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Rayleigh Random Flights on the Poisson line SIRSN
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Abstract

We study scale-invariant Rayleigh Random Flights (“RRF”) in random environments
given by planar Scale-Invariant Random Spatial Networks (“SIRSN”) based on speed-
marked Poisson line processes. A natural one-parameter family of such RRF (with
scale-invariant dynamics) can be viewed as producing “randomly-broken local geo-
desics” on the SIRSN; we aim to shed some light on a conjecture that a (non-broken)
geodesic on such a SIRSN will never come to a complete stop en route. (If true, then
all such geodesics can be represented as doubly-infinite sequences of sequentially con-
nected line segments. This would justify a natural procedure for computing geodesics.)
The family of these RRF (“SIRSN-RRF”), is introduced via a novel axiomatic theory of
abstract scattering representations for Markov chains (itself of independent interest).
Palm conditioning (specifically the Mecke-Slivnyak theorem for Palm probabilities
of Poisson point processes) and ideas from the ergodic theory of random walks in
random environments are used to show that at a critical value of the parameter the
speed of the scale-invariant SIRSN-RRF neither diverges to infinity nor tends to zero,
thus supporting the conjecture.
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1 Introduction

Aldous and Ganesan (2013) and Aldous (2014) introduced the notion of Scale-
Invariant Random Spatial Networks (SIRSN), motivated by the now ubiquitous nav-
igational tool of online maps (Google Maps, Bing Maps, OpenStreetMap). Informal
experiments suggest that at normal scales the route-finding algorithms of these map
tools exhibit scale-invariance (Aldous, 2014, Section 1.5), and the notion of a SIRSN was
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Rayleigh Random Flights on SIRSN

introduced to model this behaviour. A SIRSN is a random mechanism that generates
networks built out of almost surely unique random routes between specified locations, re-
quired both to deliver scale-invariant statistics and to ensure considerable route-sharing
between different routes.

Of course it is easy to produce random networks with translation- and isotropy-
invariant statistics: the challenge is to find route-finding models which are also statisti-
cally invariant under change of scale.

In particular Aldous and Ganesan (2013) and Aldous (2014) introduced an elegant
construction based on speed-marked Poisson lines (actually related to the “random
pattern of streets” described by Mandelbrot, 1977, Plate 105). Significant mathematical
effort (Kendall, 2017; Kahn, 2016) delivered rigorous proof that this led to a random
map, the geodesics of which did indeed provide a model for the SIRSN mechanism.
However one issue is still unresolved: can the geodesics of this map always be expressed
as sequentially connected doubly-infinite lists of segments from the Poisson lines?
Colloquially this can be expressed as the conjecture that geodesics on such a SIRSN will
never come to a complete stop en route. If this conjecture is true, then it justifies the
natural approximation of geodesics using finite-line approximations to the SIRSN.

Motivated by these considerations, this paper characterizes and describes a natural
one-parameter family of random flight processes on the SIRSN. Such a process may be
viewed as producing “randomly-broken local geodesics”. We show that there is a critical
value of the parameter at which the speed of the random process is neighbourhood-
recurrent, amounting to evidence in favour of the conjecture.

To fix ideas and notation, we summarize the definition of a general SIRSN mechanism
(Aldous, 2014):

Definition 1.1. A SIRSN (based on a given probability space (Ω,F ,P)) is a random
mechanism that takes as input a set of nodes x1, . . . , xn in Rd, and outputs a (ran-
dom) network N (x1, . . . , xn) = Nω(x1, . . . , xn) composed of continuous paths or routes
R(xi, xj) = Rω(xi, xj) connecting all pairs of distinct nodes xi and xj . (The explicit
dependence on ω ∈ Ω will typically be suppressed in the following). The connecting
route Rω(x, y) between two specified endpoints x and y must be uniquely determined
for almost all ω ∈ Ω. In addition the following axioms must be satisfied:

1.1.1 Similarity-invariant statistics: For each Euclidean similarity S (translation, rotation
and scaling dilation), the networks N (Sx1, . . . , Sxn) and SN (x1, . . . , xn) have the
same statistical law.

1.1.2 Finite mean length: LetD1 = len(R(x, y)) be the length of the routeR(x, y) between
two nodes x and y separated by unit distance. It is required that the mean E [D1]

of this length be finite.

1.1.3 The (Strong) SIRSN property: Suppose that (Ω,F ,P) supports independent unit
intensity Poisson processes Ξ1, Ξ2, . . . which are also independent of the SIRSN.
Consider the extended network connecting all points of the dense Poisson point
process Ξ̃ =

⋃
{Ξ1,Ξ2, . . .}. Restrict attention to the “long-range” part of the

network, containing those portions of connecting paths which are more than
distance 1 from source or destination, with union given by

⋃
{R(x, y) \ (ball(x, 1) ∪

ball(y, 1)) : x, y ∈ Ξ̃}. Viewing this part of the network as a fibre process (Chiu,
Stoyan, Kendall, and Mecke, 2013, Chapter 8), it is required that this “long-range”
fibre process should have finite length fraction ρ, which is to say, finite mean length
per unit area / volume / hyper-volume. (Aldous uses the term “edge-intensity” for
the length fraction ρ).
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Rayleigh Random Flights on SIRSN

Remark 1.2. Note that Aldous defines SIRSN only in the planar case of d = 2. Despite
the complete absence of intersections between Poisson lines in spaces of dimension 3

or higher, SIRSN based on Poisson line processes in higher dimensions do in fact exist
(Kendall, 2017; Kahn, 2016). Nevertheless, this paper focusses on the case d = 2; our
questions (in particular the conjecture concerning Π-geodesics discussed below) have
trivially negative answers for SIRSN based on Poisson line processes in dimensions
d ≥ 3.

Remark 1.3. The notion of a “dense” Poisson point process Ξ̃ needs careful measure-
theoretic interpretation (Aldous and Barlow, 1981; Kendall, 2000): it is used here
as a convenient short-hand to refer to the union of a countable infinite ensemble of
independent unit-intensity Poisson point processes Ξ1, Ξ2, . . . .

Remark 1.4. The assertion that Ξ1, Ξ2, . . . are independent of the SIRSN should be
interpreted as saying that they are independent of the σ-algebra σ{N (x1, . . . , xn) :

x1, . . . , xn ∈ Rd, n = 2, 3, . . .}, viewing the networks N (x1, . . . , xn) as random closed sets
(the theory of random closed sets is covered for example in Chiu et al., 2013, Chapter 6).

Remark 1.5. Axioms 1.1.1, 1.1.2, 1.1.3 have strong implications. For example:

(a) The network obtained by using straight lines for routes (thus non-random) cannot be
a SIRSN; almost all pairs of distinct routes have intersections which are singletons
or empty, and if the network is used to connect the points of the Poisson point
process Ξ then almost surely any distant point would then be connected to some
other distant point of Ξ by a straight line passing within 1/2 of the origin o and
hence contributing length at least a positive amount (

√
3 = 2

√
(1−1/4) in dimension

d = 2) within unit distance of o. As a consequence, the intersection of the “long-
range” fibre process with any bounded open set will almost surely have infinite
total length, violating Axiom 1.1.3 and indeed its weaker variants 1.1.3′ and 1.1.3′′

discussed below.

(b) Axiom 1.1.2 excludes networks generated by means of coupled Brownian bridges.

(c) The route R(x, y) is almost surely uniquely determined by its endpoints x and y.
Nevertheless this uniqueness need not (and typically does not) hold simultaneously
for all possible inputs.

(d) A related notion of a weak SIRSN replaces Axiom 1.1.3 by:

1.1.3′ The Weak SIRSN property: The infinite network N (Ξ) =
⋃
{R(x, y) : x, y ∈ Ξ},

(which connects all points of an independent unit intensity Poisson point
process Ξ) should have finite mean length per unit area / volume / hyper-
volume.

Of course Axiom 1.1.3 implies Axiom 1.1.3′.

(e) A still weaker notion is that of a pre-SIRSN, further weakening Axiom 1.1.3′:

1.1.3′′ The pre-SIRSN property (Kendall, 2017): The infinite network N (Ξ) =⋃
{R(x, y) : x, y ∈ Ξ}, connecting all points of an independent unit inten-

sity Poisson point process Ξ, should have locally-finite random length measure
(the mean length measure need not be locally finite).

Similarly Axiom 1.1.3′ implies Axiom 1.1.3′′.

A priori the axioms in Definition 1.1 might be mutually exclusive, in which case no
SIRSN could exist. Aldous (2014) proposed and rigorously justified a concrete example of
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a (planar) SIRSN, namely the “binary hierarchy”. The routes of the networkN (x1, . . . , xn)

are constructed as fastest paths lying in a dyadic cartesian network marked by varying
speeds. The statistics of this network are neither stationary, isotropic, nor scale-invariant;
however all these difficulties are removed by suitable randomization.

Aldous (2014) also proposed a possible SIRSN based on a speed-marked improper
planar Poisson line process Π, in which the individual routes composing the network
N (x1, . . . , xn) are fastest paths using Π (we call these paths Π-geodesics). This mech-
anism is determined by choice of a parameter γ > 2: each line of Π is marked by a
positive speed-limit v ≥ 0, and Π is defined using a marked planar Poisson line process
with intensity measure ν given in two equivalent forms by

ν( dv dr dθ) = γ−1
2 v−γ dv dr dθ , (1.1)

= γ−1
2 v−γ sinφ dv dsdφ . (1.2)

The first form (1.1) is based on parametrization of an (unsensed) line L using coordinates
r ∈ R and θ ∈ [0, π): here r is the signed distance of L from a reference point often taken
to be the origin o, and θ is the angle made by L with a reference line often taken to be
the x-axis. The second and equivalent form (1.2) is based on a parametrization which
replaces r by the signed distance s along the reference line to the intersection with L;
the angle φ made by L with the reference line now has to be sine-weighted. We will use
both kinds of parametrization below, signalled by reference to (1.1) or (1.2).

It is convenient to write v(L) for the speed of a line L ∈ Π.
Note that γ > 1 is required if all lines L of speed v(L) ≥ v0 > 0 taken from such a

speed-marked Poisson line process are to form a proper (non-speed-marked) Poisson
line process Π≥v0 of finite intensity. The factor γ−1

2 in (1.1) is a convenient normalization,
chosen so that Π≥1 (without speed-marks) forms a unit intensity Poisson line process.
Routes of the SIRSN are fastest-possible Lipschitz paths whose almost-everywhere-
defined velocities integrate the highly singular orientation field provided by Π and obey
the speed limits given by the speed-marks v. If γ > 2 then Π can be used to define a
random metric space on R2: the random metric is given by the time spent travelling
from one point to another by the fastest route; and this is indeed a SIRSN (proof is a
combination of Kendall, 2017 and Kahn, 2016).

The Poisson line process model for a SIRSN has the advantage of being intrinsically
stationary and isotropic, with no need for extra randomization; this follows because the
intensity measure (1.1) is invariant under Euclidean isometries of the underlying plane
R2. Moreover the scaling transformation

r 7→ a r , (1.3)

v 7→ a
1

γ−1 v ,

also leaves both (1.1) and the equivalent (1.2) invariant. Consequently the distribution
of the Poisson line SIRSN is invariant under scaling if the speed marks are adjusted as
indicated in (1.3).

As noted above, the following conjecture on Poisson line SIRSN remains open.

Conjecture 1.6. Given a SIRSN generated by a planar Poisson line process Π, consider
a Π-geodesic providing the fastest route between two specified points. It is conjectured
that such a Π-geodesic never comes to a complete halt strictly between its start and its
destination.

This unresolved conjecture is related to various observations in Aldous (2014) concern-
ing singly and doubly infinite geodesics in general planar SIRSN: however it emphasizes
the behaviour of the Π-geodesic along its entire length rather than at its start- and
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end-points. In complete contrast, note that in dimension d ≥ 3 all non-trivial paths would
have to halt en route a great deal, since paths in dimension d ≥ 3 can change from one
line to another only by using infinitely iterated infinite cascades of intervening lines.

It is fairly straightforward to use the methods of Kendall (2017, Section 4) to show that
a straight-line positive-speed internal portion of a Π-geodesic in dimension d = 2 must
connect directly to two other straight-line portions. However in principle it might still be
possible (albeit implausible) for a Π-geodesic to contain a point which lies at the start
and finish of two successive infinite sequences of sequentially connected straight-line
portions whose speeds decay to zero near that point.

One consequence of an affirmative answer to Conjecture 1.6 would be that all Π-
geodesics correspond to doubly-infinite lists of sequentially connected segments of lines
from Π. Furthermore Π-geodesics between two points x and y lying on Π would be
contained in the locally finite network of lines of Π of speed exceeding any small enough
v > 0; highly relevant when simulating Π-geodesics.

We seek insight concerning Conjecture 1.6 by investigating an associated question
of intrinsic interest: namely whether one can build a natural scale-invariant random
process on Π which can be viewed as a “randomly-broken local Π-geodesic”, and yet
which is speed-neighbourhood-recurrent (that is to say, neighbourhood recurrence holds
for the process given by the speed of the random process; so that this speed neither tends
to zero nor drifts off to infinity, but returns at arbitrarily large times to a neighbourhood
of the original speed). Failure to construct a natural random process of this form would
reasonably count as evidence against the conjecture.

The study of random processes on SIRSN is also prompted by the widespread study
of natural random processes on a random structure (compare for example the study
of Liouville diffusions for Brownian maps and associated structures: Berestycki, 2015;
Garban, Rhodes, and Vargas, 2016). Such random processes can be used to express a
natural geometry for the structure. For example, in a different context, the Riemannian
geometry expressed by a diffusion has been used to describe those smooth elliptic
diffusions which admit Markovian maximal couplings (Banerjee and Kendall, 2017).

There are various options for defining random processes on a planar Poisson line
SIRSN Π:

1: a conventional random walk on the plane, independent of the SIRSN, and connect
successive random walk locations by Π-geodesic interpolation. However this
construction is only weakly linked to the SIRSN structure of Π, and yields a random
process for which speeds are trivially always revisiting zero, since almost surely
each random walk location would miss all the lines of Π;

2: construction of Brownian motion on the line structure of Π, using a generalization
of Walsh or “spider” Brownian motion (Barlow, Pitman, and Yor, 1989) to describe
the way in which the Brownian motion switches between lines of different speeds.
However such constructions are not easily related to the speed structure of Π,
except indirectly by relating Brownian diffusion rate to Π speed marks.

3: we choose instead to adapt the notion of a Rayleigh Random Flight (RRF: in-
troduced in Pearson, 1905, and associated correspondence). Implementation is
scale-invariant using the following inductive construction: proceed at top speed
along a chosen line, switch to intersecting lines in a manner controlled by relative
speeds, (requiring switches to faster lines always to occur), and choose the new
direction of movement equiprobably from the two directions along the new line.

