularity and simplifying

assumptions which we labelled the Dispersion Assumption and the Single Jump

Assumption. Under the latter assumption, the existence of points that solve (3.13)

led us to identify two further types of hedging strategy that were not present under

the dispersion assumption, making four in total.

If we relax the assumptions further and require only that both µ and ν are

continuous, then we expect that in some cases there may exist multiple pairs (f ′i , x
′
i),

i = 1, 2, 3, ..., that solve (3.13). Note that from the monotonicity of g we can write

{x : g(x) > x} as a countable union of intervals, and on each such interval f is

decreasing. f jumps over the intervals (f ′i , x
′
i) identified above (at least those with

x′ to the left of the current value of x). In particular, f has only countably many

78



downward jumps. Figure 2.1 is a stylised representation of the general left-curtain

martingale coupling, not least because in the figure f has only finitely many jumps.

Starting from Figure 2.1 and using the constructions in Section 3.2.3 we can divide

(K1,K2 < K1) into four regions, see Figure 3.12. They key point is that these

four regions are characterised exactly as in the cases described in Section 3.2.3.

For given (K1,K2) we can determine which of the types of hedging strategy is a

candidate optimal superhedge, and determine a candidate optimal stopping rule.

(We can always use the model associated with the left-curtain martingale coupling

πlc.) The fact that these candidates are indeed optimal can be proved using exactly

analogous techniques to those used in Section 3.2.3.

Figure 3.12: General picture of f, g with shading of regions. There remain 4 types

of shading corresponding to 4 forms of optimal hedge.

More specifically, we can divide {(k1, k2) : k2 < k1} into two disjoint regions,

{(k1, k2) : k2 ≤ f(k1)} and {(k1, k2) : f(k1) < k2 < k1}. We can divide the former

into two further regionsW = {(k1, k2) : k2 < k1, ∃x ≤ k1such that f(x) < k2 < g(x)}
and B = {(k1, k2) : k2 ≤ f(k1)} \ W. The latter we again divide into two regions G
and R = {(k1, k2) : f(k1) < k2 < k1}\G. Here we can write G = ∪x:f(x−)>f(x+)∆(x)

where ∆(x) is a triangle with vertices (x, f(x+)), (x, f(x−)) and (g(x), g(x)). Then

on each of the regions W, B, G and R we have a superhedge exactly as described

in Section 3.2.3. Moreover, again by the arguments of Section 3.2.3, we can show
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that the hedging cost associated with the super-hedging strategy is precisely the

model-based expected payoff of the American put under the martingale coupling πlc

(and candidate stopping rule) thus proving the optimality of the hedge and of the

model/exercise rule.

For example, suppose (K1,K2) ∈ W. (The cases for (K1,K2) ∈ R ∪ B are

generally even simpler, and for (K1,K2) ∈ G the story is roughly equally involved.)

Recall that under Single Jump Assumption 3.2.10, in order to show that MBEP =

HC, we used the existence of x̄ and f̄ satisfying (3.13) together with the fact that

∫
y

∫
x>K1

(K2 − y)+πlc(dx, dy) =

∫ f̄

−∞
(K2 − y)(ν − µ)(dy). (3.20)

Then for general probability measures µ and ν, provided we can find x̄, f̄ satisfying

(3.13) and (3.20), the proof that MBEP = HC and hence of optimality follows

exactly as in Theorem 3.2.16.

Lemma 3.2.18. Suppose (K1,K2) ∈ W. Then there exists x̄, f̄ such that

f̄ < K2 < x̄ ≤ K1,

∫ x̄

f̄
ziµ(dz) =

∫ x̄

f̄
ziν(dz), i ∈ {1, 2}, (3.21)

and such that under the left-curtain coupling

{X > K1, Y ≤ K2} = {X > K1, Y ≤ f̄} = {Y ≤ f̄) \ (X ≤ f̄},

so that (3.20) holds.

Proof. Define X = XK1,K2 = {x : x ≤ K1, f(x) < K2 < g(x)}. Since (K1,K2) ∈ W,

XK1,K2 is non-empty. Define x̂ = sup{x : x ∈ X}. We show that x̂ and a suitably

defined f̂ are such that (3.20) and (3.21) hold.

First suppose that x̂ < K1. Suppose further that g(x̂) > x̂. Take x̃ ∈
(x̂, g(x̂) ∧K1). Then g(x̃) ≥ g(x̂) > x̃. Also f(x̃) /∈ (f(x̂), g(x̂)) and if f(x̃) ≥ g(x̂)

then we have that f(x̃) ≥ g(x̂) > x̃, which is a contradiction. Hence f(x̃) ≤ f(x̂) <

K2 < g(x̂) ≤ g(x̃). Then x̃ ∈ X contradicting the maximality of x̂. Hence g(x̂) ≤ x̂

(and thus g(x̂) = x̂). But then f(x̂) = x̂ and x̂ /∈ X .

Hence there exists (xn)n≥1 such that xn ∈ X and xn ↑ x̂. Let g(x̂−) =

lim g(xn). By the same argument as above we cannot have g(x̂−) > x̂. Hence

x̂ = g(x̂−) > K2.

Now suppose x̂ = K1 > K2. Then K1 /∈ X since we cannot have both

K2 ≤ f(K1) and f(K1) < K2 < g(K1). Hence there exists (xn)n≥1 such that

xn ∈ X and xn ↑ x̂. Let gn = g(xn) and fn = f(xn). If g(K1) > K1 then there
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exists n0, such that for all n ≥ n0, gn > K1. Then f(K1) /∈ (fn, gn) and therefore

f(K1) ≤ fn < K2 contradicting K2 ≤ f(K1). Hence g(x̂−) = g(K1−) = K1.

In either case x̂ /∈ X and there exists (xn)n≥1 such that xn ∈ X , xn ↑ x̂
and (fn)n≥1 is a decreasing sequence while (gn)n≥1 is such that gn ↑ x̂. Let f̂ =

limn→∞ fn. Then ∫ xn

fn

ziµ(dz) =

∫ gn

fn

ziν(dz), i ∈ {1, 2}

and by taking limits we have that x̂ and f̂ solve (3.21). Note also that x̂ > K2.

We are left to show that x̂ and f̂ solve (3.20). This follows from the fact that

f̂ < K2, together with the set identifications

{X > K1, Y ≤ K2} = {X > K1, Y ≤ f̂} = {X > f̂, Y ≤ f̂} = {Y ≤ f̄} \ {X ≤ f̄}.

Remark 3.2.19. The set {x : g(x) > x} is a collection of intervals and we let I+

denote the set of right-endpoints of these intervals. As remarked above, Figure 3.12

is drawn in the case of ‘finite complexity’ in the sense that the set I+ contains a

finite number of elements. The results extend easily to countable I+ provided I+

contains no accumulation points.

In general I+ may contain an accumulation point, and, as discussed in Henry-

Labordère and Touzi [50], care is needed in the construction of the left-curtain map-

pings (Td, Tu) in this case. However, from our perspective such subtleties do not

cause a problem. The reason for this is we do not aim to derive the left-curtain

coupling, but rather take the left-curtain coupling as a given, and use it to solve the

put pricing problem.

Our construction of the best model and the cheapest hedge is local in the

sense that when in Figure 3.12 we look at in which region the point (K1,K2) lies,

the fine detail of the picture in other parts of (k1, k2)-space is not important. So, the

existence of accumulation points can only be an issue if K1 is equal to one of those

accumulation points.

Let x∞ be such an accumulation point in I+ and suppose K1 = x∞. Depend-

ing on the value of K2 then either there exists (x′, f ′) with f ′ < K2 < x′ such that

(3.13) holds or not. In the former case we can follow the analysis of Section 3.2.3,

and in the latter Section 3.2.3: in either case we construct a model and hedge such

that the model price and hedging cost agree, thus proving optimality of both.
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x1 x2

0 < ν({x2})

0 < ν({x1})

g(x̂−)

g(x̂+)

f(x̄−)

f(x̄+)

Figure 3.13: Atoms of ν correspond to flat sections in f and g. Regions of no mass

of ν correspond to jumps of f and g.

3.2.6 Atoms in the target law

When ν has atoms, the preservation of mass and mean conditions become (2.12)

and (2.13), respectively. In particular, atoms of ν correspond to the flat sections

in f or g. See Figure 3.13. In this case we still can find all the optimal quantities

as before. In particular, Λ(x) := g(x)−K1

g(x)−x −
(K1−K2)
x−f(x) is strictly increasing in x, even

if f and/or g is constant. Hence we can find solutions to Λ = 0 (more generally

solutions x, f ∈ ℵ(x) to Υ(f, x, g = g(x)) = 0) exactly as before. The superhedge

is unchanged. A little care is needed in constructing the optimal model, but under

the associated martingale coupling mass in (f(x∗), x∗) is mapped onto (f(x∗), g(x∗))

together with (potentially) atoms at f(x∗) or g(x∗). Specifically, given f∗, x∗, g∗ we

can find λ∗f and λ∗g such that (2.12) and (2.13) hold. Then, in any optimal canonical

model M̂π, π is constant on (−∞, f∗), and the law of M̂2 on the event M̂1 ∈ (f∗, x∗)

is νx∗ which is defined to be νx∗ = ν|(f∗,g∗) + λ∗f∗δf∗ + λ∗g∗δg∗ . We also find the law

of M̂2 on the event M̂1 ∈ (x∗,∞) is ν − νx∗ − µ|(−∞,f∗).

