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Abstract
Monte Carlo simulation is used in Hammond and Sun (Econ Theory 36:303–325,
2008. https://doi.org/10.1007/s00199-007-0279-7) to characterize a standard stochas-
tic framework involving a continuum of random variables that are conditionally
independent given macro shocks. This paper presents some general properties of such
Monte Carlo sampling processes, including their one-way Fubini extension and reg-
ular conditional independence. In addition to the almost sure convergence of Monte
Carlo simulation considered in Hammond and Sun (2008), here we also consider norm
convergence when the random variables are square integrable. This leads to a neces-
sary and sufficient condition for the classical law of large numbers to hold in a general
Hilbert space. Applying this analysis to large economies with asymmetric informa-
tion shows that the conflict between incentive compatibility and Pareto efficiency is
resolved asymptotically for almost all sampling economies, following some similar
results in McLean and Postlewaite (Econometrica 70:2421–2453, 2002) and Sun and
Yannelis (J Econ Theory 134:175–194, 2007. https://doi.org/10.1016/j.jet.2006.03.
001).
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1 Introduction

Following the earlywritings byLucas and Prescott (1974) andBewley (1986),macroe-
conomists have made widespread use of a model of an economy with many agents
who face individual random shocks. These shocks are typically modelled as a con-
tinuum of random variables that are conditionally independent given common macro
level shocks. Proposition 4 in Hammond and Sun (2008), however, shows that in this
framework, the joint measurability condition that is usually imposed on a stochastic
process can be satisfied only if there is essentially no idiosyncratic risk at all. The
approach of Monte Carlo simulation, initiated in Hammond and Sun (2003) for the
symmetric case and extended in Hammond and Sun (2008) for the general case, can
be used to characterize when, even in the absence of the usual joint measurability
assumption, the standard stochastic framework for many heterogeneous agents facing
individual uncertainty may still be valid. This paper provides a systematic study of the
underlyingMonte Carlo sampling processes. We also present an application involving
allocations in large exchange economies with many asymmetrically informed con-
sumers. In particular, we show how Monte Carlo sampling helps resolve the conflict
between incentive compatibility and Pareto efficiency, which vanishes in the limit as
the number of agents tends to infinity.

Let

I × Ω � (i, ω) �→ gi (ω) ∈ X

be a process with a continuum of random variables, indexed by members i of an
atomless probability space (I , I, λ), all defined on the same sample probability space
(Ω,F , P), and taking values in a Polish space X . Let I∞ and X∞ denote theCartesian
product of infinitelymany copies of the sets I and X respectively,with typicalmembers
i∞ = 〈ik〉∞k=1 and x∞ = 〈xk〉∞k=1. Then the Monte Carlo sampling process G based
on g is a mapping

I∞ × Ω � (i∞, ω) �→ G(i∞, ω) = 〈g(ik, ω)〉∞k=1 ∈ X∞ (1)

When the process g has a stochasticmacro structure, as defined in Sect. 2.3, Theorem 1
shows that so does the Monte Carlo sampling process G. In this case, the process G
also has the property of admitting a “one-way Fubini extension” that makes G jointly
measurable with respect to an extension of the usual product σ -algebra.

TheMonte Carlo simulation approach in Hammond and Sun (2008) uses the almost
sure convergence of the sample averages. For a square-integrable process, we also
consider here the case of norm convergence. Based on the iterative extension of an
infinite product measure introduced in Hammond and Sun (2006b), we formulate a
“sharp” law of large numbers, requiring norm convergence of sample averages only for
all sequences outside an iteratively null set, rather than a smaller classical null set. We
prove that a process with square-integrable random variables satisfies this sharp law if
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and only if it is both Gel’fand-integrable and norm integrably bounded in the Hilbert
space of square integrable random variables. In other words, this result characterizes
those processes with square-integrable random variables whose average conditional
expectation, given the macro states, can be estimated using Monte Carlo simulation.

For allocations in a finite-agent asymmetric information economy, it is well known
that there is a conflict between incentive compatibility and Pareto efficiency (see,
for example, Example 0.1 on p. vi of Glycopantis and Yannelis (2005)). The papers
McLean and Postlewaite (2002) and Sun and Yannelis (2007) show the (approximate)
consistency of incentive compatibility and efficiency by working with, respectively:
(i) a large but finite set of agents; (ii) a continuum of agents.1 In this paper, given a
sequence of economies that result from Monte Carlo sampling, we show that the con-
flict between incentive compatibility and Pareto efficiency is resolved asymptotically
for almost all infinite sequences of economies. This corresponds to the asymptotic
result for replica economies in McLean and Postlewaite (2002), and the exact result
in Sun and Yannelis (2007) when, as in Sun (2006), private signals are generated by
a process that is jointly measurable in a two-way Fubini extension.

The rest of the paper is organized as follows. Section 2 includes some basic defini-
tions. Some general properties of the Monte Carlo sampling processes are presented
in Sect. 3. Then Sect. 4 provides a necessary and sufficient condition for the classical
law of large numbers to hold in a general Hilbert space. As an illustrative application,
Sect. 5 shows that in a Monte Carlo sampled sequence of economies with asymmetric
information, incentive compatibility and Pareto efficiency are asymptotically consis-
tent. Additional definitions and all proofs appear in the Appendix, which is Sect. 6.

2 Basic formulation

2.1 Monte Carlo sampling processes

We model a continuum 〈gi 〉i∈I of random variables indexed by i ∈ I as a process
g : I × Ω → X where:

1. (I , I, λ) is an atomless probability space, often the Lebesgue unit interval, whose
typical member is an index i that identifies one particular economic agent;

2. (Ω,F , P) is a probability space that represents the overall risk in the process;2

3. (X ,B) is a Polish space with its Borel σ -algebra;
4. each indexed function gi : Ω → X is measurable, so a random variable;

A (Monte Carlo) sample of the indices i ∈ I is a countable collection i∞ = 〈ik〉∞k=1
drawn from the iteratively completed infinite product probability space (I∞, Ī∞, λ̄∞)

defined in Sect. 6.1. This space was introduced in Hammond and Sun (2006b) as the

1 The compatibility of strategyproofness and Pareto efficiency had been investigated in Hammond (1979),
though only in a framework like that in Aumann (1964, 1966) and Hildenbrand (1974) where, given the
continuum of agents, the distribution of their characteristics can be described by a deterministic probabilistic
measure.
2 We follow the convention that a probability space is assumed to be countably additive, as well as complete
in the sense that the σ -algebra F includes all subsets of every P-null set.
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usual infinite product probability space (I∞, I∞, λ∞) extended so that the σ -algebra
Ī∞ includes iteratively null sets.

Corresponding to each (MonteCarlo) sample i∞ = 〈ik〉∞k=1 of indices is a countable
sequence 〈gik 〉∞k=1 of random variables. This constitutes a (Monte Carlo) sample from
the continuum of random variables Ω � ω �→ gi (ω) ∈ X as i varies over I . This
sample, with i∞ ∈ I∞ fixed, can be regarded as part of one meta (or Monte Carlo)
sampling process G defined by (1).

2.2 One-way Fubini property

The following definition was introduced in Hammond and Sun (2006a).

Definition 1 A probability space (I ×Ω,W, Q) extends the usual product probability
space (I × Ω, I ⊗F , λ ⊗ P) provided thatW ⊇ I ⊗F , with Q(E) = (λ ⊗ P)(E)

for all E ∈ I ⊗ F .
The extended space (I × Ω,W, Q) is a one-way Fubini extension of the product

probability space (I×Ω, I⊗F , λ⊗P) provided that, given any Q-integrable function
I × Ω � (i, ω) �→ f (i, ω) ∈ R:

(i) for λ-almost all i ∈ I , the random variableω �→ fi (ω) is integrable on (Ω,F , P);
(ii) the function i �→ ∫

Ω
fi d P is integrable on (I , I, λ), with

∫
I×Ω

f dQ =∫
I

(∫
Ω

fi d P
)
dλ.

A process g : I × Ω → X is said to satisfy the one-way Fubini property if there
is a one-way Fubini extension (I × Ω,W, Q) such that g is W-measurable.

2.3 Regular conditional independence

A σ -algebra C on Ω is said to be countably generated if there exists a countable
family {Cn}∞n=1 of subsets of Ω that generates C. Given a complete probability space
(Ω,F , P), a sub-σ -algebra C of F is said to be countably generated if it is the strong
completion of a countably generated σ -algebra C′, in the sense that

C = { A ∈ F | ∃A′ ∈ C′ : P(A 
 A′) = 0}

Definition 2 Let g be a process from I × Ω to the Polish space X with its Borel
σ -algebra B. Let C be a countably generated sub-σ -algebra of F in the complete
probability space (Ω,F , P). LetM(X) denote the space of probability measures on
the space (X ,B).

1. Two randomvariablesφ andψ thatmap (Ω,F , P) to X are said to be conditionally
independent given C if, for any Borel sets B1, B2 ∈ B, the conditional probabilities
satisfy

P(φ−1(B1) ∩ ψ−1(B2)|C) = P(φ−1(B1)|C) P(ψ−1(B2)|C) (2)

2. The process g is said to be essentially pairwise conditionally independent given C
if, for λ-a.e. i1 ∈ I , the random variables gi1 and gi2 are conditionally independent
given C for λ-a.e. i2 ∈ I .
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3. An I ⊗C-measurable mapping μ from I ×Ω toM(X) is said to be an essentially
regular conditional distribution process of g given C if, for λ-a.e. i ∈ I , the C-
measurable mapping ω �→ μiω is a regular conditional distribution P(g−1

i |C) of
the random variable gi .

