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Abstract: Ex-vivo pH profiling of the upper gastrointestinal (GI) tract (of a mouse) in both 

the absence and presence of pharmacological agents aimed at altering acid/bicarbonate 

production, is reported using an electrochemical pH probe, for the first time. Three pH 

electrodes were assessed for suitability using a GI tract biological mimic buffer solution 

containing 0.5 % mucin. These include a traditional glass pH probe, an iridium oxide (IrOx) 

coated electrode (both potentiometric) and a quinone (Q) surface-integrated boron doped 

diamond (BDD-Q) electrode (voltammetric). In mucin the timescale for both IrOx and glass 

to obtain stable pH readings was in the ~100’s of s, most likely due to mucin adsorption, in 

contrast to 6 s with the BDD-Q electrode. Both the glass and IrOx pH electrodes were also 

compromised on robustness due to fragility and delamination (IrOx); contact with the GI 

tissue was an experimental requirement. BDD-Q was deemed the most appropriate. Ten 

measurements were made along the GI tract, esophagus (1), stomach (5) and duodenum (4). 

Under untreated conditions (buffer only), the BDD-Q probe tracked the pH from neutral in 

the esophagus, to acidic in the stomach and rising to more alkaline in the duodenum. In the 

presence of omeprazole, a proton pump inhibitor, the body regions of the stomach exhibited 

elevated pH levels. Under melatonin treatment (a bicarbonate agonist and acid inhibitor), 

both the body of the stomach and the duodenum showed elevated pH levels. This study 

demonstrates the versatility of the BDD-Q pH electrode for real-time ex-vivo biological tissue 

measurements.  
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Introduction 

Disturbances in the pH homeostasis of the upper gastrointestinal (GI) tract, leads to 

many different health issues including gastritis, gastroduodenal ulceration, dyspepsia, and 

gastroesophageal reflux disease (GERD).1–3 Under healthy conditions, the pH in the upper GI 

tract is maintained at ~7 in the esophagus, dropping to ~2 in the stomach and rising to pH 5-6 

in the duodenum.4–6 The low pH in the stomach is due to gastrin-stimulated proton-potassium 

pumps7 in oxyntic glands secreting gastric acid.8 Gastrin is secreted in response to chemical 

and mechanical stimulus.9 In the duodenum, production and secretion of bicarbonate 

dominates, causing partial neutralization of acid entering from the stomach and resulting in a 

pH rise.10 Alterations in gastric acid production and/or bicarbonate excess or deficiency result 

in disturbances to the pH homeostasis. Drugs such as omeprazole, treat excess acid 

production disorders such as GERD by reducing acid production in the stomach, due to their 

action as a proton pump inhibitor (PPI).1,11 The hormone, melatonin, has been used 

effectively in combination with omeprazole for GERD treatment,12 as it provides gastric 

mucosal protection by inhibiting acid secretion, whilst stimulating duodenal bicarbonate 

secretion.13,14 Detecting pH changes across the GI can offer vital information to aid diagnosis 

and efficacy of treatments for GI related illnesses. 

pH measurements, in general, are typically performed using potentiometric glass pH 

sensors.15 These electrodes show a Nernstian (-59 mV/pH unit) response and high selectivity 

towards protons (H+).15 However, the glass membrane is fragile, the sensors can be bulky, the 

electrodes often require frequent recalibration due to potential drift, and a stable pH response 

can take minutes, dependent on solution conditions.16 When miniaturization of the sensor is 

required, metal-metal oxide electrodes, in particular iridium oxide (IrOx) films are often 

used.17–22 When electrochemically deposited, IrOx films exhibit Nernstian to super-Nernstian 

responses (-60 to -80 mV/pH unit).20,23–25 Such electrodes have shown variability in response 

time, with measurement times ranging from 0.3 s to 190 s;20,23,26–28 the longer response times 

are associated with increases in solution alkalinity.20,23 High concentrations of chloride have 

been shown to result in film dissolution,18 suggesting that IrOx films are not suitable for long-

term application in chloride-containing systems. 