3.3 Discussion and extensions

3.3.1 The role of the left-curtain coupling

For any pair of strikes (K1,K2) the left-curtain model attains the highest expected

payoff for the American put. However, although it optimises simultaneously across

all pairs of strikes it is not (in general) optimal for linear combinations of American

puts. For example, if we consider a generalised American option with payoff a if
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exercised at time 1 and b if exercised at time 2, where a(x) =
∑J

j=1(Kj
1 − x)+ and

b(y) =
∑J

j=1(Kj
2 − y)+ (with Kj

2 ≤ Kj
1 for each j), then the model associated with

the left-curtain coupling is typically not optimal. The reason is that a model (S,M)

is only optimal when it is combined with the best stopping rule, and the optimal

stopping rule does depend on (K1,K2).

Conversely, although the model associated with the left-curtain coupling is

optimal (simultaneously across all pairs K1,K2), we do not need the full power of

this coupling when we work with fixed (K1,K2). In the dispersion assumption case

all we need is a coupling in which (f(x∗), x∗) is mapped onto (f(x∗), g(x∗)) where

x∗ is such that Λ(x∗) = 0, and (−∞, f∗) is mapped to itself, but not necessarily in

a constant fashion. There are many martingale couplings which have this property.

The intuition behind the optimality of the left-curtain coupling is as follows.

With American puts there is a tension between the time-decay of the option payout

promoting early exercise, and the convexity of the payoff function promoting delay.

If the aim is to maximise the payoff of the option then any paths which are in-

the-money at time 1, and will remain in-the-money, are best exercised at time 1.

However, once a path has been exercised, any further volatility is irrelevant. In

particular, when designing a candidate optimal model we should try to keep paths

which are exercised at time 1 constant (or near constant) whenever possible. Thus

the probability space should be split into two regions: one region where the put

is in-the-money at time 1 and is exercised, and thereafter paths move little, and a

second region where the put is out-of-the-money at time 1 (and sometimes just in-

the-money, but left unexercised at time 1) and then paths move a long way between

times 1 and 2. The left-curtain coupling has this property.

3.3.2 Multiple exercise times

It is natural to ask if it is possible to extend the analysis to American puts which

can be exercised at multiple dates (T1, T2, . . . TN ) where N > 2, or equivalently to

martingales M = (Mn)0≤n≤N with marginals (µn) where µ1 has mean M0 = µ̄ and

µn ≤cx µn+1 for 1 ≤ n ≤ N − 1. It is clear that many of the ideas extend naturally

to the multi-marginal case. However, the number of types of hedging strategy may

grow exponentially with N . This is left as future work.

3.3.3 General convex payoffs

We now discuss the generalisation of problem (3.4). Let a, b : R 7→ R and consider

the problem of finding the highest model-independent upper bound of the American

83



option, that pays a(x) if exercised at time 1 and b(y) if exercised at time 2:

P̃ := sup
π∈Π(µ,ν)

sup
B∈B(R)

EL(X,Y )∼π[a(X)1{X∈B} + b(Y )1{X/∈B}
]
. (3.22)

Consider the optimal stopping problem (with respect to a fixed canonical

(µ, ν)-consistent model) given by the inner supremum in (3.22). A very ambitious

task would be to find a set B∗ ∈ B(R) that is optimal for all π ∈ Π(µ, ν), i.e.

P̃ = EL(X,Y )∼π[a(X)1{X∈B∗}+ b(Y )1{X/∈B∗}], for all π ∈ Π(µ, ν). We expect this to

be true in situations when the expected payoff does not depend on the coupling π

(e.g. when one of the functions a, b are equal to zero).

On the other hand, observe that in the canonical setting the filtration does

not depend on a particular choice of a martingale coupling π ∈ Π(µ, ν). Therefore

we can interchange two supremums in (3.22):

P̃ = sup
B∈B(R)

sup
π∈Π(µ,ν)

EL(X,Y )∼π[a(X)1{X∈B} + b(Y )1{X/∈B}
]
. (3.23)

Let, for B ∈ B(R), P̃B be defined by

P̃B := sup
π∈Π(µ,ν)

EL(X,Y )∼π[a(X)1{X∈B} + b(Y )1{X/∈B}
]
, (3.24)

so that P̃ = supB∈B(R) P̃B. Note that P̃B can be treated as the MOT problem with

a (non-standard) payoff function c(x, y,B) = a(x)IB(x) + b(y)1Bc(x).

The main advantage of considering (3.23) instead of (3.22) is the following:

Lemma 3.3.1. Suppose a, b : R 7→ R with b(·) convex. Then, for any B ∈ B(R),

the shadow embedding induced by the restriction µ|B, Sν(µ|B), is optimal in (3.24).

In particular,

P̃ =

∫
R
b(y)ν(dy) + sup

B∈B(R)

{∫
B
a(x)µ(dx)−

∫
R
b(y)Sν(µ|B)(dy)

}
.

Proof. For any π ∈ Π(µ, ν) and B ∈ B(R), we have that

EL(X,Y )∼π[a(X)1{X∈B} + b(Y )1{X/∈B}
]

= EX∼µ
[
a(X)1{X∈B}

]
+ EL(X,Y )∼π[b(Y )1{X/∈B}

]
= EX∼µ

[
a(X)1{X∈B}

]
+ EY∼ν

[
b(Y )

]
− EL(X,Y )∼π[b(Y )1{X∈B}

]
.
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Taking supremum over Π(µ, ν) gives

P̃B = EX∼µ
[
a(X)1{X∈B}

]
+ EY∼ν

[
b(Y )

]
− inf
π∈Π(µ,ν)

EL(X,Y )∼π[b(Y )1{X∈B}
]

=

∫
B
a(x)µ(dx) +

∫
R
b(y)ν(dy)− inf

π∈Π(µ,ν)

∫
R
b(y)π(B, dy),

for any B ∈ B(R). Since µ|B≤E ν and b(·) is convex, by Lemma 2.2.1 we have that

inf
π∈Π(µ,ν)

∫
R
b(y)π(B, dy) =

∫
R
b(y)Sν(µ|B)(dy), B ∈ B(R),

which ends the proof.

We hope that an explicit construction of the shadow (see Theorem 2.2.2)

coupled with a particular structure of time 1 payoff a(·) (e.g. assuming it is also

convex) allows to identify the Borel set B that maximises P̃B. This is left for future

research.

Remark 3.3.2. If the goal is to find the lowest model-independent price of the

American type option, i.e. to calculate

P̄ := inf
π∈Π(µ,ν)

sup
B∈B(R)

EL(X,Y )∼π[a(X)1{X∈B} + b(Y )1{X/∈B}
]
,

then, similarly as in Lemma 3.3.1, we have that

P̄ = sup
B∈B(R)

{∫
B
a(x)µ(dx) +

∫
R
b(y)Sν(µ|Bc)(dy).
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Chapter 4

The left-curtain martingale

coupling in the presence of

atoms

The main effort in this chapter is in proving Theorem 4.1.1 which extends the left-

curtain martingale coupling to the presence of atoms in the starting law µ.

For this chapter, Section 2.1 again serves as a prerequisite section on prob-

ability measures, convex order, martingale couplings, and the left-curtain martin-

gale coupling in particular. Moreover, for two probability measures µ, ν in convex

order, recall the definition of a (µ, ν)-consistent model from Chapter 3 (see Defini-

tion 3.1.1): (S,M) is a (µ, ν)-consistent model if S is a filtered probability space

and M is a (S, µ, ν) consistent stochastic process, i.e. M is an S-martingale and

M1 ∼ µ,M2 ∼ ν.

4.1 An extension of the left-curtain mapping to the gen-

eral case

In this section we construct a new representation of the left-curtain martingale

coupling of Beiglböck and Juillet [10]. Our approach is to construct (X,Y ) from a

pair of independent uniform U(0, 1) random variables U and V . The construction of

X is straightforward: we set X = Gµ(U) (where Gµ is the left-continuous quantile

function of a random variable with law µ).

It remains to construct Y . First we consider the case of a point mass at

w, µ = δw, and show how to construct functions R = Rµ,ν and S = Sµ,ν with

Rµ,ν(u) ≤ Gµ(u) ≤ Sµ,ν(u), such that if X = Gδw(U) = w and Y ∈ {R(U), S(U)}
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with P(Y = R(u)|U = u) = S(u)−G(u)
S(u)−R(u) then Y has law ν. In particular, conditional

on U = u, Y takes values in {R(u), S(u)} and satisfies E[Y |U = u] = Gµ(u). Second,

we show how this result extends to the case of a measure µ consisting of finitely many

atoms. Third, for the case of general µ we construct an approximation (µn)n≥1 of

µ and associated functions (Rn, Gn, Sn)n≥1 where each µn is finitely supported. We

show that we can define limits (R,G, S) such that (R,G, S) can be used to construct

a martingale M = (M0 = µ̄,M1 = X,M2 = Y ) with the property that X = G(U)

and Y ∈ {R(U), S(U)} and such that L(X) = µ and L(Y ) = ν. The functions

R,S : (0, 1) 7→ R we define have the properties

R(u) ≤ G(u) ≤ S(u); S is increasing; for 0 < u < v < 1, R(v) /∈ (R(u), S(u)).