4. The process g is said to be regularly conditionally independent given C if g is essen-
tially pairwise conditionally independent given C, and also g admits an essentially
regular conditional distribution process μ given C. In this case, we also say that g
admits a stochastic macro structure (C, μ).

3 Properties of Monte Carlo sampling processes

Let g be a process from I ×Ω to X and C a countably generated sub-σ -algebra ofF in
(Ω,F , P). Suppose that g admits a stochastic macro structure (C, μ). By Theorem 1
in Hammond and Sun (2016) (stated as Lemma 1 in Sect. 6.1 below), there exists a
one-way Fubini extension (I × Ω,W, Q) such that the process g isW-measurable.

The following theorem shows that the Monte Carlo sampling process G defined by
(1) has the one-way Fubini property. It also shows that G satisfies regular conditional
independence given C, and identifies its regular conditional distribution process.

LetM(X∞) denote the set of probability measures on the infinite product measur-
able space (X∞,B∞).

Theorem 1 Let G : I∞ × Ω → X∞ be a Monte Carlo sampling process based on g.
Then there exists a one-way Fubini extension (I∞ × Ω, W̃, Q̃) of (I∞ × Ω, Ī∞ ⊗
F , λ̄∞ ⊗ P) such that G is W̃-measurable. In addition, G is essentially pairwise
conditionally independent given C. It also admits the essentially regular conditional
distribution process μ̄ defined by

I∞ × Ω � (i∞ ω) �→ μ̄i∞ ω := ⊗∞
k=1μik ω ∈ M(X∞) (3)

4 Characterizing a sharp law of large numbers

Let g be a process from I × Ω to X as in Sect. 3, and let h : I × X → R be an
I ⊗B-measurable function with

∫
I

[∫
Ω
h2i (gi (ω)) dP

]
dλ < ∞. Then Lemma 11 in

Hammond and Sun (2008) says that for λ̄∞-a.e. i∞ ∈ I∞, one has

1

n

n∑

k=1

h(ik, g(ik, ω)) →
∫

I

[∫

X
h(i, x) dμiω

]

dλ for P-almost all ω ∈ Ω

Under the framework of one-way Fubini extension, we have the following corollary.

Corollary 1 Let G : I∞ × Ω → X∞ be the Monte Carlo sampling process based on
g. Suppose that (I∞ × Ω, W̃, Q̃) is a one-way Fubini extension of (I∞ × Ω, Ī∞ ⊗
F , λ̄∞ ⊗ P) such that G is W̃-measurable. Then for Q̃-almost all (i∞, ω) ∈ I∞ ×Ω ,
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1166 P. J. Hammond et al.

one has

1

n

n∑

k=1

h(ik, g(ik, ω)) →
∫

I

[∫

X
h(i, x) dμiω

]

dλ

Let L2(P) be the space of real-valued square integrable functions on (Ω,F , P),
made into a Hilbert space by defining, for any pair ϕ,ψ ∈ L2(P), the standard inner
product 〈ϕ,ψ〉 := ∫

Ω
ϕ(ω)ψ(ω) dP . For each fixed i ∈ I , define the random variable

f (i)(·) so that
Ω � ω �→ f (i)(ω) = h (i, g(i, ω)) ∈ R (4)

The assumption that
∫
I

[∫
Ω
h2i (gi (ω)) dP

]
dλ < ∞ implies that for λ-almost all

i ∈ I , the random variable f (i) is an element in the Hilbert space L2(P). Corol-
lary 1 indicates that the sample average 1

n

∑n
k=1 f (ik)(ω) converges Q̃-almost surely

to
∫
I

[∫
X h(i, x) dμiω

]
dλ. Since the function I � i �→ f (i) takes values in the

Hilbert space L2(P), a natural question is whether one can obtain a similar result for
convergence in the norm of L2(P). This is answered in the following proposition.

Proposition 1 For λ̄∞-almost all i∞ ∈ I∞, one has

∥
∥
∥
∥
∥
1

n

n∑

k=1

f (ik) −
∫

I

[∫

X
h(i, x) dμiω

]

dλ

∥
∥
∥
∥
∥

→ 0

where the random variableω �→ ∫
I

[∫
X h(i, x) dμiω

]
dλ is in L2(P), and ‖·‖ denotes

the standard norm on the Hilbert space L2(P).

This result can be viewed as the classical law of large numbers for a sequence of
random variables taking values in the Hilbert space L2(P). One may wonder whether
such a result can be extended to other Hilbert spaces, or to Banach spaces more
generally.

Let B be a Banach space, with norm ‖ · ‖ and norm dual B′. Given any b ∈ B and
b′ ∈ B

′, let 〈b, b′〉 denote the real value of the continuous linear mapping b′ evaluated
at b. In the case when B is a Hilbert space, we shall denote it by H. Then, of course,
〈b, b′〉 can be regarded as the inner product.

Henceforth we use the respective abbreviations LLN and SLLN for the law of large
numbers, and the sharp law of large numbers.

Definition 3 Let f be a function from (I , I, λ) to a Banach space B.

1. The function f is said to satisfy LLN (resp., SLLN) if there exists a ∈ B such that
‖a − 1

n

∑n
k=1 f (ik)‖ → 0 λ∞-a.s. (resp., λ̄∞-a.s.). Let LLN(B) (resp., SLLN(B)

denote the (linear) space of all functions from I toB that satisfy LLN (resp., SLLN).
2. The function f is said to be Gel’fand integrable if there exists a vector b ∈ B

called theGel’fand integral of f such that, for all b′ ∈ B
′, the real-valued function

i �→ 〈 f (·), b′〉 on I is λ-integrable, with
∫
I 〈 f (i), b′〉dλ = 〈b, b′〉.3

3 This follows the terminology of Dobric (1987) and Hoffmann-Jørgensen (1985). When the Gel’fand
integral of 1S f is defined for every S ∈ I, this is often called the Pettis integral — see, for example,
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3. A function f ∗ : I → R+ norm dominates f : I → B if ‖ f (i)‖ ≤ f ∗(i) for
λ-a.e. i ∈ I . The function f is said to be norm integrably bounded if there exists
a λ-integrable function f ∗ : I → R+ that norm dominates f .

From now on, letL(λ,B) denote the (linear) space of all functions f from (I , I, λ)

to B that are both Gel’fand integrable and norm integrably bounded. The following
Proposition is well known in the literature on random variables with values in a Banach
space. For Part (1), see for example Hoffmann-Jørgensen (1985, Theorem 2.4). Part
(2) is taken from Dobric (1987, Theorem 3.1).

Proposition 2 1. LLN(B) ⊆ L(λ,B) for any Banach space B.
2. Suppose that I is a Polish space, that I is its Borel σ -algebra, and that λ is an

atomless probability measure. There is a Hilbert spaceH such that L(λ,H) is not
equal to LLN(H).

Part (1) of Proposition 2 says that a necessary condition for f to satisfy the usual
LLN is that f must be both Gel’fand integrable and norm integrably bounded. On the
other hand, Part (2) of Proposition 2 shows that these two conditions are not sufficient
for the LLN to hold, even for the special case of a Hilbert space. It means that LLN(B)

is in general a proper subset of L(λ,B).
Since a λ∞-null set is automatically λ̄∞-null, any function in LLN(B) must be in

SLLN(B). Given that the set SLLN(B) is bigger than the set LLN(B), two natural
questions arise. The first is whether the inclusion relationship in Part (1) of Propo-
sition 2 still holds. The second is when such an inclusion can be strengthened to an
equality.

The following theorem shows that when the product measure λ∞ is extended to its
iterated completion λ̄∞, not only does the strengthened inclusion SLLN(B) ⊆ L(λ,B)

hold for a general Banach spaceB, but it becomes an equality in the Hilbert space case.
This equality provides a very general characterization of the functions from (I , I, λ)

to a general Hilbert spaceH that satisfy our sharp law of large numbers in the iterated
completion of the product probability space. Moreover, an obvious corollary of our
results is that LLN(B) is in general a proper subset of SLLN(B), even when B is a
Hilbert space.

Theorem 2 (Sharp law of large numbers) If f is any function mapping (I , I, λ) to a
Banach space B for which SLLN is satisfied, then f ∈ L(λ,B); that is, SLLN(B) ⊆
L(λ,B).More importantly, ifB is aHilbert spaceH, then f satisfies SLLN if and only if
f is Gel’fand integrable and norm integrably bounded. That is, SLLN(H) = L(λ,H).

Consider the function f from (I , I, λ) to the Hilbert space L2(P)which is defined
by (4). The function f is obviously norm integrably bounded because ‖ f (i)‖ =
(∫

Ω
h2i (gi (ω)) dP

) 1
2 and

∫
I

[∫
Ω
h2i (gi (ω)) dP

]
dλ < ∞. The following claim,which

says that such a function f is also Gel’fand integrable, indicates why Proposition 1 is
a special case of Theorem 2.

Claim 1 Let f be the function from (I , I, λ) to L2(P) defined as in equation (4) by
f (i)(ω) = h (i, g(i, ω)). Then f is Gel’fand integrable.