Quinone (Q) functionalized carbon-based electrodes, operated as voltammetric pH 

sensors, have also attracted interest, as the quinones undergo proton coupled electron transfer 

(Q + 2H+ + 2e- → QH2) and thus show a Nernstian voltammetric pH response.29 The 

quinones are either directly integrated into the electrode surface, as is the case for sp2 bonded 
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carbon materials30–33 and hybrid sp2-boron doped diamond electrodes (BDD-Q),34 or are 

tethered chemically to the electrode surface.35,36 The latter is far more susceptible to 

degradation if the electrode requires mechanical cleaning. Q-electrodes perform well under 

buffered conditions, providing a pH response in the time taken to produce a voltammetric 

scan (i.e. seconds).32–34 In unbuffered solutions, the situation is more complicated due to local 

proton depletion/accumulation during the voltammetric measurement. The use of low Q 

surface coverages coupled with pulsed voltammetric measurements37 or Q structures that 

promote inter and intra-molecular hydrogen bonding,38,39 have been explored to negate this 

effect. 

There is limited information concerning pH measurements across the upper GI tract; 

measurements have largely focused on the stomach only, ex-vivo and in-vivo. For example, 

IrOx electrodes were used ex-vivo to measure the pH of isolated stomach tissue.40,41 To 

minimize electrode fouling, measurements were made under flow, however, this comes at a 

loss of spatial resolution due to flow-induced mixing of local pH gradients. In-vivo pH 

measurements of gastric acid in the stomach were carried out using glass potentiometric 

electrodes,42,43 whilst a BDD microelectrode placed in the stomach of a mouse was used to 

record stomach pH.44 The latter measured the amperometric signal associated with proton 

reduction, however, unlike the techniques highlighted above, lacks selectivity for protons, 

any redox species active at the operating potential will be reduced. Although still in their 

infancy, in-vivo pH measurements have been performed using an ingestible wireless 

transmitting polyurethane capsule (SmartPill®)45 that records pH, pressure, and temperature 

during transit.46,47 The pH component of the SmartPill® is an ion-selective field effect 

transistor. Such devices suffer, however, from frequent loss of signal, large pH-drift, and 

difficulty in accurately determining the location of the capsule.5  

In this paper we map the pH profile of the upper GI tract of a mouse, under first 

homeostasis and then in response to pharmacological treatment (both omeprazole and 

melatonin). The measurement is made under diffusion only conditions, to minimize flow 

induced pH mixing, and the electrode itself is used to mechanically stimulate the tissue in 

order to induce acid secretion. To determine the most suitable pH technology for this 

measurement, we first assess the suitability of three different electrochemical approaches, 

traditional pH sensitive glass, IrOx and BDD-Q in physiologically relevant 0.5 % w/v mucin. 

Mucin, which coats the surface of epithelial organs is a useful mimic for the GI 

environment,48–50 and a common electrode fouling agent.50 The most promising methodology 

which permits rapid measurement of pH, whilst also maintaining tissue viability, is applied. 
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Experimental 

Solutions 

Solutions were prepared using ultrapure water (Milli-Q, resistivity ≥ 18.2 MΩ cm at 

25 °C). All chemicals were used as received. Carmody buffers were prepared over the 

physiological range pH 3-8 using boric acid (H3BO3, 99.97%, Sigma-Aldrich), citric acid 

monohydrate (C6H8O7, ≥99.5%, Sigma-Aldrich), and tertiary sodium phosphate (Na3PO4, 

≥95%, Sigma-Aldrich).51 BDD/BDD-Q electrode characterizations were conducted in 0.1 M 

KNO3 (99%, Sigma-Aldrich), 1 mM (Ru(NH3)6
3+/2+ (99%, Strem Chemicals), 0.1 M H2SO4 

(Fisher Scientific), and pH 2 Carmody buffer. The IrOx deposition solution was prepared 

from iridium tetrachloride hydrate (99.9%, Alfa Aesar), hydrogen peroxide solution (H2O2, 

30% w/w, Fisher Scientific), oxalic acid dihydrate (HO2CCO2H, ≥99%, Sigma Aldrich), and 

anhydrous potassium carbonate (K2CO3, ≥99%, Fisher Scientific). Mucin from porcine 

stomach (Sigma-Aldrich) 0.5 % w/v in HEPES buffer solution, pH 7.4 (135.5 mM NaCl, 5.9 

KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 5.0 mM HEPES, 3.5 mM NaOH, 10.0 mM glucose) 

was prepared and used as a biological mimic of the GI tract environment. pH measurements 

were made using a Mettler Toledo™ SevenGo pH portable meter and InLab® Expert Go-ISM 

glass probe (bulb size = 10 mm), kept in the Mettler Toledo™ InLab storage solution, when 

not in use. All pH electrodes were calibrated using Carmody buffers of pH 3, 4, 6, 7 and 8. 