The RRF construction is a planar version of the one-dimensional scattering processes
studied by Kendall (1987), in which coupling is used to prove limits of Brownian type for
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an inhomogeneous random scattering process on the line. Such scattering processes
also arise naturally in statistical mechanics (see for example McKean, 2014, chapter 11).
In the SIRSN context, interest lies in whether it is possible to choose parameters for a
scale-invariant RRF on a Poisson line SIRSN (essentially, to determine the probability
of switching when encountering an intersection) such that the speed of movement of
the RRF particle forms a neighbourhood-recurrent random process, neither diverging to
infinite speed nor converging to zero speed. The resulting SIRSN-RRF can be viewed
as a “randomly-broken local Π-geodesic”, so if neighbourhood-recurrence of speed can
be obtained by a natural choice of parameters then this supports the conjecture that
Π-geodesics do not halt en route.

We ease the task of describing constructions of such SIRSN-RRF by assuming that
each line of the SIRSN is additionally furnished with a random choice of direction.

The current section has explained the rationale and the mathematical content of
the notion of a SIRSN, and has motivated the study of SIRSN-RRF by relating the
possibility of speed-neighborhood recurrence of SIRSN-RRF to the question of whether
SIRSN Π-geodesics can contain interior points at which they come to a complete stop.
Section 2 then introduces concepts which are helpful in analysing RRF on SIRSN, for
which possible switching points form countable dense subsets on each line of the SIRSN.
The complexity of this situation is usefully addressed by taking an axiomatic approach.
We consider an abstract scattering representation (Definition 2.1); namely an algebraic
representation of non-lazy discrete-state-space Markov chains (chains that have no
chance of not moving) in terms of transmission probabilities (intuitively, the probability
of arriving at a state but not necessarily stopping and changing direction there) and
scattering probabilities (intuitively the probability of stopping and changing direction
at a state given that the process arrives there). In the context of a Poisson line SIRSN
Π, the states of the chain are ordered distinct pairs of lines, corresponding to points at
which the RRF switches from one line to another; so the state-space can be written as
(Π×Π) \∆ where ∆ is the diagonal of Π×Π.

All non-lazy Markov chains admit abstract scattering representations: the presence
of an involution a 7→ ã of the state-space (corresponding to reversal of direction of travel
in our application) permits the state-space to be broken up into scattering classes E
(eventually corresponding to the lines of Π), and a suitably compatible total ordering for
each scattering class (see Definition 2.6; in the RRF case, a selection for each line of
one of the two possible linear orderings) then permits the transition probabilities to be
expressed purely in terms of the scattering probabilities and probabilities ωa,± of initial
binary choices of direction within the relevant scattering class (see Theorem 2.8; and
note that it is at this stage that it pays to assume preferred directions for the lines of
Π). If furthermore the involution leads to dynamical detailed balance with respect to
a given invariant measure π on Π (Definition 2.13) and the scattering representation
is unbiased, in the sense given in that definition, that then the scattering probabilities
themselves, and π, are necessarily defined in terms of ratios of prescribed functions κ(E)

of equivalence classes (Theorem 2.23). This leads to a highly desirable conclusion: the
stochastic dynamics of a dynamically reversible RRF on a SIRSN Π can be defined using
prescribed a scattering class function κ(E) (where each E is actually a line L of Π).

Section 3 continues the story by taking account of the similarity symmetries of the
SIRSN Π controlled by intensity measure γ−1

2 v−γ dv dr dθ. A dynamically reversible
RRF on Π is said to have similarity-equivariant dynamics if scattering probabilities and
ratios of evaluations of π (considered as functions of Π) are similarity-invariant, while π
itself is Euclidean-invariant. Palm distribution theory (specifically the Slivnyak-Mecke
Theorem 3.4) and ergodicity of Π (Theorem 3.5) can now be used to argue that ratios of
κ(L) must equal the α-th power of ratios of speeds v(L), for a fixed positive exponent
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α (Theorem 3.6). If line-changes are given by a recipe of Metropolis-Hastings form
then Theorem 3.6 shows that scattering probabilities and π are determined entirely by
line-speeds and the exponent α: moreover α > γ − 1 is required if scattering is to be
non-degenerate (i.e: is not to happen immediately after time 0).

We thus obtain a natural definition of a SIRSN-RRF on the SIRSN Π, parametrized by
the exponent α (Definition 3.7); moreover this SIRSN-RRF is then an irreducible Markov
chain on the state-space of ordered intersections (Π×Π) \∆ when conditioned on Π

(Lemma 3.10).
Section 4 considers the Markov chain given by the relative environment of the SIRSN-

RRF, which is to say, the environment viewed from the RRF after using the group of
similarities to transform the RRF state to be the intersection of a unit-speed line along
the x-axis (corresponding to the current line of travel) and a further variable-speed
line (corresponding to the previous line of travel) intersecting the x-axis at the origin
o. Working with Dirichlet forms related to the dynamically reversible SIRSN-RRF, and
using the Slivnyak-Mecke Theorem 3.4, we establish that the Markov chain given by the
relative environment has stationary probability distribution given (Theorem 4.3) by the
independent superposition of a unit-speed line along the x-axis with a line through o of

(a) a random log-speed given by a possibly asymmetric Laplace density;

(b) and a random angle φwith the unit-speed line (with φ having sine-weighted density);

(c) together with a copy of Π.

The density of the log-speed is symmetric exactly at the critical value α = 2(γ − 1). The
non-ergodic part of Birkhoff’s ergodic theorem now allows us to rule out non-critical
SIRSN-RRF, as in these cases the average log-relative speed has positive chance of
converging to a non-zero limit, and thus the log-speed must have positive chance of
never returning to any bounded interval around the initial log-speed.

Section 5 uses all this to show that the critical SIRSN-RRF is speed-neighbourhood-
recurrent. This is done by establishing that the Markov chain given by the relative
environment of the SIRSN-RRF, when started according to the stationary probability
distribution, is in fact ergodic. This follows from Theorem 5.2, a variation on an argument
of Kozlov (1985), using the ergodicity of Π (note that the argument works for all α > γ−1).
The main result of this paper, the neighborhood-recurrence of the log-speed process
in the critical case (Theorem 5.3) now follows from Theorem 5.1, an adaptation of the
classic Kesten-Spitzer-Whitman range theorem to the case of continuous one-dimensional
state-space.

The concluding Section 6 discusses related results and possibilities for future work.

2 Rayleigh random flights (RRF) and abstract scattering

The first task is to define a suitable family of Rayleigh random flight processes on Π

with scale-invariant dynamics; a principal criterion for suitability is that the resulting
process should be amenable to calculation. Moreover it is appropriate for the process to
be able to change direction whenever encountering any one of the dense countable set
of line-intersections along a given Poisson line. It is useful to control the complexity of
this set-up by adopting an abstract approach based on general scattering processes. An
additional merit of this approach is that it permits isolation of a particular one-parameter
family of discrete-time Rayleigh random flight processes (RRF) on Π which can be
naturally described as SIRSN-RRF.

We motivate the definition of abstract scattering by first making a few remarks about
possible (continuous-time) RRF on Poisson line SIRSN. Let Π be an improper speed-
marked planar Poisson line process, with intensity measure given by Equation (1.1)
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above. Our primary interest is in the SIRSN case γ > 2, although our results extend to
the borderline SIRSN candidate (but non-SIRSN) case γ = 2. Note that, in case γ = 2,
Π still possesses Euclidean- and scaling-invariance, even though it no longer possesses
the SIRSN property. A reasonable if informal definition of a (continuous-time) Rayleigh
random flight X on Π runs as follows: it is a continuous-time process living on the set
which is the (countable) union of the lines of Π (this random dense Fσ Lebesgue null-set
is called the silhouette in Kendall, 2017: it can be understood as the countable union of
the random closed sets formed by lines of speed exceeding 1/m for m = 1, 2, . . .). The
continuous-time Rayleigh random flight process travels along the lines of Π, moving
at the maximum speed permitted by the relevant speed-limits on Π, with changes of
direction (switching onto different lines) occurring at a carefully defined sequence of
random Markov times 0 < τ1 < τ2 < . . . which will be made up of some (but by no
means all) encounters with intersections of lines of Π. We will consider only cases
in which the resulting sequence of random times will in fact be almost surely locally
finite up to a possibly infinite “explosion time” which is the accumulation point of the
times of direction-change. In fact if γ ≥ 2 then the explosion time almost surely cannot
correspond to the path becoming unbounded in finite time. This is because (in the
terminology of Kendall, 2017) the path of the RRF is a Π-path, namely a locally Lipschitz
path on Π with top speed almost always locally bounded above by relevant speed marks.
When γ ≥ 2 a comparison argument (Kendall, 2017, Theorem 2.6) bounds distances
travelled by Π-paths begun in a specified compact set and travelling for specified time
T < ∞. Note that the case γ < 2 is not convenient for our purposes; the results of
Kendall (2017) then imply that it is possible for locally Lipschitz Π-paths to obey the Π

speed limits and yet to diverge to infinity in finite time, resulting in sterile questions
about failure of stochastic completeness.

As noted above, we facilitate discussion of the direction of travel along lines of Π, by
making arbitrary choices of sense of direction to endow all the lines of Π with preferred
directions.

The resulting continuous-time RRF X will be piecewise-linear, and so its paths can
be required to be càdlàg and right-differentiable. Let Y denote the right-hand time-
derivative of X:

Y (t) = lim
s↓0

X(t+ s)−X(t)

s
.

In particular, the speed |Y | of X is the maximum permitted on the current line, which is
to say that it is determined by the speed-mark of the current line:

|Y (t)| = v(L) for L = X(t) + Y (t) ·R ,

where L = X(t) +Y (t) ·R is always a line of Π when Y (t) 6= 0, and v(L) is the speed-limit
of L.

It is convenient to consider the augmented process

((X(t) + Y (t) ·R, |Y (t)|, X(t) + Y (t−) ·R, |Y (t−)|) : t ≥ 0)

recording both the current unsensed line of travel X(t) + Y (t) · R and the previous
unsensed lineX(t)+Y (t−)·R as well as the corresponding absolute speeds |Y (t)|, |Y (t−)|.
It is convenient to omit the actual sense or signed direction of travel; this augmented
process is Markov conditional on Π even given the augmentation by |Y (t)| and the
further augmentation by |Y (t−)| (which will facilitate later discussion of dynamical
detailed balance), this is because knowledge of |Y (t)| and |Y (t−)| can be obtained from
knowledge of the speed-marks of the corresponding lines of Π. We derive a discrete-time
RRF by sampling the augmented process at the times τn when it switches from one
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line to another. This (discrete-time) RRF is the main subject of study for this paper.
Letting L−(τn) be the previous line of travel and letting L0(τn) be the current line of
travel, we know that X(τn) is the unique point in the intersection L−(τn) ∩ L0(τn). This
corresponds to obtaining the RRF by sampling the continuous-time Rayleigh random
flight process at the instants of scattering and just before the choices of direction
of travel on the new line; we may then consider the RRF as the sampled process as
Z = (Zn = (L−(τn),L0(τn)) : n ≥ 1) with state-space

(Π×Π) \∆ = {(L−,L0) : L−,L0 ∈ Π, L− 6= L0} , (2.1)

given by ordered pairs of (speed-marked) lines L−,L0 ∈ Π, removing the diagonal set
∆ = {(L,L) : L ∈ Π} so that L−,L0 must be distinct. We repeat for emphasis that Z
is a Markov chain when quenched, which is to say, when conditioned on the random
environment given by Π.

The process (Zn : n ≥ 1) is a particular instance of a generalized scattering process. It
can be viewed as moving from the intersection L− ∩L0 along L0 past further intersections
until it chooses to stop (is scattered) at a new intersection L0 ∩L+, where it will switch
to the new line L+ and continue. This is a planar variation of the scattering processes
discussed for example in Kendall (1987). We rise above confusing detail about SIRSNs
by introducing a novel algebraic representation of general scattering for discrete state-
space Markov chains, always keeping in mind the motivating example of RRF on a
Poisson line SIRSN. A further benefit of this abstract approach is that it will later allow
us to characterize a natural one-parameter family of RRFs respecting the symmetries of
the SIRSN Π.

Definition 2.1. Consider a non-lazy discrete-time countable state-space Markov chain
Z, (non-lazy, so the transition probability matrix has zeroes on the main diagonal). An
abstract scattering representation for Z expresses the one-step transition probabilities
pa,b of Z in product form

pa,b = ωa,bsb for all states a, b ,

for prescribed sa ∈ (0, 1] and ωa,b ∈ [0, 1], where the transmission probabilities ωa,b form
a matrix with zeroes on the diagonal and the scattering probabilities sa are all positive.

Remark 2.2. Because of the positivity requirement sa > 0, it follows that pa,b > 0 if and
only if ωa,b > 0. Since the matrix (ωa,b) vanishes on the diagonal, the same must be true
of all such matrices (pa,b).

The content of this definition is algebraic rather than probabilistic. In particular
the system of scattering and transmission probabilities is not uniquely defined by the
resulting Markov kernel (note that the choice of transmission probabilities ωa,b = pa,b
and scattering probabilities sa = 1 for all states a and b always determines an abstract
scattering representation, since all pa,a are required to vanish!) and the ωa,b and
sa are described as “probabilities” only because all are required to lie in the unit
interval [0, 1]. Indeed the system of scattering and transmission probabilities need
not necessarily reflect a specific stochastic mechanism of transmission and reflection
(though this will eventually be the case for our particular example). In this sense a
general abstract scattering representation is purely formal. Interesting examples arise
by combining scattering probabilities with transmission according to a fixed stochastic
dynamical system: in our case the very simple system of constant-speed movement in
fixed directions. The resulting axiomatic approach may offer useful perspectives on
questions of statistical survival analysis (see for example Andersen, Borgan, Gill, and
Keiding, 1993). Scattering processes based on deterministic movement also arise in the
ZigZag sampler in Markov chain Monte Carlo theory (described for example by Bierkens,
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Fearnhead, and Roberts, 2019; see also the notion of piecewise-deterministic Markov
processes introduced by Davis, 1984).

In the context of possible RRF on a SIRSN or SIRSN candidate, as noted above, the
relevant state space is the set of ordered pairs of distinct lines (L−,L0) (for L−,L0 ∈ Π),
corresponding to pre- and post-scattering lines. The quantity ωa,b can be interpreted as
the probability of getting at least as far as b = (L0,L+) along a line L0 from a = (L−,L0),
while sb measures the probability of the process being scattered from the current line
L0 onto the new line L+.

Remark 2.3. As an aside, we indicate a partial answer to an interesting foundational
question: which matrices of probabilities (ωa,b : states a, b) (with zeroes down the
diagonal) can serve as the matrix of transmission probabilities for an abstract scattering
representation of some Markov chain? Consider the vectors w(a) given by w(a)

b = ωa,b.
Suppose these all lie in the Banach space `1(S), so ‖w(a)‖1 =

∑
b ωa,b <∞ for all states a.

Let C be the `1-closure of the convex hull of the vectors te(a), where the e(a) are canonical
basis vectors of `1(S) and −∞ < t < 1. Then an application of the Hahn-Banach theorem
shows that the matrix (ωa,b : states a, b) (with non-negative entries, and zeroes down
the diagonal) can serve as part of an abstract scattering representation of some Markov
chain exactly when the `1-closure of the affine span of the w(a) (for all states a) does not
intersect the interior of the set C. (However `1-summability of rows w(a) of the matrix
(ωa,b) will not hold in the case of our motivating example.)