(4.1)

We suppose µ ≤cx ν are fixed and given and we abbreviate the quantile

function Gµ by G. The aim of this section is to prove the following theorem:

Theorem 4.1.1. There exist functions R,S : (0, 1) 7→ R satisfying (4.1) such that

if we define X(u, v) = X(u) = G(u) and Y (u, v) ∈ {R(u), S(u)} by Y (u, v) = G(u)

on G(u) = S(u) and

Y (u, v) = R(u)1{v≤S(u)−G(u)
S(u)−R(u)

} + S(u)1{v>S(u)−G(u)
S(u)−R(u)

} (4.2)

otherwise, and if U and V are independent U(0, 1) random variables then M =

(µ̄,X(U), Y (U, V )) is a F = (F0 = {∅,Ω},F1 = σ(U),F2 = σ(U, V )})-martingale

for which L(X) = µ and L(Y ) = ν.

In particular, if Ω = (0, 1) × (0, 1), F = B(Ω), P = Leb(Ω), if F and M are

defined as above and if S = (Ω,F ,F,P) then (S,M) is a (µ, ν)-consistent model.

Remark 4.1.2. For n ≥ 1, let πnlc be the left-curtain coupling of the initial law µn

(consisting of n atoms) and target law ν. Juillet [67] proved that if (µn)n≥1 converges

weakly to µ then (πnlc)n≥1 converges weakly to the left-curtain coupling of µ and ν.

Here we argue differently. We use the fact that πnlc can be represented by an

explicitly constructed triple (Sn, Gn, Rn). Then, by sending n→ +∞, we show that

the limiting functions give rise to the left-monotone martingale coupling, and thus

also to πlc, of µ and ν.
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S

G

R

S

R
0 1

f = R ◦G−1

g = S ◦G−1

Figure 4.1: Sketch of R,G, S and the corresponding f and g. On the atoms of µ, G

is flat, and f and g are multi-valued, but R and S remain well-defined.

When µ is continuous and f and g are well-defined the construction of this

section is related to that of Beiglböck and Juillet [10] (see also Henry-Labordère and

Touzi [50]) via the relationships S = g ◦ Gµ and R = f ◦ Gµ. Suppose ν is also

continuous and fix x. Then under the left-curtain martingale coupling {f(x), g(x)}
with f(x) ≤ x ≤ g(x) are solutions to the mass and mean conditions∫ x

f
µ(dz) =

∫ g

f
ν(dz), (4.3)∫ x

f
zµ(dz) =

∫ g

f
zν(dz). (4.4)

When µ has atoms, Gµ has intervals of constancy and f and g are multi-

valued, but R and S remain well-defined. See Figure 4.1. Then, for general µ and

ν, the appropriate generalisations of (4.3) and (4.4) are∫
(R(u),G(u))

µ(dz) + λ
µ
u =

∫
(R(u),S(u))

ν(dz) + λνu + λ
ν
u, (4.5)∫

(R(u),G(u))
zµ(dz) + λ

µ
uG(u) =

∫
(R(u),S(u))

zν(dz) + λνuR(u) + λ
ν
uS(u), (4.6)

respectively, where the quantities 0 ≤ λ
µ
u ≤ µ({G(u)}), 0 ≤ λνu ≤ (ν − µ)({R(u)}),

0 ≤ λ
ν
u ≤ ν({S(u)}) are uniquely determined by the triple (R,G, S). Essentially,

(4.5) is preservation of mass condition and (4.6) is preservation of mean condition.

Together they give the martingale property.
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4.1.1 The case where µ is a point mass

The goal in this section is to prove Theorem 4.1.1 in the special case where µ is a

point mass. We assume that µ is a unit atom at w and ν is centred at w. Then

µ = δw ≤cx ν.

Let P (k) = Pν(k) =
∫∞
−∞(k − z)+ν(dz). Then P (k) ≥ (k − w)+. For

p ∈ [0, P (w)] define α : [0, P (w)] 7→ [w,∞] and β : [0, P (w)] 7→ [−∞, w] by

α(p) = arginfk>w

{
P (k)− p
k − w

}
; β(p) = argsupk<w

{
p− P (k)

w − k

}
, (4.7)

see Figure 4.2. Then α is decreasing and β is increasing. Since the arginf and argsup

may not be uniquely defined (this happens when ν has intervals with no mass) we

avoid indeterminacy by assuming that α and β are right-continuous. (We also set

α(P (w)) = inf{z > w : Fν(z) > Fν(w)} and β(P (w)) = sup{z < w : Fν(z) <

Fν(w−)}. Note that α(0) = rν and β(0) = `ν .) If ν has atoms then α and β may

fail to be strictly monotonic.

Pν(k)

β(p) α(p)(w, 0)

(w, p)

(w,Pν(w))
slope b(p)

slope a(p)

Figure 4.2: The definitions of α, β, a and b. Υ(p) is the difference in the slopes of

the tangents to Pν(k) which pass through (w, p).

For p ∈ (0, P (w)) define also

a(p) = inf
k>w

P (k)− p
k − w

=
P (α(p))− p
α(p)− w

; b(p) = sup
k<w

p− P (k)

w − k
=
p− P (β(p))

w − β(p)
.

(4.8)

Extend the representations to [0, P (w)] by taking limits. Then a : [0, P (w)] 7→
[P ′(w+), 1] is decreasing and b : [0, P (w)] 7→ [0, P ′(w−)] is increasing. We have the
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representations

a(p) = 1−
∫ p

0

dq

α(q)− w
; b(p) =

∫ p

0

dq

w − β(q)
.

Let Υ : [0, P (w)] 7→ [0, 1] be given by Υ(p) = a(p) − b(p). Then Υ(0) = 1

and Υ(P (w)) = ν({w}). Υ is a decreasing, concave function which is absolutely

continuous on [0, P (w)). We can define an inverse Υ−1 : [0, 1]→ [0, P (w)] provided

we set Υ−1(q) = 1 for q ≤ ν({w}). Where α and β are continuous we have Υ′(p) =

− 1
α(p)−w −

1
w−β(p) .

Υ(p)

1

ν({ω})

P ({ω})

Υ−1

P (ω)

ν({ω}) 1

Figure 4.3: Sketch of Υ and Υ−1.

Define S : (0, 1) 7→ R by S(u) = (α ◦ Υ−1)(u) and R : (0, 1) 7→ R by

R(u) = (β ◦Υ−1)(u).

Remark 4.1.3. If ν does not charge an open interval A ⊂ (w,∞), then P is linear

on A. Then α jumps over this set and S does not take values in A. Similarly if ν

does not charge an open interval B ⊂ (−∞, w) then R jumps over this interval.

Remark 4.1.4. By construction, α and β are both right-continuous. Since Υ−1 is

continuous and decreasing, it follows that R and S are left-continuous. Moreover,

limu→1R(u) = `ν and limu→1 S(u) = rν .

Let Y be defined by (4.2) in Theorem 4.1.1. Note that since µ is a point

mass G(u) = w for all u ∈ (0, 1).

Lemma 4.1.5. Suppose U, V are independent uniform random variables. Then

Y (U, V ) has law ν.
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Proof. Let φ be a test function: a continuously differentiable function with support

contained in [w + ε, w + ε−1] for some ε ∈ (0, 1). We will show that E[φ(Y )] =∫
φ(y)ν(dy). We can prove a similar result for test functions ψ with support in

[w − ε−1, w − ε]. It follows that L(Y ) = ν.

By construction

E[φ(Y )] =

∫ 1

0
du

w −R(u)

S(u)−R(u)
φ(S(u))

=

∫ 1

0
du

w − β ◦Υ−1(u)

α ◦Υ−1(u)− β ◦Υ−1(u)
φ(α ◦Υ−1(u))

=

∫ P (w)

0
dp|Υ′(p)| w − β(p)

α(p)− β(p)
φ(α(p)).

But Υ′(p) = − α(p)−β(p)
(α(p)−w)(w−β(p)) . Thus, writing ψ(y) = φ(y)

(y−w) and using the

fact that α−1(y) = P (y)− (y−w)P ′(y) except at the countably many points where

α−1 is multi-valued,

E[φ(Y )] =

∫ P (w)

0
dp

φ(α(p))

α(p)− w
= −

∫ ∞
w

d(α−1(y))ψ(y) =

∫ ∞
w

[P (y)− (y − w)P ′(y)]ψ′(y)dy

= −
∫ ∞
w

P ′(y)[ψ(y) + (y − w)ψ′(y)]dy = −
∫ ∞
w

P ′(y)φ′(y)dy =

∫
φ(y)ν(dy).

Hence E[φ(y)] =
∫
φ(y)ν(dy).

Remark 4.1.6. If α and β are strictly monotonic at Υ−1(u), then conditional on

U ≤ u, Y has law ν conditioned to take values in [β◦Υ−1(u), α◦Υ−1(u)]. Necessarily,

ν([β ◦Υ−1(u), α ◦Υ−1(u)]) = u.

If there is an atom of ν at β ◦ Υ−1(u) or α ◦ Υ−1(u) then we can choose

appropriate masses λu and λu such that ν((β ◦Υ−1(u), α ◦Υ−1(u))) +λuδβ◦Υ−1(u) +

λuδα◦Υ−1(u) has total mass u and mean w. We must have 0 ≤ λu ≤ ν({β ◦Υ−1(u)})
and 0 ≤ λu ≤ ν({α ◦Υ−1(u)}).