Pharmacological tests were conducted on mouse GI tissue (2 months old, C57BL6) using 10 

μM omeprazole (C17H19N3O3S, Sigma-Aldrich), and 1 μM melatonin (C13N16N2O2, ≥98%, 

Sigma-Aldrich) in HEPES buffer solution. 

BDD and BDD-Q pH sensor fabrication and characterization 

Polycrystalline BDD cylinders of 1 mm diameter (357 µm thickness; boron dopant 

density >1020 B atoms cm-3; minimal sp2-carbon content, Element Six), polished on the top 

(growth) surface to approximately nanometer scale roughness, were machined from a 6 inch 

freestanding BDD wafer using a 355 nm Nd:YAG 34 ns laser micromachiner (E-355H-

ATHI-O system, Oxford Lasers). The BDD cylinders were cleaned by immersing in ~200 °C, 

concentrated H2SO4 (analytical reagent grade ≥ 95 %, Fischer Scientific) saturated with 

KNO3 for 30 mins. Samples were then rinsed with ultrapure water and cleaned in 

concentrated H2SO4 at ~200 °C for 30 minutes.52 The BDD cylinders were annealed at 600 

°C in air for 5 hours to remove any sp2 bonded carbon created during the laser machining 

process.52 To provide an Ohmic electric contact, Ti (10 nm) / Au (400 nm) was sputtered 

(Moorfields MiniLab 060 platform sputter/evaporator) onto the backside of the cylinder and 
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annealed at 400°C for 5 hours. These were then sealed in glass capillaries (O.D. 2 mm; I.D. 

1.16 mm, Harvard Apparatus Ltd., Kent, U.K.) using the procedure outlined previously.53  

For BDD-Q electrodes, the acid-cleaned and annealed BDD cylinders were laser 

micro-machined to produce a patterned hexagonal array of sixty-one sp2-carbon containing 

pits (diameter = 50±2 µm, depth = 5±2 µm, center-to-center spacing = 100 µm) into the 

growth face of the BDD, following a published procedure.34 Each pit was composed of a 

series of concentric rings, machined with a pulse fluence of ~14 J cm-2, with pulses pitched at 

1.5 µm, and rings pitched at 3 µm. After laser machining, the electrodes were acid cleaned at 

~200 °C for 30 min in concentrated H2SO4 saturated with KNO3, rinsed, followed by a final 

treatment in concentrated H2SO4 at ~200 °C for 30 minutes. This procedure leaves a robust 

form of sp2 bonded carbon, which has withstood the oxidative acid clean, on the BDD surface 

in the laser machined regions.52 An Ohmic contact was formed and the BDD-Q sealed in 

glass, as described above. The electrode surface and pit profiles were analyzed via white light 

interferometry (WLI: Contour GT, Bruker). 

Iridium oxide pH sensor fabrication and characterization 

The IrOx solution was prepared as described in literature;54,55 4.45 mM iridium 

tetrachloride, 1 mL H2O2 (30 % w/w) and 39 mM oxalic acid dehydrate were added 

sequentially to 100 mL water and stirred for 30 min, 10 min, and 10 min intervals 

respectively. Anhydrous potassium carbonate was added until a pH of 10.5 was achieved 

resulting in a pale yellow-green solution. This was stirred for 48 h until the solution had 

stabilized and the appearance changed to a blue color. The IrOx solution was refrigerated 

between uses. Anodic electrodeposition of the film onto a BDD electrode (1 mm diameter) 

was performed in the IrOx deposition solution by holding the electrode at +0.8 V versus a 

saturated calomel electrode (SCE), from a starting potential of 0.0 V, for 65 s.56 The pH 

response is reliant on the hydration of the film,17,18 therefore, the resulting film was hydrated 

in pH 7 Carmody buffer for two days prior to use and stored in this buffer solution when not 

in use. After exposure to mucin, the electrode was polished and a fresh IrOx film redeposited 

for repeat measurements. 