Consider a Markov chain admitting a scattering representation, such that its state-
space admits an involution a 7→ ã (with no fixed points). Suppose further (to simplify
future exposition) that pa,ã = 0 for all states a. Then the state-space can be partitioned
into equivalence classes as follows.

Definition 2.4. Consider a general abstract scattering representation of a Markov chain.
Suppose a 7→ ã is an involution on the state-space with no fixed points and such that
pa,ã = 0 for all states a. Then the state-space supports an equivalence relation a ∼ b

which is obtained by saturating the relation a! b, holding if either ωa,̃b > 0 or ωb,ã > 0.

Equivalence classes E , E ′ (which we will refer to as scattering classes) are said to be
connected when there exists a finite connecting chain of equivalence classes E = E1,
E2, . . . , Ek = E ′ and states ak ∈ Ek in these classes such that ãk ∈ Ek+1 for k = 1, . . . , k−1.

In the case of RRFs on Π, the relevant involution is given by transposition of lines: if
a = (L−,L0) then ã = (L0,L−). Subject to regularity conditions, scattering classes will
then correspond to the lines of Π; the scattering class E(L) corresponding to line L is
given by the set of all states (L−,L) from which the scattering process moves off along
line L;

E(L) = {(L−,L) : L− ∈ Π \ {L}} . (2.2)

Note moreover that, in the Rayleigh Random Flight application, a state a equivalent
to its involution ã would correspond to a “reverse scatterer”, which would be able to
reverse the direction of travel of the RRF. These are not present in the simple version
studied here, but correspond to the one-dimensional symmetric scatterers considered by
Kendall (1987). Their introduction might lead to “Brownian-like limits” for RRF on Π, but
we do not pursue this here. In particular we would then need to adjust this exposition
and definitions to account well for instances when pa,ã could be positive.

Remark 2.5. In general ωa,̃b > 0, ωb,c̃ > 0 need not imply ωa,c̃ > 0. If a ∼ c then either
a = c or there is a finite sequence of states a = b0, b1, . . . bn−1, bn = c such that, for each
successive pair of indices bi and bi+1, either ωbi ,̃bi+1

> 0 or ωbi+1 ,̃bi
> 0.

Given an abstract scattering representation and involution, if the scattering classes
can be furnished with total orderings which are compatible with the scattering represen-
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tation then then we can obtain an attractively simple representation of the transmission
probabilities (see Theorem 2.8 below).

Definition 2.6. A delineated scattering process is a Markov chain which admits an
abstract scattering representation together with an involution a 7→ ã, and satisfying the
following compatibility property: each scattering class E possesses a total ordering ≺
such that the following holds: if a ≺ b ≺ c in E then ωb,ã + ωb,c̃ ≤ 1 and moreover

ωa,c̃ ≤ ωa,̃b
(
1− sb̃

)
if a ≺ b ≺ c or c ≺ b ≺ a , (2.3)

If it is required to emphasize the rôles of the involution a 7→ ã and the family of scat-
tering classes E = {E : E a scattering class} then we speak of an (a 7→ ã,E)-delineated
scattering process.

Inequality (2.3) implies that ωa,̃b is weakly increasing in b if b ranges over the scatter-
ing class of a and b ≺ a, and weakly decreasing in b if b ranges over the scattering class
of a and a ≺ b. The requirement ωa,̃b + ωa,c̃ ≤ 1 if b ≺ a ≺ c is suggestive of a scattering
mechanism that chooses the direction of travel on E at random once it is scattered at
a ∈ E .

Remark 2.7. Definition 2.6 could be expressed in terms of separation rather than
ordering: however the use of orderings permits easier notation.

In the case of RRF on Π, the required total ordering on a scattering class is obtained
from the natural linear ordering on the corresponding line (using the arbitrary preferred
direction chosen for that line).

In general the presence of an involution a 7→ ã as in Definition 2.6, together with
compatible total orderings on scattering classes E ∈ E, makes it possible to write down
explicit expressions for the transmission probabilities largely in terms of scattering
probabilities. Suppose that a lies in the scattering class E Recall that the transition
probabilities pa,̃b = ωa,̃bsb̃ form a stochastic matrix, moreover ωa,ã = 0 (a consequence of
the requirement that pa,ã = 0 together with the requirement that sa > 0), while ωa,̃b = 0

if b 6∈ E (following from the definition of scattering class E in Definition 2.4). Accordingly,∑
z∈E : z≺a

ωa,z̃sz̃ +
∑

z∈E : a≺z
ωa,z̃sz̃ =

∑
z∈E : z 6=a

ωa,z̃sz̃ =
∑
z

pa,z̃ = 1 .

This permits us to represent the statistical behaviour of a delineated scattering process
solely in terms of the scattering probabilities and of limiting transmission probabilities
ωa,+ and ωa,− for a ∈ S.

Theorem 2.8. For an (a 7→ ã,E)-delineated scattering process, if states a and b lie in
the same scattering class E ∈ E then

pa,̃b = ωa,̃bsb̃ =

{
ωa,+

(∏
z∈E : a≺z≺b(1− sz̃)

)
sb̃ if a ≺ b ,

ωa,−
(∏

z∈E : b≺z≺a(1− sz̃)
)
sb̃ if b ≺ a .

(2.4)

Here

ωa,+ = sup{ωa,̃b : b ∈ E , a ≺ b} ≤ 1 ,

ωa,− = sup{ωa,̃b : b ∈ E , b ≺ a} ≤ 1 . (2.5)

Moreover ωa,− + ωa,+ = 1, so that ωa,−, ωa,+ may be interpreted as the conditional
probabilities of scattering in − and + directions, given scattering has occurred, while
ωa,+

∏
z∈E : a≺z(1− sz̃) = ωa,−

∏
z∈E : z≺a(1− sz̃) = 0, so that eventual scattering occurs

with probability 1 whichever direction is taken.
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Remark 2.9. In Equation (2.5) we may write ωa,+ = limb↓a ωa,̃b as a monotonely increas-
ing limit, and similarly ωa,− = limb↑a ωa,̃b.

Proof. By the symmetry between ≺ and � in Definition 2.6, it is sufficient to deal with
the case of states a ≺ b, with a and b lying in the same scattering class E . Consider
the following multiplicative relationship (an inductive consequence of Definition 2.6): if
a ≺ u ≺ v ≺ . . . ≺ z ≺ b lie in E then

ωa,̃b ≤ ωa,ũ × (1− sũ) (1− sṽ) . . . (1− sz̃) . (2.6)

As the ordered chain a ≺ u ≺ v ≺ . . . ≺ z ≺ b is refined, so (1− sũ) (1− sṽ) . . . (1− sz̃)
decreases. Taking the limit over the lattice set of refinements, we obtain an upper bound
for pa,̃b in terms of a (typically infinite) product:

pa,̃b ≤ ωa,+ ×

( ∏
z∈E : a≺z≺b

(1− sz̃)

)
sb̃ . (2.7)

Similarly, when b ≺ a, we obtain

pa,̃b ≤ ωa,− ×

( ∏
z∈E : b≺z≺a

(1− sz̃)

)
sb̃ . (2.8)

Using simple algebra and then taking limits over successive refinements,

∑
z∈E : a≺z

( ∏
c∈E : a≺c≺z

(1− sc̃)

)
sz̃ = 1−

∏
c∈E : a≺c

(1− sc̃) ≤ 1 , (2.9)

with equality holding if and only if
∑
c∈E : a≺c sc̃ diverges or one of the sc̃ is equal to 1.

Likewise ∑
z∈E : z≺a

( ∏
c∈E : z≺c≺a

(1− sc̃)

)
sz̃ ≤ 1 , (2.10)

with equality holding if and only if
∑
c∈E : c≺a sc̃ diverges or one of the sc̃ is equal to 1.

Finally it has been stipulated that ωa,ỹ + ωa,x̃ ≤ 1 when x ≺ a ≺ y (Definition 2.6) and
therefore (using definition (2.5)) it is the case that ωa,−+ωa,+ ≤ 1. Consequently we can
deduce

1 =
∑
z

pa,z̃ =
∑

z∈E : z≺a
ωa,z̃sz̃ +

∑
z∈E : a≺z

ωa,z̃sz̃

≤ ωa,−
∑

z∈E : z≺a

( ∏
c∈E : z≺c≺a

(1− sc̃)

)
sz̃ + ωa,+

∑
z∈E : a≺z

( ∏
c∈E : a≺c≺z

(1− sc̃)

)
sz̃

≤ ωa,− + ωa,+ ≤ 1 . (2.11)

Thus all these inequalities become equalities, also forcing equality for (2.7) and (2.8),
and (2.9) and (2.10). The proof is completed by noting that convergence of the infinite
sum

∑
z pa,z̃ = 1 now forces ωa,+

∏
z∈E : a≺z(1 − sz̃) = ωa,−

∏
z∈E : z≺a(1 − sz̃) = 0. This

is forced because (2.11) becomes a sequence of equalities: hence for example either
ωa,+ = 0 or

∑
z∈E : a≺z

(∏
c∈E : a≺c≺z(1− sc̃)

)
sz̃ = 1: and in the second case (by the

reasoning following (2.9)) either at least one of the constituent sz̃ is equal to 1 or the
sum

∑
c∈E : a≺c sc̃ diverges – and in either case

∏
z∈E : a≺z(1− sz̃) = 0.

The following is an immediate corollary of Theorem 2.8.
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Corollary 2.10. For a delineated scattering process, if a ∈ E is a state in a scattering
class then ∏

c∈E : a≺c
(1− sc̃) = 0 if ωa,+ > 0 ,∏

c∈E : c≺a
(1− sc̃) = 0 if ωa,− > 0 . (2.12)

Nevertheless, the sum of scattering probabilities has a local summability property.

Corollary 2.11. Consider a scattering class E for a delineated scattering process. If
a ≺ b ∈ E then ∑

c∈E : a�c�b

sc̃ < ∞ .

Proof. Since a ≺ b ∈ E , there must be a finite chain of states a = c0, c1, . . . , cn, cn+1 = b

satisfying either ωci−1c̃i > 0 or ωcic̃i−1
> 0 for each i. It follows from (2.3) and the

representation provided by Theorem 2.8 that if a ≺ c ≺ b and sc = 1 then the finite chain
c1, . . . , cn has to include c. Hence there can be at most n distinct states c with a ≺ c ≺ b
and sc̃ = 1.

Moreover, applying (2.4) of Theorem 2.8 and the theory of infinite products, if one of
ωci−1c̃i > 0 or ωcic̃i−1

> 0, then
∑
c∈E : ci−1≺c≺ci sc̃ <∞ if ci−1 ≺ ci, while if ci ≺ ci−1 then∑

c∈E : ci≺c≺ci−1
sc̃ <∞.

Now dissection of the range of summation then shows that

∑
c∈E : a�c�b

sc̃ ≤
n+1∑
i=1

sc̃i−1
+

∑
c∈E : c lying between ci−1,ci

sc̃

+ sb̃ < ∞ .

We isolate a particular situation which will be important later on.

Definition 2.12. Consider a delineated scattering process. If ωa,± = 1
2 for all states a

(for ωa,± defined as in equation (2.5) of Theorem 2.8) then we say that the delineated
scattering process is balanced.

Useful structure is added if the abstract scattering representation concerns a Markov
chain satisfying dynamical detailed balance (see for example Kelly, 1979, Theorem
1.14 and preceding material). In this case equations of detailed balance relate (a) an
invariant measure π defined on the state-space, (b) the transition probabilities, and (c)
an involution of state-space which can be thought of as corresponding to reversal of
direction of travel.

Definition 2.13. Let (pa,b) be the transition matrix of a Markov chain admitting an
abstract scattering representation by pa,b = ωa,bsb (so in particular it is necessary that
pa,a = 0). The process governed by pa,b = ωa,bsb satisfies dynamical detailed balance
(is dynamically reversible) with invariant measure π if there is a state-space involution
a↔ ã with pa,ã = 0, and π is a non-negative measure on the state-space, with involution
and measure related to pa,b as follows:

(a) πa = πã for all states a;

(b) πapa,̃b = πaωa,̃bsb̃ = πbωb,ãsã = πbpb,ã for all states a 6= b;

(c) πa > 0 for all states a.

(d) ωa,ã = 0 for all states a (so pa,ã = 0).

Additionally, the abstract scattering representation is said to be unbiased dynamically
reversible if ωa,̃b = ωb,ã for all states a, b.
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Note that the (typically σ-finite) measure π is not normalized: therefore the πa are
defined only up to a common multiplicative constant.

The conditions (a) and (b) amount to the assertion that the chain is statistically
identical to its time-reversal, so long as we also use the involution to reverse the
“direction of travel” of the chain.

Unbiased dynamical detailed balance refers primarily to the scattering process
representation rather than the Markov chain. Under unbiased dynamical detailed
balance, condition (b) is equivalent to the following simpler condition which does not
involve the transmission probabilities:

(b′) πasb̃ = πbsã for all states a 6= b such that ωa,̃b = ωb,ã > 0.

Remark 2.14. When we consider a Markov chain which is both an (a 7→ ã,E)-delineated
scattering process and satisfies dynamical detailed balance, then we will suppose the
same involution a 7→ ã is used in the definition of delineation and in the definition of
dynamical reversibility. In this case if the delineated scattering process is balanced then
Theorem 2.8 implies that it is automatically unbiased as a scattering process satisfying
dynamical reversibility. We will describe such a process as a balanced delineated
reversible scattering process.

Remark 2.15. It is a consequence of conditions (b) and (c) that ωa,̃b > 0 if and only if
ωb,ã > 0. For ωa,̃b > 0 implies pa,̃b > 0 (since sb̃ > 0 for all b). Since πa > 0 and πb > 0 by
condition (c), it follows from condition (b) that pb,ã > 0 and hence ωb,ã > 0.

As noted above, in the context of RRF on Π, we always consider the state-space
involution supplied by (L−,L0)←→ (L0,L−). Setting a = (L−,L0) and b = (L0,L+) for
distinct L−,L0,L+ ∈ Π, unbiased dynamical reversibility means that transmission along
L0 from (L−,L0) to (L0,L+) has the same probability as transmission in the reverse
direction along L0 from (L+,L0) to (L0,L−).

Recall the representation of transition probabilities (2.4) for a delineated scattering
process. The choices of ωa,± are rather more constrained than might at first be supposed.

Corollary 2.16. Consider a delineated scattering process satisfying dynamical reversibil-
ity (not necessarily balanced or unbiased), and choose states a ≺ b ≺ c with ωa,c̃ > 0,
equivalently ωc,ã > 0. Then ωb,+ = ωb,− = 1

2 .

Proof. Without loss of generality, suppose a ≺ b ≺ c. By (2.7), ωa,c̃ = ωa,+
∏
u : a≺u≺c(1−

sũ), and so positivity of ωc,ã forces positivity of
∏
u : a≺u≺c(1− sũ). Let π be the invariant

measure. Using πapa,c̃ = πcpc,ã, and representations derived from (2.7) and (2.8), we
can deduce that πaωa,+sc̃ = πcωc,−sã . Write this as

πa
sã
ωa,+ =

πc
sc̃
ωc,− .