On U ≤ u1 let Y u1 = Y u1(U, V ) be constructed as in (4.2). On U > u1,

let Y u1 be in a graveyard state ∆. Then L(Y u1) = νu1 + (1− u1)δ∆ where νu1 is a

measure on [R(u1), S(u1)] with total mass u1 and mean w. In particular, νu1 = ν

on (R(u1), S(u1)), νu1 ≤ ν on {R(u1), S(u1)} and νu1 = 0 on [R(u1), S(u1)]C .

4.1.2 The case where µ consists of a finite number of atoms

Suppose µ =
∑N

i=1 λiδxi where x1 < x2 . . . < xN with λi > 0 and
∑N

i=1 λi = 1.

Suppose ν is an arbitrary probability measure satisfying the convex order condition

µ ≤cx ν.
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For 0 ≤ p ≤ Pν(x1) we can construct α, β, a and b as in (4.7) and (4.8) (but

relative to x1 rather than the mean w) and set Υ = a − b. For example, α(p) =

arginfk>x1

Pν(k)−p
k−x1

and a(p) = infk>x1

Pν(k)−p
k−x1

. Note that Υ(0) = Λ1 := infx>x1

Pν(x)
x−x1

and since Pν(x) ≥ Pµ(x) ≥ λ1(x − x1) we have Λ1 ≥ λ1. The inverse Υ−1 can

be defined on [0,Λ1], but we are only interested in Υ−1 over the interval [0, λ1].

Using Υ−1 and the construction of the previous section we can define S = α ◦Υ−1 :

(0, λ1] 7→ [x1,∞) and R = β ◦ Υ−1 : (0, λ1] 7→ (−∞, x1] with S increasing and R

decreasing.

Pν(k)

β(p) α(p)

x1

slope Λ1

Pµ(k)

slope λ1

Figure 4.4: Calculation of α, β, a and b in this case

By the final comments in Remark 4.1.6, the construction of R and S on (0, λ1]

is such that if Y is constructed as in (4.2), then on U ≤ λ1 we find Y has law νλ1 ,

where νλ1 = ν on (R(λ1), S(λ1)) and νλ1 ≤ ν on {R(λ1), S(λ1)}.
We now claim that µ̃1 := µ − λ1δx1 =

∑N
i=2 λiδxi and ν̃1 = ν − νλ1 are in

convex order. By construction νλ1 has mass λ1 and barycentre x1. Hence µ̃1 and ν̃1

also have the same total mass and barycentre.

Lemma 4.1.7. µ̃1 ≤cx ν̃1.

Proof. Let ν̂ = λ1δx1 + ν̃1. Since λ1δx1 ≤cx νλ1 we have ν̂ ≤cx ν. Also Pµ(k) ≤
Pν̂(k). To see this note that Pν̂ is continuous everywhere and linear on intervals

[R(λ1), x1] and [x1, S(λ1)], whereas Pµ is continuous and convex on [R(λ1), S(λ1)].

Moreover, Pµ(R(λ1)) = 0 ≤ Pν̂(R(λ1)), Pµ(x1) = 0 ≤ Pν̂(R(x1)) and Pµ(S(λ1)) ≤
Pν(S(λ1)) = Pν̂(S(λ1)). Hence Pµ̃(k) + λ1(x1 − k)+ = Pµ(k) ≤ Pν̂(k) = Pν̃1(k) +

λ1(x1 − k)+ and it follows that Pµ̃(k) ≤ Pν̃1(k) as required.
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We have constructed (R,S) on (0, λ1] with S increasing and R decreasing in

such a way that the point mass at x1 is mapped to νλ1 . It remains to embed ν̃1

starting from µ̃1. Note that by Remark 4.1.6, ν̃1 places no mass on (R(λ1), S(λ1)).

As a next step we embed the atom λ2δx2 of µ̃1 in ν̃1. x2 is the lowest

location of an atom in µ̃1 so we can use the same algorithm as before. In this

way, for λ1 < u ≤ λ1 + λ2 we construct S increasing with S(λ1+) ≥ S(λ1−) ∨ x2

and R decreasing with R(λ1+) ≤ x2. By Remark 4.1.3, R jumps over the interval

(R(λ1), S(λ1)). We conclude that for 0 < u < v < λ1 + λ2, R(v) /∈ (R(u), S(u)).

Thereafter, we proceed inductively on the number of atoms which have been

embedded. The initial law is a sub-probability µ̃k =
∑N

k+1 λiδxi which we want to

map to a target law ν̃k where µ̃k ≤cx ν̃k and ν̃k ≤ ν. Since µ consists of a finite

number of atoms the construction terminates. Moreover the random variable Y we

construct in this way has law ν and R and S have the properties in (4.1). It follows

that we have proved Theorem 4.1.1 in the case where µ consists of a finite number

of atoms.

4.1.3 The martingale coupling and its inverse as maps

Given ν centred, (and µ = δ0) we saw in Section 4.1.1 how to construct R : (0, 1) 7→
R− and S : (0, 1) 7→ R+ such that Y = Y (U, V ) has law ν where Y is given by

Y (u, v) = 0 if S(u) = 0 and

Y (u, v) = R(u)1{v≤ S(u)
S(u)−R(u)

} + S(u)1{v> S(u)
S(u)−R(u)

} (4.9)

otherwise.

Let P0 denote the set of centred probability measures on R. Let V1 denote

the set of pairs of functions R,S with R : (0, 1)→ R− and S : (0, 1)→ R+, let V1
Mon

denote the subset of V1 for which R is decreasing and S is increasing, and let V1
Int

denote the subset of V1 such that I(R,S) <∞ where

I(f, g) =

∫ 1

0
du
|f(u)|g(u)

g(u)− f(u)
1{g(u)>0}.

Finally, let V1
Mon,Int = V1

Mon ∩ V1
Int.

The construction in Section 4.1.1 can be considered as a pair of maps

Q1 : P0(R) 7→ V1
Mon,Int

R1 : V1
Mon,Int 7→ P0(R)
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Note that E[|Y |] = 2I(R,S) which can be shown using the ideas in the proof of

Lemma 4.1.5 to be equal to 2Pν(0). Moreover, under I(R,S) <∞ we have E[Y ] = 0.

Note that if we take (R,S) ∈ V1
Mon \ V1

Mon,Int then we can still define Y via

(4.9) but L(Y ) will not be integrable. Then M given by M1 = 0, M2 = Y is a local

martingale, but not a martingale.

Section 4.1.2 extends these results from initial laws which consist of a single

atom to finite combinations of atoms. Let P0
F be the subset of P0 for which the

measure consists of a finite set of atoms and let CF = {(ζ, χ) : ζ ∈ P0
F , χ ∈ P0; ζ ≤cx

χ}. Let

V = {(R,G, S);R : (0, 1)→ R, G : (0, 1)→ R, S : (0, 1)→ R;R(u) ≤ G(u) ≤ S(u);∫ 1

0
|G(u)|du <∞,

∫ 1

0
G(u)du = 0} .

Consider now the subsets

VF = {(R,G, S) ∈ V : G non-decreasing and takes only finitely many values},

VMon = {(R,G, S) ∈ V : (4.1) holds},

VInt = {(R,G, S) ∈ V : I(R,G, S) <∞};

where I(R,G, S) =
∫ 1

0 du
(S(u)−G(u))(G(u)−R(u))

S(u)−R(u) 1{S(u)>G(u)}, and consider also inter-

sections of these subsets, for example VMon,Int = VMon ∩ VInt. In Section 4.1.2 we

constructed a map Q : CF → VF,Mon which we write as Q(ζ, χ) = (R(ζ,χ), Gζ , S(ζ,χ)).

Indeed, since χ ∈ L1 and since E[|Y − X|] ≤ E[|X|] + E[|Y |] < ∞ we have that

E[|Y − X|] = 2I(R(ζ,χ), Gζ , S(ζ,χ)), so that we actually have a map Q : CF →
VF,Mon,Int. Conversely, the arguments after Lemma 4.1.7 show that (4.2) defines a

inverse map R : VF,Mon,Int → CF .

Note that given any element (R,G, S) of V we can define the map R : V →
P0 × P via R(R,G, S) = (L(X(U)),L(Y (U, V ))) where Y (U, V ) is as given in the

statement of Theorem 4.1.1. We will make no further use of this idea, but different

properties of (R,G, S) will lead to different (local)-martingale couplings. The em-

bedding of Hobson and Neuberger [58] is of this type. In the Hobson and Neuberger

embedding R and S are both increasing.

4.1.4 The case of general integrable µ

We assume µ is centred at zero, but the general case follows by translation.

Our goal in this section is to extend the map Q : CF → VF,Mon,Int with

inverse R to a map Q : C → VMon,Int where C = {(ζ, χ) : ζ ∈ P0, χ ∈ P0; ζ ≤cx χ}.
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For µ a general centred probability measure and ν a centred target measure with

µ ≤cx ν we construct a sequence (µn)n≥1 of approximations of µ by elements of P0
F .

For each µn we can construct a triple (Rn, Gn, Sn). We show that (Rn, Gn, Sn)n≥1

converge to a limit (R,G, S) first on the rationals and then (almost surely) on (0, 1).