Electrochemical measurements 

Electrochemical measurements (voltammetric or open circuit potential (OCP)) were 

conducted using a potentiostat (CHI-760E, CH Instruments Inc., USA, or AutoLab 

PGSTAT128N, Metrohm, UK). For the BDD-Q electrode, measurements were made using a 

SCE (IJ Cambria Scientific Ltd., UK), or a non-leak silver-silver chloride reference electrode 
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(Ag|AgCl, Alvatek Ltd., UK), and a platinum wire (Goodfellow) counter electrode. Prior to 

use the electrochemical response and quinone surface coverages associated with the laser 

micromachined sp2 bonded carbon regions of the BDD-Q electrode were characterized using 

standard protocols described previously.34 The pH response of the BDD-Q electrode was 

determined using square wave voltammetry (SWV) using the following parameters: 

frequency = 150 Hz, amplitude = 100 mV, step potential = 1 mV.34 The BDD-Q electrode 

was stored dry when not in use. Between measurements, where necessary, the electrodes 

were polished with an alumina (0.05 μm, Buehler, Germany) paste on microcloth pads 

(Buehler), and then on a clean pad with ultrapure water. 

For the glass pH probe, as commercial pH meters provide the user with only the final 

pH reading, to access the OCP-time data, the pH probe was connected to an AutoLab 

PGSTAT128N potentiostat. The OCP was measured (data point every 0.1 s) against a non-

leak Ag|AgCl reference until the change in OCP was  0.1 mV (corresponding to 0.001 pH 

units respectively). Once stabilized the OCP was recorded for a further 30 s and the OCP data 

averaged over this time period, to give the final pH reading. The measurements were 

conducted in order of decreasing acidity. The glass pH electrode was stored in the Mettler 

Toledo™ InLab storage solution when not in use, and was cleaned in accordance with 

manufacturer guidelines by soaking the electrode in 0.1 M HCl solution.57 For IrOx, OCP 

measurements were conducted against a non-leak Ag|AgCl reference, using the CHI-760E 

and the same protocol adopted for making stable OCP measurements. These measurements 

were conducted by first decreasing pH and then increasing, in repeat cycles, obtaining at least 

three measurements at each pH. 

Field Emission Scanning Electron Microscopy 

Field-emission scanning electron microscopy (FE-SEM) was used to image the BDD-

Q pH electrode after the following sequence: (i) polish using alumina and rinse with ultrapure 

water, (ii) collect ten consecutive scans in 0.5% w/v mucin in HEPES buffer solution and 

rinse with ultrapure water. FE-SEM was performed using a Zeiss Supra 55VP, using an in-

lens detector at an acceleration voltage of 5 kV. 

Biological preparation 

Animal experiments were carried out in compliance with the relevant laws and 

institution (University of Brighton) guidelines. Experimental procedures were conducted 

under ARRIVE guidelines.58 C57BL6 male mice (2 months old) were euthanized using CO2 

gas. The esophagus, stomach, and duodenum were isolated and placed in HEPES buffer 
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solution (pH 7.4) prior to sample preparation. The tissue was then cut along the middle, 

lightly stretched, and pinned flat onto a polydimethylsiloxane (PDMS) plate using stainless 

steel pins (diameter = 50 μm), resulting in final tissue dimensions of ~ 1.5 x 5.5 cm. To keep 

the tissue viable, the pinned tissue was covered with HEPES buffer solution. 

Biological experiments 

For ex-vivo BDD-Q pH measurements, the tissue sample was positioned in the center 

of the PDMS plate, with the electrode mounted on a micromanipulator for reproducible 

placement on the tissue, counter and reference electrodes were positioned close-by (ES1, 

Figure S1). For each measurement, the BDD-Q electrode was brought into contact with the 

tissue (to mechanically stimulate acid production), and then retracted to ~ 0.5 mm using a 

micro-positioner to maintain a constant separation from the tissue; the tissue surface varied in 

height profile, especially in the mid-region of the stomach. After measurement, the electrode 

was removed, rinsed using ultrapure water, and returned to the tissue. One measurement was 

made on the esophagus, five on different regions of the stomach, and four on different 

regions of the duodenum. ESI 2, Figure S2, shows a schematic of the upper GI tract, 

outlining the areas where the measurements were made. The HEPES buffer was then replaced 

with omeprazole (10 μM)59 in HEPES buffer, to assess the influence of the PPI. The tissue 

was then perfused using HEPES buffer and treated with the hormone melatonin (1 μM),13 a 

stimulant for bicarbonate production in the duodenal mucosa, in HEPES buffer. Recordings 

commenced after 20 mins exposure to the specific treatment. 

Data analysis 

Data analysis was conducted using OriginPro 9.1 (OriginLab Corp.), Python 3.6 and 

GraphPad Prism 8. For BDD-Q the SWVs were smoothed using a rolling mean with a 

window of 10 data points, in order to remove low amplitude noise. The pH peak was 

identified using the first derivative method within the bounds +0.3 V to -0.2 V vs Ag|AgCl. 