Aliprantis and Border (1999) and Diestel and Uhl (1977, p. 53). Note that 1S is the indicator function of
the set S.
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5 Allocations in large economies with asymmetric information

5.1 The information structure

We use the same information structure as that set out in Sun and Yannelis (2007,
2008). Suppose that the fixed atomless probability space (I , I, λ) represents the space
of economic agents. Let S = {s1, s2, . . . , sK } denote the finite set of true states of
nature (with power set denoted by S). We assume that these are not known by any
agent. Let T 0 = {q1, q2, . . . , qL} denote the space of all possible signals (or types)
for each individual agent. We consider the measurable space (T , T ) of private signal
or type profiles for all the agents i ∈ I . Thus, T is a subset of (T 0)I , the space of all
functions from I to T 0.4 For each agent i ∈ I , the function value t(i) (also denoted
by ti ) is agent i’s private signal, whereas t−i is the restriction of the signal profile t
to the set I\{i} of agents different from i ; let T−i denote the set of all such t−i . For
simplicity, we assume that (T , T ) has a rich enough product structure so that T is a
product of T−i and T 0, whereas T is the product σ -algebra of the power set T 0 on T 0

with a σ -algebra T−i on T−i . Given any t ∈ T and t ′i ∈ T 0, we shall adopt the usual
notation (t−i , t ′i ) to denote the signal profile whose value is t ′i for agent i , but the same
as t j for all other agents j ∈ I\{i}.

To represent all the uncertainty about the true states as well as the agents’ signals,
we consider the probability space (Ω,F , P) where (Ω,F) is the product measurable
space (S × T ,S ⊗ T ). Let PS and PT be the marginal probability measures of P
on (S,S) and (T , T ) respectively. For each i ∈ I , let s̃ and t̃i denote the projection
mappings from Ω to S and to T 0 respectively, with t̃i (s, t) = ti .5 After excluding
any PS-null state, we assume without loss of generality that each true state s ∈ S is
non-null in the sense that πs := PS({s}) > 0; let PT

s be the conditional probability
measure on (T , T ) given that the random variable s̃ takes value s. Thus, for each
B ∈ T , one has PT

s (B) = P({s} × B)/πs . It is obvious that PT = ∑
s∈S πs PT

s .
Note that in the literature the conditional probability measure PT

s is often denoted as
P(·|s).

For each fixed t ∈ T , define also the conditional probability measure PS(·|t) on S
so that for each fixed s ∈ S, the mapping T � t �→ PS({s}|t) is T -measurable, with
P({s} × B) = ∫

B PS({s}|t) dPT for each B ∈ T . Let T � t �→ ps(t) ∈ R+ be the
density function of PT

s with respect to PT ; it is easy to see that PS({s}|t) = πs ps(t)
for PT -almost all t ∈ T .

For each i ∈ I , let τi denote the marginal signal distribution of agent i on the space
T 0; it is defined so that for all q ∈ T 0, the probability P(t̃i = q) equals τi ({q}). Let
PS×T−i (·|ti ) denote the conditional probability measure on the product measurable
space (S × T−i ,S ⊗ T−i ) given that agent i’s signal is ti ∈ T 0. For any ti ∈ T 0

with marginal probability τi ({ti }) > 0, it is clear that for any E ∈ S ⊗ T−i , one
has PS×T−i (E |ti ) = P(E × {ti })/τi ({ti }). Denote by C the completed sub-σ -algebra

4 The standard literature usually assumes that different agents have different sets of possible signals, all of
which occur with positive probability. For notational simplicity, we choose to work instead with a common
set T 0 of possible signals, but allow some of these to have zero probability for some agents. There is no
loss of generality in this latter approach.
5 Because Ω = S × T , the mapping t̃i can also be viewed as a projection from T to T 0.
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of F = S ⊗ T on Ω = S × T that is generated by the union of the finite family
{{s} × T : s ∈ S} with the set of all P-null subsets of S × T .

Let f denote the private signal process from I × Ω to the finite type space
T 0 defined so that f (i, ω) = t̃i (ω). Typically, for each ω ∈ Ω the mapping i �→
f (i, ω) will not be I-measurable. Assume that f is essentially pairwise conditionally
independent given C, and also admits an essentially regular conditional distribution
process μ given C. By definition of the latter, we know that for λ-almost all i ∈ I , the
marginal process Ω ∈ ω �→ μi (ω) ∈ Δ(T 0) is a regular conditional distribution of
Ω ∈ ω �→ fi (ω) ∈ T 0 given C.

Let μ̄ := ∫
I μi dλ be the mean conditional signal distribution over all agents. Then

the Fubini property implies that μ̄ is a C-measurable mapping from Ω to Δ(T 0). We
assume that the process f is non-trivial in the sense that C is the same as the completed
sub-σ -algebra ofF generated by μ̄ together with the P-null subsets ofΩ . This means
that the mean conditional signal distribution carries the same information as the true
state.

Let {As}s∈S be the C-measurable partition ofΩ such that s̃(ω) = s for any ω ∈ As .
Then C is generated by the finite family {As}s∈S . Since μ̄ is C-measurable, there exists
a corresponding finite collection of measures {μs}s∈S in Δ(T 0) such that μ̄(ω) =∑

s∈S 1As (ω)μs for P-almost all ω ∈ Ω . It is clear that μs is the agents’ average
signal distribution conditional on the true state being s. The non-triviality assumption
above implies that

∀s, s′ ∈ S, s �= s′ �⇒ μs �= μs′ . (5)

5.2 A state contingent large economy

First, we define a complete information economy Ec. The common consumption set
of each agent i ∈ I is the positive orthant Rm+. Suppose that for any given i ∈ I and
true state s ∈ S, the mapping R

m+ � x �→ ui (x; s) is agent i’s utility function when
the state is s. For any given i ∈ I and s ∈ S, assume that Rm+ � x �→ ui (x; s) ∈ R is
continuous and strictly monotonic in x ∈ R

m+ in the sense that

x̃ � x and x̃ �= x �⇒ ui (x̃; s) > ui (x; s)

Assume too that for any fixed x ∈ R
m+ and s ∈ S, the mapping I � i �→ ui (x; s) is

I-measurable in i ∈ I .6

In this section, let ‖x‖ denote the Euclidean norm of any vector x ∈ R
m . Assume

also that, in addition to continuity of each individual’s utility function R
m+ � x �→

ui (x; s), the entire family of utility functions Rm+ � x �→ ui (x; s) as (i, s) varies over
I × S is uniformly equicontinuous in the sense that, for any ε > 0, there exists δ > 0
such that ‖x − x̃‖ < δ implies |u(i, x, s)−u(i, x̃, s)| < ε for all i ∈ I , all x, x̃ ∈ R

m+,
and all s ∈ S.

Let I � i �→ e(i) ∈ R
m+ be the λ-integrable endowment function specifying each

agent i’s initial endowment. Assume that the mean endowment vector ē := ∫
I e(i) dλ

6 In the sequel, we shall often use subscripts to denote some argument of a function that is viewed as a
parameter in a particular context.
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satisfies ē � 0, meaning that the mean endowment of each good is positive. Let Δm

denote the unit simplex in R
m+.

For each s ∈ S, the collection Ec
s = {(I , I, λ), uI

s , e
I }, consisting of an atomless

probability space of agents with their respective utility functions x �→ ui (x; s) and
endowment vectors ei , together constitutes a large deterministic exchange economy.
A complete information economy is a collection Ec = {Ec

s : s ∈ S} specifying the
deterministic economy Ec

s for each s ∈ S. The following provides the definition of the
basic concept of a Walrasian allocation.

Definition 4 1. An allocation for Ec is a function

I × S � (i, s) �→ xcs (i) ∈ R
m+ (6)

such that for any fixed s ∈ S, the mapping i �→ xcs (i) is λ-integrable.
2. An allocation (i, s) �→ xcs (i) is feasible in Ec if, for each s ∈ S, one has∫

I x
c
s (i) dλ = ∫

I e(i) dλ (i.e., xcs is feasible in Ec
s ).

3. A feasible allocation (i, s) �→ xcs (i) is a Walrasian (or competitive equilibrium)
allocation in Ec if for each s ∈ S, there is a price system ps ∈ Δm which,
together with the feasible allocation xcs , makes (xcs , ps) a competitive or Walrasian
equilibrium in the large deterministic economy Ec

s , in the sense that for λ-a.e. i ∈ I ,
given i’sWalrasian budget set

Bi (ps) := {x ∈ R
m+ : ps · x ≤ ps · e(i)} (7)

one has
xcs (i) ∈ argmax

x
{ui (x; s) : x ∈ Bi (ps)} (8)

5.3 Monte Carlo sampling economies

We shall now apply Monte Carlo sampling to economies with a continuum of agents
who have asymmetric information. Each agent i ∈ I is informed about her private
signal ti ∈ T 0, but not the true state s ∈ S. Fix any i∞ ∈ I∞ drawn from the itera-
tively completed infinite product probability space (I∞, Ī∞, λ̄∞). In the asymmetric
information Monto Carlo sampling economy E i∞ , there is a countable set of sampled
agents i∞ ∈ I∞.

For any x ∈ R
m+ and t ∈ T , let Ui (x |t) := ∑

s∈S ui (x; s)PS({s}|t) denote agent
i’s conditional expected utility of consumption bundle x given the type t .