Convergence of Gn and Sn is straightforward, but convergence of Rn is more subtle,

and indeed we only have convergence on {u : S(u) > G(u)}. Finally we show that

R(R,G, S) = (µ, ν) so that the trio (R,G, S) defines a martingale coupling between

µ and ν.

Let {q1, q2 . . .} be an enumeration of Q∩ (0, 1). Then {Sn(q1)}n≥1 converges

down a subsequence nk1 to a limit S∞(q1) := limk1↑∞ Snk1
(q1). Down a further

subsequence if necessary we have that Snk2
(q2) converges to S∞(q2). Proceeding

inductively, we have by a diagonal argument (see, for example, Billingsley [14]) that

there is a subsequence (m1,m2, . . .) such that {Smk}k≥1 converges to S∞ at every

rational q ∈ Q ∩ (0, 1). This limit is non-decreasing.

Our first result shows that any limit of Sn is finite valued. Since the ideas

behind the proof are not relevant to the arguments of this section the proof is

postponed to Section 4.3.

Lemma 4.1.8. Let µn ↑cx µ. Then lim supSn(u) ≤ J(u) for some function J =

Jµ,ν : (0, 1) 7→ (−∞,∞).

We want to extend the domain from the rationals to (0, 1). To this end

define S(u) = limqj↑u S∞(qj). This limit is well defined (and non-decreasing) by the

monotonicity of S∞. Then from the monotonicity of S we conclude that S has only

countably many discontinuities. Note that, by definition, S is left-continuous.

We can construct G from {Gn} in an identical fashion. In this case the

finiteness of the limit follows from the tightness of the singleton {G}. Moreover,

since Gn ≤ Sn by construction, we have G∞ ≤ S∞ and G ≤ S. Again, the increasing

limit G has at most countably many discontinuities and is left-continuous.

Define NS = {u : Sn(u) 6→ S(u)} and NG = {u : Gn(u) 6→ G(u)} where the

subscript n refers to a subsequence down which Sn and Gn converge on rationals.

Define also N∆
S = {u : S(u+) > S(u−)} and N∆

G = {u : G(+) > G(u−)}.

Lemma 4.1.9. NS ⊆ N∆
S and NG ⊆ N∆

G . Moreover, Leb(NS ∪NG) = 0.

Proof. Suppose u is a continuity point of S. Suppose further that there is a subse-

quence (nj)j≥1 along which Snj (u) > S(u) + ε. Using the continuity of S at u we

may pick q > u such that S(q) < S(u) + ε/2. Take qk ∈ (u, q) with qk ↓ u. Then

Snj (qk) ≥ Snj (u) > S(u) + ε > S(qk) + ε/2. Letting j ↑ ∞, S∞(qk) > S(qk) + ε/2.

Letting k ↑ ∞, S(u) ≥ S(u) + ε/2 which is a contradiction.
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A similar argument (without the need of continuity at u) shows that down any

subsequence limj Snj (u) > S(u)− ε. Hence, if S(u) = S(u+) then S(u) = limSn(u).

Since the set of points for which S(u+) > S(u) is countable we conclude that

Leb(NS) = 0.

An identical argument gives that G(u) = limnGn(u) on G(u+) = G(u) and

Leb(NG) = 0.

Now consider (Rn)n≥1 and the existence of a possible limit R. By the same

diagonal argument as above we can define R∞ : Q ∩ (0, 1) → R such that on a

subsequence Rnk(q) → R∞(q) ∈ [−∞,∞] for every q. (From now on we work on

a subsequence indexed n such that {Sn}n, {Gn}n and {Rn}n converge for every

q ∈ Q ∩ (0, 1).) We want to construct R from R∞, but unlike in the case of S or G

we do not have monotonicity. Note that for q′ > q we have Rn(q′) /∈ (Rn(q), Sn(q))

for each n and this implies R∞(q′) /∈ (R∞(q), S∞(q)).

The following lemma shows that R∞ is finite valued, at least for q such that

G(u+) < S(u).

Lemma 4.1.10. Let µn ↑cx µ. Then lim inf Rn(u) ≥ j(u) on G(u+) < S(u) for

some function j = jµ,ν : (0, 1) 7→ (−∞,∞).

Let A = {u ∈ (0, 1) : G(u+) < S(u)}. By the above lemma R∞(q) > j(q) >

−∞ for q ∈ A. If u ∈ A then the left continuity of S implies that there exists an

interval (u − ε, u] ⊆ A; since every such interval must contain a rational we have

that A is a countable union of intervals.

We now show that R∞ is decreasing on each such interval. Suppose not.

Then there exists q < q′ in the same interval I with R∞(q′) > R∞(q). Let

v = infq′′∈Q∩I{q′′ : R∞(q′′) > R∞(q)}. Choose q̃m ↑ v with q̃m ≥ q and q̂n ↓ v
with R∞(q̂n) > R∞(q). Then R∞(q̂n) 6∈ (R∞(q̃m), S∞(q̃m)), and since R∞(q̂n) >

R∞(q) ≥ R∞(q̃m) we conclude R∞(q̂n) ≥ S∞(q̃m). Letting n tend to infinity we con-

clude lim inf R∞(q̂n) ≥ S∞(q̃m), and letting m tend to infinity lim infn↑∞R∞(q̂n) ≥
S(v). However, R∞(q̂n) ≤ G∞(q̂n) and hence lim supn↑∞R∞(q̂n) ≤ G(v+) < S(v).

These two statements are inconsistent, and hence R∞ must be decreasing on each

interval of A.

Given that R∞ is decreasing on each interval of A, we can define R on A
by R(u) = limq↑uR∞(q). Then the function R is decreasing and therefore has only

countably many discontinuities in any interval ofA. Away from these discontinuities,

we have Rn(u)→ R(u) by an argument similar to that in Lemma 4.1.9.

Define B= = {u ∈ (0, 1) : G(u) = S(u)} and B< = {u ∈ (0, 1) : G(u) <

S(u)}. Then B< = A ∪ C where C = {u ∈ (0, 1) : G(u) < S(u) ≤ G(u+)}. Since
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C ⊆ N∆
G , we have that B< and A differ by a set of measure zero and we conclude:

Lemma 4.1.11. 1{u∈B<}(Rn(u)−R(u))→ 0, except on a set of measure zero.

Note that we cannot expect Rn(u) to converge on B=.

It remains to define R on B= and C in such a way that R satisfies (4.1). On

B= we set R(u) = G(u) = S(u). For u ∈ C we have by the left continuity of S

that there exists ε > 0 such that I = (u − ε, u) ⊂ A. By the same arguments as

before we conclude that R∞ is decreasing on I and we set R(u) = limq↑uR∞(q).

Indeed, for u ∈ B< we have R(u) = limq↑uR∞(q). Note that for u ∈ C we may have

that R(u+) > R(u) and it is not true in general that R is decreasing on intervals

contained in B<.

Fix u < v. If u or v is in B= then since we have defined R(w) = G(w) = S(w)

on B= we trivially have R(v) /∈ (R(u), S(u)). For u, v ∈ B< choose sequences

{qm}m with qm < u and qm ↑ u and {ql}l with ql ∈ (u, v) and ql ↑ v. Then

Rn(ql) /∈ (Rn(qm), Sn(qm)) and hence R∞(ql) /∈ (R∞(qm), S∞(qm)). Letting l ↑ ∞
we have R(v) /∈ (R∞(qm), S∞(qm)) and letting m ↑ ∞ we have R(v) /∈ (R(u), S(u)).

Hence, (R,G, S) satisfy (4.1).

On the space {(r, g, s); r ≤ g ≤ s} ⊆ R3 define Θx = Θx(r, g, s) by Θx(r, g, s) =

1{r≤x<s}
s−g
s−r with the convention that Θx(r, g, s) = 0 for g = s. In particular,

Θx(g, g, g) = 0.

Proposition 4.1.12. If x is such that Leb({u : S(u) = x} ∪ {u : R(u) = x;S(u) >

G(u)}) = 0, then we have∫ 1

0
du
{

1{Sn(u)≤x} + Θx(Rn(u), Gn(u), Sn(u))
}
→
∫ 1

0
du
{

1{S(u)≤x} + Θx(R(u), G(u), S(u))
}

(4.10)

Proof. Since Sn(u)→ S(u) almost surely and since
∫ 1

0 du1{S(u)=x} = 0 by hypothe-

sis, we have
∫ 1

0 du1{Sn(u)≤x} →
∫ 1

0 du1{S(u)≤x} by bounded convergence.

Let Ω< = {u : Sn(u) → S(u), Gn(u) → G(u), Rn(u) → R(u), G(u) < S(u)}
and Ω= = {u : Sn(u)→ S(u), Gn(u)→ G(u), G(u) = S(u)}. By Lemmas 4.1.9 and

4.1.11, Leb(Ω< ∪ Ω=) = 1.

Now let Ωx
< = {u : Sn(u) → S(u) 6= x,Gn(u) → G(u), Rn(u) → R(u) 6=

x,G(u) < S(u)} and Ωx
= = {u : Sn(u) → S(u) 6= x,Gn(u) → G(u), G(u) = S(u)}.