Where the first derivative is equal to zero, a turning point occurs, and the peak minima are 

identified by a positive second derivative at that point. For each SWV, the peak current and 

potential values were recorded, and calibration curves were fitted using linear regression. To 

evaluate statistical differences in the pH of the tissue between treatments, a two-way 

ANOVA adjusted for Sidak correction was employed, an appropriate correction for multiple 

comparisons. Differences were considered statistically significant at a probability of p < 0.05. 
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Results and Discussion 

Potentiometric pH sensing technologies 

Figure 1 illustrates (i) the mode of action of the pH measurement and (ii) typical 

OCP-time traces in a solution containing 0.5 % w/v mucin in HEPES buffer, for (a) glass and 

(b) IrOx pH electrodes. 0.5 % was deemed physiologically relevant based on measurement of 

mucin concentration extracted from the GI tract of a mouse, after placement of tissue in 25 

mL of oxygenated Krebs buffer for a period of 1 hour. The glass and IrOx pH electrodes were 

calibrated by measuring the OCP in Carmody buffers (pH 3-8) before and after measurement 

in mucin. Between measurements the electrodes were gently rinsed with ultrapure water. For 

both electrodes, the calibrations pre- and post-placement in the mucin solution showed 

minimal difference in gradient and intercept (ESI 3, Figures S3 and S4). Using the pre-

mucin placement calibration data, the OCPs were converted to pH values as shown in 

Figures 1aii and bii. Note, whilst for the same IrOx electrode, the calibration gradient is 

unaffected by placement in 0.5 % mucin, for each freshly prepared IrOx electrode, different 

calibration gradients were recorded (ESI 3, Figure S4). This could be due to the variation in 

Ir3+/Ir4+ ratio, or the hydration level of the film.18,60 The fact that the ratio or hydration level 

of the film cannot be precisely controlled means the electrode cannot be reproduced exactly 

each time. 
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Figure 1. (ai) Schematic of a glass pH electrode, (bi) Schematic of an iridium oxide pH 

electrode with the redox reaction responsible for the pH response. Open circuit potential 

measurements were conducted in 0.5 % w/v mucin in HEPES solutions using (aii) glass pH 

electrode, and (bii) iridium oxide pH electrode. 

OCP measurements in 0.5 % mucin HEPES solution were performed until the 

response ≤ 0.1 mV. From the data collected two pH values were determined one at ≤ 1 mV 

and the other ≤ 0.1 mV, which correspond to 0.01 and 0.001 pH units respectively, reflective 

of the stability criteria available on a commercial pH meter. This procedure was performed in 

triplicate for each electrode to demonstrate reproducibility. The average time required for the 

glass electrode to obtain a stable pH response in the mucin solution was 150 ± 60 s (≤ 1 mV) 

and 750 ± 60 s (≤ 0.1 mV), n = 3 (same electrode). For comparison, in mucin-free media 

(Carmody buffer pH 4) the response time was measured as 65 ± 17 s (≤ 1 mV) and 165 ± 60 s 

(≤ 0.1 mV), n = 3. Figure 1aii displays the first 300 s where the largest changes are evident. 

ESI 4, Figure S5, shows 800 s of OCP data collection for both electrodes. The pH of mucin 

measured with the glass pH probe, assuming ≤ 1 mV accuracy was 5.10 ± 0.04 (n =3) and 

5.123 ± 0.013 (n=3) for ≤ 0.1 mV. A separate measurement in the same mucin solution using 
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the Mettler Toledo™ pH meter gave a pH of 5.020 ± 0.106 (automatic endpoint 

determination setting was set to 0.001 pH unit accuracy), n = 3 (same electrode and meter). 

In Figure 1bii, the OCP-time profile is also shown for the IrOx electrode in 0.5 % w/v 

mucin HEPES solution, over 300 s. Here the electrode can be seen to reach a stable pH of 

5.19 ± 0.08 ( 1 mV) and 5.200 ± 0.075 ( 0.1 mV) in 190  35 s and 330 ± 104 s 

respectively, (n = 3, three different electrodes). In mucin-free media (Carmody buffer pH 4) 

the response time was measured as < 1 s (for both ≤ 1 mV and ≤ 0.1 mV). For the glass and 

IrOx electrodes the decreased times to reach a stable reading in the Carmody buffer suggests 

that mucin presence is significantly affecting stabilization times, possibly due to time-

dependent adsorption effects.  