A function z from (T , T ) to Rm+ is said to be a consumption plan in E i∞ if for any
pair t, t ′ ∈ T of type profiles that coincide on i∞, one has z(t) = z(t ′). That is, a
consumption plan only depends on reported types of agents in the set I (i∞) defined
by

I (i∞) := ∪∞
k=1{ik} (9)
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Let CP(i∞) be the space of consumption plans in E i∞ . For any agent i ∈ I (i∞) and
a consumption plan z ∈ CP(i∞), let

Ui (z) :=
∫

Ω

ui (z(t); s) dP =
∑

s∈S
πs

∫

T
ui (z(t); s) dPT

s (10)

be the overall expected utility of agent i for the consumption plan t �→ z(t).
An allocation in E i∞ is a function I∞ � i∞ �→ xi

∞ ∈ CP(i∞). For any allocation
xi

∞
, any agent i ∈ I (i∞), and any pair of private signals ti , t ′i ∈ T 0, let

Ui∞
i (xi

∞
i , t ′i |ti ) :=

∫

S×T−i

u(i, xi
∞
i (t−i , t

′
i ), s)dP

S×T−i (·|ti )

denote agent i’s conditional expected utility when she receives the private signal ti but
mis-reports it as t ′i .

5.4 Asymptotically feasible and constrained Pareto efficient allocations

To discuss incentive compatibility, we invoke the revelation principle due to Dasgupta
et al. (1979) and Myerson (1982), but extended in an obvious way to a continuum of
consumers. That is, we consider a direct revelation mechanism in which reporting
one’s type truthfully is a Bayesian equilibrium for every agent in the corresponding
game of incomplete information. Specifically, let g denote the agents’ joint reporting
process I × T � (i, t) �→ g(i, t) ∈ T 0 with g(i, t) = t̃(i) for all (i, t) ∈ I × T . Let
G : I∞ × T → (T 0)∞ be the corresponding Monte Carlo sampling process based
on g. The following claim, which will be proved in Sect. 6.4, shows that g also has a
stochastic macro structure.

Claim 2 There is a countably generated sub-sigma-algebra C′ of T such that g is
regularly conditionally independent given C′.

By Theorem 1, this implies that the space (I∞ × T , Ī∞ ⊗ T , λ̄∞ ⊗ PT ) has a
one-way Fubini extension (I∞ × T , W̃, Q̃) such that G is W̃-measurable.

Definition 5 1. An allocation mechanism is a mapping

I∞ × I × T � (i∞, i, t) �→ xi
∞

(i, t) ∈ R
m+

2. The allocation mechanism (i∞, i, t) �→ xi
∞

(i, t) is asymptotically feasible if, for
Q̃-almost all (i∞, t) ∈ I∞ × T , one has

∥
∥
∥
∥
∥
1

n

n∑

k=1

xi
∞

(ik, t) − 1

n

n∑

k=1

e(ik)

∥
∥
∥
∥
∥

→ 0 as n → ∞
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3. The allocation mechanism (i∞, i, t) �→ xi
∞

(i, t) is incentive compatible if, for

Q̃-almost all (i∞, t) ∈ I∞ × T , the incentive constraint Ui∞
i

(
xi

∞
i , t |t

)
≥

Ui∞
i

(
xi

∞
i , t ′|t

)
holds for any i ∈ I (i∞) and any t ′ ∈ T 0.

4. The allocation mechanism (i∞, i, t) �→ xi
∞

(i, t) is ex post individually rational

if, for Q̃-almost all (i∞, t) ∈ I∞ × T , one has Ui∞
i

(
xi

∞
i |t

)
≥ Ui∞

i (ei |t).
5. The allocation mechanism (i∞, i, t) �→ xi

∞
(i, t) is asymptotically Pareto effi-

cient if, for Q̃-almost all (i∞, t) ∈ I∞ × T , the following holds: for any
ε > 0, there is no sequence y : N → R

m+ such that: (i) as n → ∞, so∥
∥ 1
n

∑n
k=1 yk − 1

n

∑n
k=1 e(ik)

∥
∥ → 0; (ii) for any i ∈ I (i∞), one has Ui∞

i (yi |t) ≥
Ui∞
i (xi

∞
i |t) + ε.

Now we are ready to state the following result for economies generated by Monto
Carlo sampling.

Theorem 3 There exists an allocation mechanism (i∞, i, t) �→ xi
∞

(i, t) which
is asymptotically feasible, incentive compatible, ex post individually rational, and
asymptotically Pareto efficient.

Theorems 1 and 2 in Sun and Yannelis (2007) demonstrate the consistency of exact
incentive compatibility and exact efficiency for a continuum of agents, where private
signals are generated by a process that is jointly measurable in a two-way Fubini
extension, as in Sun (2006).7 This paper only works in the framework of a one-way
Fubini extension. Approximate versions of such a consistency result are considered
in McLean and Postlewaite (2002), in Theorem 3 of Sun and Yannelis (2007), and
in Theorem 3 above. Exact incentive compatibility and approximate efficiency for a
special sequence of replica economies constructed from a fixed finite-agent economy
with concave utilities are considered in Theorem 2 ofMcLean and Postlewaite (2002).
Theorem 3 of Sun and Yannelis (2007) considers approximate incentive compatibility
and approximate efficiency for a general sequence of large, but finite economies with
possibly non-concave utilities. In the setting of a sequence of economies that result
fromMonte Carlo sampling, this paper shows the consistency of exact incentive com-
patibility and approximate efficiency for almost all infinite sequences of economies,
with utilities that are allowed to be non-concave.8
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6 Appendix

6.1 Some technical background

In this subsection, we first define iteratively complete products as in Hammond and
Sun (2006b). Then, for the convenience of the reader, we state as lemmas two results
from Hammond and Sun (2016) that are used in this paper.

Let (Ik, Ik, λk)(k ∈ N) be a sequence of probability spaces. We use the same
notation whether or not the spaces Pk = (Ik, Ik, λk) are identical copies of a fixed
space (I , I, λ). Let

Pn :=
n∏

k=1

Pk = (I n, In, λn) :=
(

n∏

k=1

Ik,
⊗n

k=1
Ik,

⊗n

k=1
λk

)

denote the respective n-fold product, and let

P∞ :=
∞∏

k=1

Pk = (I∞, I∞, λ∞) :=
( ∞∏

k=1

Ik,
⊗∞

k=1
Ik,

⊗∞
k=1

λk

)

denote the infinite product counterpart.
The following definition is taken from Hammond and Sun (2006b).

Definition 6 A subset E of the n-fold Cartesian product set I n is said to be iteratively
null in Pn if for every permutation π on {1, . . . , n}, the n-fold iterated integral

∫

iπ(1)∈Iπ(1)

. . .

∫

iπ(n)∈Iπ(n)

1E (i1, i2, . . . , in) dλπ(n)(iπ(n)) . . . dλπ(1)(iπ(1)) (11)

of the indicator function I n � in �→ 1E (in) ∈ {0, 1} for the set E is well-defined and
has value zero; in other words, for λπ(1)-a.e. iπ(1) ∈ Iπ(1), λπ(2)-a.e. iπ(2) ∈ Iπ(2), …,
λπ(n)-a.e. iπ(n) ∈ Iπ(n), one has (i1, i2, . . . , in) /∈ E .

The following two propositions fromHammond and Sun (2006b) show that one can
extend both the finite product probability spacePn and the infinite product probability
space P∞ by including all iteratively null sets, then forming the iterated completion.

Proposition 3 Given any n ∈ N, let En denote the family of all iteratively null sets in
the n-fold product (I n, In, λn). Then there exists a complete and countably additive
probability space

P̄n := (I n, Īn, λ̄n) :=
(

I n,
⊗n

k=1
Ik,

⊗n

k=1
λk

)
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that satisfies the Fubini property, with:

1. Īn as the σ -algebra σ(In ∪ En), which is equal to the collection

In
En := { D
E : D ∈ In, E ∈ En};

2. λ̄n as the unique measure that satisfies λ̄n(D
E) := λn(D) whenever D ∈ In

and E ∈ En.

Proposition 4 There exists a countably additive probability space

P̄∞ := (I∞, Ī∞, λ̄∞) :=
(

I∞,
⊗∞

k=1
Ik,

⊗∞
k=1

λk

)

in which

1. Ī∞ is the σ -algebra generated by the union G := ∪∞
n=1Gn of the families Gn of

cylinder sets taking the form Gn = A × ∏∞
k=n+1 Ik for some A ∈ Īn;

2. λ̄∞ is the unique countably additive extension to Ī∞ of the set function μ : G →
[0, 1] defined so that μ(A × ∏∞

k=n+1 Ik) := λ̄n(A) for all A ∈ Īn.

Moreover, for any D̄ ∈ Ī∞, there exist D ∈ I∞ and E ∈ Ī∞ such that D̄ = D
E
and λ̄∞(E) = 0.

Unlike the finite product P̄n , the infinite productmeasure space P̄∞ in Proposition 4
may not be complete in the usual sense. One can always complete it by the usual
procedure [see, for example, Dudley (1989, pp. 78–79)].We still use the same notation
to denote this completion, which also retains the property stated in the last sentence
of Proposition 4.

The completed probability space P̄∞ will be called the iterated completion ofP∞,
as well as the iteratively complete product of the spaces Pk (k ∈ N). Let i∞ =
(i1, i2, . . . , in, . . .) denote a general element of I∞.