By the hypothesis on x we still have that Leb(Ωx
<∪Ωx

=) = 1, and by bounded conver-

gence the result of the proposition will follow if we can show that Θx(Rn, Gn, Sn)→
Θx(R,G, S) on Ωx

< ∪ Ωx
=.
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This is immediate on Ωx
<. On Ωx

= we need only note that,

Θx(Rn, Gn, Sn) = 1{Rn≤x<Sn}
(Sn −Gn)

(Sn −Rn)
≤ (Sn −Gn)

(Sn − x)
1{Sn>x} → 0 = Θx(R,G, S).

Proof of Theorem 4.1.1. All that remains to show is that (R,G, S) embeds ν.

There are at most countably many x for which Leb({u : S(u) = x}) +

Leb({u : R(u) = x;S(u) > G(u)}) > 0. Hence it is sufficient to prove that∫ 1
0 du

{
1{S(u)≤x} + 1{R(u)≤x<S(u)}

S(u)−G(u)
S(u)−R(u)

}
= ν((−∞, x]) outside this set. For such

an x, (4.10) holds. Then, since (Rn, Gn, Sn) embeds ν from µn,∫ 1

0
du

{
1{S(u)≤x} + 1{R(u)≤x<S(u)}

S(u)−G(u)

S(u)−R(u)

}
= lim

n

{∫ 1

0
du

{
1{Sn(u)≤x} + 1{Rn(u)≤x<Sn(u)}

Sn(u)−Gn(u)

Sn(u)−Rn(u)

}}
= lim

n
ν((−∞, x]) = ν((−∞, x])

as required.

Remark 4.1.13 (Alternative construction). Let (πxlc)x∈R be the disintegration of

πlc with respect to µ, so that πlc(dx, dy) = µ(dx)πxlc(dy). It follows that for any

µ′ ≤ µ, π′(dx, dy) := µ′(dx)πxlc(dy) is again a left-curtain coupling. Decompose

µ = µc +
∑

n αnδxn into continuous and discrete parts, respectively. The desired

representation of πlc through graphs of functions can then be obtained by past-

ing together the representations of πc(dx, dy) := µc(dx)πxlc(dy) and πd(dx, dy) :=∑
n αnδxn(dx)πxnlc (dy). Note that in the case of πc, the result of Theorem 4.1.1 fol-

lows from the original theorem of Beiglböck and Juillet [10], while the case of πd

follows from the arguments given in Section 4.1.

4.2 Robust bounds for the American put

Our motivation for the study of the left-curtain mapping came from a connec-

tion with the robust pricing of American puts. Recall that in robust or model-

independent pricing (Hobson [54, 56]) the idea is that instead of writing down a

model for the asset price (for example, geometric Brownian motion or a stochastic

volatility model) we consider the class of all models for which the discounted asset

price is a martingale and which are consistent with the prices of traded vanilla op-

tions. Then, given an exotic option which we would like to price, we search over this

98



class of models to find the range of feasible model-based prices.

Typically the set of traded vanilla options is taken to be the set of European-

style puts and calls. Given a family of European puts and calls for a fixed maturity

and a continuum of strikes we can infer the law of the asset price at that maturity

(under the market measure used for pricing). Given the prices of puts and calls for

a sequence of maturities we can infer the marginal distributions of the asset price,

but not the joint distributions. Then, working under the bond-price numeraire, the

class of asset price processes which are consistent with the prices of traded vanilla

options can be identified with the class of martingales with given marginals. The

problem of finding the robust upper bound on the price of an American-style option

becomes a search over consistent martingale models of the model-based price of the

American option, see Neuberger [83], Hobson and Neuberger [60] and Bayraktar et

al. [6]. Crucially, the primal pricing problem can be identified with a dual hedging

problem.

When the American-style option is an American put and the number of

candidate exercise dates is two, in Chapter 3 we found the robust upper bound

under an assumption that the law of the underlying at the first exercise date is

continuous. It turns out that the consistent model for which the American put has

highest price is the model associated with the left-curtain coupling of Beiglböck and

Juillet [10]. Here we briefly explain how the results of Chapter 3 extend to the

atomic case, and why the atomic case is important. There is a subtlety in the case

with atoms which is not present when there are no atoms, and to deal with this

subtlety we need the extension of the left-curtain coupling to the atomic case as

constructed in this chapter.

We are interested in pricing the American put which, in discounted units has

strike K1 at maturity 1 and strike K2 at maturity 2, with K2 < K1, see Chapter 3

for further details. The expected payoff arising from a given joint law π ∈ Π(µ, ν)

and a given stopping rule τ taking values in {1, 2} is

φπ(τ) = EL(X1,X2)∼π [(K1 −X1)+1{τ=1} + (K2 −X2)+1{τ=2}
]

Here X represents the discounted asset price, and is a martingale with joint law π.

For a Borel set B we can let τB be the stopping rule τB = 1 if X1 ∈ B and

τB = 2 otherwise. Then the payoff under the stopping rule τB is Φπ(B) := φπ(τB)

and the American put price under the model is Φπ = supB Φπ(B).

Bayraktar et al. [6]1 define the upper bound on the price of the American

1[6] contains many interesting and important results and this is just a small element of the paper
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put to be

PBHZ = sup
π∈Π(µ,ν)

Φπ = sup
π∈Π(µ,ν)

sup
B

Φπ(B).

The definition of the model-independent upper bound on the price of the

American put given by Neuberger [83] and Hobson and Neuberger [60] is different.

Suppose (S = (Ω,F ,F,P), X = (X0, X1, X2)) is a (µ, ν)-consistent model. The

model-based price of the American put is

A(S, X) = sup
τ∈T1,2(S)

ES,X [(Kτ −Xτ )+]

where T1,2(S) is the set of all F-stopping times taking values in {1, 2}. Then (Neu-

berger [83], Hobson and Neuberger [60]) the highest model-based price is

PN = sup
S,X
A(S, X) (4.11)

where the supremum is taken over (µ, ν)-consistent models.

Set Ω = R× R = {ω = (ω1, ω2)}, F = B(Ω) and (X1(ω), X2(ω)) = (ω1, ω2),

and let P be such that L(X1) = µ and L(X2) = ν. Let F0 = {∅,Ω}, F1 = σ(X1)

and F2 = σ(X1, X2). If S = (Ω,F ,F,P) then (S,X) is a (µ, ν)-consistent model.

Consistent models of the form (S,X) can be identified with martingale cou-

plings π. It follows that PBHZ ≤ PN , the inequality following from the fact that in

principle we could work on a richer probability space. It follows from our work in

Chapter 3 that if µ is continuous then the martingale coupling associated with the

optimiser for either PBHZ or PN is the left-curtain coupling and PBHZ = PN . Our

interest in extending the left-curtain mapping arose from the fact that when µ has

atoms we may have PBHZ < PN . Then, in order to construct the optimiser for PN
we need an appropriate extension of the left-curtain coupling.

4.2.1 The trivial law for µ

The difference between the modelling approaches of Bayraktar et al. [6] and Hobson

and Neuberger [60] can be illustrated most simply when µ = δw. Also for simplicity

we assume ν has a continuous law with mean w.

In the framework of Bayraktar et al. [6], since the filtration generated by X

is still trivial at time 1, the only choices facing the holder of the American put are

either to always stop at time 1, or to never stop at time 1. The expected payoff of
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the American put does not depend on the martingale coupling and thus

PBHZ = sup
π∈Π(µ,ν)

max{Φπ(Ω),Φπ(∅)} = sup
π∈Π(µ,ν)

max{φπ(1), φπ(2)}

= max

{
(K1 − w)+,

∫
(K2 − z)+ν(dz)

}
.

On the other hand we can construct a richer model which is (δw, ν)-consistent.

Set Ω = (0, 1)× (0, 1) and let P be Lebesgue measure on Ω. Let (U, V ) be a pair of

independent uniform random variables, let (F0 = {∅,Ω},F1 = σ(U),F2 = σ(U, V ))

and let X0 = X1 = w and X2 = Y , where Y = Y (U, V ) is as given in (4.2) with

G(u) ≡ w. Here (R,S) are a pair of monotonic functions with

u =

∫ S(u)

R(u)
ν(dz), 0 =

∫ S(u)

R(u)
(z − w)ν(dz). (4.12)

In this way we construct a (µ, ν)-consistent model.

Under this model the value A(u) of the American put under the stopping

rule τu where τu = 1 if U < u and τu = 2 otherwise is

A(u) = E[(K1 −X1)+1{τu=1} + (K2 −X2)+1{τu=1}]

= (K1 − w)u+

∫ R(u)

−∞
(K2 − z)+ν(dz) +

∫ ∞
S(u)

(K2 − z)+ν(dz).

It follows that PN ≥ supu∈[0,1]A(u). (In the next section we will argue that there

is equality here.) Note that PBHZ = A(0)∨A(1), so that PN > PBHZ will follow if

supu∈[0,1]A(u) > A(0) ∨A(1).

For a simple example, suppose w = 1 and ν = U [0, 2]; suppose K1 = 5
4 and

K2 = 1. Then R(u) = 1− u and S(u) = 1 + u. We have

A(u) =
u

4
+

∫ 1−u

0
(1− z)dz

2
=

1 + u− u2

4
.

Then PN ≥ maxu∈[0,1]A(u) = 5
16 >

1
4 = A(0) ∨A(1) = PBHZ .