The longer the stabilization time, the less quickly the pH electrode is able to react to 

dynamic pH changes. For both electrodes fairly lengthy stabilization timescales are required 

which will exacerbate diffusional mixing of local pH gradients on the GI tissue. Moreover, 

given the mouse GI tract dimensions, Figure S2, to map areas of interest, ten pH 

measurements every few mm along the length of the tract, are required. The size of the glass 

pH bulb diameter used herein is ca. 10 mm, which poses a spatial problem for this 

application. Whilst it is possible to obtain pH-sensitive glass probes with smaller diameters 

(commercially 8-12 µm probes are available),61 reduced size comes with significantly 

increased fragility. An essential part of this experiment is mechanical stimulation of the 

tissue, in the vicinity of the measurement, by the probe itself; the use of fragile micro-glass 

pH electrode would prove challenging. Contact of the probe with the tissue, for stimulation, 

is also problematic for the IrOx-coated electrode, which whilst of an appropriate size (1 mm 

diameter), is likely to suffer from the film being compromised upon mechanical impact with 

the tissue.  

 

Voltammetric pH sensing technology 

Figure 2a shows a WLI of a BDD-Q pH sensor, illustrating the position of the sixty-

one laser-ablated pits in the BDD electrode surface. Figure 2b (inset) shows the first SWV 

scan at the BDD-Q electrode (0.6 to -0.3V, frequency: 150 Hz, amplitude: 0.1 V, increment: 

1 mV) recorded in 0.5 % w/v mucin in HEPES solution. The time taken for one SWV scan is 

only 6 s and is an advantage of the voltammetric approach over both the OCP timescales for 

the glass and IrOx pH electrodes. Prior to measurement in mucin, the BDD-Q electrode was 

calibrated in pH 3-8 Carmody buffers (n = 6 per buffer). After recording the ten SWV scans 
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(measurement time = 60 s), the BDD-Q electrode was gently rinsed and recalibrated. This 

procedure was repeated using the same electrode and two other BDD-Q electrodes (i.e. n = 4 

in total); calibrations shown in ESI 5, Figure S6. The pre- and post-calibrations, for each 

electrode, are very similar in gradient and intercept. The pre-mucin calibration was used to 

convert peak potential to pH. Figure 2b shows the pH values extracted from ten consecutive 

SWV scans in this media. 

 

 

Figure 2. (a) White light interferometry image of a BDD-Q pH electrode with the redox 

reaction responsible for the pH response, (b) average pH against scan number of ten 

consecutive SWV scans conducted in 0.5% w/v mucin in HEPES solution, with standard 

deviation error bars n = 4; inset shows a typical SWV scan for pH determination. 

 

FE-SEM images of the BDD-Q electrode surface (a) prior to measurement and (b) 

after ten consecutive SWV scans, removal from the 0.5 % mucin – HEPES solution and 

gentle rinsing of the electrode with water, are shown in Figure 3. In Figure 3a, the BDD 

grains (light and dark regions) are clearly visible, representing low and higher doped regions 

of the polished surface,62 with three recessed laser-machined pits evident, which contain the 

sp2 bonded carbon regions. After placement in mucin, running ten consecutive SWV scans 

and gently rinsing (Figure 3b), interestingly, whilst the image appears very similar, there is 

now little contrast, even though the imaging conditions were the same. This may suggest 

some mucin remaining on the surface even after the rinse process but is not conclusive. 

However, even if present, there is clearly not enough mucin to impact deleteriously on the 

calibration data, ESI 5. 
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Figure 3. FE-SEM images of BDD-Q pH electrode (a) polished with alumina slurry and 

rinsed, (b) after 10 consecutive SWV measurements in 0.5 % w/v mucin in HEPES buffer 

solution and rinsing. 

In the mucin-HEPES solution, taking the first scan data, a pH value of 4.950 ± 0.086 

was recorded. In comparison the Mettler Toledo™ pH meter recorded a value of 4.968 ± 

0.131 (n = 4, same pH probe and meter). The error is slightly lower for the BDD-Q electrode 

than the glass pH probe. Considering the repeat scans, if errors are ignored and the average 

pH per scan number (black square data in Figure 2b) is compared, the data does show a very 

small decrease in peak potential (from 0.197 V to 0.190 V), equivalent to a pH increase from 

4.951 to 5.057. The origin of this very small deviation in pH with repeat scans is under 

investigation. Mucin time-dependent adsorption63 may be one possibility. 