Likewise it follows that

πa
sã
ωa,+ =

πb
sb̃
ωb,− and

πb
sb̃
ωb,+ =

πc
sc̃
ωc,− .

We deduce
πb
sb̃
ωb,− =

πb
sb̃
ωb,+ ,

and hence (since πb/sb̃ > 0, and Theorem 2.8 yields ωb,+ + ωb,− = 1) it follows that
ωb,+ = ωb,− = 1

2 .

It is a consequence that, for all delineated scattering processes satisfying dynamical
reversibility, the ωb,± probabilities are all equal to 1

2 except perhaps in the special case
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when sb̃ = 1. This conclusion can be extended to all states in the case of a delineated
scattering process, satisfying unbiased dynamical reversibility, and with sufficiently
many states b with sb̃ < 1. (This includes the SIRSN-RRF which will be defined later.)

Corollary 2.17. Consider a delineated scattering process satisfying unbiased dynamical
reversibility, such that if ωa,c̃ > 0 then there is a state b lying between a and c. In that
case ωa,+ = ωa,− = 1

2 for all states a and so the delineated scattering process is balanced.

Proof. First note for any state a there must be another state c with ωa,c̃ > 0, for otherwise
all feasible transitions from a would actually have zero probability. According to the
stated conditions there must be a state b lying between a and c: suppose without loss of
generality that a ≺ b. Now ωb,− = 1

2 by Corollary 2.16: moreover the representation (2.7)
applied to ωa,c̃ implies that

∏
u : a≺u≺b(1− sũ) < 1.

The unbiasedness condition (b′) of Definition 2.13 asserts that ωa,̃b = ωb,ã, together
with the equations ωa,̃b = ωa,+

∏
u : a≺u≺b(1− sũ) and ωb,ã = ωb,−

∏
u : a≺u≺b(1− sũ), then

imply that ωa,+ = ωb,−. But ωb,− = 1
2 by Corollary 2.16. The argument is concluded by

using ωa,+ + ωa,− = 1, as established in Theorem 2.8.

Within a fixed scattering class of the form specified in Definition 2.4, an immediate
algebraic consequence of general unbiased dynamic reversibility is that the equilibrium
measure of a state is proportional to the scattering probability at that state. This,
together with exploitation of delineated structure as expressed in Theorem 2, will allow
us to describe suitable RRF efficiently in terms of a prescribed positive function on
scattering classes (Theorem 2.23 below).

Lemma 2.18. Consider an unbiased dynamically reversible scattering process. Suppose
a ∼ b; if π is the invariant measure then

πa/sã = πb/sb̃ . (2.13)

For a scattering class E defined as in Definition 2.4, we write κ(E) for the common value
of πa/sã for a ∈ E .

Proof. It suffices to establish (2.13) when ωa,̃b > 0, equivalently ωb,ã > 0. But (2.13)
holds in this case because of condition (b′) of Definition 2.13.

Since π is not normalized, the κ(E) are defined only up to a common multiplicative
constant.

Corollary 2.19. Consider a unbiased dynamically reversible scattering process. Sup-
pose a ∈ E1 and ã ∈ E2 for scattering classes defined as in Definition 2.4 using the
involution supplied by dynamical reversibility. Then

sa/sã = κ(E1)/κ(E2) (2.14)

In particular, sa = sã when a is equivalent to its involution (thus, a ∼ ã).

Proof. By Lemma 2.18, sã = πa/κ(E1) likewise sa = πã/κ(E2). The result now follows
from condition (a) of Definition 2.13.

Since πa = πã, it follows from Lemma 2.18 that πa ≤ min{κ(E1), κ(E2)} when a ∈ E1

and ã ∈ E2.

Definition 2.20. Consider a unbiased dynamically reversible scattering process. Sup-
pose a ∈ E1 and ã ∈ E2 for scattering classes defined as in Definition 2.4. The deficit δa
is given by

πa = (1− δa) min{κ(E1), κ(E2)} .

EJP 25 (2020), paper 124.
Page 15/36

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP526
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rayleigh Random Flights on SIRSN

Note that the deficit δa = δã is left invariant by the involution, since πa = πã, while
the involution a 7→ ã simply exchanges the two scattering classes involved with state a.

The following interpretation of κ(E) clarifies its rôle.

Corollary 2.21. Consider a balanced delineated reversible scattering process with
invariant measure π. Let E be a scattering class: if a ∈ E then

κ(E) = 2
∑

c∈E : c≺a
πcωc,ã . (2.15)

Hence κ(E) can be interpreted as measuring (invariantly) the in-flow of the process
arriving at the state a ∈ E from the left side of E \{a}, (alternatively, from the right side),
but not necessarily stopping there.

Proof. Apply dynamical reversibility:∑
c∈E : c≺a

πcωc,ãsã = πa
∑

c∈E : c≺a
ωa,c̃sc̃ =

πaωa,− ×
∑

c∈E : c≺a

 ∏
b∈E : c�b≺a

(
1− sb̃

) sc̃ =
1

2
πa

where the last step uses balance, and also the fact established in the proof of Theorem 2.8,
that Inequality (2.10) is in fact an equality. Equation (2.15) now follows by multiplying
through by 2/sã.

Remark 2.22. Combining Equation (2.15) with the equation corresponding to the right
side of E \{a}, we also obtain

κ(E) =
∑

c∈E : c6=a

πcωc,ã ; (2.16)

so κ(E) measures (invariantly) the in-flow of the process arriving at a from any other
state in E , but not necessarily stopping there. (This alternate interpretation holds even if
the delineated reversible scattering process is not balanced).

We conclude the discussion of abstract scattering processes by noting a converse
result: given an involution and a decomposition of state-space into candidate scattering
classes with attached κ values, there are simply-specified assignments of scattering
probabilities (motivated by the constructions of Metropolis-Hastings Markov chain Monte
Carlo – see for example Gilks, Richardson, and Spiegelhalter, 1996, Chapter 1) which
lead to valid delineated scattering processes satisfying unbiased dynamical reversibility.
For this, we require that all deficits δa (Definition 2.20) are set identically equal to zero.

Theorem 2.23. Given a state-space S supporting an involution a 7→ ã and a decomposi-
tion E = {E1, E2, . . .} into disjoint subsets E1, E2, . . . , a positive function κ : E 7→ κ(E) > 0

defined on E, and a total ordering on each scattering class E ∈ E, consider the following
“zero-deficit” assignment of scattering probabilities:

sã = min

{
1,
κ(E2)

κ(E1)

}
when a ∈ E1 and ã ∈ E2 . (2.17)

Suppose for convenience that no scattering class contains either maximal or minimal
elements. Taking ωa,± = 1

2 for all states a, we can use the scattering probabilities to
define transmission probabilities as in (2.4) of Theorem 2.8. The resulting scattering
representation corresponds to a (balanced) (a 7→ ã,E)-delineated scattering process
precisely when
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2.23.1 for each E ∈ E, and for each a ≺ b ∈ E ,∑
c∈E : a≺c≺b

sc̃ < ∞ .

2.23.2 for each E ∈ E, and for each a ∈ E ,∏
c∈E : c≺a

(1− sc̃) = 0 ,
∏

c∈E : a≺c
(1− sc̃) = 0 .

Finally this process satisfies unbiased dynamical reversibility, and is therefore a
balanced delineated reversible scattering process, with identically zero deficits and
equilibrium measure given by

πa = min {κ(E1), κ(E2)} when a ∈ E1 and ã ∈ E2 ,

Proof. Note that forcing all deficits to be set to zero also forces πa = min {κ(E1), κ(E2)}
for a ∈ E1 and ã ∈ E2: (2.17) then follows from Lemma 2.18.

The necessity of 2.23.1, respectively 2.23.2, follows from Corollary 2.11, respectively
Corollary 2.10.

Existence of the required balanced delineated scattering process Z can be demon-
strated by noting that it is well-defined using the following recursive procedure involving
a sequence of fair coin tosses and draws from a Uniform(0, 1) distribution:

1. Suppose Zn = a ∈ E . Choose between the two branches of E with probability
ωa,+ = 1

2 for {b ∈ E : a ≺ b} and ωa,− = 1
2 for {b ∈ E : b ≺ a};

2. Draw Un+1 from a Uniform(0, 1) distribution. If {b ∈ E : a ≺ b} is chosen, then set
Zn+1 to be the smallest b̃ (with a ≺ b, b ∈ E) such that∏

c∈E : a≺c�b

(1− sc̃) ≤ Un+1 <
∏

c∈E : a≺c≺b

(1− sc̃)

(this uses the fact that
∏
c∈E : a≺c(1 − sc̃) = 0, which itself arises from (2.12)).

Similarly, if {b ∈ E : b ≺ a} is chosen, then set Zn+1 to be the largest b̃ (with b ≺ a,
b ∈ E) such that ∏

c∈E : b�c�a

(1− sc̃) ≤ Un+1 <
∏

c∈E : b≺c≺a

(1− sc̃) .

3. Increment n by 1 and go to step 1.

Finally, unbiased dynamical reversibility follows immediately from computations veri-
fying the conditions in Definition 2.13 and particularly the condition (b′), which can be
substituted for condition (b) in the case of unbiased dynamical reversibility.

Part of the proof of Theorem 2.23 describes a simulation procedure which it is
convenient to reference explicitly.

Corollary 2.24. In the situation of Theorem 2.23, the (balanced) (a 7→ ã,E)-delineated
scattering process Z can be simulated using

1. a choice Z0 of initial position;

2. a sequence of independent fair coin tosses to determine direction of travel along
each successive line;
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3. and independently a sequence of independent draws from the Uniform (0, 1) distri-
bution, to determine the distance of travel along each successive line, based only
on the relevant scattering probabilities.

The nth corresponding pair of coin toss followed by uniform draw can be thought of as
the innovation for time n generating the evolution of Z.

Remark 2.25. Condition 2.23.1 implies that the pattern of intersections of a scattering
class E with other scattering classes of higher κ levels must be locally finite in E .
Condition 2.23.2 holds if the pattern of intersections of a scattering class E with other
scattering classes of higher κ must be infinite in number to the right or left of any fixed
state, which will certainly be the case for SIRSN; but note that condition 2.23.2 could
still be satisfied even if this is not the case.

Remark 2.26. More general scattering probabilities can be considered which introduce
non-zero deficits:

sã = σ(κ(E2)
κ(E1) ) min

{
1,
κ(E2)

κ(E1)

}
when a ∈ E1 and ã ∈ E2 , (2.18)

where the positive function σ is required to satisfy the inversion symmetry σ(u) = σ(1/u)

(in order to ensure that dynamical reversibility holds) and it is further required that
sã and sa satisfy the contraint of lying in (0, 1). In the following, we will consider only
the (zero-deficit) case σ(u) ≡ 1 introduced above, corresponding to an acceptance
mechanism of Metropolis-Hastings type. In the next section we will see that this is
the only similarity-invariant possibility once we require the scattering process to have
identically zero deficits.

3 Scale-invariant RRF on SIRSN (SIRSN-RRF)

RRFs based on the Poisson line SIRSN or SIRSN candidate Π (after sampled at times
of switching lines, and quenching by conditioning on the random environment Π) can be
considered as (a 7→ ã,E)-delineated scattering processes, where

(a) the state-space is the set (Π×Π) \ ∆ of ordered pairs of distinct speed-marked
lines from Π, as given by (2.1);

(b) the involution is given by a = (L−,L0) 7→ ã = (L0,L−),

(c) and scattering classes E ∈ E turn out to be of the form E = {(L,L1) : L1 ∈ Π\{L}}
for a corresponding line L ∈ Π, furnished with the total ordering taken from L
(using our specification of preferred direction for each L ∈ Π).

We say that the lines of Π are scattering classes for the process.
So we will consider RRFs which under quenching are balanced delineated reversible

scattering processes based on Π as above, with scattering classes corresponding to
the lines of Π. The stochastic dynamics can then be specified by defining the invariant
measure πa and the scattering probability sa for all states a. We require these to
deliver processes on Π which behave well under Euclidean symmetry and changes of
scale, leading in due course to the natural family of SIRSN-RRF of Theorem 3.6 and
Definition 3.7. Viewing the invariant measure and scattering probabilities as depending
not just on location but also on all of Π, we are led to:

Definition 3.1. Consider a balanced delineated reversible scattering process based on
the Poisson line SIRSN or SIRSN candidate Π (quenching by conditioning on Π), with
the lines of Π as scattering classes. This is said to satisfy similarity equivariance if
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1. the scattering probability, when viewed as a function s(L1,L2; Π \ {L1,L2}) of
location (L1,L2) and reduced environment Π \ {L1,L2}, is invariant under the
group of similarities (generated by Euclidean motions and changes of scale);

2. the invariant measure, viewed as a function π(L1,L2; Π \ {L1,L2}) of location
(L1,L2) and reduced environment Π \ {L1,L2}, is invariant under the Euclidean
motion group; moreover the ratio

π(L1,L2; Π \ {L1,L2})
π(L3,L4; Π \ {L3,L4})

is invariant under scale-change.

Remark 3.2. A simple geometric argument shows it suffices to check scale-invariance
only for the ratios

π(L1,L2; Π \ {L1,L2})
π(L1,L3; Π \ {L1,L3})

,

since π(L1,L2; Π \ {L1,L2}) is symmetric in L1 and L2 as a consequence of dynamical
reversibility, and almost surely all lines in Π intersect.

Also note that it follows from Lemma 2.18 that the similarity-equivariance and
Euclidean invariance properties of Definition 3.7 imply Euclidean-invariance of

κ(L1) = κ(L1; Π \ {L1}) =
π(L1,L2; Π \ {L1,L2})
s(L1,L2; Π \ {L1,L2})

,

and similarity-invariance for

κ(L1; Π \ {L1})
κ(L2; Π \ {L2})

=
s(L2,L1; Π \ {L1,L2})
s(L1,L2; Π \ {L1,L2})

.

Finally Euclidean-invariance for the deficit (viewed again as a function δ(L1,L2; Π \
{L1,L2}) of location (L1,L2) and Π) follows from

1− δ(L1,L2; Π \ {L1,L2}) =
π(L1,L2; Π \ {L1,L2})

min{κ(L1; Π \ {L1}), κ(L2; Π \ {L2})}
,

as does similarity-invariance for

1− δ(L1,L2; Π \ {L1,L2})
1− δ(L3,L4; Π \ {L3,L4})

=
π(L1,L2; Π \ {L1,L2})
π(L1,L3; Π \ {L1,L3})

.

Consideration of these remarks also proves the following converse.