Remark 4.2.1. In our set-up there are two possible exercise times for the American

put, denoted 1 and 2, and we construct a martingale (X0 = w,X1, X2) to match the

marginals at these times. But if L(X1) = δX0 the problem can be recast as a problem

for a stochastic process X̃ = (X̃0, X̃1) where X̃0 = X0 = X1 and X̃1 = X2. We also

set τ̃ = τ − 1; then τ̃ ∈ {0, 1} and τ̃ = 0 corresponds to immediate exercise. Put

another way, one way to allow for immediate exercise of the American put, is to

introduce an additional point (labelled 1) into the time-indexing set and to require
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L(X1) = δX0. For this reason it is very natural for µ to have a trivial law, if we

want to allow immediate exercise.

4.2.2 Tightness of the bound for a trivial law µ

Our goal in this section is to show that PN = supu∈[0,1]A(u). We do this by finding

an upper bound on the American put pricing problem and then showing that this

bound is equal to supu∈[0,1]A(u).

Let ψ be a convex function with ψ(z) ≥ (K2− z)+. Let φ(z) = ((K1− z)+−
ψ(z))+ and let θ(z) = −ψ′+(z), where ψ′+ is the right derivative. Then, for all x1

and x2

(K1 − x1)+ ≤ φ(x1) + ψ(x2) + (x2 − x1)θ(x1),

(K2 − x2)+ ≤ φ(x1) + ψ(x2).

It follows that for any set B ∈ F and for every ω,

(K1 −X1)+IB + (K2 −X2)+1BC ≤ φ(X1) + ψ(X2) + (X2 −X1)θ(X1)1B.

In particular, if we think of B as the set of scenarios on which the put is exercised

at time 1 then we have that the payoff of the American put is bounded above by the

sum of the European-style payoffs φ and ψ and the gains from trade from a strategy

which involves holding θ(X1) units of the underlying over the time-interval (1, 2],

provided the put was exercised at time 1. Then, for B ∈ F1

E[(KτB −XτB )+] ≤ E[φ(X1)] + E[ψ(X2)]

=

∫
((K1 − x)+ − ψ(x))+µ(dx) +

∫
ψ(y)ν(dy).

In our context with µ = δw this simplifies to ((K1−w)+−ψ(w))+ +
∫
ψ(y)ν(dy) =:

D(ψ). Let D = infψ D(ψ) (where the infimum is taken over convex ψ with ψ(z) ≥
(K2 − z)+). D forms an upper bound for the price of the American option under

any consistent model and hence PN ≤ D.

Let R and S be defined as in Section 4.1.1. Let Pν(z) =
∫

(z − x)+ν(dx).

Then (4.12) can be rewritten as u = P ′ν(S(u))− P ′ν(R(u)) together with

(S(u)− w)P ′ν(S(u))− Pν(S(u)) = (R− w)P ′ν(R(u))− Pν(R(u)). (4.13)
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Fix K2 < K1 with K1 > w and define Λw : (−∞,K2 ∧w)× (K1,∞) 7→ R by

Λw(r, s) =
K1 − w
s− w

− (K2 − r)− (K1 − w)

w − r
.

Since ν is continuous by assumption, R and S are strictly decreasing and strictly

increasing, respectively. Define uw = inf{u ∈ (0, 1) : R(u) < K2 and S(u) > K1},
and for u ∈ (uw, 1) set Λ̄w(u) = Λw(R(u), S(u)). It follows that Λ̄w is strictly

decreasing.

Suppose that the smallest closed interval containing the support of ν, Iν =

[`ν , rν ], is such that K1−w
rν−w < (K2−`ν)−(K1−w)

w−`ν (this will follow if 0 = `ν < w < rν =∞
and K2 > K1 − w, for example). This assumption is sufficient to guarantee that

there exists u∗ ∈ (uw, 1) such that Λ̄w(u∗) = 0. Then S∗ := S(u∗) > K1 > K2 >

R(u∗) =: R∗. Also Λ̄w(u∗) = 0 implies K1−w
S∗−w = K2−R∗

S∗−R∗ . For the model constructed

in Section 4.1.1 we have

sup
u∈[0,1]

A(u) ≥ A(u∗) = (K1 − w)+u∗ +

∫ R∗

−∞
(K2 − z)+ν(dz)

= (K1 − w)[P ′ν(S∗)− P ′ν(R∗)] + Pν(R∗) + (K2 −R∗)P ′ν(R∗).

Conversely, let Θ = K1−w
S∗−w = K2−R∗

S∗−R∗ = (K2−R∗)−(K1−w)
w−R∗ ∈ (0, 1) and let

ψ∗(x) = Θ(S∗−x)++(1−Θ)(R∗−x)+. Note that by design ψ∗(R∗) = Θ(S∗−R∗) =

(K2 −R∗) so that ψ∗(z) ≥ (K2 − z)+. Further, ψ∗(w) = Θ(S∗ − w) = (K1 − w) so

that φ∗(w) = 0 where φ∗(z) = ((K1 − z)+ − ψ∗(z))+. Then D ≤ ΘPν(S∗) + (1 −
Θ)Pν(R∗) = D(ψ∗).

Now consider D(ψ∗) − A(u∗). Using (4.13) for the second equality and the

alternative characterisations of Θ for the third we have

D(ψ∗)−A(u∗) = Θ(Pν(S∗)− Pν(R∗))− (K1 − w)[P ′ν(S∗)− P ′ν(R∗)]− (K2 −R∗)P ′ν(R∗)

= P ′ν(S∗)[Θ(S∗ − w)− (K1 − w)]− P ′ν(R∗)[Θ(w −R∗)− (K1 − w) + (K2 −R∗)]

= 0.

Then D(ψ∗) = A(u∗) ≤ supu∈[0,1]A(u) ≤ PN ≤ D ≤ D(ψ∗). It follows that this

chain of inequalities is in fact a chain of equalities and PN = supu∈[0,1]A(u). More-

over, we have identified an optimal model and an optimal stopping rule. The model

which yields the highest price for the American put is our extension of the left-curtain

coupling.
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4.2.3 American puts with a general time-1 law

We seek to generalise the arguments of the previous section to allow for non-trivial

initial laws. Define Λ = Λ(r, g, s) via

Λ(r, g, s) =
K1 − g
s− g

− (K2 − r)− (K1 − g)

g − r

Suppose we are in the case of continuous µ. Define Λ̂(x) = Λ(f(x), x, g(x)) where

f and g are the lower and upper functions which arise in the Beiglböck-Juillet [10]

characterisation of the left-curtain martingale coupling. In our notation this can

be written as Λ̂(x) = Λ((R ◦G−1)(x), x, (S ◦G−1)(x)). The fundamental insight in

Hobson and Norgilas [61] is that, in the case of continuous µ, the cheapest superhedge

can be described in terms of a simple portfolio of European-style puts whose strikes

depend on quantities which arise from looking for the root x∗, if any, of Λ̂(·) =

0. Moreover the most expensive model is the model described by the left-curtain

coupling, and an optimal exercise rule is to exercise at time-1 if and only if X1 < x∗.

Hobson and Norgilas [61] identify four archetypes of hedging portfolios. The first

two cases correspond to when there is a root to Λ̂ = 0 and when Λ̂ < 0 for all

x. (The remaining cases correspond to cases where Λ̂ is discontinuous, and jumps

downwards over the value 0.)

In the case with atoms in µ we cannot use Λ̂ directly since G−1 has jumps.

Instead, following the analysis in Section 4.2.1 we define Λ̄(u) = Λ(R(u), u, S(u)),

and look for solutions, if any, to Λ̄(·) = 0. We may still have the cases where Λ̄ < 0

for all u ∈ (0, 1) or where Λ̄(·) jumps over zero, but these cases can be dealt with

as in [61]. The new case is when the root u∗ of Λ̄ = 0 occurs in an interval (u, u]

over which G is constant. This means that there is an atom of µ at G(u∗). See

Figure 4.5. A model which maximises the price of the American put is the extended

left-curtain martingale coupling model, and the optimal stopping rule is to exercise

at time-1 whenever X1 < G(u) and to sometimes exercise when X1 = G(u). When

X1 = G(u) the optimal stopping rule is to exercise precisely when U ∈ (u, u∗]

and to wait if U ∈ (u∗, u]. Because R and S are monotonic over (u, u] paths with

low future variability are exercised at time-1 whereas on paths with high future

variability exercise is delayed to time-2.
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R(u) S(u)G(û)

R(u) S(u)

u u∗ u0 1

S

G

R

Figure 4.5: Finding the optimal hedge for general measures. The initial law µ has an

atom of size u− u. Moreover, the piecewise linear curve joining (R(u),K2 −R(u)),

(G(û),K1−G(û)) and (S(u), 0) is concave (where û is any element of (u, u]), whereas

the piecewise linear curve joining (R(u),K2−R(u)), (G(û),K1−G(û)) and (S(u), 0)

is convex. There exists u∗ ∈ (u, u] such that (R(u∗),K2−R(u∗)), (G(û),K1−G(û))

and (S(u∗), 0) all lie on a straight line. The figure describes the optimal coupling

(via (U, V ) and (4.2)) and the optimal exercise strategy for the American put is to

exercise at time-1 if U ≤ u∗.

4.3 Proofs

Proof of Lemma 4.1.8. We begin our study of the upper bound on Sn by considering

the case of a single starting measure µ and fixed target law ν. First we assume that

µ and ν are regular (no atoms and no intervals within the support with no mass),

before extending to the general case. Then we consider what happens when we

consider µn ↑cx µ.