 

BDD-Q ex-vivo experiments 

Assessing all three pH electrodes, given the time required to record one pH 

measurement, the robustness of the electrode, and the minimal shift observed in the pre- and 

post-mucin calibrations, the BDD-Q electrode was deemed the most appropriate to map the 

pH profile of a mouse GI tract (Figure 4). Ten measurements were typically performed 

across the GI tissue sample, to include the esophagus (1), stomach (2-6) and duodenum (7-

10). 

 

Figure 4. Optical image of a mouse GI tract indicating the regions of pH measurement 

showing (1) esophagus, (2-6) stomach, and (7-10) duodenum. 

It was first necessary to validate that the pre-calibration of the BDD-Q electrode was 

not compromised by contact with the GI tract tissue. In order to assess the electrode 
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performance, nine measurements were performed across the GI tract (measurement 10 in 

Figure 4 was omitted due to tissue size), using three BDD-Q electrodes. Given the large 

variations in pH across the GI tract, the very small change in pH arising from the ten 

repetitive scans (Figure 2b) could be accommodated in this experiment. However, a short 

rinse step (~ 10 s) was included between each measurement. This was a precaution to remove 

any possible mucin (or other species) adsorption exacerbated from contact with the tissue, 

during mechanical stimulation and was adopted in all GI tract measurements. Moreover, even 

with this rinse step the timescale for BDD-Q measurements is still faster than that possible 

with glass pH and IrOx electrodes based on the 0.5 % mucin data in Figure 1a,bii. 

Importantly, calibration of the electrode pre- and post-tissue pH measurement showed 

minimal difference for all three BDD-Q electrodes (ESI 6, Figure S7) indicating the 

electrodes had not been compromised through contact with the tissue.  

BDD-Q pH measurements across the mouse upper GI tract are shown in Figure 5, (a) 

in HEPES buffer only, (b) with the addition of 10 μM omeprazole and (c) with the addition 

of 1 μM melatonin, under stationary conditions. During these measurements the BDD-Q 

electrode was brought into contact with the tissue, to create the mechanical stimulus needed 

for acid secretion. Six tissues were used in total, i.e. n = 6, with the same BDD-Q electrode. 

The pH values recorded in Figure 5, represent the mean of these six samples, with the sample 

standard deviation as error bars. The pH was calculated using the buffer calibration recorded 

prior to each tissue measurement. 
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Figure 5. BDD-Q electrode measurements of the pH across different regions of mouse 

gastrointestinal tract in (a) HEPES buffer solution only (green line), (b) 10 μM omeprazole 

in HEPES buffer solution (red line), and (c) 1 μM melatonin in HEPES buffer solution (blue 

line). Data represents an average of 6 tissue sample, with standard deviation error bars, 

where **p<0.01 and *p<0.05. Note the HEPES buffer measurement in (a-c) is the same data 

and was recorded prior to addition of either omeprazole or melatonin.  

 

In the absence of pharmacological treatments (Figure 5a), the esophagus is found to 

be neutral (E1 pH = 7.43 ± 0.097), while the stomach goes from neutral (S1 pH = 7.06 ± 

0.28) to slightly acidic (S2 pH = 5.29 ± 0.48; S3 pH = 5.13 ± 0.30), before becoming more 

alkaline (S4 pH = 6.46 ± 0.29; S5 pH = 6.56 ± 0.11) towards the duodenum, which itself is 

more alkaline (D1 pH = 5.75 ± 0.21; D2 pH = 6.03 ± 0.41; D3 pH = 6.16 ± 0.43; D4 pH = 

5.85 ± 0.13). The stomach pH is slightly higher than expected, but this is due to the acid 

secreted from the cells being buffered by the HEPES solution (pKa = 7.56). These results 

demonstrate the effectiveness of the BDD-Q electrode at recording GI tissue pH. Conducting 

these measurements under static conditions and in close proximity to the tissue, allows for 

accurate spatial pH measurement in multiple locations along the upper GI tract.  