Lemma 3.3. Consider a balanced delineated reversible scattering process based on
the Poisson line SIRSN or SIRSN candidate Π, with the lines of Π as scattering classes.
It is said to satisfy similarity-equivariance if κ(L1; Π \ {L1}) and δ(L1,L2; Π \ {L1,L2})
determine Euclidean-invariant functions, and the ratios

κ(L1; Π \ {L1})
κ(L2; Π \ {L2})

and
1− δ(L1,L2; Π \ {L1,L2})
1− δ(L3,L4; Π \ {L3,L4})

are scale-invariant. In this case the stochastic dynamics of the scattering process are
determined by specifying the functions κ(L1; Π \ {L1}) and δ(L1,L2; Π \ {L1,L2}).

Remarkably, choice of κ(L1; Π\{L1}) is heavily constrained by similarity-equivariance.
This follows from an ergodic theorem for Poisson line SIRSN or SIRSN candidates Π. This
in turn requires the Slivnyak-Mecke theorem for Palm conditioning of Poisson processes.
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Theorem 3.4 (Slivnyak-Mecke). Suppose Π is a Poisson point process on Euclidean
space Rd with diffuse intensity measure ν. For any measurable non-negative function f
on Rd,

E

[∑
x∈Π

f(x,Π \ {x})

]
=

∫
E [f(x,Π)] ν( dx) .

The proof of this result is described in Example 4.3 of Chiu et al. (2013, Section
4.4.4).

We now state and prove the required ergodic theorem.

Theorem 3.5. Let Π be a Poisson line SIRSN or SIRSN candidate, and let ξ(L,Π) be a
non-negative measurable function of L and Π which is invariant under Euclidean motion
applied to the pair (L,Π) of speed-marked line L and speed-marked line pattern Π.
Consider ξ(L,Π \ {L}) as L varies over the speed-marked line process Π: this is almost
surely a deterministic function of the speed v(L) alone.

Proof. It is enough to consider non-negative bounded measurable ξ, since the general
result then follows by consideration of (n ∧ ξ) for increasing n. For a fixed speed-marked
line L, consider the random process t 7→ ξ(L;TtΠ), where Tt is Euclidean translation
parallel to L for t ∈ R. The law of Π is translation invariant, so this bounded random
process is stationary.

Now view Π in v − s− φ coordinates corresponding to (1.2) based on the fixed speed-
marked line L. In these coordinates the action of Tt sends (v, s, φ) to (v, s+ t, φ). Arguing
as in the standard proof of the Hewitt-Savage zero-one law (for example Kallenberg,
2002, Theorem 3.15), the bounded shift-invariant function ξ(L; Π) can be approximated
by a non-negative bounded measurable function ξ̃(L; Π) depending only on lines of Π

intersecting L in a bounded interval I. Choosing t such that TtI and I are disjoint,
ξ(L; Π) is similarly approximated by the statistically independent ξ̃(L;TtΠ). It follows
that ξ(L; Π) is independent of itself and thus is almost surely a deterministic function
c(L) of L alone. Euclidean-invariance of ξ implies that ξ(L; Π) = c(L) = c(v(L)) depends
only on the speed v(L) of L.

Recall that the speed-marked Poisson line process Π can be viewed as a Poisson point
process in v − r − θ space ((0,∞)× linespace)) with intensity ν( dL) = ν( dv dr dθ) given
by (1.1). So Theorem 3.4 applies to f(L,Π\{L}) = ξ(L; Π\{L}) I [L ∈ A]×I [Π \ {L} ∈ B],
for any compact subset A ⊂ (0,∞)× linespace and any measurable subset B of the space
of speed-marked patterns inducing locally finite point patterns on (0,∞)× linespace. Thus

E

[ ∑
L∈Π∩A

ξ(L; Π \ {L}) I [Π \ {L} ∈ B]

]
=∫

A

E [ξ(L; Π) ; Π ∈ B] ν( dL) = P [Π ∈ B]

∫
A

c(v(L))ν( dL)

(finite because we required A to be a compact subset of (0,∞)× linespace).
Viewing this as an equality between measures evaluated on product sets A × B, a

Π-system argument allows us to deduce that almost surely ξ(L; Π \ {L}) = c(v(L)) for all
L ∈ Π.

As a direct consequence we have the following result, which characterizes similarity-
equivariant scattering processes based on Π as a one-parameter family when the deficit
δ(L1,L2; Π \ {L1,L2}) is required to vanish identically (equivalently if the invariant
measure π(L1,L2; Π \ {L1,L2}) is maximized subject to the specification of κ(L; Π \ {L})).
Note that the result requires one to check non-triviality of the scattering process (namely,
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that scattering can not occur instantaneously, and therefore that the scattering classes
do indeed correspond to entire lines).

Theorem 3.6. Consider a balanced delineated reversible scattering process based on
Π (quenched by conditioning on Π), which has the lines of Π as scattering classes, so
that its stochastic dynamics are specified by κ(L; Π \ {L}) and δ(L1,L2; Π \ {L1,L2}).
Suppose further that the stochastic dynamics are similarity-equivariant. Then, for some
real parameter α,

κ(L1; Π \ {L1})
κ(L2; Π \ {L2})

=
v(L1)α

v(L2)α
. (3.1)

Moreover, if the deficit δ(L1,L2; Π \ {L1,L2}) vanishes identically (so that π(L1,L2; Π \
L1,L2) reduces to min{v(L1)α, v(L2)α}, and additionally s(L1,L2; Π \ L1,L2) reduces to
min{1, (v(L2)/v(L1))α}), then α > γ − 1 is necessary and sufficient for the scattering
process to be non-trivial.

Proof. Applying Theorem 3.5 to the function κ(L; Π \ {L}), we deduce that we may write
κ(L; Π \ {L}) = ψ(v(L)). Now similarity-invariance for the ratio

κ(L1; Π \ {L1})
κ(L2; Π \ {L2})

implies, for all λ > 0,
ψ(v)

ψ(1)
=

ψ(λv)

ψ(λ)
.

But then a multiplicative form of Cauchy’s functional equation must hold,

ψ(λv)

ψ(1)
=

ψ(v)

ψ(1)
× ψ(λ)

ψ(1)
,

and thus (ψ being measurable) there must be a constant α such that

ψ(v) = ψ(1)vα .

Equation (3.1) follows.
Suppose that the deficit vanishes identically, so in particular

s(L1,L2; Π \ L1,L2) = min

{
1,
v(L2)α

v(L1)α

}
.

The resulting process is a non-trivial RRF exactly when the conditions of Corollaries 2.11
and 2.10 are satisfied. The condition for Corollary 2.10 follows immediately from the
observation that, for any given line L, there is an everywhere dense set of intersections
with lines of slower speed (in case α < 0) and an infinite unbounded set of intersections
with lines of faster speed (in case α ≥ 0).

Consider the condition for Corollary 2.11, which is required if the lines of Π do indeed
correspond to the scattering classes of the process. We shall first show that α > γ − 1

implies finiteness of all sums of the form

E

∑
L∈Π

ξ(L)
∑

dist(L′,o)<A

s(L,L′; Π \ {L,L′})


whenever ξ(L) is non-negative and measurable, and E

[∑
L∈Π ξ(L)v(L)−(γ−1)

]
< ∞.

Apply Theorem 3.4 (Slivnyak-Mecke) twice over, and expand using the line-space coordi-
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nates leading to (1.1):

E

 ∑
(L−,L0)∈(Π×Π)\∆

ξ(L−) I [|distsigned(L0,o)| < R] min

{
1,
v(L0)α

v(L−)α

}
=

∫ ∫
| distsigned(L0,o)|<R

ξ(L−)E

[
min

{
1,
v(L0)α

v(L−)α

}]
ν( dL0)ν( dL−)

=
(
γ−1

2

)2 ∫ ∞
−∞

∫ π

0

∫ ∞
0

ξ(v−, θ−, r−)

∫ R

−R

∫ π

0

∫ ∞
0

(
1 ∧ vα0

vα−

)
v−γ0 dv0 dθ0 dr0 v

−γ
− dv− dθ− dr−

=
(
γ−1

2

)2 ∫ ∞
−∞

∫ π

0

∫ ∞
0

ξ(v, θ−, r−)

∫ R

−R

∫ π

0

∫ ∞
0

(1 ∧ uα) v(uv)−γ dudθ0 dr0 v
−γ dv dθ− dr−

(using v− = v, v0 = vu so that dv0 dv− = v dv du)

=
(
γ−1

2

)2 ∫ ∞
−∞

∫ π

0

∫ ∞
0

ξ(v, θ−, r−)v−(2γ−1) dv dθ− dr− × 2πR

∫ ∞
0

min {1, uα}u−γ du

= (γ − 1)πR× E

[∑
L∈Π

ξ(L)v(L)−(γ−1)

]
×
(∫ 1

0

uα−γ du+

∫ ∞
1

u−γ du

)
(where the last step uses α > 0). This is finite only if α > γ− 1. Moreover in that case the
theory of infinite products implies that the next scattering cannot occur instantaneously,
and that there is a positive chance of the next scattering taking place at an intersection
with a line faster than the current line. Since such intersections form a locally finite pat-
tern along the current line, this implies that the scattering classes do indeed correspond
to the lines, and therefore that the scattering process is non-trivial.

If α ≤ 0 then∑
L∈Π

ξ(L)
∑

dist(L′,o)<A

s(L,L′; Π \ {L,L′}) =
∑
L∈Π

ξ(L)
∑

dist(L′,o)<A

min

{
1,
v(L′)α

v(L)α

}
= ∞ ,

because of density everywhere of the set of lines in Π of speed lower than any prescribed
positive threshold. In case 0 < α ≤ γ − 1, monotonicity considerations mean that it
suffices to consider the boundary case α = γ − 1. The relevant quantity is then∑

L∈Π,v(L)∈(0,1)

v(L)γ−1 I [L hits a fixed unit interval] .

This admits the stochastic lower bound limn→∞Hn, where:

Hn =

n∑
r=1

Nra
γ−1
r , (3.2)

where the Nr are independent Poisson(1) random variables and 0 < ar+1 < ar ≤ 1 is
chosen so that

a−γ−1
r+1 − a−γ−1

r

γ − 1
= 1 .

Decomposing the process Hn as the sum of a convergent L2 martingale and a divergent
harmonic sum,

Hn =

(
n∑
r=1

aγ−1
r × (Nr − 1)

)
+

n∑
r=1

aγ−1
r ,

we deduce that the lower bound, which is the limit of (3.2) as n → ∞, almost surely
diverges to +∞.
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We can now formally define the notion of a SIRSN-RRF.

Definition 3.7. Consider a Poisson line SIRSN or SIRSN candidate Π with parameter
γ ≥ 2. A SIRSN-RRF based on Π (when quenched by conditioning on Π) is a balanced
delineated reversible scattering process on state-space (Π×Π) \ ∆. with scattering
classes given by the lines of Π, and satisfying similarity-equivariance, with zero deficit,
with κ(L) = v(L)α for some α > γ − 1.

In summary, the (scattering) probability for the SIRSN-RRF switching from L1 to L2

is given by

sa = s(L1,L2) = min

{
1,
vα2
vα1

}
for some α ∈ (γ − 1,∞) . (3.3)

Thus the RRF always switches to faster lines, but switches to slower lines with probability
proportional to a power of the relative speed of the new, slower, line. (After a successful
switch to a new line, the new direction of travel is chosen equiprobably.)

Remark 3.8. The work of this section implies that, if α > γ − 1 and there is zero defect,
then the equilibrium measure πL1,L2

= min{v(L1)α, v(L2)α} automatically generates
scale-invariance for the SIRSN-RRF viewed as a random process in a random environ-
ment. The constraint α > γ− 1 ensures that the scattering times 0 = τ0 < τ1 < τ2 < . . . <

ζ are well-defined as the line switching times mentioned in the procedure described
after Definition 3.7.

Remark 3.9. If Z is a SIRSN-RRF of parameter α on Π, and S is a similarity, then
SZ is a SIRSN-RRF of parameter α on SΠ. This follows from similarity-invariance of
the scattering probabilities and consideration of the simulation algorithm for such a
scattering process Z, given in the proof of Theorem 2.23.

Lemma 3.10. A SIRSN-RRF based on a Poisson line SIRSN or SIRSN candidate Π (when
quenched by conditioning on Π) forms an irreducible Markov chain on the state-space
(Π×Π) \∆.

Proof. It suffices to show that the SIRSN-RRF can move from (L−,L0) to (L0,L+).

The key observation is that the SIRSN-RRF is always compelled to switch onto a
faster line, but may or may not choose to switch to a slower line.

Consequently, if these intersections are not separated by a line of greater speed than
v(L0) then the SIRSN-RRF can travel from (L−,L0) to (L0,L+) in a single move. If there
are such lines, then consider the sequence of cells from the Crofton tessellation formed
by Π≥v(L0) which intersect the segment of L0 between (L−,L0) and (L0,L+). With
positive probability, the SIRSN-RRF can move from (L−,L0) along L0 in the direction of
(L0,L+), but has to switch to the Crofton tessellation when it is first encountered. The
SIRSN-RRF can then use the boundaries of these cells to move to a point on L0 also
lying on the boundary Crofton cell containing (L0,L+); L0 can then be used to move to
(L0,L+).

The continuous-time variant of the SIRSN-RRF, (Xt : t ≥ 0), can be recovered from
the sampled process (Zn = Xτn : n ≥ 0) simply by interpolating between sampling
points, requiring the RRF X to travel at top permissible speed Yτn between scattering
times τn and τn+1). In principle there is the possibility that the resulting continuous-time
process might explode to infinity in finite time ζ <∞. We shall discuss this further in
section 6.

In the next section we address the question of the long-run behaviour of the (log-
)speed process log(Y ) of the SIRSN-RRF.
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4 Environment viewed from the SIRSN-RRF

We now focus on the (discrete-time) SIRSN-RRF Z of index α > γ − 1 based on the
planar Poisson line SIRSN of parameter γ > 2, or even the non-SIRSN case of γ = 2, as
discussed in Section 3. This scattering process can be viewed as possessing a random
and Π-dependent state-space (Π×Π) \∆. Recall that the lines of Π are speed-marked,
so the state (L0,L1) of Z1 includes information on the speed v(L0) previous to the switch
and also the current speed v(L1). Conditioned on Π, the process Z is Markovian with
a discrete invariant measure π(L0,L1) = min {v(L0)α, v(L1)α} for some α > γ − 1, with
respect to which Z satisfies dynamical reversibility. The discrete invariant measure is
never summable, since any summation has to extend over all the intersection points of
the stationary line process Π. Consequently a stationary version of Z cannot exist, and
indeed the invariant measure is defined only up to a positive multiplicative constant.
Nonetheless we will see that the environment viewed from Z can be converted into a
stationary process (following the classic construction for a random walk in a random
environment), so long as it is reduced by centering, rotation, and (most especially)
rescaling.