Suppose µ and ν have no atoms and no intervals within the support with no

mass. Then Gµ is continuous and strictly increasing. Fix u ∈ (0, 1) and let `1 ≡ `u1
be the tangent to Pµ with slope u. See Figure 4.6. By construction this tangent
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meets Pµ at G = Gµ(u). Let H = H(u) be the point where the tangent crosses the

x-axis. Let `2 ≡ `u2 be the tangent to Pν with slope greater than u which passes

through (G,Pµ(G)); this tangent meets Pν at the x-coordinate J = J(u) = Jµ,ν(u).

We now show that S(u) ≤ J .

`γ3 r(γ)

G(u)

J(u)γ s

`u2

Pµ `5

`γ4

`u1

Pν

H

Figure 4.6: Construction of function J that bounds the upper function S on (0, 1).

Choose γ ∈ [H,G). Let `γ3 be the tangent to Pµ which passes through

(γ, `1(γ)) and has slope less than u. Suppose this tangent meets Pµ at r = r(γ); the

slope of the tangent is P ′µ(r). Let `γ4 be the tangent to Pν at r. Finally, let `γ5 be

the line passing through (γ, `r4(γ)) with slope u+ P ′ν(r)− P ′µ(r).

If there exists γ such that `γ5 is a tangent to Pν (meeting Pν at s say), then

(r,G, s) satisfy ∫ G

r
wiµ(dw) =

∫ s

r
wiν(dw) i = 0, 1 (4.14)

(and moreover γ =
∫ G
r wµ(dw)/

∫ G
r µ(dw) =

∫ s
r wν(dw)/

∫ s
r ν(dw) is the barycentre
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of the measures µ|(r,G) and ν|(r,s)).
For each u there may be multiple γ which lead to a triple (r,G, s) which

satisfies (4.14). We show that in each case s ≤ J . It follows that S(u) ≤ J .

Suppose `γ4(γ) ≤ `γ3(γ) = `1(γ). Then necessarily P ′ν(r) < P ′µ(r) and `γ5 lies

below `1 to the right of γ; in particular `γ5 stays below Pµ to the right of γ and cannot

be a tangent to Pν . Hence if (r,G, s) satisfies (4.14) we must have `γ4(γ) > `1(γ).

Then, if `γ5 is a tangent to Pν we must have that the point of tangency is below J .

In the above we used the regularity assumptions on µ and ν to conclude that

there was a unique tangent to P· ∈ {Pµ, Pν} at a given point, and that there was a

unique point at which P· had a given slope. If µ or ν is not regular then, for fixed

u, there may be multiple quintiles G, multiple points r and multiple tangents to

Pν at r. The point is that although there are multiple versions of the construction

in this case each candidate triple (r,G, s) satisfying (4.14) has s ≤ J where J is

defined using an arbitrary point G ∈ [Gµ(u), Gµ(u+)]. We define J− = J−(u) to

be the smallest x-coordinate at which the tangent to Pν with slope greater than

u passing through (G(u), Pµ(G(u))) meets Pν and J+ = J+(u) to be the largest

x-coordinate at which the tangent to Pν with slope greater than u passing through

(G(u+), Pµ(G(u)+)) meets Pν . We have S(u) ≤ J−(u) ≤ J+(u).

Finally, we want to show that if we approximate µ by µn (with µn ↑cx µ)

then the bound lim supSn ≤ J+ remains valid, where J+ is constructed from µ and

ν.

Define K(k) = argsupκ
Pν(κ)−Pµ(k)

κ−k . The notation argsup is used to indicate

that where there are multiple elements in the argsup we choose the largest one.

Then K is increasing and right continuous in k. Note that J+(u) = K(G(u+)). In

a similar fashion we can define Kn and Jn using Pµn in place of Pµ. (The target law

is assumed fixed throughout.) Since Pµn(k) ↑ Pµ(k) and K is right-continuous we

have Kn(k) ↓ K(k). Then, for ε > 0,

lim sup
n

Jn(u) = lim sup
n

Kn(Gn(u+)) ≤ lim sup
n

Kn(G(u+) + ε) ≤ K(G(u+) + ε).

Since ε is arbitrary and K is right continuous, lim supSn(u) ≤ lim supn Jn(u) ≤
J+(u).

Proof of Lemma 4.1.10. As for the proof of Lemma 4.1.8 we begin by considering a

single initial law µ, and supposing that µ and ν are regular.

Fix u ∈ (0, 1) and let `1 be the tangent to Pµ with slope u. Let H = H(u)

be the point where this tangent crosses the x-axis. Suppose that `1 is not a tangent
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to Pν . Then `1 must lie strictly below Pν . There exists ε = ε(u) > 0 such that the

line passing through (H, ε) with slope u+ ε lies below Pν . Now choose j = j(u) such

that the tangents to Pµ and Pν at j both have slope less than ε and both cross the

line y = x below ε. Then R(u) ≥ j.
To see this let γ be the x-coordinate of the point where the tangent to Pµ

at j crosses `1. Then if `4 is the tangent to Pν at j then `4(γ) < ε; if `5 is the line

passing through (γ, `4(γ)) with slope u+P ′ν(j)−P ′µ(j) < u+ ε, then by our defining

assumption on ε, `5 lies below Pν . Hence R(u) > j.

We can extend the result to irregular measures, and to lim inf Rn(u) by sim-

ilar techniques as for S. The only extra issue that arises is our assumption that `1

is not a tangent to Pν . But, if for each n, `1 is a tangent to Pν , then the same is

certainly true in the limit. Then there must exist x such that `1(x) = Pµ(x) = Pν(x)

and then S(u) ≤ x ≤ G(u+). This case is excluded by hypothesis.
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Séminaire de probabilités XIII, vol. 721 of Lecture Notes in Mathematics, 90–

115, Springer, Berlin, (1979).

[6] Bayraktar E., Huang Y. J., Zhou Z.: On hedging American options un-

der model uncertainty. SIAM Journal on Financial Mathematics, 6(1):425–447,

(2015).
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Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 52(4):1823–

1843, (2016).

[68] Kallenberg O. Foundations of modern probability. Springer Science & Busi-

ness Media, (2006).

[69] Kantorovich L. V.: On the translocation of masses. In Doklady Akademii

Nauk SSSR, 37(7-8):227–229, (1942).

[70] Karatzas I., Shreve S. E.: Brownian Motion and Stochastic Calculus. New

York: Springer, (1998).

[71] Karatzas I., Shreve S. E.: Methods of mathematical finance. Vol 39, New

York: Springer, (1998).

[72] Kobylanski M., Quenez M.-C.:, Optimal stopping time problem in a general

framework. Electronic Journal of Probability, 17(72):1–28, (2012).

[73] Kolodko A., Schoenmakers J. Upper bounds for Bermudan style deriva-

tives. Monte Carlo Methods and Applications, 10(3-4):331–343, (2004).

[74] Komlós J. A generalization of a problem of Steinhaus. Acta Mathematica

Hungarica, 18(1-2):217–229, (1967).

114



[75] Krylov N. V.: Controlled diffusion processes. Vol. 14, Springer Science &

Business Media, (2008).

[76] Krylov, N.V.: On the relation between differential operators of second or-

der and the solutions of differential equations. Steklov Seminar 1984, Ed N.V.

Krylov et al., Inc. Publications Division, New York, 214–229, (1985).

[77] Lindley D.: Dynamic programming and decision theory. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 10(1): 39–51, (1961).

[78] McKean H. P.: A free boundary problem for the heat equation arising from a

problem of mathematical economics. Industrial Management Review, 6:32–39,

(1965).

[79] Maingueneau M. A.: Temps d’arrêt optimaux et théorie générale. In
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l’Académie royale des sciences de Paris, (1781).

[83] Neuberger A.: Bounds on the American option. Available online at:

SSRN:966333, (2007).

[84] Nutz M., Stebegg F.: Canonical supermartingale couplings. The Annals of

Probability, 46(6):3351–3398, (2018).

[85] Nutz M., Stebegg F., Tan X.: Multiperiod martingale transport.

Stochastic Processes and their Applications (in press), available online at:

https://doi.org/10.1016/j.spa.2019.05.010, (2019).

[86] Peskir G.: Principle of smooth fit and diffusions with angles. Stochastics An

International Journal of Probability and Stochastic Processes, 79(3-4):293–302,

(2007).

[87] Peskir G.: A duality principle for the Legendre transform. Journal of Convex

Analysis, 19(3):609–630, (2012).

115



[88] Peskir G., Shiryaev A. N.: Sequential testing problems for Poisson pro-

cesses. The Annals of Statistics, 28(3):837–859, (2000).

[89] Peskir G., Shiryaev A. N.: Solving the Poisson disorder problem. Advances

in Finance and Stochastics. Essays in Honour of Dieter Sondermann, 295–312,

Springer, Berlin, (2002).

[90] Peskir G., Shiryaev A. N.: Optimal stopping and free-boundary problems.

Birkhäuser, Basel, (2006).

[91] Prokhorov, Y. V.: Convergence of random processes and limit theorems

in probability theory. Theory of Probability & Its Applications, 1(2):157–214,

(1956).

[92] Protter P. E.: Stochastic integration and differential equations. Springer,

(2005).
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