Having successfully recorded pH measurements in physiologically typical tissue, the 

effects of pharmacological treatments were explored. Figure 5b shows the effect of adding 

omeprazole (10 μM) to the HEPES buffer solution. Here, a two-way ANOVA at a 5% 

significance level, with the Sidak correction for multiple comparisons was employed. The 

data demonstrates statistical significance in the pH of the body region of the stomach (S2 and 

S3), where the pH has risen, S2 pH = 5.79 ± 0.48; S3 pH = 5.64 ± 0.30, compared to that in 

untreated tissue. The tissue was then rinsed and left for 20 mins in HEPES buffer solution in 

order to help the tissue recover its original state. The buffer was then replaced with fresh 

solution containing 1 μM of melatonin in order to study the effect of this hormone on tissue 

pH. The pH response after melatonin treatment is presented in Figure 5c. Statistically 

significant differences in pH were observed in the duodenum and stomach (two-way 

ANOVA with Sidak correction). The D1-D4 regions of the duodenum and the body regions 

of the stomach (S2 and S3) all became more alkaline i.e. (D1 pH = 5.99 ± 0.25; D2 pH = 6.23 

± 0.35; D3 pH = 6.30 ± 0.37; D4 pH = 6.05 ± 0.36) and (S2 pH = 5.72 ± 0.24; S3 pH = 5.63 

± 0.46) compared to pH measurements in the untreated tissue. 

Omeprazole is a known PPI targeting the H+/K+-ATPase pump in the body regions of 

the stomach. The pH mapping measurements clearly highlight the ex-vivo action of 

omeprazole in suppressing gastric acid release in the body regions of the stomach (S2 and S3) 
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of the GI tract, whilst leaving the esophagus and duodenum unaffected. Upon addition of 

melatonin, a potent bicarbonate agonist,13,14 the pH probe demonstrates a statistically 

significant increase in pH in the duodenum regions of the GI tract (specifically D1, D2 and 

D4). Melatonin is also thought to inhibit gastric acid production,14 and the pH probe shows 

statistically higher pH, again in the body regions of the stomach compared to the untreated 

tissue. Whilst this response could be due to melatonin, however, as the pH values recorded 

are very similar to those determined in the presence of omeprazole, it is possible omeprazole 

was left behind, even after flushing the tissue with buffer post-treatment. 

Conclusion 

This study reports the first ex-vivo pH profile map of the upper GI tract (of a mouse) 

from esophagus to duodenum, in the absence and presence of the pharmacological agents, 

omeprazole and melatonin, using an electrochemical pH probe. For pH measurement in this 

environment, a pH probe was required which had a suitable (i) temporal resolution (the 

longer the timescale for measurement the greater the impact of diffusional mixing from 

neighboring GI zones); (ii) a useful spatial resolution ( 1 mm); (iii) robustness, as contact 

with the tissue was used to both mechanically stimulate acid release and aid in determining a 

constant height separation across the GI tract and (iv) minimal impact of biological 

adsorption. Three pH electrodes were assessed for their capabilities, glass, IrOx and BDD-Q 

pH electrodes. The former two were potentiometric in operation whilst the latter was 

voltammetric. In model GI tract environments (0.5% mucin containing buffer solutions), the 

timescales for both IrOx and glass pH to obtain stable pH readings was in the ~100’s of s, 

most likely due to mucin adsorption effects, in contrast with the BDD-Q electrode where a 

reading could be obtained in 6 s. The standard glass pH probe was too large to obtain the 

required spatial sensitivity. Both the glass and IrOx pH electrodes were also compromised on 

robustness due to their fragility (glass), especially when going smaller in size, and potential 

delamination (IrOx) issues. The BDD-Q pH sensor was deemed most favorable in terms of 

spatial and temporal resolution, and robustness and thus was employed for pH profiling of the 

GI tract.  

Ten measurements were made in total along the upper GI tract, one in the esophagus, 

five in the stomach and four in the duodenum. Under untreated conditions (buffer only), the 

BDD-Q pH probe tracked the pH falling from near neutral conditions in the esophagus, to 

acidic in the stomach and rising to more alkaline in the duodenum. The spatial resolution of 

the probe enabled clear differences to be resolved even within a particular zone e.g. the body 
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region of the stomach was found to be significantly more acidic than the outer regions. The 

pH response of the GI tract to pharmacological treatment was also tracked using the BDD-Q 

probe. In the presence of omeprazole, the body regions of the stomach exhibited elevated pH 

levels after treatment. In response to melatonin treatment, both the body regions of the 

stomach and the duodenum showed elevated pH levels. This study highlights the suitability 

of the BDD-Q electrode for the assessment of the efficacy of GI tract disorder treatment 

agents and in general, real-time ex-vivo tissue measurements. For all measurements, the probe 

was briefly rinsed in between measurement, to mitigate against any possible contamination 

during tissue contact. Future experiments will look to explore continuous measurement in this 

environment, without removal from solution, in addition to electrochemical in-situ cleaning 

(if required); possible only with a voltammetric probe.  
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