Next, let C be a countably generated sub-σ -algebra of F in (Ω,F , P), and g
a process from I × Ω to X that is regular conditionally independent given C. The
following two lemmas state (part of) the results in Theorem 1 and Proposition 2 in
Hammond and Sun (2016) respectively.

Lemma 1 The process g satisfies the one-way Fubini property.

Lemma 2 Let h be any measurable function mapping the product space (I × Ω, I ⊗
F , λ⊗ P) to a Polish space Y . Then, for λ-almost all i ∈ I , the two random variables
gi and hi are conditionally independent given C.

6.2 Proof of Theorem 1

First, let

D∞ :={i∞ = (ik)
∞
k=1 ∈ I∞ :

(gik )
∞
k=1 is mutually conditionally independent given C} (12)
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denote the set of all infinite sequences i∞ ∈ I∞ such that the associated sequence of
random variables gik (k ∈ N) are mutually conditionally independent given C.

Next, for any n ∈ N, let

Dn :={in = {ik}nk=1 ∈ I n :
{gik }nk=1 is mutually conditionally independent given C} (13)

denote the projection of the set D∞ ⊂ I∞ onto the finite subproduct set I n of all
sequences of length n. Since g is essentially pairwise conditionally independent given
C, and also admits an essentially regular conditional distribution process μ given C,
Theorem 1 in Hammond and Sun (2006b) implies that Dn ∈ Īn and λ̄n(Dn) = 1 for
any n ∈ N.

For each n ∈ N, let

En := {(i∞, j∞) ∈ I∞ × I∞ : (i1, . . . , in, j1, . . . , jn) ∈ D2n}

It is easy to see that λ̄∞ ⊗ λ̄∞(En) = λ̄2n(D2n) = 1. Let E = ∩∞
n=1E

n . It is clear
that

λ̄∞ ⊗ λ̄∞(E) = 1 (14)

Also, for any i∞ ∈ I∞, letG(i∞) := {gik : k ∈ N} denote the associated countable set
of random variables. Then for any (i∞, j∞) ∈ E , we know that the random variables
in the set G(i∞) ∪G( j∞) are mutually conditionally independent given C. It follows
from (14) that, for λ̄∞-a.e. i∞ ∈ I∞, the random variables in G(i∞) ∪ G( j∞) are
mutually conditionally independent given C for λ̄∞-a.e. j∞ ∈ I∞.

Note that the infinite product σ -algebraB∞ is generated by the family of all infinite
cylinder sets which, for some n ∈ N and some collection B1, . . . Bn ∈ B of n Borel
sets, take the form

∏n
i=1 Bi ×X∞. To prove that μ̄ is an essentially regular conditional

distribution process given C, it is enough to consider the π -system consisting of these
cylinder sets.

Fix any i∞ = (ik)∞k=1 ∈ D∞, where D∞ was defined in (12). For any B1, . . . Bn ∈
B, mutual conditional independence givenC of all the randomvariables in the sequence
(gik )

∞
k=1 implies that for P-a.e. ω ∈ Ω one has

P
((
G(i∞)

)−1
(B1 × · · · × Bn × X∞) | C

)
(ω)

= P
((
gi1, . . . , gin

)−1
(B1 × · · · × Bn) | C

)
(ω)

= P
(
g−1
i1

(B1) | C
)

(ω) · · · P
(
g−1
in

(Bn) | C
)

(ω)

= μi1ω(B1) · · · μinω(Bn)

But definition (3) implies that

μi1ω(B1) · · · μinω(Bn) = μ̄i∞ω

(
B1 × · · · × Bn × X∞)
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So this proves that I∞ × Ω � (i∞, ω) �→ μ̄i∞ω is an essentially regular conditional
distribution process of G given C. Therefore, Lemma 1 implies that there exists a
one-way Fubini extension (I∞ × Ω, W̃, Q̃) of (I∞ × Ω, Ī∞ ⊗ F , λ̄∞ ⊗ P) such
that G is W̃-measurable.

6.3 Proofs of the results in Sect. 4

Proof of Proposition 1 Take as given the real-valued functions h and f specified at the
start of Sect. 4, as well as the regular conditional process I × Ω � (i, ω) �→ μiω ∈
M(X) defined in Sect. 3. For any i ∈ I and ω ∈ Ω , let

ϕ(i, ω) :=
∫

X
hi (x) dμiω and ψ(i, ω) := f (i, ω) − ϕ(i, ω) (15)

We first prove that the random variable

Ω � ω �→
∫

I
ϕ(i, ω) dλ =

∫

I

[∫

X
hi (x) dμiω

]

dλ (16)

belongs to L2(P). The property of essentially regular conditional distribution pro-
cesses implies that

for λ-almost all i ∈ I , one has ϕ(i, ω) = E[ f (i)|C](ω) P-a.s. (17)

Thus, by the Fubini property and Jensen’s inequality, one has

∫
Ω

[∫
I ϕ(i, ω) dλ

]2
dP = ∫

Ω

[∫
I E[ f (i)|C](ω) dλ

]2
dP

≤ ∫
Ω

[∫
I (E[ f (i)|C](ω))2 dλ

]
dP = ∫

I

[∫
Ω (E[ f (i)|C](ω))2 dP

]
dλ

≤ ∫
I

[∫
Ω
E[ f 2(i)|C](ω)dP

]
dλ = ∫

I

[∫
Ω

f 2(i, ω) dP
]
dλ

Because of our assumption that
∫
I

[∫
Ω
h2i (gi (ω)) dP

]
dλ = ∫

I

[∫
Ω

f 2i (ω) dP
]
dλ is

finite, the last integral is finite. This proves that ω �→ ∫
I ϕ(i, ω) dλ is also a function

that belongs to L2(P). Also ϕ can be viewed as essentially a function from (I , I, λ)

to L2(C, P), the space of real-valued, C-measurable and square integrable functions
on (Ω,F , P).

Since C is countably generated, we know that L2(C, P) is separable, which implies
that ϕ is λ-essentially separably valued.9 It is easy to see that ϕ is also weakly λ-
measurable.10 Then Theorem 2 in p. 42 of Diestel and Uhl (1977) implies that the
function i �→ ϕ(i) is λ-measurable. Hence, there exists a sequence of simple func-
tions i �→ ϕk(i) with limk→∞ ‖ϕk − ϕ‖ = 0 for λ-a.e. i ∈ I . From (17) note that∫
I ‖ϕ(i)‖2dλ = ∫

I

[∫
Ω (E[ f (i)|C](ω))2 dP

]
dλ. Thus, Jensen’s inequality implies

9 See p. 42 in Diestel and Uhl (1977) for formal definitions.
10 See p. 41 in Diestel and Uhl (1977) for formal definitions.
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that

∫

I
||ϕ(i)||2dλ ≤

∫

I

∫

Ω

E[ f 2(i)|C] dPdλ =
∫

I

∫

Ω

f (i)2dPdλ < ∞

But then the Cauchy–Schwarz inequality implies that

∫

I
‖ϕ(i)‖dλ ≤

(∫

I
‖ϕ(i)‖2dλ

)1/2

< ∞

By Theorem 2 on p. 45 of Diestel and Uhl (1977), we know that ϕ viewed as
a function from (I , I, λ) to L2(P) is Bochner integrable. Next, the classical law of
large numbers for Bochner integrable functions, as shown in Beck (1963) andMourier
(1953) (see also Dobric 1987 and Hoffmann-Jørgensen 1985), says that for λ∞-a.e.
i∞ ∈ I∞, one has

lim
n→∞

∥
∥
∥
∥
∥
1

n

n∑

k=1

ϕ(ik) −
∫

I

∫

X
hi (x) dμiωdλ

∥
∥
∥
∥
∥

= 0 (18)

The proof of Lemma 11 in Hammond and Sun (2008) shows that there exists
D∗ ∈ Ī∞ with λ̄∞(D∗) = 1 such that for any i∞ ∈ D∗, the random variables
(ψik )

∞
k=1 defined by (15) are mutually orthogonal. This implies that for any i∞ ∈ D∗,

we have

∥
∥
∥
∥
∥
1

n

n∑

k=1

ψ(ik)

∥
∥
∥
∥
∥

2

= 1

n2

n∑

k=1

‖ψ(ik)‖2 (19)

Since
∫
I ‖ψ(i)‖2 dλ < ∞, the usual strong law of large numbers implies that for

λ∞-a.e. i∞ ∈ I∞ one has

lim
n→∞

1

n

n∑

k=1

‖ψ(ik)‖2 =
∫

I
‖ψ(i)‖2 dλ (20)

It clearly follows that for λ̄∞-a.e. i∞ ∈ I∞, one has

lim
n→∞

∥
∥
∥
∥
∥
1

n

n∑

k=1

ψ(ik)

∥
∥
∥
∥
∥

2

= 0 (21)

Combining Eqs. (18) and (21), while using definition (15) of the function i �→ ψ(i) ∈
R, it follows that for λ̄∞-a.e. i∞ ∈ I∞, one has

123



1178 P. J. Hammond et al.

lim
n→∞

∥
∥
∥
∥
∥
1

n

n∑

k=1

f (ik) −
∫

I

∫

X
hi (x) dμiω(x) dλ

∥
∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥
∥
1

n

n∑

k=1

ψ(ik) + 1

n

n∑

k=1

ϕ(ik) −
∫

I

∫

X
hi (x) dμiω(x)dλ

∥
∥
∥
∥
∥

= 0

This completes the proof. ��
The following lemma is a special case of a result in Hammond and Sun (2008),

which generalizes part of Lemma 2.1 in Hoffmann-Jørgensen (1985, p. 304) to the
setting of iteratively complete product spaces.