To begin with, consider the RRF Z in its quenched environment Π. This dynamically
reversible process can be related to a symmetric Dirichlet form which is quenched
(conditioned on Π) and defined for the random state-space (Π×Π)\∆ as follows: suppose
f and g are functions on (Π×Π) \ ∆ satisfying the symmetry condition f(a) = f(ã),
g(b) = g(̃b). Then

Bquenched(f, g) =
∑

a∈(Π×Π)\∆

πaf(a)E [g(Z1)|Z0 = a,Π]

=
∑∑

a6=b∈(Π×Π)\∆

πapa,̃b f(a)g(b)

=
∑∑

a6=b∈(Π×Π)\∆

πaωa,̃bsb̃ f(a)g(b) =
∑∑

a6=b∈(Π×Π)\∆

πbpb,ã f(a)g(b) , (4.1)

where the last step arises from dynamical reversibility (since πapa,̃b = πbpb,ã), and
establishes the symmetry of the quenched Dirichlet form. Note that the equilibrium
probabilities πa, the transition probabilities pa,̃b, and the transmission probabilities ωa,̃b
all depend implicitly on the random environment given by the Poisson line SIRSN or
SIRSN candidate Π.

A Cauchy-Schwarz argument shows that the Dirichlet form Bquenched(f, g) is well-
defined if the functions f and g belong to the random Hilbert space HΠ of functions h
defined on (Π×Π) \∆ satisfying the symmetry requirement h(L1,L2) = h(L2,L1) and∑

a

h(a)2πa =
∑

a∈(Π×Π)\∆

h(a)2πa < ∞ . (4.2)

For completeness of exposition, we observe that measure-theoretic details for such
symmetric h(a) = h(L0,L1) can be dealt with by viewing h(L0,L1) = h(x, θ0, v0, θ1, v1) as
a measurable function of one planar and four real variables, using the 2 : 1 mapping
(Π×Π) \ ∆ → R2 determined by L0 ∩L1 = {x} to deliver the planar variable x ∈ R2,
while θi signifies the direction, vi the speed of Li. We can thus regard f and g as functions
of R2 × (0, π) × (0,∞) × (0, π) × (0,∞). To be pedantic, we focus on functions in the
subspace of HΠ which is the L2 closure of h(x, θ0, v0, θ1, v1) which depend continuously
on the arguments x, θ0, v0, θ1, v1 and depend only on finitely many evaluations of events
involving whether specified open subsets of R2 are hit by Π-lines of speeds exceeding
specified positive thresholds.
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By Fubini-argument methods this leads us to consider an annealed Dirichlet form
defined for functions h(a; Π) = h(x, θ0, v0, θ1, v1; Π) in the deterministic Hilbert space H

of functions which also depend on the random pattern specified by Π, defined by

H =

h : E

 ∑
a∈(Π×Π)\∆

h(a; Π)2πΠ
a

 <∞ with h(a; Π) = h(ã,Π)

 . (4.3)

Again we restrict to functions in the L2 closure of h(x, θ0, v0, θ1, v1) which depend con-
tinuously on the arguments x, θ0, v0, θ1, v1 and depend only on finitely many evaluations
of events involving whether specified open subsets of R2 are hit by Π-lines of speeds
exceeding specified positive thresholds. In particular, measurability of functions in the
subspace will use the σ-algebra σ{Π≥u : u > 0}, where Π≥u is the locally finite Poisson
line process of Π-lines of speed exceeding u, viewed as a random closed set and endowed
with the hitting σ-algebra (also called Effros σ-algebra) generated by hitting events
[Π≥u ∩K 6= ∅] for compact sets K ⊂ R2 (Chiu et al., 2013, §6.1.2).

The annealed Dirichlet form is given by

B(f, g) = E

 ∑
a∈(Π×Π)\∆

πΠ
a f(a; Π \ a)E

[
g(Z̃1; Π \ Z1)|Z0 = a,Π

]
= E

 ∑∑
a6=b∈(Π×Π)\∆

πΠ
a p

Π
a,̃b

f(a; Π \ a)g(b; Π \ b)


= E

 ∑∑
a 6=b∈(Π×Π)\∆

πΠ
a ω

Π\(a,b)
a,̃b

sb̃ f(a; Π \ a)g(b; Π \ b)

 , (4.4)

where f and g are functions of the random environment Π as well as of R2 × (0, π) ×
(0,∞)× (0, π)× (0,∞), and both belong to H. The superscripts in πΠ

a , pΠ
a,̃b

and ω
Π\(a,b)
a,̃b

,

in (4.4) and (4.3) emphasize dependence on the environment Π as well as a and b. We
use an abbreviated notation Π \ a = Π \ {L−,L+} when a = (L−,L+), and Π \ (a, b) =

Π \ {L−,L+,L0,L1} when a = (L−,L+) and a = (L0,L1).
The annealed symmetric Dirichlet form (4.4) can be associated with the (rather

trivial) augmentation of the Markov chain Z which is given by ((Zn,Π) : n ≥ 0). Thus the
augmentation simply consists of adding the time-constant random process Π. Note that
we can useB(f, g) to recover the joint distribution of Z0 and Z1, and hence the conditional
probability distribution Law(Z1|Z0,Π). So knowledge of the annealed symmetric Dirichlet
form (4.4) identifies the annealed stochastic dynamics of the SIRSN-RRF Z.

We now introduce the notion of the relative environment process Ψ and the reduced
relative environment process Ψ(0) for Z; Ψ

(0)
n is the environment Π viewed from Zn =

(L−,n,L0,n), obtained by removing the lines L−,n and L0,n (reduction), then translating,
rotating and rescaling Π \ {L−,n,L0,n} into a standard form (relativization). In detail, for
each state a = (L−,L0) we introduce a proper similarity Sa whose inverse can be used
to deliver the required standard form. (Recall that a similarity is simply an affine-linear
transformation of Euclidean space: a proper similarity is one which preserves the sign
of the area differential.) If L− ∩L0 = {z} then we require that Sa o = z; furthermore
Sa must send the x-axis L0

∗ (with sense given by standard direction, and unit speed) to
the line L0 (with prescribed sense and rescaling so it has the required speed v(L0));
finally we require that Sa sends Lθ∗ to L−, where the line Lθ∗ passing through o makes
angle θ = <)(L−,L0) with L0

∗. The scaling component of the similarity Sa is fixed by
the requirement that L0

∗ has unit speed: as a consequence the speed of Lθ∗ must be
v(L−)/v(L0). These requirements uniquely define the proper similarity Sa.
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Definition 4.1. The relative environment Ψn of Zn is given by S−1
Zn

Π. The reduced

relative environment Ψ
(0)
n of Zn = (L−,L0) is obtained by removing the lines S−1

Zn
L− and

S−1
Zn
L0 corresponding to L− and L0:

Ψ(0)
n = S−1

Zn
(Π \ Zn) = S−1

Zn
(Π) \ S−1

Zn
Zn = S−1

Zn
(Π) \

{
S−1
Zn
L−, S−1

Zn
L0

}
.

So the relative environment of Zn is parametrized by the relative speed v(L−)/v(L0) of
the immediately preceding line L− when compared with the current speed L0, the angle

<)(L−,L0) between current and immediately preceding lines, and the point pattern Ψ
(0)
n .

The transmission probability ωΠ\(a,b)
a,̃b

in (4.4) must vanish unless a and b belong to

the same scattering class E . Moreover in this case the states a and b must share a line:
a = (L−,L0) and b = (L+,L0). Applying dynamical reversibility of the quenched process,
we find πa/sã = v(L0)α = κ(E) is a function of the scattering class E alone. Hence (4.4)
can be rewritten as

B(f, g) = E

∑
E∈E

∑∑
a 6=b∈E

κ(E)sãω
Π\(a,b)
a,̃b

sb̃ f(a; Π \ a)g(b; Π \ b)


= E

[ ∑
L0∈Π

v(L0)α

( ∑∑
L− 6=L+∈Π\{L0}

s(L0,L−)f((L−,L0); Π \ {L−,L0})

s(L0,L+)g((L+,L0); Π \ {L+,L0}) ωΠ\(a,b)
a,̃b

)]
,

where (compare Theorem 2.8)

ω
Π\(a,b)
a,̃b

= ω
Π\{L−,L0,L+}
(L−,L0),(L0,L+) =

∏
L separates

L0 ∩L+ and L0 ∩L+

(
1− s(L0,L)

)
.

Note that the stochastic dynamics of Z are invariant under similarity transformations,
because they depend only on the scattering probabilities s(L0,L−) and s(L0,L+), and the

transmission probability ωΠ\(a,b)
a,̃b

, all of which possess this invariance. It follows that the

relative environment process Ψ = (Ψn = S−1
Zn

Π : n ≥ 0), when quenched by conditioning
on Π, is again a Markov chain.

However we can say more. The annealed Dirichlet form (4.4) can be used to establish
that Ψ when not conditioned on Π (hence annealed) forms a stationary process for
suitably distributed random initial starting points X0 ∈ (Π×Π) \ ∆, and it can then
be used to compute the ensuing stationary distribution of Ψ. The theory is closely
related to that of Palm conditioning for point processes, and similarly requires careful
interpretation although the underlying idea is simple enough: for some c > 0, the SIRSN
candidate Π is conditioned to have at least one intersection within c of the origin o, such
that the current line has speed exceeding c, and the intersection with the previous line
is chosen with weight based on the probability of switching. Our results will cover the
evolution of the relative environment process Ψ for Z begun at one of these intersection
points chosen according to the indicated weighting.

To facilitate our argument, we first establish a factorization result for suitable π-
weighted sums over (Π×Π) \∆.

Lemma 4.2. Given a Poisson line process Π based on the parameter γ > 1, consider
a non-negative measurable function ξ((L−,L0); Π \ {L−,L0}), defined for (L−,L0) ∈
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(Π×Π) \∆, which admits a factorization

ξ((L−,L0); Π \ {L−,L0}) = ξinvar((L−,L0); Π \ L−,L0) ×
× ξspeed(v(L0)) × ξconfig(distsigned(L− ∩L0,L⊥0 ∩L0),distsigned(L0,o), <)(L0,L0

∗))) ,

(4.5)

where L⊥0 is the line through o perpendicular to L0. Here ξinvar is a similarity-invariant
function of its arguments, while ξspeed is a function of the current speed and ξconfig is a
function of three parameters describing the location and orientation of the configuration
(L−,L0). Suppose the intersections a = (L−,L0) ∈ (Π×Π) \ ∆ are weighted by πa =

min{v(L−)α, (L0)α} for some fixed α ∈ (γ − 1,∞). Then

E

 ∑∑
L− 6=L0∈Π

ξ((L−,L0); Π \ {L−,L0}) π(L−,L0)

 =

(
γ − 1

2

)2 ∫ ∞
−∞

∫ ∞
−∞

∫ π

0

ξconfig(s, r, θ) dθ dsdr ×
∫ ∞

0

ξspeed(v)vα−2γ+1 dv ×

×
∫ ∞
−∞

∫ π

0

E
[
ξ1(et, φ,Π)

]
min{e(α−(γ−1))t, e−(γ−1)t} sinφdφ dt . (4.6)

Here ξ1(et, φ,Π) is defined in terms of the similarity-invariant function ξinvar by

ξ1

(
v(L−)

v(L0)
, <)(L−,L0), S−1

(L−,L0)(Π \ {L−,L0})
)

= ξinvar((L−,L0); Π \ {L−,L0}) .

Proof. As in the proof of Theorem 3.6, first apply the Slivnyak-Mecke theorem (Theo-
rem 3.4) twice in succession to the left-hand side of (4.6):

E

 ∑∑
L− 6=L0∈Π

ξ((L−,L0); Π \ {L−,L0}) π(L−,L0)

 =

∫ ∫
E [ξ((L−,L0); Π)]π(L−,L0)ν( dL−)ν( dL0) .

Using the representation corresponding to (1.1) for ν( dL0) (based on o and L0
∗ for

reference point and line), and the representation corresponding to (1.2) for ν( dL−)

(based on L0 ∩L0
∗ and L0 for reference point and line), we obtain

E

 ∑∑
L− 6=L0∈Π

ξ((L−,L0); Π \ {L−,L0}) π(L−,L0)

 =

(
γ − 1

2

)2 ∫ ∞
−∞

∫ π

0

∫ ∞
0

(∫ ∞
−∞

∫ π

0

∫ ∞
0

E

[
ξinvar

(
v−
v0
, φ, S−1

(L−,L0)(Π)

)]
×

× ξspeed(v0)× ξconfig(s, r, θ)×min{vα−, vα0 }v
−γ
− sinφdv− dθ ds

)
v−γ0 dv0 dθ dr .

But scale invariance implies that E
[
ξinvar

(
v−
v0
, φ, S−1

(L−,L0)(Π)
)]

= E
[
ξinvar

(
v−
v0
, φ,Π

)]
.

The result now follows by a simple change of coordinates: set v0 = v and v− = v0e
t so

that dv− dv0 = etv dv dt.

We can now state and prove the main theorem of this section.
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Theorem 4.3. Given a SIRSN-RRF Z on a Poisson line SIRSN or SIRSN candidate Π,
parametrized by α > γ−1 where γ is the Poisson line SIRSN parameter, the relative envi-
ronment process Ψ for the SIRSN-RRF Z can be made stationary if its initial distribution
can be expressed as three independent components as follows:

(1) the log-relative speed of the line before the current line has an asymmetric Lapla-
cian density over R: rate parameter γ−1 for positive values, α−(γ−1) for negative
values;

(2) the angle between current and previous lines has a sine-weighted density;

(3) the ensemble Ψ(0) of all lines other than current and previous lines (the reduced
relative environment) is distributed as the original speed-marked Poisson line
process Π.

Proof. Because B(f, g) is given by an expression involving the Markovian kernel πaωa,̃b,

B(f, g) = E

 ∑∑
a 6=b∈(Π×Π)\∆

πaωa,̃bsb̃ f(a; Π)g(b; Π)

 ,
it possesses a completion which applies to the case when g is bounded and f satisfies
the L1 condition

E

 ∑
a∈(Π×Π)\∆

|f(a; Π)| πa

 <∞ .

Suppose f is non-negative and admits a factorization as in Lemma 4.2;

f((L−,L0); Π) = finvar((L−,L0); Π \ L−,L0) ×
× fspeed(v(L0)) × fconfig(distsigned(L− ∩L0,Lx,0 ∩L0),distsigned(L0,o), <)(L0,L0

∗))) ,

where finvar is similarity-invariant. In particular, if φ− = <)(L−,L0) and v(L−) = et−v(L0)

then we write

finvar((L−,L0); Π \ {L−,L0}) = finvar

(
v(L−)

v(L0)
, <)(L−,L0), S−1

(L−,L0)(Π \ {L−,L0})
)

= f1(et− , φ−,Ψ
(0)
0 ) .

Suppose further that the bounded g is itself similarity-invariant: we write

g(̃b; Π) = g((L+,L0); Π) = ginvar((L+,L0); Π \ {L0,L+}) .