Lemma 3 For each n ∈ N, let Sn be a subset of I whose λ-outer measure is one. Then
the λ̄∞-outer measure of

∏∞
n=1 Sn is also one.

The next lemma is also taken from Hammond and Sun (2008). It generalizes to
iteratively complete products one part of Theorem 2.4 in (Hoffmann-Jørgensen 1985,
p. 310), which is due to Talagrand.

Lemma 4 Let g be a real-valued function on (I , I, λ). Suppose there is a real constant
c such that

lim
n→∞

g(i1) + · · · + g(in)

n
= c for λ̄∞ -a.e. i∞ ∈ I∞ (22)

Then g is λ-integrable, with
∫
I g(i) dλ = c.

The proof of the following lemma adapts some of the ideas used in the proofs of
Lemma 2.1 and Theorem 2.4 in Hoffmann-Jørgensen (1985), and of Lemma 1.4 in
Hoffmann-Jørgensen (1977).

Lemma 5 If a function f from I to a Banach space B satisfies SLLN, then it is norm
integrably bounded.

Proof Let f ∈ SLLN(B), with ‖a − 1
n

∑n
k=1 f (ik)‖ → 0 for λ̄∞-a.e. i∞ ∈ I∞. Let

D be the set of all i∞ ∈ I∞ such that ‖ 1
n f (in)‖ → 0 as n → ∞. Because of the

decomposition

1

n
f (in) = −

[

a − 1

n

n∑

k=1

f (ik)

]

+ n − 1

n

[

a − 1

n − 1

n−1∑

k=1

f (ik)

]

+ 1

n
a

it follows that

∥
∥
∥
∥
1

n
f (in)

∥
∥
∥
∥ ≤

∥
∥
∥
∥
∥
a − 1

n

n∑

k=1

f (ik)

∥
∥
∥
∥
∥

+ n − 1

n

∥
∥
∥
∥
∥
a − 1

n − 1

n−1∑

k=1

f (ik)

∥
∥
∥
∥
∥

+ 1

n
‖a‖ (23)

Now each term on the right-hand side of (23) converges λ̄∞-a.s. to 0, so λ̄∞(D) = 1.
Let i �→ g(i) be an upper λ-envelope of i �→ ‖ f (i)‖, in the sense that g : I →

R+ ∪ {∞} is an I-measurable function satisfying: (i) g(i) ≥ ‖ f (i)‖ for all i ∈ I ; (ii)
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for any I-measurable function h from I to R+ ∪ {∞}, the λ-inner measure of the set
{ i ∈ I : ‖ f (i)‖ ≤ h(i) < g(i)} is zero (see Hoffmann-Jørgensen 1985, p. 302). For
each n ∈ N, define

Sn := {i ∈ I : g(i) ≤ 2‖ f (i)‖ or ‖ f (i)‖ ≥ n}
Define the function hn := min{n, 1

2g} on I , which is evidently I-measurable. Also,
it is clear that ‖ f (i)‖ < hn(i) < g(i) for all i ∈ I\Sn (even when g(i) = ∞). By
definition of the upper λ-envelope, therefore, the set I\Sn must have λ-inner measure
zero, implying that its λ-outer measure of Sn is one. Lemma 3 says that then the set∏∞

n=1 Sn also has λ̄∞-outer measure one, and so therefore does D ∩ ∏∞
n=1 Sn .

Fix any i∞ ∈ D ∩ ∏∞
n=1 Sn . Since ‖ 1

n f (in)‖ → 0 as n → ∞, one must have
‖ f (in)‖ < n for sufficiently large n, and then in ∈ Sn implies that 0 ≤ g(in) ≤
2‖ f (in)‖. Hence, 1

n g(in) → 0. But g is I-measurable by definition, so 1
n g(in) → 0

for all i∞ in some I∞-measurable superset E of D ∩ ∏∞
n=1 Sn . Since the λ̄∞-outer

measure of D ∩ ∏∞
n=1 Sn is one, it follows that λ̄

∞(E) = λ∞(E) = 1.
Given any i∞ ∈ I∞, let φ(i∞) := supn∈N 1

n g(in). Then φ(i∞) is finite for all
i∞ ∈ E . Because g is I-measurable, the function φ : I → R+ ∪ {∞} must be
I∞-measurable. So there exists a positive integer K such that

λ∞ ({ i∞ ∈ I∞ : φ
(
i∞

)
< K }) > 1

2 (24)

For each n ∈ N, let αn := λ ({i ∈ I : g(i) ≥ nK }). Because λ∞ is a product measure,
it is evident that

λ∞ ({ i∞ ∈ I∞ : φ
(
i∞

)
< K }) =

∞∏

n=1

(1 − αn) (25)

Obviously (24) and (25) imply that
∏∞

n=1(1 − αn) > 1
2 . But ln(1 − αn) ≤ −αn , so

∞∑

n=1

αn ≤ −
∞∑

n=1

ln(1 − αn) < − ln(1/2) = ln 2 < ∞ (26)

This implies that limn→∞ αn = 0, and so λ ({i ∈ I : g(i) = ∞}) = 0.
Given any fixed i ∈ I with g(i) < ∞, letm be the smallest integer such that g(i) <

mK . Then g(i) ∈ [nK ,∞) for n ∈ { 1, . . . ,m − 1}, and so
∑∞

n=1 1[nK ,∞)(g(i)) =
m − 1. It follows that

g(i) ≤ K + K
∞∑

n=1

1[nK ,∞)(g(i)) (27)

for all i ∈ I with g(i) < ∞. Because λ ({i ∈ I : g(i) = ∞}) = 0, the definition of αn

implies that
∫
I 1[nK ,∞)(g(i)) dλ = αn . It follows from (26) and (27), therefore, that

∫

I
g dλ ≤ K + K

∞∑

n=1

αn < K (1 + ln 2) < ∞
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Finally, let f ∗ be the function from I toR+ such that f ∗(i) = g(i)when g(i) < ∞
and f ∗(i) = 0 when g(i) = ∞. Clearly f ∗ is a norm dominant λ-integrable function
for ‖ f ‖, so f is norm integrably bounded. ��

Two functions f and f̃ from (I , I, λ) to a Banach space B are said to be scalarly
equivalent if, for any b′ ∈ B

′, the corresponding real-valued functions i �→ 〈 f (i), b′〉
and i �→ 〈 f̃ (i), b′〉 are equal for λ-a.e. i ∈ I .

Lemma 6 Let H be a Hilbert space and f a function in L(λ,H) that is scalarly
equivalent to the zero function. Then

lim
n→∞

∥
∥
∥
∥
∥
1

n

n∑

k=1

f (ik)

∥
∥
∥
∥
∥

= 0 for λ̄∞-a.e. i∞ ∈ I∞ (28)

Proof Given f ∈ L(λ,H), let g : I → R+ be a λ-integrable function that norm dom-
inates f . For each k ∈ N, let Xk be the random variable defined on (I∞, I∞, λ∞)

by Xk (i∞) := [g(ik)]2. Since EX1/2
1 < ∞ and the variables Xk are i.i.d., the

Marcinkiewicz–Zygmund Theorem for the case p = 1/2 and c = 0 (Chow and
Teicher 1997, p. 125) implies that n−2 ∑n

k=1 Xk (i∞) → 0 for λ∞-a.e. i∞ ∈ I∞.
Because the definition of g implies that ‖ f (i)‖ ≤ g(i) for all i ∈ I , we have
‖ f (ik)‖2 ≤ [g(ik)]2 = Xk (i∞) for all k ∈ N. It follows that n−2 ∑n

k=1 ‖ f (ik)‖2 → 0
for λ∞-a.e. i∞ ∈ I∞.

Next, we follow the idea behind some of the computations in the proof of Theorem
1.3 in Dobric (1987, p. 277). For any i∞ ∈ I∞, we have

∥
∥
∥
∥
∥
1

n

n∑

k=1

f (ik)

∥
∥
∥
∥
∥

2

= 1

n2

n∑

k=1

‖ f (ik)‖2 + 2

n2
∑

1≤ j<k≤n

〈 f (i j ), f (ik)〉 (29)

Because f is scalarly equivalent to zero, for any h ∈ H one has 〈 f (i), h〉 = 0
for λ-a.e. i ∈ I . In particular, for any i ′ ∈ I , one has 〈 f (i), f (i ′)〉 = 0 for λ-a.e.
i ∈ I . Hence there exists a Ī2-measurable set D ⊆ I × I such that λ̄2(D) = 1 and
〈 f (i), f (i ′)〉 = 0 for all (i, i ′) ∈ D. For each pair j, k ∈ N, let Djk denote the set of all
sequences i∞ ∈ I∞ such that (i j , ik) ∈ D, and define D∗ := ∩∞

j=1∩∞
k= j+1 Djk . Then

for all i∞ ∈ D∗ one has 〈 f (i j ), f (ik)〉 = 0 for all j, k ∈ N with j < k. Obviously
Djk ∈ Ī∞ and λ̄∞(Djk) = 1 for each j, k ∈ N, so D∗ ∈ Ī∞ and λ̄∞(D∗) = 1 also.