Since the dynamics of Z are similarity-invariant, this means that

E
[
g(Z̃1; Π)|Z0 = a,Π

]
= E

[
g(SZ̃1;SΠ)|SZ0 = a, SΠ

]
for any similarity S, so E

[
g(Z̃1; Π)|Z0 = a,Π

]
is similarity-invariant as a function of a

and Π \ a. Consequently we may apply Lemma 4.2 to

ξ((L−,L0); Π) = f((L−,L0); Π)E
[
g(Z̃1; Π)|Z0 = (L−,L0),Π

]
=

finvar((L−,L0); Π \ {L0,L−})× E
[
ginvar(Z̃1; Π \ {L0,L+}) | Z0 = (L−,L0),Π

]
×

× fspeed(v(L0)) × fconfig(distsigned(L− ∩L0,Lx,0 ∩L0),distsigned(L0,o), <)(L0,L0
∗))) .
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We deduce

B(f, g) = E

 ∑∑
L− 6=L0∈Π

π(L−,L0)f((L−,L0); Π)E
[
g(Z̃1; Π)|Z0 = (L−,L0),Π

]
=

(
γ − 1

2

)2 ∫ ∞
−∞

∫ ∞
−∞

∫ π

0

fconfig(s, r, θ) dθ dsdr ×
∫ ∞

0

fspeed(v)vα−2γ+1 dv ×∫ ∞
−∞

∫ π

0

min{e(α−(γ−1))t− , e−(γ−1)t−}×

× E
[
finvar((Lφ−∗ (et−),L0

∗); Π)E
[
ginvar(Z̃1; Π)|Z0 = (Lφ−∗ (et−),L0

∗),Π
]]

sinφ− dφ− dt− ,

where the line Lφ−∗ (et−) meets the unit-speed (x-axis) L0
∗ at o, making an angle φ−, and

has speed et− .
We may deduce the following by arranging for fconfig(s, r, θ) = I

[
s2 + r2 ≤ c2

]
and

fspeed(v) = I [v > c] for fixed c > 0. Sample the speed-marked line process Π, and sample
L0 uniformly at random from the set of lines of Π lying within c of o and with speed
exceeding c. Then sample L− from the lines of Π intersecting L0 and such that (i) the
intersection point is within c of o, using sampling weights min{1, (v(L1)/v(L0))α} If there
is no such line L0, or there turn out to be no such intersections, then re-sample Π and
repeat till successful. Use the resulting (L−,L0) as the initial point of the SIRSN-RRF
Z. Then the resulting relative environment process is associated with the following
Dirichlet form:

Brelative(finvar, ginvar) =

E

[
min

{
1,

(
v(L−)

v(L0)

)α}
finvar((L−,L0); Π)E

[
ginvar(Z̃1; Π)|Z0 = (L−,L0),Π

]]
=

∫ ∞
−∞

∫ π

0

E

[
f1(et− , φ−,Π)

∑
L+∈Π

ω
Π\{L+}
o,(L0

∗ ∩L+)
min{1, v(L+)α}×

× g1(v(L+), <)(L0
∗,L+),Π)

]
min{e(α−(γ−1))t− , e−(γ−1)t−} sinφ− dφ− dt− .

Here

ω
Π\{L+}
o,(L0

∗ ∩L+)
=

∏
L∈Π\{L+} separating

o and (L0
∗ ∩L+)

(
1− sL∗0 ,L

)
.

One further application of the Slivnyak-Mecke theorem (Theorem 3.4), using the
representation (1.2) for ν( dL+), now yields

Brelative(finvar, ginvar) =∫ ∞
−∞

∫ ∞
−∞

∫ π

0

∫ ∞
−∞

∫ π

0

E

[
f1(et− , φ−,Π)ωΠ

[o,s] min{1, eαt+}g1(et+ , φ+,Π)

]
×

×min{e(α−(γ−1))t− , e−(γ−1)t−} sinφ− dφ− dt− e
−(γ−1)t+ sinφ+ dφ+ dt+ ds+

=

∫ ∞
−∞

∫ ∞
−∞

∫ π

0

∫ ∞
−∞

∫ π

0

E
[
f1(et− , φ−,Π)g1(et+ , φ+,Π) ωΠ

[o,s

]
×

×min{e(α−(γ−1))t− , e−(γ−1)t−}min{e(α−(γ−1))t+ , e−(γ−1)t+}×
× sinφ− dφ− sinφ+ dφ+ dt− dt+ ds+ , (4.7)
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where [o, s] is short-hand for the interval along L0
∗ with one endpoint given by o and with

the signed length s.
The invariance of finvar, ginvar, and finvar collectively imply that the Dirichlet form

Brelative(finvar, ginvar) is symmetric. This in turn implies that the relative environment
process Ψ is stationary, with an invariant measure which is a probability measure
which makes the three coordinates of log relative speed t of previous line, angle φ

between previous and current lines, and reduced environment Ψ(0) independent with
joint distribution as follows

1. corresponding to the log relative speed t, a (possibly asymmetric) Laplacian density
over R (Johnson, Kotz, and Balakrishnan, 1994, ch. 24), given by

fα,γ(y) =

{
(γ−1)(α−(γ−1))

α e−(γ−1)|y| when y ≥ 0 ,
(γ−1)(α−(γ−1))

α e−(α−(γ−1))|y| when y < 0 ;
(4.8)

2. corresponding to φ, a half-sine density over [0, π), given by 1
2 sinφ;

3. corresponding to the reduced relative environment Ψ(0), a distribution which
agrees with that of the underlying SIRSN candidate Π.

This completes the proof.

We are actually interested in the log-relative speed of the current line with respect to
the previous line. The distribution of this in stationary state is readily computed directly
from Theorem 4.3, bearing in mind that if Z is at (L−,L0) then its next state is (L0,L+),
where L+ is drawn from the reduced relative environment Ψ(0), such that (L0,L+) is
the first intersection along L0 is the chosen direction which is accepted by the rule
summarized by the acceptance probability (3.3). We obtain

Corollary 4.4. In the situation of Theorem 4.3, when Ψ is stationary, the distribution
of the log of the speed of the current line relative to the speed of the previous line has
density given by the (possibly asymmetric) Laplacian density prescribed by (4.8), with
mean value given by∫ ∞

−∞
yfα,γ(y) dy =

1

γ − 1
− 1

α− (γ − 1)
=

α− 2(γ − 1)

(γ − 1)(α− (γ − 1))
. (4.9)

Proof. Leaving (L−,L0), Z encounters intersections with lines of Ψ(0) according to a
speed-marked Poisson process with intensity measure v−γ dv ds, where v is now the
speed of the new line relative to the speed of L0 and s is the scaled distance along
L0 from (L−,L0). Note that the mark measure does not have finite mass. We have to
thin this marked Poisson process with retention probability min{1, vα}, according to the
acceptance probability (3.3) (bearing in mind that v is the relative speed of the new
line), so the mark distribution of the retained lines does have finite mass. Accordingly
the mark distribution of retained lines, and thus the relative speed of the new line, is
proportional to (hence equal to) (4.8).

In particular the log-relative-speed density has zero mean in the symmetric case,
when α = 2(γ − 1), in which case the log-relative-speed stationary distribution is is
symmetric and is given by the Laplace or double-headed exponential distribution, with
rate parameter γ − 1, and density

f2(γ−1),γ(y) =
γ − 1

2
e−(γ−1)|y| . (4.10)
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Finally note that the reduced relative environment process, and hence the relative en-
vironment process, is very far from being irreducible. Indeed, any particular realization
of the state Ψ of the reduced environment process defines a countable set of intersection
angles A = {<)(L1,L2)) : (L1,L2) ∈ (Ψ×Ψ) \∆} which remains time-constant under the
evolution of Ψ. But Ψ has equilibrium distribution given by the SIRSN candidate Π, and
there will be zero probability of any of the countably many intersections of lines from
Π having an angle belonging to a fixed countable set. Indeed, by the Slivnyak-Mecke
theorem (Theorem 3.4) we know that for any fixed angle φ we must have

E

 ∑
(L1,L2)∈(Π×Π)\∆

I [<)(L1,L2) = φ]

 =

∫ ∫
I [<)(L1,L2) = φ] ν( dL1)ν( dL2) = 0.

Thus conventional Markovian arguments cannot be applied. However, as we will see in
the next section, ergodic theory allows us to prove the results we need.

5 Long-term behaviour of SIRSN-RRF speed

If Z = (Z0, Z1, . . .) is the (discrete-time) SIRSN-RRF and if V = (V0, V1, . . .) yields
the corresponding sequence of speeds for the current line, then the relative speed
change Vn/Vn−1 can be determined using only Ψn the relative environment (relativized
by centering, rotating, and scaling). Theorem 4.3 implies that the log-relative speed-
changes Un = log(Vn/Vn−1) form a stationary sequence, if the initial relative environment
is given the stationary distribution discussed in the previous section, and thus U0 is given
the equilibrium density specified in Equation (4.8). We may therefore apply the non-
ergodic part of Birkhoff’s ergodic theorem (see for example Kallenberg, 2002, Theorem
10.6) to show

1

n
log(Vn/V0) =

1

n

n∑
m=1

Um → E [U0|I] , (5.1)

where I is the σ-algebra of shift-invariant events for the random process U , and conver-
gence is both almost sure and in L1.

It immediately follows that, away from the critical case α = 2(γ − 1), the speed Vn
has at least a positive chance of either diverging to +∞ exponentially fast as n→∞ (if
α > 2(γ − 1)) or converging to 0 exponentially fast as n→∞ (if α < 2(γ − 1)). We may
therefore rule out non-critical cases (α 6= 2(γ − 1)) in our search for an example which is
speed-neighbourhood-recurrent.

Suppose it can be shown that Ψ (and therefore U ) is ergodic, so that we can replace
E [U0|I] by E [U0] in (5.1). In the non-critical cases discussed above, this means we can
replace “has at least a positive chance” by “will almost surely end up”. But in the critical
case E [U0] = 0 is not sufficient in itself to guarantee neighborhood-recurrence for U .
However in the ergodic case neighborhood-recurrence actually follows rather simply
from the celebrated (but unpublished) Kesten, Spitzer and Whitman range theorem
(described by Spitzer, 1976, page 38). In its original form the range theorem implies
concerns recurrence for integer-valued stationary ergodic processes of zero mean. The
real-valued / neighbourhood recurrent case is a simple variation on the original idea:

Theorem 5.1. (Kesten-Spitzer-Whitman, real-valued case.) Suppose U1, . . . , Un, . . . form
a stationary ergodic sequence, with E [U1] = 0. Set Wn = U1 + . . .+Un. Then for all ε > 0

it is the case that

P [|Wn −W0| ≤ ε infinitely often in n] = 1 .

Proof. Birkhoff’s ergodic theorem guarantees that Wn/n→ 0 almost surely, hence

n−1 sup{|W1|, . . . , |Wn|} → 0 almost surely. (5.2)
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Set An = [|Wm −Wn| > ε for all m > n].
Applying Birkhoff’s ergodic theorem again,

n−1(I [A1] + . . .+ I [An]) → P [A0] . (5.3)

If m 6= n then |Wm −Wn| > ε on An ∩Am, and therefore a simple packing argument
shows that

n−1(I [A1] + . . .+ I [An]) ≤ (nε)−1 sup{|W1|, . . . , |Wn|} . (5.4)

Letting n → ∞ in (5.4) and using (5.2), we can deduce from (5.3) that P [A0] = 0.
Consequently

P [|Wn −W0| ≤ ε at least once for n > 0] = 1 .

The same argument applies for the sub-sampled process (W0,Wm,W2m, . . .), for any
sub-sampling gap m > 0. Therefore the event

⋂
m

⋃
n≥m[|Wn −W0| ≤ ε] happens almost

surely. Consequently it is almost sure that Wn returns to within ε of W0 for infinitely
many n and the result follows.

Accordingly speed-neighborhood-recurrence is established in the critical case α =

2(γ − 1) if we can show that the reduced environment process Ψ is ergodic. This is the
main result of this paper:

Theorem 5.2. Given a SIRSN-RRF Z on a Poisson line SIRSN or SIRSN candidate Π,
parametrized by α > γ − 1 where γ is the Poisson line SIRSN parameter, the relative
environment process Ψ for the SIRSN-RRF Z is ergodic.

Proof. The key part of the argument is a variation on an argument of Kozlov (1985,
Lemma 1, page 82).

Firstly, consider the process Ψ of the relative environment viewed from the particle.
Let h be a bounded harmonic function on the relative environment state-space (harmonic
with respect to the process Ψ). It suffices to show that h(Ψn) is almost surely constant in
(discrete) time n.

Now consider

E
[
(h(Ψ0)− h(Ψ1))2

]
= 2 E

[
h(Ψ0)2

]
− 2 E [h(Ψ0)h(Ψ1)] = 0 ,

where the first step follows from stationarity and the second because h(Ψ) is a martingale.
Consequently P [h(Ψ1) = h(Ψ0)] = 1.

Secondly, using Ψ to explore the network represented by Π, we see that there is
a Π-measurable random variable H = H(Π) such that h(Ψn) = H(Π) for all n, for
environment Π. Moreover H(Π) inherits similarity-invariance from Ψ. It follows from
the ergodicity of Π (Theorem 3.5) that H(Π) must be non-random.

This together with Theorem 5.1 implies speed-neighborhood-recurrence for the RRF
Z, as required. It also shows that in non-critical cases the speed will either almost
surely diverge to infinity or almost surely converge to zero. Accordingly a version of
Conjecture 1.6 holds for the randomly-broken local Π-geodesics formed by a critical
SIRSN-RRF: in the critical case α = 2(γ − 1) the RRF provides a “randomly-broken local
Π-geodesic”, which avoids slowing down to zero speed (or speeding up to infinite speed).

We conclude this section with a formal statement of the speed-neighborhood-re-
currence result.

Theorem 5.3. Let Π be a Poisson line SIRSN or SIRSN candidate with parameter γ ≥ 2.
Then there exists a (discrete-time) SIRSN-RRF Z on Π (an RRF with similarity-invariant
dynamics with zero defect) such that the speed process V (given by Vn = v(L0) when
Zn = (L−,L0)) almost surely returns infinitely often to any neighbourhood of V0.
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Proof. Bearing in mind the characterization (Theorem 3.6) of such SIRSN-RRF by index
α > γ − 1, we choose the SIRSN-RRF with critical index α = 2(γ − 1). Considering the
relative environment process Ψ run in stationarity, and noting that in stationarity the
mean log-relative speed U = log(V ) has mean zero (Theorem 4.3), and forms an ergodic
process (Theorem 5.2), the desired speed-neighborhood-recurrence result follows from
the adapted Kesten-Spitzer-Whitman Theorem 5.1.

6 Conclusion

This paper defines and characterises SIRSN-RRF (similarity-equivariant discrete-time
Rayleigh random flights taking place on scale invariant random spatial networks) using
an axiomatic approach to scattering processes. It is shown that the relative environment
viewed from the SIRSN-RRF is ergodic stationary, and that there exists a critical SIRSN-
RRF whose speed process is neighborhood-recurrent. We offer this as evidence in favour
of Conjecture 1.6, that Π-geodesics in a Poisson line SIRSN never come to a complete
halt, and therefore can be constructed using doubly infinite sequences of segments taken
from the Poisson line SIRSN.

We note that the abstract approach to scattering set out in Section 2 merits further
exploration in its own right.

In conclusion, we briefly discuss some points going beyond the question of speed-
neighbourhood recurrence in the critical case.