Combining the results in the last two paragraphs shows that (29) implies (28). ��

Proof of Theorem 2 Let h be a function from I to the Banach space B such that, for
some a ∈ B, one has limn→∞ ‖a − 1

n

∑n
k=1 h(ik)‖ = 0 for λ̄∞-a.e. i∞ ∈ I∞. Take

any fixed b′ ∈ B
′, and let I � i �→ g(i) ∈ R be defined so that g(i) := 〈h(i), b′〉 for

all i ∈ I . A routine calculation shows that, for λ̄∞-a.e. i∞ ∈ I∞, one has

lim
n→∞

1

n
[g(i1) + · · · + g(in)] = 〈a, b′〉
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Then Lemma 4 implies that g is λ-integrable, with
∫
I g(i) dλ = 〈a, b′〉. Hence, h is

Gel’fand integrable and has a as its Gel’fand integral. Lemma 5 implies that h is also
norm integrably bounded.

Now suppose thatB is a Hilbert spaceH. Let f be any function inL(λ,H). Since f
is Gel’fand integrable, it follows from Aliprantis and Border (1999, Theorem 11.51)
or Diestel and Uhl (1977, p. 52) that for each S ∈ I, the function i �→ (1S f )(i) =
1S(i) f (i) is Gel’fand integrable, where i �→ 1S(i) ∈ {0, 1} is the indicator function
of the measurable set S. Let ν(S) denote its Gel’fand integral over I , which is an
element of H. It follows that ‖ν(S)‖2 = 〈ν(S), ν(S)〉 = ∫

I 〈(1S f )(i), ν(S)〉dλ. By
the hypothesis of norm integrable boundedness, there exists a λ-integrable function
f ∗ : I → R+ such that ‖ f (i)‖ ≤ f ∗(i) for λ-a.e. i ∈ I , and so 〈(1S f )(i), ν(S)〉 ≤
(1S f ∗)(i)‖ν(S)‖. Hence ‖ν(S)‖2 ≤ ∫

I (1S f
∗)(i)‖ν(S)‖dλ. So even when ν(S) = 0,

one has

‖ν(S)‖ ≤
∫

S
f ∗(i) dλ (30)

Let S1, S2, . . . ∈ T be any countable collection of pairwise disjoint measurable
subsets of T . Obviously ν

(∪n
k=1Sk

) = ∑n
k=1 ν(Sk) for n = 1, 2, . . .. Furthermore,

(30) implies that

n∑

k=1

‖ν(Sk)‖ ≤
n∑

k=1

∫

Sk
f ∗(i) dλ ≤

∫

T
f ∗(i) dλ < +∞ (31)

It follows that the sequence defined by sn := ν
(∪n

k=1Sk
) = ∑n

k=1 ν(Sk) is a Cauchy
sequence, and so convergent in the complete normed space H. Hence ν

(∪∞
k=1Sk

) =∑∞
k=1 ν(Sk). It follows from (31) that ν is anH-valued σ -additive measure of bounded

variation. Moreover, (30) also implies that the vector measure ν is absolutely contin-
uous w.r.t. λ.

Next, we shall show that f is scalarly equivalent to a Bochner integrable function
φ from (I , I, λ) to H. Because the Hilbert space H is a particular kind of reflexive
Banach space, it has the Radon–Nikodym property (Diestel and Uhl 1977, p. 82). So
there exists a Bochner integrable function φ from (I , I, λ) toH such that ν(S) equals
the Bochner integral

∫
S φ(i) dλ for each S ∈ I. Now the Bochner integral, when it

exists, must equal the Gel’fand integral (Aliprantis and Border 1999, p. 423). So given
any h ∈ H, it follows that

〈ν(S), h〉 =
∫

S
〈φ(i), h〉dλ =

∫

S
〈 f (i), h〉dλ

Because the choice of S ∈ I was arbitrary, one has 〈 f (i), h〉 = 〈φ(i), h〉 for λ-a.e.
i ∈ I . That is, f is scalarly equivalent to φ.11

Defineψ := f −φ. Becauseφ isBochner integrable, it follows fromDiestel andUhl
(1977, p. 45), for example, that ‖φ‖ is integrable. Clearly, then, ψ is norm integrably

11 The argument used in this paragraph is essentially the same as the simple argument on (Diestel and Uhl
1977, p. 89), where the case of norm bounded functions is considered. See also Khan and Sun (1999) for
discussion and for many additional references concerning this scalar equivalence result.
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bounded, Gel’fand integrable, and scalarly equivalent to zero. So Lemma 6 implies
that ψ ∈ LLN(H). Then the classical law of large numbers for Bochner integrable
functions, as shown in Beck (1963) and Mourier (1953) (see also Dobric (1987) and
Hoffmann-Jørgensen (1985)), says that φ is in LLN(H), and so in SLLN(H) as well.
Therefore f = φ + ψ ∈ SLLN(H). ��
Proof of Claim 1 Let ϕ be any square integrable random variable on (Ω,F , P). By
the property of regular conditional distribution process μ and the Fubini property, one
has

∫

Ω

[∫

I

∫

X
h(i, x) dμiωdλ

]

ϕ(ω) dP =
∫

I

∫

Ω

E[ f (i, ω)|C]ϕ(ω) dPdλ

Lemma 2 implies that for λ-almost all i ∈ I , the random variables ω �→ fi (ω) and
ω �→ ϕ(ω) are conditionally independent given C. Therefore, we have

∫

Ω

[∫

I

∫

X
h(i, x) dμiωdλ

]

ϕ(ω) dP =
∫

I

∫

Ω

E[ f (i, ω)ϕ(ω)|C] dPdλ

=
∫

I

∫

Ω

f (i, ω)ϕ(ω) dPdλ

This implies that f is Gel’fand integrable. ��

6.4 Proof of Theorem 3

By the usual existence result on Walrasian allocations in Aumann (1966) and Hilden-
brand (1974), we know that there exists a Walrasian equilibrium (xc, p) for the
economy Ec. Because we assumed that the utility function R

m+ � x �→ ui (x; s)
of each agent i ∈ I is strictly monotonic, we know that for any s ∈ S, the Walrasian
equilibrium price vector ps is strictly positive.

Note that, by assumption, the private signal process I×Ω � (i, ω) �→ f (i, ω) ∈ T 0

that was introduced in Sect. 5.1 is essentially pairwise conditionally independent given
C and admits an essentially regular conditional distribution process μ given C. Then
Proposition 5 in Hammond and Sun (2008) implies that for λ̄∞-a.e. i∞ ∈ I∞, there
exists F ∈ F with P(F) = 1 such that for any ω ∈ F and any q ∈ T0, one has

lim
n→∞

1

n

n∑

k=1

1q( f (ik, ω)) = [μ̄(ω)](q) (32)

The usual strong law of large numbers implies that for λ∞-a.e. i∞ ∈ I∞ one has

lim
n→∞

1

n

n∑

k=1

e(ik) =
∫

I
e(i) dλ (33)

and lim
n→∞

1

n

n∑

k=1

xcs (ik) =
∫

I
xcs (i) dλ for all s ∈ S (34)
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Let D be the set of i∞ ∈ I∞ such that the three Eqs. (32)–(34) all hold. It is clear
that λ̄∞(D) = 1.

First, for any i∞ /∈ D and i ∈ I (i∞), construct xi
∞

(i, t) := e(i) for all t ∈ T .
Also, for any i∞ /∈ D and i ∈ I (i∞), the definition of Walrasian equilibrium implies

that the inequality Ui∞
i

(
xi

∞
i , ti |ti

)
≥ Ui∞

i

(
xi

∞
i , t ′i |ti

)
holds for any ti , t ′i ∈ T 0.

Alternatively, consider any fixed i∞ ∈ D. For any n ∈ N, t ∈ T and q ∈ T0, let
γ i∞
n (t, q) := 1

n

∑∞
k=1 1{q}(tik ). This defines a mapping T � t �→ γ i∞

n (t) ∈ Δ(T 0).
For any t ∈ T , given the counting measure γ̄ on the finite set T 0, let

γ i∞(t) :=
{
limn→∞ γ i∞

n (t) if the limit exists

γ̄ otherwise
(35)

Next, define the sets

Li∞
s := {t ∈ T : γ i∞(t) = μs} for all s ∈ S, and Li∞

0 := T \
⋃

s∈S
Li∞
s (36)

Because (32) holds P-a.s., it follows that PT
s (Li∞

s ) = 1.
Also, the non-triviality assumption implies that for any s, s′ ∈ S with s �= s′, one

has Li∞
s ∩ Li∞

s′ = ∅. Thus, the collection {Li∞
0 } ∪ {Li∞

s : s ∈ S} forms a measurable
partition of T .