A little more can be said concerning the two non-critical cases. Bearing in mind
Corollary 4.4, if α < 2(γ − 1), so that the log-relative-speed distribution of the next line
relative to the current line for the SIRSN-RRF has negative mean, then ergodicity of
the relative environment means that the SIRSN-RRF process itself must almost surely
converge to a limiting random point as time tends to infinity. This is because its speed
must tend to zero, and so almost surely it must eventually get trapped in a cell of the
proper Poisson line tessellation formed by Π≥ε (recall Π≥ε is the part of Π for which
speeds are higher than some ε > 0). The trapping occurs as ε → 0, since Π≥ε is a
proper Poisson line tessellation, increasing monotonically as a random set as ε → 0,
with intensity tending to infinity and with cells shrinking down to zero size. Since the
SIRSN-RRF has positive chance of not escaping from Π \Π≥ε onto Π≥ε for large time,
and has a positive chance of moving freely within the current connected component of
Π \Π≥ε (by considerations akin to those of the irreducibility Corollary 3.10), it follows
that the limiting point of the SIRSN-RRF must indeed be random. We call this case the
converging case.

On the other hand, if α > 2(γ − 1), then the log-relative-speed distribution of the
next line relative to the current line for the SIRSN-RRF has positive mean, and so the
SIRSN-RRF process must almost surely diverge to infinity. This is because its speed
must tend to infinity (using again ergodicity of the relative environment), and so almost
surely the process must get trapped on Π≥v for any v > 0. The divergence occurs as
v →∞, since Π≥v is a proper Poisson line tessellation, decreasing monotonically as a
random set as v →∞, with intensity tending to zero, and therefore with cells blowing up
to arbitrarily large size with cell boundaries almost surely being eventually arbitrarily
far from the origin o. We call this case the diverging case.

Whether the case is critical, diverging, or converging, the discrete-time process is
defined for all time (since it will take an infinite number of jumps for the speed to exceed
all bounds, or to reduce to zero). Consequently the continuous-time variant (defined
by interpolating between scatterings using top-speed linear motion) is defined for all
time in the critical case α = 2(γ − 1). More generally, under stationarity consider Palm-
conditioning on the current line at the nth scattering instant. The marginal distribution of
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the distance Dn travelled till next scattering must be exponentially distributed, because
the pattern of speed-marked intersections on the current line is Poisson. Note that
Tn = Dn/Vn is the time till the next scattering. Now Dn/V

γ−1
n is a function of the

relative environment Ψn (using the scaling transformation (1.3)) and therefore forms an
ergodic sequence. Considering independent thinning of all lines for which scattering
fails, one calculates the (conditioned) exponential rate of Dn/V

γ−1
n = Tn/V

γ−2
n to be

α
α−(γ−1) . By the ergodic theorem it follows that 1

n

∑n
r=0 Tr/V

γ−2
r converges almost surely

to α−(γ−1)
α . Thus in the non-SIRSN case of γ = 2 it follows that scattering happens at a

constant rate in time, and thus the continuous process will be defined for all time.
In the SIRSN case of γ > 2, if the diverging case holds (so α > 2(γ − 1)) then Vn will

eventually tend to∞ at a geometric rate. Thus in that case almost sure convergence of
1
n

∑n
r=0 Tr/V

γ−2
r to a positive constant forces us to conclude that

∑n
r=0 Tr diverges to∞,

and therefore again the continuous process will be defined for all time.
In contrast, in the converging case α < 2(γ − 1) a similar argument shows that the

continuous-time process will reach zero-speed in finite time, trading off the asymp-
totically linear decrease of the log-speed against the asymptotically linear increase of∑n
r=0 Tr/V

γ−2
r .

In the diverging case α > 2(γ − 1) it is natural to ask whether the (discrete or
continuous time) scattering process achieves a limiting direction as viewed from o. In
fact it will not do so. This follows by an argument involving:

(i) an ergodic theorem for Π under scaling symmetries: (this is proved in the same
manner as Theorem 3.5 but using the r-θ coordinatization used in Equation (1.1)
for the intensity measure ν of Π, instead of the s-φ parametrization used for
Equation (1.2));

(ii) a demonstration that if Cv is the zero-cell for Π≥v (the Crofton cell containing the
origin for the corresponding tessellation) then there is p > 0 such that if Z0 lies in
Cv then p is a lower bound for the probability that Z makes a complete circuit of
∂Cv when first hitting ∂Cv. (This is established by noting that by scaling it suffices
to consider v = 1; then the relevant probability can be estimated by thinning Π<1

such that lines are only retained if they hit ∂C1 and additionally will not scatter
Z on the two occasions when its circuit encounters the line in question.) In fact
Calka (2002) gives distributional bounds on the out-radius of C1, though here we
need only use the fact that C1 is stochastically bounded;

(iii) finally combining these two to show that

P [Z makes a circuit of Cn for infinitely many n] = 1 .

Since Cn will intersect any fixed line for large enough n, it follows that Z will eventually
visit any fixed line, and therefore cannot be eventually confined within any wedge, and
therefore cannot possess a limiting direction.

We conclude with some questions for further work.
In the critical case α = 2(γ − 1) it is an open question whether the (discrete or con-

tinuous time) process (as opposed to its speed) is positive-recurrent on neighborhoods
of the origin o. Note that simple arguments imply that positive-recurrence on neigh-
bourhoods would force the conclusion that the process was point -recurrent; if Z will
always eventually return to a neighbourhood A of the origin then it may (and therefore
eventually will) move on to the intersection A ∩ Π≥v between the neighbourhood and
the proper Poisson line process Π≥v (choosing the positive speed v depending on Π so
that A∩Π≥v 6= ∅); irreducibility (Lemma 3.10) then implies that Z has positive chance of
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visiting any specified point on A ∩Π≥v, and therefore will succeed in doing so eventually
after repeated visits to A ∩ Π≥v. However there is some evidence that in fact Z is
transient: Z is caricatured by the two-dimensional integrated Brownian motion

∫
V ds

(for V a 2-dimensional Brownian motion), which can be shown almost surely to have only
finite total length of path within any bounded neighbourhood of its starting point, and
thus to be transient in the sense of almost surely eventually leaving this starting point
never to return.

It is natural to ask whether some kind of central limit behaviour can be established.
Certainly this question makes sense for the log-speed process, as this is produced by
partial sums of the stationary ergodic process of log-relative speeds. We leave this
question to further work, but note that the approach to this will depend a great deal on
whether or not the scattering process itself is point-recurrent.

Central limit behaviour for the scattering process itself is complicated by the fact
that in the true SIRSN case γ > 2 the times between scattering have statistics depending
monotonically on the current speed (see remarks earlier in this section). However it may
be possible to formulate the process as being approximated by a constructed process
based on a Brownian motion, using the coupling techniques of Kendall (1987).

It has been noted that the SIRSN-RRF defined here cannot exist on high-dimensional
SIRSN (with γ > d > 2), for the simple reason that lines of Poisson line processes in
space of dimension 3 or higher will almost surely never intersect. However it does make
sense to ask whether this construction can be generalized to line patterns in 3-space
formed by a Poisson process of planes. However it would first be necessary to extend
the results of Kendall (2017) and Kahn (2016) to this situation. Finally, it would be an
interesting exercise to establish similar results for Rayleigh random flights on Aldous’s
(2014) binary hierarchy SIRSN.

References

D. J. Aldous and M. T. Barlow. On countable dense random sets. In Seminar on Probability, XV
(Univ. Strasbourg, Strasbourg, 1979/1980) (French), volume 850 of Lecture Notes in Math.,
pages 311–327. Springer, Berlin-New York, 1981. MR-0622573

D. J. Aldous. Scale-invariant random spatial networks. Electron. J. Probab., 19:no. 15, 41, 2014.
doi: 10.1214/EJP.v19-2920. MR-3164768

D. J. Aldous and K. Ganesan. True scale-invariant random spatial networks. Proc. Natl. Acad. Sci.
USA, 110(22):8782–8785, 2013. ISSN 0027-8424. doi: 10.1073/pnas.1304329110. MR-3082274

P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding. Statistical models based on counting
processes. Springer Series in Statistics. Springer-Verlag, New York, 1993. ISBN 0-387-97872-0.
doi: 10.1007/978-1-4612-4348-9. MR-1198884

S. Banerjee and W. S. Kendall. Rigidity for Markovian maximal couplings of elliptic diffusions.
Probab. Theory Related Fields, 168(1-2):55–112, 2017. ISSN 0178-8051. doi: 10.1007/s00440-
016-0706-4. MR-3651049

M. T. Barlow, J. W. Pitman, and M. Yor. On Walsh’s Brownian motions. In Séminaire de Probabilités,
XXIII, volume 1372 of Lecture Notes in Math., pages 275–293. Springer, Berlin, 1989. doi:
10.1007/BFb0083979. MR-1022917

N. Berestycki. Diffusion in planar Liouville quantum gravity. Ann. Inst. Henri Poincaré Probab.
Stat., 51(3):947–964, 2015. ISSN 0246-0203. doi: 10.1214/14-AIHP605. MR-3365969

J. Bierkens, P. Fearnhead, and G. O. Roberts. The zig-zag process and super-efficient sampling
for Bayesian analysis of big data. Ann. Statist., 47(3):1288–1320, 2019. ISSN 0090-5364. doi:
10.1214/18-AOS1715. MR-3911113

P. Calka. The distributions of the smallest disks containing the Poisson-Voronoi typical cell and
the Crofton cell in the plane. Adv. in Appl. Probab., 34(4):702–717, 2002. ISSN 0001-8678. doi:
10.1239/aap/1037990949. MR-1938938

EJP 25 (2020), paper 124.
Page 35/36

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0622573
https://mathscinet.ams.org/mathscinet-getitem?mr=3164768
https://mathscinet.ams.org/mathscinet-getitem?mr=3082274
https://mathscinet.ams.org/mathscinet-getitem?mr=1198884
https://mathscinet.ams.org/mathscinet-getitem?mr=3651049
https://mathscinet.ams.org/mathscinet-getitem?mr=1022917
https://mathscinet.ams.org/mathscinet-getitem?mr=3365969
https://mathscinet.ams.org/mathscinet-getitem?mr=3911113
https://mathscinet.ams.org/mathscinet-getitem?mr=1938938
https://doi.org/10.1214/20-EJP526
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rayleigh Random Flights on SIRSN

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic geometry and its applications. Wiley
Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, third edition, 2013.
ISBN 978-0-470-66481-0. doi: 10.1002/9781118658222. MR-3236788

M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffusion stochas-
tic models. J. Roy. Statist. Soc. Ser. B, 46(3):353–388, 1984. ISSN 0035-9246. With discussion.
MR-0790622

C. Garban, R. Rhodes, and V. Vargas. Liouville Brownian motion. Ann. Probab., 44(4):3076–3110,
2016. ISSN 0091-1798. doi: 10.1214/15-AOP1042. MR-3531686

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov chain Monte Carlo in prac-
tice. Interdisciplinary Statistics. Chapman & Hall, London, 1996. ISBN 0-412-05551-1. doi:
10.1007/978-1-4899-4485-6. MR-1397966

N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions. Vol. 1. Wiley
Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John
Wiley & Sons, Inc., New York, second edition, 1994. ISBN 0-471-58495-9. A Wiley-Interscience
Publication. MR-1326603

J. Kahn. Improper Poisson line process as SIRSN in any dimension. Ann. Probab., 44(4):2694–2725,
2016. ISSN 0091-1798. doi: 10.1214/15-AOP1032. MR-3531678

O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York).
Springer-Verlag, New York, second edition, 2002. ISBN 0-387-95313-2. doi: 10.1007/978-1-4757-
4015-8. MR-1876169

F. P. Kelly. Reversibility and stochastic networks. Wiley Series in Probability and Mathematical
Statistics. John Wiley & Sons, Ltd., Chichester, 1979. ISBN 0-471-27601-4. MR-0554920

W. S. Kendall. Brownian motion, computer algebra, and the statistics of shape. In Geometrization of
statistical theory (Lancaster, 1987), pages 171–192. ULDM Publ., Lancaster, 1987. MR-0973708

W. S. Kendall. Stationary countable dense random sets. Adv. in Appl. Probab., 32(1):86–100, 2000.
ISSN 0001-8678. doi: 10.1239/aap/1013540024. MR-1765169

W. S. Kendall. From random lines to metric spaces. Ann. Probab., 45(1):469–517, 2017. ISSN
0091-1798. doi: 10.1214/14-AOP935. MR-3601654

S. M. Kozlov. The averaging method and walks in inhomogeneous environments. Uspekhi Mat.
Nauk, 40(2(242)):61–120, 238, 1985. ISSN 0042-1316. MR-0786087

B. B. Mandelbrot. Fractals: form, chance, and dimension. W. H. Freeman and Co., San Francisco,
Calif., revised edition, 1977. Translated from the French. MR-0471493

H. P. McKean. Probability: the classical limit theorems. Cambridge University Press, Cambridge,
2014. ISBN 978-1-107-62827-4; 978-1-107-05321-2. doi: 10.1017/CBO9781107282032. MR-
3445370

K. Pearson. The problem of the random walk. Nature, 72:294, 1905. doi: doi:10.1038/072294b0.

F. Spitzer. Principles of random walk. Graduate Texts in Mathematics, vol. 34. Springer-Verlag,
New York-Heidelberg, second edition, 1976. MR-0388547

Acknowledgments. The author acknowledges the support of the Isaac Newton Institute
for Mathematical Sciences, Cambridge, under EPSRC grant EP/K032208 (“Random
Geometry” programme), by the Alan Turing Institute under EPSRC grant EP/N510129,
and also by EPSRC grants EP/K013939 and EP/R022100 for the author’s research.

This is a theoretical research paper and, as such, no new data were created during
this study.

EJP 25 (2020), paper 124.
Page 36/36

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3236788
https://mathscinet.ams.org/mathscinet-getitem?mr=0790622
https://mathscinet.ams.org/mathscinet-getitem?mr=3531686
https://mathscinet.ams.org/mathscinet-getitem?mr=1397966
https://mathscinet.ams.org/mathscinet-getitem?mr=1326603
https://mathscinet.ams.org/mathscinet-getitem?mr=3531678
https://mathscinet.ams.org/mathscinet-getitem?mr=1876169
https://mathscinet.ams.org/mathscinet-getitem?mr=0554920
https://mathscinet.ams.org/mathscinet-getitem?mr=0973708
https://mathscinet.ams.org/mathscinet-getitem?mr=1765169
https://mathscinet.ams.org/mathscinet-getitem?mr=3601654
https://mathscinet.ams.org/mathscinet-getitem?mr=0786087
https://mathscinet.ams.org/mathscinet-getitem?mr=0471493
https://mathscinet.ams.org/mathscinet-getitem?mr=3445370
https://mathscinet.ams.org/mathscinet-getitem?mr=3445370
https://mathscinet.ams.org/mathscinet-getitem?mr=0388547
https://doi.org/10.1214/20-EJP526
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Rayleigh random flights (RRF) and abstract scattering
	Scale-invariant RRF on SIRSN (SIRSN-RRF)
	Environment viewed from the SIRSN-RRF
	Long-term behaviour of SIRSN-RRF speed
	Conclusion