The definition (35) of γ i∞ obviously implies that for any i ∈ I (i∞) one has
γ i∞(t−i , ti ) = γ i∞(t−i , t ′i ) for all t−i ∈ T−i and all ti , t ′i ∈ T 0. Hence, for any
i ∈ I (i∞), t ∈ T , t ′i ∈ T 0, and s ∈ S, one has

t ∈ Li∞
s ⇐⇒ γ i∞(t) = μs ⇐⇒ γ i∞(t−i , t

′
i ) = μs ⇐⇒ (t−i , t

′
i ) ∈ Li∞

s (37)

Since Li∞
0 equals T \ ∪s∈S Li∞

s , we also know that t ∈ Li∞
0 ⇐⇒ (t−i , t ′i ) ∈ Li∞

0 .
Hence, for any i ∈ I (i∞) we have xi

∞
(i, t) = xi

∞
(i, (t−i , t ′i )) for all t ∈ T and

t ′i ∈ T 0. This trivially implies that for any i ∈ I (i∞) and any ti , t ′i ∈ T 0, the allocation
I × T � (i, t) �→ xi

∞
(i, t) ∈ R

m+ satisfies the corresponding incentive constraint

Ui∞
i

(
xi

∞
i , ti |ti

)
≥ Ui∞

i

(
xi

∞
i , t ′i |ti

)
(38)

For each s ∈ S, let δs denote the Dirac measure on S that gives probability one to
the point s and zero to all the other points of S. Define a function H from T to the
space Δ(S) of all probability measures on the finite set S by letting

H(t) :=
{

δs for the unique s ∈ S such that t ∈ Li∞
s

δs1 for t ∈ Li∞
0

Then the same proof as in Lemma 3 of Sun and Yannelis (2007) shows that for each
t ∈ T , the measure H(t) is a version of Ps(·|t).

Now we are ready to prove Claim 2.
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Proof of Claim 2 Fix any i∞ ∈ D. Let C′ be the σ -algebra generated by the finite
family {Li∞

s : s ∈ S}. Note that for any s ∈ S, one has

P(t̃ ∈ Li∞
s ) =

∑

s′∈S
πs′ P

T
s′ (L

i∞
s ) = πs P

T
s (Li∞

s ) = πs (39)

and

P(s̃ = s|t̃ ∈ Li∞
s ) = P(s̃ = s, t̃ ∈ Li∞

s )

PT (Li∞
s )

= πs P(t̃ ∈ Li∞
s |s̃ = s)

πs PT
s (Li∞

s )
= 1 (40)

Fix any s ∈ S, any q, q ′ ∈ T 0, and any i, j ∈ I such that the random variables fi and
f j from Ω to T 0 are conditionally independent given s. We know that

PT (gi = q, g j = q ′|Li∞
s ) = P( fi = q, f j = q ′, t̃ ∈ Li∞

s )

PT (Li∞
s )

= πs P( fi = q, f j = q ′, t̃ ∈ Li∞
s |s̃ = s)

πs PT
s (Li∞

s )

Because PT
s (Li∞

s ) = 1, whereas fi and f j are conditionally independent given s, we
have

PT (gi = q, g j = q ′|Li∞
s ) = P( fi = q, f j = q ′, t̃ ∈ Li∞

s |s̃ = s)

= P( fi = q, f j = q ′|s̃ = s)

= P( fi = q|s̃ = s) · P( f j = q ′|s̃ = s)

= PT (gi = q|Li∞
s ) · PT (g j = q ′|Li∞

s )

By Eqs. (39) and (40), we know that

P( fi = q|s̃ = s) · P( f j = q ′|s̃ = s)

= 1

π2
s
P( fi = q, s̃ = s) · P( f j = q ′, s̃ = s)

= 1

π2
s
P(t̃ ∈ Li∞

s )2 · P( fi = q, s̃ = s|t̃ ∈ Li∞
s ) · P( f j = q ′, s̃ = s|t̃ ∈ Li∞

s )

= P( fi = q|t̃ ∈ Li∞
s ) · P( f j = q ′|t̃ ∈ Li∞

s )

= PT (gi = q|Li∞
s ) · PT (g j = q ′|Li∞

s )

This implies that PT (gi = q, g j = q ′|Li∞
s ) = PT (gi = q|Li∞

s ) · PT (g j = q ′|Li∞
s ).

Hence, g is essentially pairwise conditionally independent given C′.
For any i ∈ I , s ∈ S and t ∈ Li∞

s , let νi t denote μi(s,t), where μ is the essentially
regular conditional distribution process of f given C. It is clear that ν is an essen-
tially regular conditional distribution process of g given C′. Therefore, g is regularly
conditionally independent given C′. This completes the proof of Claim 2.
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We now continue the proof of Theorem 3.
Let Ei∞

s be the set of all t ∈ Li∞
s such that PT (·|t) = δs . Clearly PT

s (Ei∞
s ) = 1

for any t ∈ Ei∞
s . Let Ei∞ := ∪s∈S Ei∞

s . Then

PT (Ei∞) =
∑

s′∈S
πs′ P

T
s′ (∪s∈S Ei∞

s ) =
∑

s′∈S
πs′ P

T
s′ (E

i∞
s′ ) =

∑

s′∈S
πs′ = 1

Given the Walrasian equilibrium allocation (i, s) �→ xcs (i) for the economy Ec, as
specified by (6), define a mapping xi

∞
from I × T to Rm+ by letting

xi
∞

(i, t) :=
{
xcs (i) if there is a unique s ∈ S such that t ∈ Li∞

s
e(i) if t ∈ Li∞

0
(41)

It is clear that xi
∞
only depends on reports from agents i ∈ I (i∞). Hence xi

∞
is an

allocation in the economy E i∞ .
Note that for any s ∈ S the feasibility condition in Part 2 of Definition 4 implies

that
∫
I x

c
s (i) dλ = ∫

I e(i) dλ, and also

lim
n→∞

1

n

n∑

k=1

xi
∞

(ik, t) = lim
n→∞

1

n

n∑

k=1

e(ik) =
∫

I
e(i) dλ, if t ∈ Li∞

0

lim
n→∞

1

n

n∑

k=1

xi
∞

(ik, t) = lim
n→∞

1

n

n∑

k=1

xcs (ik) =
∫

I
xcs (i) dλ, if t ∈ Li∞

s

These last equalities imply that, for any t ∈ T , as n → ∞, the allocation defined by
(41) satisfies the asymptotic feasibility condition

∥
∥
∥
∥
∥
1

n

n∑

k=1

[xi∞(ik, t) − e(ik)]
∥
∥
∥
∥
∥

→
∫

I
[xcs (i) − e(i)]dλ = 0 (42)

Now fix any s ∈ S and t ∈ Ei∞
s . Evidently definition (7) implies that for any i ∈ I

one has e(i) ∈ Bi (ps). Since PT (·|t) = δs , it follows from (8) that for any i ∈ I (i∞),
one has

Ui∞
i (xi

∞
(i, t)|t) = ui (x

c
s (i); s) ≥ ui (e(i); s) = Ui∞

i (e(i)|t). (43)

This proves ex post individual rationality.
Finally, fix any ε > 0. By uniform equicontinuity of the family of utility functions

R
m+ � x �→ ui (x; s) (for i ∈ I and s ∈ S), there exists δ > 0 such that whenever

x, x ′ ∈ R
m+ satisfy ‖x − x ′‖ < δ, then |ui (x; s) − ui (x ′; s)| < ε for all i ∈ I and

s ∈ S.
Let p̄s := min j∈{1,2,...,m} ps j and δ′ := 1

2 p̄sδ. For any i ∈ I and s ∈ S, let
Mi

s := ps · e(i) denote the value of agent i’s endowment at the equilibrium price
vector ps that applies in the economy Ec

s .
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Fix any i ∈ I (i∞) and x ∈ B(ps, Mi
s + δ′). Let x ′ = Mi

s

Mi
s + δ′ x . It is clear that

x ′ ∈ B(ps, Mi
s ). By the definition of p̄s and δ′, we have

‖x − x ′‖ = δ′

Mi
s
‖x ′‖ ≤ δ′

ps · x ′(i)
‖x ′‖

≤ δ′

p̄s · ∑m
j=1 x

′
j (i)

‖x ′‖ ≤ δ′

p̄s · ∑m
j=1 x

′
j (i)

m∑

j=1

x ′
j (i) = 1

2
δ < δ

This implies that ui (x; s) < ui (x ′; s)+ε. For any i ∈ I (i∞) and any x ∈ B(ps, Mi
s +

δ′), it follows that
Ui∞
i (x |t) < Ui∞

i (xi
∞
i |t) + ε (44)

Let I (i∞) � i �→ yi → R
m+ be any sequence such thatUi∞

i (yi |t) ≥ Ui∞
i (xi

∞
i |t)+ε

for all i ∈ I (i∞). From (44) it follows that ps · yi ≥ Mi
s + δ′ for all i ∈ I (i∞), which

implies that 1
n

∑n
k=1 ps · [yik − e(ik)] does not converge to 0. It is clear then that no

sequence I (i∞) � i �→ yi → R
m+ with the property thatUi∞

i (yi |t) ≥ Ui∞
i (xi

∞
i |t)+ε

for all i ∈ I (i∞) can satisfy the asymptotic feasibility condition (42).
Finally, note that G : I∞ × T → (T 0)∞ is the Monte Carlo sampling pro-

cess based on g, and that (I∞ × T , W̃, Q̃) is a one-way Fubini extension of
(I∞ × T , Ī∞ ⊗ T , λ̄∞ ⊗ PT ) such that G is W̃-measurable. Within the frame-
work of this one-way Fubini extension, the arguments in this section establish that the
allocation mechanism (i∞, i, t) �→ xi

∞
(i, t) is incentive compatible, asymptotically

feasible, ex post individually rational, and asymptotically Pareto efficient. ��
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